WO2018103104A1 - 跟踪光波长的装置和方法 - Google Patents

跟踪光波长的装置和方法 Download PDF

Info

Publication number
WO2018103104A1
WO2018103104A1 PCT/CN2016/109318 CN2016109318W WO2018103104A1 WO 2018103104 A1 WO2018103104 A1 WO 2018103104A1 CN 2016109318 W CN2016109318 W CN 2016109318W WO 2018103104 A1 WO2018103104 A1 WO 2018103104A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrical signals
optical signal
wavelength
optical
filter
Prior art date
Application number
PCT/CN2016/109318
Other languages
English (en)
French (fr)
Inventor
赵家霖
陈微
满江伟
付生猛
曾理
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201680091338.XA priority Critical patent/CN110192359B/zh
Priority to PCT/CN2016/109318 priority patent/WO2018103104A1/zh
Publication of WO2018103104A1 publication Critical patent/WO2018103104A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers

Definitions

  • Embodiments of the present application relate to the field of optical communications and, more particularly, to an apparatus and method for tracking wavelengths of light.
  • the receiving end adopts a coherent detection technique.
  • coherent detection it is necessary to predict the wavelength of the signal light at the transmitting end, and adjust the wavelength of the local oscillator laser at the receiving end to be consistent with the wavelength of the transmitting end. The greater the wavelength deviation, the greater the power penalty.
  • the transmitter local oscillator laser is an Integrable Tunable Laser Assembly (ITLA) that calibrates its wavelength with an etalon.
  • ITLA Integrable Tunable Laser Assembly
  • a light source without a wavelength locker Wivelength Locker, WL
  • the wavelength of the transmitting laser is uncertain when it is used, that is, it will fluctuate within a certain wavelength range. In this case, it is particularly important to realize the wavelength tracking of the signal light at the transmitting end by the local oscillator laser at the receiving end.
  • the present application provides an apparatus and method for tracking the wavelength of light that enables tracking of the wavelength of the optical signal.
  • the present application provides a device for tracking a wavelength of a light, a filtering module, a photoelectric conversion module, and a control module, wherein the filtering module is configured to receive a first optical signal of an unknown wavelength, and perform filtering processing on the first optical signal respectively.
  • Two second optical signals are outputted to the photoelectric conversion module, wherein the two first electrical signals are in one-to-one correspondence with the two second optical signals;
  • the photoelectric conversion module is used for Receiving the two second optical signals, and performing photoelectric conversion processing on the two second optical signals to obtain two first electrical signals, and outputting the two first electrical signals to the control module;
  • the control module is configured to receive the Two first electrical signals, and adjusting operating parameters of the filtering module according to the two first electrical signals, so that the first electrical relationship between the two first electrical signals is satisfied;
  • the filtering module after adjusting the working parameters is further a third optical signal for receiving the output of the tunable laser, and filtering the third optical signal to obtain two fourth optical signals, and outputting the two fourth optical signals to the photoelectric conversion module;
  • Module is further configured to receive the two fourth optical signal and the fourth optical signal paths for the two The photoelectric conversion process respectively obtains two second electrical signals, and outputs the two second electrical signals to the control module, wherein the two second electrical signals and the two fourth optical signals
  • the first optical signal is an optical signal emitted by the transmitting end light source, and the wavelength of the first optical signal is unknown.
  • the third optical signal is an optical signal emitted by the tunable laser at the receiving end, and the wavelength of the third optical signal is adjustable. By adjusting the operating parameters of the respective devices, the wavelength of the third optical signal is aligned with the wavelength of the first optical signal, that is, the wavelength of the third optical signal is considered to be equal to the wavelength of the first optical signal.
  • substantially equal is considered to be equal to two wavelengths.
  • the equal wavelengths can also be considered as two wavelength alignments.
  • the device for tracking the wavelength of the light is for realizing the tracking of the wavelength of the first optical signal by the third optical signal, that is, ideally, the wavelength of the third optical signal should be exactly equal to the wavelength of the first optical signal, and the deviation is zero.
  • the wavelength of the third optical signal is substantially equal to the wavelength of the first optical signal, it can be considered that the wavelength of the three optical signals is tracked by the wavelength of the first optical signal.
  • the filtering module includes a first filter and a second filter, where the first preset relationship includes a third preset relationship and a fourth preset relationship, and the control module is configured to adjust the first filter.
  • the working parameters are such that the sum of the two first electrical signals satisfies a third preset relationship; the control module is further configured to adjust the operating parameters of the second filter such that the difference between the two first electrical signals satisfies the fourth Preset relationship.
  • the second preset relationship includes a fifth preset relationship and a sixth preset relationship
  • the control module is configured to adjust an operating parameter of the tunable laser according to the two second electrical signals, so that The sum of the two second electrical signals satisfies a fifth preset relationship, and the difference between the two second electrical signals satisfies a sixth preset relationship.
  • the first filter is a micro-ring filter
  • the second filter is a Mach-Zehnder interferometer MZI filter
  • the micro-ring filter is specifically configured to be the first optical signal. Filtering, and outputting the first optical signal subjected to the first filtering process to the MZI filter, where the MZI filter is specifically configured to perform a second filtering process on the first optical signal subjected to the first filtering process to obtain the two paths and the second Optical signal.
  • the third preset relationship is: the sum of the two first electrical signals is greater than or equal to the first preset threshold; and the fourth preset relationship is: the difference between the two first electrical signals
  • the second preset threshold is less than or equal to the second preset threshold, wherein the first preset threshold is greater than the second preset threshold.
  • the fifth preset relationship is: the sum of the two second electrical signals is greater than or equal to a third preset threshold; and the sixth preset relationship is: a difference between the two second electrical signals
  • the fourth preset threshold is less than or equal to the fourth preset threshold, wherein the third preset threshold is greater than the fourth preset threshold.
  • the apparatus further includes: a monitoring module, configured to monitor the first optical signal that has undergone the first filtering process, and to the control module when the first optical signal that undergoes the first filtering process is abruptly changed Send a feedback signal.
  • a monitoring module configured to monitor the first optical signal that has undergone the first filtering process, and to the control module when the first optical signal that undergoes the first filtering process is abruptly changed Send a feedback signal.
  • the monitoring module can be a monitor photodiode (MPD).
  • MPD monitor photodiode
  • the wavelength of the first optical signal is aligned with the peak wavelength of the drop port transmittance curve of the micro ring filter
  • the wavelength of the first optical signal is aligned with the wavelength corresponding to the intersection of the transmittance curves of the two output ports of the MZI filter.
  • the wavelength of the third optical signal is aligned with the peak wavelength of the drop port transmittance curve of the micro ring filter
  • the wavelength of the third optical signal is aligned with the wavelength corresponding to the intersection of the transmittance curves of the two output ports of the MZI filter.
  • the present application provides a method for tracking a wavelength of a light, receiving a first optical signal of an unknown wavelength, and filtering the first optical signal to obtain two second optical signals;
  • the signal is subjected to photoelectric conversion processing to obtain two first electrical signals respectively, wherein the two first electrical signals are in one-to-one correspondence with the two second optical signals; and the filtering processing is performed according to the two first electrical signals Working parameters, so that the first electrical relationship between the two first electrical signals is satisfied;
  • receiving the third optical signal, the wavelength of the third optical signal is adjustable, and filtering the third optical signal to obtain two paths a four-light signal; performing photoelectric conversion processing on the two fourth optical signals to obtain two second electrical signals, wherein the two second electrical signals are in one-to-one correspondence with the two fourth electrical signals;
  • the two second electrical signals adjust the wavelength of the third optical signal such that the two second electrical signals satisfy a second predetermined relationship such that the wavelength of the third optical signal is aligned with the wavelength of the first optical signal.
  • the first preset relationship includes a third preset relationship and a fourth preset relationship, and adjusting operating parameters of the filtering process according to the two first electrical signals, so that the two paths are Satisfying the first preset relationship between the first electrical signals, including: adjusting according to the two first electrical signals Filtering the first working parameter, so that the sum of the two first electrical signals satisfies a third preset relationship; adjusting the second operating parameter of the filtering process according to the two first electrical signals, so that the two paths are first The difference between the electrical signals satisfies the fourth predetermined relationship.
  • the first operating parameter of the filtering process is adjusted, and the operating parameter of the first filter can be adjusted corresponding to the device that tracks the wavelength of the light.
  • adjusting the second operating parameter of the filtering process may adjust the operating parameter of the second filter in the device corresponding to the wavelength of the tracking light.
  • the second preset relationship includes a fifth preset relationship and a sixth preset relationship, where the two second electrical signals satisfy a second preset relationship, including: the two paths The sum of the two electrical signals satisfies a fifth preset relationship, and the difference between the two second electrical signals satisfies a sixth preset relationship.
  • the first optical signal is filtered to obtain two second optical signals, including: performing first filtering processing on the first optical signal, and performing first filtering on the first optical signal
  • the optical signal is subjected to a second filtering process to obtain the two second optical signals, wherein the first filtering process is performed by a micro-ring filter, and the second filtering process is performed by an MZI filter.
  • the third preset relationship is: the sum of the two first electrical signals is greater than or equal to the first preset threshold
  • the fourth preset relationship is: the difference between the two first electrical signals
  • the second preset threshold is less than or equal to the second preset threshold, wherein the first preset threshold is greater than the second preset threshold.
  • the fifth preset relationship is: the sum of the two second electrical signals is greater than or equal to a third preset threshold
  • the sixth preset relationship is: a difference between the two second electrical signals
  • the fourth preset threshold is less than or equal to the fourth preset threshold, wherein the third preset threshold is greater than the fourth preset threshold.
  • the method further includes: monitoring the first optical signal after the first filtering process, and generating a feedback signal when the first optical signal after the first filtering process is abruptly changed.
  • the wavelength of the first optical signal is aligned with the peak wavelength of the drop port transmittance curve of the micro ring filter
  • the wavelength of the first optical signal is aligned with the wavelength corresponding to the intersection of the transmittance curves of the two output ports of the MZI filter.
  • the wavelength of the third optical signal is aligned with the peak wavelength of the drop port transmittance curve of the micro ring filter
  • the wavelength of the third optical signal is aligned with the wavelength corresponding to the intersection of the transmittance curves of the two output ports of the MZI filter.
  • the control module adjusts the filtering module for the first time through two adjustment processes.
  • the operating parameters are such that the wavelength of the optical signal of unknown wavelength is equal to the operating wavelength of the filtering module.
  • the second adjustment of the tunable laser is such that the wavelength of the signal light output by the tunable laser is equal to the operating wavelength of the filtering module, thereby achieving the purpose of aligning the wavelength of the laser with the wavelength of the optical signal of the unknown wavelength, and realizing the receiving end.
  • the laser tracks the wavelength of the signal light of unknown wavelength at the transmitting end.
  • Figure 1 shows a simplified diagram of the operation of a microring filter.
  • Figure 2 shows a simplified diagram of the operation of the MZI filter.
  • FIG. 3 is a schematic diagram of an apparatus 200 for tracking wavelengths of light according to an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a method 300 for tracking wavelengths of light according to an embodiment of the present disclosure.
  • FIG. 5 is an example of an apparatus for tracking a wavelength of light according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a process of tracking a wavelength of light according to an embodiment of the present disclosure.
  • the technical solution provided by the embodiment of the present application can be applied to a scenario in which it is required to track the wavelength of signal light of an unknown wavelength.
  • the receiving end light source usually needs to track (or align) the wavelength of light of the transmitting end light source. Because the wavelength deviation between the receiving end and the transmitting end is larger, the power consumed by the system is larger. Therefore, the wavelength of the receiving end should be made equal to the wavelength of the transmitting end as much as possible.
  • a light source without a wavelength locker is used in order to reduce the cost of the transmitter.
  • the wavelength of the signal light emitted from the transmitting end is fluctuating indefinitely. In this case, if the wavelength deviation of the receiving end from the transmitting end is kept as small as possible, automatic tracking of the wavelength of the light at the transmitting end should be achieved.
  • embodiments of the present application provide an apparatus and method for tracking wavelengths of light to achieve tracking of wavelengths of optical signals of unknown wavelengths.
  • Figure 1 shows a simplified diagram of the operation of a microring filter.
  • the microring filter in the form of a single loop
  • the microring filter is composed of a straight waveguide and a ring waveguide.
  • the specific working principle is as follows:
  • the signal light is incident from port A of the straight waveguide #1, and mutual coupling occurs when adjacent to the ring waveguide (also referred to as a microring), so that the signal light in the straight waveguide #1 is continuously coupled into the microring.
  • part of the signal light in the micro-ring is also continuously coupled into the straight waveguide #1 and outputted by the B port of the straight waveguide #1.
  • the signal light coupled into the microring revolves continuously in the microring and resonates in the vicinity of the straight waveguide #2, and some of the signal light in the microring is continuously coupled into the straight waveguide #2. And output by port C of straight waveguide #2.
  • the role of the micro-loop filter is mainly for filtering. That is, it filters the light of a specific wavelength.
  • port D can also be used to input signal light of a new wavelength and output by port B.
  • light incident from port A includes three wavelengths, ⁇ 1 , ⁇ 2 , and ⁇ 3 , respectively.
  • the wavelength of light satisfying the resonance condition of the micro ring filter is ⁇ 1 . Therefore, light of wavelength ⁇ 1 is output from port C, and light of wavelengths of ⁇ 2 and ⁇ 3 is output from port ⁇ .
  • an optical signal having a wavelength of ⁇ 4 is input from the port D, and ⁇ 4 satisfies the resonance condition of the micro-ring filter, light of the wavelength ⁇ 4 is output from the port ⁇ . Therefore, the port ⁇ finally outputs light wavelengths of ⁇ 2 , ⁇ 3 , and ⁇ 4 .
  • port A is also referred to as an input (In) port
  • port B is also referred to as a through port
  • port C is also referred to as a "Drop" port
  • port D is also referred to as an add port. See Figure 1.
  • MZI Mach Zehnder Interferometer
  • FIG. 2 shows a simplified diagram of the operation of the MZI filter.
  • the MZI filter has two input ports (port 1 and port 2 as shown in FIG. 2) and two output ports (port 3 and port 4 as shown in FIG. 2).
  • An optical signal input from either input port is transmitted along the upper input waveguide.
  • Upon coupling region #1 a portion of the light is coupled into the lower input waveguide.
  • the light enters the MZI with two arm lengths (waveguides) of varying lengths. It is then output from the two output ports via the coupling of the coupling regions #2 of the upper and lower output waveguides. Since the two arm lengths of the MZI are not equal, there is a certain length difference between the two. Since the effects of interference of light of different wavelengths are different, it can function as a filter.
  • FIG. 3 is a schematic block diagram of an apparatus 200 for tracking wavelengths of light provided by an embodiment of the present application.
  • the apparatus 200 includes a filtering module 210, a photoelectric conversion module 220, and a control module 230.
  • the filtering module 210 is configured to filter the received optical signal
  • the photoelectric conversion module 220 is configured to convert the received optical signal into an electrical signal.
  • the control module 230 is configured to feedback the adjustment filtering module 210 to implement wavelength tracking of the optical signal by the device 200.
  • the method 300 for tracking the wavelength of light of the application embodiment is applied to the apparatus 200 for tracking the wavelength of light, and the process of tracking the wavelength of the optical signal of unknown wavelength is described in detail.
  • FIG. 4 is a schematic flowchart of a method 300 for tracking wavelengths of light according to an embodiment of the present disclosure. As shown in FIG. 4, method 300 includes steps 310-360.
  • the filtering module receives the first optical signal of an unknown wavelength, and performs filtering processing on the first optical signal to obtain two second optical signals, and outputs the two second optical signals to the photoelectric conversion module.
  • the first optical signal here is an optical signal with unknown wavelength as a target optical signal that needs to be aligned (or tracked).
  • the filtering module filters the first optical signal
  • the first optical signal is divided into two second optical signals and transmitted to the photoelectric conversion module.
  • the photoelectric conversion module receives the two second optical signals, and performs photoelectric conversion processing on the two second optical signals to obtain two first electrical signals respectively, and outputs the two first electrical signals to the control module.
  • step 320 the photoelectric conversion module respectively performs photoelectric conversion on the two second optical signals, so that the two second optical signals are converted into two electrical signals and output to the control module.
  • the two first electrical signals are in one-to-one correspondence with the two second optical signals. That is, the photoelectric conversion module performs photoelectric conversion processing on one second optical signal to obtain a first electrical signal.
  • the other second optical signal is subjected to photoelectric conversion processing to obtain another first electrical signal.
  • the embodiment of the present application does not limit the specific implementation of the photoelectric conversion module. It can refer to the structure used in the prior art for photoelectric conversion, or it can be designed by itself.
  • the photoelectric conversion module may include a first photoelectric conversion unit and a second photoelectric conversion unit, wherein the first photoelectric conversion unit and/or the second photoelectric conversion unit may be A photodiode (PD) and a Trans-Impedance Amplifier (TIA) are connected in series.
  • PD photodiode
  • TIA Trans-Impedance Amplifier
  • the first photoelectric conversion unit and the second photoelectric conversion unit respectively perform photoelectric conversion on the two second optical signals, and convert them into electrical signal outputs.
  • the function of the photoelectric conversion module is to convert two optical signals output from the filtering module into electrical signals. Therefore, photoelectric conversion by PD and TIA is only an example, and simple changes made by those skilled in the art based on this structure, or other structures that can be realized to realize photoelectric conversion, should fall into the embodiment of the present application. The scope of protection.
  • the control module receives the two first electrical signals, and adjusts the working parameters of the filtering module according to the two first electrical signals, so that the first electrical relationship between the two first electrical signals is satisfied.
  • the operating parameters of the filter include, but are not limited to, operating voltage, operating current, and the like. Specifically, it should be determined according to the type of the filtering module. For example, if the filtering module is current tuning, the operating wavelength of the filtering module can be moved to a smaller or larger direction by increasing or decreasing the current injected in the filtering module. If the filter module is thermally tuned, the operating voltage can be shifted in a direction in which the wavelength becomes smaller or larger by increasing or decreasing the heating voltage of the filter module.
  • the first preset relationship refers to a relationship that needs to be satisfied between the two first electrical signals when the wavelength of the input optical signal (ie, the first optical signal) is aligned with the operating wavelength of the filter. Details will be given later.
  • the filtering module after adjusting the working parameter receives the third optical signal output by the tunable laser, performs filtering processing on the third optical signal to obtain two fourth optical signals, and outputs the two fourth optical signals to the photoelectric conversion module. .
  • the third optical signal here is an optical signal output by the tunable laser.
  • the method for tracking the wavelength of light aims to adjust the wavelength of the tunable laser to be aligned with the wavelength of the first optical signal without the wavelength of the first optical signal being unknown. That is, tracking of the wavelength of the optical signal emitted by the tunable laser to the wavelength of the first optical signal is achieved.
  • step 340 is similar to the aforementioned step 310, except that the processed optical signal is changed from the first optical signal to the third optical signal output by the tunable laser.
  • the processed optical signal is changed from the first optical signal to the third optical signal output by the tunable laser.
  • the photoelectric conversion module receives the two fourth optical signals, and performs photoelectric conversion processing on the two fourth optical signals to obtain two second electrical signals respectively, and outputs the two second electrical signals to the control module.
  • step 320 Similar to the previous step 320, reference may be made to the description of step 320 above.
  • the two second electrical signals are in one-to-one correspondence with the two fourth optical signals.
  • the control module receives the two second electrical signals, and adjusts the working parameters of the tunable laser according to the two second electrical signals, so that the second electrical signals meet the second preset relationship.
  • the wavelength of the three optical signal is aligned with the wavelength of the first optical signal.
  • the second preset relationship is that the wavelength of the third optical signal is aligned with the operating wavelength of the filtering module, a relationship between the two second electrical signals needs to be satisfied.
  • the means for tracking the wavelength of the light is to achieve alignment (i.e., equal) of the wavelength of the first optical signal with respect to the first optical signal. That is, in an ideal case, the wavelength of the third optical signal should be exactly equal to the wavelength of the first optical signal, with a deviation of zero. However, it is inevitable that there is an inevitable error in actual operation. Therefore, as long as the wavelength of the third optical signal is substantially equal to (or approximately equal to) the wavelength of the first optical signal, it is considered that the wavelength of the three optical signals is tracked by the wavelength of the first optical signal.
  • the operating wavelength of the filtering module is aligned with the wavelength of the first optical signal.
  • the wavelength of the third optical signal output by the laser is aligned with the operating wavelength of the filtering module.
  • the wavelength of the first optical signal is aligned with the wavelength of the third optical signal. That is, tracking of the wavelength of an optical signal of an unknown wavelength by a tunable laser is achieved.
  • the device for tracking the wavelength of the light first adjusts the operating parameters of the filtering module such that the wavelength of the optical signal of the unknown wavelength is aligned with the operating wavelength of the filtering module.
  • the wavelength of the optical signal output by the tunable laser is aligned with the operating wavelength of the filtering module such that the output wavelength of the tunable laser is aligned with the wavelength of the optical signal of the unknown wavelength.
  • the filtering module includes a first filter and a second filter, where the first preset condition includes a third preset relationship and a fourth preset relationship, and the control module is configured to adjust the first filter.
  • Working parameters so that the sum of the two first electrical signals satisfies a third preset relationship; the control module is further configured to adjust an operating parameter of the second filter, so that the difference between the two first electrical signals satisfies the fourth pre- Set the relationship.
  • the filtering module may be composed of two filters (ie, a first filter and a second filter).
  • the filtering process of the optical module by the filtering module may be implemented by filtering processing by the first filter and the second filter, respectively.
  • the adjustment of the filtering module by the control module is specifically to adjust the working parameters of the first filter and the second filter respectively.
  • the first filter may be a micro ring filter
  • the second filter may be an MZI filter
  • the operating wavelength represents the wavelength corresponding to the peak of the micro-loop filter drop port transmittance curve (hereinafter referred to as the peak wavelength).
  • the operating wavelength represents the intersection wavelength of the transmission curves of the two output ports.
  • the micro-ring filter is specifically configured to perform a first filtering process on the first optical signal, and output the first optical signal subjected to the first filtering process to the MZI filter, and the MZI filter is specifically used. And performing a second filtering process on the first optical signal subjected to the first filtering process to obtain the two second optical signals.
  • the first filter may also be other filter structures such as a grating-assisted omnidirectional coupler.
  • the detailed process of tracking the wavelength of the light in the embodiment of the present application is illustrated by using the first filter as a micro-loop filter and the second filter as an MZI filter as an example.
  • FIG. 5 is a schematic structural diagram of an apparatus for tracking a wavelength of light provided by an embodiment of the present application. As shown in Figure 5, the device includes:
  • the micro-ring filter includes four ports, of which port 1 and port 2 are input ports, and port 3 and port 4 are output ports.
  • the MZI filter includes four ports, of which port 5 and port 6 are input ports, and port 7 and port 8 are output ports.
  • the two output ports of the micro ring filter and the two input ports of the MZI filter are respectively connected by a waveguide. As shown in FIG. 5, port 3 is connected to port 5, and port 4 is connected to port 6.
  • the photoelectric conversion module is connected to the two output ports of the MZI filter through a waveguide.
  • the control circuit is connected to the photoelectric conversion module through a wire.
  • the micro-ring filter receives the optical signal #1 input from the port 1, and obtains the optical signal #2 through the first filtering process, and the optical signal #2 is output from the port 3.
  • the filtering principle of the optical signal #1 in the micro-ring filter can be referred to the foregoing description of the working principle of the micro-ring filter, and details are not described herein again.
  • port 2 of the micro loop filter is always off.
  • the tunable laser is off and not illuminated.
  • optical signal #2 is input to the MZI filter, and processed by the second filter to obtain two paths
  • the optical signals (respectively referred to as optical signal #31 and optical signal #32, respectively) are output by port 7 and port 8 of the MZI filter.
  • the optical signal #2 is transmitted to the port 5 of the MZI filter through the waveguide of the connection port 3, and is input to the MZI filter by the port 5.
  • a portion of the optical signal enters the lower input waveguide of the MZI filter as it passes through the coupling region 1 via the coupling of adjacent waveguides.
  • the optical signal #31 and the optical signal #32 are respectively transmitted along the upper and lower waveguides of the MZI filter, and are coupled from the port 7 and the port 8 to the two branches of the photoelectric conversion module via the coupling of the coupling region 2.
  • the branch formed by PD1 and TIA1 in FIG. 5 is referred to as the first branch
  • the branch formed by PD2 and TIA2 is referred to as the second branch.
  • optical signal #31 is subjected to photoelectric conversion processing along the first branch to obtain an electrical signal #41
  • optical signal #32 is subjected to photoelectric conversion processing along the second branch to obtain an electrical signal #42.
  • the electric signal #41 and the electric signal #42 are output to the control circuit.
  • the control circuit detects the electrical signal #41 and the electrical signal #42, and adjusts the working parameters of the microloop filter and the MZI filter by feedback, so that the electrical signal #41 and the electrical signal #42 satisfy the first preset relationship.
  • the two first electrical signals ie, electrical signal #41 and electrical signal #42 are taken as an example, and the two voltage values are respectively denoted as V 1 and V 2 .
  • the first preset relationship includes a third preset relationship and a fourth preset relationship.
  • the control circuit adjusts the micro-ring filter such that the sum of V 1 and V 2 satisfies the third preset relationship. Then, by adjusting the MZI filter, the difference between V 1 and V 2 satisfies the fourth preset relationship.
  • the third preset relationship is that the sum of the two first electrical signals is greater than or equal to the first preset threshold.
  • the fourth preset relationship is that the difference between the two first electrical signals is less than or equal to a second preset threshold.
  • the first preset threshold is greater than the second preset threshold.
  • the third preset relationship and the fourth preset relationship may be expressed as the following formula (1) and formula (2).
  • control circuit includes two adjustment processes:
  • the control circuit calculates the sum of the two voltages and feeds back a voltage signal or a current signal for adjusting the operating state of the microloop filter until the sum of the two voltage signals is equal to or greater than a first predetermined threshold.
  • the voltage value here should be the normalized value.
  • the ideal value of the first preset threshold is the maximum value of the sum of the two voltages (ie, V 1 , V 2 ). Considering the error of the actual operation, the first preset threshold and the maximum value of the sum of the two voltages are allowed to have a small deviation.
  • the control circuit adjusts the operating parameters of the adjustment micro-loop filter until the sum of the two voltages reaches a maximum. At this time, it is shown that the peak wavelength of the transmittance curve of the Drop end of the micro-ring filter is equal to the wavelength of the optical signal #1 (theoretically equal, and actually there may be a certain deviation, that is, substantially equal).
  • the maximum value of the sum of the two voltages can be determined by storing the values of the sum of the two voltages.
  • FIG. 6 is a schematic diagram of a process of tracking a wavelength of light according to an embodiment of the present disclosure.
  • the transmission curve of the Drop port is Lorentz type.
  • the curvature near the peak wavelength is small. Therefore, when the control circuit adjusts the operating parameters of the micro-ring filter to move its wavelength toward a larger or smaller direction, if the wavelength fluctuation range deviating from the peak wavelength is small, the transmittance curve does not become apparent. The change. Photodiodes (PDs) are also difficult to detect very weak changes in optical power. Therefore, the control circuit adjusts the micro-ring filter and can only play a coarse adjustment role. That is, the control circuit can only achieve coarse tracking by adjusting the micro-ring filter. Experiments have shown that the tracking accuracy of this process is about a few GHz. Hereinafter, the tracking accuracy is referred to as the frequency offset ⁇ f.
  • the physical meaning of the frequency offset ⁇ f is the frequency deviation after the wavelength of the two optical signals is aligned with the peak wavelength of the transmittance curve of the microchannel filter Drop port.
  • the first optical signal the optical signal that needs to be tracked
  • the wavelength is aligned to the peak wavelength of the transmission curve of the microchannel filter Drop port.
  • there may be a certain deviation between the wavelength of the first optical signal and the peak wavelength of the transmittance curve of the Drop port that is, not exactly equal.
  • the control circuit calculates the difference between the two voltages (ie, V 1 , V 2 ) and feeds back a voltage signal or a current signal for adjusting the operating state of the MZI filter until the difference between the two voltages is equal to or less than The second preset threshold.
  • the ideal value of the second preset threshold here should be taken as 0, that is, the control circuit makes the difference between the two voltages equal to 0 by adjusting the MZI filter. At this time, it is indicated that the wavelength of the first optical signal is aligned with the intersection of the transmittance curves of the two output ports of the MZI filter.
  • the second preset threshold can also be set to a very small value.
  • Basic alignment can also be considered when the difference between the two voltage values is less than the minimum value.
  • the third preset relationship and the fourth preset relationship represented by the formula (1) and the formula (2) may be simultaneously satisfied at the same time (that is, at the same time, the sum of the two voltage values is greater than Or equal to the first preset threshold, and the difference between the two voltage values is less than or equal to the second preset threshold).
  • the micro-ring filter may be adjusted such that the sum of the two voltage values at a certain time satisfies the formula (1).
  • the MZI filter is adjusted so that the difference between the two voltage values at another time satisfies the formula (2).
  • the MZI filter has a small Free Spectral Range (FSR), and the slope of the curve is the largest at the intersection of the transmission curves of the two output ports. Therefore, the weak optical power causes a large change in optical power, so that high-precision optical wavelength tracking can be achieved (the tracking accuracy can be higher than 1000 MHz, that is, the frequency deviation is less than 1000 MHz after the tracking is completed).
  • FSR Free Spectral Range
  • the FSR of the MZI filter since the FSR of the MZI filter is small, the wavelength of the optical signal and the tunable laser needs to be the same as the MZI transmittance curve in the process of performing coarse wavelength tracking by the micro-ring filter. In the FSR, otherwise the optical signal and the tunable laser will be aligned to other intersections on the two transmission curves. Therefore, when adopting the scheme of the embodiment of the present application, the FSR of the MZI filter should satisfy: FSR> ⁇ f (the frequency offset mentioned above). Specifically, it can be adjusted by changing the circumference of the microring, and the larger the circumference of the microring, the smaller the FSR of the MZI. Conversely, the smaller the perimeter of the microring, the larger the FSR of the MZI.
  • optical signal #4 the optical signal emitted from the laser L0 is referred to as the optical signal #4.
  • Part of the energy of the optical signal #4 is output from the port 4 of the micro-loop filter, passes through the waveguide connected to the port 4, is input to the lower input waveguide of the MZI filter through the port 6, and finally passes through the MZI.
  • the upper and lower output waveguides enter the photoelectric conversion module from port 7 and port 8 for photoelectric conversion.
  • V 3 and V 4 the two voltages (ie, the two second electrical signals) outputted to the control circuit after the optical signal #4 is filtered and photoelectrically converted.
  • the control circuit feedback adjusts the tunable laser to achieve wavelength tracking of the optical signal 1 by the tunable laser.
  • the control circuit adjusts the tunable laser such that the two second electrical signals satisfy a second predetermined relationship.
  • the second preset relationship includes a fifth preset relationship and a sixth preset relationship.
  • step 407 Similar to the previous step 404, the feedback adjustment of step 407 includes two adjustment processes.
  • the control circuit detects two voltages V 3 , V 4 , calculates and stores the sum of the two voltages V 3 and V 4 , and adjusts the operating parameters (eg, operating voltage or operating current) of the tunable laser L0 through feedback to increase
  • the wavelength of the laser output is reduced or decreased until the sum of the two voltages is equal to or greater than a third predetermined threshold (denoted as a fifth predetermined relationship).
  • a third predetermined threshold denoted as a fifth predetermined relationship
  • the control circuit detects the difference between the two voltages V 3 and V 4 and feedback adjusts the wavelength of the tunable laser until the difference between the two TIA voltages V 3 and V 4 is less than or equal to the fourth predetermined threshold (denoted as the first Six preset relationships). At this time, it is considered that the wavelength of the output optical signal of the tunable laser is aligned with the intersection of the transmission curves of the two output ports of the MZI.
  • the fifth preset relationship and the sixth preset relationship may be expressed as formula (3) and formula (4), respectively.
  • the ideal value of the third predetermined threshold is the maximum of the sum of the two voltages (ie, V 3 , V 4 ). Considering the error of the actual operation, the third preset threshold and the maximum value of the sum of the two voltages are allowed to have a small deviation.
  • the ideal value of the fourth preset threshold should be taken to be zero.
  • it may be set to a minimum value, and when the difference between the two voltages (ie, V 3 , V 4 ) is less than or equal to the minimum value, the two are considered The road voltage satisfies the sixth preset relationship.
  • the device further includes:
  • the monitoring module is configured to monitor the first optical signal that has undergone the first filtering process, and send a feedback signal to the control module when the first optical signal that undergoes the first filtering process is abruptly changed.
  • the monitoring module can be a monitor photodiode (MPD).
  • MPD monitor photodiode
  • a portion of the light is coupled into the MPD in the waveguide connected to the output port 3 of the micro-loop filter to monitor the optical signal output by the port 3.
  • the wavelength of the optical signal deviates from the transmittance of the micro-ring filter Drop port.
  • the peak wavelength of the curve, at this time, the optical power in the MPD will drop sharply. Therefore, detection of a sudden change in wavelength of light can be achieved by introducing an MPD.
  • the MPD sends a feedback signal to the control circuit so that the control circuit can control each device to perform optical tracking again.
  • the size of the sequence numbers of the foregoing processes does not mean the order of execution sequence, and the order of execution of each process should be determined by its function and internal logic, and should not be applied to the embodiment of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated in one unit. In the unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .
  • the size of the sequence numbers of the foregoing processes does not mean the order of execution sequence, and the order of execution of each process should be determined by its function and internal logic, and should not be applied to the embodiment of the present application.
  • the implementation process constitutes any limitation.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

本申请实施例公开了一种跟踪光波长的装置,包括:滤波模块,用于接收未知波长的第一光信号,并对第一光信号作滤波处理得到两路第二光信号,并将该两路第二光信号输出至光电转换模块;光电转换模块,用于接收该两路第二光信号,并对该两路第二光信号作光电转换处理得到两路第一电信号,并将该两路第一电信号输出至控制模块;控制模块,用于接收该两路第一电信号,并根据该两路第一电信号调节滤波模块的工作参数,以使该两路第一电信号之间满足第一预设关系;调节工作参数后的滤波模块,还用于接收可调谐激光器输出的第三光信号,并对第三光信号作滤波处理后得到两路第四光信号,并将该两路第四光信号输出至光电转换模块;光电转换模块还用于接收该两路第四光信号,并对该两路第四光信号作光电转换处理得到两路第二电信号,并将该两路第二电信号输出至控制模块;控制模块还用于接收该两路第二电信号,并根据该两路第二电信号调节可调谐激光器的工作参数,以使该两路第二电信号之间满足第二预设关系,使得第三光信号的波长与第一光信号的波长对准。

Description

跟踪光波长的装置和方法 技术领域
本申请实施例涉及光通信领域,并且更具体地,涉及一种跟踪光波长的装置和方法。
背景技术
在现有的相干光通信***中,为了提高接收灵敏度、增加传输距离,接收端采用相干检测技术。在相干检测的原理中,需要预知发送端信号光的波长,并将接收端本振激光器的波长调节到与发送端波长一致。波长偏差越大,功率代价越大。通常,发送端本振激光器是集成可调谐激光器组件(Integrable Tunable Laser Assembly,ITLA),会经过标准具对其波长进行标定。但是,在有些相干***的应用中,为了降低发送端的成本,会考虑采用无波长锁定器(Wavelength Locker,WL)的光源。如果发送端无波锁,发送端激光器的波长在使用时是不确定的,即,会在一定的波长范围内波动。这种情况下,实现接收端的本振激光器对发送端信号光的波长跟踪变得尤为重要。
发明内容
本申请提供了一种跟踪光波长的装置和方法,能够实现对光信号的波长的跟踪。
第一方面,本申请提供了一种跟踪光波长的装置,滤波模块、光电转换模块和控制模块,滤波模块用于接收未知波长的第一光信号,并对第一光信号作滤波处理分别得到两路第二光信号,并将该两路第二光信号输出至光电转换模块,其中,该两路第一电信号与该两路第二光信号是一一对应的;光电转换模块用于接收该两路第二光信号,并对该两路第二光信号作光电转换处理得到两路第一电信号,并将该两路第一电信号输出至控制模块;控制模块用于接收该两路第一电信号,并根据该两路第一电信号调节滤波模块的工作参数,以使该两路第一电信号之间满足第一预设关系;调节工作参数后的滤波模块,还用于接收可调谐激光器输出的第三光信号,并对第三光信号作滤波处理后得到两路第四光信号,并将该两路第四光信号输出至光电转换模块;光电转换模块还用于接收该两路第四光信号,并对该两路第四光信号作 光电转换处理分别得到两路第二电信号,并将该两路第二电信号输出至控制模块,其中,该两路第二电信号与该两路第四光信号之间是一一对应的;控制模块还用于接收该两路第二电信号,并根据该两路第二电信号调节可调谐激光器的工作参数,以使该两路第二电信号之间满足第二预设关系,使得第三光信号的波长与第一光信号的波长对准。
这里,第一光信号为发送端光源发出的光信号,第一光信号的波长是未知的。第三光信号为接收端的可调谐激光器发出的光信号,第三光信号的波长是可调的。通过调节各器件的工作参数,要使得第三光信号的波长与第一光信号的波长对准,即认为第三光信号的波长与第一光信号的波长相等。
但是,考虑到实际操作中的偏差,两个波长完全相等仅是一种理想状态,实际操作中,基本相等(或者说,近似相等)即认为是两个波长相等。
在本申请实施例中,波长相等也可以认为是两个波长对准。应理解,跟踪光波长的装置是为了实现第三光信号对第一光信号的波长的跟踪,即,理想情况下,第三光信号的波长与第一光信号的波长应完全相等,偏差为零。但是考虑到实际操作中不可避免的存在误差。因此,这里只要实现第三光信号的波长与第一光信号的波长基本相等,即可认为实现了三光信号的波长对第一光信号的波长的跟踪。
在一种可能的实现方式中,滤波模块包括第一滤波器和第二滤波器,该第一预设关系包括第三预设关系和第四预设关系,控制模块用于调节第一滤波器的工作参数,以使该两路第一电信号之和满足第三预设关系;控制模块还用于调节第二滤波器的工作参数,以使该两路第一电信号之差满足第四预设关系。
在一种可能的实现方式中,第二预设关系包括第五预设关系和第六预设关系,控制模块用于根据该两路第二电信号,调节可调谐激光器的工作参数,以使该两路第二电信号之和满足第五预设关系,该两路第二电信号之差满足第六预设关系。
在一种可能的实现方式中,第一滤波器为微环滤波器,第二滤波器为马赫增德尔干涉仪MZI滤波器,其中,微环滤波器具体用于对第一光信号作第一滤波处理,并将经过第一滤波处理的第一光信号输出至MZI滤波器,MZI滤波器具体用于对经过第一滤波处理的第一光信号作第二滤波处理,得到该两路第二光信号。
在一种可能的实现方式中,第三预设关系为:该两路第一电信号之和大于或等于第一预设阈值;第四预设关系为:该两路第一电信号之差小于或等于第二预设阈值,其中,第一预设阈值大于第二预设阈值。
在一种可能的实现方式中,第五预设关系为:该两路第二电信号之和大于或等于第三预设阈值;第六预设关系为:该两路第二电信号之差小于或等于第四预设阈值,其中,第三预设阈值大于第四预设阈值。
在一种可能的实现方式中,该装置还包括:监测模块,用于监测经过第一滤波处理的第一光信号,并在经过第一滤波处理的第一光信号发生突变时,向控制模块发送反馈信号。
可选地,监测模块可以为监控光电二极管(Monitor Photodiode,MPD)。
在一种可能的实现方式中,当该两路第一电信号满足第三预设关系时,第一光信号的波长对准微环滤波器drop端口透过率曲线的峰值波长,当该两路第一电信号满足第四预设关系时,第一光信号的波长对准MZI滤波器两个输出端口的透过率曲线的交点对应的波长。
在一种可能的实现方式中,当该两路第二电信号满足第五预设关系时,第三光信号的波长对准微环滤波器drop端口透过率曲线的峰值波长,当该两路第二电信号满足第六预设关系时,第三光信号的波长对准所述MZI滤波器两个输出端口的透过率曲线的交点对应的波长。
第二方面,本申请提供了一种跟踪光波长的方法,接收未知波长的第一光信号,对第一光信号作滤波处理后,得到两路第二光信号;对该两路第二光信号作光电转换处理,分别得到两路第一电信号,其中,该两路第一电信号与该两路第二光信号是一一对应的;根据该两路第一电信号调节滤波处理的工作参数,以使该两路第一电信号之间满足第一预设关系;接收第三光信号,第三光信号的波长可调,并对该第三光信号作滤波处理得到两路第四光信号;对该两路第四光信号作光电转换处理,分别得到两路第二电信号,其中,该两路第二电信号与该两路第四电信号是一一对应的;根据该两路第二电信号调节第三光信号的波长,以使该两路第二电信号之间满足第二预设关系,使得第三光信号的波长与第一光信号的波长对准。
在一种可能的实现方式中,该第一预设关系包括第三预设关系和第四预设关系,以及,根据该两路第一电信号调节滤波处理的工作参数,以使该两路第一电信号之间满足第一预设关系,包括:根据该两路第一电信号调节 滤波处理的第一工作参数,以使该两路第一电信号之和满足第三预设关系;根据该两路第一电信号调节滤波处理的第二工作参数,以使该两路第一电信号之差满足第四预设关系。
这里调节滤波处理的第一工作参数,可以对应到跟踪光波长的装置中调节第一滤波器的工作参数。而调节滤波处理的第二工作参数,可以对应到跟踪光波长的装置中调节第二滤波器的工作参数。
在一种可能的实现方式中,该第二预设关系包括第五预设关系和第六预设关系,该两路第二电信号之间满足第二预设关系,包括:该两路第二电信号之和满足第五预设关系,该两路第二电信号之差满足第六预设关系。
在一种可能的实现方式中,对第一光信号作滤波处理,得到两路第二光信号,包括:对第一光信号作第一滤波处理,并对经过第一滤波处理后的第一光信号作第二滤波处理,得到该两路第二光信号,其中,第一滤波处理是通过微环滤波器作的,第二滤波处理是通过MZI滤波器作的。
在一种可能的实现方式中,第三预设关系为:该两路第一电信号之和大于或等于第一预设阈值,第四预设关系为:该两路第一电信号之差小于或等于第二预设阈值,其中,第一预设阈值大于第二预设阈值。
在一种可能的实现方式中,第五预设关系为:该两路第二电信号之和大于或等于第三预设阈值,第六预设关系为:该两路第二电信号之差小于或等于第四预设阈值,其中,第三预设阈值大于第四预设阈值。
在一种可能的实现方式中,该方法还包括:监测经过第一滤波处理后的第一光信号,并在经过第一滤波处理后的第一光信号发生突变时,生成反馈信号。
在一种可能的实现方式中,当该两路第一电信号满足第三预设关系时,第一光信号的波长对准微环滤波器drop端口透过率曲线的峰值波长,当该两路第一电信号满足第四预设关系时,第一光信号的波长对准MZI滤波器两个输出端口的透过率曲线的交点对应的波长。
在一种可能的实现方式中,当该两路第二电信号满足第五预设关系时,第三光信号的波长对准微环滤波器drop端口透过率曲线的峰值波长,当该两路第二电信号满足第六预设关系时,第三光信号的波长对准所述MZI滤波器两个输出端口的透过率曲线的交点对应的波长。
在本申请实施例中,控制模块通过两次调节过程,第一次调节滤波模块 的工作参数,使得未知波长的光信号的波长与滤波模块的工作波长相等。第二次调节可调谐激光器,使得可调谐激光器输出的信号光的波长与滤波模块的工作波长相等,从而达到了使激光器的波长与未知波长的光信号的波长对准的目的,实现了接收端的激光器对发送端的未知波长的信号光的波长跟踪。
附图说明
图1示出了微环滤波器的工作原理简图。
图2示出了MZI滤波器的工作原理简图。
图3为本申请实施例提供的跟踪光波长的装置200的示意图。
图4为本申请实施例提供的跟踪光波长的方法300的示意性流程图。
图5为本申请实施例提供的跟踪光波长的装置的一例。
图6为本申请实施例提供的跟踪光波长的方法的过程示意图。
具体实施方式
下面结合附图,对本申请实施例的技术方案进行说明。
本申请实施例提供的技术方案,可应用于需要跟踪未知波长的信号光的波长的场景。例如,在相关光通信***中,接收端光源通常需要对发送端光源的光波长进行跟踪(或者说,对准)。由于,接收端与发送端的波长偏差越大,***消耗的功率越大。因此,应尽可能的使接收端的波长与发送端的波长相等。而在很多相干***的应用中,为了降低发送端的成本,会使用没有波长锁定器的光源。这样,发送端的发出的信号光的波长是波动不确定的。在这种情况下,如果接收端要与发送端的波长偏差保持尽可能的小,应当实现对发送端的光波长的自动跟踪。
为此,本申请实施例提供了一种跟踪光波长的装置和方法,以实现对未知波长的光信号的波长的跟踪。
首先,对本申请实施例中涉及到的两个滤波器(微环滤波器和MZI滤波器)及其工作原理作简单介绍。
微环滤波器
图1示出了微环滤波器的工作原理简图。如图1所示,微环滤波器(以单环为例)是由一条直波导和一个环形波导构成的。具体的工作原理如下:
信号光从直波导#1的端口A入射,在邻近环形波导(也称作微环)时会发生相互耦合,使得直波导#1中的信号光不断耦合进入微环中。同时,微环中的部分信号光也不断地耦合进入直波导#1,并由直波导#1的B端口输出。耦合进入微环的信号光在微环中不停地旋转而发生谐振,并在邻近直波导#2时也发生相互耦合,并使得微环中的部分信号光不断地耦合进入直波导#2中,并由直波导#2的端口C输出。
实际上,从端口A入射一定波长范围的光,特定波长(满足微环谐振条件)的光由端口C输出,不满足微环谐振条件的光从端口B输出。因此,微环滤波器的作用主要是用于滤波。即,对特定波长的光起到滤波的作用。
另外,端口D还可以用于输入新波长的信号光,并由端口B输出。
例如,从端口A入射的光包括三个波长,分别为λ1、λ2和λ3。其中,满足微环滤波器的谐振条件的光波长为λ1。因此,波长为λ1的光从端口C输出,而波长为λ2和λ3的光波长从端口Β输出。并且,如果从端口D输入波长为λ4的光信号,且λ4满足微环滤波器的谐振条件,则波长为λ4的光会从端口Β输出。因此,端口Β最终输出的光波长为λ2、λ3和λ4
在实际使用时,端口A也称作输入(In)端口,端口B也称作通过(Through)端口,端口C也称作透过(Drop)端口,端口D也称为增加(Add)端口。可参见图1。
MZI滤波器
马赫-增德尔干涉仪(Mach Zehnder Interferometer,MZI)用作滤波器时也称为MZI滤波器。MZI使用两条不同长度的干涉路径决定不同的波长输出。
图2示出了MZI滤波器的工作原理简图。如图2所示,MZI滤波器具有两个输入端口(如图2中所示的端口1和端口2)和两个输出端口(如图2中所示的端口3和端口4)。从任一个输入端口输入的光信号,沿着上输入波导传输。经过耦合区#1时,一部分光会耦合进入下输入波导。这样,光会进入MZI两个长度不等的臂长(波导)。再经过上下两个输出波导的耦合区#2的耦合,从两个输出端口输出。由于MZI的两个臂长不等,两者之间存在一定的长度差。由于不同波长的光发生干涉的效果不同,因而可以起到滤波的作用。
以下结合图3至图5,对本申请实施例提供的跟踪光波长的装置进行详 细说明。
图3为本申请实施例提供的跟踪光波长的装置200的示意性框图。如图3所示,装置200包括:滤波模块210、光电转换模块220和控制模块230。其中,滤波模块210用于对接收到的光信号作滤波处理,光电转换模块220用于将接收到的光信号转换为电信号。控制模块230用于反馈调节滤波模块210,以实现装置200对光信号的波长跟踪。
下面结合图4,对申请实施例的跟踪光波长的方法300应用于跟踪光波长的装置200,以对未知波长的光信号的波长进行跟踪的过程作详细说明。
需要说明的是,以下编号“第一”、“第二”仅仅用于为了区分不同的对象。例如,为了区分不同的光信号或者电信号。不应对本申请实施例的保护范围构成任何限定。
图4为本申请实施例提供的跟踪光波长的方法300的示意性流程图。如图4所示,方法300包括步骤310-360。
310、滤波模块接收未知波长的第一光信号,并对第一光信号作滤波处理得到两路第二光信号,并将该两路第二光信号输出至光电转换模块。
需要说明是,这里的第一光信号为波长未知的光信号,作为需要对准(或者说,跟踪)的目标光信号。
滤波模块对第一光信号作滤波处理后,第一光信号分作两路第二光信号传输至光电转换模块。
320、光电转换模块接收该两路第二光信号,并对该两路第二光信号作光电转换处理分别得到两路第一电信号,并将该两路第一电信号输出至控制模块。
在步骤320,光电转换模块对该两路第二光信号分别作光电转换,使得该两路第二光信号转换为两路电信号输出至控制模块。
该两路第一电信号与该两路第二光信号是一一对应的。即,光电转换模块对一路第二光信号作光电转换处理,得到一路第一电信号。对另一路第二光信号作光电转换处理,得到另一路第一电信号。
本申请实施例对于光电转换模块的具体实现不作任何限定。既可以参考现有技术中用作光电转换的结构,也可以自行进行设计。
可选地,作为一个实施例,光电转换模块可以包括第一光电转换单元和第二光电转换单元,其中,第一光电转换单元和/或第二光电转换单元可以由 光电二极管(Photo-Diode,PD)和跨阻放大器(Trans-Impedance Amplifier,TIA)串联组成。
具体地,第一光电转换单元和第二光电转换单元对该两路第二光信号分别作光电转换,将其转换为电信号输出。
可以理解的,光电转换模块的作用是将从滤波模块输出的两路光信号转换为电信号。因此,通过PD和TIA实现光电转换仅是作为一个示例,本领域技术人员在此结构基础上所作的简单变换,或者容易想到的能够实现光电转换作用的其它结构,都应落入本申请实施例的保护范围。
330、控制模块接收该两路第一电信号,并根据该两路第一电信号调节滤波模块的工作参数,以使该两路第一电信号之间满足第一预设关系。
滤波器的工作参数包括但不限于工作电压、工作电流等。具体地,应根据滤波模块的类型确定。例如,如果滤波模块为电流调谐,则可以通过增大或减小滤波模块中注入的电流,使滤波模块的工作波长往变小的方向或变大的方向移动。如果滤波模块为热调谐,则可以通过增大或减小滤波模块的加热电压,使其工作波长往波长变小或变大的方向移动。
这里,第一预设关系是指输入光信号(即第一光信号)的波长与滤波器的工作波长对准时,两路第一电信号之间需要满足的关系。后文会作详细说明。
340、调节工作参数后的滤波模块接收可调谐激光器输出的第三光信号,对第三光信号作滤波处理得到两路第四光信号,并将该两路第四光信号输出至光电转换模块。
这里的第三光信号为可调谐激光器输出的光信号。实际上,本申请实施例提供的跟踪光波长的方法,目的是在第一光信号的波长未知的情况下,将可调谐激光器的波长调节到与第一光信号的波长对准。即,实现可调谐激光器发出的光信号的波长对第一光信号的波长的跟踪。
步骤340的具体实现与前述步骤310类似,仅是处理的光信号由第一光信号变为可调谐激光器输出的第三光信号。可参见前文步骤310的描述,此处不再赘述。
350、光电转换模块接收该两路第四光信号,对该两路第四光信号作光电转换处理分别得到两路第二电信号,并将该两路第二电信号输出至控制模块。
与前述步骤320类似,可参见前文步骤320的说明。
类似地,该两路第二电信号与该两路第四光信号是一一对应的。
360、控制模块接收该两路第二电信号,并根据该两路第二电信号调节可调谐激光器的工作参数,以使该两路第二电信号之间满足第二预设关系,使得第三光信号的波长与第一光信号的波长对准。
与第一预设关系类似,第二预设关系为第三光信号的波长与滤波模块的工作波长对准时,两路第二电信号之间需要满足的关系。
应理解,跟踪光波长的装置是为了实现第三光信号对第一光信号的波长的对准(即,相等)。即,在理想情况下,第三光信号的波长与第一光信号的波长应完全相等,偏差为零。但是考虑到实际操作中不可避免的存在误差。因此,这里只要实现第三光信号的波长与第一光信号的波长基本相等(或,近似相等),即可认为实现了三光信号的波长对第一光信号的波长的跟踪。
通过上述步骤310-330,使得滤波模块的工作波长与第一光信号的波长对准。通过步骤340-360,使得激光器输出的第三光信号的波长与滤波模块的工作波长对准。
此时,我们认为第一光信号的波长与第三光信号的波长达到了对准。即,实现了可调谐激光器对未知波长的光信号的波长的跟踪。
在本申请实施例中,跟踪光波长的装置,首先通过调节滤波模块的工作参数,使得将未知波长的光信号的波长与滤波模块的工作波长对准。再通过调节可调谐激光器的工作参数,使得可调谐激光器输出的光信号的波长与滤波模块的工作波长对准,使得可调谐激光器的输出波长与未知波长的光信号的波长对准。从而能够实现对未知波长的光信号的波长的跟踪。
可选地,作为一个实施例,滤波模块包括第一滤波器和第二滤波器,第一预设条件包括第三预设关系和第四预设关系,控制模块用于调节第一滤波器的工作参数,以使该两路第一电信号之和满足第三预设关系;控制模块还用于调节第二滤波器的工作参数,以使该两路第一电信号之差满足第四预设关系。
具体地,滤波模块可以由两个滤波器(即,第一滤波器和第二滤波器)构成。此时,滤波模块对光信号的滤波处理可以分别由第一滤波器、第二滤波器作滤波处理实现。同时,控制模块对滤波模块的调节具体为分别对第一滤波器和第二滤波器的工作参数的调节。
可选地,作为一个实施例,第一滤波器可以为微环滤波器,第二滤波器可以为MZI滤波器。
对于微环滤波器,工作波长表示微环滤波器drop端口透过率曲线的峰值对应的波长(以下称作峰值波长)。对于MZI滤波器,工作波长表示两个输出端口透过率曲线的交点波长。
具体地,在本实施例中,微环滤波器具体用于对第一光信号作第一滤波处理,并将经过第一滤波处理的第一光信号输出至MZI滤波器,MZI滤波器具体用于对经过第一滤波处理的第一光信号作第二滤波处理,得到该两路第二光信号。
另外,第一滤波器还可以为利用光栅辅助同向耦合器的等其他滤波器结构。
以下结合图5,以第一滤波器为微环滤波器、第二滤波器为MZI滤波器作为示例,对本申请实施例的跟踪光波长的详细过程作举例说明。
图5示出了本申请实施例提供的跟踪光波长的装置的示意性结构图。如图5所示,该装置包括:
微环滤波器,包括4个端口,其中,端口1和端口2为输入端口,端口3和端口4为输出端口。
MZI滤波器,包括4个端口,其中,端口5和端口6为输入端口,端口7和端口8为输出端口。
其中,微环滤波器的2个输出端口与MZI滤波器的两个输入端口分别通过波导连接。如图5中所示,端口3与端口5连接,端口4与端口6连接。
光电转换模块,与MZI滤波器的两个输出端口通过波导连接。
控制电路,与光电转换模块通过导线连接。
以下对在图5所示的结构中跟踪光波长的方法进行详细说明。
410、微环滤波器接收从端口1输入的光信号#1,经过第一滤波处理,得到光信号#2,光信号#2从端口3输出。
具体地,光信号#1在微环滤波器中的滤波原理可以参见前文对微环滤波器的工作原理所作的说明,这里不再赘述。
需要说明的是,在步骤401执行的过程中,微环滤波器的端口2始终是关闭的。或者,可调谐激光器是关闭不发光的。
402、光信号#2输入至MZI滤波器,经过第二滤波器处理的,得到两路 光信号(分别记作光信号#31和光信号#32),并由MZI滤波器的端口7和端口8输出。
具体地,光信号#2通过连接端口3的波导传输至MZI滤波器的端口5,并由端口5输入MZI滤波器。沿着MZI滤波器的上输入波导传输,在经过耦合区1时,经过邻近波导的耦合作用,一部分光信号进入MZI滤波器的下输入波导。光信号#31和光信号#32分别沿着MZI滤波器的上下波导传输,经过耦合区2的耦合,从端口7和端口8分别输出至光电转换模块的两个支路。为了便于说明,将图5中PD1和TIA1构成的支路记作第一支路,将PD2和TIA2构成的支路记作第二支路。
403、光信号#31沿着第一支路,经过光电转换处理,得到电信号#41,光信号#32沿着第二支路,经过光电转换处理,得到电信号#42。电信号#41和电信号#42输出至控制电路。
404、控制电路检测电信号#41和电信号#42,通过反馈调节微环滤波器和MZI滤波器的工作参数,使得电信号#41和电信号#42满足第一预设关系。为了便于说明,以该两路第一电信号(即,电信号#41和电信号#42)为电压值作为示例,并将这两个电压值分别记作V1、V2
第一预设关系包括第三预设关系和第四预设关系。控制电路调节微环滤波器,使得V1、V2之和满足第三预设关系。再通过调节MZI滤波器使得V1、V2之差满足第四预设关系。
具体地,第三预设关系为:该两路第一电信号之和大于或等于第一预设阈值。第四预设关系为:该两路第一电信号之差小于或等于第二预设阈值。其中,第一预设阈值大于第二预设阈值。
第三预设关系和第四预设关系可以表示为如下公式(1)和公式(2)。
V1+V2≥第一预设阈值             (1)
V1-V2≤第二预设阈值              (2)
具体地,在步骤404中,控制电路包括两个调节过程:
(1)调节微环滤波器。
控制电路计算该两路电压之和,并通过反馈一个用来调节微环滤波器的工作状态的电压信号或电流信号,直至该两路电压信号之和等于或大于第一预设阈值。
这里的电压值应该为归一化后的数值。
另外,第一预设阈值的理想取值为该两路电压(即,V1、V2)之和的最大值。考虑到实际操作的误差,允许第一预设阈值与该两路电压之和的最大值可以有一个较小的偏差。
应理解,在不考虑光能量损失的情况下,MZI滤波器的两个输出端口的光能量等于微环滤波器的输入端口输入的光能量。因此,实际操作时,控制电路调节调节微环滤波器的工作参数,直至该两路电压之和达到最大。此时,表明微环滤波器的Drop端的透过率曲线的峰值波长与光信号#1的波长相等(理论上相等,实际也可以有一定的偏差,即达到基本相等)。
判断两路电压之和的最大值,可以通过存储若干个该两路电压之和的值,从中确定出该两路电压之和值中的最大值。
图6为本申请实施例提供的跟踪光波长的方法的过程示意图。根据微环滤波器的特性,其Drop端口的透过率曲线为洛伦兹型。如图6中(a)所示,峰值波长附近的曲率较小。因此,控制电路在调节微环滤波器的工作参数,以使其波长往变大或变小的方向移动的过程中,如果偏离峰值波长的波长波动范围较小时,透过率曲线不会发生明显的变化。而光电二极管(Photo Diode,PD)也很难检测出非常微弱的光功率的变化。因此,控制电路调节微环滤波器,只能起到粗调的作用。即,控制电路通过调节微环滤波器只能实现粗略的跟踪。实验表明,这个过程的跟踪精度约为几个GHz。以下,将跟踪精度记作频偏Δf。
实际上,频偏Δf表征的物理意义为,两路光信号的波长与微环滤波器Drop端口的透过率曲线的峰值波长对准后的频率偏差。参见图6,以上述两路电压之间满足公式(1)为例,当控制电路检测到两路电压值之和达到最大时,理论上认为,第一光信号(需要跟踪的光信号)的波长对准了微环滤波器Drop端口的透过率曲线的峰值波长。但实际上,此时第一光信号的波长与Drop端口的透过率曲线的峰值波长之间可能存在一定的偏差,即,并不是完全相等。同样的道理,第三光信号的波长与Drop端口的透过率曲线的峰值波长之间也可能存在一定的偏差。将这个波长上的偏差转换为以频率为单位,即是频偏Δf。
因此,为了实现更高精度的跟踪,还需要对MZI滤波器作进一步的对准(即精调的过程)。
(2)调节MZI滤波器。
控制电路计算该两路电压(即,V1、V2)的差值,并通过反馈一个用来调节MZI滤波器的工作状态的电压信号或电流信号,直至该两路电压之差等于或小于第二预设阈值。
这里的第二预设阈值的理想值应取为0,即,控制电路通过调节MZI滤波器使得两路电压之差等于0。此时,表明第一光信号的波长对准了MZI滤波器的两个输出端口的透过率曲线的交点。
当然,考虑实际操作时,不可避免的存在误差,因此,第二预设阈值也可以设置为一个极小的数值。当两个电压值的差值小于该极小的数值时,也可认为基本对准。
需要说明的是,公式(1)和公式(2)所表示的第三预设关系和第四预设关系,可以是在同一时刻同时满足(即,在同一时刻,两路电压值之和大于或等于第一预设阈值,且该两路电压值之差又小于或等于第二预设阈值)。或者也可以是先调节微环滤波器,使得在某一个时刻的两路电压值之和满足公式(1)。再调节MZI滤波器,使得在另一个时刻的两路电压值之差满足公式(2)。
如图6中的(b)所示,MZI滤波器具有很小的自由光谱范围(Free Spectral Range,FSR),并且,在两个输出端口的透射曲线的交点处,曲线斜率最大。因此,微弱的光功率即会引起较大的光功率的变化,从而,可以实现高精度的光波长的跟踪(跟踪精度可高于1000MHZ,即跟踪完成后频率偏差小于1000MHZ)。
由此,容易理解的是,由于MZI滤波器的FSR较小,因此在通过微环滤波器实现波长粗跟踪的过程中,光信号与可调谐激光器的波长需要位于MZI透过率曲线的同一个FSR中,否则光信号与可调谐激光器会对准到两个透过率曲线上其它交点处。因此,采用本申请实施例的方案时,MZI滤波器的FSR应满足:FSR>Δf(前文所说的频偏)。具体地,可以通过改变微环的周长作调节,微环的周长越大,MZI的FSR越小。反之,微环的周长越小,MZI的FSR越大。
405、开启可调谐激光器L0,从微环滤波器的端口2输入。
以下,将激光器L0发出的光信号记作光信号#4。
406、光信号#4的部分能量会从微环滤波器的端口4输出,经过与端口4连接的波导,通过端口6输入至MZI滤波器的下输入波导,最后经MZI 的上下两个输出波导从端口7和端口8进入光电转换模块中进行光电转换。
这里,将光信号#4经过滤波、光电转换处理后输出至控制电路的两路电压(即,两路第二电信号)记作V3、V4
407、控制电路反馈调节可调谐激光器,实现可调谐激光器对光信号1的波长跟踪。
在步骤407,控制电路通过调节可调谐激光器使得两路第二电信号之间满足第二预设关系。具体地,第二预设关系包括第五预设关系和第六预设关系。
与前述步骤404类似,步骤407的反馈调节包括两个调节过程。
首先,控制电路检测两路电压V3、V4,计算并存储两路电压V3、V4之和,通过反馈调节可调谐激光器L0的工作参数(例如,工作电压或工作电流),以增大或减小激光器输出的波长,直至两路电压之和等于或大于第三预设阈值(记作第五预设关系)。此时,表明可调谐激光器的波长对准了微环滤波器Drop端透过率曲线的峰值波长。
随后,控制电路检测两路电压V3、V4的差值,并反馈调节可调谐激光器的波长,直至两路TIA电压V3、V4之差小于或等于第四预设阈值(记作第六预设关系)。此时,认为可调谐激光器的输出光信号的波长对准了MZI两个输出端口透过率曲线的交点。
第五预设关系和第六预设关系可以分别表示为公式(3)和公式(4)。
V3+V4≥第三预设阈值                (3)
V3-V4≤第四预设阈值                 (4)
类似地,第三预设阈值的理想取值为该两路电压(即,V3、V4)之和的最大值。考虑到实际操作的误差,允许第三预设阈值与该两路电压之和的最大值可以有一个较小的偏差。
第四预设阈值的理想取值应取为零。或者,与第二预设阈值类似,也可以设置为一个极小的数值,当该两路电压(即,V3、V4)之差小于或等于该极小的数值时,即认为该两路电压满足第六预设关系。
可选地,作为一个实施例,该装置还包括:
监测模块,用于监测经过第一滤波处理的第一光信号,并在经过第一滤波处理的第一光信号发生突变时,向控制模块发送反馈信号。
可选地,监测模块可以为监控光电二极管(Monitor Photodiode,MPD)。
继续参见图5。在本实施例中,在与微环滤波器的输出端口3连接的波导中耦合分出一部分光进入MPD中,以对由端口3输出的光信号进行监测。端口3输出的光信号发生较大的突变(例如,由于环境影响使的器件失效,或者主动调节使的发送端波长发生跳变)时,光信号的波长会偏离微环滤波器Drop端口透射率曲线的峰值波长,此时,MPD中的光功率会急剧降低。因此,通过引入MPD可以实现对光波长突变的检测。MPD通过向控制电路发送一个反馈信号,以便于控制电路控制各器件重新进行光跟踪。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一 个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (12)

  1. 一种跟踪光波长的装置,其特征在于,包括滤波模块、光电转换模块和控制模块,
    所述滤波模块用于接收未知波长的第一光信号,并对所述第一光信号作滤波处理得到两路第二光信号,并将所述两路第二光信号输出至所述光电转换模块;
    所述光电转换模块用于接收所述两路第二光信号,并对所述两路第二光信号作光电转换处理分别得到两路第一电信号,并将所述两路第一电信号输出至所述控制模块,其中,所述两路第一电信号与所述两路第二光信号是一一对应的;
    所述控制模块用于接收所述两路第一电信号,并根据所述两路第一电信号调节所述滤波模块的工作参数,以使所述两路第一电信号之间满足第一预设关系;
    调节工作参数后的所述滤波模块,还用于接收可调谐激光器输出的第三光信号,并对所述第三光信号作滤波处理后得到两路第四光信号,并将所述两路第四光信号输出至所述光电转换模块;
    所述光电转换模块还用于接收所述两路第四光信号,并对所述两路第四光信号作光电转换处理分别得到两路第二电信号,并将所述两路第二电信号输出至所述控制模块,其中,所述两路第二电信号与所述两路第四光信号之间是一一对应的;
    所述控制模块还用于接收所述两路第二电信号,并根据所述两路第二电信号调节所述可调谐激光器的工作参数,以使所述两路第二电信号之间满足第二预设关系,使得所述第三光信号的波长与所述第一光信号的波长对准。
  2. 根据权利要求1所述的装置,其特征在于,所述滤波模块包括第一滤波器和第二滤波器,所述第一预设关系包括第三预设关系和第四预设关系,
    所述控制模块用于调节所述第一滤波器的工作参数,以使所述两路第一电信号之和满足所述第三预设关系;
    所述控制模块还用于调节所述第二滤波器的工作参数,以使所述两路第一电信号之差满足所述第四预设关系。
  3. 根据权利要求2所述的装置,其特征在于,所述第一滤波器为微环 滤波器,所述第二滤波器为马赫增德尔干涉仪MZI滤波器,其中,所述微环滤波器具体用于对所述第一光信号作第一滤波处理,并将经过第一滤波处理的第一光信号输出至所述MZI滤波器,所述MZI滤波器具体用于对经过第一滤波处理的第一光信号作第二滤波处理,得到所述两路第二光信号。
  4. 根据权利要求2或3所述的装置,其特征在于,所述第三预设关系为:所述两路第一电信号之和大于或等于第一预设阈值,所述第四预设关系为:所述两路第一电信号之差小于或等于第二预设阈值,其中,所述第一预设阈值大于所述第二预设阈值。
  5. 根据权利要求3或4所述的装置,其特征在于,所述装置还包括:
    监测模块,用于监测所述经过第一滤波处理的第一光信号,并在所述经过第一滤波处理的第一光信号发生突变时,向所述控制模块发送反馈信号。
  6. 根据权利要求3至5中任一项所述的装置,其特征在于,当所述两路第一电信号满足所述第三预设关系时,所述第一光信号的波长对准所述微环滤波器drop端口透过率曲线的峰值波长,当所述两路第一电信号满足所述第四预设关系时,所述第一光信号的波长对准所述MZI滤波器两个输出端口的透过率曲线的交点对应的波长。
  7. 一种跟踪光波长的方法,其特征在于,所述方法包括:
    接收未知波长的第一光信号,并对所述第一光信号作滤波处理,得到两路第二光信号;
    对所述两路第二光信号作光电转换处理,分别得到两路第一电信号,其中,所述两路第一电信号与所述两路第二光信号是一一对应的;
    根据所述两路第一电信号调节所述滤波处理的工作参数,以使所述两路第一电信号之间满足第一预设关系;
    接收第三光信号,所述第三光信号的波长可调,并对所述第三光信号作滤波处理得到两路第四光信号;
    对所述两路第四光信号作光电转换处理,分别得到两路第二电信号,其中,所述两路第二电信号与所述两路第四电信号是一一对应的;
    根据所述两路第二电信号调节所述第三光信号的波长,以使所述两路第二电信号之间满足第二预设关系,使得所述第三光信号的波长与所述第一光信号的波长对准。
  8. 根据权利要求7所述的方法,其特征在于,所述第一预设关系包括 第三预设关系和第四预设关系,
    以及,所述根据所述两路第一电信号调节所述滤波处理的工作参数,以使所述两路第一电信号之间满足第一预设关系,包括:
    根据所述两路第一电信号调节所述滤波处理的第一工作参数,以使所述两路第一电信号之和满足所述第三预设关系;
    根据所述两路第一电信号调节所述滤波处理的第二工作参数,以使所述两路第一电信号之差满足所述第四预设关系。
  9. 根据权利要求7或8所述的方法,其特征在于,所述对所述第一光信号作滤波处理,得到两路第二光信号,包括:
    对所述第一光信号作第一滤波处理,并对经过第一滤波处理后的第一光信号作第二滤波处理,得到所述两路第二光信号,其中,所述第一滤波处理是通过微环滤波器作的,所述第二滤波处理是通过MZI滤波器作的。
  10. 根据权利要求8或9所述的方法,其特征在于,所述第三预设关系为:所述两路第一电信号之和大于或等于第一预设阈值,所述第四预设关系为:所述两路第一电信号之差小于或等于第二预设阈值,其中,所述第一预设阈值大于所述第二预设阈值。
  11. 根据权利要求9或10所述的方法,其特征在于,所述方法还包括:
    监测所述经过第一滤波处理后的第一光信号,并在所述经过第一滤波处理后的第一光信号发生突变时,生成反馈信号。
  12. 根据权利要求8至11中任一项所述的方法,其特征在于,当所述两路第一电信号满足所述第三预设关系时,所述第一光信号的波长对准所述微环滤波器drop端口透过率曲线的峰值波长,当所述两路第一电信号满足所述第四预设关系时,所述第一光信号的波长对准所述MZI滤波器两个输出端口的透过率曲线的交点对应的波长。
PCT/CN2016/109318 2016-12-09 2016-12-09 跟踪光波长的装置和方法 WO2018103104A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680091338.XA CN110192359B (zh) 2016-12-09 2016-12-09 跟踪光波长的装置和方法
PCT/CN2016/109318 WO2018103104A1 (zh) 2016-12-09 2016-12-09 跟踪光波长的装置和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/109318 WO2018103104A1 (zh) 2016-12-09 2016-12-09 跟踪光波长的装置和方法

Publications (1)

Publication Number Publication Date
WO2018103104A1 true WO2018103104A1 (zh) 2018-06-14

Family

ID=62490624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/109318 WO2018103104A1 (zh) 2016-12-09 2016-12-09 跟踪光波长的装置和方法

Country Status (2)

Country Link
CN (1) CN110192359B (zh)
WO (1) WO2018103104A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113054528A (zh) * 2019-12-28 2021-06-29 华为技术有限公司 一种激光器芯片
CN113872702A (zh) * 2021-09-26 2021-12-31 武汉光谷信息光电子创新中心有限公司 一种微环波长的控制方法、***、设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030138195A1 (en) * 2002-01-23 2003-07-24 Shyh-Lin Tsao Wavelength to optical power converter and method for converting wavelength into optical power
CN1771679A (zh) * 2004-03-17 2006-05-10 日本电信电话株式会社 光传输***、光传输***的光发送装置及光接收装置
CN101635597A (zh) * 2008-07-22 2010-01-27 华为技术有限公司 降低光放大器噪声的方法、光接入设备和光网络***
CN103460629A (zh) * 2010-12-10 2013-12-18 阿尔卡特朗讯 用于导频辅助的数据传输的相干光接收机

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1146151C (zh) * 1999-05-24 2004-04-14 华为技术有限公司 光波长的跟踪方法及装置
CN101840028A (zh) * 2010-04-07 2010-09-22 中国科学院半导体研究所 基于微环谐振器的集成化可重构光插分复用器
JP5598066B2 (ja) * 2010-04-16 2014-10-01 日本電気株式会社 コヒーレント光受信器及び受信方法
WO2012150197A1 (en) * 2011-04-30 2012-11-08 Rwth Aachen Wdm telecommunications link with coherent detection and optical frequency comb sources
JP2016192626A (ja) * 2015-03-31 2016-11-10 日本電気株式会社 自動周波数制御回路、光受信器、制御方法及びプログラム
CN205249182U (zh) * 2015-12-16 2016-05-18 北京邮电大学 副载波光锁相环***

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030138195A1 (en) * 2002-01-23 2003-07-24 Shyh-Lin Tsao Wavelength to optical power converter and method for converting wavelength into optical power
CN1771679A (zh) * 2004-03-17 2006-05-10 日本电信电话株式会社 光传输***、光传输***的光发送装置及光接收装置
CN101635597A (zh) * 2008-07-22 2010-01-27 华为技术有限公司 降低光放大器噪声的方法、光接入设备和光网络***
CN103460629A (zh) * 2010-12-10 2013-12-18 阿尔卡特朗讯 用于导频辅助的数据传输的相干光接收机

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113054528A (zh) * 2019-12-28 2021-06-29 华为技术有限公司 一种激光器芯片
CN113872702A (zh) * 2021-09-26 2021-12-31 武汉光谷信息光电子创新中心有限公司 一种微环波长的控制方法、***、设备及存储介质

Also Published As

Publication number Publication date
CN110192359B (zh) 2020-12-15
CN110192359A (zh) 2019-08-30

Similar Documents

Publication Publication Date Title
CN107482475B (zh) 可调激光源
US9310562B2 (en) Wavelength-locking a ring-resonator filter
US7280721B2 (en) Multi-ring resonator implementation of optical spectrum reshaper for chirp managed laser technology
CA2361527C (en) Opto-electronic oscillators having optical resonators
US20210021102A1 (en) Wavelength tunable laser
CN104635297A (zh) 光学谐振器设备、光学发射机和光学谐振器的控制方法
CN110346874B (zh) 基于自零差检测的自动波长锁定装置
JP2008270583A (ja) 波長可変光源装置とその制御方法,制御用プログラム
JP7077525B2 (ja) 波長可変光源、及びこれを用いた光トランシーバ
US9983420B2 (en) Wavelength-locking a ring-resonator modulator
US8902937B2 (en) Compact external cavity tunable laser apparatus
WO2018103104A1 (zh) 跟踪光波长的装置和方法
US9127983B1 (en) Systems and methods for controlling an operating wavelength
JP2017003670A (ja) ハイブリッド集積型光送信器
US10502901B2 (en) Tunable light source and optical module
WO2016192008A1 (zh) 一种同频率本振光源的产生装置、设备和方法
CN113992274B (zh) 硅基集成高精度射频信号稳相传输芯片、发送端及***
JPH09191147A (ja) パルス光源
US20220376463A1 (en) Tunable laser with channel selector
Ejzak et al. Toward a widely tunable narrow linewidth RF source through heterogenous silicon photonic integration
US7583868B2 (en) 3R recovery system
Nguyen et al. Hybrid silicon DQPSK receiver
Das Development of a Control System for Photonic Integrated Circuits
CN116505369A (zh) 电调相的窄线宽高稳频集成外腔激光器及稳频方法
Bhardwaj et al. Wavelength conversion using semiconductor optical amplifiers in differential Mach-Zehnder interferometer with tunable input coupler

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16923225

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16923225

Country of ref document: EP

Kind code of ref document: A1