WO2018105103A1 - Control device, antenna and program - Google Patents

Control device, antenna and program Download PDF

Info

Publication number
WO2018105103A1
WO2018105103A1 PCT/JP2016/086737 JP2016086737W WO2018105103A1 WO 2018105103 A1 WO2018105103 A1 WO 2018105103A1 JP 2016086737 W JP2016086737 W JP 2016086737W WO 2018105103 A1 WO2018105103 A1 WO 2018105103A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
control signal
slave unit
processing
function
Prior art date
Application number
PCT/JP2016/086737
Other languages
French (fr)
Japanese (ja)
Inventor
義之 古賀
小島 誠
Original Assignee
日本電業工作株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電業工作株式会社 filed Critical 日本電業工作株式会社
Priority to PCT/JP2016/086737 priority Critical patent/WO2018105103A1/en
Publication of WO2018105103A1 publication Critical patent/WO2018105103A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present invention relates to a control device, an antenna, and a program.
  • a tilt control system based on the AISG (Antenna Interface Standards Group) standard is adopted. Is done.
  • a primary station such as a radio device
  • a secondary station attached to the antenna operates to control the tilt angle and the like.
  • Patent Document 1 in an antenna transmission control apparatus including a multiplexer circuit on a base station side or an antenna side, a protocol transmission for controlling a component close to an antenna is used between two multiplexer circuits using the AISG standard.
  • the signal generated at the antenna side port of the multiplexer circuit which is performed alternately and provided on the antenna side, can be measured or detected by the multiplexer circuit and injected into the transmission line along with connection-dependent or consumer-dependent protocols Is described.
  • a communication method Single-antenna elementary procedures in which a slave unit (processing device) and phase shifters are connected in a one-to-one relationship, and a slave unit and phase shifters are one.
  • communication methods multi-antenna elementary procedures
  • the number of phase shifters that can be connected to one slave unit is different, so the hardware configuration is fundamentally different.
  • An object of the present invention is to provide a control device that enables processing based on a signal from a transmitter, regardless of whether the transmitter employs a single communication method or a multi-communication method. . Another object of the present invention is to reduce the number of hardware processing devices in a control system that receives a signal from a transmitter employing a single communication method.
  • a control device to which the present invention is applied controls one or more phase shifters for shifting the phases of transmission / reception signals transmitted / received by a plurality of antenna elements based on a control signal from a transmitter.
  • a control device having a plurality of slave unit function units, wherein the plurality of slave unit function units can process a control signal in accordance with a single communication method in which only one phase shifter is assigned to one slave unit function unit 1 in one slave unit function unit corresponding to a single communication method provided for each phase shifter of one or more phase shifters and one slave unit function unit provided for one or more phase shifters And at least one slave unit function unit corresponding to the multi-communication system capable of processing a control signal according to the multi-communication system to which one or more phase shifters can be assigned, and receiving means for receiving the control signal from the transmitter And the receiving means is a single communication system from the transmitter When the control signal according to any one of the communication methods of the multi-communication method is received, it is determined whether the destination of the control signal is the slave unit function unit
  • the slave unit includes a process execution means for executing a process based on a control signal in accordance with the multi-communication method.
  • the control device further includes a slave unit function unit corresponding to a single communication method provided for a phase shifter different from one or more phase shifters, and the other phase shifter is a multi-communication unit. It is characterized in that it is not connected to the slave unit function unit corresponding to the system.
  • the control device further includes a slave unit function unit corresponding to a multi-communication system provided for a phase shifter different from the one or more phase shifters. It is characterized in that it is not connected to the slave unit function unit corresponding to the system.
  • the processing execution means executes the processing for each phase shifter by the slave unit function unit based on the control signal for one or more phase shifters received from the transmitter, and executes the process.
  • a process for generating a response signal for generating a response signal for each transmitter and generating a response signal for recognizing that the transmitter is an abnormal signal when a plurality of response signals to the transmitter are generated by the processing of the processing execution means.
  • the control device further includes another slave unit function unit that controls another device different from the phase shifter based on a control signal from the transmitter.
  • the antenna to which the present invention is applied is one or more array antennas each having a plurality of antenna elements, and transmission / reception that is provided for each of the one or more array antennas and that is transmitted and received by the plurality of antenna elements.
  • One or more phase shifters for shifting the phase of the signal and a control device having a plurality of slave unit function units for controlling one or more phase shifters based on a control signal from the transmitter
  • the function unit is provided for each phase shifter of one or more phase shifters capable of processing a control signal according to a single communication method in which only one phase shifter is assigned to one slave unit function unit.
  • one or more phase shifters can be allocated to one slave unit function unit provided for one slave unit function unit and one or more phase shifters At least one capable of processing the control signal
  • a control unit that receives a control signal from the transmitter, and the receiving unit converts the communication method from the transmitter to one of a single communication method and a multi-communication method.
  • the slave unit function unit executes processing based on a control signal in accordance with the single communication method, and when the destination is a slave unit function unit that supports the multi-communication method, And a process execution means for executing a process based on a control signal in accordance with the communication method.
  • the program to which the present invention is applied controls one or more phase shifters for shifting the phase of transmission / reception signals transmitted / received by a plurality of antenna elements based on a control signal from a transmitter.
  • a program used for a control device having a plurality of slave unit function units wherein the plurality of slave unit function units are controlled in accordance with a single communication method in which only one phase shifter is assigned to one slave unit function unit
  • the slave unit function unit executes processing based on the control signal according to the single communication method, and the destination is a slave unit compatible with the multi communication method.
  • the control unit realizes a function of causing the slave unit functional unit to execute processing based on the control signal in accordance with the multi-communication method.
  • the control device to which the present invention is applied is based on a control signal from a transmitter operating in a single communication system, to which a plurality of phase shifters for shifting the phases of transmission / reception signals transmitted / received by a plurality of antenna elements are connected.
  • One control device having a plurality of slave unit function units for controlling a plurality of phase shifters, and causing the control signal to be executed by an address for designating a destination slave unit function unit and a destination slave unit function unit A command indicating the processing content is included, and each of the plurality of slave unit function units includes a command included in a control signal according to a single communication method in which only one phase shifter is assigned to one slave unit function unit.
  • Processing execution means for distributing commands and executing command processing.
  • processing for generating a response signal that recognizes that the transmitter is an abnormal signal is performed, and the response signal is used to respond to the transmitter. And responding means.
  • control device further includes another slave unit function unit that controls another device different from the phase shifter based on a control signal from the transmitter, and the process execution unit is a control received by the reception unit. Compare the address included in the signal with the addresses assigned to each of the multiple handset function units and other handset function units, and if the destination of the control signal is another handset function unit, The slave unit function unit can distribute the command included in the control signal and execute the command processing.
  • the antenna to which the present invention is applied includes a plurality of array antennas each having a plurality of antenna elements, and a phase of a transmission / reception signal transmitted and received by the plurality of antenna elements.
  • a control signal includes an address for designating a destination slave unit function unit and a command indicating processing contents to be executed by the destination slave unit function unit, and a plurality of slave unit function units
  • Each of these is a slave unit function unit that can process a command included in a control signal in accordance with a single communication method in which only one phase shifter is assigned to one slave unit function unit.
  • the control device includes a receiving unit that receives a control signal from the transmitter, an address included in the control signal according to the single communication method received by the receiving unit, and a plurality of slave unit function units. By comparing the address assigned to each of the slave units, the command included in the control signal is distributed to the slave unit function unit that is the destination of the control signal among the plurality of slave unit function units, and the command processing is executed. And a process execution means. From another point of view, the program to which the present invention is applied is obtained from a transmitter operating in a single communication system, to which a plurality of phase shifters that shift the phases of transmission and reception signals transmitted and received by a plurality of antenna elements are connected.
  • a slave unit functional unit that can process commands included in the control signal, and is provided corresponding to each of a plurality of phase shifters, and has a function of receiving a control signal from a transmitter and a received thin
  • the slave unit that is the destination of the control signal among the plurality of slave unit function units by comparing the address included in the control signal according to the communication method and the address assigned to each of the plurality of slave unit function units
  • the control device realizes the function of distributing the command included in the control signal to the functional unit and executing the command processing. From another point of view, the control device to which the present invention is applied is connected to a phase shifter that shifts the phase of transmission / reception signals transmitted and received by a plurality of antenna elements and another device that is different from the phase shifter.
  • the slave unit function unit that controls the phase shifter based on the control signal from the machine, the other slave unit function unit that controls other devices based on the control signal from the transmitter, and the control signal received from the transmitter
  • a receiving unit that determines whether the destination of the control signal is a slave unit function unit or another slave unit function unit when the receiver unit receives a control signal from the transmitter, Is a slave unit function unit, the slave unit function unit is caused to execute processing for controlling the phase shifter based on the control signal, and when the destination is another slave unit function unit,
  • a process execution unit that causes the slave unit function unit to execute a process of controlling another device based on the control signal. Provided with a door.
  • the present invention it is possible to provide a control device that enables processing based on a signal from a transmitter, regardless of whether the transmitter employs a single communication method or a multi-communication method. Further, according to the present invention, the number of hardware processing devices can be reduced in a control system that receives a signal from a transmitter employing a single communication method.
  • FIG. 3 is a diagram illustrating an example of a configuration of an antenna according to Embodiment 1.
  • FIG. It is a figure which shows the structural example of the conventional antenna at the time of employ
  • (A)-(c) is a figure for demonstrating an example of the frame format of the signal transmitted with respect to an antenna from a main
  • 2 is a block diagram illustrating an example of a functional configuration of a processing device unit according to Embodiment 1.
  • FIG. 5 is a flowchart illustrating an example of a processing procedure of a processing device unit according to the first embodiment.
  • (A)-(c) is the figure which showed the other structural example of the antenna which concerns on Embodiment 1.
  • FIG. FIG. 6 is a diagram showing another configuration example of the antenna according to the first embodiment. It is the flowchart which showed an example of the process sequence of the processing apparatus part in the structure shown in FIG. 6 is a diagram illustrating an example of a configuration of an antenna according to Embodiment 2.
  • FIG. 10 is a flowchart illustrating an example of a processing procedure of a processing device unit according to the second embodiment. 6 is a diagram illustrating an example of a configuration of an antenna according to Embodiment 3.
  • FIG. 10 is a flowchart illustrating an example of a processing procedure of a processing device unit according to the third embodiment.
  • (A) is a figure which shows an example of a structure of the antenna which concerns on Embodiment 4.
  • FIG. (B) is a figure which shows the structural example of the conventional antenna at the time of employ
  • FIG. 10 is a block diagram illustrating an example of a functional configuration of a processing device unit according to a fourth embodiment.
  • 10 is a flowchart illustrating an example of a processing procedure of a processing device unit according to a fourth embodiment. It is the flowchart which showed an example of the process sequence of the processing apparatus part in the structure of a comparative example.
  • FIG. 10 is a diagram illustrating an example of a configuration of an antenna according to a fifth embodiment. 10 is a flowchart illustrating an example of a processing procedure of a processing device unit according to a fifth embodiment. 10 is a flowchart illustrating an example of a processing procedure of a processing device unit according to a fifth embodiment.
  • FIG. 1 is a block diagram illustrating a hardware configuration example of an antenna 100 to which an embodiment of the present invention is applied.
  • the antenna 100 is connected to a parent device 400 that is a device that transmits a control command according to the AISG standard.
  • the base unit 400 is, for example, a radio device in a mobile phone base station, a dedicated control device, or the like.
  • the base unit 400 can also be said to be a transmitter for transmitting a control command to the processing unit 120.
  • the antenna 100 performs processing such as tilt control in accordance with a control command from the parent device 400.
  • the antenna 100 includes an array antenna 180-1, an array antenna 180-2, a phase shifter 110a, a phase shifter 110b, and a processing unit 120.
  • array antenna 180 When there is no need to distinguish between array antenna 180-1 and array antenna 180-2, they may be referred to as array antenna 180. Further, when there is no need to distinguish between the phase shifter 110a and the phase shifter 110b, the phase shifter 110 may be referred to.
  • the array antenna 180-1 includes antenna elements 181a to 181d
  • the array antenna 180-2 includes antenna elements 182a to 182d.
  • the antenna elements 181a to 181d and the antenna elements 182a to 182d are arranged on a straight line at equal intervals, and antenna elements for different frequency bands (for example, the antenna elements 181a to 181d are antenna elements for high frequency bands, antenna elements). 182a to 182d are used as low-frequency band antenna elements).
  • the plurality of antenna elements are connected to one phase shifter 110 for each array antenna 180.
  • the antenna elements 181a to 181d are connected to the phase shifter 110a
  • the antenna elements 182a to 182d are connected to the phase shifter 110b.
  • the phase shifter 110 controls the phase of the input signal supplied to each antenna element (antenna elements 181a to 181d, antenna elements 182a to 182d) of the array antenna 180 or the output signal received by each antenna element. Then, the directivity of the array antenna 180 is set. In other words, the phase shifter 110 changes the phase of radio waves transmitted from the antenna elements 181a to 181d and the antenna elements 182a to 182d, thereby changing the transmission direction and reception direction (directivity) of radio waves (beams) from the horizontal plane to the ground surface. Tilt in the direction or sky direction to set the tilt angle.
  • the phase shifter 110 includes, for example, a plurality of arc-shaped conductors having the same center, and linear conductors extending from the center and intersecting these arc-shaped conductors. Then, by rotating the linear conductor around the center, the position where it intersects the arc-shaped conductor changes, and the length of the path through which the signal propagates changes, so that the phase of the signal (the amount of phase shift) is changed. Change. That is, in such a phase shifter 110, the amount of phase shift is set by the rotation angle of the linear conductor, and a desired tilt angle is realized.
  • the phase shifter 110a has a position detector 111a and a motor 112a
  • the phase shifter 110b has a position detector 111b and a motor 112b.
  • the position detection unit 111a and the position detection unit 111b detect the rotation angle of the linear conductor as a position indicating the amount of phase shift.
  • the motors 112a and 112b rotate the linear conductors to control the amount of phase shift.
  • the processing unit 120 has a function as a slave unit that processes a signal from the master unit 400, and includes a communication interface unit (hereinafter referred to as a communication IF unit) 130, a power supply unit 140, a processing unit unit 150, and a motor control circuit 161. , A position detection auxiliary circuit 162, a switching circuit 170a, and a switching circuit 170b.
  • the motor control circuit 161 and the position detection auxiliary circuit 162 may be collectively referred to as a motor control / position detection auxiliary circuit 160.
  • the switching circuit 170a and the switching circuit 170b may be collectively referred to as a switching circuit 170.
  • the communication IF unit 130 is a circuit that mediates a signal between the parent device 400 and the processing device unit 150.
  • the power supply unit 140 supplies power to each unit and each circuit in the processing unit 120.
  • the motor control circuit 161 is a circuit composed of an electronic member (electronic component) such as a semiconductor element, and is a circuit for controlling the phase shifter 110 controlled by the processing unit 150. For example, when the motor control circuit 161 receives a signal designating a tilt angle from the processing unit 150, the motor control circuit 161 controls the phase shifter 110 so that the designated tilt angle is obtained.
  • the position detection auxiliary circuit 162 is a circuit for receiving a position detection signal indicating the rotation angle of the linear conductor from the phase shifter 110 and pre-processing so that the received position detection signal is easily amplified and detected.
  • the position detection auxiliary circuit 162 need not be provided.
  • the switching circuit 170 performs signal switching between the motor control circuit 161 and the position detection auxiliary circuit 162 and the phase shifter 110a and the phase shifter 110b to be controlled.
  • the processing unit 150 executes software for processing communication according to the AISG standard.
  • the processing device unit 150 receives the position detection signal via the position detection auxiliary circuit 162 and detects the rotation angle of the linear conductor in the phase shifter 110. Further, the processing device unit 150 generates a signal designating the tilt angle of the phase shifter 110 based on the tilt control command from the parent device 400 and transmits the signal to the phase shifter 110 via the motor control circuit 161.
  • the processing unit 150 is realized by, for example, a microprocessor, but may be a programmable logic device such as an FPGA (Field-Programmable Gate Array) or a CPLD (Complex Programmable Logic Device).
  • the processor unit 150 includes a UART (Universal Asynchronous Receiver Transmitter) 151, a CPU (Central Processing Unit), a RAM (Random Access Memory) 153, a ROM (Read Only Memory) 154, an I / O (Input / Output). Output) 155a and I / O 155b.
  • UART Universal Asynchronous Receiver Transmitter
  • CPU Central Processing Unit
  • RAM Random Access Memory
  • ROM Read Only Memory
  • I / O Input / Output
  • Output I / O
  • the UART 151 is an integrated circuit for mutually converting serial transfer type data and parallel transfer type data.
  • the RAM 153 is used as a work area when the CPU 152 executes software or the like.
  • the ROM 154 stores software executed by the CPU 152. Then, the CPU 152 loads software or the like from the ROM 154 to the RAM 153 and executes it.
  • Various functions of the processing device unit 150 are realized by executing software and the like.
  • the I / O 155a and I / O 155b are connection terminals that receive signals from the outside and send signals to the outside.
  • an A / D converter analog-digital conversion circuit
  • the RAM 153, ROM 154, A / D converter, and the like may be provided outside the processing unit 150.
  • the software executed by the CPU 152 may be stored in the processing unit 150 in advance, or another storage device (for example, EEPROM (Electrically Erasable Programmable Read-) It may be loaded into the RAM 153 from “Only Memory” or Flash Memory). Further, software or the like may be downloaded to the processing device unit 150 using a communication unit.
  • EEPROM Electrically Erasable Programmable Read-
  • the antenna 100 controls the tilt angle of the phase shifter 110 according to a tilt control command from the parent device 400.
  • the AISG standard includes a communication method (hereinafter referred to as a single communication method) in which the processing unit 120 (child device function) and the phase shifter 110 are connected one-to-one, and the processing unit 120 (child device function). ) And the phase shifter 110 are connected in a one-to-many manner (hereinafter referred to as a multi-communication method).
  • a communication method hereinafter referred to as a single communication method
  • the processing unit 120 child device function
  • the phase shifter 110 are connected in a one-to-many manner
  • a multi-communication method in which only one phase shifter 110 is assigned to one slave device function, but in the multi-communication method, two or more phase shifters 110 can be assigned to one slave device function.
  • base unit 400 corresponds to at least one of a single communication method and a multi-communication method, and communication method of either single communication method or multi-communication method when base device 400 communicates with antenna 100. Even when the processing unit 120 executes software (that is, software executed by the processing device unit 150), processing such as tilt control is normally performed based on a signal from the parent device 400.
  • FIG. 2-1 is a diagram illustrating an example of the configuration of the antenna 100 according to the first embodiment.
  • FIG. 2B is a diagram illustrating a configuration example of a conventional antenna 200 when a single communication method is employed as a comparative example.
  • FIG. 2-3 is a diagram illustrating a configuration example of a conventional antenna 300 when a multi-communication method is employed as a comparative example.
  • the configuration shown in FIG. 2A is a simplified version of the configuration shown in FIG. 1, and the array antenna 180 is omitted.
  • two phase shifters 110 are connected to one processing unit 120.
  • the processing device unit 150 has the same number of slave unit functions (slave unit function 10a and slave unit function 10b) as the phase shifter 110, and one phase shifter is connected to each slave unit function. Yes. Further, these slave functions can be applied to both the single communication method and the multi communication method by software executed by the processing unit 150.
  • the processing device unit 250 (the processing device unit 250a and the processing device unit 250b) has a slave function corresponding to the single communication method.
  • the phase shifter 210 (the phase shifter 210a and the phase shifter 210b) is connected to each of the (processing unit 220a and processing unit 220b). That is, the processing unit 220 needs the same number as the phase shifter 210.
  • Each processing unit 220 (processing unit 220a, processing unit 220b) includes a communication IF unit 230 (communication IF unit 230a, communication IF unit 230b), a power supply unit 240 (power supply unit 240a, power supply unit 240b), and a processing device unit.
  • processing device unit 250 processing device unit 250a, processing device unit 250b
  • motor control / position detection auxiliary circuit 260 motor control / position detection auxiliary circuit 260a, motor control / position detection auxiliary circuit 260b.
  • the array antenna is omitted as in FIG. 2-1.
  • the processing unit 320 includes a communication IF unit 330, a power supply unit 340, a processing device unit 350, a motor control / position detection auxiliary circuit 360, and a switching circuit 370.
  • the array antenna is omitted as in FIG. 2-1.
  • the slave unit supports either a single communication system or a multi-communication system. And when the subunit
  • one or more phase shifters 310 are connected to one slave unit.
  • the slave unit is compatible with both the single communication method and the multi communication method.
  • One phase shifter 110 is connected to one slave unit, and the phase shifter 110 is controlled based on a signal from the master unit 400. For example, in the configuration shown in FIG. 2A, the phase shifter 110a is connected to the slave unit function 10a, and the phase shifter 110b is connected to the slave unit function 10b.
  • the antenna 100 may include three or more phase shifters 110 in the present embodiment.
  • the processing device unit 150 is used as an example of a control device.
  • the processing unit 120 can be regarded as having a function as an example of a control device.
  • FIGS. 3A to 3C are diagrams for explaining an example of a frame format of a signal transmitted from the parent device 400 to the antenna 100.
  • FIG. 3A to 3C are diagrams for explaining an example of a frame format of a signal transmitted from the parent device 400 to the antenna 100.
  • the AISG standard is based on HDLC (High-Level Data Link Control), which is a data link layer protocol of the OSI reference model established by the International Organization for Standardization (ISO).
  • FIG. 3A shows a frame format in the data link layer of the AISG standard. As illustrated, the frame area of the AISG standard is divided into “header”, “address”, “frame type”, “command data body”, “CRC”, and “footer” types.
  • “Header” is a bit string indicating the start of a frame, and is one octet (the first octet from the beginning of the frame).
  • “Address” is the address of the slave unit and is one octet (second octet from the beginning of the frame). The address of the child device is given to each child device by the parent device 400.
  • “Frame type” indicates a frame type defined in HDLC, and is one octet (third octet from the head of the frame). There are three types of frames: S frame, U frame, and I frame.
  • the command data body is command data including a control command, and the data length is arbitrary (variable length).
  • CRC is used for detecting transmission errors of bits of the address, frame type, and command data body, and is 2 octets. In other words, if the total data length of a frame is N octets, the CRC corresponds to the N-2 to N-1 octet area from the beginning of the frame.
  • “Footer” is a bit string indicating the end of the frame, and is one octet (Nth octet from the beginning of the frame).
  • a unique ID (hereinafter referred to as a unique ID) is assigned in advance to each child device, and the parent device 400 designates the unique ID of the child device and performs a command such as tilt control.
  • the unique ID is a character string represented by a character code of 19 octets. The first two octets are unique to the manufacturer, and the remaining 17 octets are uniquely determined by each manufacturer, and the unique ID is unique as a whole.
  • the base unit 400 establishes a link using a unique ID when performing commands such as tilt control to individual slave units. Therefore, when the unique ID is not already known by manual input or the like, a process called device scan for specifying the unique ID of each slave unit is performed before the link is established.
  • the device scan is one of broadcasts, which is an instruction to be performed on all connected slave units, and is a signal having an HDLC U frame structure shown in FIG.
  • a command for requesting “respond when the last 1 bit of the unique ID is 0” to each slave unit is stored. Since device scan is transmitted as a broadcast, a special value (FF in hexadecimal) is stored and transmitted as an address.
  • the AISG stipulates that all slave units confirm the frame contents of a frame sent as a broadcast and respond as necessary. When the slave unit matches the condition for the unique ID, the slave unit returns a response including the unique ID to the master unit 400. If the conditions match for a plurality of slave units, signals are transmitted from the plurality of slave units as a response to the device scan, so the signals collide on the communication path, and the master unit 400 normally receives a normal signal. Can not do it.
  • base unit 400 when base unit 400 cannot receive a normal signal, it is determined that there are a plurality of slave units having unique IDs that match the conditions, and base unit 400 further sets the condition range to be narrower. Then, for example, a command requesting “response when the last 2 bits of the unique ID is 00” is stored and transmitted to each slave unit. By narrowing the conditions in this way, when only one slave unit finally becomes a condition, the master unit 400 can receive a correct signal and recognize the unique ID of the slave unit. .
  • base unit 400 narrows the condition range little by little, and specifies the unique ID of the slave unit based on the response signal when the unique ID that meets the condition becomes one.
  • the parent device 400 allocates an address to the specified unique ID and notifies the child device of the address.
  • the slave unit reports the corresponding communication method (single communication method, multiple communication method) in the response to the signal to which the address is assigned. Thereby, base unit 400 grasps the communication method supported by each slave unit.
  • FIG. 3B is a diagram showing a frame when a control instruction of the single communication method is performed by designating the address of the slave unit.
  • the frame for performing the control command of the single communication system has an HDLC I frame structure, and the area of the command data body includes “AISG command type”, “actual data length”, and “actual data”. It is.
  • AISG command type stores the command number that is an instruction to the slave unit.
  • the commands of the AISG standard include a single communication method, a multi-communication method, and a command common to the single communication method and the multi-communication method.
  • the command number of the single communication method or the command number common to the single communication method and the multi communication method is stored.
  • the number 33 indicates a command (Set Tilt) for setting a tilt angle in the single communication method.
  • the command communication method is determined.
  • the “real data length” indicates the length of the real data, and the command data and the like are stored in the “real data”.
  • the parent device 400 sets the AISG command type to “Set Tilt” which is a single communication method command.
  • the value of the tilt angle to be set is stored in the actual data.
  • base unit 400 transmits a frame to antenna 100 with the address assigned to the slave unit (slave unit function 10a in the configuration shown in FIG. 2-1) corresponding to phase shifter 110a as a destination.
  • FIG. 3C is a diagram showing a frame when a multi-communication system control command is performed by designating the address of the slave unit.
  • the control command of the multi-communication system has an HDLC I frame structure, and the area of the command data body includes “AISG command type”, “actual data length”, “actual data”. Is included.
  • the “AISG command type” stores a command number of the multi-communication system or a command number common to the single communication system and the multi-communication system as the command number.
  • the number 81 indicates a command (Antenna Set Tilt) for setting a tilt angle in the multi-communication system.
  • the parent device 400 when setting the tilt angle of the phase shifter 110a in a situation where the parent device 400 adopts the multi-communication method, the parent device 400 sets the AISG command type to “Antenna Set Tilt” which is a command of the multi-communication method. And the tilt angle value to be set is stored in the actual data.
  • the slave unit functions and the phase shifters are connected in a one-to-many manner, so the phase shifter number is also stored in the actual data. This phase shifter number is given to the phase shifters connected to the slave unit in order.
  • the slave unit performs processing for reporting the number of phase shifters 110 connected to the slave unit 400 to the master unit 400.
  • master unit 400 grasps the number of phase shifters connected to the slave unit and sets the phase shifter number.
  • base unit 400 sets a phase shifter number of “1” for each phase shifter 110, for example. That is, when setting the tilt angle of the phase shifter 110a, the base unit 400 sets the address assigned to the slave unit connected to the phase shifter 110a (slave unit function 10a in the configuration shown in FIG. 2-1) as the destination. Then, the phase shifter number is set to 1, and the frame is transmitted to the antenna 100.
  • a single communication method command may be referred to as a single command
  • a multi communication method command as a multi command
  • a command common to the single communication method and the multi communication method may be referred to as a common command.
  • the frame transmitted by broadcast to identify the unique ID of the slave unit is not an I frame structure and is not assigned an AISG command type number, but is common to the single communication method and the multi communication method. Used. Such a command is also included in the common command.
  • FIG. 4 is a block diagram illustrating an example of a functional configuration of the processing device unit 150 according to the first embodiment.
  • the processing device unit 150 includes a reception processing unit 191 that receives a signal from the parent device 400, a command processing unit 192 that executes a command of the received signal, and a response execution unit 193 that makes a response to the parent device 400.
  • the processing device unit 150 includes the slave unit function unit 10.
  • Each of the handset function 10a and the handset function 10b shown in FIG. 2-1 corresponds to the handset function unit 10 shown in FIG.
  • the reception processing unit 191 receives a signal from the parent device 400 via the communication IF unit 130.
  • the command processing unit 192 determines whether each child device (that is, the child device function unit 10) is a command addressed to the child device. Specifically, the command processing unit 192 sequentially compares the address of the frame received from the parent device 400 with the address assigned to each child device, and determines whether or not there is a destination child device. judge. If there is a slave device that is the destination of the command, the command processing unit 192 causes the destination slave device to execute processing of the command. The command processing unit 192 generates a response signal for responding to the parent device 400 that the command processing has been performed.
  • the response execution unit 193 transmits the generated response signal to the parent device 400 via the communication IF unit 130.
  • a plurality of slave units may respond, for example, when the master unit 400 transmits a frame by broadcast to identify the unique ID of the phase shifter 110.
  • a normal signal does not reach the primary station (master unit).
  • the processing device unit 250a and the processing device unit 250b respond, the response signals collide after passing through the communication IF unit 230. Since base unit 400 recognizes that an abnormal signal has been received and performs a process corresponding thereto, there is no problem in such an operation.
  • the response execution unit 193 performs processing so that the parent device 400 can recognize that the signal is not “normal”. Specifically, for example, the response execution unit 193 destroys the data of the response signal, or generates specific data that is recognized as an illegal signal or data that violates the communication protocol, so that the parent device 400 Respond to.
  • the response process here may be any process as long as the base unit 400 can recognize that the signal is not normal.
  • the reception processing unit 191 has a function as an example of a receiving unit.
  • the command processing unit 192 has a function as an example of a process execution unit.
  • the response execution unit 193 has a function as an example of response means.
  • the processing unit 120 is regarded as having a function as an example of a control device, for example, the communication IF unit 130 has a function as an example of a reception unit, and the processing device unit 150 is a processing execution unit and It can be understood that it has a function as an example of a response means.
  • FIG. 5 is a flowchart illustrating an example of a processing procedure of the processing device unit 150 according to the first embodiment. The process shown in FIG. 5 is repeatedly executed.
  • the reception processing unit 191 waits for reception of a command from the parent device 400.
  • the reception processing unit 191 receives a signal from the parent device 400 (step 101), and determines whether a signal (command) is received (step 102). If it is not determined that a command has been received (No in step 102), the processing flow ends, and the reception processing unit 191 continues to wait for reception of a command.
  • command processing by the command processing unit 192 is performed.
  • the command processing unit 192 repeatedly executes the processing from step 103 to step 109 described later for the number (n) of valid child devices virtually operating in the processing unit 120.
  • the command processing unit 192 selects one valid slave unit, and determines whether or not the received signal is a signal addressed to the selected slave unit (step 103).
  • the command processing unit 192 determines whether or not the address that is the destination of the signal matches the address assigned to the selected slave unit, and the two addresses match or an address that indicates broadcast If so, it is determined that the signal is addressed to the selected slave unit.
  • the command processing unit 192 selects one next valid slave unit. On the other hand, if it is determined that the signal is addressed to the selected slave unit (Yes in step 103), the command processing unit 192 determines that the command is not defined in the single command, multicommand, common command, or AISG standard. It is determined whether it is a thing (step 104). Here, for example, “Set Tilt” is determined as a single command. Further, for example, a frame transmitted by broadcast in order to specify the unique ID of the child device is determined as a common command.
  • step 104 If it is determined in step 104 that the command is a single command, the command processing unit 192 causes the destination slave unit to execute a single command (step 105). By executing the command, processing for the phase shifter 110 corresponding to the slave unit is performed. Similarly, when it is determined that the command is a multi-command or a common command, the command processing unit 192 causes the destination slave unit to execute processing of the multi-command or the common command (steps 106 and 107). . Since the handset according to the present embodiment is compatible with both the single communication method and the multi communication method, it is possible to process single commands, multi commands, and common commands as in Step 105 to Step 107. On the other hand, if it is determined that the command is undefined, the command processing unit 192 determines that an error has occurred (step 108).
  • step 109 the command processing unit 192 generates a response signal (step 109). However, some commands, such as a reset command for all the slave units, are terminated without generating a response signal.
  • step 109 the command processing unit 192 selects one other child device that has not yet been selected. In this way, the command processing unit 192 executes the processing from step 103 to step 109 by the number (n) of valid child devices. When the processing is completed for all the slave units, the process proceeds to the next step 110.
  • the response execution unit 193 determines whether there is a response signal generated by the command processing unit 192 (step 110). If it is determined that there is no response signal (No in step 110), the process flow ends. On the other hand, when it is determined that there is a response signal (Yes in step 110), the response execution unit 193 determines whether or not a plurality of slave units have responded, that is, whether or not a plurality of response signals have been generated. (Step 111).
  • step 111 If it is determined in step 111 that a plurality of slave units are not responding (No in step 111), the generated response signal is one, and the response execution unit 193 communicates the generated response signal. It transmits to the base unit 400 via the IF unit 130 (step 112). Then, this processing flow ends.
  • the generated response signals are plural, and the response execution unit 193 recognizes that the base unit 400 is an abnormal signal. Then, processing is performed on the generated response signal (step 113). Then, the process proceeds to step 112, where the response execution unit 193 transmits the response signal processed in step 113 to the parent device 400, and this processing flow ends.
  • processing device unit 150 determines in order for each child device whether or not the signal is addressed to the child device, as shown in FIG. If the signal is addressed to the corresponding slave unit, the command is executed and a response signal is generated. When there are a plurality of response signals, the processing device unit 150 performs processing for recognizing that the signal is not normal, and responds to the parent device 400. By responding in this way, base unit 400 receives a signal that is not normal, and an operation equivalent to the conventional operation in which the response signals actually collide with each other is realized.
  • the processor unit 150 has the same number of slave unit functions as the phase shifter 110, and each slave unit function corresponds to both the single communication method and the multi-communication method. Yes. Therefore, even when the parent device 400 adopts either the single communication method or the multi-communication method, any operation by the user (for example, replacement of each slave device hardware, replacement of software in the slave device, electrical
  • the processing by the processing unit 150 is executed in accordance with a control command from the parent device 400 without requiring operation switching, switching by a physical switch, or the like.
  • FIGS. 6A to 6C and FIG. 7 are diagrams showing another configuration example of the antenna 100 according to the first embodiment.
  • 6A is the same number of communication IF units 130 as the phase shifters 110 (in the example shown in FIG. 6A, the communication IF units 130a, 130a, The communication IF unit 130b) is provided.
  • the processing device unit 150 does not need to perform processing for causing the base unit 400 to recognize that the signal is not normal, and thus the processing of step 111 and step 113 in FIG. 5 is not necessary.
  • FIG. 6B the configuration shown in FIG. 6B is the same as the configuration shown in FIG.
  • a motor control / position detection auxiliary circuit 160a and a motor control / position detection auxiliary circuit 160b) are provided.
  • the motor control / position detection auxiliary circuit 160 cannot control a plurality of phase shifters 110 simultaneously.
  • the switching circuit 170 is provided as in the configuration shown in FIG. 2A, when a control command is issued from the master unit 400 to another slave unit during the control of the motor control / position detection auxiliary circuit 160, The processor unit 150 responds with a “Busy” return code indicating that the command cannot be received. For this reason, the base unit 400 does not issue a control command at the same time, or when receiving a “Busy” return code, performs processing to issue the next control command as soon as one control command is completed. Will be done.
  • the processing unit 120 controls a plurality of phase shifters 110 simultaneously. Will be able to.
  • the processing device unit 150 transmits a signal to the motor control / position detection auxiliary circuit 160 connected to the phase shifter 110 serving as a signal destination.
  • FIG. 6 (c) is a combination of the configurations shown in FIGS. 6 (a) and 6 (b). That is, the same number of communication IF units 130 as the phase shifters 110 are provided, and the same number of motor control / position detection auxiliary circuits 160 as the phase shifters 110 are provided instead of the switching circuit 170.
  • a plurality of response signals actually collide, and therefore the processing of step 111 and step 113 in FIG. 5 is not necessary.
  • each slave unit function is a processing unit 120 made up of separate hardware (in the example shown in FIG. 7, the processing unit 120a and the processing unit 120b). ). That is, the processing unit 120a has a slave unit function corresponding to both a single communication method and a multi-communication method as a slave unit function connected to the phase shifter 110a, and the processing unit 120b is connected to the phase shifter 110b. As the slave unit function, a slave unit function corresponding to both the single communication method and the multi-communication method is provided.
  • Each processing unit 120 includes a communication IF unit 130 (communication IF unit 130a and communication IF unit 130b), a power supply unit 140 (power supply unit 140a and power supply unit 140b), and a processing device unit 150 (processing device unit 150a and processing device). 150b) and a motor control / position detection auxiliary circuit 160 (motor control / position detection auxiliary circuit 160a, motor control / position detection auxiliary circuit 160b).
  • the configuration including the processing device unit 150a and the processing device unit 150b has a function as an example of a control device.
  • the configuration including the processing unit 120a and the processing unit 120b can be regarded as having a function as an example of a control device.
  • FIG. 8 is a flowchart showing an example of the processing procedure of the processing unit 150 in the configuration shown in FIG. The process shown in FIG. 8 is repeatedly executed for each slave function, that is, for each processing device unit 150 (processing device unit 150a, processing device unit 150b).
  • the reception processing unit 191 waits for reception of a command from the parent device 400.
  • the processing in step 201 and step 202 is the same as the processing in step 101 and step 102 in FIG. If it is determined in step 202 that a command has been received (Yes in step 202), then command processing by the command processing unit 192 is performed.
  • the command processing unit 192 determines whether or not the received signal is a signal addressed to itself (step 203).
  • the command processing unit 192 determines whether or not the address that is the destination of the command matches the address assigned to its own handset, and if both addresses match or indicates an address indicating broadcast. For example, it is determined that the signal is addressed to itself.
  • the command processing unit 192 determines whether the command is a single command, a multicommand, a common command, or an undefined one in the AISG standard. Determination is made (step 204). Since the processing from step 204 to step 209 is the same as the processing from step 104 to step 109 in FIG. 5, the description thereof is omitted here. However, in the process of FIG. 8, as shown in FIG. 5, the process of repeating Step 103 to Step 109 is not performed for each slave unit.
  • step 210 determines whether or not there is a generated response signal (step 210). If a response signal is generated in step 209, an affirmative determination (Yes) is made in step 210, and the response execution unit 193 transmits the response signal to the parent device 400 (step 211).
  • response signals are generated by a plurality of processing device units 150, the response signals collide on the transmission path to base unit 400, so that a normal signal does not reach base unit 400. That is, as shown in FIG. 8, the processing of step 111 and step 113 of FIG. 5 is not necessary in the configuration of FIG. After step 211, or when it is determined that there is no response signal (No in step 210), this processing flow ends.
  • each processing unit 120 provided for each phase shifter 110 determines whether or not the signal is addressed to itself and executes the processing. To do.
  • the processing device unit 150 determines that the signal is not normal. It is not necessary to perform processing for causing the computer 400 to recognize.
  • the power supply unit 140a and the power supply unit 140b may be a common power supply unit 140.
  • the communication IF unit 130a and the communication IF unit 130b may be a common communication IF unit 130.
  • the motor control / position detection auxiliary circuit 160a and the motor control / position detection auxiliary circuit 160b may be a common motor control / position detection auxiliary circuit 160, and a switching circuit 170 may be provided. .
  • the processing device unit 150 has the same number of slave unit functions as the phase shifter 110, and each slave unit function corresponds to both the single communication method and the multi-communication method.
  • the processing unit 150 has the same number of slave unit functions as the phase shifter 110, and at least one of the slave unit functions corresponds to both the single communication method and the multi-communication method.
  • the remaining handset functions only support the single communication method.
  • the hardware configuration of the antenna 100 is the same as that of the first embodiment.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • FIG. 9 is a diagram illustrating an example of the configuration of the antenna 100 according to the second embodiment.
  • two phase shifters 110 are connected to the processing unit 120.
  • the processing device unit 150 has the same number of slave unit functions (slave unit function 10a and slave unit function 10b) as the phase shifter 110.
  • the handset function 10a corresponds to both the single communication method and the multi-communication method, and is used as a dual use, while the handset function 10b is used for a single communication method that does not support the multi-communication method.
  • the child device function 10a when the parent device 400 adopts the single communication method, the child device function 10a also functions as the single communication method, and performs processing according to the single command transmitted from the parent device 400. If it adds, the subunit
  • the handset function 10a when the base unit 400 adopts a multi-communication system, the handset function 10a also functions as a multi-communication system and performs processing according to a multi-command transmitted from the base unit 400. If it adds, the subunit
  • the antenna 100 may include three or more phase shifters 110 as in the first embodiment.
  • the antenna 100 includes three phase shifters 110, three slave unit functions of the processing unit 120 are also provided.
  • at least one slave unit function among the three is configured to support both the single communication method and the multi-communication method, and the remaining slave unit functions are configured to support only the single communication method.
  • the array antenna 180 is omitted as in FIG. 2-1.
  • FIG. 10 is a flowchart illustrating an example of a processing procedure of the processing device unit 150 according to the second embodiment. The process shown in FIG. 10 is repeatedly executed.
  • the reception processing unit 191 waits for reception of a command from the parent device 400.
  • the processing of step 301 and step 302 is the same as the processing of step 101 and step 102 of FIG. If it is determined in step 302 that a command has been received (Yes in step 302), then command processing by the command processing unit 192 is performed.
  • the command processing unit 192 repeatedly executes the processing from step 303 to step 307 to be described later for the number (n) of valid child devices that virtually operate in the processing unit 120.
  • the command processing unit 192 selects one valid slave unit, and determines whether or not the received signal is a signal addressed to the selected slave unit (step 303). If it is determined that the signal is not addressed to the selected slave unit (No in step 303), the command processing unit 192 selects one next valid slave unit.
  • the command processing unit 192 determines that the selected slave unit is a slave unit that supports only the single communication method (configuration shown in FIG. 9). Then, it is determined whether it is a slave unit function 10b) or a slave unit corresponding to both the single communication system and the multi-communication system (slave unit function 10a in the configuration shown in FIG. 9) (step 304). If the selected slave unit is a slave unit that supports only the single communication method (that is, the slave unit function 10b), the command processing unit 192 sends a single command or a single command to the selected slave unit according to the command of the received signal. The common command processing is executed (step 305). However, if the command from base unit 400 is a multi-command or an undefined command, it is determined as an error as in step 108 of FIG.
  • step 304 if the selected handset is a handset that supports both the single communication method and the multi-communication method (that is, the handset function 10a), the command processing unit 192 follows the command of the received signal. A single command, a multi-command, or a common command is executed for the selected slave unit (step 306). However, if the command from the parent device 400 is undefined, it is determined as an error as in step 305.
  • the command processing unit 192 sends the phase shifter 110 designated as the destination by the phase shifter number. Process it.
  • step 307 the command processing unit 192 selects one other slave unit that has not yet been selected. In this way, the command processing unit 192 executes the processing from step 303 to step 307 by the number (n) of valid slave units. When the processing is completed for all the slave units, the process proceeds to the next step 308.
  • step 308 to step 311 is the same as the processing from step 110 to step 113 in FIG. 5, the description thereof is omitted here.
  • the processor unit 150 has the same number of slave unit functions as the phase shifter 110, and at least one of the slave unit functions corresponds to both the single communication method and the multi-communication method.
  • the remaining handset functions only support the single communication method. Therefore, when the parent device 400 adopts the single communication method, each child device function functions by the single communication method and performs processing.
  • base unit 400 employs a multi-communication system
  • a slave function that supports both the single communication system and the multi-communication system functions by the multi-communication system to perform processing. That is, when the parent device 400 adopts either the single communication method or the multi-communication method, the processing by the processing unit 150 is performed according to the control command from the parent device 400 without requiring any operation by the user. Executed.
  • the antenna 100 having another configuration example shown in FIGS. 6A to 6C and FIG. 7 may be used.
  • phase shifter 110 that does not need to be controlled in the single communication method. If there is, there is no need to have the same number. Similarly, if there is a phase shifter 110 that does not need to be controlled in the multi-communication system for the slave function corresponding to the multi-communication system, the phase shifter 110 and the slave that supports the multi-communication system. It is not necessary to connect the machine function. In other words, a phase shifter 110 may be provided that is connected to the single communication type slave unit function but not connected to the multi-communication type slave unit function. Further, a phase shifter 110 that is connected to the multi-communication slave unit function but not connected to the single communication slave unit function may be provided.
  • the processing device unit 150 has the same number of slave unit functions as the phase shifter 110, and each slave unit function corresponds to both the single communication method and the multi-communication method.
  • the processing device unit 150 has a larger number of slave unit functions than the phase shifter 110, and at least one of the slave unit functions corresponds only to the multi-communication system, and the phase shifter 110 The same number of handset functions are compatible with the single communication method only.
  • the hardware configuration of the antenna 100 is the same as that of the first embodiment.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • FIG. 11 is a diagram illustrating an example of the configuration of the antenna 100 according to the third embodiment.
  • the processing device unit 150 has three slave device functions (a slave device function 10a, a slave device function 10b, and a slave device function 10c), which is one more than the phase shifter 110.
  • the two slave unit functions (the slave unit function 10a and the slave unit function 10b), which are the same number as the phase shifter 110, correspond to only the single communication method, and the slave unit function 10c corresponds to only the multi-communication method.
  • the slave unit function 10a and the slave unit function 10b are used for a single communication method that does not support the multi-communication method
  • the slave unit function 10c is used for a multi-communication method that does not support the single communication method.
  • the child device function 10a and the child device function 10b perform processing according to the single command transmitted from the parent device 400.
  • the slave unit function 10a processes the phase shifter 110a connected to the slave unit function 10a according to the single command
  • the slave unit function 10b is connected to the slave unit function 10b according to the single command. Processing is performed on the phase shifter 110b.
  • the slave unit function 10c is compatible only with the multi-communication method, the single command transmitted from the master unit 400 is not processed.
  • the child device function 10c performs processing according to the multi-command transmitted from the parent device 400.
  • the slave unit function 10c performs processing on the phase shifter 110 designated as the destination among the phase shifters 110a and 110b in accordance with the multi-command.
  • the slave unit function 10a and the slave unit function 10b support only the single communication method, the multi-command transmitted from the master unit 400 is not processed.
  • the antenna 100 may include three or more phase shifters 110 as in the first embodiment.
  • the antenna 100 includes three phase shifters 110, four or more slave unit functions of the processing unit 120 are provided.
  • at least one slave unit function corresponds to only the multi-communication system, and the same number of three slave unit functions as the phase shifter 110 correspond to only the single communication method.
  • the array antenna 180 is omitted as in FIG. 2-1.
  • FIG. 12 is a flowchart illustrating an example of a processing procedure of the processing device unit 150 according to the third embodiment. The process shown in FIG. 12 is repeatedly executed.
  • the reception processing unit 191 waits for reception of a command from the parent device 400.
  • the processing of step 401 and step 402 is the same as the processing of step 101 and step 102 of FIG. If it is determined in step 402 that a command has been received (Yes in step 402), then command processing by the command processing unit 192 is performed.
  • the command processing unit 192 repeatedly executes the processing of step 403 to step 407 described later for the number (n) of valid child devices that virtually operate in the processing unit 120.
  • the command processing unit 192 selects one valid slave unit, and determines whether or not the received signal is a signal addressed to the selected slave unit (step 403). If it is determined that the signal is not addressed to the selected child device (No in step 403), the command processing unit 192 selects one next valid child device.
  • the command processing unit 192 determines that the selected slave unit is a slave unit that supports only the single communication method (configuration shown in FIG. 11). Then, it is determined whether it is a child device function 10a, a child device function 10b) or a child device corresponding to only the multi-communication system (the child device function 10c in the configuration shown in FIG. 11) (step 404). If the selected slave unit is a slave unit that supports only the single communication method (that is, the slave unit function 10a or the slave unit function 10b), the command processing unit 192 applies the selected slave unit to the selected slave unit according to the command of the received signal. Then, the single command or common command processing is executed (step 405). However, if the command from base unit 400 is a multi-command or an undefined command, it is determined as an error as in step 108 of FIG.
  • step 404 if the selected slave unit is a slave unit that supports only the multi-communication system (ie, the slave unit function 10c), the command processing unit 192 sets the selected slave unit according to the command of the received signal.
  • multi-command or common command processing is executed (step 406).
  • the command from the parent device 400 is a single command or an undefined command, it is determined as an error as in Step 405.
  • the command processing unit 192 sends the phase shifter 110 designated as the destination by the phase shifter number. Process it.
  • step 407 the command processing unit 192 selects one other slave unit that has not yet been selected. In this way, the command processing unit 192 executes the processing from step 403 to step 407 by the number of valid slave units (n). When the processing is completed for all the slave units, the process proceeds to the next step 408.
  • step 408 to step 411 is the same as the processing from step 110 to step 113 in FIG. 5, the description thereof is omitted here.
  • the processing device unit 150 has more child device functions than the number of phase shifters 110, and at least one of the child device functions corresponds to only the multi-communication method, The same number of slave functions as the phase shifter 110 are compatible with the single communication method only. Therefore, when the parent device 400 adopts the single communication method, each child device function that supports only the single communication method functions by the single communication method to perform processing. On the other hand, when base unit 400 employs a multi-communication system, a slave function that supports only the multi-communication system functions by the multi-communication system and performs processing.
  • the processing by the processing unit 150 is performed according to the control command from the parent device 400 without requiring any operation by the user. Executed.
  • the antenna 100 having another configuration example shown in FIGS. 6A to 6C and FIG. 7 may be used.
  • phase shifter 110 when there exists the phase shifter 110 which does not need to be controlled by a single communication system, it may not be the same number.
  • the phase shifter 110 and the slave that supports the multi-communication system It is not necessary to connect the machine function.
  • a phase shifter 110 may be provided that is connected to the single communication type slave unit function but not connected to the multi-communication type slave unit function.
  • a phase shifter 110 that is connected to the multi-communication slave unit function but not connected to the single communication slave unit function may be provided.
  • Embodiments 1 to 3 the configuration in which antenna 100 includes a plurality of phase shifters 110 has been described. However, the same processing is performed even when antenna 100 has one phase shifter 110. . That is, in Embodiments 1 to 3, the antenna 100 having the same configuration may be used regardless of whether one or more phase shifters 110 are provided in the antenna 100.
  • the base unit 400 supports only the single communication method, and the software executed by the processing unit 120 (that is, the processing device unit) in a situation where the single device is requested to use the single communication method.
  • the software executed by 150 With the software executed by 150, a plurality of slave unit functions are virtually provided, and an operation equivalent to the plurality of slave units is realized while being one processing unit 120.
  • FIG. 13A is a diagram illustrating an example of the configuration of the antenna 100 according to the present embodiment
  • FIG. 13B illustrates the configuration of a conventional antenna 500 when a single communication method is employed as a comparative example. It is a figure which shows an example.
  • the configuration shown in FIG. 13A is a simplified version of the configuration shown in FIG. 1, and the array antenna 180 is omitted.
  • two phase shifters 110 are connected to one processing unit 120.
  • the processing device unit 150 has a slave unit function 20a corresponding to the phase shifter 110a and a slave unit function 20b corresponding to the phase shifter 110b.
  • the processing units 520 processing unit 520a and processing unit 520b
  • the two phase shifters 510 phase shifter 510a and phase shifter 510b
  • Each processing unit 520 includes a communication IF unit 530 (communication IF unit 530a, communication IF unit 530b), a power supply unit 540 (power supply unit 540a, power supply unit 540b), and a processing device unit 550 ( A processing unit 550a, a processing unit 550b), and a motor control / detection auxiliary circuit 560 (motor control / detection auxiliary circuit 560a, motor control / detection auxiliary circuit 560b).
  • the array antenna 180 is omitted as in FIG.
  • the processing device unit 150 is used as an example of a control device. Furthermore, the processing unit 120 or the processing device unit 150 has a function as an example of a processing device. Furthermore, in the present embodiment, the processing unit 120 can be regarded as having a function as an example of a control device. As described above, in the present embodiment, even if the single communication method is used, the single processing unit 120 can control the antenna 100, so that the antenna 100 can be reduced in size and cost.
  • the processing device unit 150 stores the unique ID corresponding to each child device and the address notified from the parent device 400 in association with each other, and for each phase shifter 110. Realize the slave function.
  • base unit 400 when setting the tilt angle of phase shifter 110a, sets the AISG command type to “Set Tilt” which is a command of the single communication method, and sets the tilt angle to be set. Store the value in real data. Then, base unit 400 transmits a frame to antenna 100 with the address assigned to the slave unit corresponding to phase shifter 110a as the destination.
  • FIG. 14 is a block diagram illustrating an example of a functional configuration of the processing device unit 150 according to the present embodiment.
  • the processing device unit 150 includes a reception processing unit 191 that receives a signal from the parent device 400, a command processing unit 192 that executes a command of the received signal, and a response execution unit 193 that makes a response to the parent device 400.
  • the processing device unit 150 includes a handset function unit 20. Each of the handset function 20a and the handset function 20b shown in FIG. 13A corresponds to the handset function section 20 shown in FIG.
  • the reception processing unit 191 receives a signal from the parent device 400 via the communication IF unit 130.
  • the command processing unit 192 determines whether each child device (that is, the child device function unit 20) is a command addressed to the child device, that is, a plurality of phase shifters. It is determined for each phase shifter 110 whether the command is for any of the 110 phase shifters 110. Specifically, the command processing unit 192 sequentially compares the address of the frame received from the parent device 400 with the address assigned to each child device, and determines whether or not there is a destination child device. judge. If there is a slave device that is the destination of the command, the command processing unit 192 causes the destination slave device to execute processing of the command. In other words, the command processing unit 192 distributes the command included in the control signal to the destination slave unit and executes the command processing. The command processing unit 192 generates a response signal for responding to the parent device 400 that the command processing has been performed.
  • the response execution unit 193 transmits the generated response signal to the parent device 400 via the communication IF unit 130.
  • a plurality of slave units may respond, for example, when the master unit 400 transmits a frame by broadcast to identify the unique ID of the phase shifter 110.
  • a normal signal does not reach the primary station (master unit).
  • the processing device unit 550a and the processing device unit 550b respond, the response signals collide after passing through the communication IF unit 230. Since the primary station identifies that an abnormal signal has been received and performs a process corresponding thereto, there is no problem in such an operation.
  • the response execution unit 193 performs processing so that the parent device 400 can recognize that the signal is not “normal”. Specifically, for example, the response execution unit 193 destroys the data of the response signal, or generates specific data that is recognized as an illegal signal or data that violates the communication protocol, so that the parent device 400 Respond to.
  • the response process here may be any process as long as the base unit 400 can recognize that the signal is not normal.
  • the reception processing unit 191 has a function as an example of a receiving unit.
  • the command processing unit 192 has a function as an example of a process execution unit.
  • the response execution unit 193 has a function as an example of response means.
  • the processing unit 120 is regarded as having a function as an example of a control device, for example, the communication IF unit 130 has a function as an example of a reception unit, and the processing device unit 150 is a processing execution unit and It can be understood that it has a function as an example of a response means.
  • FIG. 15 is a flowchart illustrating an example of a processing procedure of the processing device unit 150 according to the present embodiment. The process shown in FIG. 15 is repeatedly executed.
  • the reception processing unit 191 waits for reception of a command from the parent device 400.
  • the reception processing unit 191 receives a signal from the parent device 400 (step 501), and determines whether a signal (command) is received (step 502). If it is not determined that a command has been received (No in step 502), the processing flow ends, and the reception processing unit 191 continues to wait for reception of a command.
  • command processing by the command processing unit 192 is performed.
  • the command processing unit 192 repeatedly executes the processing from step 503 to step 507 described later for the number (n) of valid child devices that virtually operate in the processing unit 120.
  • the command processing unit 192 selects one valid slave unit, and determines whether or not the received signal is a signal addressed to the selected slave unit (step 503).
  • the command processing unit 192 determines whether or not the address that is the destination of the signal matches the address assigned to the selected slave unit, and the two addresses match or an address that indicates broadcast If so, it is determined that the signal is addressed to the selected slave unit.
  • the command processing unit 192 selects one next valid slave unit.
  • the command processing unit 192 determines whether the communication method of the command is a common method or a single communication method, a multi-communication method, It is determined whether it is undefined in the AISG standard (step 504).
  • a frame transmitted by broadcast in order to specify the unique ID of the child device is determined to be of the common method.
  • the command “Set Tilt” is determined to be a single communication method.
  • step 504 the command processing unit 192 distributes the command to the destination slave unit and executes the command processing (step 505). ). By executing the command, processing for the phase shifter 110 corresponding to the destination child device is performed.
  • the command processing unit 192 determines an error (step 506). After step 505 or step 506, the command processing unit 192 generates a response signal (step 507). However, some commands, such as a reset command for all the slave units, are terminated without generating a response signal.
  • step 507 the command processing unit 192 selects one other slave unit that has not yet been selected. In this way, the command processing unit 192 executes the processing from step 503 to step 507 by the number (n) of valid slave units. When the processing is completed for all the slave units, the process proceeds to the next step 508.
  • the response execution unit 193 determines whether there is a response signal generated by the command processing unit 192 (step 508). If it is determined that there is no response signal (No in step 508), the process flow ends. On the other hand, when it is determined that there is a response signal (Yes in step 508), the response execution unit 193 determines whether a plurality of slave units have responded, that is, whether a plurality of response signals have been generated. (Step 509).
  • step 509 When it is determined in step 509 that a plurality of slave units are not responding (No in step 509), the generated response signal is one, and the response execution unit 193 communicates the generated response signal. The data is transmitted to base unit 400 via IF unit 130 (step 510). Then, this processing flow ends.
  • step 510 when it is determined that a plurality of slave units have responded (Yes in step 509), the generated response signals are plural, and the response execution unit 193 recognizes that the master unit 400 is an abnormal signal. Then, processing is performed on the generated response signal (step 511). Then, the process proceeds to step 510, where the response execution unit 193 transmits the response signal processed in step 511 to the parent device 400, and this processing flow ends.
  • FIG. 16 is a flowchart illustrating an example of a processing procedure of the processing device unit 550 in the configuration of the comparative example. The processing illustrated in FIG. 16 is repeatedly executed by each processing device unit 550 (processing device unit 550a and processing device unit 550b).
  • the processing device unit 550 waits for reception of a command from the parent device 400.
  • the processing unit 550 receives a signal from the parent device 400 (step 601), and determines whether or not a signal (command) is received (step 602). If it is not determined that a command has been received (No in step 602), the process flow ends.
  • step 602 if it is determined that a command has been received (Yes in step 602), then the command processing by the processing unit 550 is performed.
  • the processor unit 550 determines whether or not the received signal is a signal addressed to itself (step 603).
  • the processor unit 550 determines whether or not the address that is the destination of the command matches the address assigned to its own slave unit, and if both addresses match or indicates an address indicating broadcast. For example, it is determined that the signal is for itself.
  • the processing unit 550 determines whether the communication method of the command is a common method or a single communication method, or is not defined in the multi-communication method or the AISG standard. (Step 604). When it is determined that the command communication method is the common method or the single communication method, the processing device unit 550 executes the command (step 605). On the other hand, if it is determined that the command communication method is the multi-communication method or undefined, the processing unit 550 determines an error (step 606). After step 605 or step 606, the processing unit 550 generates a response signal (step 607).
  • step 603 If it is determined in step 603 that the signal is not addressed to itself (No in step 603), or after step 607, the processing unit 550 determines whether there is a generated response signal (step 608). If a response signal is generated in step 607, an affirmative determination (Yes) is made in step 608, and the processing unit 550 transmits the response signal to the parent device 400 (step 609).
  • response signals are generated by a plurality of processing device units 550, the response signals collide on the transmission path to base unit 400, so that a normal signal does not reach base unit 400. After step 609 or when it is determined that there is no response signal (No in step 608), this processing flow ends.
  • each processing unit 220 provided for each phase shifter 210 determines whether the signal is addressed to itself and executes the process. . Further, when a plurality of response signals are generated, the response signals collide with each other, and a normal signal does not reach the base unit 400.
  • the processing unit 150 is a signal addressed to the child device is sequentially determined for each child device, If it is a signal addressed to the corresponding slave unit, the command is executed and a response signal is generated.
  • the processing device unit 150 When there are a plurality of response signals, the processing device unit 150 performs processing for recognizing that the signal is not normal, and responds to the parent device 400. By responding in this way, base unit 400 receives an abnormal signal, and an operation equivalent to the configuration of the comparative example in which the response signals actually collide is realized.
  • a plurality of phase shifters 110 are connected to one processing unit 120 in a situation where the parent device 400 supports only a single communication method, and the parent device 400 The processing is executed in accordance with the control command from.
  • the number of processing units 120 is reduced compared to the configuration of the comparative example in which the processing units 120 are assigned to the phase shifters 110 on a one-to-one basis. Cost reduction is realized. In addition, this contributes to the miniaturization of the antenna 100.
  • FIGS. 17A to 17C are diagrams showing another configuration example of the antenna 100 according to the present embodiment.
  • the configuration shown in FIG. 17A has the same number of communication IF units 130 as the phase shifter 110 compared to the configuration shown in FIG. 13A (in the example shown in FIG. 17A, the communication IF unit 130a).
  • the communication IF unit 130b) is provided.
  • the response signals are transmitted to the base unit 400 via the communication IF unit 130 for each slave unit (that is, for each phase shifter 110) as a destination. Is done. Therefore, the response signals actually collide after passing through the communication IF unit 130. That is, the processing device unit 150 does not need to perform processing for causing the base unit 400 to recognize that the signal is not normal, and thus the processing in step 509 and step 511 in FIG. 15 is not necessary.
  • the same number of motor control / position detection auxiliary circuits 160 as the phase shifters 110 are used instead of providing the switching circuit 170, as compared with the configuration shown in FIG. (In the example shown in FIG. 17B, the motor control / position detection auxiliary circuit 160a and the motor control / position detection auxiliary circuit 160b) are provided.
  • the motor control / position detection auxiliary circuit 160 cannot control a plurality of phase shifters 110 simultaneously. Therefore, when the switching circuit 170 is provided as in the configuration shown in FIG. 13A, a control command is issued from the master unit 400 to another slave unit during the control of the motor control / position detection auxiliary circuit 160.
  • the processor unit 150 responds with a “Busy” return code indicating that the command cannot be received. For this reason, the base unit 400 does not issue a control command at the same time, or when receiving a “Busy” return code, performs processing to issue the next control command as soon as one control command is completed. Will be done.
  • the processing unit 120 controls a plurality of phase shifters 110 simultaneously. Will be able to.
  • the processing device unit 150 transmits a signal to the motor control / position detection auxiliary circuit 160 connected to the phase shifter 110 serving as a signal destination.
  • FIG. 17 (c) is a combination of the configurations shown in FIGS. 17 (a) and 17 (b). That is, the same number of communication IF units 130 as the phase shifters 110 are provided, and the same number of motor control / position detection auxiliary circuits 160 as the phase shifters 110 are provided instead of the switching circuit 170. Even in such a configuration, as in the case of FIG. 17B, a plurality of response signals actually collide, and therefore the processing of step 509 and step 511 in FIG. 15 becomes unnecessary.
  • the configuration in which a plurality of phase shifters 110 are connected to the processing unit 120 has been described. However, even when there is one phase shifter 110 connected to the processing unit 120, the processing of FIG. Processing is performed according to the procedure. That is, the processing unit 120 having the same configuration may be used regardless of whether one or more phase shifters 110 are connected to the processing unit 120.
  • the processing unit 150 (processing unit 120) has a slave function for RET (Remote Electrical Tilt) control that controls the tilt angle of the phase shifter 110.
  • the processing apparatus unit 150 according to the present embodiment has a slave unit function for controlling other functions related to the antenna 100 in addition to the slave unit function for RET control.
  • AISG extension devices and TMA are defined as a device group defined by the same communication protocol as RET. More specifically, as an AISG Extension device, for example, RAS (Remote Azimuth Steering) that adjusts the azimuth steering, RAB (Remote Azimuth Beam-width) that adjusts the beam width of the azimuth, and ATS ( Antenna (line) (device) Temperature (Sensor) etc. are specified.
  • RAS Remote Azimuth Steering
  • RAB Remote Azimuth Beam-width
  • ATS Antenna (line) (device) Temperature (Sensor) etc.
  • the TMA is a device defined in the AISG standard as an amplifier installed in the upper part of the steel tower.
  • a command dedicated to RAS control, a command dedicated to RAB control, and a command dedicated to ATS control are also defined, but RAS, RAB, ATS, etc. are used by using the same command as the RET control command. May be controlled.
  • a command number stored in the “AISG command type” there is a command to which a number dedicated to RAS control, a number dedicated to RAB control, a number dedicated to ATS control is given, or the same number as a command for RET control.
  • RAS, RAB, ATS, and the like are controlled by the command.
  • a command having the same number as that of the RET control command is used, it is impossible to determine which device is to be controlled from the command number.
  • a processing unit (substrate) for RET control a processing unit for RAS control, a processing unit for RAB control, and a process for ATS control
  • the units are physically separated, and the command processing is executed by the processing unit that is the destination of the signal from the parent device 400.
  • RAS, RAB, and ATS may be controlled using a command called “Vendor Specific Procedure command”.
  • the “Vendor Specific Procedure command” is a command that can be freely defined by the vendor. By transmitting this “Vendor Specific Procedure command” in a specific manner, RAS, RAB, and ATS are controlled.
  • this “Vendor Specific Procedure command” is a command uniquely defined by the vendor, it is required to support both the base unit 400 and the antenna 100 in advance so that the command can be processed.
  • one processing unit 120 has a RAS control slave unit function, a RAB control slave unit function, an ATS control slave unit function, etc. in addition to the RET control slave unit function. It has a handset function for controlling the AISG Extension device and TMA. Then, the processing unit 120 distributes the signal from the parent device 400 to the destination child device function, and causes the command processing to be executed.
  • the processing unit 150 has the above-described slave unit function for RAS control, the slave unit function for RAB control, and the slave unit function for ATS control.
  • the processing apparatus unit 150 according to the present embodiment is not limited to the configuration having such a slave function.
  • the AISG standard defines an AISG Extension device in addition to RAS, RAB, and ATS.
  • the processing unit 150 according to the present embodiment may have a slave unit function for controlling any AISG Extension device and TMA in addition to the slave unit function for RET control.
  • FIG. 18 is a diagram illustrating an example of the configuration of the antenna 100 according to the fifth embodiment.
  • Antenna 100 according to the present embodiment has RAS device 113, RAB device 114, and temperature sensor 115 in addition to the configuration of the antenna according to Embodiments 1 to 4 (configuration shown in FIG. 1).
  • the processing device unit 150 has the same slave device function as the processing device unit 150 according to Embodiment 3 (the processing device unit 150 illustrated in FIG. 11) with respect to the slave device function for RET control. It is assumed that it has In the present embodiment, the same components as those of the antennas according to Embodiments 1 to 4 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the RAS device 113 is a device that adjusts the azimuth steering of the antenna 100, in other words, a device that changes the beam direction at the antenna 100. More specifically, the RAS device 113 includes, for example, a motor that controls the direction of the antenna 100 in order to adjust the azimuth steering.
  • the adjustment of the azimuth steering is not limited to the configuration for controlling the azimuth of the antenna 100. For example, the azimuth of the metal body placed on the radiation surface or the phase shift amount of the radio wave is controlled. Also good.
  • the RAB device 114 is a device that adjusts the beam width of the azimuth angle. More specifically, the RAB device 114 controls, for example, a motor that controls the azimuth of the metal body placed on the radiation surface for adjusting the beam width of the azimuth angle, and controls the amount of radio wave phase shift. Have.
  • the temperature sensor 115 is a sensor that detects the temperature of the antenna 100 itself and the temperature around the antenna 100. In the present embodiment, the RAS device 113, the RAB device 114, and the temperature sensor 115 are used as an example of another device different from the phase shifter 110.
  • the processing unit 150 also has a slave function (slave function 10a, slave function 10b) that supports only a single communication system for RET control, and a slave function that supports only a multi-communication system for RET control ( In addition to the slave unit function 10c), it has a slave unit function 10d for RAS control, a slave unit function 10e for RAB control, and a slave unit function 10f for ATS control.
  • a slave function 10a, slave function 10b that supports only a single communication system for RET control
  • a slave function that supports only a multi-communication system for RET control In addition to the slave unit function 10c), it has a slave unit function 10d for RAS control, a slave unit function 10e for RAB control, and a slave unit function 10f for ATS control.
  • 19A and 19B are flowcharts illustrating an example of a processing procedure of the processing device unit 150 according to the fifth embodiment. A series of processes shown in FIGS. 19A and 19B are repeatedly executed.
  • the reception processing unit 191 waits for reception of a command from the parent device 400.
  • the processing in step 701 and step 702 is the same as the processing in step 401 and step 402 in FIG. 12 according to the third embodiment, and a description thereof will be omitted here. If it is determined in step 702 that the command has been received (Yes in step 702), then command processing by the command processing unit 192 is performed.
  • the command processing unit 192 repeatedly executes the processing from step 703 to step 710 to be described later for the number (n) of valid child devices that virtually operate in the processing unit 120.
  • the command processing unit 192 selects one valid slave unit, and determines whether or not the received signal is a signal addressed to the selected slave unit (step 703). If it is determined that the signal is not addressed to the selected slave unit (No in step 703), the command processing unit 192 selects one next valid slave unit.
  • the command processing unit 192 determines the type of device that the selected slave unit is responsible for (step 704). If the selected handset is a handset corresponding to the single communication method for RET control (that is, handset function 10a or handset function 10b), the command processing unit 192 selects according to the command of the received signal. The slave unit is caused to execute processing of a single command or a common command (step 705). By executing the command, processing for the phase shifter 110 corresponding to the slave unit is performed. However, if the command from the parent device 400 is, for example, a multi-command or an undefined command, it is determined as an error.
  • the command from the parent device 400 is, for example, a multi-command or an undefined command, it is determined as an error.
  • step 704 if the selected slave unit is a slave unit corresponding to the multi-communication system for RET control (that is, the slave unit function 10 c), the command processing unit 192 selects according to the command of the received signal.
  • the slave unit is caused to execute multi-command or common command processing (step 706). By executing the command, processing for the phase shifter 110 corresponding to the slave unit is performed. However, if the command from the parent device 400 is, for example, a single command or an undefined command, it is determined as an error.
  • step 704 if the selected slave unit is a slave unit for RAS control (that is, the slave unit function 10d), the command processing unit 192 applies the selected slave unit to the selected slave unit according to the command of the received signal.
  • Command processing for RAS control is executed (step 707).
  • this command includes a single command and a multicommand for RET control, a command having the same number as the common command, and a command dedicated to RAS control.
  • processing for the RAS device 113 is performed.
  • the command from the parent device 400 is, for example, an undefined command in the RAS control, it is determined as an error.
  • step 704 if the selected slave unit is a slave unit for RAB control (that is, the slave unit function 10e), the command processing unit 192 applies the selected slave unit to the selected slave unit according to the command of the received signal.
  • Command processing for RAB control is executed (step 708).
  • This command includes a single command and a multiple command for RET control, a command having the same number as the common command, and a command dedicated to RAB control. By executing the command, processing for the RAB device 114 is performed. However, if the command from the base unit 400 is, for example, an undefined command in the RAB control, it is determined as an error.
  • step 704 if the selected slave unit is the slave unit for ATS control (that is, the slave unit function 10f), the command processing unit 192 applies the selected slave unit to the selected slave unit according to the command of the received signal.
  • Command processing for ATS control is executed (step 709).
  • This command includes a single command and a multiple command for RET control, a command having the same number as the common command, and a command dedicated to ATS control. By executing the command, processing for the temperature sensor 115 is performed. However, if the command from the base unit 400 is, for example, an undefined command in ATS control, it is determined as an error.
  • step 705 step 706, step 707, step 708, or step 709
  • the command processing unit 192 After step 705, step 706, step 707, step 708, or step 709, the command processing unit 192 generates a response signal (step 710).
  • step 710 the command processing unit 192 selects one other child device that has not yet been selected. In this way, the command processing unit 192 executes the processing from step 703 to step 710 by the number of valid slave units (n). When the processing is completed for all the slave units, the process proceeds to the next step 711.
  • step 711 to step 714 is the same as the processing from step 408 to step 411 in FIG. 12, the description thereof is omitted here.
  • the processing unit 150 has a slave unit function for controlling other functions in addition to the slave unit function for RET control.
  • the number of processing units 120 is reduced compared to a configuration in which separate processing units 120 are assigned to each of RET control, RAS control, RAB control, and ATS control.
  • the cost of the antenna 100 can be reduced.
  • this contributes to the miniaturization of the antenna 100.
  • it is not necessary to correspond to both the parent device 400 and the antenna 100 so that the “Vendor SpecificedProcedure command” can be processed.
  • the processing unit 150 is provided only for the slave function (slave function 10a, slave function 10b) that supports only the single communication method for RET control and the multi-communication method for RET control.
  • the corresponding slave unit function (slave unit function 10c) is provided, it is not limited to such a configuration.
  • the processing unit 150 may have any slave unit function as a slave unit function for RET control.
  • the processing unit 150 has only one slave unit function corresponding to the single communication method as the slave unit function for RET control, the slave unit function for RAS control and the slave unit function for RAB control are further included. It may have a slave function for ATS control.
  • a slave unit function for RAS control and a slave unit for RAB control are further provided. It is good also as having a machine function, a handset function for ATS control, etc.
  • the form of the array antenna 180 is not limited to one in which antenna elements for different frequency bands are arranged in a straight line.
  • an array antenna composed of a plurality of antenna elements in the same frequency band. May be arranged in different directions.
  • the antenna elements 181a to 181d and the antenna elements 182a to 182d may be a subarray having a plurality of antenna elements.
  • the phase shifter 110 for setting the directivity of the array antenna 180 other forms of phase shifters such as a phase shifter that mechanically changes the line length or a dielectric material may be used. .
  • SYMBOLS 10 Slave unit function part, 20 ... Slave unit function part, 100 ... Antenna, 110, 110a, 110b ... Phase shifter, 113 ... RAS apparatus, 114 ... RAB apparatus, 115 ... Temperature sensor, 120 ... Processing part, 130 ... Communication IF unit 140 ... Power supply unit 150 ... Processing device unit 160 ... Motor control / position detection auxiliary circuit 161 ... Motor control circuit 162 ... Position detection auxiliary circuit 170, 170a, 170b ... Switch circuit 180,180 -1, 180-2 ... Array antenna, 181a to 181d, 182a to 182d ... Antenna element, 191 ... Reception processing unit, 192 ... Command processing unit, 193 ... Response execution unit, 400 ... Master unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Radio Transmission System (AREA)

Abstract

A processing unit 120 includes, as a plurality of slave machine function units, a single-antenna elementary procedures-compatible slave machine function unit capable of processing a control signal compliant with single-antenna elementary procedures in which only one phase shifter is assigned to one slave machine function unit, and provided for each phase shifter of one or more phase shifters, and at least one multi-antenna elementary procedures-compatible salve machine function unit provided for one or more phase shifters and capable of processing a control signal compliant with multi-antenna elementary procedures in which one or more phase shifters can be assigned to one slave machine function unit. When receiving a control signal compliant with either single-antenna elementary procedures or multi-antenna elementary procedures from a master machine 400, the processing unit 120 determines whether the destination of the control signal is a slave machine function unit compatible with single-antenna elementary procedures or multi-antenna elementary procedures, if the destination is the slave machine function unit compatible with single-antenna elementary procedures, causes the slave machine function unit to execute processing based on the control signal compliant with single-antenna elementary procedures, and if the destination is the slave machine function unit compatible with multi-antenna elementary procedures, causes the slave machine function unit to execute processing based on the control signal compliant with multi-antenna elementary procedures.

Description

制御装置、アンテナ及びプログラムControl device, antenna and program
 本発明は、制御装置、アンテナ及びプログラムに関する。 The present invention relates to a control device, an antenna, and a program.
 例えば周波数共用アンテナやマルチビームアンテナなどのアンテナにおいて、1つのアンテナに関わる移相器類が複数必要になるケースが増えている。また、柔軟なエリア形成を行うためには、頻繁なチルト角制御を行いエリアの調整が必要であり、それを実現するために、例えば、AISG(Antenna Interface Standards Group)規格によるチルト制御システムが採用される。AISG規格では、例えば無線機などの1次局(親機)からの命令に従い、アンテナに付随する2次局(子機)が動作して、チルト角の制御等が行われる。 For example, in an antenna such as a frequency sharing antenna or a multi-beam antenna, there are an increasing number of cases where a plurality of phase shifters related to one antenna are required. In addition, in order to perform flexible area formation, it is necessary to adjust the area by frequently controlling the tilt angle. To achieve this, for example, a tilt control system based on the AISG (Antenna Interface Standards Group) standard is adopted. Is done. In the AISG standard, for example, in accordance with a command from a primary station (master unit) such as a radio device, a secondary station (slave unit) attached to the antenna operates to control the tilt angle and the like.
 特許文献1には、基地局側あるいはアンテナ側でマルチプレクサ回路を含むアンテナ変速機制御装置において、AISG規格を用いて、アンテナに近い成分をコントロールするためのプロトコル・トランスミッションが2本のマルチプレクサ回路間で交互に行われ、アンテナ側で提供されるマルチプレクサ回路のアンテナ・サイドポートに作成された信号は、マルチプレクサ回路によって測定するか検知し、接続依存または消費者依存のプロトコルと一緒に伝送路に注入できることが記載されている。 In Patent Document 1, in an antenna transmission control apparatus including a multiplexer circuit on a base station side or an antenna side, a protocol transmission for controlling a component close to an antenna is used between two multiplexer circuits using the AISG standard. The signal generated at the antenna side port of the multiplexer circuit, which is performed alternately and provided on the antenna side, can be measured or detected by the multiplexer circuit and injected into the transmission line along with connection-dependent or consumer-dependent protocols Is described.
国際公開第2010/049094号International Publication No. 2010/049094
 AISG規格には、子機(処理装置)と移相器類とが1対1で接続される通信方式(Single-antenna elementary procedures、シングル通信方式)と、子機と移相器類とが1対多で接続される通信方式(Multi-antenna elementary procedures、マルチ通信方式)とが存在する。
 この2つの通信方式では、1つの子機に接続可能な移相器類の数が異なるため、ハードウェア構成が根本的に異なる。また、AISG規格では、送信機(親機)がいずれの通信方式に対応したものかを子機側に伝える機能が存在していない。これらの理由から、子機側にて両方の通信方式に対応することは困難であり、例えば、どの通信方式に対応した送信機を接続するか確定していないような場合には、送信機と子機とで対応する通信方式が一致しないことが考えられる。
 また、送信機がこのシングル通信方式しかサポートしていない場合には、通信方式の仕様上の制限により、通常は移相器類と同じ数の処理装置が必要となる。
 本発明の目的は、送信機がシングル通信方式またはマルチ通信方式のいずれの通信方式を採用している場合においても、送信機からの信号に基づく処理を可能にする制御装置を提供することにある。
 また、本発明の他の目的は、シングル通信方式を採用した送信機から信号を受信する制御系にてハードウェアからなる処理装置の数を減らすことにある。
In the AISG standard, a communication method (Single-antenna elementary procedures) in which a slave unit (processing device) and phase shifters are connected in a one-to-one relationship, and a slave unit and phase shifters are one. There are communication methods (multi-antenna elementary procedures) that are connected in a many-to-many manner.
In these two communication systems, the number of phase shifters that can be connected to one slave unit is different, so the hardware configuration is fundamentally different. In addition, in the AISG standard, there is no function for transmitting to the handset side which communication method the transmitter (base unit) supports. For these reasons, it is difficult for the slave unit to support both communication systems. For example, in the case where it is not determined which communication system is connected to the transmitter, It is conceivable that the communication methods supported by the slave units do not match.
When the transmitter supports only this single communication method, the same number of processing devices as the phase shifters are usually required due to the limitation on the specification of the communication method.
An object of the present invention is to provide a control device that enables processing based on a signal from a transmitter, regardless of whether the transmitter employs a single communication method or a multi-communication method. .
Another object of the present invention is to reduce the number of hardware processing devices in a control system that receives a signal from a transmitter employing a single communication method.
 かかる目的のもと、本発明が適用される制御装置は、複数のアンテナ素子が送受信する送受信信号の位相をずらすための1つ以上の移相器を送信機からの制御信号に基づいて制御する複数の子機機能部を有する制御装置であって、複数の子機機能部は、1つの子機機能部に1つの移相器しか割り当てられないシングル通信方式に従った制御信号を処理可能な、1つ以上の移相器の移相器毎に設けられたシングル通信方式対応の子機機能部と、1つ以上の移相器に対して設けられた、1つの子機機能部に1つ以上の移相器を割り当てることのできるマルチ通信方式に従った制御信号を処理可能な少なくとも1つのマルチ通信方式対応の子機機能部と、であり、送信機から制御信号を受信する受信手段と、受信手段が送信機からシングル通信方式及びマルチ通信方式の何れかの通信方式に従った制御信号を受信した場合に、制御信号の宛先がシングル通信方式対応及びマルチ通信方式対応の何れの子機機能部であるかを判定し、宛先がシングル通信方式対応の子機機能部である場合には子機機能部に対してシングル通信方式に従った制御信号に基づく処理を実行させ、宛先がマルチ通信方式対応の子機機能部である場合には子機機能部に対してマルチ通信方式に従った制御信号に基づく処理を実行させる処理実行手段とを備える。
 また、制御装置は、さらに、1つ以上の移相器とは別の移相器に対して設けられたシングル通信方式対応の子機機能部を有し、別の移相器は、マルチ通信方式対応の子機機能部には接続されないことを特徴とすることができる。
 さらに、制御装置は、さらに、1つ以上の移相器とは別の移相器に対して設けられたマルチ通信方式対応の子機機能部を有し、別の移相器は、シングル通信方式対応の子機機能部には接続されないことを特徴とすることができる。
 そして、処理実行手段は、送信機から受信した1つ以上の移相器に対する制御信号に基づいて、子機機能部により移相器毎に処理を実行して、処理を実行した子機機能部毎に送信機への応答信号を生成し、処理実行手段の処理により送信機への応答信号が複数生成された場合、送信機が正常ではない信号であると認識する応答信号を生成する処理を行って、応答信号により送信機に応答する応答手段をさらに備えることを特徴とすることができる。
 また、制御装置は、さらに、送信機からの制御信号に基づいて移相器とは異なる他の機器を制御する他の子機機能部を有し、処理実行手段は、受信手段が送信機から制御信号を受信した場合に、制御信号の宛先がシングル通信方式対応の子機機能部、マルチ通信方式対応の子機機能部、及び他の子機機能部の何れの子機機能部であるかを判定し、宛先が他の子機機能部である場合には他の子機機能部に対して制御信号に基づく処理を実行させることを特徴とすることができる。
 他の観点から捉えると、本発明が適用されるアンテナは、複数のアンテナ素子をそれぞれ有する1つ以上のアレイアンテナと、1つ以上のアレイアンテナ毎に設けられ、複数のアンテナ素子が送受信する送受信信号の位相をずらす1つ以上の移相器と、送信機からの制御信号に基づいて1つ以上の移相器を制御する複数の子機機能部を有する制御装置とを備え、複数の子機機能部は、1つの子機機能部に1つの移相器しか割り当てられないシングル通信方式に従った制御信号を処理可能な、1つ以上の移相器の移相器毎に設けられたシングル通信方式対応の子機機能部と、1つ以上の移相器に対して設けられた、1つの子機機能部に1つ以上の移相器を割り当てることのできるマルチ通信方式に従った制御信号を処理可能な少なくとも1つのマルチ通信方式対応の子機機能部と、であり、制御装置は、送信機から制御信号を受信する受信手段と、受信手段が送信機からシングル通信方式及びマルチ通信方式の何れかの通信方式に従った制御信号を受信した場合に、制御信号の宛先がシングル通信方式対応及びマルチ通信方式対応の何れの子機機能部であるかを判定し、宛先がシングル通信方式対応の子機機能部である場合には子機機能部に対してシングル通信方式に従った制御信号に基づく処理を実行させ、宛先がマルチ通信方式対応の子機機能部である場合には子機機能部に対してマルチ通信方式に従った制御信号に基づく処理を実行させる処理実行手段とを有することを特徴とすることができる。
 さらに他の観点から捉えると、本発明が適用されるプログラムは、複数のアンテナ素子が送受信する送受信信号の位相をずらすための1つ以上の移相器を送信機からの制御信号に基づいて制御する複数の子機機能部を有する制御装置に用いられるプログラムであって、複数の子機機能部は、1つの子機機能部に1つの移相器しか割り当てられないシングル通信方式に従った制御信号を処理可能な、1つ以上の移相器の移相器毎に設けられたシングル通信方式対応の子機機能部と、1つ以上の移相器に対して設けられた、1つの子機機能部に1つ以上の移相器を割り当てることのできるマルチ通信方式に従った制御信号を処理可能な少なくとも1つのマルチ通信方式対応の子機機能部と、であり、送信機から制御信号を受信する機能と、送信機からシングル通信方式及びマルチ通信方式の何れかの通信方式に従った制御信号を受信した場合に、制御信号の宛先がシングル通信方式対応及びマルチ通信方式対応の何れの子機機能部であるかを判定し、宛先がシングル通信方式対応の子機機能部である場合には子機機能部に対してシングル通信方式に従った制御信号に基づく処理を実行させ、宛先がマルチ通信方式対応の子機機能部である場合には子機機能部に対してマルチ通信方式に従った制御信号に基づく処理を実行させる機能とを制御装置に実現させるものである。
For this purpose, a control device to which the present invention is applied controls one or more phase shifters for shifting the phases of transmission / reception signals transmitted / received by a plurality of antenna elements based on a control signal from a transmitter. A control device having a plurality of slave unit function units, wherein the plurality of slave unit function units can process a control signal in accordance with a single communication method in which only one phase shifter is assigned to one slave unit function unit 1 in one slave unit function unit corresponding to a single communication method provided for each phase shifter of one or more phase shifters and one slave unit function unit provided for one or more phase shifters And at least one slave unit function unit corresponding to the multi-communication system capable of processing a control signal according to the multi-communication system to which one or more phase shifters can be assigned, and receiving means for receiving the control signal from the transmitter And the receiving means is a single communication system from the transmitter When the control signal according to any one of the communication methods of the multi-communication method is received, it is determined whether the destination of the control signal is the slave unit function unit corresponding to the single communication method or the multi-communication method, and the destination Is a slave unit function unit compatible with the single communication method, the slave unit function unit performs processing based on the control signal according to the single communication method, and the destination is the slave unit function unit compatible with the multi communication method. In some cases, the slave unit includes a process execution means for executing a process based on a control signal in accordance with the multi-communication method.
In addition, the control device further includes a slave unit function unit corresponding to a single communication method provided for a phase shifter different from one or more phase shifters, and the other phase shifter is a multi-communication unit. It is characterized in that it is not connected to the slave unit function unit corresponding to the system.
Further, the control device further includes a slave unit function unit corresponding to a multi-communication system provided for a phase shifter different from the one or more phase shifters. It is characterized in that it is not connected to the slave unit function unit corresponding to the system.
The processing execution means executes the processing for each phase shifter by the slave unit function unit based on the control signal for one or more phase shifters received from the transmitter, and executes the process. A process for generating a response signal for generating a response signal for each transmitter and generating a response signal for recognizing that the transmitter is an abnormal signal when a plurality of response signals to the transmitter are generated by the processing of the processing execution means. And a response means for responding to the transmitter with a response signal.
The control device further includes another slave unit function unit that controls another device different from the phase shifter based on a control signal from the transmitter. When a control signal is received, whether the destination of the control signal is a slave unit function unit corresponding to a single communication method, a slave unit function unit corresponding to a multi-communication method, or another slave unit function unit And when the destination is another slave unit function unit, the other slave unit function unit is caused to execute processing based on the control signal.
From another point of view, the antenna to which the present invention is applied is one or more array antennas each having a plurality of antenna elements, and transmission / reception that is provided for each of the one or more array antennas and that is transmitted and received by the plurality of antenna elements. One or more phase shifters for shifting the phase of the signal, and a control device having a plurality of slave unit function units for controlling one or more phase shifters based on a control signal from the transmitter, The function unit is provided for each phase shifter of one or more phase shifters capable of processing a control signal according to a single communication method in which only one phase shifter is assigned to one slave unit function unit. In accordance with a multi-communication system in which one or more phase shifters can be allocated to one slave unit function unit provided for one slave unit function unit and one or more phase shifters At least one capable of processing the control signal A control unit that receives a control signal from the transmitter, and the receiving unit converts the communication method from the transmitter to one of a single communication method and a multi-communication method. When the control signal is received, it is determined whether the destination of the control signal is a slave unit function unit corresponding to the single communication method or the multi-communication method, and the destination is a slave unit function unit corresponding to the single communication method. In some cases, the slave unit function unit executes processing based on a control signal in accordance with the single communication method, and when the destination is a slave unit function unit that supports the multi-communication method, And a process execution means for executing a process based on a control signal in accordance with the communication method.
From another point of view, the program to which the present invention is applied controls one or more phase shifters for shifting the phase of transmission / reception signals transmitted / received by a plurality of antenna elements based on a control signal from a transmitter. A program used for a control device having a plurality of slave unit function units, wherein the plurality of slave unit function units are controlled in accordance with a single communication method in which only one phase shifter is assigned to one slave unit function unit One unit provided for one or more phase shifters and a slave unit function unit corresponding to a single communication method provided for each phase shifter of one or more phase shifters capable of processing signals At least one multi-communication system-compatible sub-function unit capable of processing a control signal in accordance with a multi-communication system to which one or more phase shifters can be assigned to the machine function unit, and a control signal from the transmitter Function to receive and transmitter When receiving a control signal according to one of the single communication method and the multi-communication method, whether the destination of the control signal is a slave unit function unit corresponding to the single communication method or the multi-communication method. If the destination is a slave unit function unit compatible with the single communication method, the slave unit function unit executes processing based on the control signal according to the single communication method, and the destination is a slave unit compatible with the multi communication method. In the case of the functional unit, the control unit realizes a function of causing the slave unit functional unit to execute processing based on the control signal in accordance with the multi-communication method.
 また、本発明が適用される制御装置は、複数のアンテナ素子が送受信する送受信信号の位相をずらす複数の移相器が接続され、シングル通信方式で動作している送信機からの制御信号に基づいて複数の移相器を制御する複数の子機機能部を有する1つの制御装置であって、制御信号には、宛先の子機機能部を指定するアドレス及び宛先の子機機能部に実行させる処理内容を示すコマンドが含まれており、複数の子機機能部のそれぞれは、1つの子機機能部に1つの移相器しか割り当てられないシングル通信方式に従った制御信号に含まれるコマンドを処理可能な子機機能部であって、複数の移相器のそれぞれに対応して設けられており、送信機から制御信号を受信する受信手段と、受信手段が受信したシングル通信方式に従った制御信号に含まれるアドレスと複数の子機機能部のそれぞれに割り振られたアドレスとを比較することにより、複数の子機機能部のうちの制御信号の宛先である子機機能部に対して制御信号に含まれるコマンドを振り分けてコマンドの処理を実行させる処理実行手段とを備える。
 また、処理実行手段の処理により送信機への応答信号が複数生成された場合、送信機が正常ではない信号であると認識する応答信号を生成する処理を行って、応答信号により送信機に応答する応答手段をさらに備えることを特徴とすることができる。
 さらに、制御装置は、さらに、送信機からの制御信号に基づいて移相器とは異なる他の機器を制御する他の子機機能部を有し、処理実行手段は、受信手段が受信した制御信号に含まれるアドレスと複数の子機機能部及び他の子機機能部のそれぞれに割り振られたアドレスとを比較し、制御信号の宛先が他の子機機能部である場合には、他の子機機能部に対して制御信号に含まれるコマンドを振り分けてコマンドの処理を実行させることを特徴とすることができる。
 他の観点から捉えると、本発明が適用されるアンテナは、複数のアンテナ素子をそれぞれ有する複数のアレイアンテナと、複数のアレイアンテナ毎に設けられ、複数のアンテナ素子が送受信する送受信信号の位相をずらす複数の移相器と、複数の移相器が接続され、シングル通信方式で動作している送信機からの制御信号に基づいて複数の移相器を制御する複数の子機機能部を有する1つの制御装置とを備え、制御信号には、宛先の子機機能部を指定するアドレス及び宛先の子機機能部に実行させる処理内容を示すコマンドが含まれており、複数の子機機能部のそれぞれは、1つの子機機能部に1つの移相器しか割り当てられないシングル通信方式に従った制御信号に含まれるコマンドを処理可能な子機機能部であって、複数の移相器のそれぞれに対応して設けられており、制御装置は、送信機から制御信号を受信する受信手段と、受信手段が受信したシングル通信方式に従った制御信号に含まれるアドレスと複数の子機機能部のそれぞれに割り振られたアドレスとを比較することにより、複数の子機機能部のうちの制御信号の宛先である子機機能部に対して制御信号に含まれるコマンドを振り分けてコマンドの処理を実行させる処理実行手段とを有することを特徴とすることができる。
 さらに他の観点から捉えると、本発明が適用されるプログラムは、複数のアンテナ素子が送受信する送受信信号の位相をずらす複数の移相器が接続され、シングル通信方式で動作している送信機からの制御信号に基づいて複数の移相器を制御する複数の子機機能部を有する1つの制御装置に用いられるプログラムであって、制御信号には、宛先の子機機能部を指定するアドレス及び宛先の子機機能部に実行させる処理内容を示すコマンドが含まれており、複数の子機機能部のそれぞれは、1つの子機機能部に1つの移相器しか割り当てられないシングル通信方式に従った制御信号に含まれるコマンドを処理可能な子機機能部であって、複数の移相器のそれぞれに対応して設けられており、送信機から制御信号を受信する機能と、受信したシングル通信方式に従った制御信号に含まれるアドレスと複数の子機機能部のそれぞれに割り振られたアドレスとを比較することにより、複数の子機機能部のうちの制御信号の宛先である子機機能部に対して制御信号に含まれるコマンドを振り分けてコマンドの処理を実行させる機能とを制御装置に実現させるものである。
 他の観点から捉えると、本発明が適用される制御装置は、複数のアンテナ素子が送受信する送受信信号の位相をずらす移相器と、移相器とは異なる他の機器とが接続され、送信機からの制御信号に基づいて移相器を制御する子機機能部と、送信機からの制御信号に基づいて他の機器を制御する他の子機機能部と、送信機から制御信号を受信する受信手段と、受信手段が送信機から制御信号を受信した場合に、制御信号の宛先が子機機能部及び他の子機機能部の何れの子機機能部であるかを判定し、宛先が子機機能部である場合には、子機機能部に対して制御信号に基づいて移相器を制御する処理を実行させ、宛先が他の子機機能部である場合には、他の子機機能部に対して制御信号に基づいて他の機器を制御する処理を実行させる処理実行手段とを備える。
The control device to which the present invention is applied is based on a control signal from a transmitter operating in a single communication system, to which a plurality of phase shifters for shifting the phases of transmission / reception signals transmitted / received by a plurality of antenna elements are connected. One control device having a plurality of slave unit function units for controlling a plurality of phase shifters, and causing the control signal to be executed by an address for designating a destination slave unit function unit and a destination slave unit function unit A command indicating the processing content is included, and each of the plurality of slave unit function units includes a command included in a control signal according to a single communication method in which only one phase shifter is assigned to one slave unit function unit. It is a slave unit function unit that can be processed, and is provided corresponding to each of a plurality of phase shifters, according to a receiving unit that receives a control signal from a transmitter and a single communication method received by the receiving unit Included in control signal Is included in the control signal with respect to the slave unit function unit that is the destination of the control signal among the plurality of slave unit function units. Processing execution means for distributing commands and executing command processing.
In addition, when a plurality of response signals to the transmitter are generated by the processing of the processing execution means, processing for generating a response signal that recognizes that the transmitter is an abnormal signal is performed, and the response signal is used to respond to the transmitter. And responding means.
Furthermore, the control device further includes another slave unit function unit that controls another device different from the phase shifter based on a control signal from the transmitter, and the process execution unit is a control received by the reception unit. Compare the address included in the signal with the addresses assigned to each of the multiple handset function units and other handset function units, and if the destination of the control signal is another handset function unit, The slave unit function unit can distribute the command included in the control signal and execute the command processing.
From another viewpoint, the antenna to which the present invention is applied includes a plurality of array antennas each having a plurality of antenna elements, and a phase of a transmission / reception signal transmitted and received by the plurality of antenna elements. A plurality of phase shifters for shifting and a plurality of phase shifters connected to each other, and having a plurality of slave unit function units for controlling the plurality of phase shifters based on a control signal from a transmitter operating in a single communication system And a control signal includes an address for designating a destination slave unit function unit and a command indicating processing contents to be executed by the destination slave unit function unit, and a plurality of slave unit function units Each of these is a slave unit function unit that can process a command included in a control signal in accordance with a single communication method in which only one phase shifter is assigned to one slave unit function unit. That The control device includes a receiving unit that receives a control signal from the transmitter, an address included in the control signal according to the single communication method received by the receiving unit, and a plurality of slave unit function units. By comparing the address assigned to each of the slave units, the command included in the control signal is distributed to the slave unit function unit that is the destination of the control signal among the plurality of slave unit function units, and the command processing is executed. And a process execution means.
From another point of view, the program to which the present invention is applied is obtained from a transmitter operating in a single communication system, to which a plurality of phase shifters that shift the phases of transmission and reception signals transmitted and received by a plurality of antenna elements are connected. Is a program used for one control device having a plurality of slave unit function units for controlling a plurality of phase shifters based on the control signal of the control signal, the control signal including an address for designating a destination slave unit function unit and A command indicating the processing contents to be executed by the destination handset function unit is included, and each of the plurality of handset function units has a single communication method in which only one phase shifter can be assigned to one handset function unit. A slave unit functional unit that can process commands included in the control signal, and is provided corresponding to each of a plurality of phase shifters, and has a function of receiving a control signal from a transmitter and a received thin The slave unit that is the destination of the control signal among the plurality of slave unit function units by comparing the address included in the control signal according to the communication method and the address assigned to each of the plurality of slave unit function units The control device realizes the function of distributing the command included in the control signal to the functional unit and executing the command processing.
From another point of view, the control device to which the present invention is applied is connected to a phase shifter that shifts the phase of transmission / reception signals transmitted and received by a plurality of antenna elements and another device that is different from the phase shifter. The slave unit function unit that controls the phase shifter based on the control signal from the machine, the other slave unit function unit that controls other devices based on the control signal from the transmitter, and the control signal received from the transmitter And a receiving unit that determines whether the destination of the control signal is a slave unit function unit or another slave unit function unit when the receiver unit receives a control signal from the transmitter, Is a slave unit function unit, the slave unit function unit is caused to execute processing for controlling the phase shifter based on the control signal, and when the destination is another slave unit function unit, A process execution unit that causes the slave unit function unit to execute a process of controlling another device based on the control signal. Provided with a door.
 本発明によれば、送信機がシングル通信方式またはマルチ通信方式のいずれの通信方式を採用している場合においても、送信機からの信号に基づく処理を可能にする制御装置を提供することができる。
 また、本発明によれば、シングル通信方式を採用した送信機から信号を受信する制御系にてハードウェアからなる処理装置の数を減らすことができる。
According to the present invention, it is possible to provide a control device that enables processing based on a signal from a transmitter, regardless of whether the transmitter employs a single communication method or a multi-communication method. .
Further, according to the present invention, the number of hardware processing devices can be reduced in a control system that receives a signal from a transmitter employing a single communication method.
本発明の実施の形態が適用されるアンテナのハードウェア構成例を示すブロック図である。It is a block diagram which shows the hardware structural example of the antenna with which embodiment of this invention is applied. 実施の形態1に係るアンテナの構成の一例を示す図である。3 is a diagram illustrating an example of a configuration of an antenna according to Embodiment 1. FIG. 比較例として、シングル通信方式を採用した場合の従来のアンテナの構成例を示す図である。It is a figure which shows the structural example of the conventional antenna at the time of employ | adopting a single communication system as a comparative example. 比較例として、マルチ通信方式を採用した場合の従来のアンテナの構成例を示す図である。It is a figure which shows the structural example of the conventional antenna at the time of employ | adopting a multi-communication system as a comparative example. (a)~(c)は、親機からアンテナに対して送信される信号のフレームフォーマットの一例を説明するための図である。(A)-(c) is a figure for demonstrating an example of the frame format of the signal transmitted with respect to an antenna from a main | base station. 実施の形態1に係る処理装置部の機能構成の一例を示すブロック図である。2 is a block diagram illustrating an example of a functional configuration of a processing device unit according to Embodiment 1. FIG. 実施の形態1に係る処理装置部の処理手順の一例を示したフローチャートである。5 is a flowchart illustrating an example of a processing procedure of a processing device unit according to the first embodiment. (a)~(c)は、実施の形態1に係るアンテナの他の構成例を示した図である。(A)-(c) is the figure which showed the other structural example of the antenna which concerns on Embodiment 1. FIG. 実施の形態1に係るアンテナの他の構成例を示した図である。FIG. 6 is a diagram showing another configuration example of the antenna according to the first embodiment. 図7に示す構成における処理装置部の処理手順の一例を示したフローチャートである。It is the flowchart which showed an example of the process sequence of the processing apparatus part in the structure shown in FIG. 実施の形態2に係るアンテナの構成の一例を示す図である。6 is a diagram illustrating an example of a configuration of an antenna according to Embodiment 2. FIG. 実施の形態2に係る処理装置部の処理手順の一例を示したフローチャートである。10 is a flowchart illustrating an example of a processing procedure of a processing device unit according to the second embodiment. 実施の形態3に係るアンテナの構成の一例を示す図である。6 is a diagram illustrating an example of a configuration of an antenna according to Embodiment 3. FIG. 実施の形態3に係る処理装置部の処理手順の一例を示したフローチャートである。10 is a flowchart illustrating an example of a processing procedure of a processing device unit according to the third embodiment. (a)は、実施の形態4に係るアンテナの構成の一例を示す図である。(b)は、シングル通信方式を採用した場合の従来のアンテナの構成例を示す図である。(A) is a figure which shows an example of a structure of the antenna which concerns on Embodiment 4. FIG. (B) is a figure which shows the structural example of the conventional antenna at the time of employ | adopting a single communication system. 実施の形態4に係る処理装置部の機能構成の一例を示すブロック図である。FIG. 10 is a block diagram illustrating an example of a functional configuration of a processing device unit according to a fourth embodiment. 実施の形態4に係る処理装置部の処理手順の一例を示したフローチャートである。10 is a flowchart illustrating an example of a processing procedure of a processing device unit according to a fourth embodiment. 比較例の構成における処理装置部の処理手順の一例を示したフローチャートである。It is the flowchart which showed an example of the process sequence of the processing apparatus part in the structure of a comparative example. (a)~(c)は、実施の形態4に係るアンテナの他の構成例を示した図である。(A)-(c) is the figure which showed the other structural example of the antenna which concerns on Embodiment 4. FIG. 実施の形態5に係るアンテナの構成の一例を示す図である。FIG. 10 is a diagram illustrating an example of a configuration of an antenna according to a fifth embodiment. 実施の形態5に係る処理装置部の処理手順の一例を示したフローチャートである。10 is a flowchart illustrating an example of a processing procedure of a processing device unit according to a fifth embodiment. 実施の形態5に係る処理装置部の処理手順の一例を示したフローチャートである。10 is a flowchart illustrating an example of a processing procedure of a processing device unit according to a fifth embodiment.
 以下、添付図面を参照して、本発明の実施の形態について詳細に説明する。
[実施の形態1]
<アンテナのハードウェア構成>
 まず、本発明の実施の形態が適用されるアンテナ100のハードウェア構成について説明する。図1は、本発明の実施の形態が適用されるアンテナ100のハードウェア構成例を示すブロック図である。アンテナ100は、AISG規格による制御命令を発信する装置である親機400と接続されている。この親機400は、例えば、携帯電話基地局における無線機や専用の制御装置などであり、本実施の形態では、処理部120へ制御命令を送信するための送信機ともいえる。そして、アンテナ100は、親機400からの制御命令に従ってチルト制御等の処理を行う。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings.
[Embodiment 1]
<Hardware configuration of antenna>
First, the hardware configuration of the antenna 100 to which the embodiment of the present invention is applied will be described. FIG. 1 is a block diagram illustrating a hardware configuration example of an antenna 100 to which an embodiment of the present invention is applied. The antenna 100 is connected to a parent device 400 that is a device that transmits a control command according to the AISG standard. The base unit 400 is, for example, a radio device in a mobile phone base station, a dedicated control device, or the like. In this embodiment, the base unit 400 can also be said to be a transmitter for transmitting a control command to the processing unit 120. The antenna 100 performs processing such as tilt control in accordance with a control command from the parent device 400.
 アンテナ100は、アレイアンテナ180-1、アレイアンテナ180-2と、移相器110a、移相器110bと、処理部120とを備えている。なお、アレイアンテナ180-1、アレイアンテナ180-2を区別する必要がない場合には、アレイアンテナ180と称する場合がある。また、移相器110a、移相器110bを区別する必要がない場合には、移相器110と称する場合がある。 The antenna 100 includes an array antenna 180-1, an array antenna 180-2, a phase shifter 110a, a phase shifter 110b, and a processing unit 120. When there is no need to distinguish between array antenna 180-1 and array antenna 180-2, they may be referred to as array antenna 180. Further, when there is no need to distinguish between the phase shifter 110a and the phase shifter 110b, the phase shifter 110 may be referred to.
 まず、アレイアンテナ180-1は、アンテナ素子181a~181dを備え、アレイアンテナ180-2は、アンテナ素子182a~182dを備えている。アンテナ素子181a~181d、アンテナ素子182a~182dは、それぞれ一直線上に等間隔で配置されており、異なる周波数帯用のアンテナ素子(例えば、アンテナ素子181a~181dは高周波数帯用アンテナ素子、アンテナ素子182a~182dは低周波数帯用アンテナ素子)として用いられる。このように、複数のアンテナ素子はそれぞれのアレイアンテナ180ごとに1つの移相器110に接続される。図1に示す例では、アンテナ素子181a~181dは移相器110aに接続され、アンテナ素子182a~182dは移相器110bに接続される。 First, the array antenna 180-1 includes antenna elements 181a to 181d, and the array antenna 180-2 includes antenna elements 182a to 182d. The antenna elements 181a to 181d and the antenna elements 182a to 182d are arranged on a straight line at equal intervals, and antenna elements for different frequency bands (for example, the antenna elements 181a to 181d are antenna elements for high frequency bands, antenna elements). 182a to 182d are used as low-frequency band antenna elements). Thus, the plurality of antenna elements are connected to one phase shifter 110 for each array antenna 180. In the example shown in FIG. 1, the antenna elements 181a to 181d are connected to the phase shifter 110a, and the antenna elements 182a to 182d are connected to the phase shifter 110b.
 次に、移相器110は、アレイアンテナ180のそれぞれのアンテナ素子(アンテナ素子181a~181d、アンテナ素子182a~182d)に供給される入力信号又はそれぞれのアンテナ素子が受信した出力信号の位相を制御して、アレイアンテナ180の指向性を設定する。付言すると、移相器110は、アンテナ素子181a~181d、アンテナ素子182a~182dから送信される電波の位相を変えることで、電波(ビーム)の送信方向及び受信方向(指向性)を水平面から地表方向もしくは天空方向に傾けて、チルト角を設定する。ここで、移相器110は、例えば、中心を同じくする複数の円弧状の導体と、中心から延びてこれらの円弧状の導体と交差する直線状の導体とから構成されている。そして、中心を軸として直線状の導体を回転させることで、円弧状の導体と交差する位置が変化し、信号が伝搬する経路の長さが変わることで、信号の位相(移相量)を変化させる。即ち、このような移相器110では、直線状の導体の回転角によって移相量が設定され、所望のチルト角を実現する。 Next, the phase shifter 110 controls the phase of the input signal supplied to each antenna element (antenna elements 181a to 181d, antenna elements 182a to 182d) of the array antenna 180 or the output signal received by each antenna element. Then, the directivity of the array antenna 180 is set. In other words, the phase shifter 110 changes the phase of radio waves transmitted from the antenna elements 181a to 181d and the antenna elements 182a to 182d, thereby changing the transmission direction and reception direction (directivity) of radio waves (beams) from the horizontal plane to the ground surface. Tilt in the direction or sky direction to set the tilt angle. Here, the phase shifter 110 includes, for example, a plurality of arc-shaped conductors having the same center, and linear conductors extending from the center and intersecting these arc-shaped conductors. Then, by rotating the linear conductor around the center, the position where it intersects the arc-shaped conductor changes, and the length of the path through which the signal propagates changes, so that the phase of the signal (the amount of phase shift) is changed. Change. That is, in such a phase shifter 110, the amount of phase shift is set by the rotation angle of the linear conductor, and a desired tilt angle is realized.
 移相器110aは、位置検出部111aとモータ112aとを有しており、移相器110bは、位置検出部111bとモータ112bとを有している。
 位置検出部111a、位置検出部111bは、移相量を示す位置として、直線状の導体の回転角を検知する。
 モータ112a、モータ112bは、直線状の導体を回転させて、移相量を制御する。
The phase shifter 110a has a position detector 111a and a motor 112a, and the phase shifter 110b has a position detector 111b and a motor 112b.
The position detection unit 111a and the position detection unit 111b detect the rotation angle of the linear conductor as a position indicating the amount of phase shift.
The motors 112a and 112b rotate the linear conductors to control the amount of phase shift.
 次に、処理部120は、親機400からの信号を処理する子機としての機能を備え、通信インタフェース部(以下、通信IF部)130、電源部140、処理装置部150、モータ制御回路161、位置検出補助回路162、切替回路170a、切替回路170bを有している。以下では、モータ制御回路161及び位置検出補助回路162をまとめて、モータ制御/位置検出補助回路160と称する場合がある。また、切替回路170a、切替回路170bをまとめて切替回路170と称する場合がある。 Next, the processing unit 120 has a function as a slave unit that processes a signal from the master unit 400, and includes a communication interface unit (hereinafter referred to as a communication IF unit) 130, a power supply unit 140, a processing unit unit 150, and a motor control circuit 161. , A position detection auxiliary circuit 162, a switching circuit 170a, and a switching circuit 170b. Hereinafter, the motor control circuit 161 and the position detection auxiliary circuit 162 may be collectively referred to as a motor control / position detection auxiliary circuit 160. Further, the switching circuit 170a and the switching circuit 170b may be collectively referred to as a switching circuit 170.
 通信IF部130は、親機400と処理装置部150との間で信号を仲介する回路である。
 電源部140は、処理部120内の各部、各回路に電源を供給する。
The communication IF unit 130 is a circuit that mediates a signal between the parent device 400 and the processing device unit 150.
The power supply unit 140 supplies power to each unit and each circuit in the processing unit 120.
 モータ制御回路161は、半導体素子などの電子部材(電子部品)から構成される回路であって、処理装置部150により制御され、移相器110を制御するための回路である。例えば、モータ制御回路161は、処理装置部150からチルト角を指定する信号を受信した場合、指定したチルト角となる様に移相器110を制御する。 The motor control circuit 161 is a circuit composed of an electronic member (electronic component) such as a semiconductor element, and is a circuit for controlling the phase shifter 110 controlled by the processing unit 150. For example, when the motor control circuit 161 receives a signal designating a tilt angle from the processing unit 150, the motor control circuit 161 controls the phase shifter 110 so that the designated tilt angle is obtained.
 位置検出補助回路162は、移相器110から直線状の導体の回転角を示す位置検出信号を受信し、受信した位置検出信号の増幅や検出しやすいように前処理するための回路である。ここで、処理装置部150内のソフトウェアにより位置検出信号の補正等を行う場合には、この位置検出補助回路162を設けなくても良い。 The position detection auxiliary circuit 162 is a circuit for receiving a position detection signal indicating the rotation angle of the linear conductor from the phase shifter 110 and pre-processing so that the received position detection signal is easily amplified and detected. Here, when the position detection signal is corrected by software in the processing unit 150, the position detection auxiliary circuit 162 need not be provided.
 切替回路170は、モータ制御回路161及び位置検出補助回路162と制御対象となる移相器110a、移相器110bの信号切り替えを行う。 The switching circuit 170 performs signal switching between the motor control circuit 161 and the position detection auxiliary circuit 162 and the phase shifter 110a and the phase shifter 110b to be controlled.
 処理装置部150は、AISG規格による通信を処理するためのソフトウェアを実行する。ここで、処理装置部150は、位置検出補助回路162を介して位置検出信号を受信し、移相器110における直線状の導体の回転角を検知する。また、処理装置部150は、親機400からのチルト制御命令に基づいて、移相器110のチルト角を指定する信号を生成し、モータ制御回路161を介して移相器110に送信する。この処理装置部150は、例えば、マイクロプロセッサにより実現されるが、FPGA(Field-Programmable Gate Array)やCPLD(Complex Programmable Logic Device)などのプログラマブルロジックデバイス等でも良い。 The processing unit 150 executes software for processing communication according to the AISG standard. Here, the processing device unit 150 receives the position detection signal via the position detection auxiliary circuit 162 and detects the rotation angle of the linear conductor in the phase shifter 110. Further, the processing device unit 150 generates a signal designating the tilt angle of the phase shifter 110 based on the tilt control command from the parent device 400 and transmits the signal to the phase shifter 110 via the motor control circuit 161. The processing unit 150 is realized by, for example, a microprocessor, but may be a programmable logic device such as an FPGA (Field-Programmable Gate Array) or a CPLD (Complex Programmable Logic Device).
 そして、処理装置部150は、UART(Universal Asynchronous Receiver Transmitter)151、CPU(Central Processing Unit、演算装置)152、RAM(Random Access Memory)153、ROM(Read Only Memory)154、I/O(Input/Output)155a、I/O155bを有している。 The processor unit 150 includes a UART (Universal Asynchronous Receiver Transmitter) 151, a CPU (Central Processing Unit), a RAM (Random Access Memory) 153, a ROM (Read Only Memory) 154, an I / O (Input / Output). Output) 155a and I / O 155b.
 UART151は、シリアル転送方式のデータとパラレル転送方式のデータとを相互に変換するための集積回路である。RAM153は、CPU152によるソフトウェア等の実行時におけるワークエリアとして用いられる。ROM154は、CPU152により実行されるソフトウェア等を記憶している。そして、CPU152は、ソフトウェア等をROM154からRAM153にロードし実行する。ソフトウェア等が実行されることにより、処理装置部150の各種機能が実現される。 The UART 151 is an integrated circuit for mutually converting serial transfer type data and parallel transfer type data. The RAM 153 is used as a work area when the CPU 152 executes software or the like. The ROM 154 stores software executed by the CPU 152. Then, the CPU 152 loads software or the like from the ROM 154 to the RAM 153 and executes it. Various functions of the processing device unit 150 are realized by executing software and the like.
 I/O155a、I/O155bは、外部から信号を受信したり、外部に信号を送信したりする接続端子である。移相器110における位置検出がポテンショメータの抵抗比率により実現される場合には、I/O155bに加えてA/Dコンバータ(アナログ-デジタル変換回路)も必要となる。
 RAM153、ROM154、A/Dコンバータなどは、処理装置部150の外部に設けることとしても良い。
The I / O 155a and I / O 155b are connection terminals that receive signals from the outside and send signals to the outside. When the position detection in the phase shifter 110 is realized by the resistance ratio of the potentiometer, an A / D converter (analog-digital conversion circuit) is also required in addition to the I / O 155b.
The RAM 153, ROM 154, A / D converter, and the like may be provided outside the processing unit 150.
 また、CPU152によって実行されるソフトウェア等は、予め処理装置部150内に保存されていても良いし、処理装置部150の外部におかれた別の記憶装置(例えば、EEPROM(Electrically Erasable Programmable Read-Only Memory)やFlashメモリ)からRAM153にロードしても良い。また、ソフトウェア等は、通信手段を用いて処理装置部150にダウンロードさせてもよい。 The software executed by the CPU 152 may be stored in the processing unit 150 in advance, or another storage device (for example, EEPROM (Electrically Erasable Programmable Read-) It may be loaded into the RAM 153 from “Only Memory” or Flash Memory). Further, software or the like may be downloaded to the processing device unit 150 using a communication unit.
 このような構成にて、アンテナ100は、親機400からのチルト制御命令により移相器110のチルト角を制御する。ここで、AISG規格には、処理部120(子機機能)と移相器110とが1対1で接続される通信方式(以下、シングル通信方式と称する)と、処理部120(子機機能)と移相器110とが1対多で接続される通信方式(以下、マルチ通信方式と称する)とが存在する。付言すると、シングル通信方式では1つの子機機能に1つの移相器110しか割り当てられないが、マルチ通信方式では1つの子機機能に2つ以上の移相器110を割り当て可能である。なお、マルチ通信方式では1つの子機機能に2つ以上の移相器110を割り当て可能なのであって、1つの子機機能に1つの移相器110が割り当てられる場合もある。
 そして、本実施の形態では、親機400はシングル通信方式及びマルチ通信方式の少なくともいずれか一方に対応し、親機400がアンテナ100との通信においてシングル通信方式またはマルチ通信方式のどちらの通信方式を採用したとしても、処理部120が実行するソフトウェア(即ち、処理装置部150が実行するソフトウェア)により、親機400からの信号に基づいてチルト制御等の処理が正常に行われる。
With such a configuration, the antenna 100 controls the tilt angle of the phase shifter 110 according to a tilt control command from the parent device 400. Here, the AISG standard includes a communication method (hereinafter referred to as a single communication method) in which the processing unit 120 (child device function) and the phase shifter 110 are connected one-to-one, and the processing unit 120 (child device function). ) And the phase shifter 110 are connected in a one-to-many manner (hereinafter referred to as a multi-communication method). In addition, in the single communication method, only one phase shifter 110 is assigned to one slave device function, but in the multi-communication method, two or more phase shifters 110 can be assigned to one slave device function. In the multi-communication system, two or more phase shifters 110 can be assigned to one slave unit function, and one phase shifter 110 may be assigned to one slave unit function.
In this embodiment, base unit 400 corresponds to at least one of a single communication method and a multi-communication method, and communication method of either single communication method or multi-communication method when base device 400 communicates with antenna 100. Even when the processing unit 120 executes software (that is, software executed by the processing device unit 150), processing such as tilt control is normally performed based on a signal from the parent device 400.
 図2-1は、実施の形態1に係るアンテナ100の構成の一例を示す図である。また、図2-2は、比較例として、シングル通信方式を採用した場合の従来のアンテナ200の構成例を示す図である。図2-3は、比較例として、マルチ通信方式を採用した場合の従来のアンテナ300の構成例を示す図である。 FIG. 2-1 is a diagram illustrating an example of the configuration of the antenna 100 according to the first embodiment. FIG. 2B is a diagram illustrating a configuration example of a conventional antenna 200 when a single communication method is employed as a comparative example. FIG. 2-3 is a diagram illustrating a configuration example of a conventional antenna 300 when a multi-communication method is employed as a comparative example.
 図2-1に示す構成は、図1に示す構成を簡略化したものであり、アレイアンテナ180を省略している。上述したように、1つの処理部120に対して2つの移相器110が接続される。ここで、処理装置部150は、移相器110と同じ数の子機機能(子機機能10a、子機機能10b)を有しており、各子機機能には1つの移相器が接続されている。また、これらの子機機能は、処理装置部150が実行するソフトウェアにより、シングル通信方式及びマルチ通信方式の両方に対応可能である。 The configuration shown in FIG. 2A is a simplified version of the configuration shown in FIG. 1, and the array antenna 180 is omitted. As described above, two phase shifters 110 are connected to one processing unit 120. Here, the processing device unit 150 has the same number of slave unit functions (slave unit function 10a and slave unit function 10b) as the phase shifter 110, and one phase shifter is connected to each slave unit function. Yes. Further, these slave functions can be applied to both the single communication method and the multi communication method by software executed by the processing unit 150.
 図2-2に示す従来のシングル通信方式の構成は、処理装置部250(処理装置部250a、処理装置部250b)がシングル通信方式に対応した子機機能を有しており、各処理部220(処理部220a,処理部220b)のそれぞれに移相器210(移相器210a、移相器210b)が接続される。つまり、処理部220は移相器210と同じ数必要ということを意味している。また、各処理部220(処理部220a,処理部220b)はそれぞれ、通信IF部230(通信IF部230a、通信IF部230b)、電源部240(電源部240a、電源部240b)、処理装置部250(処理装置部250a、処理装置部250b)、モータ制御/位置検出補助回路260(モータ制御/位置検出補助回路260a、モータ制御/位置検出補助回路260b)を備えている。なお、図2-2に示す構成例では、図2-1と同様に、アレイアンテナを省略している。 In the configuration of the conventional single communication method shown in FIG. 2B, the processing device unit 250 (the processing device unit 250a and the processing device unit 250b) has a slave function corresponding to the single communication method. The phase shifter 210 (the phase shifter 210a and the phase shifter 210b) is connected to each of the (processing unit 220a and processing unit 220b). That is, the processing unit 220 needs the same number as the phase shifter 210. Each processing unit 220 (processing unit 220a, processing unit 220b) includes a communication IF unit 230 (communication IF unit 230a, communication IF unit 230b), a power supply unit 240 (power supply unit 240a, power supply unit 240b), and a processing device unit. 250 (processing device unit 250a, processing device unit 250b) and motor control / position detection auxiliary circuit 260 (motor control / position detection auxiliary circuit 260a, motor control / position detection auxiliary circuit 260b). In the configuration example shown in FIG. 2-2, the array antenna is omitted as in FIG. 2-1.
 図2-3に示す従来のマルチ通信方式の構成は、処理装置部350がマルチ通信方式に対応した子機機能を有しており、1つの処理部320に2つの移相器310(移相器310a、移相器310b)が接続される。また、処理部320は、通信IF部330、電源部340、処理装置部350、モータ制御/位置検出補助回路360、切替回路370を備えている。なお、図2-3に示す構成例では、図2-1と同様に、アレイアンテナを省略している。 In the configuration of the conventional multi-communication method shown in FIG. 310a and phase shifter 310b) are connected. The processing unit 320 includes a communication IF unit 330, a power supply unit 340, a processing device unit 350, a motor control / position detection auxiliary circuit 360, and a switching circuit 370. In the configuration example shown in FIG. 2-3, the array antenna is omitted as in FIG. 2-1.
 このように、従来の構成では、子機はシングル通信方式またはマルチ通信方式のどちらかに対応している。そして、子機がシングル通信方式に対応している場合には、1つの子機に対して1つの移相器210が接続される。また、子機がマルチ通信方式に対応している場合には、1つの子機に対して1つ以上の移相器310が接続される。一方、本実施の形態では、子機はシングル通信方式及びマルチ通信方式の両方に対応している。そして、1つの子機に対して1つの移相器110が接続されており、親機400からの信号に基づいて移相器110の制御が行われる。例えば、図2-1に示す構成では、子機機能10aに対して移相器110aが接続され、子機機能10bに対して移相器110bが接続される。 Thus, in the conventional configuration, the slave unit supports either a single communication system or a multi-communication system. And when the subunit | mobile_unit respond | corresponds to a single communication system, one phase shifter 210 is connected with respect to one subunit | mobile_unit. When the slave unit is compatible with the multi-communication system, one or more phase shifters 310 are connected to one slave unit. On the other hand, in this embodiment, the slave unit is compatible with both the single communication method and the multi communication method. One phase shifter 110 is connected to one slave unit, and the phase shifter 110 is controlled based on a signal from the master unit 400. For example, in the configuration shown in FIG. 2A, the phase shifter 110a is connected to the slave unit function 10a, and the phase shifter 110b is connected to the slave unit function 10b.
 ここで、図1、図2-1に示す例では2つの移相器110を示したが、本実施の形態では、アンテナ100が3つ以上の移相器110を備えても良い。例えば、アンテナ100が3つの移相器110を備えている場合、処理部120の子機機能も3つ設けられることとなる。
 また、本実施の形態では、制御装置の一例として、処理装置部150を用いている。さらに、本実施の形態では、処理部120が、制御装置の一例としての機能を有すると捉えることもできる。
Here, although the two phase shifters 110 are shown in the examples shown in FIGS. 1 and 2-1, the antenna 100 may include three or more phase shifters 110 in the present embodiment. For example, when the antenna 100 includes three phase shifters 110, three slave unit functions of the processing unit 120 are also provided.
In the present embodiment, the processing device unit 150 is used as an example of a control device. Furthermore, in the present embodiment, the processing unit 120 can be regarded as having a function as an example of a control device.
<フレームフォーマットの説明>
 次に、本実施の形態において、親機400からアンテナ100に対して送信される信号のフレームフォーマットについて説明する。図3(a)~(c)は、親機400からアンテナ100に対して送信される信号のフレームフォーマットの一例を説明するための図である。
<Description of frame format>
Next, in the present embodiment, a frame format of a signal transmitted from base unit 400 to antenna 100 will be described. FIGS. 3A to 3C are diagrams for explaining an example of a frame format of a signal transmitted from the parent device 400 to the antenna 100. FIG.
 AISG規格では、国際標準化機構(ISO)によって策定されたOSI参照モデルのデータリンク層のプロトコルであるHDLC(High-Level Data Link Control)がベースとなる。図3(a)は、AISG規格のデータリンク層でのフレームフォーマットを示す図である。図示のように、AISG規格のフレームの領域は、「ヘッダ」、「アドレス」、「フレーム種別」、「コマンドデータ本体」、「CRC」、「フッタ」の種別に分けられる。 The AISG standard is based on HDLC (High-Level Data Link Control), which is a data link layer protocol of the OSI reference model established by the International Organization for Standardization (ISO). FIG. 3A shows a frame format in the data link layer of the AISG standard. As illustrated, the frame area of the AISG standard is divided into “header”, “address”, “frame type”, “command data body”, “CRC”, and “footer” types.
 「ヘッダ」は、フレームの始まりを示すビット列であり、1オクテット(フレームの先頭から1オクテット目)である。「アドレス」は、子機のアドレスであり、1オクテット(フレームの先頭から2オクテット目)である。子機のアドレスは、親機400によって子機ごとに付与される。「フレーム種別」は、HDLCに規定されているフレーム種別を示し、1オクテット(フレームの先頭から3オクテット目)である。フレーム種別は、Sフレーム、Uフレーム、Iフレームの3つに分別される。 “Header” is a bit string indicating the start of a frame, and is one octet (the first octet from the beginning of the frame). “Address” is the address of the slave unit and is one octet (second octet from the beginning of the frame). The address of the child device is given to each child device by the parent device 400. “Frame type” indicates a frame type defined in HDLC, and is one octet (third octet from the head of the frame). There are three types of frames: S frame, U frame, and I frame.
 「コマンドデータ本体」は、制御命令が含まれるコマンドのデータであり、データ長は任意(可変長)である。「CRC」は、アドレス、フレーム種別、コマンドデータ本体のビットの伝送誤り検出に用いられ、2オクテットである。付言すると、フレームの全データ長をNオクテットとした場合、CRCはフレームの先頭からN-2~N-1オクテット目の領域に該当する。「フッタ」は、フレームの終わりを示すビット列であり、1オクテット(フレームの先頭からNオクテット目)である。 “The command data body” is command data including a control command, and the data length is arbitrary (variable length). “CRC” is used for detecting transmission errors of bits of the address, frame type, and command data body, and is 2 octets. In other words, if the total data length of a frame is N octets, the CRC corresponds to the N-2 to N-1 octet area from the beginning of the frame. “Footer” is a bit string indicating the end of the frame, and is one octet (Nth octet from the beginning of the frame).
 ここで、AISG規格では、子機ごとに固有のID(以下、ユニークIDと称する)が予め割り当てられており、親機400は、子機のユニークIDを指定してチルト制御等の命令を行う。一般に、ユニークIDは、19オクテットの文字コードで表される文字列である。この先頭2オクテットはメーカ固有のものであり、残り17オクテットが各メーカで一意に定められて、全体としてユニークIDが固有のものとなる。 Here, in the AISG standard, a unique ID (hereinafter referred to as a unique ID) is assigned in advance to each child device, and the parent device 400 designates the unique ID of the child device and performs a command such as tilt control. . In general, the unique ID is a character string represented by a character code of 19 octets. The first two octets are unique to the manufacturer, and the remaining 17 octets are uniquely determined by each manufacturer, and the unique ID is unique as a whole.
 そして、従来技術であるAISGにおいて、親機400は、個々の子機に対してチルト制御等の命令を行うにあたり、ユニークIDを使用してリンクを確立する。したがって、あらかじめ手入力等でユニークIDが既知のものとなっていない場合は、リンクを確立する前に各子機のユニークIDを特定するためのデバイススキャンと呼ばれる処理を行う。デバイススキャンは、接続されている全ての子機に対して行う命令であるブロードキャストの一つであり、図3(a)で示されるHDLCのUフレーム構造の信号である。 In the conventional AISG, the base unit 400 establishes a link using a unique ID when performing commands such as tilt control to individual slave units. Therefore, when the unique ID is not already known by manual input or the like, a process called device scan for specifying the unique ID of each slave unit is performed before the link is established. The device scan is one of broadcasts, which is an instruction to be performed on all connected slave units, and is a signal having an HDLC U frame structure shown in FIG.
 コマンドデータ本体の領域には、例えば、各子機に対して「ユニークIDの最後の1ビットが0の場合に応答すること」を要求するコマンドが格納される。また、デバイススキャンはブロードキャストとして送信するため、アドレスとして特殊な値(16進数でFF)を格納して送信される。ブロードキャストとして送られたフレームは、すべての子機がそのフレーム内容を確認し、必要に応じて応答を行うことがAISGにて規定されている。子機はユニークIDに対する条件に合致した場合、親機400に対してユニークIDを含む応答を返す。もし、複数の子機が合致する条件だった場合、デバイススキャンの応答として複数の子機から信号が送信されるため、通信路上で信号が衝突し、通常、親機400は正常な信号を受信することができない。このように、親機400は正常な信号を受信できなかった場合は、その条件下に合致するユニークIDを持つ子機が複数あるものと判断し、親機400は、さらに条件範囲を狭く設定して、例えば、「ユニークIDの最後の2ビットが00の場合に応答すること」を要求するコマンドを格納して、各子機に対して送信する。このように条件を狭めていくことで、最終的に1つの子機のみが該当する条件となった際に、親機400は正しい信号を受信でき、その子機のユニークIDを認識することができる。 In the area of the command data body, for example, a command for requesting “respond when the last 1 bit of the unique ID is 0” to each slave unit is stored. Since device scan is transmitted as a broadcast, a special value (FF in hexadecimal) is stored and transmitted as an address. The AISG stipulates that all slave units confirm the frame contents of a frame sent as a broadcast and respond as necessary. When the slave unit matches the condition for the unique ID, the slave unit returns a response including the unique ID to the master unit 400. If the conditions match for a plurality of slave units, signals are transmitted from the plurality of slave units as a response to the device scan, so the signals collide on the communication path, and the master unit 400 normally receives a normal signal. Can not do it. As described above, when base unit 400 cannot receive a normal signal, it is determined that there are a plurality of slave units having unique IDs that match the conditions, and base unit 400 further sets the condition range to be narrower. Then, for example, a command requesting “response when the last 2 bits of the unique ID is 00” is stored and transmitted to each slave unit. By narrowing the conditions in this way, when only one slave unit finally becomes a condition, the master unit 400 can receive a correct signal and recognize the unique ID of the slave unit. .
 このように、親機400は、条件範囲を少しずつ狭くして、その条件に当てはまるユニークIDが1つになった際の応答信号をもとに、子機のユニークIDを特定する。子機のユニークIDを特定すると、親機400は、特定したユニークIDに対してアドレスを割り振り、子機にアドレスを通知する。
 また、子機はアドレスを付与する信号に対する応答の中で、対応する通信方式(シングル通信方式、マルチ通信方式)を報告する。これにより、親機400は、各子機が対応している通信方式を把握する。
In this way, base unit 400 narrows the condition range little by little, and specifies the unique ID of the slave unit based on the response signal when the unique ID that meets the condition becomes one. When the unique ID of the child device is specified, the parent device 400 allocates an address to the specified unique ID and notifies the child device of the address.
In addition, the slave unit reports the corresponding communication method (single communication method, multiple communication method) in the response to the signal to which the address is assigned. Thereby, base unit 400 grasps the communication method supported by each slave unit.
 次に、親機400は、先だって通知した個々の子機のアドレスを指定してチルト制御等の信号を送信する。図3(b)は、子機のアドレスを指定してシングル通信方式の制御命令を行う際のフレームを示す図である。ここで、シングル通信方式の制御命令を行う際のフレームは、HDLCのIフレーム構造であり、コマンドデータ本体の領域には、「AISGコマンド種別」、「実データ長」、「実データ」が含まれる。 Next, base unit 400 transmits a signal such as tilt control by designating the address of each slave unit notified in advance. FIG. 3B is a diagram showing a frame when a control instruction of the single communication method is performed by designating the address of the slave unit. Here, the frame for performing the control command of the single communication system has an HDLC I frame structure, and the area of the command data body includes “AISG command type”, “actual data length”, and “actual data”. It is.
 「AISGコマンド種別」には、子機への命令であるコマンドの番号が格納される。AISG規格のコマンドには、シングル通信方式のもの、マルチ通信方式のもの、及びシングル通信方式とマルチ通信方式とに共通するものが存在する。シングル通信方式の制御命令では、シングル通信方式のコマンドの番号、またはシングル通信方式とマルチ通信方式とに共通するコマンドの番号が格納される。例えば、番号33は、シングル通信方式においてチルト角を設定するコマンド(Set Tilt)を示す。この番号などをもとに、コマンドの通信方式が判別される。他のコマンドとしては、例えば、移相器110のチルト角を取得して親機400に報告するものや、基地局やアンテナ100の情報を記憶したり親機400に報告したりするものが存在する。また、「実データ長」は、実データの長さを示し、「実データ」には、コマンドのデータ等が格納される。 “AISG command type” stores the command number that is an instruction to the slave unit. The commands of the AISG standard include a single communication method, a multi-communication method, and a command common to the single communication method and the multi-communication method. In the control instruction of the single communication method, the command number of the single communication method or the command number common to the single communication method and the multi communication method is stored. For example, the number 33 indicates a command (Set Tilt) for setting a tilt angle in the single communication method. Based on this number or the like, the command communication method is determined. As other commands, for example, there are commands that acquire the tilt angle of the phase shifter 110 and report it to the base unit 400, and those that store information about the base station and the antenna 100 or report it to the base unit 400 To do. The “real data length” indicates the length of the real data, and the command data and the like are stored in the “real data”.
 例えば、親機400がシングル通信方式を採用している状況下で、移相器110aのチルト角を設定する場合、親機400は、AISGコマンド種別をシングル通信方式のコマンドである「Set Tilt」の番号33にして、設定するチルト角の値を実データに格納する。そして、親機400は、移相器110aに対応する子機(図2-1に示す構成では、子機機能10a)に割り振ったアドレスを宛先として、アンテナ100にフレームを送信する。 For example, when the tilt angle of the phase shifter 110a is set in a situation where the parent device 400 adopts the single communication method, the parent device 400 sets the AISG command type to “Set Tilt” which is a single communication method command. The value of the tilt angle to be set is stored in the actual data. Then, base unit 400 transmits a frame to antenna 100 with the address assigned to the slave unit (slave unit function 10a in the configuration shown in FIG. 2-1) corresponding to phase shifter 110a as a destination.
 また、図3(c)は、子機のアドレスを指定してマルチ通信方式の制御命令を行う際のフレームを示す図である。マルチ通信方式の制御命令は、図3(b)と同様に、フレーム構造はHDLCのIフレーム構造であり、コマンドデータ本体の領域には「AISGコマンド種別」、「実データ長」、「実データ」が含まれる。ここで、「AISGコマンド種別」には、コマンドの番号として、マルチ通信方式のコマンドの番号、またはシングル通信方式とマルチ通信方式とに共通するコマンドの番号が格納される。例えば、番号81は、マルチ通信方式においてチルト角を設定するコマンド(Antenna Set Tilt)を示す。 FIG. 3C is a diagram showing a frame when a multi-communication system control command is performed by designating the address of the slave unit. As in FIG. 3 (b), the control command of the multi-communication system has an HDLC I frame structure, and the area of the command data body includes “AISG command type”, “actual data length”, “actual data”. Is included. Here, the “AISG command type” stores a command number of the multi-communication system or a command number common to the single communication system and the multi-communication system as the command number. For example, the number 81 indicates a command (Antenna Set Tilt) for setting a tilt angle in the multi-communication system.
 例えば、親機400がマルチ通信方式を採用している状況下で、移相器110aのチルト角を設定する場合、親機400は、AISGコマンド種別をマルチ通信方式のコマンドである「Antenna Set Tilt」の番号81にして、設定するチルト角の値を実データに格納する。マルチ通信方式では、子機機能と移相器とが1対多で接続されるため、実データには、移相器番号も格納される。この移相器番号は、子機に接続されている移相器に順番に付与されるものである。通常、マルチ通信方式において、子機は、自身に接続されている移相器110の数を親機400に報告する処理を行う。親機400は、子機からの報告をもとに、子機に接続されている移相器の数を把握し、移相器番号を設定する。
 本実施の形態では、各子機に1つずつ移相器110が接続されるため、親機400は、各移相器110について、例えば「1」の移相器番号を設定する。即ち、親機400は、移相器110aのチルト角を設定する場合、移相器110aに接続された子機(図2-1に示す構成では、子機機能10a)に割り振ったアドレスを宛先とし、さらに移相器番号を1にして、アンテナ100にフレームを送信する。
For example, when setting the tilt angle of the phase shifter 110a in a situation where the parent device 400 adopts the multi-communication method, the parent device 400 sets the AISG command type to “Antenna Set Tilt” which is a command of the multi-communication method. And the tilt angle value to be set is stored in the actual data. In the multi-communication system, the slave unit functions and the phase shifters are connected in a one-to-many manner, so the phase shifter number is also stored in the actual data. This phase shifter number is given to the phase shifters connected to the slave unit in order. Normally, in the multi-communication system, the slave unit performs processing for reporting the number of phase shifters 110 connected to the slave unit 400 to the master unit 400. Based on the report from the slave unit, master unit 400 grasps the number of phase shifters connected to the slave unit and sets the phase shifter number.
In this embodiment, since one phase shifter 110 is connected to each slave unit, base unit 400 sets a phase shifter number of “1” for each phase shifter 110, for example. That is, when setting the tilt angle of the phase shifter 110a, the base unit 400 sets the address assigned to the slave unit connected to the phase shifter 110a (slave unit function 10a in the configuration shown in FIG. 2-1) as the destination. Then, the phase shifter number is set to 1, and the frame is transmitted to the antenna 100.
 以下では、シングル通信方式のコマンドをシングルコマンド、マルチ通信方式のコマンドをマルチコマンド、シングル通信方式とマルチ通信方式とに共通するコマンドを共通コマンドと称する場合がある。なお、子機のユニークIDを特定するためにブロードキャストで送信されるフレームなどは、Iフレーム構造ではなくAISGコマンド種別の番号が付与されるものではないが、シングル通信方式とマルチ通信方式とに共通して用いられる。このようなコマンドについても、共通コマンドに含むものとする。 Hereinafter, a single communication method command may be referred to as a single command, a multi communication method command as a multi command, and a command common to the single communication method and the multi communication method may be referred to as a common command. In addition, the frame transmitted by broadcast to identify the unique ID of the slave unit is not an I frame structure and is not assigned an AISG command type number, but is common to the single communication method and the multi communication method. Used. Such a command is also included in the common command.
<処理装置部の機能構成>
 次に、実施の形態1に係る処理装置部150の機能構成について説明する。図4は、実施の形態1に係る処理装置部150の機能構成の一例を示すブロック図である。処理装置部150は、親機400からの信号を受信する受信処理部191と、受信した信号のコマンドを実行するコマンド処理部192と、親機400に対して応答を行う応答実行部193とを備える。また、処理装置部150は、子機機能部10を備える。図2-1に示す子機機能10a、子機機能10bのそれぞれが、図4に示す子機機能部10に該当する。
<Functional configuration of processing unit>
Next, a functional configuration of the processing device unit 150 according to Embodiment 1 will be described. FIG. 4 is a block diagram illustrating an example of a functional configuration of the processing device unit 150 according to the first embodiment. The processing device unit 150 includes a reception processing unit 191 that receives a signal from the parent device 400, a command processing unit 192 that executes a command of the received signal, and a response execution unit 193 that makes a response to the parent device 400. Prepare. Further, the processing device unit 150 includes the slave unit function unit 10. Each of the handset function 10a and the handset function 10b shown in FIG. 2-1 corresponds to the handset function unit 10 shown in FIG.
 受信処理部191は、通信IF部130を介して、親機400から信号を受信する。 The reception processing unit 191 receives a signal from the parent device 400 via the communication IF unit 130.
 コマンド処理部192は、親機400から信号(コマンド)を受信した場合に、それぞれの子機(即ち、子機機能部10)ごとに子機宛のコマンドであるか否かを判定する。具体的には、コマンド処理部192は、親機400から受信したフレームのアドレスと各子機に割り振られたアドレスとを順番に比較していき、宛先となる子機が存在するか否かを判定する。そして、コマンドの宛先となる子機が存在すれば、コマンド処理部192は、宛先の子機に対してそのコマンドの処理を実行させる。また、コマンド処理部192は、コマンドの処理を行ったことを親機400へ応答するための応答信号を生成する。 When the command processing unit 192 receives a signal (command) from the parent device 400, the command processing unit 192 determines whether each child device (that is, the child device function unit 10) is a command addressed to the child device. Specifically, the command processing unit 192 sequentially compares the address of the frame received from the parent device 400 with the address assigned to each child device, and determines whether or not there is a destination child device. judge. If there is a slave device that is the destination of the command, the command processing unit 192 causes the destination slave device to execute processing of the command. The command processing unit 192 generates a response signal for responding to the parent device 400 that the command processing has been performed.
 応答実行部193は、コマンド処理部192にて応答信号が生成されると、生成された応答信号を、通信IF部130を介して親機400へ送信する。
 ここで、AISG規格では、例えば、上述したように、親機400が移相器110のユニークIDを特定するのにブロードキャストでフレームを送信した場合など、複数の子機が応答する場合がある。この場合、従来の構成では、応答信号が同時に発信されて応答信号同士が衝突するため、一次局(親機)には正常な信号が届かない。例えば、図2-2の比較例の構成において、処理装置部250a及び処理装置部250bが応答する場合には、通信IF部230を通過した後に応答信号同士が衝突する。親機400においては、正常ではない信号を受信したことを識別してそれに応じた処理を行うため、このような動作で問題は生じない。
When the command processing unit 192 generates a response signal, the response execution unit 193 transmits the generated response signal to the parent device 400 via the communication IF unit 130.
Here, in the AISG standard, for example, as described above, a plurality of slave units may respond, for example, when the master unit 400 transmits a frame by broadcast to identify the unique ID of the phase shifter 110. In this case, in the conventional configuration, since the response signals are transmitted simultaneously and the response signals collide with each other, a normal signal does not reach the primary station (master unit). For example, in the configuration of the comparative example of FIG. 2B, when the processing device unit 250a and the processing device unit 250b respond, the response signals collide after passing through the communication IF unit 230. Since base unit 400 recognizes that an abnormal signal has been received and performs a process corresponding thereto, there is no problem in such an operation.
 ただし、本実施の形態では、複数の応答信号が生成された場合においても、通信IF部130が1つであるため、複数の信号を同時に送信することができない。すなわち、応答信号同士が実際に衝突しないこととなる。そこで、応答実行部193は、複数の応答信号が生成された場合、親機400において「正常ではない信号」であることを認識できるように処理を行う。具体的には、応答実行部193は、例えば、応答信号のデータを破壊したり、不正な信号と認識される特定のデータや通信規約に反するようなデータを生成したりして、親機400に対して応答を行う。ここでの応答処理は、正常ではない信号であることを親機400が認識可能なものであれば、どのような処理でも良い。 However, in the present embodiment, even when a plurality of response signals are generated, since there is only one communication IF unit 130, a plurality of signals cannot be transmitted simultaneously. That is, the response signals do not actually collide with each other. Therefore, when a plurality of response signals are generated, the response execution unit 193 performs processing so that the parent device 400 can recognize that the signal is not “normal”. Specifically, for example, the response execution unit 193 destroys the data of the response signal, or generates specific data that is recognized as an illegal signal or data that violates the communication protocol, so that the parent device 400 Respond to. The response process here may be any process as long as the base unit 400 can recognize that the signal is not normal.
 本実施の形態では、受信処理部191が受信手段の一例としての機能を有している。また、コマンド処理部192が処理実行手段の一例としての機能を有している。さらに、応答実行部193が応答手段の一例としての機能を有している。なお、処理部120が、制御装置の一例としての機能を有すると捉えた場合には、例えば、通信IF部130が受信手段の一例としての機能を有し、処理装置部150が処理実行手段及び応答手段の一例としての機能を有すると捉えることができる。 In the present embodiment, the reception processing unit 191 has a function as an example of a receiving unit. Further, the command processing unit 192 has a function as an example of a process execution unit. Further, the response execution unit 193 has a function as an example of response means. When the processing unit 120 is regarded as having a function as an example of a control device, for example, the communication IF unit 130 has a function as an example of a reception unit, and the processing device unit 150 is a processing execution unit and It can be understood that it has a function as an example of a response means.
<処理装置部の処理手順>
 次に、実施の形態1に係る処理装置部150の処理手順について説明する。図5は、実施の形態1に係る処理装置部150の処理手順の一例を示したフローチャートである。図5に示す処理は繰り返し実行される。
<Processing procedure of processing unit>
Next, a processing procedure of the processing device unit 150 according to Embodiment 1 will be described. FIG. 5 is a flowchart illustrating an example of a processing procedure of the processing device unit 150 according to the first embodiment. The process shown in FIG. 5 is repeatedly executed.
 受信処理部191は、親機400からのコマンドの受信待ちを行う。ここで、受信処理部191は、親機400から信号を受信し(ステップ101)、信号(コマンド)を受信したか否かを判定する(ステップ102)。コマンドを受信したと判定されなければ(ステップ102でNo)、本処理フローは終了し、受信処理部191は引き続きコマンドの受信待ちを行う。 The reception processing unit 191 waits for reception of a command from the parent device 400. Here, the reception processing unit 191 receives a signal from the parent device 400 (step 101), and determines whether a signal (command) is received (step 102). If it is not determined that a command has been received (No in step 102), the processing flow ends, and the reception processing unit 191 continues to wait for reception of a command.
 一方、コマンドを受信したと判定された場合(ステップ102でYes)、次に、コマンド処理部192によるコマンド処理が行われる。ここで、コマンド処理部192は、処理部120にて仮想的に動作する有効な子機の数(n)だけ、後述するステップ103~ステップ109の処理を繰り返し実行する。まず、コマンド処理部192は、有効な子機を1つ選択し、受信した信号が、選択した子機宛の信号であるか否かを判定する(ステップ103)。ここでは、コマンド処理部192は、信号の宛先とされるアドレスが、選択した子機に対して割り振られたアドレスと一致するか否かを判定し、両アドレスが一致するか、ブロードキャストを表すアドレスであれば、選択した子機宛の信号であると判定する。 On the other hand, if it is determined that a command has been received (Yes in step 102), then command processing by the command processing unit 192 is performed. Here, the command processing unit 192 repeatedly executes the processing from step 103 to step 109 described later for the number (n) of valid child devices virtually operating in the processing unit 120. First, the command processing unit 192 selects one valid slave unit, and determines whether or not the received signal is a signal addressed to the selected slave unit (step 103). Here, the command processing unit 192 determines whether or not the address that is the destination of the signal matches the address assigned to the selected slave unit, and the two addresses match or an address that indicates broadcast If so, it is determined that the signal is addressed to the selected slave unit.
 ここで、選択した子機宛の信号ではないと判定された場合(ステップ103でNo)、コマンド処理部192は、次の有効な子機を1つ選択する。
 一方、選択した子機宛の信号であると判定された場合(ステップ103でYes)、コマンド処理部192は、そのコマンドが、シングルコマンド、マルチコマンド、共通コマンド、またはAISG規格にて未定義のものであるかを判定する(ステップ104)。ここで、例えば、「Set Tilt」は、シングルコマンドと判定される。また、例えば、子機のユニークIDを特定するためにブロードキャストで送信されるフレームは、共通コマンドと判定される。
If it is determined that the signal is not addressed to the selected slave unit (No in step 103), the command processing unit 192 selects one next valid slave unit.
On the other hand, if it is determined that the signal is addressed to the selected slave unit (Yes in step 103), the command processing unit 192 determines that the command is not defined in the single command, multicommand, common command, or AISG standard. It is determined whether it is a thing (step 104). Here, for example, “Set Tilt” is determined as a single command. Further, for example, a frame transmitted by broadcast in order to specify the unique ID of the child device is determined as a common command.
 ステップ104において、シングルコマンドと判定された場合、コマンド処理部192は、宛先の子機に対してシングルコマンドの処理を実行させる(ステップ105)。コマンドを実行することにより、子機に対応する移相器110に対する処理が行われる。マルチコマンドと判定された場合、または共通コマンドと判定された場合も同様に、コマンド処理部192は、宛先の子機に対してマルチコマンドまたは共通コマンドの処理を実行させる(ステップ106、ステップ107)。本実施の形態に係る子機はシングル通信方式及びマルチ通信方式の両方に対応しているため、ステップ105~ステップ107のように、シングルコマンド、マルチコマンド、及び共通コマンドの処理が可能である。一方、コマンドが未定義と判定された場合、コマンド処理部192は、エラーと判定する(ステップ108)。 If it is determined in step 104 that the command is a single command, the command processing unit 192 causes the destination slave unit to execute a single command (step 105). By executing the command, processing for the phase shifter 110 corresponding to the slave unit is performed. Similarly, when it is determined that the command is a multi-command or a common command, the command processing unit 192 causes the destination slave unit to execute processing of the multi-command or the common command (steps 106 and 107). . Since the handset according to the present embodiment is compatible with both the single communication method and the multi communication method, it is possible to process single commands, multi commands, and common commands as in Step 105 to Step 107. On the other hand, if it is determined that the command is undefined, the command processing unit 192 determines that an error has occurred (step 108).
 ステップ105、ステップ106、ステップ107、またはステップ108の後、コマンド処理部192は、応答信号を生成する(ステップ109)。ただし、例えば全ての子機に対するリセットコマンドのように、コマンドによっては応答信号を生成せずに終了するものも存在する。そして、ステップ109の後、コマンド処理部192は、まだ選択していない他の子機を1つ選択する。
 このようにして、コマンド処理部192は、有効な子機の数(n)だけ、ステップ103~ステップ109の処理を実行する。そして、全ての子機に対して処理が終了すると、次のステップ110へ移行する。
After step 105, step 106, step 107, or step 108, the command processing unit 192 generates a response signal (step 109). However, some commands, such as a reset command for all the slave units, are terminated without generating a response signal. After step 109, the command processing unit 192 selects one other child device that has not yet been selected.
In this way, the command processing unit 192 executes the processing from step 103 to step 109 by the number (n) of valid child devices. When the processing is completed for all the slave units, the process proceeds to the next step 110.
 次に、応答実行部193は、コマンド処理部192にて生成された応答信号があるか否かを判定する(ステップ110)。応答信号がないと判定された場合(ステップ110でNo)、本処理フローは終了する。一方、応答信号があると判定された場合(ステップ110でYes)、応答実行部193は、複数の子機が応答したか否か、即ち、複数の応答信号が生成されたか否かを判定する(ステップ111)。 Next, the response execution unit 193 determines whether there is a response signal generated by the command processing unit 192 (step 110). If it is determined that there is no response signal (No in step 110), the process flow ends. On the other hand, when it is determined that there is a response signal (Yes in step 110), the response execution unit 193 determines whether or not a plurality of slave units have responded, that is, whether or not a plurality of response signals have been generated. (Step 111).
 ステップ111で、複数の子機が応答していないと判定された場合(ステップ111でNo)、生成された応答信号は1つであり、応答実行部193は、生成された応答信号を、通信IF部130を介して親機400へ送信する(ステップ112)。そして、本処理フローは終了する。一方、複数の子機が応答したと判定された場合(ステップ111でYes)、生成された応答信号は複数であり、応答実行部193は、親機400が正常ではない信号であることを認識するように、生成された応答信号に対して処理を実行する(ステップ113)。そして、ステップ112に移行し、応答実行部193は、ステップ113で処理された応答信号を親機400に送信し、本処理フローは終了する。 If it is determined in step 111 that a plurality of slave units are not responding (No in step 111), the generated response signal is one, and the response execution unit 193 communicates the generated response signal. It transmits to the base unit 400 via the IF unit 130 (step 112). Then, this processing flow ends. On the other hand, when it is determined that a plurality of slave units have responded (Yes in step 111), the generated response signals are plural, and the response execution unit 193 recognizes that the base unit 400 is an abnormal signal. Then, processing is performed on the generated response signal (step 113). Then, the process proceeds to step 112, where the response execution unit 193 transmits the response signal processed in step 113 to the parent device 400, and this processing flow ends.
 このように、実施の形態1では、親機400から信号が送信された場合、図5に示すように、処理装置部150は、子機宛の信号か否かを子機ごとに順番に判定し、該当する子機宛の信号であった場合、コマンドを実行するとともに応答信号を生成する。また、応答信号が複数ある場合、処理装置部150は、正常ではない信号であることを認識させるための処理を行い、親機400に応答を行う。このように応答することで、親機400は正常ではない信号を受信することとなり、応答信号同士が実際に衝突する従来と同等の動作が実現される。 As described above, in the first embodiment, when a signal is transmitted from parent device 400, processing device unit 150 determines in order for each child device whether or not the signal is addressed to the child device, as shown in FIG. If the signal is addressed to the corresponding slave unit, the command is executed and a response signal is generated. When there are a plurality of response signals, the processing device unit 150 performs processing for recognizing that the signal is not normal, and responds to the parent device 400. By responding in this way, base unit 400 receives a signal that is not normal, and an operation equivalent to the conventional operation in which the response signals actually collide with each other is realized.
 以上説明したように、実施の形態1では、処理装置部150は移相器110と同じ数の子機機能を有しており、各子機機能はシングル通信方式及びマルチ通信方式の両方に対応している。そのため、親機400がシングル通信方式またはマルチ通信方式のいずれの通信方式を採用する場合においても、ユーザによる何らかの操作(例えば、子機のハードウェアごとの交換、子機内のソフトウェア交換、電気的な動作切り替え、物理スイッチによる切替など)を必要とせずに、親機400からの制御命令に従って処理装置部150による処理が実行される。 As described above, in the first embodiment, the processor unit 150 has the same number of slave unit functions as the phase shifter 110, and each slave unit function corresponds to both the single communication method and the multi-communication method. Yes. Therefore, even when the parent device 400 adopts either the single communication method or the multi-communication method, any operation by the user (for example, replacement of each slave device hardware, replacement of software in the slave device, electrical The processing by the processing unit 150 is executed in accordance with a control command from the parent device 400 without requiring operation switching, switching by a physical switch, or the like.
<アンテナ100の他の構成例>
 次に、実施の形態1に係るアンテナ100の他の構成例について説明する。図6(a)~(c)及び図7は、実施の形態1に係るアンテナ100の他の構成例を示した図である。
<Another configuration example of the antenna 100>
Next, another configuration example of the antenna 100 according to Embodiment 1 will be described. FIGS. 6A to 6C and FIG. 7 are diagrams showing another configuration example of the antenna 100 according to the first embodiment.
 図6(a)に示す構成は、図2-1に示す構成と比較して、移相器110と同じ数の通信IF部130(図6(a)に示す例では、通信IF部130a、通信IF部130b)を設けた構成である。このような構成において、複数の応答信号が生成された場合、応答信号は、宛先とされた子機ごとの通信IF部130を介して、親機400に送信される。そのため、通信IF部130を通過した後に応答信号同士が実際に衝突することとなる。即ち、処理装置部150は、正常ではない信号であることを親機400に認識させるための処理を行わなくて良いため、図5のステップ111及びステップ113の処理は不要になる。 6A is the same number of communication IF units 130 as the phase shifters 110 (in the example shown in FIG. 6A, the communication IF units 130a, 130a, The communication IF unit 130b) is provided. In such a configuration, when a plurality of response signals are generated, the response signals are transmitted to the parent device 400 via the communication IF unit 130 for each child device that is the destination. Therefore, the response signals actually collide after passing through the communication IF unit 130. That is, the processing device unit 150 does not need to perform processing for causing the base unit 400 to recognize that the signal is not normal, and thus the processing of step 111 and step 113 in FIG. 5 is not necessary.
 また、図6(b)に示す構成は、図2-1に示す構成と比較して、切替回路170を設けない代わりに、移相器110と同じ数のモータ制御/位置検出補助回路160(図6(b)に示す例では、モータ制御/位置検出補助回路160a、モータ制御/位置検出補助回路160b)を設けた構成である。ここで、モータ制御/位置検出補助回路160は複数の移相器110を同時に制御することができない。図2-1に示す構成のように切替回路170を設ける場合には、モータ制御/位置検出補助回路160の制御中に別の子機に対して親機400から制御命令が発行されると、処理装置部150は、そのコマンドを受けられないことを表す「Busy」リターンコードを応答する。そのため、親機400としては、同時に制御命令を発行しないようにするか、「Busy」リターンコードを受けた場合には、1つの制御命令が完了次第、次の制御命令を発行するような処理を行うこととなる。 In addition, the configuration shown in FIG. 6B is the same as the configuration shown in FIG. In the example shown in FIG. 6B, a motor control / position detection auxiliary circuit 160a and a motor control / position detection auxiliary circuit 160b) are provided. Here, the motor control / position detection auxiliary circuit 160 cannot control a plurality of phase shifters 110 simultaneously. When the switching circuit 170 is provided as in the configuration shown in FIG. 2A, when a control command is issued from the master unit 400 to another slave unit during the control of the motor control / position detection auxiliary circuit 160, The processor unit 150 responds with a “Busy” return code indicating that the command cannot be received. For this reason, the base unit 400 does not issue a control command at the same time, or when receiving a “Busy” return code, performs processing to issue the next control command as soon as one control command is completed. Will be done.
 一方、図6(b)に示す構成のように、モータ制御/位置検出補助回路160を移相器110と同じ数だけ設ける場合、処理部120は、同時に複数の移相器110を制御することができるようになる。このような構成の場合、処理装置部150は、信号の宛先となる移相器110に接続されたモータ制御/位置検出補助回路160に対して、信号を送信する。 On the other hand, when the same number of motor control / position detection auxiliary circuits 160 as the phase shifters 110 are provided as in the configuration shown in FIG. 6B, the processing unit 120 controls a plurality of phase shifters 110 simultaneously. Will be able to. In the case of such a configuration, the processing device unit 150 transmits a signal to the motor control / position detection auxiliary circuit 160 connected to the phase shifter 110 serving as a signal destination.
 さらに、図6(c)に示す構成は、図6(a)及び図6(b)に示す構成を組み合わせたものである。即ち、通信IF部130を移相器110と同じ数だけ設けるとともに、切替回路170を設けない代わりにモータ制御/位置検出補助回路160を移相器110と同じ数だけ設けた構成である。このような構成の場合も、図6(b)の場合と同様に、複数の応答信号が実際に衝突することとなるため、図5のステップ111及びステップ113の処理は不要になる。 Furthermore, the configuration shown in FIG. 6 (c) is a combination of the configurations shown in FIGS. 6 (a) and 6 (b). That is, the same number of communication IF units 130 as the phase shifters 110 are provided, and the same number of motor control / position detection auxiliary circuits 160 as the phase shifters 110 are provided instead of the switching circuit 170. In the case of such a configuration as well, as in the case of FIG. 6B, a plurality of response signals actually collide, and therefore the processing of step 111 and step 113 in FIG. 5 is not necessary.
 また、図7に示す構成は、図2-1に示す構成と比較して、各子機機能を別々のハードウェアからなる処理部120(図7に示す例では、処理部120a、処理部120b)で実行する構成である。即ち、処理部120aは、移相器110aに接続された子機機能として、シングル通信方式及びマルチ通信方式の両方に対応する子機機能を有し、処理部120bは、移相器110bに接続された子機機能として、シングル通信方式及びマルチ通信方式の両方に対応する子機機能を有する。また、各処理部120はそれぞれ、通信IF部130(通信IF部130a、通信IF部130b)、電源部140(電源部140a、電源部140b)、処理装置部150(処理装置部150a、処理装置部150b)、モータ制御/位置検出補助回路160(モータ制御/位置検出補助回路160a、モータ制御/位置検出補助回路160b)を備えている。 Further, the configuration shown in FIG. 7 is different from the configuration shown in FIG. 2A in that each slave unit function is a processing unit 120 made up of separate hardware (in the example shown in FIG. 7, the processing unit 120a and the processing unit 120b). ). That is, the processing unit 120a has a slave unit function corresponding to both a single communication method and a multi-communication method as a slave unit function connected to the phase shifter 110a, and the processing unit 120b is connected to the phase shifter 110b. As the slave unit function, a slave unit function corresponding to both the single communication method and the multi-communication method is provided. Each processing unit 120 includes a communication IF unit 130 (communication IF unit 130a and communication IF unit 130b), a power supply unit 140 (power supply unit 140a and power supply unit 140b), and a processing device unit 150 (processing device unit 150a and processing device). 150b) and a motor control / position detection auxiliary circuit 160 (motor control / position detection auxiliary circuit 160a, motor control / position detection auxiliary circuit 160b).
 ここで、図7に示す構成では、処理装置部150a及び処理装置部150bを含む構成が、制御装置の一例としての機能を有すると捉えることができる。また、処理部120a及び処理部120bを含む構成が、制御装置の一例としての機能を有すると捉えることもできる。 Here, in the configuration shown in FIG. 7, it can be understood that the configuration including the processing device unit 150a and the processing device unit 150b has a function as an example of a control device. In addition, the configuration including the processing unit 120a and the processing unit 120b can be regarded as having a function as an example of a control device.
 図8は、図7に示す構成における処理装置部150の処理手順の一例を示したフローチャートである。図8に示す処理は、子機機能ごとに、即ち、それぞれの処理装置部150(処理装置部150a、処理装置部150b)ごとに、繰り返し実行される。 FIG. 8 is a flowchart showing an example of the processing procedure of the processing unit 150 in the configuration shown in FIG. The process shown in FIG. 8 is repeatedly executed for each slave function, that is, for each processing device unit 150 (processing device unit 150a, processing device unit 150b).
 受信処理部191は、親機400からのコマンドの受信待ちを行う。ここで、ステップ201及びステップ202の処理は、図5のステップ101及びステップ102の処理と同じであるため、ここでは説明を省略する。ステップ202でコマンドを受信したと判定された場合(ステップ202でYes)、次に、コマンド処理部192によるコマンド処理が行われる。ここで、コマンド処理部192は、受信した信号が、自身の宛の信号であるか否かを判定する(ステップ203)。ここでは、コマンド処理部192は、コマンドの宛先とされるアドレスが、自身の子機に割り振られたアドレスと一致するか否かを判定し、両アドレスが一致するか、ブロードキャストを表すアドレスであれば、自身宛の信号であると判定する。 The reception processing unit 191 waits for reception of a command from the parent device 400. Here, the processing in step 201 and step 202 is the same as the processing in step 101 and step 102 in FIG. If it is determined in step 202 that a command has been received (Yes in step 202), then command processing by the command processing unit 192 is performed. Here, the command processing unit 192 determines whether or not the received signal is a signal addressed to itself (step 203). Here, the command processing unit 192 determines whether or not the address that is the destination of the command matches the address assigned to its own handset, and if both addresses match or indicates an address indicating broadcast. For example, it is determined that the signal is addressed to itself.
 自身宛の信号であると判定された場合(ステップ203でYes)、コマンド処理部192は、そのコマンドが、シングルコマンド、マルチコマンド、共通コマンド、またはAISG規格にて未定義のものであるかを判定する(ステップ204)。このステップ204~ステップ209の処理は、図5のステップ104~ステップ109の処理と同じであるため、ここでは説明を省略する。ただし、図8の処理では、図5に示すように子機ごとにステップ103~ステップ109を繰り返すような処理は行われない。 When it is determined that the signal is addressed to itself (Yes in Step 203), the command processing unit 192 determines whether the command is a single command, a multicommand, a common command, or an undefined one in the AISG standard. Determination is made (step 204). Since the processing from step 204 to step 209 is the same as the processing from step 104 to step 109 in FIG. 5, the description thereof is omitted here. However, in the process of FIG. 8, as shown in FIG. 5, the process of repeating Step 103 to Step 109 is not performed for each slave unit.
 次に、ステップ203で自身宛の信号ではないと判定された場合(ステップ203でNo)、またはステップ209の後、応答実行部193は、生成した応答信号があるか否かを判定する(ステップ210)。ステップ209で応答信号を生成していれば、ステップ210で肯定の判断(Yes)がされ、応答実行部193は、応答信号を親機400へ送信する(ステップ211)。ここで、複数の処理装置部150で応答信号が生成されていれば、親機400への伝送路上で応答信号同士が衝突するため、親機400には正常な信号が届かないこととなる。即ち、図8に示すように、図7の構成では、図5のステップ111及びステップ113の処理は不要である。ステップ211の後、または応答信号がないと判定された場合(ステップ210でNo)、本処理フローは終了する。 Next, when it is determined in step 203 that the signal is not addressed to itself (No in step 203), or after step 209, the response execution unit 193 determines whether or not there is a generated response signal (step 210). If a response signal is generated in step 209, an affirmative determination (Yes) is made in step 210, and the response execution unit 193 transmits the response signal to the parent device 400 (step 211). Here, if response signals are generated by a plurality of processing device units 150, the response signals collide on the transmission path to base unit 400, so that a normal signal does not reach base unit 400. That is, as shown in FIG. 8, the processing of step 111 and step 113 of FIG. 5 is not necessary in the configuration of FIG. After step 211, or when it is determined that there is no response signal (No in step 210), this processing flow ends.
 このように、図7に示す構成では、親機400から信号が送信された場合、移相器110ごとに設けられた各処理部120が自身宛の信号か否かを判定して処理を実行する。また、複数の応答信号が生成された場合には、応答信号同士が衝突して親機400には正常な信号が届かないため、処理装置部150は、正常ではない信号であることを親機400に認識させるための処理を行わなくて良い。 As described above, in the configuration shown in FIG. 7, when a signal is transmitted from base unit 400, each processing unit 120 provided for each phase shifter 110 determines whether or not the signal is addressed to itself and executes the processing. To do. In addition, when a plurality of response signals are generated, the response signals collide with each other, and a normal signal does not reach the master unit 400. Therefore, the processing device unit 150 determines that the signal is not normal. It is not necessary to perform processing for causing the computer 400 to recognize.
 また、図7の構成において、電源部140a及び電源部140bを、共通する1つの電源部140としても良い。さらに、図7の構成において、通信IF部130a及び通信IF部130bを、共通する1つの通信IF部130としても良い。通信IF部130を共通にした場合には、複数の応答信号が実際に衝突しないこととなるため、図5のステップ111及びステップ113の処理が必要になる。また、図7の構成において、モータ制御/位置検出補助回路160a及びモータ制御/位置検出補助回路160bを共通する1つのモータ制御/位置検出補助回路160とするとともに、切替回路170を設けても良い。 Further, in the configuration of FIG. 7, the power supply unit 140a and the power supply unit 140b may be a common power supply unit 140. Furthermore, in the configuration of FIG. 7, the communication IF unit 130a and the communication IF unit 130b may be a common communication IF unit 130. When the communication IF unit 130 is used in common, a plurality of response signals do not actually collide, and thus the processing of step 111 and step 113 in FIG. 5 is necessary. In the configuration of FIG. 7, the motor control / position detection auxiliary circuit 160a and the motor control / position detection auxiliary circuit 160b may be a common motor control / position detection auxiliary circuit 160, and a switching circuit 170 may be provided. .
[実施の形態2]
 次に、実施の形態2について説明する。実施の形態1では、処理装置部150は、移相器110と同じ数の子機機能を有し、各子機機能はシングル通信方式及びマルチ通信方式の両方に対応していた。これに対し、実施の形態2では、処理装置部150は、移相器110と同じ数の子機機能を有し、そのうちの少なくとも1つの子機機能はシングル通信方式及びマルチ通信方式の両方に対応しているが、残りの子機機能はシングル通信方式のみに対応している。なお、アンテナ100のハードウェア構成は、実施の形態1と同様である。また、本実施の形態において、実施の形態1と同様のものについては、同じ符号を付してその詳細な説明を省略する。
[Embodiment 2]
Next, a second embodiment will be described. In the first embodiment, the processing device unit 150 has the same number of slave unit functions as the phase shifter 110, and each slave unit function corresponds to both the single communication method and the multi-communication method. On the other hand, in the second embodiment, the processing unit 150 has the same number of slave unit functions as the phase shifter 110, and at least one of the slave unit functions corresponds to both the single communication method and the multi-communication method. However, the remaining handset functions only support the single communication method. Note that the hardware configuration of the antenna 100 is the same as that of the first embodiment. In the present embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
 図9は、実施の形態2に係るアンテナ100の構成の一例を示す図である。図示のように、処理部120に対して2つの移相器110が接続されている。また、処理装置部150は、移相器110と同じ数の子機機能(子機機能10a、子機機能10b)を有している。子機機能10aはシングル通信方式及びマルチ通信方式の両方に対応し、兼用として用いられるが、子機機能10bはマルチ通信方式に対応していないシングル通信方式用として用いられる。 FIG. 9 is a diagram illustrating an example of the configuration of the antenna 100 according to the second embodiment. As illustrated, two phase shifters 110 are connected to the processing unit 120. Further, the processing device unit 150 has the same number of slave unit functions (slave unit function 10a and slave unit function 10b) as the phase shifter 110. The handset function 10a corresponds to both the single communication method and the multi-communication method, and is used as a dual use, while the handset function 10b is used for a single communication method that does not support the multi-communication method.
 ここで、親機400がシングル通信方式を採用する場合、子機機能10aもシングル通信方式として機能し、親機400から送信されるシングルコマンドに従って処理を行う。付言すると、子機機能10aは、シングルコマンドに従って、シングル通信方式の子機機能10aに接続された移相器110aに対して処理を行う。また、子機機能10bは、シングルコマンドに従って、子機機能10bに接続された移相器110bに対して処理を行う。 Here, when the parent device 400 adopts the single communication method, the child device function 10a also functions as the single communication method, and performs processing according to the single command transmitted from the parent device 400. If it adds, the subunit | mobile_unit function 10a will process with respect to the phase shifter 110a connected to the subunit | mobile_unit function 10a of a single communication system according to a single command. Moreover, the subunit | mobile_unit function 10b performs a process with respect to the phase shifter 110b connected to the subunit | mobile_unit function 10b according to a single command.
 一方、親機400がマルチ通信方式を採用する場合、子機機能10aもマルチ通信方式として機能し、親機400から送信されるマルチコマンドに従って処理を行う。付言すると、子機機能10aは、マルチコマンドに従って、移相器110a及び移相器110bのうち、宛先として指定された移相器110に対して処理を行う。また、子機機能10bは、シングル通信方式のみに対応しているため、親機400から送信されるマルチコマンドの処理を行わない。 On the other hand, when the base unit 400 adopts a multi-communication system, the handset function 10a also functions as a multi-communication system and performs processing according to a multi-command transmitted from the base unit 400. If it adds, the subunit | mobile_unit function 10a will process with respect to the phase shifter 110 designated as a destination among the phase shifters 110a and 110b according to a multicommand. Further, since the slave unit function 10b supports only the single communication method, the slave unit function 10b does not process multi-commands transmitted from the master unit 400.
 また、図9に示す例では2つの移相器110を示したが、本実施の形態では、実施の形態1と同様に、アンテナ100が3つ以上の移相器110を備えても良い。例えば、アンテナ100が3つの移相器110を備えている場合、処理部120の子機機能も3つ設けられることとなる。この場合、3つのうち少なくとも1つの子機機能はシングル通信方式及びマルチ通信方式の両方に対応し、残りの子機機能はシングル通信方式のみに対応するように構成される。なお、図9では、図2-1と同様に、アレイアンテナ180を省略している。 In the example shown in FIG. 9, two phase shifters 110 are shown. However, in the present embodiment, the antenna 100 may include three or more phase shifters 110 as in the first embodiment. For example, when the antenna 100 includes three phase shifters 110, three slave unit functions of the processing unit 120 are also provided. In this case, at least one slave unit function among the three is configured to support both the single communication method and the multi-communication method, and the remaining slave unit functions are configured to support only the single communication method. In FIG. 9, the array antenna 180 is omitted as in FIG. 2-1.
 次に、実施の形態2に係る処理装置部150の処理手順について説明する。図10は、実施の形態2に係る処理装置部150の処理手順の一例を示したフローチャートである。図10に示す処理は繰り返し実行される。 Next, a processing procedure of the processing device unit 150 according to the second embodiment will be described. FIG. 10 is a flowchart illustrating an example of a processing procedure of the processing device unit 150 according to the second embodiment. The process shown in FIG. 10 is repeatedly executed.
 受信処理部191は、親機400からのコマンドの受信待ちを行う。ここで、ステップ301及びステップ302の処理は、図5のステップ101及びステップ102の処理と同じであるため、ここでは説明を省略する。ステップ302でコマンドを受信したと判定された場合(ステップ302でYes)、次に、コマンド処理部192によるコマンド処理が行われる。ここで、コマンド処理部192は、処理部120にて仮想的に動作する有効な子機の数(n)だけ、後述するステップ303~ステップ307の処理を繰り返し実行する。 The reception processing unit 191 waits for reception of a command from the parent device 400. Here, the processing of step 301 and step 302 is the same as the processing of step 101 and step 102 of FIG. If it is determined in step 302 that a command has been received (Yes in step 302), then command processing by the command processing unit 192 is performed. Here, the command processing unit 192 repeatedly executes the processing from step 303 to step 307 to be described later for the number (n) of valid child devices that virtually operate in the processing unit 120.
 まず、コマンド処理部192は、有効な子機を1つ選択し、受信した信号が、選択した子機宛の信号であるか否かを判定する(ステップ303)。ここで、選択した子機宛の信号ではないと判定された場合(ステップ303でNo)、コマンド処理部192は、次の有効な子機を1つ選択する。 First, the command processing unit 192 selects one valid slave unit, and determines whether or not the received signal is a signal addressed to the selected slave unit (step 303). If it is determined that the signal is not addressed to the selected slave unit (No in step 303), the command processing unit 192 selects one next valid slave unit.
 一方、選択した子機宛の信号であると判定された場合(ステップ303でYes)、コマンド処理部192は、選択した子機が、シングル通信方式のみに対応する子機(図9に示す構成では、子機機能10b)であるか、シングル通信方式及びマルチ通信方式の両方に対応する子機(図9に示す構成では、子機機能10a)であるかを判定する(ステップ304)。選択した子機がシングル通信方式のみに対応する子機(即ち、子機機能10b)であれば、コマンド処理部192は、受信した信号のコマンドに従って、選択した子機に対して、シングルコマンドまたは共通コマンドの処理を実行させる(ステップ305)。ただし、親機400からのコマンドがマルチコマンドまたは未定義のものであれば、図5のステップ108のように、エラーと判定される。 On the other hand, if it is determined that the signal is addressed to the selected slave unit (Yes in step 303), the command processing unit 192 determines that the selected slave unit is a slave unit that supports only the single communication method (configuration shown in FIG. 9). Then, it is determined whether it is a slave unit function 10b) or a slave unit corresponding to both the single communication system and the multi-communication system (slave unit function 10a in the configuration shown in FIG. 9) (step 304). If the selected slave unit is a slave unit that supports only the single communication method (that is, the slave unit function 10b), the command processing unit 192 sends a single command or a single command to the selected slave unit according to the command of the received signal. The common command processing is executed (step 305). However, if the command from base unit 400 is a multi-command or an undefined command, it is determined as an error as in step 108 of FIG.
 また、ステップ304において、選択した子機がシングル通信方式及びマルチ通信方式の両方に対応する子機(即ち、子機機能10a)であれば、コマンド処理部192は、受信した信号のコマンドに従って、選択した子機に対して、シングルコマンド、マルチコマンド、または共通コマンドの処理を実行させる(ステップ306)。ただし、親機400からのコマンドが未定義のものであれば、ステップ305と同様に、エラーと判定される。ここで、マルチコマンドの場合には、宛先となる移相器110が移相器番号で指定されているため、コマンド処理部192は、移相器番号で宛先として指定された移相器110に対して処理を行う。 In step 304, if the selected handset is a handset that supports both the single communication method and the multi-communication method (that is, the handset function 10a), the command processing unit 192 follows the command of the received signal. A single command, a multi-command, or a common command is executed for the selected slave unit (step 306). However, if the command from the parent device 400 is undefined, it is determined as an error as in step 305. Here, in the case of a multi-command, since the phase shifter 110 as the destination is designated by the phase shifter number, the command processing unit 192 sends the phase shifter 110 designated as the destination by the phase shifter number. Process it.
 ステップ305またはステップ306の後、コマンド処理部192は、応答信号を生成する(ステップ307)。そして、ステップ307の後、コマンド処理部192は、まだ選択していない他の子機を1つ選択する。
 このようにして、コマンド処理部192は、有効な子機の数(n)だけ、ステップ303~ステップ307の処理を実行する。そして、全ての子機に対して処理が終了すると、次のステップ308へ移行する。
After step 305 or step 306, the command processing unit 192 generates a response signal (step 307). After step 307, the command processing unit 192 selects one other slave unit that has not yet been selected.
In this way, the command processing unit 192 executes the processing from step 303 to step 307 by the number (n) of valid slave units. When the processing is completed for all the slave units, the process proceeds to the next step 308.
 次に、応答実行部193による応答処理が行われる。ステップ308~ステップ311の処理は、図5のステップ110~ステップ113の処理と同じであるため、ここでは説明を省略する。 Next, response processing by the response execution unit 193 is performed. Since the processing from step 308 to step 311 is the same as the processing from step 110 to step 113 in FIG. 5, the description thereof is omitted here.
 このように、実施の形態2では、処理装置部150は移相器110と同じ数の子機機能を有しており、そのうちの少なくとも1つの子機機能はシングル通信方式及びマルチ通信方式の両方に対応し、残りの子機機能はシングル通信方式のみに対応している。そのため、親機400がシングル通信方式を採用する場合、各子機機能がシングル通信方式により機能して処理を行う。一方、親機400がマルチ通信方式を採用する場合、シングル通信方式及びマルチ通信方式の両方に対応している子機機能がマルチ通信方式により機能して処理を行う。即ち、親機400がシングル通信方式またはマルチ通信方式のいずれの通信方式を採用する場合においても、ユーザによる何らかの操作を必要とせずに、親機400からの制御命令に従って処理装置部150による処理が実行される。
 また、本実施の形態において、実施の形態1と同様に、図6(a)~(c)及び図7に示す他の構成例のアンテナ100を用いても良い。
As described above, in the second embodiment, the processor unit 150 has the same number of slave unit functions as the phase shifter 110, and at least one of the slave unit functions corresponds to both the single communication method and the multi-communication method. However, the remaining handset functions only support the single communication method. Therefore, when the parent device 400 adopts the single communication method, each child device function functions by the single communication method and performs processing. On the other hand, when base unit 400 employs a multi-communication system, a slave function that supports both the single communication system and the multi-communication system functions by the multi-communication system to perform processing. That is, when the parent device 400 adopts either the single communication method or the multi-communication method, the processing by the processing unit 150 is performed according to the control command from the parent device 400 without requiring any operation by the user. Executed.
In the present embodiment, as in the first embodiment, the antenna 100 having another configuration example shown in FIGS. 6A to 6C and FIG. 7 may be used.
 なお、両方の通信方式に対応しているものも含めてシングル通信方式に対応した子機機能の数を移相器110と同数にしたが、シングル通信方式では制御する必要がない移相器110がある場合には、同数でなくても良い。同様に、マルチ通信方式に対応している子機機能について、マルチ通信方式では制御する必要がない移相器110がある場合には、その移相器110とマルチ通信方式に対応している子機機能とを接続しなくても良い。言い換えると、シングル通信方式の子機機能には接続される一方で、マルチ通信方式の子機機能には接続されていない移相器110が設けられても良い。また、マルチ通信方式の子機機能には接続される一方で、シングル通信方式の子機機能には接続されていない移相器110が設けられても良い。 Although the number of slave unit functions corresponding to the single communication method is the same as that of the phase shifter 110, including those compatible with both communication methods, the phase shifter 110 that does not need to be controlled in the single communication method. If there is, there is no need to have the same number. Similarly, if there is a phase shifter 110 that does not need to be controlled in the multi-communication system for the slave function corresponding to the multi-communication system, the phase shifter 110 and the slave that supports the multi-communication system. It is not necessary to connect the machine function. In other words, a phase shifter 110 may be provided that is connected to the single communication type slave unit function but not connected to the multi-communication type slave unit function. Further, a phase shifter 110 that is connected to the multi-communication slave unit function but not connected to the single communication slave unit function may be provided.
[実施の形態3]
 次に、実施の形態3について説明する。実施の形態1では、処理装置部150は、移相器110と同じ数の子機機能を有し、各子機機能はシングル通信方式及びマルチ通信方式の両方に対応していた。これに対し、実施の形態3では、処理装置部150は、移相器110より多い数の子機機能を有し、そのうちの少なくとも1つの子機機能はマルチ通信方式のみに対応し、移相器110と同じ数の子機機能はシングル通信方式のみに対応している。なお、アンテナ100のハードウェア構成は、実施の形態1と同様である。また、本実施の形態において、実施の形態1と同様のものについては、同じ符号を付してその詳細な説明を省略する。
[Embodiment 3]
Next, Embodiment 3 will be described. In the first embodiment, the processing device unit 150 has the same number of slave unit functions as the phase shifter 110, and each slave unit function corresponds to both the single communication method and the multi-communication method. On the other hand, in the third embodiment, the processing device unit 150 has a larger number of slave unit functions than the phase shifter 110, and at least one of the slave unit functions corresponds only to the multi-communication system, and the phase shifter 110 The same number of handset functions are compatible with the single communication method only. Note that the hardware configuration of the antenna 100 is the same as that of the first embodiment. In the present embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
 図11は、実施の形態3に係るアンテナ100の構成の一例を示す図である。図示のように、処理部120に対して2つの移相器110が接続されている。また、処理装置部150は、移相器110より1つ多い3つの子機機能(子機機能10a、子機機能10b、子機機能10c)を有している。そして、移相器110と同じ数である2つの子機機能(子機機能10a及び子機機能10b)はシングル通信方式のみに対応し、子機機能10cはマルチ通信方式のみに対応している。即ち、子機機能10a及び子機機能10bはマルチ通信方式に対応していないシングル通信方式用として用いられ、子機機能10cはシングル通信方式に対応してないマルチ通信方式用として用いられる。 FIG. 11 is a diagram illustrating an example of the configuration of the antenna 100 according to the third embodiment. As illustrated, two phase shifters 110 are connected to the processing unit 120. Further, the processing device unit 150 has three slave device functions (a slave device function 10a, a slave device function 10b, and a slave device function 10c), which is one more than the phase shifter 110. The two slave unit functions (the slave unit function 10a and the slave unit function 10b), which are the same number as the phase shifter 110, correspond to only the single communication method, and the slave unit function 10c corresponds to only the multi-communication method. . That is, the slave unit function 10a and the slave unit function 10b are used for a single communication method that does not support the multi-communication method, and the slave unit function 10c is used for a multi-communication method that does not support the single communication method.
 ここで、親機400がシングル通信方式を採用する場合、子機機能10a及び子機機能10bは、親機400から送信されるシングルコマンドに従って処理を行う。付言すると、子機機能10aは、シングルコマンドに従って、子機機能10aに接続された移相器110aに対して処理を行い、子機機能10bは、シングルコマンドに従って、子機機能10bに接続された移相器110bに対して処理を行う。また、子機機能10cはマルチ通信方式のみに対応しているため、親機400から送信されるシングルコマンドの処理を行わない。 Here, when the parent device 400 adopts the single communication method, the child device function 10a and the child device function 10b perform processing according to the single command transmitted from the parent device 400. In other words, the slave unit function 10a processes the phase shifter 110a connected to the slave unit function 10a according to the single command, and the slave unit function 10b is connected to the slave unit function 10b according to the single command. Processing is performed on the phase shifter 110b. Further, since the slave unit function 10c is compatible only with the multi-communication method, the single command transmitted from the master unit 400 is not processed.
 一方、親機400がマルチ通信方式を採用する場合には、子機機能10cは、親機400から送信されるマルチコマンドに従って処理を行う。付言すると、子機機能10cは、マルチコマンドに従って、移相器110a及び移相器110bのうち、宛先として指定された移相器110に対して処理を行う。また、子機機能10a及び子機機能10bは、シングル通信方式のみに対応しているため、親機400から送信されるマルチコマンドの処理を行わない。 On the other hand, when the parent device 400 adopts the multi-communication method, the child device function 10c performs processing according to the multi-command transmitted from the parent device 400. In other words, the slave unit function 10c performs processing on the phase shifter 110 designated as the destination among the phase shifters 110a and 110b in accordance with the multi-command. Further, since the slave unit function 10a and the slave unit function 10b support only the single communication method, the multi-command transmitted from the master unit 400 is not processed.
 また、図11に示す例では2つの移相器110を示したが、本実施の形態では、実施の形態1と同様に、アンテナ100が3つ以上の移相器110を備えても良い。例えば、アンテナ100が3つの移相器110を備えている場合、処理部120の子機機能は4つ以上設けられることとなる。この場合、少なくとも1つの子機機能がマルチ通信方式のみに対応し、移相器110と同じ数の3つの子機機能がシングル通信方式のみに対応するように構成される。なお、図11では、図2-1と同様に、アレイアンテナ180を省略している。 In the example shown in FIG. 11, two phase shifters 110 are shown. However, in this embodiment, the antenna 100 may include three or more phase shifters 110 as in the first embodiment. For example, when the antenna 100 includes three phase shifters 110, four or more slave unit functions of the processing unit 120 are provided. In this case, at least one slave unit function corresponds to only the multi-communication system, and the same number of three slave unit functions as the phase shifter 110 correspond to only the single communication method. In FIG. 11, the array antenna 180 is omitted as in FIG. 2-1.
 次に、実施の形態3に係る処理装置部150の処理手順について説明する。図12は、実施の形態3に係る処理装置部150の処理手順の一例を示したフローチャートである。図12に示す処理は繰り返し実行される。 Next, a processing procedure of the processing device unit 150 according to the third embodiment will be described. FIG. 12 is a flowchart illustrating an example of a processing procedure of the processing device unit 150 according to the third embodiment. The process shown in FIG. 12 is repeatedly executed.
 受信処理部191は、親機400からのコマンドの受信待ちを行う。ここで、ステップ401及びステップ402の処理は、図5のステップ101及びステップ102の処理と同じであるため、ここでは説明を省略する。ステップ402でコマンドを受信したと判定された場合(ステップ402でYes)、次に、コマンド処理部192によるコマンド処理が行われる。ここで、コマンド処理部192は、処理部120にて仮想的に動作する有効な子機の数(n)だけ、後述するステップ403~ステップ407の処理を繰り返し実行する。 The reception processing unit 191 waits for reception of a command from the parent device 400. Here, the processing of step 401 and step 402 is the same as the processing of step 101 and step 102 of FIG. If it is determined in step 402 that a command has been received (Yes in step 402), then command processing by the command processing unit 192 is performed. Here, the command processing unit 192 repeatedly executes the processing of step 403 to step 407 described later for the number (n) of valid child devices that virtually operate in the processing unit 120.
 まず、コマンド処理部192は、有効な子機を1つ選択し、受信した信号が、選択した子機宛の信号であるか否かを判定する(ステップ403)。ここで、選択した子機宛の信号ではないと判定された場合(ステップ403でNo)、コマンド処理部192は、次の有効な子機を1つ選択する。 First, the command processing unit 192 selects one valid slave unit, and determines whether or not the received signal is a signal addressed to the selected slave unit (step 403). If it is determined that the signal is not addressed to the selected child device (No in step 403), the command processing unit 192 selects one next valid child device.
 一方、選択した子機宛の信号であると判定された場合(ステップ403でYes)、コマンド処理部192は、選択した子機が、シングル通信方式のみに対応する子機(図11に示す構成では、子機機能10a、子機機能10b)であるか、マルチ通信方式のみに対応する子機(図11に示す構成では、子機機能10c)であるかを判定する(ステップ404)。選択した子機がシングル通信方式のみに対応する子機(即ち、子機機能10aまたは子機機能10b)であれば、コマンド処理部192は、受信した信号のコマンドに従って、選択した子機に対して、シングルコマンドまたは共通コマンドの処理を実行させる(ステップ405)。ただし、親機400からのコマンドがマルチコマンドまたは未定義のものであれば、図5のステップ108のように、エラーと判定される。 On the other hand, when it is determined that the signal is addressed to the selected slave unit (Yes in step 403), the command processing unit 192 determines that the selected slave unit is a slave unit that supports only the single communication method (configuration shown in FIG. 11). Then, it is determined whether it is a child device function 10a, a child device function 10b) or a child device corresponding to only the multi-communication system (the child device function 10c in the configuration shown in FIG. 11) (step 404). If the selected slave unit is a slave unit that supports only the single communication method (that is, the slave unit function 10a or the slave unit function 10b), the command processing unit 192 applies the selected slave unit to the selected slave unit according to the command of the received signal. Then, the single command or common command processing is executed (step 405). However, if the command from base unit 400 is a multi-command or an undefined command, it is determined as an error as in step 108 of FIG.
 また、ステップ404において、選択した子機がマルチ通信方式のみに対応する子機(即ち、子機機能10c)であれば、コマンド処理部192は、受信した信号のコマンドに従って、選択した子機に対して、マルチコマンドまたは共通コマンドの処理を実行させる(ステップ406)。ただし、親機400からのコマンドがシングルコマンドまたは未定義のものであれば、ステップ405と同様に、エラーと判定される。ここで、マルチコマンドの場合には、宛先となる移相器110が移相器番号で指定されているため、コマンド処理部192は、移相器番号で宛先として指定された移相器110に対して処理を行う。 In step 404, if the selected slave unit is a slave unit that supports only the multi-communication system (ie, the slave unit function 10c), the command processing unit 192 sets the selected slave unit according to the command of the received signal. On the other hand, multi-command or common command processing is executed (step 406). However, if the command from the parent device 400 is a single command or an undefined command, it is determined as an error as in Step 405. Here, in the case of a multi-command, since the phase shifter 110 as the destination is designated by the phase shifter number, the command processing unit 192 sends the phase shifter 110 designated as the destination by the phase shifter number. Process it.
 ステップ405またはステップ406の後、コマンド処理部192は、応答信号を生成する(ステップ407)。そして、ステップ407の後、コマンド処理部192は、まだ選択していない他の子機を1つ選択する。
 このようにして、コマンド処理部192は、有効な子機の数(n)だけ、ステップ403~ステップ407の処理を実行する。そして、全ての子機に対して処理が終了すると、次のステップ408へ移行する。
After step 405 or step 406, the command processing unit 192 generates a response signal (step 407). After step 407, the command processing unit 192 selects one other slave unit that has not yet been selected.
In this way, the command processing unit 192 executes the processing from step 403 to step 407 by the number of valid slave units (n). When the processing is completed for all the slave units, the process proceeds to the next step 408.
 次に、応答実行部193による応答処理が行われる。ステップ408~ステップ411の処理は、図5のステップ110~ステップ113の処理と同じであるため、ここでは説明を省略する。 Next, response processing by the response execution unit 193 is performed. Since the processing from step 408 to step 411 is the same as the processing from step 110 to step 113 in FIG. 5, the description thereof is omitted here.
 このように、実施の形態3では、処理装置部150は移相器110の数より多い数の子機機能を有しており、そのうちの少なくとも1つの子機機能はマルチ通信方式のみに対応し、移相器110と同じ数の子機機能はシングル通信方式のみに対応している。そのため、親機400がシングル通信方式を採用する場合、シングル通信方式のみに対応している各子機機能がシングル通信方式により機能して処理を行う。一方、親機400がマルチ通信方式を採用する場合、マルチ通信方式のみに対応している子機機能がマルチ通信方式により機能して処理を行う。即ち、親機400がシングル通信方式またはマルチ通信方式のいずれの通信方式を採用する場合においても、ユーザによる何らかの操作を必要とせずに、親機400からの制御命令に従って処理装置部150による処理が実行される。
 また、本実施の形態において、実施の形態1と同様に、図6(a)~(c)及び図7に示す他の構成例のアンテナ100を用いても良い。
As described above, in the third embodiment, the processing device unit 150 has more child device functions than the number of phase shifters 110, and at least one of the child device functions corresponds to only the multi-communication method, The same number of slave functions as the phase shifter 110 are compatible with the single communication method only. Therefore, when the parent device 400 adopts the single communication method, each child device function that supports only the single communication method functions by the single communication method to perform processing. On the other hand, when base unit 400 employs a multi-communication system, a slave function that supports only the multi-communication system functions by the multi-communication system and performs processing. That is, when the parent device 400 adopts either the single communication method or the multi-communication method, the processing by the processing unit 150 is performed according to the control command from the parent device 400 without requiring any operation by the user. Executed.
In the present embodiment, as in the first embodiment, the antenna 100 having another configuration example shown in FIGS. 6A to 6C and FIG. 7 may be used.
 なお、シングル通信方式に対応した子機機能の数を移相器110と同数にしたが、シングル通信方式では制御する必要がない移相器110がある場合には、同数でなくても良い。同様に、マルチ通信方式に対応している子機機能について、マルチ通信方式では制御する必要がない移相器110がある場合には、その移相器110とマルチ通信方式に対応している子機機能とを接続しなくても良い。言い換えると、シングル通信方式の子機機能には接続される一方で、マルチ通信方式の子機機能には接続されていない移相器110が設けられても良い。また、マルチ通信方式の子機機能には接続される一方で、シングル通信方式の子機機能には接続されていない移相器110が設けられても良い。 In addition, although the number of the subunit | mobile_unit functions corresponding to a single communication system was made into the same number as the phase shifter 110, when there exists the phase shifter 110 which does not need to be controlled by a single communication system, it may not be the same number. Similarly, if there is a phase shifter 110 that does not need to be controlled in the multi-communication system for the slave function corresponding to the multi-communication system, the phase shifter 110 and the slave that supports the multi-communication system. It is not necessary to connect the machine function. In other words, a phase shifter 110 may be provided that is connected to the single communication type slave unit function but not connected to the multi-communication type slave unit function. Further, a phase shifter 110 that is connected to the multi-communication slave unit function but not connected to the single communication slave unit function may be provided.
 また、実施の形態1~実施の形態3では、アンテナ100が複数の移相器110を備える構成について説明したが、アンテナ100が備える移相器110が1つの場合にも同様の処理が行われる。即ち、実施の形態1~実施の形態3では、アンテナ100が備える移相器110が1つでも2つ以上でも、同じ構成のアンテナ100を用いれば良い。 In Embodiments 1 to 3, the configuration in which antenna 100 includes a plurality of phase shifters 110 has been described. However, the same processing is performed even when antenna 100 has one phase shifter 110. . That is, in Embodiments 1 to 3, the antenna 100 having the same configuration may be used regardless of whether one or more phase shifters 110 are provided in the antenna 100.
[実施の形態4]
 次に、実施の形態4について説明する。本実施の形態では、親機400がシングル通信方式しかサポートしておらず、シングル通信方式を用いることを子機側へ要求する状況下において、処理部120が実行するソフトウェア(即ち、処理装置部150が実行するソフトウェア)により、仮想的に複数の子機機能を設けて、1つの処理部120でありながら複数の子機相当の動作を実現する。
[Embodiment 4]
Next, a fourth embodiment will be described. In the present embodiment, the base unit 400 supports only the single communication method, and the software executed by the processing unit 120 (that is, the processing device unit) in a situation where the single device is requested to use the single communication method. With the software executed by 150, a plurality of slave unit functions are virtually provided, and an operation equivalent to the plurality of slave units is realized while being one processing unit 120.
 図13(a)は、本実施の形態に係るアンテナ100の構成の一例を示す図であり、図13(b)は、比較例として、シングル通信方式を採用した場合の従来のアンテナ500の構成例を示す図である。 FIG. 13A is a diagram illustrating an example of the configuration of the antenna 100 according to the present embodiment, and FIG. 13B illustrates the configuration of a conventional antenna 500 when a single communication method is employed as a comparative example. It is a figure which shows an example.
 図13(a)に示す構成は、図1に示す構成を簡略化したものであり、アレイアンテナ180を省略している。上述したように、1つの処理部120に対して2つの移相器110が接続される。また、処理装置部150は、移相器110aに対応する子機機能20a、移相器110bに対応する子機機能20bを有する。
 一方、図13(b)に示す比較例の構成では、2つの移相器510(移相器510a、移相器510b)のそれぞれに対応する処理部520(処理部520a、処理部520b)が存在する。つまり、処理部520は移相器510と同じ数必要ということを意味している。各処理部520(処理部520a、処理部520b)はそれぞれ、通信IF部530(通信IF部530a、通信IF部530b)、電源部540(電源部540a、電源部540b)、処理装置部550(処理装置部550a、処理装置部550b)、モータ制御/検出補助回路560(モータ制御/検出補助回路560a、モータ制御/検出補助回路560b)を備えている。なお、図13(b)に示す構成例では、図13(a)と同様に、アレイアンテナ180を省略している。
The configuration shown in FIG. 13A is a simplified version of the configuration shown in FIG. 1, and the array antenna 180 is omitted. As described above, two phase shifters 110 are connected to one processing unit 120. Further, the processing device unit 150 has a slave unit function 20a corresponding to the phase shifter 110a and a slave unit function 20b corresponding to the phase shifter 110b.
On the other hand, in the configuration of the comparative example shown in FIG. 13B, the processing units 520 (processing unit 520a and processing unit 520b) corresponding to the two phase shifters 510 (phase shifter 510a and phase shifter 510b) are provided. Exists. In other words, this means that the same number of processing units 520 as the phase shifters 510 are required. Each processing unit 520 (processing unit 520a, processing unit 520b) includes a communication IF unit 530 (communication IF unit 530a, communication IF unit 530b), a power supply unit 540 (power supply unit 540a, power supply unit 540b), and a processing device unit 550 ( A processing unit 550a, a processing unit 550b), and a motor control / detection auxiliary circuit 560 (motor control / detection auxiliary circuit 560a, motor control / detection auxiliary circuit 560b). In the configuration example shown in FIG. 13B, the array antenna 180 is omitted as in FIG.
 ここで、図1、図13(a)に示す例では2つの移相器110を示したが、本実施の形態では、1つの処理部120に対して3つ以上の移相器110を接続しても良い。
 また、本実施の形態では、制御装置の一例として、処理装置部150を用いている。さらに、処理部120または処理装置部150は、処理装置の一例としての機能を有している。さらに、本実施の形態では、処理部120が、制御装置の一例としての機能を有すると捉えることもできる。
 このように、本実施の形態ではシングル通信方式であっても1つの処理部120で制御できるため、アンテナ100の小型化や低コスト化が実現できる。
Here, in the example shown in FIG. 1 and FIG. 13A, two phase shifters 110 are shown, but in this embodiment, three or more phase shifters 110 are connected to one processing unit 120. You may do it.
In the present embodiment, the processing device unit 150 is used as an example of a control device. Furthermore, the processing unit 120 or the processing device unit 150 has a function as an example of a processing device. Furthermore, in the present embodiment, the processing unit 120 can be regarded as having a function as an example of a control device.
As described above, in the present embodiment, even if the single communication method is used, the single processing unit 120 can control the antenna 100, so that the antenna 100 can be reduced in size and cost.
<フレームフォーマットの説明>
 次に、本実施の形態において、親機400からアンテナ100に対して送信される信号のフレームフォーマットについて説明する。本実施の形態では、図3(a)、(b)に示すフレームフォーマットの信号が、親機400からアンテナ100に対して送信される。
<Description of frame format>
Next, in the present embodiment, a frame format of a signal transmitted from base unit 400 to antenna 100 will be described. In the present embodiment, signals in the frame format shown in FIGS. 3A and 3B are transmitted from base unit 400 to antenna 100.
 そして、本実施の形態では、処理装置部150は、それぞれの子機に対応するユニークIDと、親機400から通知されたアドレスとを関連付けて記憶しておき、それぞれの移相器110ごとに子機機能を実現する。 In the present embodiment, the processing device unit 150 stores the unique ID corresponding to each child device and the address notified from the parent device 400 in association with each other, and for each phase shifter 110. Realize the slave function.
 また、本実施の形態において、例えば、移相器110aのチルト角を設定する場合、親機400は、AISGコマンド種別をシングル通信方式のコマンドである「Set Tilt」にして、設定するチルト角の値を実データに格納する。そして、親機400は、移相器110aに対応する子機に割り振ったアドレスを宛先として、アンテナ100にフレームを送信する。 In this embodiment, for example, when setting the tilt angle of phase shifter 110a, base unit 400 sets the AISG command type to “Set Tilt” which is a command of the single communication method, and sets the tilt angle to be set. Store the value in real data. Then, base unit 400 transmits a frame to antenna 100 with the address assigned to the slave unit corresponding to phase shifter 110a as the destination.
<処理装置部の機能構成>
 次に、本実施の形態に係る処理装置部150の機能構成について説明する。図14は、本実施の形態に係る処理装置部150の機能構成の一例を示すブロック図である。処理装置部150は、親機400からの信号を受信する受信処理部191と、受信した信号のコマンドを実行するコマンド処理部192と、親機400に対して応答を行う応答実行部193とを備える。また、処理装置部150は、子機機能部20を備える。図13(a)に示す子機機能20a、子機機能20bのそれぞれが、図14に示す子機機能部20に該当する。
<Functional configuration of processing unit>
Next, a functional configuration of the processing device unit 150 according to the present embodiment will be described. FIG. 14 is a block diagram illustrating an example of a functional configuration of the processing device unit 150 according to the present embodiment. The processing device unit 150 includes a reception processing unit 191 that receives a signal from the parent device 400, a command processing unit 192 that executes a command of the received signal, and a response execution unit 193 that makes a response to the parent device 400. Prepare. In addition, the processing device unit 150 includes a handset function unit 20. Each of the handset function 20a and the handset function 20b shown in FIG. 13A corresponds to the handset function section 20 shown in FIG.
 受信処理部191は、通信IF部130を介して、親機400から信号を受信する。 The reception processing unit 191 receives a signal from the parent device 400 via the communication IF unit 130.
 コマンド処理部192は、親機400からコマンドを受信した場合に、それぞれの子機(即ち、子機機能部20)ごとに子機宛のコマンドであるか否か、即ち、複数の移相器110のいずれの移相器110宛のコマンドであるか否かを移相器110ごとに判定する。具体的には、コマンド処理部192は、親機400から受信したフレームのアドレスと各子機に割り振られたアドレスとを順番に比較していき、宛先となる子機が存在するか否かを判定する。そして、コマンドの宛先となる子機が存在すれば、コマンド処理部192は、宛先の子機に対してそのコマンドの処理を実行させる。言い換えると、コマンド処理部192は、宛先の子機に対して、制御信号に含まれるコマンドを振り分けて、コマンドの処理を実行させる。また、コマンド処理部192は、コマンドの処理を行ったことを親機400へ応答するための応答信号を生成する。 When the command processing unit 192 receives a command from the parent device 400, the command processing unit 192 determines whether each child device (that is, the child device function unit 20) is a command addressed to the child device, that is, a plurality of phase shifters. It is determined for each phase shifter 110 whether the command is for any of the 110 phase shifters 110. Specifically, the command processing unit 192 sequentially compares the address of the frame received from the parent device 400 with the address assigned to each child device, and determines whether or not there is a destination child device. judge. If there is a slave device that is the destination of the command, the command processing unit 192 causes the destination slave device to execute processing of the command. In other words, the command processing unit 192 distributes the command included in the control signal to the destination slave unit and executes the command processing. The command processing unit 192 generates a response signal for responding to the parent device 400 that the command processing has been performed.
 応答実行部193は、コマンド処理部192にて応答信号が生成されると、生成された応答信号を、通信IF部130を介して親機400へ送信する。
 ここで、AISG規格では、例えば、上述したように、親機400が移相器110のユニークIDを特定するのにブロードキャストでフレームを送信した場合など、複数の子機が応答する場合がある。この場合、従来の構成では、応答信号が同時に発信されて応答信号同士が衝突するため、一次局(親機)には正常な信号が届かない。例えば、図13(b)の比較例の構成において、処理装置部550a及び処理装置部550bが応答する場合には、通信IF部230を通過した後に応答信号同士が衝突する。一次局においては、正常ではない信号を受信したことを識別してそれに応じた処理を行うため、このような動作で問題は生じない。
When the command processing unit 192 generates a response signal, the response execution unit 193 transmits the generated response signal to the parent device 400 via the communication IF unit 130.
Here, in the AISG standard, for example, as described above, a plurality of slave units may respond, for example, when the master unit 400 transmits a frame by broadcast to identify the unique ID of the phase shifter 110. In this case, in the conventional configuration, since the response signals are transmitted simultaneously and the response signals collide with each other, a normal signal does not reach the primary station (master unit). For example, in the configuration of the comparative example in FIG. 13B, when the processing device unit 550a and the processing device unit 550b respond, the response signals collide after passing through the communication IF unit 230. Since the primary station identifies that an abnormal signal has been received and performs a process corresponding thereto, there is no problem in such an operation.
 ただし、本実施の形態では、複数の応答信号が生成された場合においても、通信IF部130が1つであるため、複数の信号を同時に送信することができない。すなわち、応答信号同士が実際に衝突しないこととなる。そこで、応答実行部193は、複数の応答信号が生成された場合、親機400において「正常ではない信号」であることを認識できるように処理を行う。具体的には、応答実行部193は、例えば、応答信号のデータを破壊したり、不正な信号と認識される特定のデータや通信規約に反するようなデータを生成したりして、親機400に対して応答を行う。ここでの応答処理は、正常ではない信号であることを親機400が認識可能なものであれば、どのような処理でも良い。 However, in the present embodiment, even when a plurality of response signals are generated, since there is only one communication IF unit 130, a plurality of signals cannot be transmitted simultaneously. That is, the response signals do not actually collide with each other. Therefore, when a plurality of response signals are generated, the response execution unit 193 performs processing so that the parent device 400 can recognize that the signal is not “normal”. Specifically, for example, the response execution unit 193 destroys the data of the response signal, or generates specific data that is recognized as an illegal signal or data that violates the communication protocol, so that the parent device 400 Respond to. The response process here may be any process as long as the base unit 400 can recognize that the signal is not normal.
 本実施の形態では、受信処理部191が受信手段の一例としての機能を有している。また、コマンド処理部192が処理実行手段の一例としての機能を有している。さらに、応答実行部193が応答手段の一例としての機能を有している。なお、処理部120が、制御装置の一例としての機能を有すると捉えた場合には、例えば、通信IF部130が受信手段の一例としての機能を有し、処理装置部150が処理実行手段及び応答手段の一例としての機能を有すると捉えることができる。 In the present embodiment, the reception processing unit 191 has a function as an example of a receiving unit. Further, the command processing unit 192 has a function as an example of a process execution unit. Further, the response execution unit 193 has a function as an example of response means. When the processing unit 120 is regarded as having a function as an example of a control device, for example, the communication IF unit 130 has a function as an example of a reception unit, and the processing device unit 150 is a processing execution unit and It can be understood that it has a function as an example of a response means.
<処理装置部の処理手順>
 次に、本実施の形態に係る処理装置部150の処理手順について説明する。図15は、本実施の形態に係る処理装置部150の処理手順の一例を示したフローチャートである。図15に示す処理は繰り返し実行される。
<Processing procedure of processing unit>
Next, a processing procedure of the processing device unit 150 according to the present embodiment will be described. FIG. 15 is a flowchart illustrating an example of a processing procedure of the processing device unit 150 according to the present embodiment. The process shown in FIG. 15 is repeatedly executed.
 受信処理部191は、親機400からのコマンドの受信待ちを行う。ここで、受信処理部191は、親機400から信号を受信し(ステップ501)、信号(コマンド)を受信したか否かを判定する(ステップ502)。コマンドを受信したと判定されなければ(ステップ502でNo)、本処理フローは終了し、受信処理部191は引き続きコマンドの受信待ちを行う。 The reception processing unit 191 waits for reception of a command from the parent device 400. Here, the reception processing unit 191 receives a signal from the parent device 400 (step 501), and determines whether a signal (command) is received (step 502). If it is not determined that a command has been received (No in step 502), the processing flow ends, and the reception processing unit 191 continues to wait for reception of a command.
 一方、コマンドを受信したと判定された場合(ステップ502でYes)、次に、コマンド処理部192によるコマンド処理が行われる。ここで、コマンド処理部192は、処理部120にて仮想的に動作する有効な子機の数(n)だけ、後述するステップ503~ステップ507の処理を繰り返し実行する。まず、コマンド処理部192は、有効な子機を1つ選択し、受信した信号が、選択した子機宛の信号であるか否かを判定する(ステップ503)。ここでは、コマンド処理部192は、信号の宛先とされるアドレスが、選択した子機に対して割り振られたアドレスと一致するか否かを判定し、両アドレスが一致するか、ブロードキャストを表すアドレスであれば、選択した子機宛の信号であると判定する。 On the other hand, if it is determined that a command has been received (Yes in step 502), then command processing by the command processing unit 192 is performed. Here, the command processing unit 192 repeatedly executes the processing from step 503 to step 507 described later for the number (n) of valid child devices that virtually operate in the processing unit 120. First, the command processing unit 192 selects one valid slave unit, and determines whether or not the received signal is a signal addressed to the selected slave unit (step 503). Here, the command processing unit 192 determines whether or not the address that is the destination of the signal matches the address assigned to the selected slave unit, and the two addresses match or an address that indicates broadcast If so, it is determined that the signal is addressed to the selected slave unit.
 ここで、選択した子機宛の信号ではないと判定された場合(ステップ503でNo)、コマンド処理部192は、次の有効な子機を1つ選択する。
 一方、選択した子機宛の信号であると判定された場合(ステップ503でYes)、コマンド処理部192は、そのコマンドの通信方式が、共通方式またはシングル通信方式であるか、マルチ通信方式またはAISG規格にて未定義のものであるかを判定する(ステップ504)。ここで、例えば、子機のユニークIDを特定するためにブロードキャストで送信されるフレームは、共通方式のものと判定される。また、例えば、「Set Tilt」のコマンドは、シングル通信方式と判定される。
If it is determined that the signal is not addressed to the selected slave unit (No in step 503), the command processing unit 192 selects one next valid slave unit.
On the other hand, if it is determined that the signal is addressed to the selected child device (Yes in step 503), the command processing unit 192 determines whether the communication method of the command is a common method or a single communication method, a multi-communication method, It is determined whether it is undefined in the AISG standard (step 504). Here, for example, a frame transmitted by broadcast in order to specify the unique ID of the child device is determined to be of the common method. Further, for example, the command “Set Tilt” is determined to be a single communication method.
 ステップ504において、コマンドの通信方式が共通方式またはシングル通信方式であると判定された場合、コマンド処理部192は、宛先の子機に対してコマンドを振り分けて、コマンドの処理を実行させる(ステップ505)。コマンドを実行することにより、宛先の子機に対応する移相器110に対する処理が行われる。一方、コマンドの通信方式がマルチ通信方式または未定義であると判定された場合、コマンド処理部192は、エラーと判定する(ステップ506)。ステップ505またはステップ506の後、コマンド処理部192は、応答信号を生成する(ステップ507)。ただし、例えば全ての子機に対するリセットコマンドのように、コマンドによっては応答信号を生成せずに終了するものも存在する。そして、ステップ507の後、コマンド処理部192は、まだ選択していない他の子機を1つ選択する。
 このようにして、コマンド処理部192は、有効な子機の数(n)だけ、ステップ503~ステップ507の処理を実行する。そして、全ての子機に対して処理が終了すると、次のステップ508へ移行する。
If it is determined in step 504 that the command communication method is the common method or the single communication method, the command processing unit 192 distributes the command to the destination slave unit and executes the command processing (step 505). ). By executing the command, processing for the phase shifter 110 corresponding to the destination child device is performed. On the other hand, when it is determined that the command communication method is the multi-communication method or undefined, the command processing unit 192 determines an error (step 506). After step 505 or step 506, the command processing unit 192 generates a response signal (step 507). However, some commands, such as a reset command for all the slave units, are terminated without generating a response signal. After step 507, the command processing unit 192 selects one other slave unit that has not yet been selected.
In this way, the command processing unit 192 executes the processing from step 503 to step 507 by the number (n) of valid slave units. When the processing is completed for all the slave units, the process proceeds to the next step 508.
 次に、応答実行部193は、コマンド処理部192にて生成された応答信号があるか否かを判定する(ステップ508)。応答信号がないと判定された場合(ステップ508でNo)、本処理フローは終了する。一方、応答信号があると判定された場合(ステップ508でYes)、応答実行部193は、複数の子機が応答したか否か、即ち、複数の応答信号が生成されたか否かを判定する(ステップ509)。 Next, the response execution unit 193 determines whether there is a response signal generated by the command processing unit 192 (step 508). If it is determined that there is no response signal (No in step 508), the process flow ends. On the other hand, when it is determined that there is a response signal (Yes in step 508), the response execution unit 193 determines whether a plurality of slave units have responded, that is, whether a plurality of response signals have been generated. (Step 509).
 ステップ509で、複数の子機が応答していないと判定された場合(ステップ509でNo)、生成された応答信号は1つであり、応答実行部193は、生成された応答信号を、通信IF部130を介して親機400へ送信する(ステップ510)。そして、本処理フローは終了する。一方、複数の子機が応答したと判定された場合(ステップ509でYes)、生成された応答信号は複数であり、応答実行部193は、親機400が正常ではない信号であることを認識するように、生成された応答信号に対して処理を実行する(ステップ511)。そして、ステップ510に移行し、応答実行部193は、ステップ511で処理された応答信号を親機400に送信し、本処理フローは終了する。 When it is determined in step 509 that a plurality of slave units are not responding (No in step 509), the generated response signal is one, and the response execution unit 193 communicates the generated response signal. The data is transmitted to base unit 400 via IF unit 130 (step 510). Then, this processing flow ends. On the other hand, when it is determined that a plurality of slave units have responded (Yes in step 509), the generated response signals are plural, and the response execution unit 193 recognizes that the master unit 400 is an abnormal signal. Then, processing is performed on the generated response signal (step 511). Then, the process proceeds to step 510, where the response execution unit 193 transmits the response signal processed in step 511 to the parent device 400, and this processing flow ends.
 次に、図13(b)に示す比較例の構成における処理装置部550の処理について説明する。図16は、比較例の構成における処理装置部550の処理手順の一例を示したフローチャートである。図16に示す処理は、それぞれの処理装置部550(処理装置部550a、処理装置部550b)にて繰り返し実行される。 Next, processing of the processing unit 550 in the configuration of the comparative example shown in FIG. 13B will be described. FIG. 16 is a flowchart illustrating an example of a processing procedure of the processing device unit 550 in the configuration of the comparative example. The processing illustrated in FIG. 16 is repeatedly executed by each processing device unit 550 (processing device unit 550a and processing device unit 550b).
 処理装置部550は、親機400からのコマンドの受信待ちを行う。ここで、処理装置部550は、親機400から信号を受信し(ステップ601)、信号(コマンド)を受信したか否かを判定する(ステップ602)。コマンドを受信したと判定されなければ(ステップ602でNo)、本処理フローは終了する。 The processing device unit 550 waits for reception of a command from the parent device 400. Here, the processing unit 550 receives a signal from the parent device 400 (step 601), and determines whether or not a signal (command) is received (step 602). If it is not determined that a command has been received (No in step 602), the process flow ends.
 一方、コマンドを受信したと判定された場合(ステップ602でYes)、次に、処理装置部550によるコマンド処理が行われる。ここで、処理装置部550は、受信した信号が、自身宛の信号であるか否かを判定する(ステップ603)。ここでは、処理装置部550は、コマンドの宛先とされるアドレスが、自身の子機に割り振られたアドレスと一致するか否かを判定し、両アドレスが一致するか、ブロードキャストを表すアドレスであれば、自身宛の信号であると判定する。 On the other hand, if it is determined that a command has been received (Yes in step 602), then the command processing by the processing unit 550 is performed. Here, the processor unit 550 determines whether or not the received signal is a signal addressed to itself (step 603). Here, the processor unit 550 determines whether or not the address that is the destination of the command matches the address assigned to its own slave unit, and if both addresses match or indicates an address indicating broadcast. For example, it is determined that the signal is for itself.
 自身宛の信号であると判定された場合(ステップ603でYes)、処理装置部550は、そのコマンドの通信方式が共通方式またはシングル通信方式であるか、マルチ通信方式またはAISG規格にて未定義のものであるかを判定する(ステップ604)。コマンドの通信方式が共通方式またはシングル通信方式であると判定された場合、処理装置部550は、そのコマンドを実行する(ステップ605)。一方、コマンドの通信方式がマルチ通信方式または未定義であると判定された場合、処理装置部550は、エラーと判定する(ステップ606)。ステップ605またはステップ606の後、処理装置部550は、応答信号を生成する(ステップ607)。 If it is determined that the signal is addressed to itself (Yes in step 603), the processing unit 550 determines whether the communication method of the command is a common method or a single communication method, or is not defined in the multi-communication method or the AISG standard. (Step 604). When it is determined that the command communication method is the common method or the single communication method, the processing device unit 550 executes the command (step 605). On the other hand, if it is determined that the command communication method is the multi-communication method or undefined, the processing unit 550 determines an error (step 606). After step 605 or step 606, the processing unit 550 generates a response signal (step 607).
 ステップ603で自身宛の信号ではないと判定された場合(ステップ603でNo)、またはステップ607の後、処理装置部550は、生成した応答信号があるか否かを判定する(ステップ608)。ステップ607で応答信号を生成していれば、ステップ608で肯定の判断(Yes)がされ、処理装置部550は、応答信号を親機400へ送信する(ステップ609)。ここで、複数の処理装置部550で応答信号が生成されていれば、親機400への伝送路上で応答信号同士が衝突するため、親機400には正常な信号が届かないこととなる。ステップ609の後、または応答信号がないと判定された場合(ステップ608でNo)、本処理フローは終了する。 If it is determined in step 603 that the signal is not addressed to itself (No in step 603), or after step 607, the processing unit 550 determines whether there is a generated response signal (step 608). If a response signal is generated in step 607, an affirmative determination (Yes) is made in step 608, and the processing unit 550 transmits the response signal to the parent device 400 (step 609). Here, if response signals are generated by a plurality of processing device units 550, the response signals collide on the transmission path to base unit 400, so that a normal signal does not reach base unit 400. After step 609 or when it is determined that there is no response signal (No in step 608), this processing flow ends.
 このように、比較例の構成では、親機400から信号が送信された場合、移相器210ごとに設けられた各処理部220が自身宛の信号か否かを判定して処理を実行する。また、複数の応答信号が生成された場合には、応答信号同士が衝突して親機400には正常な信号が届かない。
 一方、本実施の形態では、親機400から信号が送信された場合、図15に示すように、処理装置部150が子機宛の信号か否かを子機ごとに順番に判定を行い、該当する子機宛の信号であった場合、コマンドを実行するとともに応答信号を生成する。また、応答信号が複数ある場合、処理装置部150は、正常ではない信号であることを認識させるための処理を行い、親機400に応答を行う。このように応答することで、親機400は正常ではない信号を受信することとなり、応答信号同士が実際に衝突する比較例の構成と同等の動作が実現される。
As described above, in the configuration of the comparative example, when a signal is transmitted from base unit 400, each processing unit 220 provided for each phase shifter 210 determines whether the signal is addressed to itself and executes the process. . Further, when a plurality of response signals are generated, the response signals collide with each other, and a normal signal does not reach the base unit 400.
On the other hand, in the present embodiment, when a signal is transmitted from the parent device 400, as shown in FIG. 15, whether or not the processing unit 150 is a signal addressed to the child device is sequentially determined for each child device, If it is a signal addressed to the corresponding slave unit, the command is executed and a response signal is generated. When there are a plurality of response signals, the processing device unit 150 performs processing for recognizing that the signal is not normal, and responds to the parent device 400. By responding in this way, base unit 400 receives an abnormal signal, and an operation equivalent to the configuration of the comparative example in which the response signals actually collide is realized.
 以上説明したように、実施の形態4では、親機400がシングル通信方式しかサポートしていない状況下で、1つの処理部120に対して複数の移相器110が接続されて、親機400からの制御命令に従って処理が実行される。本実施の形態に係るアンテナ100を用いることにより、例えば、移相器110に対して1対1で処理部120を割り当てる比較例の構成と比べて、処理部120の数が減り、アンテナ100のコストダウンが実現される。また、アンテナ100の小型化に寄与することとなる。 As described above, in the fourth embodiment, a plurality of phase shifters 110 are connected to one processing unit 120 in a situation where the parent device 400 supports only a single communication method, and the parent device 400 The processing is executed in accordance with the control command from. By using the antenna 100 according to the present embodiment, for example, the number of processing units 120 is reduced compared to the configuration of the comparative example in which the processing units 120 are assigned to the phase shifters 110 on a one-to-one basis. Cost reduction is realized. In addition, this contributes to the miniaturization of the antenna 100.
<アンテナ100の他の構成例>
 次に、本実施の形態に係るアンテナ100の他の構成例について説明する。図17(a)~(c)は、本実施の形態に係るアンテナ100の他の構成例を示した図である。
<Another configuration example of the antenna 100>
Next, another configuration example of the antenna 100 according to this embodiment will be described. FIGS. 17A to 17C are diagrams showing another configuration example of the antenna 100 according to the present embodiment.
 図17(a)に示す構成は、図13(a)に示す構成と比較して、移相器110と同じ数の通信IF部130(図17(a)に示す例では、通信IF部130a、通信IF部130b)を設けた構成である。このような構成において、複数の応答信号が生成された場合、応答信号は、宛先とされた子機ごと(即ち、移相器110ごと)の通信IF部130を介して、親機400に送信される。そのため、通信IF部130を通過した後に応答信号同士が実際に衝突することとなる。即ち、処理装置部150は、正常ではない信号であることを親機400に認識させるための処理を行わなくて良いため、図15のステップ509及びステップ511の処理は不要になる。 The configuration shown in FIG. 17A has the same number of communication IF units 130 as the phase shifter 110 compared to the configuration shown in FIG. 13A (in the example shown in FIG. 17A, the communication IF unit 130a). The communication IF unit 130b) is provided. In such a configuration, when a plurality of response signals are generated, the response signals are transmitted to the base unit 400 via the communication IF unit 130 for each slave unit (that is, for each phase shifter 110) as a destination. Is done. Therefore, the response signals actually collide after passing through the communication IF unit 130. That is, the processing device unit 150 does not need to perform processing for causing the base unit 400 to recognize that the signal is not normal, and thus the processing in step 509 and step 511 in FIG. 15 is not necessary.
 また、図17(b)に示す構成は、図13(a)に示す構成と比較して、切替回路170を設けない代わりに、移相器110と同じ数のモータ制御/位置検出補助回路160(図17(b)に示す例では、モータ制御/位置検出補助回路160a、モータ制御/位置検出補助回路160b)を設けた構成である。ここで、モータ制御/位置検出補助回路160は複数の移相器110を同時に制御することができない。そのため、図13(a)に示す構成のように切替回路170を設ける場合には、モータ制御/位置検出補助回路160の制御中に別の子機に対して親機400から制御命令が発行されると、処理装置部150は、そのコマンドを受けられないことを表す「Busy」リターンコードを応答する。そのため、親機400としては、同時に制御命令を発行しないようにするか、「Busy」リターンコードを受けた場合には、1つの制御命令が完了次第、次の制御命令を発行するような処理を行うこととなる。 In addition, in the configuration shown in FIG. 17B, the same number of motor control / position detection auxiliary circuits 160 as the phase shifters 110 are used instead of providing the switching circuit 170, as compared with the configuration shown in FIG. (In the example shown in FIG. 17B, the motor control / position detection auxiliary circuit 160a and the motor control / position detection auxiliary circuit 160b) are provided. Here, the motor control / position detection auxiliary circuit 160 cannot control a plurality of phase shifters 110 simultaneously. Therefore, when the switching circuit 170 is provided as in the configuration shown in FIG. 13A, a control command is issued from the master unit 400 to another slave unit during the control of the motor control / position detection auxiliary circuit 160. Then, the processor unit 150 responds with a “Busy” return code indicating that the command cannot be received. For this reason, the base unit 400 does not issue a control command at the same time, or when receiving a “Busy” return code, performs processing to issue the next control command as soon as one control command is completed. Will be done.
 一方、図17(b)に示す構成のように、モータ制御/位置検出補助回路160を移相器110と同じ数だけ設ける場合、処理部120は、同時に複数の移相器110を制御することができるようになる。このような構成の場合、処理装置部150は、信号の宛先となる移相器110に接続されたモータ制御/位置検出補助回路160に対して、信号を送信する。 On the other hand, when the same number of motor control / position detection auxiliary circuits 160 as the phase shifters 110 are provided as in the configuration shown in FIG. 17B, the processing unit 120 controls a plurality of phase shifters 110 simultaneously. Will be able to. In the case of such a configuration, the processing device unit 150 transmits a signal to the motor control / position detection auxiliary circuit 160 connected to the phase shifter 110 serving as a signal destination.
 さらに、図17(c)に示す構成は、図17(a)及び図17(b)に示す構成を組み合わせたものである。即ち、通信IF部130を移相器110と同じ数だけ設けるとともに、切替回路170を設けない代わりにモータ制御/位置検出補助回路160を移相器110と同じ数だけ設けた構成である。このような構成の場合も、図17(b)の場合と同様に、複数の応答信号が実際に衝突することとなるため、図15のステップ509及びステップ511の処理は不要になる。 Furthermore, the configuration shown in FIG. 17 (c) is a combination of the configurations shown in FIGS. 17 (a) and 17 (b). That is, the same number of communication IF units 130 as the phase shifters 110 are provided, and the same number of motor control / position detection auxiliary circuits 160 as the phase shifters 110 are provided instead of the switching circuit 170. Even in such a configuration, as in the case of FIG. 17B, a plurality of response signals actually collide, and therefore the processing of step 509 and step 511 in FIG. 15 becomes unnecessary.
 なお、本実施の形態では、処理部120に複数の移相器110が接続される構成について説明したが、処理部120に接続される移相器110が1つの場合にも、図15の処理手順により処理が行われる。即ち、処理部120に接続される移相器110が1つでも2つ以上でも、同じ構成の処理部120を用いれば良い。 In the present embodiment, the configuration in which a plurality of phase shifters 110 are connected to the processing unit 120 has been described. However, even when there is one phase shifter 110 connected to the processing unit 120, the processing of FIG. Processing is performed according to the procedure. That is, the processing unit 120 having the same configuration may be used regardless of whether one or more phase shifters 110 are connected to the processing unit 120.
[実施の形態5]
 次に、実施の形態5について説明する。実施の形態1~実施の形態4において、処理装置部150(処理部120)は、移相器110のチルト角を制御するRET(Remote Electrical Tilt)制御用の子機機能を有していた。一方、本実施の形態に係る処理装置部150は、RET制御用の子機機能の他に、アンテナ100に係る他の機能を制御するための子機機能を有する。
[Embodiment 5]
Next, a fifth embodiment will be described. In the first to fourth embodiments, the processing unit 150 (processing unit 120) has a slave function for RET (Remote Electrical Tilt) control that controls the tilt angle of the phase shifter 110. On the other hand, the processing apparatus unit 150 according to the present embodiment has a slave unit function for controlling other functions related to the antenna 100 in addition to the slave unit function for RET control.
 ここで、AISG規格には、RETと同じ通信規約で定義されるデバイス群として、AISG ExtensionデバイスやTMA(tower-mounted amplifiers)が規定されている。より具体的には、AISG Extensionデバイスとして、例えば、方位角ステアリングを調整するRAS(Remote Azimuth Steering)、方位角のビーム幅を調整するRAB(Remote Azimuth Beam-width)、温度センサを制御するATS(Antenna line device Temperature Sensor)等が規定されている。また、TMAは、鉄塔上部等に設置される増幅器としてAISG規格に規定されているデバイスである。 Here, in the AISG standard, AISG extension devices and TMA (tower-mounted amplifiers) are defined as a device group defined by the same communication protocol as RET. More specifically, as an AISG Extension device, for example, RAS (Remote Azimuth Steering) that adjusts the azimuth steering, RAB (Remote Azimuth Beam-width) that adjusts the beam width of the azimuth, and ATS ( Antenna (line) (device) Temperature (Sensor) etc. are specified. The TMA is a device defined in the AISG standard as an amplifier installed in the upper part of the steel tower.
 これらのRAS、RAB、ATS等のAISG ExtensionデバイスやTMAを制御する場合にも、図3(a)、(b)に示すフレームフォーマットの信号が用いられる。ここで、AISG規格では、例えば、RAS制御専用のコマンド、RAB制御専用のコマンド、ATS制御専用のコマンドも規定されているが、RET制御のコマンドと同じコマンドを用いて、RAS、RAB、ATS等を制御する場合もある。言い換えると、「AISGコマンド種別」に格納されるコマンドの番号として、RAS制御専用の番号、RAB制御専用の番号、ATS制御専用の番号が付与されるコマンドもあれば、RET制御のコマンドと同じ番号のコマンドによりRAS、RAB、ATS等を制御する場合もある。このように、RET制御のコマンドと同じ番号のコマンドを用いる場合には、コマンドの番号からは、どのデバイスを制御する信号であるのか判別できない。 Also in the case of controlling AISG Extension devices such as RAS, RAB, ATS, and TMA, signals in the frame format shown in FIGS. 3A and 3B are used. Here, in the AISG standard, for example, a command dedicated to RAS control, a command dedicated to RAB control, and a command dedicated to ATS control are also defined, but RAS, RAB, ATS, etc. are used by using the same command as the RET control command. May be controlled. In other words, as a command number stored in the “AISG command type”, there is a command to which a number dedicated to RAS control, a number dedicated to RAB control, a number dedicated to ATS control is given, or the same number as a command for RET control. In some cases, RAS, RAB, ATS, and the like are controlled by the command. As described above, when a command having the same number as that of the RET control command is used, it is impossible to determine which device is to be controlled from the command number.
 従来、RETに加えて、RAS、RAB、ATSを制御する場合には、例えば、RET制御用の処理部(基板)、RAS制御用の処理部、RAB制御用の処理部、ATS制御用の処理部が物理的に分かれており、親機400からの信号の宛先となる処理部にてコマンドの処理が実行される。
 また、例えば、「Vendor Specific Procedureコマンド」と呼ばれるコマンドを用いて、RAS、RAB、ATSを制御する場合もある。「Vendor Specific Procedureコマンド」は、ベンダーが自由に定義して良いとされるコマンドである。この「Vendor Specific Procedureコマンド」を特定の様式で送信することにより、RAS、RAB、ATSの制御が行われる。ただし、この「Vendor Specific Procedureコマンド」は、ベンダーが独自に定義するコマンドであるため、このコマンドを処理できるように、親機400及びアンテナ100の両方で予め対応しておくことが求められる。
Conventionally, when controlling RAS, RAB, and ATS in addition to RET, for example, a processing unit (substrate) for RET control, a processing unit for RAS control, a processing unit for RAB control, and a process for ATS control The units are physically separated, and the command processing is executed by the processing unit that is the destination of the signal from the parent device 400.
In addition, for example, RAS, RAB, and ATS may be controlled using a command called “Vendor Specific Procedure command”. The “Vendor Specific Procedure command” is a command that can be freely defined by the vendor. By transmitting this “Vendor Specific Procedure command” in a specific manner, RAS, RAB, and ATS are controlled. However, since this “Vendor Specific Procedure command” is a command uniquely defined by the vendor, it is required to support both the base unit 400 and the antenna 100 in advance so that the command can be processed.
 そこで、本実施の形態では、1つの処理部120が、RET制御用の子機機能の他に、RAS制御用の子機機能、RAB制御用の子機機能、ATS制御用の子機機能などのAISG ExtensionデバイスやTMAを制御するための子機機能を有する。そして、処理部120は、親機400からの信号を宛先の子機機能に振り分けて、コマンドの処理を実行させる。 Therefore, in this embodiment, one processing unit 120 has a RAS control slave unit function, a RAB control slave unit function, an ATS control slave unit function, etc. in addition to the RET control slave unit function. It has a handset function for controlling the AISG Extension device and TMA. Then, the processing unit 120 distributes the signal from the parent device 400 to the destination child device function, and causes the command processing to be executed.
 なお、以下では、処理装置部150は、上述したRAS制御用の子機機能、RAB制御用の子機機能、ATS制御用の子機機能を有するものとして説明する。ただし、本実施の形態に係る処理装置部150は、このような子機機能を有する構成に限られない。例えば、AISG規格には、RAS、RAB、ATSの他にもAISG Extensionデバイスが規定されている。本実施の形態に係る処理装置部150としては、RET制御用の子機機能の他に、どのようなAISG Extensionデバイス、TMAを制御するための子機機能を有しても良い。 In the following description, it is assumed that the processing unit 150 has the above-described slave unit function for RAS control, the slave unit function for RAB control, and the slave unit function for ATS control. However, the processing apparatus unit 150 according to the present embodiment is not limited to the configuration having such a slave function. For example, the AISG standard defines an AISG Extension device in addition to RAS, RAB, and ATS. The processing unit 150 according to the present embodiment may have a slave unit function for controlling any AISG Extension device and TMA in addition to the slave unit function for RET control.
 図18は、実施の形態5に係るアンテナ100の構成の一例を示す図である。本実施の形態に係るアンテナ100は、実施の形態1~4に係るアンテナの構成(図1に示す構成)に加えて、さらに、RAS装置113、RAB装置114、温度センサ115を有する。なお、図18に示す例では、処理装置部150は、RET制御用の子機機能について、実施の形態3に係る処理装置部150(図11に示す処理装置部150)と同様の子機機能を有しているものとして説明する。また、本実施の形態において、実施の形態1~4に係るアンテナの構成と同様のものについては、同じ符号を付してその詳細な説明を省略する。 FIG. 18 is a diagram illustrating an example of the configuration of the antenna 100 according to the fifth embodiment. Antenna 100 according to the present embodiment has RAS device 113, RAB device 114, and temperature sensor 115 in addition to the configuration of the antenna according to Embodiments 1 to 4 (configuration shown in FIG. 1). In the example illustrated in FIG. 18, the processing device unit 150 has the same slave device function as the processing device unit 150 according to Embodiment 3 (the processing device unit 150 illustrated in FIG. 11) with respect to the slave device function for RET control. It is assumed that it has In the present embodiment, the same components as those of the antennas according to Embodiments 1 to 4 are denoted by the same reference numerals, and detailed description thereof is omitted.
 RAS装置113は、アンテナ100の方位角ステアリングを調整する装置、言い換えると、アンテナ100におけるビーム方向を変更する装置である。より具体的には、RAS装置113は、例えば、方位角ステアリングの調整のためにアンテナ100の方位を制御するモータ等を有する。なお、方位角ステアリングの調整としては、アンテナ100の方位を制御する構成に限られず、例えば、放射面に置かれた金属体の方位を制御したり、電波の移相量を制御したりしても良い。 The RAS device 113 is a device that adjusts the azimuth steering of the antenna 100, in other words, a device that changes the beam direction at the antenna 100. More specifically, the RAS device 113 includes, for example, a motor that controls the direction of the antenna 100 in order to adjust the azimuth steering. The adjustment of the azimuth steering is not limited to the configuration for controlling the azimuth of the antenna 100. For example, the azimuth of the metal body placed on the radiation surface or the phase shift amount of the radio wave is controlled. Also good.
 RAB装置114は、方位角のビーム幅を調整する装置である。より具体的には、RAB装置114は、例えば、方位角のビーム幅調整のために放射面に置かれた金属体の方位を制御したり、電波の移相量を制御したりするモータ等を有する。
 温度センサ115は、アンテナ100自体の温度やアンテナ100の周囲の温度を検出するセンサである。
 なお、本実施の形態において、RAS装置113、RAB装置114、温度センサ115は、移相器110とは異なる他の機器の一例として用いられる。
The RAB device 114 is a device that adjusts the beam width of the azimuth angle. More specifically, the RAB device 114 controls, for example, a motor that controls the azimuth of the metal body placed on the radiation surface for adjusting the beam width of the azimuth angle, and controls the amount of radio wave phase shift. Have.
The temperature sensor 115 is a sensor that detects the temperature of the antenna 100 itself and the temperature around the antenna 100.
In the present embodiment, the RAS device 113, the RAB device 114, and the temperature sensor 115 are used as an example of another device different from the phase shifter 110.
 また、処理装置部150は、RET制御用のシングル通信方式のみに対応した子機機能(子機機能10a、子機機能10b)と、RET制御用のマルチ通信方式のみに対応した子機機能(子機機能10c)に加えて、RAS制御用の子機機能10d、RAB制御用の子機機能10e、ATS制御用の子機機能10fを有する。 The processing unit 150 also has a slave function (slave function 10a, slave function 10b) that supports only a single communication system for RET control, and a slave function that supports only a multi-communication system for RET control ( In addition to the slave unit function 10c), it has a slave unit function 10d for RAS control, a slave unit function 10e for RAB control, and a slave unit function 10f for ATS control.
 次に、実施の形態5に係る処理装置部150の処理手順について説明する。図19-1及び図19-2は、実施の形態5に係る処理装置部150の処理手順の一例を示したフローチャートである。図19-1及び図19-2に示す一連の処理は繰り返し実行される。 Next, a processing procedure of the processing device unit 150 according to the fifth embodiment will be described. 19A and 19B are flowcharts illustrating an example of a processing procedure of the processing device unit 150 according to the fifth embodiment. A series of processes shown in FIGS. 19A and 19B are repeatedly executed.
 受信処理部191は、親機400からのコマンドの受信待ちを行う。ここで、ステップ701及びステップ702の処理は、実施の形態3に係る図12のステップ401及びステップ402の処理と同じであるため、ここでは説明を省略する。ステップ702でコマンドを受信したと判定された場合(ステップ702でYes)、次に、コマンド処理部192によるコマンド処理が行われる。ここで、コマンド処理部192は、処理部120にて仮想的に動作する有効な子機の数(n)だけ、後述するステップ703~ステップ710の処理を繰り返し実行する。 The reception processing unit 191 waits for reception of a command from the parent device 400. Here, the processing in step 701 and step 702 is the same as the processing in step 401 and step 402 in FIG. 12 according to the third embodiment, and a description thereof will be omitted here. If it is determined in step 702 that the command has been received (Yes in step 702), then command processing by the command processing unit 192 is performed. Here, the command processing unit 192 repeatedly executes the processing from step 703 to step 710 to be described later for the number (n) of valid child devices that virtually operate in the processing unit 120.
 まず、コマンド処理部192は、有効な子機を1つ選択し、受信した信号が、選択した子機宛の信号であるか否かを判定する(ステップ703)。ここで、選択した子機宛の信号ではないと判定された場合(ステップ703でNo)、コマンド処理部192は、次の有効な子機を1つ選択する。 First, the command processing unit 192 selects one valid slave unit, and determines whether or not the received signal is a signal addressed to the selected slave unit (step 703). If it is determined that the signal is not addressed to the selected slave unit (No in step 703), the command processing unit 192 selects one next valid slave unit.
 一方、選択した子機宛の信号であると判定された場合(ステップ703でYes)、コマンド処理部192は、選択した子機が受け持つデバイスの種類を判定する(ステップ704)。選択した子機がRET制御用のシングル通信方式に対応する子機(即ち、子機機能10a、または子機機能10b)であれば、コマンド処理部192は、受信した信号のコマンドに従って、選択した子機に対して、シングルコマンドまたは共通コマンドの処理を実行させる(ステップ705)。コマンドを実行することにより、子機に対応する移相器110に対する処理が行われる。ただし、親機400からのコマンドが例えばマルチコマンドまたは未定義のもの等であれば、エラーと判定される。 On the other hand, when it is determined that the signal is addressed to the selected slave unit (Yes in step 703), the command processing unit 192 determines the type of device that the selected slave unit is responsible for (step 704). If the selected handset is a handset corresponding to the single communication method for RET control (that is, handset function 10a or handset function 10b), the command processing unit 192 selects according to the command of the received signal. The slave unit is caused to execute processing of a single command or a common command (step 705). By executing the command, processing for the phase shifter 110 corresponding to the slave unit is performed. However, if the command from the parent device 400 is, for example, a multi-command or an undefined command, it is determined as an error.
 また、ステップ704において、選択した子機がRET制御用のマルチ通信方式に対応する子機(即ち、子機機能10c)であれば、コマンド処理部192は、受信した信号のコマンドに従って、選択した子機に対して、マルチコマンドまたは共通コマンドの処理を実行させる(ステップ706)。コマンドを実行することにより、子機に対応する移相器110に対する処理が行われる。ただし、親機400からのコマンドが例えばシングルコマンドまたは未定義のもの等であれば、エラーと判定される。 In step 704, if the selected slave unit is a slave unit corresponding to the multi-communication system for RET control (that is, the slave unit function 10 c), the command processing unit 192 selects according to the command of the received signal. The slave unit is caused to execute multi-command or common command processing (step 706). By executing the command, processing for the phase shifter 110 corresponding to the slave unit is performed. However, if the command from the parent device 400 is, for example, a single command or an undefined command, it is determined as an error.
 さらに、ステップ704において、選択した子機がRAS制御用の子機(即ち、子機機能10d)であれば、コマンド処理部192は、受信した信号のコマンドに従って、選択した子機に対して、RAS制御のためのコマンドの処理を実行させる(ステップ707)。このコマンドには、上述したように、RET制御用のシングルコマンドやマルチコマンド、共通コマンドと同じ番号のコマンドや、RAS制御専用のコマンドが含まれる。コマンドを実行することにより、RAS装置113に対する処理が行われる。ただし、親機400からのコマンドが例えばRAS制御において未定義のもの等であれば、エラーと判定される。 Furthermore, in step 704, if the selected slave unit is a slave unit for RAS control (that is, the slave unit function 10d), the command processing unit 192 applies the selected slave unit to the selected slave unit according to the command of the received signal. Command processing for RAS control is executed (step 707). As described above, this command includes a single command and a multicommand for RET control, a command having the same number as the common command, and a command dedicated to RAS control. By executing the command, processing for the RAS device 113 is performed. However, if the command from the parent device 400 is, for example, an undefined command in the RAS control, it is determined as an error.
 さらに、ステップ704において、選択した子機がRAB制御用の子機(即ち、子機機能10e)であれば、コマンド処理部192は、受信した信号のコマンドに従って、選択した子機に対して、RAB制御のためのコマンドの処理を実行させる(ステップ708)。このコマンドには、RET制御用のシングルコマンドやマルチコマンド、共通コマンドと同じ番号のコマンドや、RAB制御専用のコマンドが含まれる。コマンドを実行することにより、RAB装置114に対する処理が行われる。ただし、親機400からのコマンドが例えばRAB制御において未定義のもの等であれば、エラーと判定される。 Further, in step 704, if the selected slave unit is a slave unit for RAB control (that is, the slave unit function 10e), the command processing unit 192 applies the selected slave unit to the selected slave unit according to the command of the received signal. Command processing for RAB control is executed (step 708). This command includes a single command and a multiple command for RET control, a command having the same number as the common command, and a command dedicated to RAB control. By executing the command, processing for the RAB device 114 is performed. However, if the command from the base unit 400 is, for example, an undefined command in the RAB control, it is determined as an error.
 さらに、ステップ704において、選択した子機がATS制御用の子機(即ち、子機機能10f)であれば、コマンド処理部192は、受信した信号のコマンドに従って、選択した子機に対して、ATS制御のためのコマンドの処理を実行させる(ステップ709)。このコマンドには、RET制御用のシングルコマンドやマルチコマンド、共通コマンドと同じ番号のコマンドや、ATS制御専用のコマンドが含まれる。コマンドを実行することにより、温度センサ115に対する処理が行われる。ただし、親機400からのコマンドが例えばATS制御において未定義のもの等であれば、エラーと判定される。 Further, in step 704, if the selected slave unit is the slave unit for ATS control (that is, the slave unit function 10f), the command processing unit 192 applies the selected slave unit to the selected slave unit according to the command of the received signal. Command processing for ATS control is executed (step 709). This command includes a single command and a multiple command for RET control, a command having the same number as the common command, and a command dedicated to ATS control. By executing the command, processing for the temperature sensor 115 is performed. However, if the command from the base unit 400 is, for example, an undefined command in ATS control, it is determined as an error.
 ステップ705、ステップ706、ステップ707、ステップ708、またはステップ709の後、コマンド処理部192は、応答信号を生成する(ステップ710)。そして、ステップ710の後、コマンド処理部192は、まだ選択していない他の子機を1つ選択する。
 このようにして、コマンド処理部192は、有効な子機の数(n)だけ、ステップ703~ステップ710の処理を実行する。そして、全ての子機に対して処理が終了すると、次のステップ711へ移行する。
After step 705, step 706, step 707, step 708, or step 709, the command processing unit 192 generates a response signal (step 710). After step 710, the command processing unit 192 selects one other child device that has not yet been selected.
In this way, the command processing unit 192 executes the processing from step 703 to step 710 by the number of valid slave units (n). When the processing is completed for all the slave units, the process proceeds to the next step 711.
 次に、応答実行部193による応答処理が行われる。ステップ711~ステップ714の処理は、図12のステップ408~ステップ411の処理と同じであるため、ここでは説明を省略する。 Next, response processing by the response execution unit 193 is performed. Since the processing from step 711 to step 714 is the same as the processing from step 408 to step 411 in FIG. 12, the description thereof is omitted here.
 このように、実施の形態5において、処理装置部150は、RET制御用の子機機能の他に、他の機能を制御するための子機機能を有する。本実施の形態に係るアンテナ100を用いることにより、例えば、RET制御、RAS制御、RAB制御、ATS制御のそれぞれに対して別個の処理部120を割り当てる構成と比べて、処理部120の数が減り、アンテナ100のコストダウンが実現される。また、アンテナ100の小型化に寄与することとなる。さらに、本実施の形態に係るアンテナ100を用いることにより、「Vendor Specific Procedureコマンド」を処理できるように親機400及びアンテナ100の両方に対応させなくても良い。 As described above, in the fifth embodiment, the processing unit 150 has a slave unit function for controlling other functions in addition to the slave unit function for RET control. By using the antenna 100 according to the present embodiment, for example, the number of processing units 120 is reduced compared to a configuration in which separate processing units 120 are assigned to each of RET control, RAS control, RAB control, and ATS control. Thus, the cost of the antenna 100 can be reduced. In addition, this contributes to the miniaturization of the antenna 100. Furthermore, by using the antenna 100 according to the present embodiment, it is not necessary to correspond to both the parent device 400 and the antenna 100 so that the “Vendor SpecificedProcedure command” can be processed.
 また、本実施の形態では、処理装置部150は、RET制御用のシングル通信方式のみに対応した子機機能(子機機能10a、子機機能10b)と、RET制御用のマルチ通信方式のみに対応した子機機能(子機機能10c)を備えることとしたが、このような構成に限られない。処理装置部150は、RET制御用の子機機能として、どのような子機機能を有していても良い。例えば、処理装置部150が、RET制御用の子機機能としてシングル通信方式に対応した1つの子機機能のみを有する場合に、さらに、RAS制御用の子機機能、RAB制御用の子機機能、ATS制御用の子機機能等を有することとしても良い。また、例えば、処理装置部150が、RET制御用の子機機能としてマルチ通信方式に対応した1つの子機機能のみを有する場合に、さらに、RAS制御用の子機機能、RAB制御用の子機機能、ATS制御用の子機機能等を有することとしても良い。 Further, in the present embodiment, the processing unit 150 is provided only for the slave function (slave function 10a, slave function 10b) that supports only the single communication method for RET control and the multi-communication method for RET control. Although the corresponding slave unit function (slave unit function 10c) is provided, it is not limited to such a configuration. The processing unit 150 may have any slave unit function as a slave unit function for RET control. For example, when the processing unit 150 has only one slave unit function corresponding to the single communication method as the slave unit function for RET control, the slave unit function for RAS control and the slave unit function for RAB control are further included. It may have a slave function for ATS control. Further, for example, when the processing unit 150 has only one slave unit function corresponding to the multi-communication method as a slave unit function for RET control, a slave unit function for RAS control and a slave unit for RAB control are further provided. It is good also as having a machine function, a handset function for ATS control, etc.
 また、実施の形態1~実施の形態5において、アレイアンテナ180の形態は異なる周波数帯用のアンテナ素子を一直線上に配置したものに限らず、例えば同じ周波数帯域の複数のアンテナ素子からなるアレイアンテナを複数、異なる方向に配置してもよい。また、例えば、アンテナ素子181a~181d、アンテナ素子182a~182dは、複数のアンテナ素子を有するサブアレイであっても良い。さらに、アレイアンテナ180の指向性を設定する移相器110についても、機械的に線路長を変える移相器や、誘電体を用いたものなど、他の形態の移相器を用いても良い。 In the first to fifth embodiments, the form of the array antenna 180 is not limited to one in which antenna elements for different frequency bands are arranged in a straight line. For example, an array antenna composed of a plurality of antenna elements in the same frequency band. May be arranged in different directions. Further, for example, the antenna elements 181a to 181d and the antenna elements 182a to 182d may be a subarray having a plurality of antenna elements. Furthermore, as the phase shifter 110 for setting the directivity of the array antenna 180, other forms of phase shifters such as a phase shifter that mechanically changes the line length or a dielectric material may be used. .
 なお、上記では種々の実施形態および変形例を説明したが、これらの実施形態や変形例どうしを組み合わせて構成してももちろんよいし、その他、位置情報や同期、RF(Radio Frequency)の送信電力の監視やVSWR(Voltage Standing Wave Ratio)の監視など、AISG Extensionデバイスで規定されている各種センサや装置などと組み合わせてもよい。
 また、本開示は上記の実施形態に何ら限定されるものではなく、本開示の要旨を逸脱しない範囲で種々の形態で実施することができる。
Although various embodiments and modifications have been described above, it is of course possible to combine these embodiments and modifications, and in addition, position information, synchronization, and RF (Radio Frequency) transmission power It may be combined with various sensors and devices defined by the AISG Extension device such as monitoring of VSWR (Voltage Standing Wave Ratio).
Further, the present disclosure is not limited to the above-described embodiment, and can be implemented in various forms without departing from the gist of the present disclosure.
10…子機機能部、20…子機機能部、100…アンテナ、110,110a,110b…移相器、113…RAS装置、114…RAB装置、115…温度センサ、120…処理部、130…通信IF部、140…電源部、150…処理装置部、160…モータ制御/位置検出補助回路、161…モータ制御回路、162…位置検出補助回路、170,170a,170b…切替回路、180,180-1,180-2…アレイアンテナ、181a~181d,182a~182d…アンテナ素子、191…受信処理部、192…コマンド処理部、193…応答実行部、400…親機 DESCRIPTION OF SYMBOLS 10 ... Slave unit function part, 20 ... Slave unit function part, 100 ... Antenna, 110, 110a, 110b ... Phase shifter, 113 ... RAS apparatus, 114 ... RAB apparatus, 115 ... Temperature sensor, 120 ... Processing part, 130 ... Communication IF unit 140 ... Power supply unit 150 ... Processing device unit 160 ... Motor control / position detection auxiliary circuit 161 ... Motor control circuit 162 ... Position detection auxiliary circuit 170, 170a, 170b ... Switch circuit 180,180 -1, 180-2 ... Array antenna, 181a to 181d, 182a to 182d ... Antenna element, 191 ... Reception processing unit, 192 ... Command processing unit, 193 ... Response execution unit, 400 ... Master unit

Claims (13)

  1.  複数のアンテナ素子が送受信する送受信信号の位相をずらすための1つ以上の移相器を送信機からの制御信号に基づいて制御する複数の子機機能部を有する制御装置であって、
     前記複数の子機機能部は、1つの子機機能部に1つの移相器しか割り当てられないシングル通信方式に従った制御信号を処理可能な、前記1つ以上の移相器の移相器毎に設けられたシングル通信方式対応の子機機能部と、当該1つ以上の移相器に対して設けられた、1つの子機機能部に1つ以上の移相器を割り当てることのできるマルチ通信方式に従った制御信号を処理可能な少なくとも1つのマルチ通信方式対応の子機機能部と、であり、
     前記送信機から制御信号を受信する受信手段と、
     前記受信手段が前記送信機からシングル通信方式及びマルチ通信方式の何れかの通信方式に従った制御信号を受信した場合に、当該制御信号の宛先がシングル通信方式対応及びマルチ通信方式対応の何れの子機機能部であるかを判定し、宛先がシングル通信方式対応の子機機能部である場合には当該子機機能部に対してシングル通信方式に従った制御信号に基づく処理を実行させ、宛先がマルチ通信方式対応の子機機能部である場合には当該子機機能部に対してマルチ通信方式に従った制御信号に基づく処理を実行させる処理実行手段と
    を備える制御装置。
    A control device having a plurality of slave unit function units for controlling one or more phase shifters for shifting the phases of transmission and reception signals transmitted and received by a plurality of antenna elements based on a control signal from a transmitter,
    The plurality of slave unit function units can process a control signal in accordance with a single communication method in which only one phase shifter is assigned to one slave unit function unit, and the phase shifter of the one or more phase shifters One or more phase shifters can be allocated to a single communication function compatible slave unit function unit provided for each and one or more phase shifter units provided for the one or more phase shifters. And at least one slave unit function unit corresponding to the multi-communication system capable of processing a control signal according to the multi-communication system,
    Receiving means for receiving a control signal from the transmitter;
    When the receiving means receives a control signal according to one of the single communication scheme and the multi-communication scheme from the transmitter, the destination of the control signal is either a single communication scheme-compatible or a multi-communication scheme compatible Determine whether it is a slave unit function unit, if the destination is a slave unit function unit compatible with the single communication method, let the slave unit function unit execute processing based on the control signal according to the single communication method, A control device comprising processing execution means for causing a slave unit function unit to execute processing based on a control signal in accordance with the multi-communication method when the destination is a slave unit function unit compatible with the multi-communication method.
  2.  前記制御装置は、さらに、前記1つ以上の移相器とは別の移相器に対して設けられたシングル通信方式対応の子機機能部を有し、当該別の移相器は、マルチ通信方式対応の子機機能部には接続されないこと
    を特徴とする請求項1に記載の制御装置。
    The control device further includes a slave unit function unit corresponding to a single communication method provided for a phase shifter different from the one or more phase shifters, and the other phase shifter The control device according to claim 1, wherein the control device is not connected to a communication function compatible handset function unit.
  3.  前記制御装置は、さらに、前記1つ以上の移相器とは別の移相器に対して設けられたマルチ通信方式対応の子機機能部を有し、当該別の移相器は、シングル通信方式対応の子機機能部には接続されないこと
    を特徴とする請求項1又は2に記載の制御装置。
    The control apparatus further includes a slave unit function unit corresponding to a multi-communication system provided for a phase shifter different from the one or more phase shifters, and the other phase shifter includes a single phase shifter. The control device according to claim 1 or 2, wherein the control device is not connected to a communication unit compatible slave unit function unit.
  4.  前記処理実行手段は、前記送信機から受信した前記1つ以上の移相器に対する制御信号に基づいて、子機機能部により移相器毎に処理を実行して、処理を実行した子機機能部毎に当該送信機への応答信号を生成し、
     前記処理実行手段の処理により前記送信機への応答信号が複数生成された場合、当該送信機が正常ではない信号であると認識する応答信号を生成する処理を行って、当該応答信号により当該送信機に応答する応答手段をさらに備えること
    を特徴とする請求項1乃至3の何れか1項に記載の制御装置。
    The processing execution means executes the processing for each phase shifter by the slave unit function unit based on the control signal for the one or more phase shifters received from the transmitter, and executes the processing. Generate a response signal to the transmitter for each part,
    When a plurality of response signals to the transmitter are generated by the processing of the processing execution unit, a process of generating a response signal that recognizes that the transmitter is an abnormal signal is performed, and the transmission is performed by the response signal. 4. The control device according to claim 1, further comprising response means for responding to the machine.
  5.  前記制御装置は、さらに、前記送信機からの制御信号に基づいて前記移相器とは異なる他の機器を制御する他の子機機能部を有し、
     前記処理実行手段は、前記受信手段が前記送信機から制御信号を受信した場合に、当該制御信号の宛先がシングル通信方式対応の子機機能部、マルチ通信方式対応の子機機能部、及び前記他の子機機能部の何れの子機機能部であるかを判定し、宛先が当該他の子機機能部である場合には当該他の子機機能部に対して当該制御信号に基づく処理を実行させること
    を特徴とする請求項1乃至4の何れか1項に記載の制御装置。
    The control device further includes another slave unit function unit that controls another device different from the phase shifter based on a control signal from the transmitter,
    When the receiving unit receives a control signal from the transmitter, the processing execution unit is configured such that the destination of the control signal is a single unit compatible with a single communication scheme, a multiple communication scheme compatible slave unit function, and It is determined which of the other child device function units is the other child device function unit, and when the destination is the other child device function unit, processing based on the control signal for the other child device function unit The control device according to claim 1, wherein the control device is executed.
  6.  複数のアンテナ素子をそれぞれ有する1つ以上のアレイアンテナと、
     前記1つ以上のアレイアンテナ毎に設けられ、複数のアンテナ素子が送受信する送受信信号の位相をずらす1つ以上の移相器と、
     送信機からの制御信号に基づいて前記1つ以上の移相器を制御する複数の子機機能部を有する制御装置とを備え、
     前記複数の子機機能部は、1つの子機機能部に1つの移相器しか割り当てられないシングル通信方式に従った制御信号を処理可能な、前記1つ以上の移相器の移相器毎に設けられたシングル通信方式対応の子機機能部と、当該1つ以上の移相器に対して設けられた、1つの子機機能部に1つ以上の移相器を割り当てることのできるマルチ通信方式に従った制御信号を処理可能な少なくとも1つのマルチ通信方式対応の子機機能部と、であり、
     前記制御装置は、
     前記送信機から制御信号を受信する受信手段と、
     前記受信手段が前記送信機からシングル通信方式及びマルチ通信方式の何れかの通信方式に従った制御信号を受信した場合に、当該制御信号の宛先がシングル通信方式対応及びマルチ通信方式対応の何れの子機機能部であるかを判定し、宛先がシングル通信方式対応の子機機能部である場合には当該子機機能部に対してシングル通信方式に従った制御信号に基づく処理を実行させ、宛先がマルチ通信方式対応の子機機能部である場合には当該子機機能部に対してマルチ通信方式に従った制御信号に基づく処理を実行させる処理実行手段とを有すること
    を特徴とするアンテナ。
    One or more array antennas each having a plurality of antenna elements;
    One or more phase shifters that are provided for each of the one or more array antennas and shift the phases of transmission and reception signals transmitted and received by a plurality of antenna elements;
    A control device having a plurality of slave unit function units for controlling the one or more phase shifters based on a control signal from a transmitter;
    The plurality of slave unit function units can process a control signal in accordance with a single communication method in which only one phase shifter is assigned to one slave unit function unit, and the phase shifter of the one or more phase shifters One or more phase shifters can be allocated to a single communication function compatible slave unit function unit provided for each and one or more phase shifter units provided for the one or more phase shifters. And at least one slave unit function unit corresponding to the multi-communication system capable of processing a control signal according to the multi-communication system,
    The controller is
    Receiving means for receiving a control signal from the transmitter;
    When the receiving means receives a control signal according to one of the single communication scheme and the multi-communication scheme from the transmitter, the destination of the control signal is either a single communication scheme-compatible or a multi-communication scheme compatible Determine whether it is a slave unit function unit, if the destination is a slave unit function unit compatible with the single communication method, let the slave unit function unit execute processing based on the control signal according to the single communication method, When the destination is a slave unit function unit compatible with the multi-communication method, the antenna has processing execution means for causing the slave unit function unit to execute processing based on a control signal according to the multi-communication method. .
  7.  複数のアンテナ素子が送受信する送受信信号の位相をずらすための1つ以上の移相器を送信機からの制御信号に基づいて制御する複数の子機機能部を有する制御装置に用いられるプログラムであって、
     前記複数の子機機能部は、1つの子機機能部に1つの移相器しか割り当てられないシングル通信方式に従った制御信号を処理可能な、前記1つ以上の移相器の移相器毎に設けられたシングル通信方式対応の子機機能部と、当該1つ以上の移相器に対して設けられた、1つの子機機能部に1つ以上の移相器を割り当てることのできるマルチ通信方式に従った制御信号を処理可能な少なくとも1つのマルチ通信方式対応の子機機能部と、であり、
     前記送信機から制御信号を受信する機能と、
     前記送信機からシングル通信方式及びマルチ通信方式の何れかの通信方式に従った制御信号を受信した場合に、当該制御信号の宛先がシングル通信方式対応及びマルチ通信方式対応の何れの子機機能部であるかを判定し、宛先がシングル通信方式対応の子機機能部である場合には当該子機機能部に対してシングル通信方式に従った制御信号に基づく処理を実行させ、宛先がマルチ通信方式対応の子機機能部である場合には当該子機機能部に対してマルチ通信方式に従った制御信号に基づく処理を実行させる機能と
    を前記制御装置に実現させるためのプログラム。
    A program used for a control device having a plurality of slave unit function units for controlling one or more phase shifters for shifting the phases of transmission / reception signals transmitted / received by a plurality of antenna elements based on a control signal from a transmitter. And
    The plurality of slave unit function units can process a control signal in accordance with a single communication method in which only one phase shifter is assigned to one slave unit function unit, and the phase shifter of the one or more phase shifters One or more phase shifters can be allocated to a single communication function compatible slave unit function unit provided for each and one or more phase shifter units provided for the one or more phase shifters. And at least one slave unit function unit corresponding to the multi-communication system capable of processing a control signal according to the multi-communication system,
    A function of receiving a control signal from the transmitter;
    When a control signal is received from the transmitter according to one of the communication methods of the single communication method and the multi-communication method, the destination of the control signal is any slave unit function unit corresponding to the single communication method or the multi-communication method If the destination is a slave unit function unit compatible with the single communication method, the slave unit function unit executes processing based on the control signal according to the single communication method, and the destination is multi-communication A program for causing the control device to realize a function of causing a slave unit function unit to execute processing based on a control signal in accordance with a multi-communication scheme when the slave unit function unit is compatible with a system.
  8.  複数のアンテナ素子が送受信する送受信信号の位相をずらす複数の移相器が接続され、シングル通信方式で動作している送信機からの制御信号に基づいて当該複数の移相器を制御する複数の子機機能部を有する1つの制御装置であって、
     前記制御信号には、宛先の子機機能部を指定するアドレス及び宛先の子機機能部に実行させる処理内容を示すコマンドが含まれており、
     前記複数の子機機能部のそれぞれは、1つの子機機能部に1つの移相器しか割り当てられないシングル通信方式に従った制御信号に含まれるコマンドを処理可能な子機機能部であって、前記複数の移相器のそれぞれに対応して設けられており、
     前記送信機から前記制御信号を受信する受信手段と、
     前記受信手段が受信したシングル通信方式に従った制御信号に含まれるアドレスと前記複数の子機機能部のそれぞれに割り振られたアドレスとを比較することにより、当該複数の子機機能部のうちの当該制御信号の宛先である子機機能部に対して当該制御信号に含まれるコマンドを振り分けて当該コマンドの処理を実行させる処理実行手段と
    を備える制御装置。
    A plurality of phase shifters for shifting the phases of transmission / reception signals transmitted / received by a plurality of antenna elements are connected, and a plurality of phase shifters are controlled based on a control signal from a transmitter operating in a single communication system. One control device having a slave unit function unit,
    The control signal includes an address for designating a destination child device function unit and a command indicating processing contents to be executed by the destination child device function unit,
    Each of the plurality of handset function units is a handset function unit capable of processing a command included in a control signal in accordance with a single communication method in which only one phase shifter is assigned to one handset function unit. , Provided corresponding to each of the plurality of phase shifters,
    Receiving means for receiving the control signal from the transmitter;
    By comparing the address included in the control signal in accordance with the single communication method received by the receiving means and the address assigned to each of the plurality of slave unit function units, among the plurality of slave unit function units A control apparatus comprising: a process execution unit that distributes a command included in the control signal to a slave unit function unit that is a destination of the control signal and executes the process of the command
  9.  前記処理実行手段の処理により前記送信機への応答信号が複数生成された場合、当該送信機が正常ではない信号であると認識する応答信号を生成する処理を行って、当該応答信号により当該送信機に応答する応答手段を
    さらに備えることを特徴とする請求項8に記載の制御装置。
    When a plurality of response signals to the transmitter are generated by the processing of the processing execution unit, a process of generating a response signal that recognizes that the transmitter is an abnormal signal is performed, and the transmission is performed by the response signal. The control device according to claim 8, further comprising response means for responding to the machine.
  10.  前記制御装置は、さらに、前記送信機からの制御信号に基づいて前記移相器とは異なる他の機器を制御する他の子機機能部を有し、
     前記処理実行手段は、前記受信手段が受信した制御信号に含まれるアドレスと前記複数の子機機能部及び前記他の子機機能部のそれぞれに割り振られたアドレスとを比較し、当該制御信号の宛先が当該他の子機機能部である場合には、当該他の子機機能部に対して当該制御信号に含まれるコマンドを振り分けて当該コマンドの処理を実行させること
    を特徴とする請求項8又は9に記載の制御装置。
    The control device further includes another slave unit function unit that controls another device different from the phase shifter based on a control signal from the transmitter,
    The processing execution means compares the address included in the control signal received by the receiving means with the addresses assigned to each of the plurality of handset function units and the other handset function units, and 9. When the destination is the other handset function unit, the command included in the control signal is distributed to the other handset function unit and the process of the command is executed. Or the control apparatus of 9.
  11.  複数のアンテナ素子をそれぞれ有する複数のアレイアンテナと、
     前記複数のアレイアンテナ毎に設けられ、複数のアンテナ素子が送受信する送受信信号の位相をずらす複数の移相器と、
     前記複数の移相器が接続され、シングル通信方式で動作している送信機からの制御信号に基づいて当該複数の移相器を制御する複数の子機機能部を有する1つの制御装置とを備え、
     前記制御信号には、宛先の子機機能部を指定するアドレス及び宛先の子機機能部に実行させる処理内容を示すコマンドが含まれており、
     前記複数の子機機能部のそれぞれは、1つの子機機能部に1つの移相器しか割り当てられないシングル通信方式に従った制御信号に含まれるコマンドを処理可能な子機機能部であって、前記複数の移相器のそれぞれに対応して設けられており、
     前記制御装置は、
     前記送信機から前記制御信号を受信する受信手段と、
     前記受信手段が受信したシングル通信方式に従った制御信号に含まれるアドレスと前記複数の子機機能部のそれぞれに割り振られたアドレスとを比較することにより、当該複数の子機機能部のうちの当該制御信号の宛先である子機機能部に対して当該制御信号に含まれるコマンドを振り分けて当該コマンドの処理を実行させる処理実行手段とを有すること
    を特徴とするアンテナ。
    A plurality of array antennas each having a plurality of antenna elements;
    A plurality of phase shifters that are provided for each of the plurality of array antennas and shift the phases of transmission and reception signals transmitted and received by the plurality of antenna elements;
    A plurality of phase shifters connected to each other, and one control device having a plurality of slave unit function units for controlling the plurality of phase shifters based on a control signal from a transmitter operating in a single communication system. Prepared,
    The control signal includes an address for designating a destination child device function unit and a command indicating processing contents to be executed by the destination child device function unit,
    Each of the plurality of handset function units is a handset function unit capable of processing a command included in a control signal in accordance with a single communication method in which only one phase shifter is assigned to one handset function unit. , Provided corresponding to each of the plurality of phase shifters,
    The controller is
    Receiving means for receiving the control signal from the transmitter;
    By comparing the address included in the control signal in accordance with the single communication method received by the receiving means and the address assigned to each of the plurality of slave unit function units, among the plurality of slave unit function units An antenna comprising: a processing execution unit that distributes a command included in the control signal to a slave unit function unit that is a destination of the control signal and executes the processing of the command.
  12.  複数のアンテナ素子が送受信する送受信信号の位相をずらす複数の移相器が接続され、シングル通信方式で動作している送信機からの制御信号に基づいて当該複数の移相器を制御する複数の子機機能部を有する1つの制御装置に用いられるプログラムであって、
     前記制御信号には、宛先の子機機能部を指定するアドレス及び宛先の子機機能部に実行させる処理内容を示すコマンドが含まれており、
     前記複数の子機機能部のそれぞれは、1つの子機機能部に1つの移相器しか割り当てられないシングル通信方式に従った制御信号に含まれるコマンドを処理可能な子機機能部であって、前記複数の移相器のそれぞれに対応して設けられており、
     前記送信機から前記制御信号を受信する機能と、
     受信したシングル通信方式に従った制御信号に含まれるアドレスと前記複数の子機機能部のそれぞれに割り振られたアドレスとを比較することにより、当該複数の子機機能部のうちの当該制御信号の宛先である子機機能部に対して当該制御信号に含まれるコマンドを振り分けて当該コマンドの処理を実行させる機能と
    を前記制御装置に実現させるためのプログラム。
    A plurality of phase shifters for shifting the phases of transmission / reception signals transmitted / received by a plurality of antenna elements are connected, and a plurality of phase shifters are controlled based on a control signal from a transmitter operating in a single communication system. A program used for one control device having a slave unit function unit,
    The control signal includes an address for designating a destination child device function unit and a command indicating processing contents to be executed by the destination child device function unit,
    Each of the plurality of handset function units is a handset function unit capable of processing a command included in a control signal in accordance with a single communication method in which only one phase shifter is assigned to one handset function unit. , Provided corresponding to each of the plurality of phase shifters,
    A function of receiving the control signal from the transmitter;
    By comparing the address included in the received control signal according to the single communication method and the address assigned to each of the plurality of slave unit function units, the control signal of the plurality of slave unit function units A program for causing the control device to realize a function of distributing a command included in the control signal to a slave unit function unit as a destination and executing the processing of the command.
  13.  複数のアンテナ素子が送受信する送受信信号の位相をずらす移相器と、当該移相器とは異なる他の機器とが接続され、
     送信機からの制御信号に基づいて前記移相器を制御する子機機能部と、
     前記送信機からの制御信号に基づいて前記他の機器を制御する他の子機機能部と、
     前記送信機から制御信号を受信する受信手段と、
     前記受信手段が前記送信機から制御信号を受信した場合に、当該制御信号の宛先が前記子機機能部及び前記他の子機機能部の何れの子機機能部であるかを判定し、宛先が当該子機機能部である場合には、当該子機機能部に対して当該制御信号に基づいて前記移相器を制御する処理を実行させ、宛先が当該他の子機機能部である場合には、当該他の子機機能部に対して当該制御信号に基づいて前記他の機器を制御する処理を実行させる処理実行手段と
    を備える制御装置。
    A phase shifter that shifts the phase of transmission / reception signals transmitted and received by a plurality of antenna elements and another device different from the phase shifter are connected,
    A slave unit function unit for controlling the phase shifter based on a control signal from a transmitter;
    Another slave unit function unit for controlling the other device based on a control signal from the transmitter;
    Receiving means for receiving a control signal from the transmitter;
    When the receiving unit receives a control signal from the transmitter, the control unit determines which of the slave unit function unit and the other slave unit function unit the destination of the control signal is a destination. Is the slave unit function unit, the slave unit function unit is caused to execute processing for controlling the phase shifter based on the control signal, and the destination is the other slave unit function unit A control apparatus comprising: a process execution unit that causes the other slave unit function unit to execute a process of controlling the other device based on the control signal.
PCT/JP2016/086737 2016-12-09 2016-12-09 Control device, antenna and program WO2018105103A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/086737 WO2018105103A1 (en) 2016-12-09 2016-12-09 Control device, antenna and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/086737 WO2018105103A1 (en) 2016-12-09 2016-12-09 Control device, antenna and program

Publications (1)

Publication Number Publication Date
WO2018105103A1 true WO2018105103A1 (en) 2018-06-14

Family

ID=62491787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/086737 WO2018105103A1 (en) 2016-12-09 2016-12-09 Control device, antenna and program

Country Status (1)

Country Link
WO (1) WO2018105103A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015534317A (en) * 2012-09-14 2015-11-26 ケーエムダブリュ・インコーポレーテッド Mobile communication base station antenna and control method thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015534317A (en) * 2012-09-14 2015-11-26 ケーエムダブリュ・インコーポレーテッド Mobile communication base station antenna and control method thereof

Similar Documents

Publication Publication Date Title
US10050341B2 (en) Apparatus for controlling antenna of mobile-communication base station
US6989787B2 (en) Antenna system for satellite communication and method for tracking satellite signal using the same
WO2018110083A1 (en) Mobile station, mobile station rf front-end module, and front-end integrated circuit
US20070191068A1 (en) Wireless LAN technologies for reducing interference between or among wireless LAN access points
EP2475195A1 (en) Beacon reception using directional antennas
EP3258607B1 (en) Base station antennas with remotely reconfigurable electronic downtilt control paths and related methods of reconfiguring such antennas
JP2017147496A (en) Phase calibration device of plurality of transmission antenna
JP2010517357A (en) Apparatus and method for enabling discovery of wireless devices
US6297780B1 (en) Mobile apparatus with plurality of antennas having different directivities
US20090040106A1 (en) Cellular Antennas and Communications Methods
CN107851896B (en) Wireless communication device and setting method thereof
US11211702B1 (en) Overlapping multiband phased array antennas
JP2007502597A (en) Wireless communication system and method for adjusting backhaul beamforming in the system
US11177579B2 (en) Reflector antenna and antenna alignment method
WO2015010662A1 (en) Antenna array control device, method, and system
EP1342291B1 (en) Direction-agile antenna system for wireless communications
WO2008087569A1 (en) Method and system of communication employing spatial reuse reservation protocol
WO2018105103A1 (en) Control device, antenna and program
KR101740024B1 (en) System and Method of Configurating Antenna Control System of Base Transceiver Station System
JP6207550B2 (en) Control device, antenna and program
JP6078591B2 (en) Control device, antenna and program
CN110167038B (en) Method for topology determination in a mobile radio station and mobile radio station
US20160233917A1 (en) Device for forming wireless high-frequency signal path and method for controlling same
JP2006253844A (en) Wireless communications apparatus
JP7236548B2 (en) Antenna system and network equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16923480

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16923480

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP