WO2018103293A1 - 色轮装置及投影设备 - Google Patents

色轮装置及投影设备 Download PDF

Info

Publication number
WO2018103293A1
WO2018103293A1 PCT/CN2017/088632 CN2017088632W WO2018103293A1 WO 2018103293 A1 WO2018103293 A1 WO 2018103293A1 CN 2017088632 W CN2017088632 W CN 2017088632W WO 2018103293 A1 WO2018103293 A1 WO 2018103293A1
Authority
WO
WIPO (PCT)
Prior art keywords
low thermal
color wheel
conductive substrate
wheel device
heat
Prior art date
Application number
PCT/CN2017/088632
Other languages
English (en)
French (fr)
Inventor
戴达炎
杜鹏
李屹
Original Assignee
深圳市光峰光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市光峰光电技术有限公司 filed Critical 深圳市光峰光电技术有限公司
Publication of WO2018103293A1 publication Critical patent/WO2018103293A1/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/16Cooling; Preventing overheating
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/18Fire preventing or extinguishing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings

Definitions

  • the utility model relates to the technical field of projection devices, in particular to a color wheel device and a projection device.
  • the laser TVs use a laser phosphor source, which is realized by laser-exciting the phosphor on the color wheel.
  • the photon energy will change negatively with the wavelength. The shorter the wavelength, the larger the photon energy. Therefore, when the phosphor is excited by a short-wavelength laser, the higher-energy blue laser photon will be used as the phosphor material. Absorbs and releases long-wavelength fluorescent photons with lower energy. According to the law of conservation of energy, the energy absorbed by the phosphor without being released is converted into heat.
  • the phosphor itself has a heat saturation effect, that is, when the temperature of the phosphor reaches a certain value, changing the energy of the excitation light cannot improve the conversion efficiency of the phosphor, and therefore, it is necessary to promptly derive the heat on the phosphor.
  • the existing color wheel generally comprises an aluminum substrate, a driving member for driving the rotation of the aluminum substrate, and is generally a motor.
  • the color wheel is mounted on the front end portion of the sleeve of the drive motor, and the phosphor layer is disposed on a side of the aluminum sheet substrate facing away from the drive motor, and the phosphor layer receives the incident excitation light and generates a laser light.
  • the fluorescent layer on the color wheel will continuously generate heat during operation. If this part of heat is not well transferred from the color wheel fluorescent layer, the temperature of the color wheel fluorescent layer will become higher and higher, which in turn affects the color wheel. Conversion efficiency and longevity.
  • the heat generated by the fluorescent layer mainly radiates heat by contact with the air during the rotation of the substrate, the heat dissipation area of the substrate itself is small, the heat dissipation is limited, and the substrate is directly connected with the motor, which transfers heat to the motor to make the motor temperature.
  • the motor itself will generate a large amount of heat during the movement. If the heat transferred through the substrate is large, the motor will often work at a high temperature, which will reduce the stability and life of the motor.
  • the main object of the present invention is to provide a color wheel device, which aims to reduce the heat transfer of the wavelength conversion layer to other components connected to the low heat conductive substrate, and to protect other components.
  • the present invention provides a color wheel device, the color wheel device comprising:
  • a heat dissipating component fixed on the low thermal conductive substrate and disposed around a center of the low thermal conductive substrate;
  • a wavelength conversion layer is disposed on the heat dissipation component.
  • the low thermal conductivity substrate is a glass plate.
  • the heat dissipating component includes a connecting portion connected to an outer edge of the low thermal conductive substrate and an annular mounting portion extending outward from the connecting portion, and the wavelength conversion layer is disposed on the annular mounting portion.
  • the low heat conductive substrate has a first plate surface connected to the driving member and a second plate surface facing away from the first plate surface, and the connecting portion is fixedly fixed to the first plate of the low thermal conductive substrate Or the second plate surface, or the connecting portion has an annular groove through which the connecting portion is snapped on the outer edge of the low thermal conductive substrate.
  • a protrusion is disposed on a side of the heat dissipation component facing away from the wavelength conversion layer.
  • the protrusion is an annular protrusion and is disposed concentrically with the substrate;
  • the protrusion is a columnar protrusion and is plural, and the plurality of columnar protrusions are distributed along a ring that is concentric with the low heat conductive substrate;
  • the protrusions are a plurality of sheet-like protrusions, wherein each of the sheet-like protrusions has an end on the heat dissipating component toward an inner side of the low thermal conductive substrate, and the other end is along the low thermal conductivity substrate. Radially extending outwardly; or a plurality of the tabular projections are evenly distributed along the circumference of the heat dissipating component, and a plurality of annular projection groups having different diameters are formed.
  • the wavelength conversion layer is disposed on a ceramic board, and the ceramic board is disposed in close contact with the heat dissipation component.
  • the heat dissipating component is an aluminum sheet
  • the wavelength conversion layer is a phosphor coating coated on the aluminum sheet.
  • the color wheel device further includes a filter disposed on the low thermal conductive substrate and located on an inner ring side of the wavelength conversion layer.
  • the color wheel device further includes a filter disposed in a ring shape, the filter is disposed between the low heat conductive substrate and the heat dissipation component, and is respectively connected to the low heat conductive substrate and the heat dissipation component, or The filter is disposed on an outer ring side of the wavelength conversion layer and connected to the heat dissipation component.
  • the color wheel device further includes a driving member for driving the movement of the low thermal conductive substrate, and the driving member is disposed on a side of the low thermal conductive substrate facing away from the wavelength conversion layer.
  • the present invention also provides a projection apparatus comprising the color wheel device of any of the above.
  • the color wheel device comprises: a low thermal conductive substrate; a heat dissipating component fixed on the low thermal conductive substrate and disposed around a center of the low thermal conductive substrate; and a wavelength conversion layer disposed on the heat dissipating component.
  • the wavelength conversion layer is disposed on the heat dissipation component, so that the heat generated by the wavelength conversion layer is directly transmitted to the heat dissipation component, and the heat transfer between the wavelength conversion layer and the heat dissipation component is directly performed, and the heat transfer efficiency is high.
  • the heat of the conversion layer can be quickly absorbed by the heat dissipating component, thereby improving the heat dissipation efficiency of the wavelength conversion layer and ensuring the conversion efficiency of the entire color wheel device.
  • the low thermal conductivity substrate is used to isolate the wavelength conversion layer from other components.
  • Heat transfer for example, isolating the heat transfer between the wavelength conversion layer and the drive member, preventing the heat generated by the wavelength conversion layer from affecting the performance of other components, ensuring the stability of the operation of other components, and improving the service life of other components. Work efficiency.
  • 1 is a schematic view showing the cooperation between the first embodiment of the color wheel device of the present invention and a light source;
  • FIG. 2 is a schematic view showing the cooperation between the second embodiment of the color wheel device of the present invention and a light source;
  • FIG. 3 is a schematic structural view of a first embodiment of a heat dissipation structure in a color wheel device of the present invention
  • FIG. 4 is a schematic structural view of a second embodiment of a heat dissipation structure in a color wheel device of the present invention.
  • FIG. 5 is a schematic structural view of a third embodiment of a heat dissipation structure in a color wheel device of the present invention.
  • FIG. 6 is a schematic structural view of a fourth embodiment of a heat dissipation structure in a color wheel device of the present invention.
  • Figure 7 is a schematic view showing the cooperation between the third embodiment of the color wheel device of the present invention and a light source;
  • FIG. 8 is a schematic view showing the cooperation between the fourth embodiment of the color wheel device of the present invention and a light source.
  • first, second, and the like in the present invention are used for the purpose of description only, and are not to be construed as indicating or implying their relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include at least one of the features, either explicitly or implicitly.
  • the technical solutions between the various embodiments may be combined with each other, but must be based on the realization of those skilled in the art, and when the combination of the technical solutions is contradictory or impossible to implement, it should be considered that the combination of the technical solutions does not exist. It is also within the scope of protection required by the present invention.
  • the utility model provides a color wheel device.
  • the color wheel device includes a low thermal conductivity substrate 10, a wavelength conversion layer 40, and a heat dissipation assembly 30.
  • the low thermal conductive substrate 10 is preferably in the shape of a disk.
  • the heat dissipating component 30 is fixed on the low thermal conductive substrate 10 and disposed around the center of the low thermal conductive substrate 10, that is, the heat dissipating component 30 may be on a low thermal conductive substrate.
  • an annular body disposed around the center of the low thermal conductive substrate 10 is formed, or part or all of the heat dissipating component 30 is overlapped with the low thermal conductive substrate 10 to form an annular body disposed around the center of the low thermal conductive substrate 10.
  • the heat dissipating component 30 may be a unitary annular body or a plurality of component components disposed separately.
  • the heat dissipating component 30 includes a plurality of curved portions, and the plurality of arcuate portions are spliced into a ring shape.
  • the heat dissipation assembly 30 is fixed on the low thermal conductive substrate 10 and disposed around the center of the low thermal conductive substrate 10, that is
  • the low thermal conductivity substrate 10 has a first side surface and a second side surface opposite the first side surface.
  • the first side is for mounting the driving member 20 to drive the low thermal conductive substrate 10 to rotate.
  • the color wheel device in this embodiment may be connected to the external driving member and driven to rotate by the external driving member, or a driving member 20 and the low thermal conductive substrate 10 may be further added to the color wheel device. Direct drive connection eliminates the need to additionally configure external drive components.
  • the driving component 20 can be a motor, specifically connected to the first side surface of the low thermal conductive substrate 10 .
  • a wavelength conversion layer 40 is disposed on a side of the same side of the second side surface of the low thermal conductive substrate 10, and the wavelength conversion layer 40 may be a wavelength converting material.
  • a phosphor is formed on the heat dissipation assembly 30.
  • the wavelength conversion layer 40 generates heat during the excitation process.
  • the wavelength conversion layer 40 is directly disposed on the heat dissipation component 30, so that the heat generated by the wavelength conversion layer 40 is directly transmitted to the heat dissipation component.
  • the heat transfer between the wavelength conversion layer 40 and the heat dissipation component 30 is direct, and the heat transfer efficiency is high.
  • the heat of the wavelength conversion layer 40 can be quickly absorbed by the heat dissipation component 30 and passed through the outside world introduced by the air passage. The air contact rapidly dissipates heat, thereby improving the heat dissipation efficiency of the wavelength conversion layer 40 and ensuring the conversion efficiency of the entire color wheel device.
  • the low thermal conductivity substrate 10 can be made of various materials with low thermal conductivity, such as a glass plate, and the heat transfer property of the wavelength conversion layer 40 through the substrate is reduced by the low thermal conductivity to reduce the driving member 20 . Influenced by the heat generated by the wavelength conversion layer 40, the working efficiency of the driving member 20 is ensured; in addition, since the heat generated by the driving member 20 itself does not cause it to be constantly in a high temperature state, its stability and life are compared with those of high temperature. When, it is greatly improved.
  • the heat dissipating component 30 is preferably annular, and the side of the wavelength conversion layer 40 is not provided with a heat dissipating structure, for example, protrusions of various shapes are used for auxiliary heat dissipation, and the specific shape, position and number of the protrusions are not As long as the heat transfer assembly 30 and the low thermal conductive substrate 10 are all rotated and balanced. It can be understood that the heat dissipation area of the heat dissipation component 30 can be increased by providing the protrusions, so that the heat of the wavelength conversion layer 40 can be forcedly convected into the air through the heat dissipation component 30, thereby improving the heat dissipation efficiency of the wavelength conversion layer 40.
  • the protrusions can be realized by at least the following embodiments.
  • the protrusions are annular protrusions 31 and are disposed around the center of the low thermal conductivity substrate 10.
  • the annular protrusion has a large heat dissipation area and a good heat dissipation effect.
  • the annular protrusion 31 is disposed concentrically with the low thermal conductive substrate 10, which is easy to ensure the balance when the low thermal conductive substrate 10 is rotated, and the low thermal conductive substrate 10 has small air resistance and low noise when rotating.
  • annular protrusions 31 are spaced along the center to the outer edge of the low thermal conductive substrate 10, so that an annular air groove is formed between the adjacent two annular protrusions 31 to improve the heat dissipation effect.
  • the number of turns of the annular protrusion 31 disposed around the center of the circle can be set according to practical applications. For example, the number of turns of the annular protrusion 31 can be set to one, two, three, four, five, and the like.
  • the outer edge of the low thermal conductive substrate 10 described below refers to the outer edge portion of the low thermal conductive substrate 10 away from its center.
  • the protrusion height of the plurality of annular protrusions 31 on the low thermal conductive substrate 10 may be further decreased from the center to the outer edge of the low thermal conductive substrate 10. In this way, the annular protrusion 31 near the center of the low thermal conductive substrate 10 can be ensured to be more in contact with the air, thereby improving the heat dissipation effect and ensuring uniform heat dissipation throughout the low thermal conductivity substrate 10.
  • the projections are cylindrical projections 32, and are plural, and the plurality of cylindrical projections 32 dissipate a large amount of heat, wherein the cylindrical projections 32 are conveniently formed.
  • each of the cylindrical protrusions 32 may be evenly disposed around the center of the low thermal conductive substrate 10 to ensure the balance of rotation of the low thermal conductive substrate 10 and the balance of heat dissipation of the low thermal conductive substrate 10.
  • the projections are sheet-like projections 33, and are plural.
  • Each of the sheet-like protrusions 33 is disposed at an outer edge of the low heat conductive substrate 10 at one end of the heat dissipation assembly 30, and extends at a center of the lower heat conductive substrate 10 toward a center thereof.
  • the tab-like protrusions 33 may be of a straight strip shape or an arc shape, and are not limited herein.
  • the convex shape shown in FIG. 5 has a certain curvature, and the arc-shaped structure has such a curved structure.
  • the arrangement of the protrusions on the low thermal conductive substrate 10 is similar to a spiral shape, and during the rotation of the low thermal conductive substrate 10, more airflow can be driven, so that the heat on the low thermal conductive substrate 10 can be carried by the airflow in time. Go and improve the heat dissipation effect.
  • the shape of the projection is substantially the same as that of the third embodiment, and is also a sheet-like projection 34 (this embodiment is distinguished from the third embodiment), and is plural.
  • the difference is that the arrangement on the low heat conductive substrate 10 is different.
  • a plurality of the sheet-like protrusions 34 are uniformly distributed in the circumferential direction of the heat dissipation assembly 30, and one or more diameters are formed. Annular raised group.
  • the protrusions of the structure are uniformly distributed on the low heat conductive substrate 10, and during the rotation of the low heat conductive substrate 10, more airflow can be driven, so that the heat on the low heat conductive substrate 10 is carried away by the airflow, thereby improving the heat dissipation effect.
  • the sheet-like protrusions 34 in the two annular protrusion groups adjacent to each other are partially or completely staggered to balance the heat dissipation of the entire heat dissipation assembly 30.
  • the mounting structure of the heat dissipating component 30 and the low thermal conductive substrate 10 is not limited, and at least has the following first embodiment and second embodiment.
  • the heat dissipating component 30 includes a connecting portion (not labeled) connected to an outer edge of the low thermal conductive substrate 10 and from the connecting portion An outwardly extending annular mounting portion (not shown) is disposed on the annular mounting portion. That is, a part of the structure of the heat dissipating component 30 is connected to the outer edge of the low thermal conductive substrate 10.
  • the heat dissipating component 30 has a large contact area with air and has high heat dissipation efficiency.
  • the heat dissipating component 30 is on the low thermal conductivity substrate 10, and the low thermal conductivity substrate 10 faces away from the driving component 20. Side fit and fixed. That is, the heat dissipating component 30 is all on the low heat conductive substrate 10, and the structure heat dissipating component 30 is relatively relatively stable.
  • a heat dissipation hole (not shown) may be disposed at a position corresponding to the heat dissipation component 30 of the low heat conductive substrate 10 to ensure the heat dissipation effect of the heat dissipation component 30.
  • the heat dissipation hole may further be disposed to pass through the protrusions of various shapes described above to facilitate heat dissipation.
  • the low thermal conductivity substrate 10 has a first board surface connected to the driving member 20 and the first board.
  • the second plate surface facing away from the surface, the connecting portion is fixedly fixed to the first plate surface (such as FIG. 1) or the second plate surface of the low thermal conductive substrate 10, or alternatively, as shown in FIG.
  • the connecting portion has an annular groove (not shown) that is engaged with the outer edge of the low thermal conductive substrate 10 through the annular groove.
  • the connection between the connecting portion and the low heat conductive substrate 10 may be performed by screwing or by double-sided tape or glue. Alternatively, the screw may be connected and then reinforced by glue.
  • the bonding portion may be further bonded and reinforced by glue.
  • the heat dissipating component 30 is preferably mounted on the low thermal conductive substrate 10 by bonding, and of course, The way the screws are connected.
  • the heat dissipating component 30 is an aluminum sheet
  • the wavelength conversion layer 40 is a phosphor coating coated on the aluminum sheet.
  • the wavelength conversion layer 40 is formed by mounting a carrier coated with a phosphor on the low thermal conductive substrate 10, wherein the carrier may preferably be a ceramic plate, and the ceramic plate passes The adhesive manner is attached and fixed to the heat dissipation assembly 30.
  • the color wheel device further includes a filter 50 disposed on the low thermal conductive substrate 10 and Located on the inner ring side of the wavelength conversion layer 40, where the inner ring side is the low thermal conductivity substrate 10 relative to the wavelength conversion layer 40, not specifically referring to the inner ring side of the low thermal conductivity substrate 10, when the wavelength conversion layer 40
  • the filter 50 is used to filter the incident laser light and transmit it from the glass substrate to achieve a filtering effect while reducing the volume of the entire color wheel device.
  • the mounting position of the filter 50 can be appropriately selected to facilitate installation.
  • the filter 50 is preferably mounted on the low thermal conductive substrate 10 so as to be on the inner ring side of the wavelength conversion layer 40.
  • the low heat conductive substrate 10 is a glass plate in this embodiment
  • the light transmittance of the glass plate can be utilized for receiving the laser light to reduce the optical path of the emitted light, thereby reducing the laser light source. volume.
  • the heat dissipating component 30 and the low heat conductive substrate 10 mounting structure since the heat dissipating component 30 is completely mounted on the low heat conducting substrate 10, a large space on the low heat conducting substrate 10 is occupied. In this embodiment, the filtering is performed.
  • the sheet 50 is preferably connected to the low thermal conductive substrate 10 or the heat dissipating component 30 and disposed around the wavelength conversion layer 40.
  • the filter function of the filter 50 may be replaced by a filter 60, as shown in FIG. 7 and FIG. 8 .
  • the filter 60 is disposed in a ring shape, and the filter 60 is at The low thermal conductive substrate 10 and the heat dissipating component 30 are respectively connected to the low thermal conductive substrate 10 and the heat dissipating component 30, that is, from the center of the circle, in turn, the low thermal conductive substrate 10 ⁇ the filter 60 ⁇ the heat dissipating component 30; or, the filter 60 is disposed on the outer ring side 60 of the wavelength conversion layer 40, and is connected to the heat dissipation component 30, that is, from the center of the circle, in turn, the low thermal conductivity substrate 10 ⁇ heat dissipation component 30 ⁇ filtering Slice 60. Both of these embodiments are capable of filtering the incident laser light to achieve a filtering effect.
  • the color wheel device proposed by the present invention installs the wavelength conversion layer 40 on the one hand by disposing the heat dissipation component 30, so that the heat generated by the wavelength conversion layer 40 is directly transmitted to the heat dissipation component 30, and the wavelength conversion layer 40 and The heat transfer between the heat dissipating components 30 is high, and the heat transfer efficiency is high.
  • the heat of the wavelength conversion layer 40 can be quickly absorbed by the heat dissipating component 30, thereby improving the heat dissipation efficiency of the wavelength conversion layer 40 and ensuring the entire color wheel.
  • the conversion efficiency of the device on the other hand, the heat transfer between the wavelength conversion layer 40 and the driving member 20 is separated by the low heat conductive substrate 10, so that the driving member 20 is prevented from being affected by the heat generated by the wavelength conversion layer 40, and the driving performance is ensured.
  • the stability of the work is 20, and the service life of the drive member 20 and the work efficiency are improved.
  • the present invention also provides a projection device, which may be an educational projector, a laser television, a micro-projection or a cinema machine, etc.
  • the projection device includes the color wheel device of the above embodiment, and the specific structure of the projection device refers to the above implementation.
  • the projection device since all the technical solutions of all the above embodiments are used in the present disclosure, at least all the beneficial effects brought by the technical solutions of the foregoing embodiments are not repeatedly described herein.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Projection Apparatus (AREA)

Abstract

一种色轮装置,包括低导热基板(10);散热组件(30),固定在低导热基板(10)上,且环绕低导热基板(10)的圆心设置;波长转换层(40),设置于散热组件(30)上。该色轮装置提高了散热效率,减少了波长转换层(40)传递至与低导热基板(10)连接的其它部件的热量,提高其它部件的工作效率。同时,还提供包括该色轮装置的投影设备。

Description

色轮装置及投影设备 技术领域
本实用新型涉及投影设备技术领域,尤其涉及一种色轮装置及投影设备。
背景技术
目前,激光电视大多利用激光荧光粉光源,这种光源是利用激光激发色轮上的荧光粉来实现。在可见光范围内,光子的能量会与波长成负相关变化,波长越短,光子能量越大,因此,当用短波长的激光激发荧光粉时,能量较高的蓝激光光子会被荧光粉材料吸收,并释放出能量较低的长波长荧光光子。根据能量守恒定律可知,被荧光粉吸收而没有释放出去的能量转化成了热能。由于荧光粉本身存在热饱和效益,即当荧光粉温度达到某个值时,改变激发光的能量无法提高荧光粉的转化效率,因此,需要及时将荧光粉上的热量导出。
技术问题
现有的色轮一般包括铝片基板、驱动铝片基板转动的驱动件,一般为马达。色轮安装在驱动马达的套筒前端部上,荧光层设置在该铝片基板背向驱动马达的一侧,该荧光层接收入射的激发光并产生受激光。色轮上的荧光层在工作时会不断的产生热量,如果不能很好的将这部分热量从色轮荧光层传递出去,色轮荧光层的温度将会越来越高,继而影响色轮的转换效率及寿命。
现有的色轮,其荧光层产生的热量主要通过基板转动过程中与空气接触散热,基板本身散热面积小,散热量有限,并且基板与马达直接连接,会将热量传递至马达,使马达温度升高,另外,马达本身在运动过程中也会产生较大的热量,如果通过基板传递的热量较多,会使得马达经常工作在高温状态,使马达的稳定性和寿命降低。
技术解决方案
本实用新型的主要目的在于提供一种色轮装置,旨在减少波长转换层的热量传递到与低导热基板连接的其它部件,对其它部件起到保护的作用。
为实现上述目的,本实用新型提出一种色轮装置,该色轮装置包括:
低导热基板;
散热组件,固定在所述低导热基板上,且环绕所述低导热基板的圆心设置;
波长转换层,设置于所述散热组件上。
进一步地,所述低导热基板为玻璃板。
进一步地,所述散热组件包括与所述低导热基板的外边缘连接的连接部以及自所述连接部向外延伸的环形安装部,所述波长转换层设置在所述环形安装部上。
进一步地,所述低导热基板具有与驱动件连接的第一板面和与该第一板面背向的第二板面,所述连接部贴合固定在所述低导热基板的第一板面或者第二板面上,或者,所述连接部具有环形槽,所述连接部通过所述环形槽卡接在所述低导热基板的外边缘上。
进一步地,所述散热组件背向所述波长转换层的一面上设置有凸起。
进一步地,所述凸起为环形凸起,且与所述基板同心圆设置;
或者,所述凸起为柱状凸起,且为多个,多个所述柱状凸起沿与所述低导热基板同心的圆环分布;
或者,所述凸起为片状凸起,且为多个;其中,各个所述片状凸起在所述散热组件上一端朝向所述低导热基板的内侧,另一端沿所述低导热基板的径向向外延伸;或者,多个所述片状凸起沿所述散热组件的周向环形均布,且形成多个直径不同的环形凸起组。
进一步地,所述波长转换层设置在一陶瓷板上,所述陶瓷板与所述散热组件贴合设置。
进一步地,所述散热组件为铝片,所述波长转换层为涂设在所述铝片上的荧光粉涂层。
进一步地,所述色轮装置还包括滤光片,所述滤光片设于所述低导热基板上且位于所述波长转换层的内环侧。
进一步地,所述色轮装置还包括呈环形设置的滤波片,所述滤波片处于所述低导热基板与所述散热组件之间并与所述低导热基板和所述散热组件分别连接,或者,所述滤波片设于所述波长转换层的外环侧,且与所述散热组件连接。
进一步地,所述色轮装置还包括用于驱动所述低导热基板运动的驱动件,所述驱动件设置于所述低导热基板上背向所述波长转换层的一面。
有益效果
本实用新型还提供一种投影设备,该投影设备包括如上任意一项所述的色轮装置。该色轮装置包括:低导热基板;散热组件,固定在所述低导热基板上,且环绕所述低导热基板的圆心设置;波长转换层,设置于所述散热组件上。
本实用新型一方面将波长转换层设置在散热组件上,使得波长转换层产生的热量直接传导到散热组件上,波长转换层与散热组件之间直接热传递,热传递效率较高,如此,波长转换层的热量能够被散热组件快速的吸收掉,从而提高了波长转换层的散热效率,保证了整个色轮装置的转换效率;另一方面,采用低导热基板隔离波长转换层与其它部件之间的热量传递,比如,隔离波长转换层与驱动件之间的热传递,避免波长转换层产生的热量影响其它部件的工作性能,保证其它部件工作的稳定性,并且,提高其它部件的使用寿命以及工作效率。
附图说明
为了更清楚地说明本实用新型实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本实用新型的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本实用新型色轮装置第一实施例与光源的配合示意图;
图2为本实用新型色轮装置第二实施例与光源的配合示意图;
图3为本实用新型色轮装置中散热结构第一实施例的结构示意图;
图4为本实用新型色轮装置中散热结构第二实施例的结构示意图;
图5为本实用新型色轮装置中散热结构第三实施例的结构示意图;
图6为本实用新型色轮装置中散热结构第四实施例的结构示意图;
图7为本实用新型色轮装置第三实施例与光源的配合示意图;
图8为本实用新型色轮装置第四实施例与光源的配合示意图。
附图标号说明:
标号 名称
10 低导热基板
20 驱动件
30 散热组件
40 波长转换层
50 滤光片
60 滤波片
31 环形凸起
32 柱形凸起
33 片状凸起
34 片状凸起
5 光源
本实用新型目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
本发明的最佳实施方式
下面将结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本实用新型的一部分实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本实用新型保护的范围。
需要说明,本实用新型实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,在本实用新型中涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本实用新型要求的保护范围之内。
本实用新型提出一种色轮装置。
参照图1及图2,在本实用新型一实施例中,该色轮装置包括低导热基板10、波长转换层40及散热组件30。
具体地,所述低导热基板10优选为圆盘形,散热组件30固定在所述低导热基板10上,且环绕所述低导热基板10的圆心设置,即散热组件30可以是处于低导热基板10外圆周上,形成环绕低导热基板10的圆心设置的环形体,或者是,散热组件30的部分或者全部与低导热基板10叠置,形成环绕低导热基板10的圆心设置的环形体。该散热组件30可以是整体的环形体,也可以是分体设置的多个零部件组件组成,例如所述散热组件30包括多个弧形部,多个所述弧形部相互拼接成一环形的所述散热组件30。
本实施例中,低导热基板10具有第一侧面和背对所述第一侧面的第二侧面。其中,第一侧面用于安装驱动件20,以驱动低导热基板10旋转。需要说明的是,本实施例中的色轮装置可以是通过与外部驱动件连接,受外部驱动件驱动旋转,还可以是在该色轮装置中进一步增加一个驱动件20与该低导热基板10直接驱动连接,可避免另外再配置外部驱动件。其中,驱动件20可为马达,具体是与所述低导热基板10的第一侧面连接。
本实施例中,散热组件30安装在低导热基板10上后,其与低导热基板10的第二侧面处在同一侧的侧面设置有波长转换层40,该波长转换层40可由波长转换材料,例如荧光粉涂设在散热组件30上形成。其中,驱动件20驱动低导热基板10旋转时,带动散热组件30及其上的波长转换层40一起旋转,当光源5入射至波长转换层40上时,激光激发波长转换材料(比如荧光粉)而产生受激光。
可以理解的是,波长转换层40在激发光的过程中会产生热量,本实施例中,将波长转换层40直接设置在散热组件30上,使得波长转换层40产生的热量直接传导到散热组件30上,而波长转换层40与散热组件30之间直接热传递,热传递效率较高,如此,波长转换层40的热量能够被散热组件30快速的吸收掉,并通过与风道引入的外界空气接触快速散热,从而便提高了波长转换层40的散热效率,保证了整个色轮装置的转换效率。并且,由于散热组件30与空气接触面积大,散热效率相对较高。其中,低导热基板10可选用各种导热性能较低的板材制成,例如玻璃板,通过其低导热性能以减少波长转换层40通过基板传递至驱动件20的热量,从而减少了驱动件20受波长转换层40产生的热量影响,保证了驱动件20的工作效率;另外,由于驱动件20本身产生的热量并不会使其经常处于高温状态,则其稳定性和寿命相较于高温使用时,得到大大提高。
本实施例中,散热组件30优选呈环形,且其未设置波长转换层40的一侧可设置散热结构,例如各种形状的凸起进行辅助散热,凸起的具体形状、设置位置和数量不限,只要能保证散热组件30和低导热基板10整体转动平衡即可。可以理解的是,通过设置凸起能够提高散热组件30的散热面积,使波长转换层40的热量能够通过散热组件30强制对流至空气中,提高波长转换层40的散热效率。
其中凸起可至少采用以下几个实施例实现,参照图3,在凸起的第一实施例中,凸起为环形凸起31,且环绕所述低导热基板10的圆心设置。环形凸起散热面积大,散热效果好。而环形凸起31与所述低导热基板10同心圆设置,易于保证低导热基板10转动时的平衡性,且使得低导热基板10在转动时,空气阻力小,噪音低。
进一步地,多个环形凸起31沿所述低导热基板10的圆心至外边缘间隔分布,这样相邻两环形凸起31之间形成环形风槽,提高散热效果。围绕圆心设置的环形凸起31的圈数可根据实际应用进行设定,例如,环形凸起31的圈数可以设置一圈、二圈、三圈、四圈、五圈等。需要说明的是,以下所述低导热基板10的外边缘是指低导热基板10远离其圆心的外沿部分。
此外,还可进一步设置多个所述环形凸起31在所述低导热基板10上的凸起高度自所述低导热基板10的圆心至外边缘递减。这样,可以保证靠近低导热基板10圆心位置的环形凸起31也能与空气较充分的接触散热,提高散热效果的同时,保证低导热基板10各处散热较均匀。
参照图4,在凸起的第二实施例中,凸起为柱形凸起32,且为多个,多个柱形凸起32散热量大,其中柱形凸起32方便成型。此外,可进一步地将各个呈柱形凸起32均匀环绕所述低导热基板10的圆心设置,以保证低导热基板10转动的平衡性,以及低导热基板10散热的均衡性。
参照图5,在凸起的第三实施例中,所述凸起为片状凸起33,且为多个。其中,各个片状凸起33在所述散热组件30上一端设于所述低导热基板10的外边缘,另一端沿所述低导热基板10的径向向其圆心延伸。该第三实施例中,片状凸起33可以是直条型,也可以是弧形,此处并不限制,图5所示出的凸起形状为具有一定弧度,这种弧形结构的凸起在低导热基板10上的排布方式类似于涡旋状,在低导热基板10转动的过程中,能够带动更多的气流流动,进而使低导热基板10上的热量能及时被气流带走,提高散热效果。
参照图6,在凸起的第四实施例中,凸起形状与第三实施例基本相同,也为片状凸起34(本实施例与第三实施例标号区分),且为多个。不同的是,在低导热基板10上的排布方式不同,具体地,多个所述片状凸起34沿所述散热组件30的周向环形均布,且形成一个或者多个直径不同的环形凸起组。这种结构的凸起在低导热基板10上分布均匀,在低导热基板10转动的过程中,能够带动较多的气流流动,进而使低导热基板10上的热量被气流带走,提高散热效果。本实施例中,还可以进一步优化的是,内外相邻的两环形凸起组中的片状凸起34部分或者全部错开设置,以使整个散热组件30散热均衡。
还参照图1及图2,上述实施例中,散热组件30与低导热基板10的安装结构具体不限,至少具有以下第一实施例和第二实施例。
在散热组件30与低导热基板10的安装结构的第一实施例中,所述散热组件30包括与所述低导热基板10的外边缘连接的连接部(图未标示)以及自所述连接部向外延伸的环形安装部(图未标示),所述波长转换层40设置在所述环形安装部上。即散热组件30部分结构与低导热基板10的外边缘连接,如此,散热组件30与空气接触的面积较大,散热效率高。
在散热组件30与低导热基板10的安装结构的第二实施例中,所述散热组件30处于所述低导热基板10上,且与所述低导热基板10背向所述驱动件20的一侧贴合固定。即散热组件30全部处于低导热基板10上,这种结构散热组件30安装相对较稳固。需要说明的是,在此实施例中,可对应在低导热基板10对应散热组件30的位置开设散热孔(图未示出),以保证散热组件30的散热效果。并且,该散热孔还可以进一步设置为供上述各种形状的凸起穿过,以便于散热。
在上述散热组件30与低导热基板10的安装结构的第一实施例中,需要说明的是,所述低导热基板10具有与所述驱动件20连接的第一板面和与该第一板面背向的第二板面,所述连接部贴合固定在所述低导热基板10的第一板面(如图1)或者第二板面上,又或者是,如图2所示,连接部具有环形槽(图未标示),通过环形槽卡合在所述低导热基板10的外边缘上。其中,连接部与低导热基板10之间可以是通过螺钉连接或者是通过双面胶或者胶水进行粘接,当然也可以是,螺钉连接后再通过胶水加固。此外,连接部通过环形槽卡接在所述低导热基板10的外边缘上后,也可以进一步通过胶水进行粘接加固。
在上述散热组件30与低导热基板10的安装结构的第二实施例中,需要说明的是,为方便安装,散热组件30优选采用粘接的方式安装于低导热基板10上,当然也可以采用螺钉连接的方式。
基于上述各实施例,在本实用新型一优选实施例中,所述散热组件30为铝片,所述波长转换层40为涂设在所述铝片上的荧光粉涂层。
基于上述各实施例,在本实用新型另一优选实施例中,波长转换层40为通过涂设有荧光粉的载体安装于低导热基板10上形成,其中载体可优选为陶瓷板,陶瓷板通过胶粘的方式贴合固定在散热组件30上。
基于上述各实施例,在本实用新型的进一步实施例中,参照图3至图6,所述色轮装置还包括滤光片50,所述滤光片50设置所述低导热基板10上且位于所述波长转换层40的内环侧,此处所述内环侧是低导热基板10相对波长转换层40而言,并非特指低导热基板10的内环侧,当波长转换层40随着散热组件30与低导热基板10的相对位置变化时,滤光片50的安装位置也是变化的。本实施例中,滤光片50用于将入射的受激光进行过滤,并从玻璃基板透射过去,实现滤光效果的同时,降低整个色轮装置的体积。
需要说明的是,在上述散热组件30与低导热基板10不同安装结构的实施例中,该滤光片50的安装位置可以适当选择,以方便安装。例如,在散热组件30与低导热基板10安装结构的第一实施例中,由于散热组件30安装在低导热基板10的外边缘,则低导热基板10上有足够的空间来安装滤光片50,本实施例中,滤光片50则优选安装在低导热基板10上,使其处于波长转换层40的内环侧。
值得一提的是,当本实施例中低导热基板10为玻璃板时,可以利用玻璃板的透光性,供受激光穿过,以减小出射光的光程,进而减小激光光源的体积。在散热组件30与低导热基板10安装结构的第二实施例中,由于散热组件30完全安装在低导热基板10上,占用了低导热基板10上较多的空间,本实施例中,滤光片50则优选与所述低导热基板10或者散热组件30连接,并环绕所述波长转换层40设置。
当然,在其他实施例中,上述滤光片50的滤光功能可采用滤波片60替换实现,如图7及图8所示,具体地,滤波片60呈环形设置,所述滤波片60处于所述低导热基板10与所述散热组件30之间并与所述低导热基板10和所述散热组件30分别连接,即由圆心向外,依次是低导热基板10→滤波片60→散热组件30;或者,所述滤波片60设于所述波长转换层40的外环侧60,且与所述散热组件30连接,即由圆心向外,依次是低导热基板10→散热组件30→滤波片60。这两种实施例都能将入射的受激光进行过滤,实现滤光效果。
可以理解的是,本实用新型提出的色轮装置,一方面通过设置散热组件30来安装波长转换层40,使得波长转换层40产生的热量直接传导到散热组件30上,而波长转换层40与散热组件30之间直接热传递,热传递效率较高,如此,波长转换层40的热量能够被散热组件30快速的吸收掉,从而便提高了波长转换层40的散热效率,保证了整个色轮装置的转换效率;另一方面,采用低导热基板10隔离波长转换层40与驱动件20之间的热量传递,避免驱动件20受波长转换层40产生的热量而影响其工作性能,保证驱动件20工作的稳定性,并且,提高驱动件20的使用寿命以及工作效率。
本实用新型还提出一种投影设备,该投影设备可以是教育投影仪、激光电视、微投或者影院机等,该投影设备包括上述实施例的色轮装置,该投影设备的具体结构参照上述实施例,由于本投影设备采用了上述所有实施例的全部技术方案,因此至少具有上述实施例的技术方案所带来的所有有益效果,在此不再一一赘述。
以上所述仅为本实用新型的优选实施例,并非因此限制本实用新型的专利范围,凡是在本实用新型的实用新型构思下,利用本实用新型说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本实用新型的专利保护范围内。

Claims (12)

1、一种色轮装置,其特征在于,包括:
低导热基板;
散热组件,固定在所述低导热基板上,且环绕所述低导热基板的圆心设置;
波长转换层,设置于所述散热组件上。
2、如权利要求1所述的色轮装置,其特征在于,所述低导热基板为玻璃板。
3、如权利要求1所述的色轮装置,其特征在于,所述散热组件包括与所述低导热基板的外边缘连接的连接部以及自所述连接部向外延伸的环形安装部,所述波长转换层设置在所述环形安装部上。
4、如权利要求3所述的色轮装置,其特征在于,所述低导热基板具有与驱动件连接的第一板面和与该第一板面背向的第二板面,所述连接部贴合固定在所述低导热基板的第一板面或者第二板面上,或者,所述连接部具有环形槽,所述连接部通过所述环形槽卡接在所述低导热基板的外边缘上。
5、如权利要求1所述的色轮装置,其特征在于,所述散热组件背向所述波长转换层的一面上设置有凸起。
6、如权利要求5所述的色轮装置,其特征在于,所述凸起为环形凸起,且与所述低导热基板同心圆设置;
或者,所述凸起为柱状凸起,且为多个,多个所述柱状凸起沿与所述低导热基板同心的圆环分布;
或者,所述凸起为片状凸起,且为多个;其中,各个所述片状凸起在所述散热组件上一端朝向所述低导热基板的内侧,另一端沿所述低导热基板的径向向外延伸;或者,多个所述片状凸起沿所述散热组件的周向环形均布,且形成多个直径不同的环形凸起组。
7、如权利要求1至6任一项所述的色轮装置,其特征在于,所述波长转换层设置在一陶瓷板上,所述陶瓷板与所述散热组件贴合设置。
8、如权利要求1至6任一项所述的色轮装置,其特征在于,所述散热组件为铝片,所述波长转换层为涂设在所述铝片上的荧光粉涂层。
9、如权利要求1至6任一项所述的色轮装置,其特征在于,所述色轮装置还包括滤光片,所述滤光片设于所述低导热基板上且位于所述波长转换层的内环侧。
10、如权利要求1所述的色轮装置,其特征在于,所述色轮装置还包括呈环形设置的滤波片,所述滤波片处于所述低导热基板与所述散热组件之间并与所述低导热基板和所述散热组件分别连接,或者,所述滤波片设于所述波长转换层的外环侧,且与所述散热组件连接。
11、如权利要求1至6任一项所述的色轮装置,其特征在于,所述色轮装置还包括用于驱动所述低导热基板运动的驱动件,所述驱动件设置于所述低导热基板上背向所述波长转换层的一面。
12、一种投影设备,其特征在于,包括如权利要求1至11任意一项所述的色轮装置。
PCT/CN2017/088632 2016-12-09 2017-06-16 色轮装置及投影设备 WO2018103293A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201621356607.4 2016-12-09
CN201621356607.4U CN206321931U (zh) 2016-12-09 2016-12-09 色轮装置及投影设备

Publications (1)

Publication Number Publication Date
WO2018103293A1 true WO2018103293A1 (zh) 2018-06-14

Family

ID=59267565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/088632 WO2018103293A1 (zh) 2016-12-09 2017-06-16 色轮装置及投影设备

Country Status (2)

Country Link
CN (1) CN206321931U (zh)
WO (1) WO2018103293A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113484769A (zh) * 2021-07-13 2021-10-08 四川帝威能源技术有限公司 一种自动化运行的高性能蓄电池容量检测装置
CN114578638A (zh) * 2020-11-30 2022-06-03 中强光电股份有限公司 波长转换元件及投影装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207164450U (zh) * 2017-08-01 2018-03-30 深圳市光峰光电技术有限公司 色轮、光源***及投影***
CN109917611A (zh) * 2017-12-12 2019-06-21 深圳光峰科技股份有限公司 一种色轮装置及投影设备
WO2019131730A1 (ja) * 2017-12-27 2019-07-04 京セラ株式会社 カラーホイール、およびプロジェクタ
CN110262173A (zh) * 2019-05-31 2019-09-20 苏州佳世达光电有限公司 易散热的荧光色轮及投影机
CN110632813A (zh) * 2019-10-31 2019-12-31 珠海市大晟云视传媒科技有限公司 一种荧光轮散热结构
CN114967303A (zh) * 2021-02-26 2022-08-30 中强光电股份有限公司 波长转换装置、其制作方法及投影机
CN114675414A (zh) * 2022-02-22 2022-06-28 河南中光学集团有限公司 一种扰流散热式荧光轮

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204178109U (zh) * 2014-09-03 2015-02-25 深圳市绎立锐光科技开发有限公司 一种色轮散热装置、色轮装置及发光装置
CN104614926A (zh) * 2014-10-28 2015-05-13 扬州吉新光电有限公司 一种具有降温结构基板的波长转换装置和发光装置
CN104676492A (zh) * 2015-01-31 2015-06-03 杨毅 波长转换装置和发光装置
CN204420882U (zh) * 2015-02-09 2015-06-24 深圳市绎立锐光科技开发有限公司 散热型修色色轮
CN105637404A (zh) * 2013-11-08 2016-06-01 日本电气硝子株式会社 投影器用荧光轮和投影器用发光器件
CN106200222A (zh) * 2014-12-08 2016-12-07 台达电子工业股份有限公司 色轮装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105637404A (zh) * 2013-11-08 2016-06-01 日本电气硝子株式会社 投影器用荧光轮和投影器用发光器件
CN204178109U (zh) * 2014-09-03 2015-02-25 深圳市绎立锐光科技开发有限公司 一种色轮散热装置、色轮装置及发光装置
CN104614926A (zh) * 2014-10-28 2015-05-13 扬州吉新光电有限公司 一种具有降温结构基板的波长转换装置和发光装置
CN106200222A (zh) * 2014-12-08 2016-12-07 台达电子工业股份有限公司 色轮装置
CN104676492A (zh) * 2015-01-31 2015-06-03 杨毅 波长转换装置和发光装置
CN204420882U (zh) * 2015-02-09 2015-06-24 深圳市绎立锐光科技开发有限公司 散热型修色色轮

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114578638A (zh) * 2020-11-30 2022-06-03 中强光电股份有限公司 波长转换元件及投影装置
US11988949B2 (en) 2020-11-30 2024-05-21 Coretronic Corporation Wavelength conversion element and projection apparatus
CN113484769A (zh) * 2021-07-13 2021-10-08 四川帝威能源技术有限公司 一种自动化运行的高性能蓄电池容量检测装置

Also Published As

Publication number Publication date
CN206321931U (zh) 2017-07-11

Similar Documents

Publication Publication Date Title
WO2018103293A1 (zh) 色轮装置及投影设备
WO2016127816A1 (zh) 散热型修色色轮
JP5016744B2 (ja) ハイパワーledランプ
RU2632471C2 (ru) Способ выполнения универсальной светодиодной лампочки, светодиодная лампочка, имеющая тип внутреннего стопорного кольца с фланцем, и лампа
US8882297B2 (en) Flat LED lamp assembly
KR20150086225A (ko) 통용성 led 벌브 구성 방법, 스냅 링 구조식 led 벌브 및 led 램프
WO2017008689A1 (zh) 一种色轮散热装置
WO2009135359A1 (zh) 用于替代反光杯形卤素灯泡的led灯泡
WO2018024013A1 (zh) 一种色轮模组、光源***和投影***
WO2017162001A1 (zh) 色轮装置及投影仪
WO2018201628A1 (zh) 色轮模组、光源模组和投影***
WO2017211131A1 (zh) 色轮装置
WO2015067181A1 (zh) 色轮固定装置、色轮组件及投影***
WO2013086715A1 (zh) 背板及相应的背光模组
WO2018028262A1 (zh) 一种色轮模组、光源模组和投影***
WO2017114303A1 (zh) 色轮模组、光源模组和投影***
WO2018192208A1 (zh) Led灯源、灯条及显示装置
WO2016173526A1 (zh) 波长转化装置、光源***和投影设备
US20180320877A1 (en) Lamp with internally mounted heat dissipation device
WO2018196348A1 (zh) 背光模组和显示装置
WO2014048025A1 (zh) 电源外置式的可旋转led双面日光灯
WO2013003996A1 (zh) 一种led射灯
WO2015013857A1 (zh) 双面透光的led灯具
TWI740223B (zh) 波長轉換裝置
WO2013016953A1 (zh) 一种贴片式led灯泡

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17879630

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17879630

Country of ref document: EP

Kind code of ref document: A1