WO2018101716A1 - Luminescent composition, quantum dots, and preparation method therefor - Google Patents

Luminescent composition, quantum dots, and preparation method therefor Download PDF

Info

Publication number
WO2018101716A1
WO2018101716A1 PCT/KR2017/013740 KR2017013740W WO2018101716A1 WO 2018101716 A1 WO2018101716 A1 WO 2018101716A1 KR 2017013740 W KR2017013740 W KR 2017013740W WO 2018101716 A1 WO2018101716 A1 WO 2018101716A1
Authority
WO
WIPO (PCT)
Prior art keywords
zinc
shell
precursor
ligand
phosphine
Prior art date
Application number
PCT/KR2017/013740
Other languages
French (fr)
Korean (ko)
Inventor
이선형
이혁재
Original Assignee
주식회사 나노스퀘어
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 나노스퀘어 filed Critical 주식회사 나노스퀘어
Publication of WO2018101716A1 publication Critical patent/WO2018101716A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • H01L33/18Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous within the light emitting region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0058Processes relating to semiconductor body packages relating to optical field-shaping elements

Definitions

  • the present invention relates to nanostructures. More specifically, the present invention relates to luminescent compositions comprising nanostructures comprising an InP core and at least one shell layer and highly luminescent quantum dots having high luminescence quantum yield, emitting light at certain wavelengths and having a narrow size distribution. The present invention relates to a method of making such a quantum dot.
  • Semiconductor nanostructures can be incorporated into a variety of electrical and optical devices. Such nanostructures of electrical and optical properties vary, for example, depending on their composition, shape, and size. For example, semiconductor nanoparticles of size-variable nature are materials of interest in applications including, for example, light emitting diodes (LEDs). Highly luminescent nanostructures are particularly desirable for such applications.
  • LEDs light emitting diodes
  • Quantum dots with CdSe cores have been produced that exhibit high quantum yields.
  • the intrinsic toxicity of cadmium limits the application of these cadmium-based nanoparticles.
  • InP-based nanostructures have similar emission ranges and are therefore ideal replacements for CdSe-based materials.
  • InP-based nanostructures are described, for example, in Xie et al. (2007) "Colloidal InP nanocrystals as efficient emitters covering blue to near-infrared” J. Am. Chem. Soc. 129: 15432-15433, Micic et al. (2000) “Core-shell quantum dots of lattice-matched ZnCdSe2 shells on InP cores: Experiment and theory" J. Phys. Chem. B 104: 12149-12156, Liu et al. (2008) “Coreduction colloidal synthesis of III-V nanocrystals: The case of InP” Angew. Chem. Int. Ed.
  • the problem to be solved by the present invention is to provide a light emitting composition comprising a nanostructure comprising an InP core and at least one shell layer and a method for producing a highly emitting quantum dots, in particular a highly emitting InP-based quantum dots.
  • One embodiment of the invention the nanostructure; And a ligand that binds to the surface of the nanostructure, wherein the ligand is an organic amine.
  • Another embodiment of the present invention provides a zinc precursor and an indium precursor and a first step of providing a nanostructure core by reacting the indium precursor and the phosphorus precursor further injected in the presence of an organic amine ligand; And providing a shell by providing at least one of Se and S and reacting at least one of Se and S in the presence of a phosphine ligand, wherein the phosphine is an alkyl or aryl group having from 4 to 8 carbon atoms.
  • a method for producing a quantum dot having a trialkyl phosphine or a triaryl phosphine are provided.
  • Another embodiment of the present invention is a nanostructured quantum dot, the quantum dot exhibits a light emission quantum yield of 70% or more, the emission spectrum has an emission maximum of 550nm to 650nm and the full width at half maximum of the emission spectrum is 60nm or less, wherein the nanostructure Provides a quantum dot of InP / ZnSe 1- x S x / ZnS core / shell (where 0.72 ⁇ x ⁇ 0.92).
  • a light emitting composition comprising a nanostructure comprising an InP core and at least one shell layer, comprising: a highly emitting quantum dot having a high emission quantum yield and in certain embodiments emitting light at a particular wavelength and having a narrow size distribution,
  • a highly emitting quantum dot having a high emission quantum yield and in certain embodiments emitting light at a particular wavelength and having a narrow size distribution
  • the core can be formed larger in the same wavelength band, and at the same time, the shell can be formed thicker, and the core can be formed larger, thereby reducing the half width by reducing crystal defects occurring at the interface between the core and the cell.
  • the diameter of the core is large, the ratio of Se and S of the anion precursor is easy to form an alloy layer of the ZnSeS layer at the interface, thereby facilitating the suppression of interface defects.
  • the InP / ZnSeS / ZnS type of 3 to 5 layers
  • the multilayer shell quantum dots can improve the chemical stability and optical stability.
  • FIG. 2 is a graph comparing wavelengths of the quantum dots prepared in Examples 1 to 3 and Comparative Example 1.
  • FIG. 1 is a graph comparing wavelengths of the quantum dots prepared in Examples 1 to 3 and Comparative Example 1.
  • a nanostructure includes a plurality of such nanostructures.
  • drug refers to a value that can vary from +/- 10% or optionally +/- 5%, in some embodiments +/- 1% of the values described. For example, about 100 nm includes those having a size of 90 nm to 110 nm.
  • nanostructure is a structure having one or more regions or characterizing dimensions having dimensions of less than about 500 nm, eg, less than 200 nm, less than 100 nm, less than 50 nm, or even less than 20 nm, less than 10 nm.
  • the area or characterization dimension will be along the smallest axis of the structure.
  • examples of such structures include nanowires, nanorods, nanotubes, branched nanostructures, nanotetrapods, tripods, bipods, nanocrystals, nanodots, quantum dots, nanoparticles and the like.
  • the nanostructures can be, for example, substantially crystalline, substantially monocrystalline, polycrystalline, amorphous, or combinations thereof.
  • each of the three dimensions of the nanostructure has a dimension of less than about 500 nm, such as less than 200 nm, less than 100 nm, less than 50 nm, or even less than 20 nm, less than 10 nm.
  • heterostructure refers to nanostructures characterized by two or more different and / or distinguishable material types.
  • one region of the nanostructure comprises the first material type
  • the second region of the nanostructure comprises the second material type.
  • the nanostructures comprise a core of the first material and one or more shells of the second (or third) material, wherein different material types are for example of the center of the nanocrystals or of the arms of the branched nanowires.
  • Long axis roughly distributed radially along the long axis of the nanowire.
  • the shell here can completely surround the nanostructures considered to be heterostructures or adjacent materials considered to be shells.
  • the diameter of the nanostructures used in the present invention refers to the diameter normal to the cross section with respect to the first axis of the nanostructure, where the first axis is most different in the longitudinal direction with respect to the second axis and the third axis.
  • the second axis and the third axis are two axes of approximately the same length as each other.
  • the first axis need not be the longest axis of the nanostructure, for example for a disc-shaped nanostructure, the cross section is a normal of a cross section that is substantially circular to the short longitudinal axis of the disc.
  • the cross section is then not circular and the diameter is the average of the major and minor axes of the fragments.
  • the diameter is measured from one face perpendicular to the longest axis of the nanowire.
  • quantum dots refers to nanocrystals that exhibit quantum limitations or excitation limitations. Quantum dots may be substantially homogeneous in material properties or, in certain embodiments, may be heterogeneous, including, for example, a core and one or more shells.
  • the optical properties of quantum dots can be influenced by their particle size, chemical composition and / or surface composition and can be measured by optical tests available in the art.
  • Fatty acids are monocarboxylic acids with aliphatic tails (saturated or unsaturated but only containing carbon and hydrogen atoms).
  • precursors are chemical substances (eg compounds or elements) that react with another precursor, thereby imparting one or more atoms to the nanostructures produced by the reaction.
  • Ligands are molecules that can interact with one or more sides of the nanostructure or other molecules that interact with the surface of the nanostructure (eg, act weakly or strongly through covalent bonds, ionic bonds, van der Waals).
  • Luminescent quantum yield is, for example, the proportion of protons released as protons absorbed by the population or nanostructure of nanostructures. As is known in the art, quantum yields are typically measured by comparative methods using well-characterized standard samples having known quantum yield values.
  • Colloidal synthesis methods of various nanostructures are known in the art. Such methods include techniques for controlling nanostructure growth, such as for controlling the size and / or shape distribution of the resulting nanostructures.
  • semiconductor nanostructures are prepared by rapidly injecting precursors that undergo hydrolysis into hot solutions (eg hot solvents and / or surfactants). Precursors can be injected simultaneously or sequentially. The precursor reacts quickly to form a nucleus. Nanostructure growth occurs through the addition of monomers to the nucleus and typically occurs at growth temperatures below the implantation / nucleation temperature.
  • Surfactant molecules interact with the surface of the nanostructures. At the growth temperature, the surfactant molecules quickly absorb or dehydrate from the nanostructured surface, thereby inhibiting the aggregation of the growing nanostructures while enabling the addition and / or removal of atoms from the nanostructures.
  • surfactants that are weakly coordinated to the nanostructured surface allow for rapid growth of the nanostructures, while surfactants that bind more strongly to the nanostructured surface produce slower nanostructured growth.
  • surfactants interact with one (or more than one) precursor to slow nanostructure growth.
  • Nanostructure growth in the presence of a single surfactant typically produces spherical nanostructures.
  • using two or more surfactant mixtures allows growth to be controlled such that non-sphere nanostructures are produced, for example, when two (or more) surfactants are adsorbed differently on different crystallographic aspects of the growing nanostructure. To be able.
  • nanostructures Many parameters that affect the growth of nanostructures are known and can be manipulated independently or in combination, creating ones to control the size and / or shape distribution of the nanostructures. These are for example temperature (nucleation and / or growth), precursor composition, time-dependent precursor concentration, ratio of precursors to each other, surfactant composition, number of surfactants, and ratio of surfactant (s) to each other And / or the ratio of surfactant (s) to precursors.
  • the present invention overcomes the aforementioned difficulties (eg low quantum yield) by providing shell alloy synthesis techniques of nanostructures or InP nanostructures with indium. Methods and compositions for enhancing the quantum yield of core / shell nanostructures in which shell growth is produced are described. A step-growth method of layered ZnSe1-xSx / ZnS shells is also described. The composition related to the method of the present invention is also characterized by including highly luminescent nanostructures having a narrow size distribution and high quantum yield.
  • ZnSeS has less lattice mismatch with InP than ZnS.
  • providing a thin ZnSeS interlayer on the InP core increases the quantum yield.
  • Application of the ZnS outer layer increases quantum yield and also enhances the stability of the nanostructures.
  • the synthesis of the layered ZnSeS / ZnS shell provides greater control over the thickness of the resulting layer.
  • the light emitting composition according to an embodiment of the present invention the nanostructure; And a ligand that binds to the surface of the nanostructure, wherein the ligand is an organic amine.
  • nanostructures may include ZnSeTe, MnSe, MgSe, InAs, InN, and the like.
  • the nanostructures optionally include one or more shells.
  • the organic amine may be at least one selected from primary amines including, for example, laurylamine, stearylamine, octylamine, cetylamine, tetradecylamine, dodecylamine, hexadecylamine and oleylamine.
  • the change in the content of the organic amine it is possible to obtain a quantum dot controlled the emission wavelength range.
  • the higher the content of the organic amine the more strongly bound with the ionized precursor, the growth of the quantum dot nucleation (nucleation) is delayed or using a precursor in which the nucleus of the quantum dot is formed less and the nucleus formed is left, As the size increases, the emission peak is shifted toward the longer wavelength.
  • the content of a suitable organic amine ligand may be 1 to 50 times, preferably 10 to 30 times in molar ratio compared to the Group 3 precursor.
  • the content of the organic amine ligand is less than the above range, due to the lack of the content of the organic amine, the quantum dots may be precipitated or may not be effectively combined with the Group 3 precursor, resulting in an uneven reaction. Numerous nuclei can form and cause difficulty in wavelength control. That is, by adjusting the content of the organic amine, it is possible to control the wavelength and size. In addition, by properly selecting the type of organic amine can be adjusted the wavelength and size.
  • quantum dots may be synthesized using the same amount of an organic amine ligand, and then, if phosphine ligands and long chain fatty acid ligands are used, short-wavelength quantum dots may be synthesized by increasing the amount of injected fatty acids.
  • the organic amine may consist of 30 to 70 mol%, 40 to 70 mol% of the total ligand (eg, organic amine + phosphine + long chain fatty acid) in the composition. Can be.
  • the phosphine may be, for example, trialkylphosphine, triarylphosphine having an alkyl or aryl group having 4 to 8 carbon atoms, specific examples Trioctylphosphine, triphenylphosphine or tributylphosphine.
  • the phosphine is preferably less than 30 mol%, more preferably 5 mol% to 25 mol of the total ligands (eg, organic amine + phosphine + long chain fatty acids) in the composition. %, 5 mol% to 15 mol%.
  • a composition further comprising a long chain fatty acid ligand bonded to a surface of the nanostructure wherein the long chain fatty acid may be, for example, a material containing at least 12 carbon atoms, and may include less than 30 and less than 20 carbon atoms. Can be. Specific examples may include lauric acid, myristic acid, palmitic acid, stearic acid or oleic acid.
  • the long chain fatty acids are preferably less than 50 mol%, more preferably at least 10 mol% to 50 of the total ligands (eg, organic amine + phosphine + long chain fatty acids) in the composition. Less than mol%, 25 mol% or more and less than 50 mol%.
  • the nanostructures may be InP / ZnSe 1-x S x / ZnS core / shell quantum dots.
  • it may be 0.72 ⁇ x ⁇ 0.92.
  • it may be 0.76 ⁇ x ⁇ 0.92, and when the lower limit is reduced, the quantum efficiency may decrease, and when the upper limit is exceeded, the half width may be widened.
  • it may be 0.82 ⁇ x ⁇ 0.92.
  • the nanostructure may be a light emitting composition in a form embedded in a matrix.
  • a method of preparing a quantum dot comprising: a first step of providing a nanostructure core by providing a zinc precursor and an indium precursor and reacting the indium precursor with a phosphorus precursor further injected in the presence of an organic amine ligand; And a second step of providing at least one of Se and S and reacting at least one of Se and S in the presence of a phosphine ligand to provide a shell.
  • one aspect of the present invention provides a method of forming a shell comprising two or more layers, wherein one or more precursors are provided and reacted to form a first layer, followed by (typically the formation of the first layer is substantially When completed, a precursor for the formation of one or more second layers is provided and reacted.
  • the indium precursor may be, for example, at least one selected from the group consisting of indium chloride, indium bromide, indium iodide, indium oxide, indium nitrate, indium sulfate, indium carboxylate and precursor compounds based on the precursors. have. Preferably, it may be at least one selected from the group consisting of indium chloride, indium bromide and indium iodide.
  • the zinc precursor is, for example, zinc iodide, zinc bromide, zinc chloride, zinc fluoride, dimethyl zinc, diethyl zinc, zinc acetate, zinc acetylacetonate, zinc carbonate, zinc cyanide, zinc nitrate, zinc oxide It may be one or more selected from zinc peroxide, zinc perchlorate and zinc sulfate.
  • the zinc precursor is input for the purpose of suppressing the increase in half width, and the zinc precursor may be used in an excessive amount, such as 5 to 13 times in molar ratio, relative to the indium precursor, so that a sufficient thickness of the shell is formed.
  • This excess Group 12 element precursor is an amount that allows additional shells to grow even when forming a core-shell quantum dot having a shell thickness of a general size, allowing shells to be formed several nm thicker than conventional quantum dots under the same wavelength conditions. If the amount of the zinc precursor is less than the above range, the wavelength of the quantum dot may not be controlled, and if it is above the above range, unwanted synthetic by-products such as In 2 S 3 may be synthesized.
  • the precursor may be an alkyl phosphine-based compound as one example, a specific example, tris trialkylsilyl phosphine (ex-P (TMS) 3 ), tris-dialkyl silyl phosphine and tris-dialkylamino phosphine (ex- p (DMA) 3 ) may be one or more selected from the group consisting of.
  • TMS tris trialkylsilyl phosphine
  • DMA tris-dialkylamino phosphine
  • a dialkylaminophosphine compound such as trisdialkylaminophosphine (e.g.
  • tris (dimethylamino) phosphine p (DMA) 3 , or tris (diethylamino) phosphine) is derived from tristrialkylsilyl phosphine (
  • the mixed solution of the organic amine ligand may be stirred while degassing under 100 to 250 ° C. for 2 hours or less to remove internal moisture and oxygen. It can then be cooled to room temperature to 50 ° C. and then switched to an inert atmosphere of nitrogen or argon followed by injection of the phosphine ligands described above. After the introduction of the phosphine ligand, the elevated temperature may be 150 to 300 ° C. If the temperature is lower than the temperature range, the nucleus of the quantum dot may not be formed or the crystallinity of the quantum dot may be low, and the optical properties of the quantum dot may be inhibited. If the temperature exceeds the temperature range, the quantum dots may be entangled with each other and precipitated or the emission wavelength may increase, causing red shift. May occur.
  • a phosphorus precursor for example, tris (dimethylamino) phosphine P (DMA) 3
  • injecting at a rapid rate herein means injecting the compound within 0.1 seconds to 5 seconds, preferably 0.5 seconds to 2 seconds. For example, injecting at a rate of 5 ml / sec to 20 ml / sec is preferable in terms of uniformly forming the composition ratio of the core and the size of the particles.
  • injecting at a rate of 5 ml / sec to 20 ml / sec is preferable in terms of uniformly forming the composition ratio of the core and the size of the particles.
  • the raw materials may be finely and uniformly added, for example, in the form of a mist.
  • precursors for forming the shell may be used to select two different kinds, and the shell capping the core may be selected to have a larger band gap.
  • the first precursor for forming the shell is selenium (Se) dissolved in phosphines including trialkylphosphine or triarylphosphine, and selenium-trioctylphosphine (Se-TOP) or selenium-tributyl Phosphine (Se-TBP)
  • the second precursor is sulfur-trioctylphosphine (S-TOP) or sulfur- with sulfur (S) dissolved in phosphine, including trialkylphosphine or triarylphosphine.
  • Tributylphosphine S-TBP
  • the second precursor ranges from 1 to 13 times in molar ratio relative to the first precursor, for example in an amount suitable for synthesizing the core-shell quantum dots in alloy form.
  • the selenium precursor is preferably controlled to have a molar ratio of 1/6 to 2.5 times the indium precursor, and the sulfur precursor is controlled to have an amount of 1/6 to 2.5 times the molar ratio with respect to the precursor. It is preferable in terms of quantum efficiency. For this reason, if the amount of selenium precursor is too high compared to the indium precursor, the anion ratio increases on the surface of the quantum dot, and when the ratio of the anion increases, the phosphine ligand does not adhere to the surface of the quantum dot, resulting in more defects on the surface, resulting in lower quantum efficiency. When the ratio of anions on the surface of the quantum dots increases, dangling bonds increase, and the wavelength may shift to a longer wavelength due to a multistate band gap, or the quantum efficiency may be lowered.
  • the phosphine ligand content change it is possible to obtain a quantum dot controlled the emission wavelength range.
  • the higher the ligand content the stronger the binding to the ionized precursor, and the longer the nucleation of the quantum dot nucleation (nucleation) is formed by using a precursor that is less nucleus of the quantum dot is formed and the remaining nucleus formed, the larger the size of the final quantum dot
  • the emission peak is shifted toward the longer wavelength.
  • the content of a suitable phosphine ligand may be 1 to 50 times, preferably 10 to 30 times in molar ratio relative to selenium. If the content of the phosphine ligand is less than the range of the quantum dots due to the lack of ligand content or the reaction can not be formed unevenly due to the effective binding with selenium, if the range exceeds the quantum dot nucleation or a small number of nuclei Formed, and may have difficulty adjusting wavelengths. That is, by adjusting the content of the phosphine ligand, it is possible to control the wavelength and size.
  • the wavelength and size can be controlled by adjusting the type of ligand.
  • long-chain fatty acid ligands are used to synthesize long-wavelength quantum dots, and organic amine ligands are used. It is possible to synthesize short wavelength quantum dots.
  • selenium powder (Se), sulfur (S) powder), and phosphine ligands are heated at 50 ° C. for 10 minutes to 60 minutes under nitrogen or argon atmosphere and atmospheric pressure, and then TOP-S and TOP-Se And then mix them, or get TOP-S-Se.
  • the shell includes, for example, three or more layers, or four or more layers;
  • the maximum layer can be five layers, wherein providing at least one of Se and S and reacting at least one of Se and S in the presence of a phosphine ligand to provide a shell provides a first set of Se and S And reacting the precursor in the presence of a phosphine ligand, followed by providing a second set of one or more zinc precursors and reacting the precursor in the presence of a long chain fatty acid ligand to prepare a first layer of the shell.
  • the first layer of the shell may be formed three or more times or four or more times by repeating four or more times.
  • Examples of the zinc precursor may be independently selected from the types disclosed as the zinc precursor used in forming the core of the first step described above.
  • the zinc precursor in the present stage and the first precursor in the first stage may be the same or different from each other, and may be selected so that the shell capping the core may later have a larger bandgap when forming the core and the shell.
  • zinc chloride may be selected in the first step
  • zinc acetate may be selected in the present step.
  • the long chain fatty acid ligand can be injected for uniform dispersion of the zinc precursor.
  • the long chain fatty acid may include, for example, at least 12 carbon atoms.
  • the organic solvent is used for mixing the precursors, the organic solvent is 1-octadecene, 1-nonadecene, 1-nonadecene, cis-2-methyl-7-octadecene (cis- 2-methyl-7-octadecene, 1-heptadecene, 1-hexadecene, 1-pentadecene, 1-tetradecene, 1 - May be selected from, but not limited to, 1-tridecene, 1-undecene, 1-dodecene, 1-decene, or combinations thereof Not.
  • the mixture may be carried out at an elevated temperature of 200 to 350 °C.
  • the temperature is lower than the temperature range, the nucleation of the quantum dots may not be performed or the crystallinity of the quantum dots may be low, and the optical properties of the quantum dots may be hindered. Can be.
  • Specific reaction conditions include a mixture of zinc precursor (eg Zn (Ac)), long-chain fatty acid ligand (eg oleic acid (OA)), organic solvent (eg 1-octadecene (ODE)) and nitrogen or argon.
  • Zn Zn
  • OA long-chain fatty acid ligand
  • ODE organic solvent
  • nitrogen or argon nitrogen or argon.
  • the mixture of the second step is injected into the mixture of the first step and reacted.
  • the mixture of the second step is injected into the mixture of the first step under the above temperature raising condition, and the injection method is preferably instilled differently from that described in the first step. This is to consider that the temperature of the precursor is much lower than the solution in the reactor may affect the fast injection, for example, can be injected at a rate of about 0.1ml / sec.
  • the shell of the obtained quantum dots provides a shell having an alloy structure having a high proportion of selenium precursor toward the core side and a high ratio of sulfur precursor toward the outermost side.
  • the reaction time is about 1 to 25 minutes, the reaction temperature may be carried out to about 180 to 280 °C.
  • the reaction time for each repetitive order of the second step is about 1 minute to 25 minutes
  • the reaction temperature may be applied to the temperature rising step by step within 180 to 280 °C.
  • the reaction time for each repetitive order of the third step is about 1 minute to 25 minutes
  • the reaction temperature may be applied to the temperature rising step by step within 180 to 280 °C.
  • the reaction temperature reaches 280 ° C. during the repeated steps 2 and 3
  • the subsequent orders are subjected to the reaction while maintaining the upper limit temperature of 280 ° C. without raising the temperature for the second and third steps.
  • the mixture of the second stage is injected and heated to 200 °C, the reaction for 20 minutes, the mixture of the third stage is injected and maintained at 220 °C 50 minutes to maintain the first shell Form. Then, the mixture of the second step is injected, heated to 240 ° C., then reacted for 20 minutes, the mixture of the third step is injected and held at 260 ° C. for 50 minutes to form a second shell. Then, the mixture of the second step is injected, heated to 270 ° C., then reacted for 10 minutes, the mixture of the third step is injected, heated to 280 ° C., and held for 10 minutes to form a third shell. Then, the mixture of the second stage may be injected and maintained for 5 minutes while maintaining the 280 ° C, and the mixture of the third stage may be injected and maintained for 5 minutes to form a fourth shell.
  • the third shell formation temperature (that is, 280 ° C) is increased in consideration of the increase in the half width and the increase in the thickness of the quantum dot as the shell thickness increases. It is preferable to form the fourth shell while maintaining the temperature not exceeding).
  • Cooling conditions are suitably, but not limited to, each first reaction condition of the second and third stages, ie, in the range of 200 to 220 ° C.
  • the thickness of the shell layer can be conveniently adjusted by controlling the amount of precursor provided.
  • one or more precursors are optionally provided in an amount when the growth reaction is substantially complete, and the layer is of a predetermined thickness. If more than one different precursor is provided, the amount of each precursor may be limited or one of the precursors may be provided while limiting the amount in which the other is provided in excess.
  • Suitable amounts of precursors for various manufactures with the desired shell thickness can be readily calculated.
  • InP cores can be dispersed in solution after their synthesis and purification, and their concentration can be calculated by UV / Vis spectroscopy using Beer-Lambert law. The extinction coefficient can be obtained from bulk InP.
  • the size of the InP core can be measured, for example, by physical modeling based on the excitation magnetic maximum and quantum closure of the UV / Vis absorption spectrum. Knowing the particle size, molar amount and the desired production thickness of the shelled material, the amount of precursor can be calculated using the bulk crystal parameters (ie, the thickness of one single layer of the shell material).
  • the first set of shells described above is a ZnSe1-xSx monolayer thickness of 1.0 nm to 3.0 nm and the core may be covered with a small island of ZnSe1-xSx or 50% of the cationic moiety and 50 of the anionic moiety. % May be occupied by the shell material.
  • providing a second set of one or more precursors and reacting the precursors to prepare a second layer of the shell includes providing one or more precursors in an amount substantially when the reaction is complete, and
  • the two layers are a single layer ZnS thickness of about 0.3 nm to about 1.0 nm, for example a single layer ZnS thickness of about 0.5 nm or about 0.8 nm to 1.0 nm single layer thickness.
  • an alkyl thiol compound may be added dropwise to the reactant.
  • the alkyl thiol compound is added dropwise to react with the unreacted zinc precursor in the first or fourth step to form the outermost ZnS shell.
  • Specific examples of the alkyl thiol compound include hexane thiol, octane thiol, decane thiol, dodecane thiol, hexadecane thiol, mercapto propyl silane.
  • the mixture of the third step may be injected.
  • a shell surrounding the core is formed of four or more layers, or three to five layers, and then reacted with a fresh zinc precursor and unreacted S in the presence of a C 6 -C 18 thiol compound.
  • the method may further include manufacturing the outermost layer.
  • the zinc precursor may be at least one selected from the above-described first zinc precursor and the fresh zinc precursor.
  • the C 6 -C 18 thiol compound may be, for example, 1-dodecanethiol, tert-dodecylmercaptan or 1-octanethiol.
  • a ZnS shell layer may be additionally formed to a thickness of 1 to 2 nm on the outside of the core-shell quantum dot particles having an alloy structure.
  • Injection of the raw material is carried out by a high-speed injection method, for example, it may be carried out at a rate of 5 ml / sec to 200 ml / sec.
  • the reaction time is about 5 to 60 minutes, the reaction temperature may be carried out about 200 to 350 °C.
  • the reaction is then purified to give a powder.
  • the purification process may be, for example, purified three or more times with a large amount of acetone into a powder, and then the powder may be stored and used by dispersing it in a solvent such as chloroform, toluene or hexane.
  • the method it is possible to synthesize a shell other than the core in an alloy form. Specifically, since the lattice mismatch between InP and ZnSe is smaller than that of InP and ZnS, the shell is formed in a multi-layered form rather than a single layer. In addition, to reduce lattice mismatch between shells, quantum dots implementing InP / ZnSeS / ZnS type alloy shells using a concentration gradient rather than a simple InP / ZnSe / ZnS type multilayer to form thick shells It is characterized by providing.
  • the emission quantum yield is 70% or more
  • the emission spectrum has an emission maximum of 550nm to 650nm and the full width at half maximum of the emission spectrum is 60nm or less
  • the nanostructure is InP / ZnSe 1 - x S x / ZnS core / shell (where 0.72 ⁇ x ⁇ 0.92).
  • the nanostructured quantum dots for example InP / ZnSe1-xSx / ZnS quantum dots, optionally have high luminescence quantum yields, such as at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, or even 90 Yields of% or higher.
  • the emission spectra of the nanostructures may represent the spectrum of essentially any desired portion.
  • the emission spectrum may have an emission maximum of 450 nm to 750 nm, for example 500 nm to 650 nm, 500 nm to 560 nm, or 550 nm to 650 nm.
  • the emission spectrum may reflect a narrow size distribution of the nanostructure with a full width at half maximum of 60 nm or less, for example 50 nm or less, 45 nm or less, or even 40 nm or less or 35 nm or less.
  • the resulting nanostructures can optionally be embedded in organic polymers, silicon-containing polymers, inorganic, glassy and / or other matrices, for example, or used in the manufacture of nanostructured phosphors.
  • the nanostructures have, for example, an average diameter of less than 10.0 nm, 5.0 nm or more and less than 10 nm, 5.0 nm to 8.5 nm, or 5.0 nm to 8.0 nm, and the InP core has an average diameter of 1.0 nm to 4.0 nm, or 2.0 nm.
  • the ZnSe 1 - x S x shell has a single layer thickness of about 1.0 nm to 3.0 nm
  • the ZnS shell may be a quantum dot having a single layer thickness of 0.3 nm to 1.0 nm, within this range
  • chemical stability together together.
  • step S1 a mixture of 3 mmols of InCl 3 , 18 mmol of ZnCl 2 , and 42 ml of Oleylamine was mixed in a 250 ml three-necked flask, followed by stirring while degassing the sealed solution at 120 ° C. for 30 minutes to remove moisture and oxygen from the interior, followed by nitrogen (N 2). ) To the atmosphere. The solution was then warmed to 180 ° C. and 1.8 ml of tris (dimethylamino) phosphine (P (DMA) 3 , 97%) was rapidly injected using a syringe to maintain the reaction for 4 minutes (mixture I).
  • P (DMA) 3 tris (dimethylamino) phosphine
  • step S2 a solution was prepared by dissolving 1.0 mmol of Se and 1.0 mmol of S in 1.5 ml of trioctylphosphine (TOP) (mixture II-a). Further, a solution was prepared by dissolving 1.0 mmol of Se and 5.0 mmol of S in 3.0 ml of TOP (mixture II-b). In the same manner, 0.5mmol Se and 5.5mmol S were dissolved in 3.0ml of TOP to prepare a solution (mixture II-c), and 5.0mmol of S was dissolved in 2.5ml of TOP to prepare a solution (mixture). II-d).
  • TOP trioctylphosphine
  • step S3 10 mmol of zinc acetate, 20 mmol of oleic acid (OA), 3.5 ml of 1-octadecene (ODE) were mixed and prepared by dissolving at 270 ° C. for 15 minutes (mixture III).
  • OA oleic acid
  • ODE 1-octadecene
  • step S4 the mixture II-a was injected into the InP core quantum dot of the mixture I, heated to 200 ° C, and reacted for 20 minutes.
  • step S5 after the mixture III was injected, the mixture was maintained at 220 ° C. for 50 minutes to form a first shell.
  • steps S4 and S5 were repeated three more times in a similar manner. That is, the mixture II-b was injected and heated to 240 ° C., reacted for 20 minutes, and the mixture III was injected and held at 260 ° C. for 50 minutes to form a second shell. Next, the mixture II-c was injected and reacted at 270 ° C. for 10 minutes, and then the mixture III was injected and held at 280 ° C. for 10 minutes to form a third shell. Finally, mixture II-d was injected and the reaction was carried out for 5 minutes while maintaining the temperature at 280 ° C. After the mixture III was injected, the mixture was maintained for 5 minutes to form a fourth shell and then cooled to 200 ° C.
  • step S6 the synthesized InP / ZnSeS / ZnS quantum dots were dispersed in hexane, and then by-products were removed using a centrifuge, precipitated by addition of acetone, and finally dispersed in hexane.
  • the quantum dots synthesized in this manner synthesized quantum dots with an average particle diameter of 8.0 nm (total diameter) in the visible wavelength range, a wavelength of 610 nm, a half width of 50 nm, and a quantum efficiency of 78%.
  • optical properties were measured using an QE-2000 (OTSUKA) instrument under measurement conditions of an excitation wavelength of 450 nm and a measurement range of 480 nm to 800 nm, FP-8300 (JASCO) for PL analysis, and JEM-2100F for TEM. (JEOL) equipment was used.
  • Example 1 Synthesis was carried out in the same manner as in Example 1, except that the oleic acid (OA) of step S3 of the same molar number (20 mmol) of myristic acid, InP / ZnSe 1 - x S
  • the total diameter of the x / ZnS core / shell quantum dots was 7.0 nm, the core diameter was 3.0 nm, and the thickness of the shell layer was 2.0 nm.
  • the quantum dot has an average particle diameter of 7.0 nm in the visible wavelength range, a wavelength of 612 nm, a half width of 51 nm, and a quantum efficiency of 73%.
  • the quantum dot had an average particle diameter of 7.0 nm in the visible light wavelength range, a wavelength of 614 nm, a half width of 52 nm, and a quantum efficiency of 75%.
  • the synthesis was carried out in the same manner as in Example 1, except that P (DMA) 3 of Step S1 of Example 1 was replaced with the same amount of P (TMS) 3 , and the result InP / ZnSe 1 -x
  • the total diameter of the S x / ZnS core / shell quantum dots was 5.0 nm, the diameter of the core was 1.0 nm and the thickness of the shell layer was 2.0 nm.
  • the quantum dots had an average particle diameter of 5.0 nm in the visible wavelength range, a wavelength of 551 nm, a half width of 60 nm, and a quantum efficiency of 81%.
  • step S3 of Example 1 10 mmol of zinc acetate, 20 mmol of oleic acid (OA), and 3.5 ml of 1-octadecene (ODE) were mixed with 10 mmol of zinc stearate and 25 ml of 1-octane without oleic acid.
  • Synthesis was carried out in the same manner as in Example 1, except that the mixed with decene (ODE), resulting in a total diameter of InP / ZnSe 1- x S x / ZnS core / shell quantum dots 6.0 nm, core The diameter of the shell layer was 3.0 nm, and the thickness of the shell layer was 1.5 nm.
  • the quantum dot had an average particle diameter of 6.0 nm, a wavelength of 600 nm, and a half width of 55 nm in the visible wavelength range, but exhibited 62% of quantum efficiency.
  • FIG. 2 The graphs of wavelengths measured in Examples 1 to 3 and Comparative Example 1 are shown in FIG. 2. As shown in FIG. 2, the wavelengths of Examples 1 to 3 were in the range of 600 to 650 nm, whereas Comparative Example 1 was found to fall short of this.
  • step S4 of Example 1 After the third shell was formed in step S4 of Example 1, the step of forming the fourth shell was omitted, and the mixture II-d was injected, heated to 300 ° C., reacted for 5 minutes, and then the mixture III was injected. Synthesis was carried out in the same manner as in Example 1 except that the mixture was heated to 320 ° C. for 5 minutes and then cooled to 210 ° C., and the total of InP / ZnSe 1-x S x / ZnS core / shell quantum dots The thickness of the shell layer was 3.5 nm in diameter of 10.0 nm, core diameter of 3.0 nm. The quantum dots had a wavelength of 605 nm and a quantum efficiency of 81%, but had an average particle diameter of 10.0 nm and a half width of 68 nm in the visible wavelength range.
  • a light emitting composition comprising a nanostructure comprising an InP core and at least one shell layer, comprising: a highly emitting quantum dot having a high emission quantum yield and in certain embodiments emitting light at a particular wavelength and having a narrow size distribution,
  • a highly emitting quantum dot having a high emission quantum yield and in certain embodiments emitting light at a particular wavelength and having a narrow size distribution

Abstract

Provided are: a luminescent composition comprising nanostructures; and, in particular, highly luminescent quantum dots. The nanostructures have a high luminescent quantum yield, emit light at a specific wavelength in a specific implementation embodiment, and have a narrow size distribution. In addition, provided is a method for producing the highly luminescent nanostructures, wherein the method includes a technique for synthesizing a shell alloy of a nanostructure core using indium.

Description

발광 조성물, 양자점 및 이의 제조방법Light-Emitting Composition, Quantum Dots And Method Of Making The Same
본 발명은 나노구조에 관한 것이다. 더욱 구체적으로, 본 발명은 InP 코어 및 하나 이상의 쉘 층을 포함하는 나노구조를 포함하는 발광 조성물과 고 발광 양자 수율을 갖고 특정 파장에서 빛을 방출하고 좁은 크기 분포를 갖는 고도 발광 양자점에 관한 것이다. 본 발명은 이러한 양자점을 제조하는 방법에 관한 것이다.The present invention relates to nanostructures. More specifically, the present invention relates to luminescent compositions comprising nanostructures comprising an InP core and at least one shell layer and highly luminescent quantum dots having high luminescence quantum yield, emitting light at certain wavelengths and having a narrow size distribution. The present invention relates to a method of making such a quantum dot.
반도체 나노구조는 다양한 전기 및 광학 소자에 혼입될 수 있다. 전기 및 광학 특성의 이러한 나노구조는, 예를 들어 이의조성물, 형상, 및 크기에 따라 다양하다. 예를 들어, 크기-가변 특성의 반도체 나노입자는 예컨대 발광다이오드(LED)를 비롯한 적용처에서 관심 물질이다. 고도 발광 나노구조는 이러한 적용에 특히 바람직하다.Semiconductor nanostructures can be incorporated into a variety of electrical and optical devices. Such nanostructures of electrical and optical properties vary, for example, depending on their composition, shape, and size. For example, semiconductor nanoparticles of size-variable nature are materials of interest in applications including, for example, light emitting diodes (LEDs). Highly luminescent nanostructures are particularly desirable for such applications.
CdSe 코어를 갖는 양자점은 고 양자 수율을 나타내는 것으로 제조되어 왔다. 그러나 카드뮴 고유의 독성은 이러한 카드뮴-기반 나노입자의 적용을 한정한다. InP-기반 나노구조는 유사한 방출 범위를 갖고 따라서 CdSe-기반 물질에 이상적인 대체물이다. Quantum dots with CdSe cores have been produced that exhibit high quantum yields. However, the intrinsic toxicity of cadmium limits the application of these cadmium-based nanoparticles. InP-based nanostructures have similar emission ranges and are therefore ideal replacements for CdSe-based materials.
일례로, InP-기반 나노구조의 합성은 예를 들어 다음 문헌에 기재되어 있다: Xie et al.(2007) "Colloidal InP nanocrystals as efficient emitters covering blue to near-infrared" J. Am. Chem. Soc. 129:15432-15433, Micic et al. (2000) "Core-shell quantum dots of lattice-matched ZnCdSe2 shells on InP cores: Experiment and theory" J. Phys. Chem. B 104:12149-12156, Liu et al. (2008) "Coreduction colloidal synthesis of III-V nanocrystals: The case of InP" Angew. Chem. Int. Ed. 47:3540-3542, Li et al. (2008) "Economic synthesis of high quality InP nanocrystals using calcium phosphide as the phosphorus precursor" Chem. Mater. 20:2621-2623, Battaglia and Peng (2002) "Formation of high quality InP and InAs nanocrystals in a noncoordinating solvent" Nano Lett. 2:1027-1030, Kim et al. (2012) "Highly luminescent InP/GaP/ZnS nanocrystals and their application to white light-emitting diodes" J. Am. 그러나 고 발광 양자 수율을 갖고 특정 구현예에서 특정 파장에서 빛을 방출하고 좁은 크기 분포를 갖는 InP-기반 나노구조는 합성하기 어렵다. In one example, the synthesis of InP-based nanostructures is described, for example, in Xie et al. (2007) "Colloidal InP nanocrystals as efficient emitters covering blue to near-infrared" J. Am. Chem. Soc. 129: 15432-15433, Micic et al. (2000) "Core-shell quantum dots of lattice-matched ZnCdSe2 shells on InP cores: Experiment and theory" J. Phys. Chem. B 104: 12149-12156, Liu et al. (2008) "Coreduction colloidal synthesis of III-V nanocrystals: The case of InP" Angew. Chem. Int. Ed. 47: 3540-3542, Li et al. (2008) "Economic synthesis of high quality InP nanocrystals using calcium phosphide as the phosphorus precursor" Chem. Mater. 20: 2621-2623, Battaglia and Peng (2002) "Formation of high quality InP and InAs nanocrystals in a noncoordinating solvent" Nano Lett. 2: 1027-1030, Kim et al. (2012) "Highly luminescent InP / GaP / ZnS nanocrystals and their application to white light-emitting diodes" J. Am. However, InP-based nanostructures having high luminescence quantum yields and in certain embodiments emitting light at certain wavelengths and having a narrow size distribution are difficult to synthesize.
따라서 고도 발광 나노구조, 특히 고도 발광 InP-기반 나노구조를 제조하는 간단하고 경제적인 방법이 요망된다. Therefore, there is a need for a simple and economical method for producing highly luminescent nanostructures, in particular highly luminescent InP-based nanostructures.
본 발명이 해결하고자 하는 과제는 InP 코어 및 하나 이상의 쉘 층을 포함하는 나노구조를 포함하는 발광 조성물과 고도 발광 양자점, 특히 고도 발광 InP-기반 양자점을 제조하는 방법을 제공하는 것이다. The problem to be solved by the present invention is to provide a light emitting composition comprising a nanostructure comprising an InP core and at least one shell layer and a method for producing a highly emitting quantum dots, in particular a highly emitting InP-based quantum dots.
본 발명의 일 구현예는 나노구조; 및 상기 나노구조의 표면에 결합하는 리간드를 포함하되, 상기 리간드가 유기 아민인 발광 조성물을 제공한다. One embodiment of the invention the nanostructure; And a ligand that binds to the surface of the nanostructure, wherein the ligand is an organic amine.
본 발명의 다른 구현예는 아연 전구체와 인듐 전구체를 제공하고 유기 아민 리간드의 존재하에 상기 인듐 전구체와 추가로 주입한 인 전구체를 반응시켜 나노구조 코어를 제공하는 제1 단계; 및 Se와 S 중 하나 이상을 제공하고 포스핀 리간드의 존재하에 Se와 S 중 하나 이상을 반응시켜 쉘을 제공하는 제2 단계를 포함하며, 상기 포스핀이 탄소수가 4 내지 8의 알킬기 또는 아릴기를 갖는 트리알킬포스핀 혹은 트리아릴포스핀인 양자점의 제조방법을 제공한다. Another embodiment of the present invention provides a zinc precursor and an indium precursor and a first step of providing a nanostructure core by reacting the indium precursor and the phosphorus precursor further injected in the presence of an organic amine ligand; And providing a shell by providing at least one of Se and S and reacting at least one of Se and S in the presence of a phosphine ligand, wherein the phosphine is an alkyl or aryl group having from 4 to 8 carbon atoms. Provided are a method for producing a quantum dot having a trialkyl phosphine or a triaryl phosphine.
본 발명의 또 다른 구현예는 나노구조 양자점으로서, 상기 양자점은 발광 양자 수율을 70% 이상으로 나타내며, 발광 스펙트럼은 550nm 내지 650nm의 방출 최대를 갖고 발광 스펙트럼의 반치전폭이 60nm 이하이고, 이때 나노구조가 InP/ZnSe1 -xSx/ZnS 코어/쉘(이때 0.72≤x≤0.92 임)인 양자점을 제공한다. Another embodiment of the present invention is a nanostructured quantum dot, the quantum dot exhibits a light emission quantum yield of 70% or more, the emission spectrum has an emission maximum of 550nm to 650nm and the full width at half maximum of the emission spectrum is 60nm or less, wherein the nanostructure Provides a quantum dot of InP / ZnSe 1- x S x / ZnS core / shell (where 0.72 ≦ x ≦ 0.92).
본 발명에 따르면, InP 코어 및 하나 이상의 쉘 층을 포함하는 나노구조를 포함하는 발광 조성물로서, 고 발광 양자 수율을 갖고 특정 구현예에서 특정 파장에서 빛을 방출하고 좁은 크기 분포를 갖는 고도 발광 양자점, 특히 고도 발광 InP-기반 양자점을 제조하는 간단하고 경제적인 방법을 제공하는 효과가 있다. According to the present invention, there is provided a light emitting composition comprising a nanostructure comprising an InP core and at least one shell layer, comprising: a highly emitting quantum dot having a high emission quantum yield and in certain embodiments emitting light at a particular wavelength and having a narrow size distribution, In particular, it has the effect of providing a simple and economical method for producing highly luminescent InP-based quantum dots.
기존 합성 방법 대비 같은 파장대에서 코어를 크게 형성시킬 수 있고 동시에 쉘도 두껍게 형성할 수 있으며, 코어를 크게 형성시킬 수 있어 코어와 셀의 계면에서 발생하는 결정 결함을 줄여서 반치폭 증가를 억제할 수 있다. 참고로, 코어의 직경이 크면 음이온전구체의 Se과 S 비율이 용이하여 계면에 ZnSeS층의 얼로이층을 형성하여 계면 결함을 억제하기 용이하며, 따라서 InP/ZnSeS/ZnS 형태의 3~5 겹의 다층쉘 구조가 가능할 뿐 아니라, 다층쉘 양자점이므로 화학적 안정성과 광학적 안정성을 향상시킬 수 있다.Compared to the conventional synthesis method, the core can be formed larger in the same wavelength band, and at the same time, the shell can be formed thicker, and the core can be formed larger, thereby reducing the half width by reducing crystal defects occurring at the interface between the core and the cell. For reference, if the diameter of the core is large, the ratio of Se and S of the anion precursor is easy to form an alloy layer of the ZnSeS layer at the interface, thereby facilitating the suppression of interface defects. Thus, the InP / ZnSeS / ZnS type of 3 to 5 layers In addition to the multilayer shell structure, the multilayer shell quantum dots can improve the chemical stability and optical stability.
도 1은 양자점의 투과전자현미경 사진으로서, (a)는 본 발명에 따른 실시예 1, (b)는 종래 기술에 따른 비교예 1의 경우를 각각 나타낸다. 1 is a transmission electron micrograph of a quantum dot, (a) is a first embodiment according to the present invention, (b) shows a case of Comparative Example 1 according to the prior art, respectively.
도 2는 실시예 1 내지 3과 비교예 1에서 제조한 양자점의 파장을 대비한 그래프이다. 2 is a graph comparing wavelengths of the quantum dots prepared in Examples 1 to 3 and Comparative Example 1. FIG.
이하 본 발명의 다양한 구현예들에 대해 보다 상세히 설명하고자 한다. 본 발명에 사용되는 단수 표현은 달리 명백히 지시되지 않는 한 복수 대상을 포함하는 것이다. 따라서 예를 들어 나노구조는 복수개의 이러한 나노구조들을 포함하는 것이다.Hereinafter, various embodiments of the present invention will be described in detail. As used herein, the singular forms "a", "an" and "the" include plural referents unless the context clearly dictates otherwise. Thus, for example, a nanostructure includes a plurality of such nanostructures.
본 발명에 사용되는 바와 같은 용어 약은 기술되는 값의 +/-10% 또는 임의로 +/- 5%, 일부 구현예에서 +/-1% 로 달라질 수 있는 값을 나타낸다. 예를 들어 약 100nm는 그 크기가 90nm 내지 110nm 인 것을 포함한다.The term drug, as used herein, refers to a value that can vary from +/- 10% or optionally +/- 5%, in some embodiments +/- 1% of the values described. For example, about 100 nm includes those having a size of 90 nm to 110 nm.
용어 나노구조는 약 500nm 미만, 예를 들어, 200nm 미만, 100nm 미만, 50nm 미만, 또는 심지어 20nm 미만, 10nm 미만의 치수를 갖는 특징화 치수 또는 하나 이상의 영역을 갖는 구조이다. 전형적으로, 영역 또는 특징화 치수는 구조의 가장 작은 축에 따라 존재할 것이다. 이러한 구조의 예는 나노와이어, 나노로드, 나노튜브, 분지형 나노구조, 나노테트라포드, 트리포드, 바이포드, 나노결정, 나노도트, 양자점, 나노입자 등을 포함한다. 나노구조는 예를 들어, 실질적으로 결정형, 실질적으로 모노결정형, 폴리결정형, 무정형, 또는 이의조합일 수 있다. 하나의 양태에 있어서, 나노구조의 3개의 치수 중 각각은 약 500nm 미만, 예를 들어 200nm 미만, 100nm 미만, 50nm 미만, 또는 심지어 20nm 미만, 10nm 미만의 치수를 갖는다.The term nanostructure is a structure having one or more regions or characterizing dimensions having dimensions of less than about 500 nm, eg, less than 200 nm, less than 100 nm, less than 50 nm, or even less than 20 nm, less than 10 nm. Typically, the area or characterization dimension will be along the smallest axis of the structure. Examples of such structures include nanowires, nanorods, nanotubes, branched nanostructures, nanotetrapods, tripods, bipods, nanocrystals, nanodots, quantum dots, nanoparticles and the like. The nanostructures can be, for example, substantially crystalline, substantially monocrystalline, polycrystalline, amorphous, or combinations thereof. In one embodiment, each of the three dimensions of the nanostructure has a dimension of less than about 500 nm, such as less than 200 nm, less than 100 nm, less than 50 nm, or even less than 20 nm, less than 10 nm.
나노구조를 참조로 하여 사용되는 용어 헤테로구조는 둘 이상의 상이한 및/또는 구분될 수 있는 재료 유형을 특징으로 하는 나노구조를 지칭한다. 전형적으로, 나노구조의 하나의 영역은 제 1 물질 유형을 포함하는 반면, 나노구조의 제 2 영역은 제 2 물질 유형을 포함한다. 특정 구현예에서, 나노구조는 제 1 재료의 코어 및 제 2 (또는 제 3) 재료의 하나 이상의 쉘을 포함하며, 이때 상이한 재료 유형은 예를 들어 나노결정의 중심 또는 분지형 나노와이어의 암의 장축, 나노와이어의 장축으로 대략적으로 방사상으로 분포된다. 여기서 쉘은 헤테로구조로 고려되는 나노구조에 대해 또는 쉘로 고려되는 인접 재료를 완전히 감쌀 수 있다. The term heterostructure, used with reference to nanostructures, refers to nanostructures characterized by two or more different and / or distinguishable material types. Typically, one region of the nanostructure comprises the first material type, while the second region of the nanostructure comprises the second material type. In certain embodiments, the nanostructures comprise a core of the first material and one or more shells of the second (or third) material, wherein different material types are for example of the center of the nanocrystals or of the arms of the branched nanowires. Long axis, roughly distributed radially along the long axis of the nanowire. The shell here can completely surround the nanostructures considered to be heterostructures or adjacent materials considered to be shells.
본 발명에 사용되는 나노구조의 직경은 나노구조의 제 1 축에 대해 단면으로 법선인 직경을 지칭하며, 이때 제 1 축은 제 2 축 및 제 3 축에 대해 길이 방향으로 가장 상이하다. 상기 제 2 축 및 제 3 축은 서로 거의 동일한 길이의 2개의 축이다. 상기 제 1 축은 나노구조의 가장 긴 축일 필요는 없으며, 예를 들어 디스크-형상의 나노구조에 대해서, 단면도는 실질적으로 디스크의 짧은 세로방향 축에 대해 실질적으로 원형인 단면의 법선이다. 이때 단면은 원형이 아니며, 직경은 단편의 메이저 축 및 마이너 축의 평균이다. 신장된 또는 높은 종횡비의 나노구조에 대해서 (예컨대 나노와이어), 직경은 나노와이어의 가장 긴 축에 대해 단면으로 수직인 하나의 면으로부터 측정된다. The diameter of the nanostructures used in the present invention refers to the diameter normal to the cross section with respect to the first axis of the nanostructure, where the first axis is most different in the longitudinal direction with respect to the second axis and the third axis. The second axis and the third axis are two axes of approximately the same length as each other. The first axis need not be the longest axis of the nanostructure, for example for a disc-shaped nanostructure, the cross section is a normal of a cross section that is substantially circular to the short longitudinal axis of the disc. The cross section is then not circular and the diameter is the average of the major and minor axes of the fragments. For elongated or high aspect ratio nanostructures (eg nanowires), the diameter is measured from one face perpendicular to the longest axis of the nanowire.
용어 양자점은 양자 제한 또는 여기 제한을 나타내는 나노결정을 지칭한다. 양자점은 물질 특성에 있어서 실질적으로 균질하거나, 혹은 특정 구현예에서 예를 들어 코어 및 하나 이상의 쉘을 포함하여 비균질할 수 있다. 양자점의 광학 특성은 그 입자 크기, 화학적 조성 및/또는 표면 조성에 의해 영향받을 수 있고 당 업계에서 이용 가능한 광학 시험에 의해 측정될 수 있다. The term quantum dots refers to nanocrystals that exhibit quantum limitations or excitation limitations. Quantum dots may be substantially homogeneous in material properties or, in certain embodiments, may be heterogeneous, including, for example, a core and one or more shells. The optical properties of quantum dots can be influenced by their particle size, chemical composition and / or surface composition and can be measured by optical tests available in the art.
지방산은 지방족 테일(tail) (포화 또는 불포화되나 유일하게 탄소 및 수소 원자 포함함)을 갖는 모노카르복실산이다.Fatty acids are monocarboxylic acids with aliphatic tails (saturated or unsaturated but only containing carbon and hydrogen atoms).
나노구조 합성 반응에서, 전구체는 또 다른 전구체와 반응하는 화학적 물질 (예를 들어 화합물 또는 원소)이고, 이로써 반응에 의해 제조된 나노구조에 하나 이상의 원자를 부여한다.In nanostructure synthesis reactions, precursors are chemical substances (eg compounds or elements) that react with another precursor, thereby imparting one or more atoms to the nanostructures produced by the reaction.
리간드는 나노구조의 표면과 상호작용하는 다른 분자 또는 나노구조의 하나 이상의 면과 상호작용할 수 있는 분자 (예를 들어 공유결합, 이온성 결합, 반데르발스를 통해 약하게 혹은 강하게 작용)이다.Ligands are molecules that can interact with one or more sides of the nanostructure or other molecules that interact with the surface of the nanostructure (eg, act weakly or strongly through covalent bonds, ionic bonds, van der Waals).
발광 양자 수율은 예를 들어 나노구조의 집단 또는 나노구조에 의해 흡수되는 양성자로 방출되는 양성자의 비율이다. 당 업계에 공지된 바와 같이, 양자 수율은 공지된 양자 수율 값을 갖는 익히 특성화된 표준 샘플을 사용하는 비교 방법으로 전형적으로 측정된다.Luminescent quantum yield is, for example, the proportion of protons released as protons absorbed by the population or nanostructure of nanostructures. As is known in the art, quantum yields are typically measured by comparative methods using well-characterized standard samples having known quantum yield values.
다양한 나노구조의 콜로이드 합성 방법은 당 업계에 공지되어 있다. 이러한 방법은 나노구조 성장을 제어하기 위한 기술, 예를 들어, 생성되는 나노구조의 크기 및/또는 형상 분포를 제어하기 위한 것을 포함한다.Colloidal synthesis methods of various nanostructures are known in the art. Such methods include techniques for controlling nanostructure growth, such as for controlling the size and / or shape distribution of the resulting nanostructures.
전형적인 콜로이드 합성에서, 반도체 나노구조는 고온 용액 (예를 들어 고온 용매 및/또는 계면활성제) 로의 가수분해를 겪는 전구체를 신속하게 주입함으로써 제조된다. 전구체는 동시에 또는 순차적으로 주입될 수 있다. 전구체는 신속하게 반응하여 핵을 형성한다. 나노구조 성장은 핵으로의 단량체 첨가를 통해 발생하며, 전형적으로는 주입/핵형성 온도보다 낮은 성장 온도에서 발생한다.In typical colloidal synthesis, semiconductor nanostructures are prepared by rapidly injecting precursors that undergo hydrolysis into hot solutions (eg hot solvents and / or surfactants). Precursors can be injected simultaneously or sequentially. The precursor reacts quickly to form a nucleus. Nanostructure growth occurs through the addition of monomers to the nucleus and typically occurs at growth temperatures below the implantation / nucleation temperature.
계면활성제 분자는 나노구조의 표면과 상호작용한다. 성장 온도에서, 계면활성제 분자는 나노구조 표면으로부터 신속하게 흡수하거나 탈수하고, 이로써 나노구조로부터 원자의 첨가 및/또는 제거를 가능케 하면서 성장하는 나노구조의 응집을 억제한다. 일반적으로, 나노구조 표면에 약하게 배위하고 있는 계면활성제는 나노구조의 신속한 성장을 허용하는 반면, 나노구조 표면에 더욱 강하게 결합한 계면활성제는 더욱 느린 나노구조 성장을 생성한다. 또한, 계면활성제는 하나 (또는 하나 이상의) 전구체와 상호작용하여 나노구조 성장을 느리게 한다.Surfactant molecules interact with the surface of the nanostructures. At the growth temperature, the surfactant molecules quickly absorb or dehydrate from the nanostructured surface, thereby inhibiting the aggregation of the growing nanostructures while enabling the addition and / or removal of atoms from the nanostructures. In general, surfactants that are weakly coordinated to the nanostructured surface allow for rapid growth of the nanostructures, while surfactants that bind more strongly to the nanostructured surface produce slower nanostructured growth. In addition, surfactants interact with one (or more than one) precursor to slow nanostructure growth.
단독 계면활성의 존재하에 나노구조 성장은 전형적으로 구체 나노구조를 생성한다. 그러나 둘 이상의 계면활성제 혼합물을 사용하는 것은, 예를 들어 둘 (또는 둘 이상의) 계면활성제가 성장하는 나노구조의 상이한 결정학상 면에 상이하게 흡착되는 경우 비-구체 나노구조가 생성되도록 성장이 제어될 수 있게 한다.Nanostructure growth in the presence of a single surfactant typically produces spherical nanostructures. However, using two or more surfactant mixtures allows growth to be controlled such that non-sphere nanostructures are produced, for example, when two (or more) surfactants are adsorbed differently on different crystallographic aspects of the growing nanostructure. To be able.
나노구조의 성장에 영향을 미치는 다수의 파라미터가 공지되어 있고 이는 독립적으로 또는 조합되어 조작될 수 있어, 나노구조의 크기 및/또는 형상 분포를 제어하기 위한 것을 생성한다. 이들은 예를 들어 온도 (핵형성 및/또는 성장), 전구체 조성물, 시간-의존적 전구체 농도, 서로에 대한 전구체의 비, 계면활성제 조성물, 계면활성제의 수, 및 서로에 대한 계면활성제(들)의 비 및/또는 전구체에 대한 계면활성제(들)의 비를 포함한다.Many parameters that affect the growth of nanostructures are known and can be manipulated independently or in combination, creating ones to control the size and / or shape distribution of the nanostructures. These are for example temperature (nucleation and / or growth), precursor composition, time-dependent precursor concentration, ratio of precursors to each other, surfactant composition, number of surfactants, and ratio of surfactant (s) to each other And / or the ratio of surfactant (s) to precursors.
본 발명은 인듐을 갖는 나노구조 또는 InP 나노구조의 쉘 얼로이 합성기술을 제공함으로써 전술한 어려움 (예를 들어 저 양자 수율)을 극복한다. 쉘 성장이 생성되는 코어/쉘 나노구조의 양자수율을 증강시키는 방법과 조성물 등이 기재되어 있다. 층상 ZnSe1-xSx/ZnS 쉘의 단계-성장 방법이 또한 기재되어 있다. 본 발명의 방법에 관련된 조성물은 또한 좁은 크기 분포 및 고 양자 수율을 갖는 고도 발광 나노구조를 포함하는 것을 특징으로 한다. The present invention overcomes the aforementioned difficulties (eg low quantum yield) by providing shell alloy synthesis techniques of nanostructures or InP nanostructures with indium. Methods and compositions for enhancing the quantum yield of core / shell nanostructures in which shell growth is produced are described. A step-growth method of layered ZnSe1-xSx / ZnS shells is also described. The composition related to the method of the present invention is also characterized by including highly luminescent nanostructures having a narrow size distribution and high quantum yield.
ZnSeS는 ZnS 보다는 InP 과의 격자 불일치가 더욱 적다. 따라서, InP 코어 상의 얇은 ZnSeS의 중간층을 제공하는 것은 양자 수율을 증가시킨다. ZnS 외부 층의 적용은 양자 수율을 증가시키고 또한 나노구조의 안정도를 증강시킨다. 층상 ZnSeS/ZnS 쉘의 합성은 생성되는 층의 두께 상에서 더욱 큰 제어를 제공한다. ZnSeS has less lattice mismatch with InP than ZnS. Thus, providing a thin ZnSeS interlayer on the InP core increases the quantum yield. Application of the ZnS outer layer increases quantum yield and also enhances the stability of the nanostructures. The synthesis of the layered ZnSeS / ZnS shell provides greater control over the thickness of the resulting layer.
본 발명의 일 구현예에 따른 발광 조성물은, 나노구조; 및 상기 나노구조의 표면에 결합하는 리간드를 포함하되, 상기 리간드가 유기 아민인 것을 포함한다. The light emitting composition according to an embodiment of the present invention, the nanostructure; And a ligand that binds to the surface of the nanostructure, wherein the ligand is an organic amine.
상기 나노구조는 임의로 InP, ZnSe1-xSx (이때 0≤x≤1) (예를 들어, 이때 x=0, x=1, 0<x<1, 0.72≤x≤0.92, 0.76≤x≤0.92 또는 0.82≤x≤0.92)를 포함한다. The nanostructures may optionally comprise InP, ZnSe1-xSx, where 0 ≦ x ≦ 1 (eg, x = 0, x = 1, 0 <x <1, 0.72 ≦ x ≦ 0.92, 0.76 ≦ x ≦ 0.92 or 0.82 ≦ x ≦ 0.92).
추가로, ZnSeTe, MnSe, MgSe, InAs, InN 등을 포함할 수 있다. 상기 나노구조는 임의로 하나 이상의 쉘을 포함한다.In addition, it may include ZnSeTe, MnSe, MgSe, InAs, InN, and the like. The nanostructures optionally include one or more shells.
상기 유기 아민은 일례로, 라우릴아민, 스테아릴아민, 옥틸아민, 세틸아민, 테트라데실아민, 도데실아민, 헥사데실아민 및 올레일아민을 비롯한 1차 아민으로부터 선택되는 1종 이상일 수 있다. The organic amine may be at least one selected from primary amines including, for example, laurylamine, stearylamine, octylamine, cetylamine, tetradecylamine, dodecylamine, hexadecylamine and oleylamine.
상기 유기아민의 함량 변화에 따라 발광 파장범위가 제어된 양자점을 수득할 수 있다. 특히 상기 유기아민의 함량이 많아질수록 이온화된 전구체와 강하게 결합함으로써, 양자점 핵화(nucleation)가 지연되거나 양자점의 핵이 적게 형성되고 적게 형성된 핵이 남아 있는 전구체를 사용하여 성장하게 되어, 최종 양자점의 크기가 커져 발광 피크가 장파장 쪽으로 이동하게 된다.According to the change in the content of the organic amine it is possible to obtain a quantum dot controlled the emission wavelength range. In particular, the higher the content of the organic amine, the more strongly bound with the ionized precursor, the growth of the quantum dot nucleation (nucleation) is delayed or using a precursor in which the nucleus of the quantum dot is formed less and the nucleus formed is left, As the size increases, the emission peak is shifted toward the longer wavelength.
본 발명의 일 구현예에 따르면, 적절한 유기아민 리간드의 함량은 3족 전구체 대비하여 몰비로 1 내지 50배, 바람직하게는 10 내지 30배가 될 수 있다. 상기 유기아민 리간드의 함량이 상기 범위 미만에서는 유기아민의 함량 부족으로 양자점이 석출되거나 3족 전구체와 효과적으로 결합하지 못해 반응이 불균하게 형성될 수 있고, 상기 범위 초과에서는 양자점의 핵형성이 되지 않거나 적은 수의 핵이 형성되어 파장 조절에 어려움을 겪을 수 있다. 즉 유기아민의 함량을 조절함으로써, 파장과 크기를 조절할 수 있다. 또한 유기아민의 종류를 적절히 선택하면 파장과 크기를 조절할 수 있다. 예를 들어 동일한 양의 유기아민 리간드를 사용하여 양자점을 합성하고 이후 포스핀 리간드와 장쇄 지방산 리간드를 사용할 경우 주입된 지방산의 함량 증가로 단파장의 양자점을 합성할 수 있다. 나노구조의 양자 수율을 최대화하기 위해, 유기 아민은 조성물 중 총 리간드(일례로, 유기아민+포스핀+장쇄 지방산)의 30 몰% 내지 70 몰%, 40 몰% 내지 70 몰 % 미만으로 구성될 수 있다. According to one embodiment of the invention, the content of a suitable organic amine ligand may be 1 to 50 times, preferably 10 to 30 times in molar ratio compared to the Group 3 precursor. When the content of the organic amine ligand is less than the above range, due to the lack of the content of the organic amine, the quantum dots may be precipitated or may not be effectively combined with the Group 3 precursor, resulting in an uneven reaction. Numerous nuclei can form and cause difficulty in wavelength control. That is, by adjusting the content of the organic amine, it is possible to control the wavelength and size. In addition, by properly selecting the type of organic amine can be adjusted the wavelength and size. For example, quantum dots may be synthesized using the same amount of an organic amine ligand, and then, if phosphine ligands and long chain fatty acid ligands are used, short-wavelength quantum dots may be synthesized by increasing the amount of injected fatty acids. In order to maximize the quantum yield of the nanostructures, the organic amine may consist of 30 to 70 mol%, 40 to 70 mol% of the total ligand (eg, organic amine + phosphine + long chain fatty acid) in the composition. Can be.
상기 나노구조의 표면에 결합된 포스핀 리간드를 추가로 포함하는 조성물로서, 상기 포스핀은 일례로 탄소수가 4 내지 8인 알킬기 혹은 아릴기를 갖는 트리알킬포스핀, 트리아릴포스핀일 수 있고, 구체적인 예로 트리옥틸포스핀, 트리페닐포스핀 또는 트리부틸포스핀일 수 있다. 나노구조의 양자 수율을 최대화하기 위해, 포스핀은 바람직하게는 조성물 중 총 리간드(일례로, 유기아민+포스핀+장쇄 지방산)의 30 몰% 미만, 더욱 바람직하게는, 5 몰% 내지 25 몰%, 5 몰% 내지 15 몰%로 구성된다. As a composition further comprising a phosphine ligand bonded to the surface of the nanostructure, the phosphine may be, for example, trialkylphosphine, triarylphosphine having an alkyl or aryl group having 4 to 8 carbon atoms, specific examples Trioctylphosphine, triphenylphosphine or tributylphosphine. In order to maximize the quantum yield of the nanostructures, the phosphine is preferably less than 30 mol%, more preferably 5 mol% to 25 mol of the total ligands (eg, organic amine + phosphine + long chain fatty acids) in the composition. %, 5 mol% to 15 mol%.
상기 나노구조의 표면에 결합된 장쇄 지방산 리간드를 추가로 포함하는 조성물로서, 상기 장쇄 지방산은 일례로, 12개 이상의 탄소 원자를 포함하는 물질일 수 있고, 30 미만, 20 미만의 탄소 원자를 포함할 수 있다. 구체적인 예로 라우르산, 미리스트산, 팔미트산, 스테아르산 또는 올레산일 수 있다. 나노구조의 양자 수율을 최대화하기 위해, 장쇄 지방산은 바람직하게는 조성물 중 총 리간드(일례로, 유기아민+포스핀+장쇄 지방산)의 50 몰% 미만, 더욱 바람직하게는, 10 몰% 이상 내지 50 몰% 미만, 25 몰% 이상 내지 50 몰% 미만으로 구성된다.A composition further comprising a long chain fatty acid ligand bonded to a surface of the nanostructure, wherein the long chain fatty acid may be, for example, a material containing at least 12 carbon atoms, and may include less than 30 and less than 20 carbon atoms. Can be. Specific examples may include lauric acid, myristic acid, palmitic acid, stearic acid or oleic acid. In order to maximize the quantum yield of the nanostructures, the long chain fatty acids are preferably less than 50 mol%, more preferably at least 10 mol% to 50 of the total ligands (eg, organic amine + phosphine + long chain fatty acids) in the composition. Less than mol%, 25 mol% or more and less than 50 mol%.
상기 나노구조는 InP/ZnSe1-xSx/ZnS 코어/쉘 양자점일 수 있다.The nanostructures may be InP / ZnSe 1-x S x / ZnS core / shell quantum dots.
일례로, 0≤x≤1일 수 있다. For example, 0 ≦ x ≦ 1.
구체적인 예로, 0.72≤x≤0.92일 수 있다. As a specific example, it may be 0.72 ≦ x ≦ 0.92.
바람직한 예로, 0.76≤x≤0.92일 수 있고, 하한치보다 저감될 경우 양자효율이 감소하고 상한치를 초과할 경우 반치폭이 넓어지는 문제가 발생할 수 있다.As a preferred example, it may be 0.76 ≦ x ≦ 0.92, and when the lower limit is reduced, the quantum efficiency may decrease, and when the upper limit is exceeded, the half width may be widened.
가장 바람직한 예로, 0.82≤x≤0.92일 수 있다. As a most preferred example, it may be 0.82 ≦ x ≦ 0.92.
일예로, 상기 나노구조가 매트릭스에 내장된 형태의 발광 조성물일 수 있다. For example, the nanostructure may be a light emitting composition in a form embedded in a matrix.
본 발명의 다른 구현예에 따른 양자점의 제조방법은 아연 전구체와 인듐 전구체를 제공하고 유기 아민 리간드의 존재하에 상기 인듐 전구체와 추가로 주입한 인 전구체를 반응시켜 나노구조 코어를 제공하는 제1 단계; 및 Se와 S 중 하나 이상을 제공하고 포스핀 리간드의 존재하에 Se와 S 중 하나 이상을 반응시켜 쉘을 제공하는 제2 단계를 포함할 수 있다. According to another aspect of the present invention, there is provided a method of preparing a quantum dot, comprising: a first step of providing a nanostructure core by providing a zinc precursor and an indium precursor and reacting the indium precursor with a phosphorus precursor further injected in the presence of an organic amine ligand; And a second step of providing at least one of Se and S and reacting at least one of Se and S in the presence of a phosphine ligand to provide a shell.
참고로, 상이한 단계에서 코어 및 쉘의 합성은 또한 더욱 큰 가요성, 예를 들어 코어 및 쉘 합성에서 상이한 용매 및 리간드 시스템을 사용하는 능력을 제공한다. 따라서, 다단계 합성 기술은 좁은 크기 분포 (즉, 작은 FWHM) 및 고 양자 수율을 갖는 나노구조의 제조를 촉진할 수 있다. 따라서 본 발명의 일 형태는 둘 이상의 층을 포함하는 쉘을 형성하는 방법을 제공하며, 이때 하나 이상의 전구체가 제공되고 반응되어 제 1층을 형성하고, 이어서 (전형적으로는 제 1층의 형성이 실질적으로 완료된 경우) 하나 이상의 제 2층의 형성을 위한 전구체가 제공되고 반응된다.For reference, the synthesis of cores and shells at different stages also provides greater flexibility, for example the ability to use different solvent and ligand systems in core and shell synthesis. Thus, multi-step synthesis techniques can facilitate the fabrication of nanostructures with narrow size distributions (ie, small FWHM) and high quantum yields. Thus, one aspect of the present invention provides a method of forming a shell comprising two or more layers, wherein one or more precursors are provided and reacted to form a first layer, followed by (typically the formation of the first layer is substantially When completed, a precursor for the formation of one or more second layers is provided and reacted.
상기 인듐 전구체는 일례로, 인듐 클로라이드, 인듐 브로마이드, 인듐 아이오다이드, 인듐 옥사이드, 인듐 나이트레이트, 인듐 설페이트, 인듐 카르복실레이트 및 상기 전구체들을 기반으로 한 전구체 화합물로 이루어진 군 중에서 선택된 1종 이상일 수 있다. 바람직하게는, 인듐 클로라이드, 인듐 브로마이드 및 인듐 아이오다이드로 이루어진 군 중에서 선택되는 1종 이상일 수 있다. The indium precursor may be, for example, at least one selected from the group consisting of indium chloride, indium bromide, indium iodide, indium oxide, indium nitrate, indium sulfate, indium carboxylate and precursor compounds based on the precursors. have. Preferably, it may be at least one selected from the group consisting of indium chloride, indium bromide and indium iodide.
상기 아연 전구체는 일례로, 아연 아이오다이드, 아연 브로마이드, 아연 클로라이드, 아연 플루오라이드, 디메틸 아연, 디에틸 아연, 아연 아세테이트, 아연 아세틸아세토네이트, 아연 카보네이트, 아연 시아나이드, 아연 나이트레이트, 아연 옥사이드, 아연 퍼옥사이드, 아연 퍼클로레이트 및 아연 설페이트 중에서 선택된 1종 이상일 수 있다. The zinc precursor is, for example, zinc iodide, zinc bromide, zinc chloride, zinc fluoride, dimethyl zinc, diethyl zinc, zinc acetate, zinc acetylacetonate, zinc carbonate, zinc cyanide, zinc nitrate, zinc oxide It may be one or more selected from zinc peroxide, zinc perchlorate and zinc sulfate.
상기 아연 전구체는 반치폭 증가를 억제할 목적으로 투입되는 것으로, 상기 아연 전구체는 충분한 두께의 쉘이 형성되도록 충분히 과량, 예를 들어 상기 인듐 전구체 대비하여, 몰 비 기준으로 5~13 배가 사용될 수 있다. 이러한 과량의 12족 원소 전구체는 일반적 크기의 쉘 두께를 갖는 코어-쉘 양자점을 형성하고도 추가 쉘이 성장할 수 있는 양으로서, 동일 파장 조건에서 기존의 양자점보다 수 nm 두꺼운 쉘이 형성되도록 한다. 상기 아연 전구체의 양이 상기 범위 미만에서는 양자점의 파장이 조절되지 않을 수 있고, 상기 범위 초과에서는 In2S3와 같은 원치 않는 합성 부산물이 합성될 수 있다. The zinc precursor is input for the purpose of suppressing the increase in half width, and the zinc precursor may be used in an excessive amount, such as 5 to 13 times in molar ratio, relative to the indium precursor, so that a sufficient thickness of the shell is formed. This excess Group 12 element precursor is an amount that allows additional shells to grow even when forming a core-shell quantum dot having a shell thickness of a general size, allowing shells to be formed several nm thicker than conventional quantum dots under the same wavelength conditions. If the amount of the zinc precursor is less than the above range, the wavelength of the quantum dot may not be controlled, and if it is above the above range, unwanted synthetic by-products such as In 2 S 3 may be synthesized.
상기 인 전구체는 일례로 알킬계 포스핀 화합물일 수 있고, 구체적인 예로, 트리스트리알킬실릴 포스핀(ex-P(TMS)3), 트리스디알킬실릴포스핀 및 트리스디알킬아미노포스핀(ex-p(DMA)3)로 이루어진 군에서 선택되는 1종 이상일 수 있다. 여기서 트리스디알킬아미노포스핀(예를 들어 트리스(디메틸아미노)포스핀 p(DMA)3, 혹은 트리스(디에틸아미노)포스핀)과 같은 디알킬아미노포스핀 화합물이 트리스트리알킬실릴 포스핀(예를 들어 (트리스트리메틸실릴)포스핀 P(TMS)3)과 같은 트리알킬실릴포스핀 화합물보다 저가이면서 독성이 적어 친환경적인 화합물이므로 바람직하며, 다만 트리알킬아미노포스핀 화합물의 반응성이 트리알킬실릴포스핀 화합물보다 상대적으로 낮으므로, 이를 고려하여 유기 아민 리간드를 선정하는 것이 좋다. The precursor may be an alkyl phosphine-based compound as one example, a specific example, tris trialkylsilyl phosphine (ex-P (TMS) 3 ), tris-dialkyl silyl phosphine and tris-dialkylamino phosphine (ex- p (DMA) 3 ) may be one or more selected from the group consisting of. Wherein a dialkylaminophosphine compound such as trisdialkylaminophosphine (e.g. tris (dimethylamino) phosphine p (DMA) 3 , or tris (diethylamino) phosphine) is derived from tristrialkylsilyl phosphine ( For example, it is preferable because it is an inexpensive and less toxic compound than trialkylsilylphosphine compounds such as (tristrimethylsilyl) phosphine P (TMS) 3 ) and is environmentally friendly, but the reactivity of the trialkylaminophosphine compound is trialkylsilyl. Since it is relatively lower than the phosphine compound, it is preferable to select the organic amine ligand in consideration of this.
상기 유기아민 리간드의 혼합 용액은 100 내지 250℃ 하에 2시간 이하로 탈기시키면서 교반하여 내부 수분 및 산소를 제거할 수 있다. 그런 다음 실온 내지 50℃로 냉각 후 질소 또는 아르곤의 불활성 분위기로 전환한 다음 전술한 포스핀 리간드를 주입할 수 있다. 상기 포스핀 리간드를 도입한 다음 승온 온도는 150 내지 300℃일 수 있다. 상기 승온 온도 범위 미만에서는 양자점의 핵이 형성되지 않거나 양자점의 결정성이 낮아 양자점의 광학적 특성이 저해될 수 있고, 상기 승온 온도 범위를 초과하면 양자점이 서로 엉겨붙어 석출되거나 방출파장이 커져 적색편이가 발생할 수 있다. The mixed solution of the organic amine ligand may be stirred while degassing under 100 to 250 ° C. for 2 hours or less to remove internal moisture and oxygen. It can then be cooled to room temperature to 50 ° C. and then switched to an inert atmosphere of nitrogen or argon followed by injection of the phosphine ligands described above. After the introduction of the phosphine ligand, the elevated temperature may be 150 to 300 ° C. If the temperature is lower than the temperature range, the nucleus of the quantum dot may not be formed or the crystallinity of the quantum dot may be low, and the optical properties of the quantum dot may be inhibited. If the temperature exceeds the temperature range, the quantum dots may be entangled with each other and precipitated or the emission wavelength may increase, causing red shift. May occur.
상기 제1 단계의 구체적인 예로는, 먼저 인듐 전구체 (예를 들어 InCl3), 아연 전구체 (예를 들어 ZnCl2), 유기아민 리간드 (예를 들어 올레일아민)의 혼합용액을 120℃로 10 내지 60분간 탈기하면서 교반하여 내부의 수분 및 산소를 제거한 다음 40℃로 냉각하고 질소나 아르곤 분위기 및 상압 조건에서 인 전구체 (예를 들어, 트리스(디메틸아미노)포스핀 P(DMA)3)를 빠르게 주입하고 185℃까지 승온하고 계속 승온 조건을 10분 내지 60분간 유지한다. 주입방법은 예를 들어 주사기를 이용하여 빠른 속도로 주입한다. 본 명세서에서 "빠른 속도로 주입"하는 것은 상기 화합물을 0.1초 내지 5초, 바람직하게는 0.5초 내지 2초 내에 주입하는 것을 의미한다. 예를 들어 5 ml/sec 내지 20 ml/sec의 속도로 주입하는 것이 코어의 조성비나 입자의 크기가 고르게 형성되는 면에서 바람직하다. 이때 주입시 주사기 바늘의 끝 부분이 한 개 이상의 다공성 구멍의 형태를 가짐으로써 원료들이 예를 들어 미스트(mist) 형태로 미세하고 균일하게 첨가될 수 있다.Specific examples of the first step, first, indium precursor (for example, InCl 3), a zinc precursor (e.g. ZnCl 2), 10 the mixed solution to 120 ℃ of an organic amine ligand (for example, oleyl amine) to 60 minutes of degassing and stirring to remove the water and oxygen inside, then cooled to 40 ℃ and rapidly injecting a phosphorus precursor (for example, tris (dimethylamino) phosphine P (DMA) 3 ) under nitrogen or argon atmosphere and atmospheric pressure conditions And it heated up to 185 degreeC, and maintained the temperature rising conditions for 10 to 60 minutes. The injection method is a rapid injection using a syringe, for example. "Injecting at a rapid rate" herein means injecting the compound within 0.1 seconds to 5 seconds, preferably 0.5 seconds to 2 seconds. For example, injecting at a rate of 5 ml / sec to 20 ml / sec is preferable in terms of uniformly forming the composition ratio of the core and the size of the particles. At this time, since the tip of the syringe needle has the form of one or more porous holes, the raw materials may be finely and uniformly added, for example, in the form of a mist.
상기 제2 단계에서, 쉘을 형성하기 위한 전구체들은 서로 다른 2종을 선택하여 사용할 수 있으며, 코어를 캡핑하는 쉘이 보다 큰 밴드갭을 가질 수 있도록 선택될 수 있다. 일례로 쉘을 형성하는 제1 전구체는 셀레늄(Se)이 트리알킬포스핀 혹은 트리아릴포스핀을 비롯한 포스핀에 용해된 상태로서 셀레늄-트리옥틸포스핀(Se-TOP), 혹은 셀레늄-트리부틸포스핀(Se-TBP)이고, 제2 전구체는 황(S)이 트리알킬포스핀 혹은 트리아릴포스핀을 비롯한 포스핀에 용해된 상태로서 황-트리옥틸포스핀(S-TOP) 혹은 황-트리부틸포스핀(S-TBP)일 수 있으며, 여기서 제2 전구체는 얼로이 형태의 코어-쉘 양자점을 합성하기에 적절한 양, 예를 들어 제1 전구체 대비하여, 몰비 기준으로 1 ~ 13 배 범위로 사용될 수 있다. 상기 제2 전구체의 양이 상기 범위 미만에서는 양자점의 파장 조절이 안 될 수 있고, 상기 범위 초과에서는 In2S3와 같은 원치 않는 합성 부산물이 합성될 수 있다.In the second step, precursors for forming the shell may be used to select two different kinds, and the shell capping the core may be selected to have a larger band gap. For example, the first precursor for forming the shell is selenium (Se) dissolved in phosphines including trialkylphosphine or triarylphosphine, and selenium-trioctylphosphine (Se-TOP) or selenium-tributyl Phosphine (Se-TBP), and the second precursor is sulfur-trioctylphosphine (S-TOP) or sulfur- with sulfur (S) dissolved in phosphine, including trialkylphosphine or triarylphosphine. Tributylphosphine (S-TBP), wherein the second precursor ranges from 1 to 13 times in molar ratio relative to the first precursor, for example in an amount suitable for synthesizing the core-shell quantum dots in alloy form. Can be used as If the amount of the second precursor is less than the above range may not control the wavelength of the quantum dot, and if it exceeds the above range, unwanted synthetic by-products such as In 2 S 3 may be synthesized.
상기 셀레늄 전구체는 상기 인듐 전구체에 대하여 1/6 내지 2.5배의 몰비가 되도록 제어되는 것이 양자효율 측면에서 바람직하며, 상기 황 전구체는 상기 전구체에 대하여 1/6 내지 2.5배의 몰비의 양이 되도록 제어되는 것이 양자효율 측면에서 바람직하다. 그 이유로는, 인듐 전구체 대비 셀레늄 전구체의 양이 너무 과량일 경우 양자점 표면에서 음이온 비율이 높아지고, 음이온의 비율이 높아지면 포스핀 리간드가 양자점 표면에 붙지 못해 표면에 결함이 많아져 양자효율이 낮아지며, 양자점 표면에 음이온의 비율이 높아지면, 댕글링 본드(dangling bond)가 많아져 멀티스테이트 밴드갭(multistate band gap)에 의해 파장이 장파장으로 이동하거나 양자효율이 낮아질 수 있다. The selenium precursor is preferably controlled to have a molar ratio of 1/6 to 2.5 times the indium precursor, and the sulfur precursor is controlled to have an amount of 1/6 to 2.5 times the molar ratio with respect to the precursor. It is preferable in terms of quantum efficiency. For this reason, if the amount of selenium precursor is too high compared to the indium precursor, the anion ratio increases on the surface of the quantum dot, and when the ratio of the anion increases, the phosphine ligand does not adhere to the surface of the quantum dot, resulting in more defects on the surface, resulting in lower quantum efficiency. When the ratio of anions on the surface of the quantum dots increases, dangling bonds increase, and the wavelength may shift to a longer wavelength due to a multistate band gap, or the quantum efficiency may be lowered.
상기 포스핀 리간드 함량 변화에 따라 발광 파장범위가 제어된 양자점을 수득할 수 있다. 특히 리간드 함량이 많아질수록 이온화된 전구체와 강하게 결합함으로써, 양자점 핵화(nucleation)가 지연되거나 양자점의 핵이 적게 형성되고 적게 형성된 핵이 남아 있는 전구체를 사용하여 성장하게 되어, 최종 양자점의 크기가 커져 발광 피크가 장파장 쪽으로 이동하게 된다.According to the phosphine ligand content change, it is possible to obtain a quantum dot controlled the emission wavelength range. In particular, the higher the ligand content, the stronger the binding to the ionized precursor, and the longer the nucleation of the quantum dot nucleation (nucleation) is formed by using a precursor that is less nucleus of the quantum dot is formed and the remaining nucleus formed, the larger the size of the final quantum dot The emission peak is shifted toward the longer wavelength.
본 발명의 일 구현예에 따르면, 적절한 포스핀 리간드의 함량은 셀레늄 대비하여 몰 비로 1 내지 50배, 바람직하게는 10 내지 30배일 수 있다. 상기 포스핀 리간드의 함량이 범위 미만이 되면 리간드 함량 부족으로 양자점이 석출되거나 셀레늄과 효과적으로 결합하지 못해 반응이 불균하게 형성될 수 있고, 범위를 초과하면양자점의 핵 형성이 되지 않거나 적은 수의 핵이 형성되어 파장 조절에 어려움을 겪을 수 있다. 즉 포스핀 리간드의 함량을 조절함으로써, 파장과 크기를 조절할 수 있다. According to one embodiment of the invention, the content of a suitable phosphine ligand may be 1 to 50 times, preferably 10 to 30 times in molar ratio relative to selenium. If the content of the phosphine ligand is less than the range of the quantum dots due to the lack of ligand content or the reaction can not be formed unevenly due to the effective binding with selenium, if the range exceeds the quantum dot nucleation or a small number of nuclei Formed, and may have difficulty adjusting wavelengths. That is, by adjusting the content of the phosphine ligand, it is possible to control the wavelength and size.
또한 리간드의 종류를 조절하여 파장과 크기를 조절할 수 있는 것으로, 예를 들어 동일한 양의 리간드를 사용하여 양자점을 합성할 경우 장쇄 지방산 리간드를 사용하면 장파장의 양자점을 합성하고, 유기 아민 리간드를 사용하면, 단파장의 양자점을 합성할 수 있다.In addition, the wavelength and size can be controlled by adjusting the type of ligand. For example, when synthesizing quantum dots using the same amount of ligand, long-chain fatty acid ligands are used to synthesize long-wavelength quantum dots, and organic amine ligands are used. It is possible to synthesize short wavelength quantum dots.
상기 제2 단계는 예를 들어 셀레늄 분말(Se), 황(S) 분말), 포스핀 리간드를 질소나 아르곤 분위기 및 상압 조건에서 50℃로 10분 내지 60분간 가열하여 TOP-S와 TOP-Se를 얻은 다음 이들을 혼합하거나, 혹은 TOP-S-Se를 얻는 것이다.In the second step, for example, selenium powder (Se), sulfur (S) powder), and phosphine ligands are heated at 50 ° C. for 10 minutes to 60 minutes under nitrogen or argon atmosphere and atmospheric pressure, and then TOP-S and TOP-Se And then mix them, or get TOP-S-Se.
상기 쉘은 일례로, 셋 이상의 층, 혹은 넷 이상의 층을 포함하며; 최대 층은 다섯 층일 수 있으며, 이때 Se와 S 중 하나 이상을 제공하고 포스핀 리간드의 존재하에 Se와 S 중 하나 이상을 반응시켜 쉘을 제공하는 것은, 제 1세트의 Se와 S를 제공하는 것 및 포스핀 리간드의 존재하에 전구체를 반응시키는 것, 및 이어서 제 2세트의 하나 이상의 아연 전구체를 제공하는 것 및 장쇄 지방산 리간드의 존재하에 전구체를 반응시켜 쉘의 제 1층을 제조하는 것을 3회 이상, 혹은 4회 이상 반복하여 상기 쉘의 제 1층을 3겹 이상, 혹은 4겹 이상 형성하는 것일 수 있다. The shell includes, for example, three or more layers, or four or more layers; The maximum layer can be five layers, wherein providing at least one of Se and S and reacting at least one of Se and S in the presence of a phosphine ligand to provide a shell provides a first set of Se and S And reacting the precursor in the presence of a phosphine ligand, followed by providing a second set of one or more zinc precursors and reacting the precursor in the presence of a long chain fatty acid ligand to prepare a first layer of the shell. Alternatively, the first layer of the shell may be formed three or more times or four or more times by repeating four or more times.
여기서 상기 제 1세트의 Se와 S를 제공하는 것 및 포스핀 리간드의 존재하에 전구체를 반응시키는 것은, 전술한 제2 단계에 설명한 것과 같다. Wherein providing the first set of Se and S and reacting the precursor in the presence of a phosphine ligand are as described for the second step described above.
이후 제 2세트의 하나 이상의 아연 전구체를 제공하는 것 및 장쇄 지방산 리간드의 존재하에 전구체를 반응시켜 쉘의 제1 층을 제조하는 것에 대하여 살펴보면, 우선 아연 전구체, 장쇄 지방산 리간드 및 유기 용매의 혼합물을 제공한다. 이는 얼로이 형태의 코어-쉘 양자점 형성 뒤에도 제2 단계에서 반응 후 잔존하는 과량 셀레늄 및 황과의 반응을 통해 추가 쉘을 성장시키기 위한 원료를 제공하기 위함이다.Subsequently providing a second set of one or more zinc precursors and reacting the precursors in the presence of a long chain fatty acid ligand to prepare a first layer of the shell, first provide a mixture of zinc precursor, long chain fatty acid ligand and an organic solvent. do. This is to provide a raw material for growing an additional shell through reaction with excess selenium and sulfur remaining after the reaction in the second step even after the formation of the alloy-type core-shell quantum dots.
상기 아연 전구체의 예는 상술한 제1 단계의 코어 형성시 사용한 아연 전구체로서 개시한 종류 중에서 독립적으로 선택될 수 있다. 현 단계의 아연 전구체와 상기 제1 단계에서의 제1 전구체는 서로 같거나 다를 수 있고, 추후 코어 및 쉘 형성시 상기 코어를 캡핑하는 쉘이 보다 큰 밴드갭을 가질 수 있도록 선택될 수 있다. 구체적인 예로, 제1 단계에서는 아연 클로라이드를 선택하고, 현 단계에서는 아연 아세테이트를 선택할 수 있다. Examples of the zinc precursor may be independently selected from the types disclosed as the zinc precursor used in forming the core of the first step described above. The zinc precursor in the present stage and the first precursor in the first stage may be the same or different from each other, and may be selected so that the shell capping the core may later have a larger bandgap when forming the core and the shell. As a specific example, zinc chloride may be selected in the first step, and zinc acetate may be selected in the present step.
상기 장쇄 지방산 리간드는 아연 전구체의 균일한 분산을 위해 주입될 수 있다. 상기 장쇄 지방산은 일례로, 적어도 12개 이상의 탄소 원자를 포함하는 것일 수 있다. The long chain fatty acid ligand can be injected for uniform dispersion of the zinc precursor. The long chain fatty acid may include, for example, at least 12 carbon atoms.
상기 유기용매는 전구체들의 혼합을 위해 사용하게 되는데, 상기 유기용매는 1-옥타데센(1-octadecene), 1-노나데센(1-nonadecene), 시스-2-메틸-7-옥타데센(cis-2-methyl-7-octadecene), 1-헵타데센(1-heptadecene), 1-헥사데센(1-hexadecene), 1-펜타데센(1-pentadecene), 1-테트라데센(1-tetradecene), 1-트리데센(1-tridecene), 1-운데센(1-undecene), 1-도데센(1-dodecene), 1-데센(1-decene), 또는 이들의 조합으로부터 선택될 수 있으나, 이에 제한되지 아니한다.The organic solvent is used for mixing the precursors, the organic solvent is 1-octadecene, 1-nonadecene, 1-nonadecene, cis-2-methyl-7-octadecene (cis- 2-methyl-7-octadecene, 1-heptadecene, 1-hexadecene, 1-pentadecene, 1-tetradecene, 1 -May be selected from, but not limited to, 1-tridecene, 1-undecene, 1-dodecene, 1-decene, or combinations thereof Not.
상기 혼합물은 승온 온도 200 내지 350℃로 수행될 수 있다. 상기 승온 온도 범위 미만에서는 양자점의 핵 형성이 안되거나 양자점의 결정성이 낮아 양자점의 광학적 특성이 저해될 수 있고, 상기 승온 온도 범위 초과에서는 양자점이 서로 엉겨붙어 석출되거나 방출파장이 크게 적색편이가 발생할 수 있다. The mixture may be carried out at an elevated temperature of 200 to 350 ℃. When the temperature is lower than the temperature range, the nucleation of the quantum dots may not be performed or the crystallinity of the quantum dots may be low, and the optical properties of the quantum dots may be hindered. Can be.
구체적인 반응조건은 아연 전구체 (예를 들어 Zn(Ac)), 장쇄 지방산 리간드 (예를 들어 올레산(OA)), 유기용매 (예를 들어 1-옥타데센(ODE))의 혼합용액을 질소나 아르곤 분위기 및 상압 조건에서 270℃로 10분 내지 60분간 가열하여 혼합물을 투명하게 하고 계속 승온 조건을 유지한다. 그리하여 균일한 전구체 용액을 형성하게 된다.Specific reaction conditions include a mixture of zinc precursor (eg Zn (Ac)), long-chain fatty acid ligand (eg oleic acid (OA)), organic solvent (eg 1-octadecene (ODE)) and nitrogen or argon. The mixture is heated to 270 ° C. for 10 to 60 minutes under atmospheric and atmospheric conditions to make the mixture clear and to maintain elevated temperature conditions. Thus, a uniform precursor solution is formed.
구체적인 예로, 4층의 쉘 형성에 대하여 살펴보면, 상기 제2 단계의 혼합물을 상기 제1 단계의 혼합물에 주입하여 반응시킨다. 앞서의 승온 조건에서 상기 제2 단계의 혼합물을 상기 제1 단계의 혼합물에 주입하는데, 주입방법은 상기 제1 단계에서 기술한 것과 달리 점적 주입하는 것이 바람직하다. 이는 전구체의 온도가 반응기 내부 용액 대비 많이 낮아 빠른 주입시엔 영향을 미칠 수 있음을 고려한 것으로, 일례로 약 0.1ml/sec 정도의 속도로 주입할 수 있다. As a specific example, looking at the shell formation of the four layers, the mixture of the second step is injected into the mixture of the first step and reacted. The mixture of the second step is injected into the mixture of the first step under the above temperature raising condition, and the injection method is preferably instilled differently from that described in the first step. This is to consider that the temperature of the precursor is much lower than the solution in the reactor may affect the fast injection, for example, can be injected at a rate of about 0.1ml / sec.
이 같은 방법으로 제조할 경우, 수득된 양자점의 쉘은 코어 측으로 갈수록 셀레늄 전구체의 비율이 높고 최외곽 측으로 갈수록 황 전구체의 비율이 높은 얼로이 구조를 갖는 쉘을 제공하게 된다. 반응시간은 1분 내지 25분 정도이며, 반응 온도는 180 내지 280℃ 정도로 수행될 수 있다.When manufactured by this method, the shell of the obtained quantum dots provides a shell having an alloy structure having a high proportion of selenium precursor toward the core side and a high ratio of sulfur precursor toward the outermost side. The reaction time is about 1 to 25 minutes, the reaction temperature may be carried out to about 180 to 280 ℃.
나아가, 상기 제2 단계와 제3 단계를 4회 반복함으로써 전술한 농도 구배가 상이한 층 구조를 중첩하여 형성할 수 있으며, 결과적으로 빛에 의한 열화(광산화), 공기 중에서 산소류에 의한 산화, 혹은 열에 의한 열화에 따른 양자효율의 감소를 효율적으로 줄이는 효과를 제공할 수 있다. 반복 수행시 제2 단계의 반복 차수별 반응시간은 1분 내지 25 분 정도이며, 반응 온도는 180 내지 280℃ 내에서 단계별로 승온 조건을 적용할 수 있다. 반복 수행시 제3 단계의 반복 차수별 반응시간은 1분 내지 25 분 정도이며, 반응 온도는 180 내지 280℃ 내에서 단계별로 승온 조건을 적용할 수 있다.  Furthermore, by repeating the second step and the third step four times, it is possible to form a layer structure having different concentration gradients as described above, resulting in deterioration by light (photooxidation), oxidation by oxygen in the air, or It is possible to provide an effect of effectively reducing the decrease in quantum efficiency due to deterioration by heat. When the repetition is carried out, the reaction time for each repetitive order of the second step is about 1 minute to 25 minutes, the reaction temperature may be applied to the temperature rising step by step within 180 to 280 ℃. When the repetition is carried out, the reaction time for each repetitive order of the third step is about 1 minute to 25 minutes, the reaction temperature may be applied to the temperature rising step by step within 180 to 280 ℃.
특히 상기 제2 단계와 제3 단계를 반복 수행하는 도중 반응 온도가 280℃에 도달할 경우 이후 반복 수행 차수에는 해당 제2 단계와 제3 단계에 대하여 승온 없이 해당 상한치 온도 280℃를 유지하면서 반응을 수행하여 쉘을 추가 형성하는 것이 바람직하다. 이는 후술하는 참고예에서 보듯이, 280℃ 초과 온도로 승온하면서 합성할 경우 반치폭이 증가할 수 있고, 감온할 경우에도 한정적인 쉘 코팅으로 양자효율이 낮아지는 문제가 발생할 수 있다. In particular, when the reaction temperature reaches 280 ° C. during the repeated steps 2 and 3, the subsequent orders are subjected to the reaction while maintaining the upper limit temperature of 280 ° C. without raising the temperature for the second and third steps. It is preferable to carry out to further form a shell. This can be seen in the reference example described below, when synthesized at a temperature higher than 280 ℃ half-width can be increased, even when reduced temperature may cause a problem that the quantum efficiency is lowered by a limited shell coating.
4회 반복의 예를 들어 구체적인 반응조건을 살펴보면, 제2 단계의 혼합물을 주입하고 200℃로 승온시킨 다음 20분간 반응시키고 제3 단계의 혼합물을 주입하고 220℃에서 50분간 유지하여 첫 번째 쉘을 형성한다. 그런 다음 제2 단계의 혼합물을 주입하고 240℃로 승온시킨 다음 20분간 반응시키고 제3 단계의 혼합물을 주입하고 260℃에서 50분간 유지하여 두 번째 쉘을 형성한다. 그런 다음 제2 단계의 혼합물을 주입하고 270℃로 승온시킨 다음 10분간 반응시키고 제3 단계의 혼합물을 주입하고 280℃로 승온시킨 다음 10분간 유지하여 세 번째 쉘을 형성한다. 그런 다음 280℃를 유지시킨 상태에서 제2 단계의 혼합물을 주입하고 5분간 반응시키고 제3 단계의 혼합물을 주입하고 5분간 유지하여 네 번째 쉘을 형성할 수 있다. Looking at the specific reaction conditions for example of four repetitions, the mixture of the second stage is injected and heated to 200 ℃, the reaction for 20 minutes, the mixture of the third stage is injected and maintained at 220 ℃ 50 minutes to maintain the first shell Form. Then, the mixture of the second step is injected, heated to 240 ° C., then reacted for 20 minutes, the mixture of the third step is injected and held at 260 ° C. for 50 minutes to form a second shell. Then, the mixture of the second step is injected, heated to 270 ° C., then reacted for 10 minutes, the mixture of the third step is injected, heated to 280 ° C., and held for 10 minutes to form a third shell. Then, the mixture of the second stage may be injected and maintained for 5 minutes while maintaining the 280 ° C, and the mixture of the third stage may be injected and maintained for 5 minutes to form a fourth shell.
상기 네 번째 쉘을 280℃ 초과 온도로 승온하면서 합성할 경우 후술하는 참고예에서 보듯이 반치폭이 증가하고, 쉘 두께 증가로 양자점 전체 직경이 커지는 점을 감안하여, 세 번째 쉘 형성 온도(즉 280℃를 초과하지 않는 온도)를 유지하면서 네 번째 쉘을 형성하는 것이 바람직하다.When the fourth shell is synthesized while raising the temperature above 280 ° C, the third shell formation temperature (that is, 280 ° C) is increased in consideration of the increase in the half width and the increase in the thickness of the quantum dot as the shell thickness increases. It is preferable to form the fourth shell while maintaining the temperature not exceeding).
그런 다음 생성물의 안정화를 위하여 냉각시킬 수 있다. 냉각 조건은 제2 단계와 제3 단계의 각 첫번째 반응 조건, 즉 200 내지 220℃ 범위인 것이 적절하나, 이에 한정하는 것은 아니다. It can then be cooled to stabilize the product. Cooling conditions are suitably, but not limited to, each first reaction condition of the second and third stages, ie, in the range of 200 to 220 ° C.
쉘 층의 두께는 제공되는 전구체의 양을 제어함으로써 편리하게 조절될 수 있다. 주어진 층에 대해서, 하나 이상의 전구체는 성장 반응이 실질적으로 완료될 때의 양으로 임의 제공되며, 층은 소정의 두께이다. 하나 초과의 상이한 전구체가 제공되는 경우, 각 전구체의 양은 제한될 수 있거나 전구체 중 하나는 다른 것들이 과량으로 제공되는 양을 제한하면서 제공될 수 있다. 원하는 쉘 두께로 다양하게 제조하기 위한 전구체의 적합한 양은 용이하게 계산될 수 있다. 예를 들어, InP 코어는 이의 합성 및 정제 후 용액 중 분산될 수 있고, 이의농도는 Beer-Lambert law 를 사용하는 UV/Vis 분광학에 의해 계산될 수 있다. 흡광계수는 벌크 InP 로부터 수득될 수 있다. InP 코어의 크기는 예를 들어 UV/Vis 흡수 스펙트럼의 여기 자성 최대 및 양자 밀폐를 기반으로 하는 물리적 모델링에 의해 측정될 수 있다. 입자 크기, 몰량 및 쉘화된 물질의 원하는 생성 두께를 알면, 전구체의 양을 벌크 결정 파라미터 (즉, 쉘 물질의 하나의 단일 층 두께) 를 사용하여 계산할 수 있다.The thickness of the shell layer can be conveniently adjusted by controlling the amount of precursor provided. For a given layer, one or more precursors are optionally provided in an amount when the growth reaction is substantially complete, and the layer is of a predetermined thickness. If more than one different precursor is provided, the amount of each precursor may be limited or one of the precursors may be provided while limiting the amount in which the other is provided in excess. Suitable amounts of precursors for various manufactures with the desired shell thickness can be readily calculated. For example, InP cores can be dispersed in solution after their synthesis and purification, and their concentration can be calculated by UV / Vis spectroscopy using Beer-Lambert law. The extinction coefficient can be obtained from bulk InP. The size of the InP core can be measured, for example, by physical modeling based on the excitation magnetic maximum and quantum closure of the UV / Vis absorption spectrum. Knowing the particle size, molar amount and the desired production thickness of the shelled material, the amount of precursor can be calculated using the bulk crystal parameters (ie, the thickness of one single layer of the shell material).
일례로, 전술한 쉘의 제 1세트는 1.0nm 내지 3.0nm의 ZnSe1-xSx 단일층 두께이며, 코어는 ZnSe1-xSx의 작은 아일랜드로 커버될 수 있거나 양이온성 부위의 50% 및 음이온성 부위의 50%가 쉘 물질에 의해 점유될 수 있다. 유사하게는, 제 2세트의 하나 이상의 전구체를 제공하는 것 및 전구체를 반응시켜 쉘의 제 2층을 제조하는 것은, 하나 이상의 전구체를 실질적으로 반응이 완료된 경우의 양으로 제공하는 것을 포함하며, 제 2층은 약 0.3nm 내지 약 1.0nm의 단일층 ZnS 두께, 예를 들어, 약 0.5nm의 단일층 ZnS 두께 또는 약 0.8nm 내지 1.0nm 단일층 두께이다.In one example, the first set of shells described above is a ZnSe1-xSx monolayer thickness of 1.0 nm to 3.0 nm and the core may be covered with a small island of ZnSe1-xSx or 50% of the cationic moiety and 50 of the anionic moiety. % May be occupied by the shell material. Similarly, providing a second set of one or more precursors and reacting the precursors to prepare a second layer of the shell includes providing one or more precursors in an amount substantially when the reaction is complete, and The two layers are a single layer ZnS thickness of about 0.3 nm to about 1.0 nm, for example a single layer ZnS thickness of about 0.5 nm or about 0.8 nm to 1.0 nm single layer thickness.
이어서 반응물에 알킬 싸이올 화합물을 적가하는 단계가 더 포함될 수 있다. 상기 알킬 싸이올 화합물을 적가함으로써 제1 단계 또는 제4 단계에서 미반응 아연 전구체와 반응하여 최외곽 ZnS 쉘을 형성하는 효과가 있다. 상기 알킬 싸이올 화합물의 구체적인 예는 헥산 싸이올, 옥탄 싸이올, 데칸 싸이올, 도데칸 싸이올, 헥사데칸 싸이올, 머캡토 프로필 실란을 포함한다. 이때 필요한 경우 상기 제3 단계의 혼합물을 주입할 수 있다.Subsequently, an alkyl thiol compound may be added dropwise to the reactant. The alkyl thiol compound is added dropwise to react with the unreacted zinc precursor in the first or fourth step to form the outermost ZnS shell. Specific examples of the alkyl thiol compound include hexane thiol, octane thiol, decane thiol, dodecane thiol, hexadecane thiol, mercapto propyl silane. At this time, if necessary, the mixture of the third step may be injected.
이와 같은 방식으로, 4층 이상, 혹은 3 내지 5층으로 상기 코어를 감싸는 쉘을 형성한 다음, C6-C18 티올 화합물의 존재하에 프레쉬(fresh) 아연 전구체와 미반응 S와 반응시켜 쉘의 최외곽 층을 제조하는 단계를 더 포함할 수 있다. 여기서 아연 전구체는 전술한 제1 단계의 아연 전구체와 상기 프레쉬(fresh) 아연 전구체 중에서 선택된 1종 이상일 수 있다. In this manner, a shell surrounding the core is formed of four or more layers, or three to five layers, and then reacted with a fresh zinc precursor and unreacted S in the presence of a C 6 -C 18 thiol compound. The method may further include manufacturing the outermost layer. The zinc precursor may be at least one selected from the above-described first zinc precursor and the fresh zinc precursor.
상기 C6-C18 티올 화합물은 일례로, 1-도데칸티올, tert-도데실메르캅탄 또는 1-옥탄티올 등일 수 있다. The C 6 -C 18 thiol compound may be, for example, 1-dodecanethiol, tert-dodecylmercaptan or 1-octanethiol.
예를 들어 얼로이 구조의 코어-쉘 양자점 입자의 바깥쪽에 ZnS 쉘 층이 1 ~ 2nm 두께로 추가적으로 형성될 수 있다. 원료의 주입은 고속 주입 방식으로 수행되며, 예를 들어 5 ml/sec 내지 200 ml/sec의 속도로 수행될 수 있다. 반응시간은 5분 내지 60분 정도이며, 반응 온도는 200 내지 350℃ 정도로 수행될 수 있다. For example, a ZnS shell layer may be additionally formed to a thickness of 1 to 2 nm on the outside of the core-shell quantum dot particles having an alloy structure. Injection of the raw material is carried out by a high-speed injection method, for example, it may be carried out at a rate of 5 ml / sec to 200 ml / sec. The reaction time is about 5 to 60 minutes, the reaction temperature may be carried out about 200 to 350 ℃.
이후 반응물을 정제하여 분말을 얻는다. 앞서의 반응이 완료되면 상온에서 방치 후 정제하게 된다. 정제 과정은 예를 들면 다량의 아세톤으로 3회 이상 정제하여 분말로 만들 수 있으며, 이후 분말을 클로로포름, 톨루엔 또는 헥산과 같은 용매에 분산시켜 보관 및 사용할 수 있다. The reaction is then purified to give a powder. When the above reaction is completed, it is purified after standing at room temperature. The purification process may be, for example, purified three or more times with a large amount of acetone into a powder, and then the powder may be stored and used by dispersing it in a solvent such as chloroform, toluene or hexane.
상기 방법에 따르면, 코어가 아닌 쉘을 얼로이 형태로 합성할 수 있다. 구체적으로, InP와 ZnS 대비 InP와 ZnSe의 격자 불일치(lattice mismatch)가 더 작기 때문에 단일층(single layer)이 아닌 다층(multi layer) 형태로 쉘을 형성한 것을 특징으로 한다. 또한 쉘간 격자 불일치(lattice mismatch)를 감소시켜 두꺼운 쉘을 형성하기 위해 단순한 InP/ZnSe/ZnS 형태의 다층(multi layer)이 아닌 농도구배를 이용한 InP/ZnSeS/ZnS 형태의 얼로이 쉘을 구현한 양자점을 제공하는 것에 특징을 갖는다.According to the method, it is possible to synthesize a shell other than the core in an alloy form. Specifically, since the lattice mismatch between InP and ZnSe is smaller than that of InP and ZnS, the shell is formed in a multi-layered form rather than a single layer. In addition, to reduce lattice mismatch between shells, quantum dots implementing InP / ZnSeS / ZnS type alloy shells using a concentration gradient rather than a simple InP / ZnSe / ZnS type multilayer to form thick shells It is characterized by providing.
본 발명의 또 다른 구현예에 따른 나노구조 양자점은, 발광 양자 수율을 70% 이상으로 나타내며, 발광 스펙트럼은 550nm 내지 650nm의 방출 최대를 갖고 발광 스펙트럼의 반치전폭이 60nm 이하이고, 이때 나노구조가 InP/ZnSe1 - xSx/ZnS 코어/쉘(이때 0.72≤x≤0.92 임)일 수 있다. Nanostructured quantum dot according to another embodiment of the present invention, the emission quantum yield is 70% or more, the emission spectrum has an emission maximum of 550nm to 650nm and the full width at half maximum of the emission spectrum is 60nm or less, wherein the nanostructure is InP / ZnSe 1 - x S x / ZnS core / shell (where 0.72 ≦ x ≦ 0.92).
상기 나노구조 양자점, 일례로, InP/ZnSe1-xSx/ZnS 양자점은 임의로 고 발광 양자 수율, 예를 들어, 65% 이상, 70% 이상, 75% 이상, 80% 이상, 85% 이상, 또는 심지어 90% 이상의 수율을 나타낸다. 나노구조의 발광 스펙트럼은 본질적으로 임의의 바람직한 부분의 스펙트럼을 나타낼 수 있다. 예를 들어, 발광 스펙트럼은 방출 최대가 450nm 내지 750nm, 예를 들어, 500nm 내지 650nm, 500nm 내지 560nm, 또는 550nm 내지 650nm 일 수 있다. 발광 스펙트럼은 반치전폭이 60nm 이하, 예를 들어, 50nm 이하, 45nm 이하, 또는 심지어 40nm 이하 또는 35nm 이하로서 나노구조의 좁은 크기 분포를 반영한 것일 수 있다The nanostructured quantum dots, for example InP / ZnSe1-xSx / ZnS quantum dots, optionally have high luminescence quantum yields, such as at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, or even 90 Yields of% or higher. The emission spectra of the nanostructures may represent the spectrum of essentially any desired portion. For example, the emission spectrum may have an emission maximum of 450 nm to 750 nm, for example 500 nm to 650 nm, 500 nm to 560 nm, or 550 nm to 650 nm. The emission spectrum may reflect a narrow size distribution of the nanostructure with a full width at half maximum of 60 nm or less, for example 50 nm or less, 45 nm or less, or even 40 nm or less or 35 nm or less.
생성되는 나노구조는 임의로 매트릭스로서 일례로, 유기 중합체, 규소-함유 중합체, 무기, 유리질 및/또는 다른 매트릭스에 내장되거나, 나노구조 인광체의 제조에 사용될 수 있다.The resulting nanostructures can optionally be embedded in organic polymers, silicon-containing polymers, inorganic, glassy and / or other matrices, for example, or used in the manufacture of nanostructured phosphors.
상기 나노구조는 일례로 평균 직경이 10.0nm 미만, 5.0nm 이상 내지 10nm 미만, 5.0nm 내지 8.5nm, 혹은 5.0nm 내지 8.0nm이고, 상기 InP 코어가 평균 직경이 1.0nm 내지 4.0nm, 혹은 2.0nm 내지 3.5nm이며, 상기 ZnSe1 - xSx 쉘이 약 1.0nm 내지 3.0nm의 단일층 두께를 갖고, 상기 ZnS 쉘이 0.3nm 내지 1.0nm의 단일층 두께를 갖는 양자점일 수 있으며, 이 범위 내에서 전술한 고 발광 양자 수율을 갖고 특정 구현예에서 특정 파장에서 빛을 방출하고 좁은 크기 분포를 갖는 등의 고도 발광 효과를 제공할 수 있고, 입자 크기의 증가(혹은 두꺼운 쉘의 형성)을 통해 광학적 및 화학적 안정성을 함께 제공할 수 있다.The nanostructures have, for example, an average diameter of less than 10.0 nm, 5.0 nm or more and less than 10 nm, 5.0 nm to 8.5 nm, or 5.0 nm to 8.0 nm, and the InP core has an average diameter of 1.0 nm to 4.0 nm, or 2.0 nm. To 3.5 nm, wherein the ZnSe 1 - x S x shell has a single layer thickness of about 1.0 nm to 3.0 nm, and the ZnS shell may be a quantum dot having a single layer thickness of 0.3 nm to 1.0 nm, within this range Can provide a high luminous effect, such as having a high luminescence quantum yield as described above and in certain embodiments emitting light at a particular wavelength and having a narrow size distribution, and optically through an increase in particle size (or formation of a thick shell). And chemical stability together.
또한, 본 발명에 따른 양자점의 안정성도 뛰어나서 필요한 경우 다양한 표면처리를 통하여 여러 가지 응용 제품을 제조할 수 있다.In addition, it is also excellent in the stability of the quantum dot according to the present invention can be produced a variety of applications through a variety of surface treatment if necessary.
이하 본 발명을 다양한 실시예를 통해 설명하고자 하나 본 발명의 기술적 사상이 하기 실시예에 의해 제한되는 것은 아니다.Hereinafter, the present invention will be described through various examples, but the technical spirit of the present invention is not limited to the following examples.
[실시예]EXAMPLE
InP/ZnSe1 - xSx(0.82≤x≤0.92 범위 내인 x=0.87, 4층 구조로 제조)/ZnS의 형태로 합성하여 양자점을 이하의 방법을 이용하여 합성하였다.InP / ZnSe 1 - x S x (x = 0.87 in the range 0.82≤x≤0.92, And a quantum dot were synthesized using the following method.
실시예 1Example 1
단계 S1로써, 250ml 삼구 플라스크에 InCl3 3mmol과 ZnCl2 18mmol, Oleylamine 42ml를 혼합 후 밀폐시킨 용액을 120℃에서 30분간 탈기(degassing)하면서 교반하여 내부의 수분 및 산소류를 제거하고 질소(N2) 분위기로 전환하였다. 그런 다음 용액을 180℃로 승온시키고 tris(dimethylamino)phosphine (P(DMA)3, 97%) 1.8ml를 시린지를 사용하여 빠르게 주입 후 4분 동안 반응을 유지하였다(혼합물 I).In step S1, a mixture of 3 mmols of InCl 3 , 18 mmol of ZnCl 2 , and 42 ml of Oleylamine was mixed in a 250 ml three-necked flask, followed by stirring while degassing the sealed solution at 120 ° C. for 30 minutes to remove moisture and oxygen from the interior, followed by nitrogen (N 2). ) To the atmosphere. The solution was then warmed to 180 ° C. and 1.8 ml of tris (dimethylamino) phosphine (P (DMA) 3 , 97%) was rapidly injected using a syringe to maintain the reaction for 4 minutes (mixture I).
단계 S2로써, 1.0mmol의 Se과 1.0mmol의 S를 1.5ml의 트리옥틸포스핀(TOP)에 용해시켜 용액을 준비하였다(혼합물 II-a). 또한, 1.0mmol의 Se과 5.0mmol의 S를 3.0ml의 TOP에 용해시켜 용액을 준비하였다(혼합물 II-b). 마찬가지 방법으로, 0.5mmol의 Se과 5.5mmol의 S를 3.0ml의 TOP에 용해시켜 용액을 준비하고(혼합물 II-c), 5.0mmol의 S를 2.5ml의 TOP에 용해시켜 용액을 준비하였다(혼합물 II-d).As step S2, a solution was prepared by dissolving 1.0 mmol of Se and 1.0 mmol of S in 1.5 ml of trioctylphosphine (TOP) (mixture II-a). Further, a solution was prepared by dissolving 1.0 mmol of Se and 5.0 mmol of S in 3.0 ml of TOP (mixture II-b). In the same manner, 0.5mmol Se and 5.5mmol S were dissolved in 3.0ml of TOP to prepare a solution (mixture II-c), and 5.0mmol of S was dissolved in 2.5ml of TOP to prepare a solution (mixture). II-d).
단계 S3으로써, 징크 아세테이트(Zinc acetate) 10mmol, 20mmol의 올레산(OA), 3.5ml의 1-옥타데센(ODE)을 혼합하고 270℃에서 15분간 용해하여 준비하였다(혼합물 III).As step S3, 10 mmol of zinc acetate, 20 mmol of oleic acid (OA), 3.5 ml of 1-octadecene (ODE) were mixed and prepared by dissolving at 270 ° C. for 15 minutes (mixture III).
단계 S4로써, 상기 혼합물 II-a를 혼합물 I의 InP 코어 양자점에 주입하고 200℃로 승온시킨 후 20분간 반응시켰다. As step S4, the mixture II-a was injected into the InP core quantum dot of the mixture I, heated to 200 ° C, and reacted for 20 minutes.
이어 단계 S5로써, 혼합물 III을 주입한 후 220℃에서 50분간 유지하여 첫번째 쉘을 형성하였다. Subsequently, as a step S5, after the mixture III was injected, the mixture was maintained at 220 ° C. for 50 minutes to form a first shell.
그런 다음 유사한 방법으로 상기 단계 S4 및 S5를 3회 더 반복하였다. 즉, 상기 혼합물 II-b를 주입하고 240℃로 승온시킨 후 20분간 반응시키고 혼합물 III을 주입한 후 260℃에서 50분간 유지하여 두번째 쉘을 형성하였다. 다음으로 상기 혼합물 II-c를 주입하고 270℃에서 10분간 반응시키고 혼합물 III을 주입한 후 280℃에서 10분간 유지하여 세번째 쉘을 형성하였다. 마지막으로 온도를 280℃로 유지시킨 상태에서 혼합물 II-d를 주입하고 5분간 반응시키고 혼합물 III을 주입한 후 5분간 유지하여 네 번째 쉘을 형성한 후 200℃로 냉각시켰다.Then steps S4 and S5 were repeated three more times in a similar manner. That is, the mixture II-b was injected and heated to 240 ° C., reacted for 20 minutes, and the mixture III was injected and held at 260 ° C. for 50 minutes to form a second shell. Next, the mixture II-c was injected and reacted at 270 ° C. for 10 minutes, and then the mixture III was injected and held at 280 ° C. for 10 minutes to form a third shell. Finally, mixture II-d was injected and the reaction was carried out for 5 minutes while maintaining the temperature at 280 ° C. After the mixture III was injected, the mixture was maintained for 5 minutes to form a fourth shell and then cooled to 200 ° C.
추가로, 20mmol의 1-도데칸 싸이올(DDT)을 주입하고 20분간 반응시켜 상기 단계 S1 또는 단계 S4에서 미반응 12족 전구체와 반응시켜 최외곽 ZnS 쉘을 형성시키되, 상기 혼합물 III을 주입하고 50분간 유지하여 ZnS 쉘을 형성한 후 상온으로 냉각시켰다.Further, 20 mmol of 1-dodecane thiol (DDT) was injected and reacted for 20 minutes to react with the unreacted Group 12 precursor in step S1 or step S4 to form the outermost ZnS shell, but injecting the mixture III. After maintaining for 50 minutes to form a ZnS shell and cooled to room temperature.
마지막으로 단계 S6으로써, 합성된 InP/ZnSeS/ZnS 양자점을 헥산에 분산 후 원심분리기를 이용하여 부산물을 제거하고 아세톤을 첨가하여 침전시켜 헥산에 최종 분산시켰다. 이와 같은 방법으로 합성된 양자점은 가시광선 파장 영역에서의 평균 입경이 8.0nm(총 직경)이고, 파장 610nm, 반치폭 50nm, 양자효율 78%의 양자점을 합성하였다. 결과 InP/ZnSe1 - xSx/ZnS 코어/쉘 양자점의 코어 직경 3.0nm, 쉘 층의 두께는 2.5nm이었다. 상기 측정은 QE-2000(OTSUKA) 장비를 이용하여 여기파장 450nm, 측정 범위 480nm~800nm의 측정 조건 적용 하에 광학적 특성을 측정하였으며, PL 분석의 경우 FP-8300(JASCO), TEM의 경우 JEM-2100F(JEOL) 장비를 이용하였다.Finally, as step S6, the synthesized InP / ZnSeS / ZnS quantum dots were dispersed in hexane, and then by-products were removed using a centrifuge, precipitated by addition of acetone, and finally dispersed in hexane. The quantum dots synthesized in this manner synthesized quantum dots with an average particle diameter of 8.0 nm (total diameter) in the visible wavelength range, a wavelength of 610 nm, a half width of 50 nm, and a quantum efficiency of 78%. Results InP / ZnSe 1 - x S x / ZnS core / shell quantum dot core diameter of 3.0nm, and the thickness of the shell layer is 2.5nm. The optical properties were measured using an QE-2000 (OTSUKA) instrument under measurement conditions of an excitation wavelength of 450 nm and a measurement range of 480 nm to 800 nm, FP-8300 (JASCO) for PL analysis, and JEM-2100F for TEM. (JEOL) equipment was used.
실시예 2Example 2
상기 실시예 1의 단계 S3의 올레산(OA)을 동일 몰수(20mmol)의 myristic acid으로 대체한 것을 제외하고는 실시예 1과 동일한 공정으로 합성을 진행한 결과로서, 결과 InP/ZnSe1 - xSx/ZnS 코어/쉘 양자점의 총 직경 7.0nm, 코어의 직경 3.0 nm, 쉘 층의 두께는 2.0nm이었다. 상기 양자점은 가시광선 파장 영역에서의 평균 입경이 7.0nm이고, 파장 612nm, 반치폭 51nm, 양자효율 73%를 나타내었다. Example 1 Synthesis was carried out in the same manner as in Example 1, except that the oleic acid (OA) of step S3 of the same molar number (20 mmol) of myristic acid, InP / ZnSe 1 - x S The total diameter of the x / ZnS core / shell quantum dots was 7.0 nm, the core diameter was 3.0 nm, and the thickness of the shell layer was 2.0 nm. The quantum dot has an average particle diameter of 7.0 nm in the visible wavelength range, a wavelength of 612 nm, a half width of 51 nm, and a quantum efficiency of 73%.
실시예 3Example 3
상기 실시예 1의 단계 S3의 올레산(OA)을 동일 몰수(20mmol)의 palmitic acid으로 대체한 것을 제외하고는 실시예 1과 동일한 공정으로 합성을 진행한 결과로서, 결과 InP/ZnSe1 - xSx/ZnS 코어/쉘 양자점의 총 직경 7.0nm, 코어의 직경 3.0nm, 쉘 층의 두께는 2.0nm이었다. 상기 양자점은 가시광선 파장 영역에서의 평균 입경이 7.0nm이고, 파장 614nm, 반치폭 52nm, 양자효율 75%를 나타내었다. As a result of the synthesis in the same process as in Example 1 except for replacing the oleic acid (OA) of step S3 of Example 1 with the same number of moles (20 mmol) palmitic acid, the result InP / ZnSe 1 - x S x / ZnS core / shell quantum dots total size of 7.0nm, 3.0nm was the diameter, thickness of the shell layer of the core is 2.0nm. The quantum dot had an average particle diameter of 7.0 nm in the visible light wavelength range, a wavelength of 614 nm, a half width of 52 nm, and a quantum efficiency of 75%.
실시예 4Example 4
상기 실시예 1의 단계 S1의 P(DMA)3를 동일 함량의 P(TMS)3로 대체한 것을 제외하고는 실시예 1과 동일한 공정으로 합성을 진행한 결과로서, 결과 InP/ZnSe1 -xSx/ZnS 코어/쉘 양자점의 총 직경 5.0nm, 코어의 직경 1.0nm와 쉘 층의 두께는 2.0nm이었다. 상기 양자점은 가시광선 파장 영역에서의 평균 입경이 5.0nm이고, 파장 551nm, 반치폭 60nm, 양자효율 81%를 나타내었다. The synthesis was carried out in the same manner as in Example 1, except that P (DMA) 3 of Step S1 of Example 1 was replaced with the same amount of P (TMS) 3 , and the result InP / ZnSe 1 -x The total diameter of the S x / ZnS core / shell quantum dots was 5.0 nm, the diameter of the core was 1.0 nm and the thickness of the shell layer was 2.0 nm. The quantum dots had an average particle diameter of 5.0 nm in the visible wavelength range, a wavelength of 551 nm, a half width of 60 nm, and a quantum efficiency of 81%.
비교예 1Comparative Example 1
상기 실시예 1의 단계 S3에서 징크 아세테이트(Zinc acetate) 10mmol, 20mmol의 올레산(OA), 3.5ml의 1-옥타데센(ODE)을 혼합한 것을 올레산 미사용 하에 10mmol의 zinc stearate와 25ml의 1-옥타데센(ODE)을 혼합한 것으로 대체한 것을 제외하고는 실시예 1과 동일한 공정으로 합성을 진행한 결과로서, 결과 InP/ZnSe1 -xSx/ZnS 코어/쉘 양자점의 총 직경 6.0nm, 코어의 직경 3.0nm, 쉘 층의 두께는 1.5 nm이었다. 상기 양자점은 가시광선 파장 영역에서의 평균 입경이 6.0nm이었고, 파장 600nm, 반치폭 55nm이었으나, 양자효율이 62%를 나타내었다. In step S3 of Example 1, 10 mmol of zinc acetate, 20 mmol of oleic acid (OA), and 3.5 ml of 1-octadecene (ODE) were mixed with 10 mmol of zinc stearate and 25 ml of 1-octane without oleic acid. Synthesis was carried out in the same manner as in Example 1, except that the mixed with decene (ODE), resulting in a total diameter of InP / ZnSe 1- x S x / ZnS core / shell quantum dots 6.0 nm, core The diameter of the shell layer was 3.0 nm, and the thickness of the shell layer was 1.5 nm. The quantum dot had an average particle diameter of 6.0 nm, a wavelength of 600 nm, and a half width of 55 nm in the visible wavelength range, but exhibited 62% of quantum efficiency.
이상 실시예 1 내지 3, 비교예 1의 파장 측정한 그래프를 도 2에 나타내었다. 도 2에서 보듯이, 실시예 1 내지 3의 경우 파장이 600~650nm 범위 내인 반면, 비교예 1의 경우 이에 못 미치는 것을 확인하였다. The graphs of wavelengths measured in Examples 1 to 3 and Comparative Example 1 are shown in FIG. 2. As shown in FIG. 2, the wavelengths of Examples 1 to 3 were in the range of 600 to 650 nm, whereas Comparative Example 1 was found to fall short of this.
참고예Reference Example
상기 실시예 1의 단계 S4에서 세 번째 쉘을 형성한 다음 네 번째 쉘을 형성하는 단계를 생략한 채, 혼합물 II-d를 주입하고 300℃로 승온시킨 후 5분간 반응시키고 혼합물 III을 주입한 후 320℃로 승온하여 5분간 유지한 다음 210℃로 냉각시킨 것을 제외하고는 실시예 1과 동일한 공정으로 합성을 진행한 결과로서, 결과 InP/ZnSe1-xSx/ZnS 코어/쉘 양자점의 총 직경 10.0nm, 코어의 직경 3.0nm, 쉘 층의 두께는 3.5nm이었다. 상기 양자점은 파장 605nm이고 양자효율 81%를 나타내었으나, 가시광선 파장 영역에서의 평균 입경이 10.0nm이고, 반치폭이 68nm이었다. After the third shell was formed in step S4 of Example 1, the step of forming the fourth shell was omitted, and the mixture II-d was injected, heated to 300 ° C., reacted for 5 minutes, and then the mixture III was injected. Synthesis was carried out in the same manner as in Example 1 except that the mixture was heated to 320 ° C. for 5 minutes and then cooled to 210 ° C., and the total of InP / ZnSe 1-x S x / ZnS core / shell quantum dots The thickness of the shell layer was 3.5 nm in diameter of 10.0 nm, core diameter of 3.0 nm. The quantum dots had a wavelength of 605 nm and a quantum efficiency of 81%, but had an average particle diameter of 10.0 nm and a half width of 68 nm in the visible wavelength range.
본 발명에 따르면, InP 코어 및 하나 이상의 쉘 층을 포함하는 나노구조를 포함하는 발광 조성물로서, 고 발광 양자 수율을 갖고 특정 구현예에서 특정 파장에서 빛을 방출하고 좁은 크기 분포를 갖는 고도 발광 양자점, 특히 고도 발광 InP-기반 양자점을 제조하는 간단하고 경제적인 방법으로 제공할 수 있다. According to the present invention, there is provided a light emitting composition comprising a nanostructure comprising an InP core and at least one shell layer, comprising: a highly emitting quantum dot having a high emission quantum yield and in certain embodiments emitting light at a particular wavelength and having a narrow size distribution, In particular, it can be provided by a simple and economical method for producing a high-luminescence InP-based quantum dot.

Claims (15)

  1. 나노구조; 및 상기 나노구조의 표면에 결합하는 리간드를 포함하되, Nanostructures; And a ligand that binds to the surface of the nanostructure,
    상기 리간드가 유기 아민인 발광 조성물. A light emitting composition wherein the ligand is an organic amine.
  2. 제 1항에 있어서, The method of claim 1,
    상기 유기 아민이 라우릴아민, 스테아릴아민, 옥틸아민, 세틸아민, 테트라데실아민, 도데실아민, 헥사데실아민 및 올레일아민으로 이루어진 그룹으로부터 선택되는 1종 이상인 발광 조성물. The organic amine is at least one kind selected from the group consisting of laurylamine, stearylamine, octylamine, cetylamine, tetradecylamine, dodecylamine, hexadecylamine and oleylamine.
  3. 제 1항에 있어서, The method of claim 1,
    상기 나노구조의 표면에 결합된 포스핀 리간드를 추가로 포함하는 조성물로서, 상기 포스핀이 탄소수가 4 내지 8인 알킬기 혹은 아릴기를 갖는 트리알킬포스핀 혹은 트리아릴포스핀 인 발광 조성물. A composition further comprising a phosphine ligand bonded to the surface of the nanostructure, wherein the phosphine is trialkylphosphine or triarylphosphine having an alkyl or aryl group having 4 to 8 carbon atoms.
  4. 제 1항 또는 제 3항에 있어서, The method according to claim 1 or 3,
    상기 나노구조의 표면에 결합된 장쇄 지방산 리간드를 추가로 포함하는 조성물로서, 상기 장쇄 지방산이 12개 이상의 탄소 원자를 포함하는 것인 발광 조성물. A composition further comprising a long chain fatty acid ligand bonded to the surface of the nanostructure, wherein the long chain fatty acid comprises 12 or more carbon atoms.
  5. 제 4항에 있어서, The method of claim 4, wherein
    상기 장쇄 지방산이 라우르산, 미리스트산, 팔미트산, 스테아르산 또는 올레산인 발광 조성물.The long-chain fatty acid is lauric acid, myristic acid, palmitic acid, stearic acid or oleic acid.
  6. 제 1항에 있어서, The method of claim 1,
    상기 나노구조가 InP/ZnSe1 - xSx/ZnS 코어/쉘 양자점 (이때 0≤x≤1 임) 인 발광 조성물.The nanostructure is InP / ZnSe 1 - x S x / ZnS core / shell quantum dot (where 0≤x≤1) light emitting composition.
  7. 제 6항에 있어서, The method of claim 6,
    0.72≤x≤0.92 인 발광 조성물.A light emitting composition wherein 0.72 ≦ x ≦ 0.92.
  8. 제 1항에 있어서, The method of claim 1,
    상기 나노구조가 매트릭스에 내장되는 발광 조성물.A light emitting composition in which the nanostructures are embedded in a matrix.
  9. 아연 전구체와 인듐 전구체를 제공하고 유기 아민 리간드의 존재하에 상기 인듐 전구체와 추가로 주입한 인 전구체를 반응시켜 나노구조 코어를 제공하는 제1 단계; 및 Providing a zinc precursor and an indium precursor and reacting the indium precursor with a phosphorus precursor further injected in the presence of an organic amine ligand to provide a nanostructured core; And
    Se와 S 중 하나 이상을 제공하고 포스핀 리간드의 존재하에 Se와 S 중 하나 이상을 반응시켜 쉘을 제공하는 제2 단계를 포함하며, Providing at least one of Se and S and reacting at least one of Se and S in the presence of a phosphine ligand to provide a shell,
    상기 포스핀이 탄소수가 4 내지 8의 알킬기 또는 아릴기를 갖는 트리알킬포스핀 혹은 트리아릴포스핀인 양자점의 제조방법. The said phosphine is a trialkyl phosphine or triaryl phosphine which has a C4-8 alkyl group or an aryl group, The manufacturing method of the quantum dot.
  10. 제 9항에 있어서, The method of claim 9,
    상기 쉘이 셋 이상의 층을 포함하며; 이때 Se와 S 중 하나 이상을 제공하고 포스핀 리간드의 존재하에 Se와 S 중 하나 이상을 반응시켜 쉘을 제공하는 것은, 제 1세트의 Se와 S를 제공하는 것 및 포스핀 리간드의 존재하에 전구체를 반응시키는 것, 및 이어서 제 2세트의 하나 이상의 아연 전구체를 제공하는 것 및 장쇄 지방산 리간드의 존재하에 전구체를 반응시켜 쉘의 제 1층을 제조하는 것을 3회 이상 반복하여 상기 쉘의 제 1층을 3겹 이상 형성하는 것인 방법.The shell comprises three or more layers; Wherein providing at least one of Se and S and reacting at least one of Se and S in the presence of a phosphine ligand to provide a shell comprises providing a first set of Se and S and a precursor in the presence of a phosphine ligand Reacting, followed by providing a second set of one or more zinc precursors and reacting the precursors in the presence of a long chain fatty acid ligand to produce a first layer of the shell three or more times to repeat the first layer of the shell. How to form three or more layers.
  11. 제 10항에 있어서, The method of claim 10,
    상기 아연 전구체가 아연 아이오다이드, 아연 브로마이드, 아연 클로라이드, 아연 플루오라이드, 디메틸 아연, 디에틸 아연, 아연 아세테이트, 아연 아세틸아세토네이트, 아연 카보네이트, 아연 시아나이드, 아연 나이트레이트, 아연 옥사이드, 아연 퍼옥사이드, 아연 퍼클로레이트 및 아연 설페이트 중에서 선택된 1종 이상이고, 상기 장쇄 지방산이 적어도 12개 이상의 탄소 원자를 포함하는 것인 방법. The zinc precursor is zinc iodide, zinc bromide, zinc chloride, zinc fluoride, dimethyl zinc, diethyl zinc, zinc acetate, zinc acetylacetonate, zinc carbonate, zinc cyanide, zinc nitrate, zinc oxide, zinc per At least one selected from oxide, zinc perchlorate and zinc sulfate, wherein the long chain fatty acid comprises at least 12 carbon atoms.
  12. 제 9항에 있어서, The method of claim 9,
    C6-C18 티올 화합물의 존재하에 프레쉬(fresh) 아연 전구체와 미반응 S와 반응시켜 쉘의 최외곽 층을 제조하는 단계를 더 포함하며, 여기서 아연 전구체는 상기 제1 단계의 아연 전구체와 상기 프레쉬(fresh) 아연 전구체 중에서 선택된 것인 방법. Reacting with the fresh zinc precursor and unreacted S in the presence of a C 6 -C 18 thiol compound to form the outermost layer of the shell, wherein the zinc precursor is the zinc precursor of the first step and the The fresh zinc precursor.
  13. 제 9항에 있어서, The method of claim 9,
    상기 유기 아민 리간드가 라우릴아민, 스테아릴아민, 옥틸아민, 세틸아민, 테트라데실아민, 도데실아민, 헥사데실아민 및 올레일아민으로 이루어진 그룹으로부터 선택되는 1종 이상인 것인 방법.Wherein said organic amine ligand is at least one selected from the group consisting of laurylamine, stearylamine, octylamine, cetylamine, tetradecylamine, dodecylamine, hexadecylamine and oleylamine.
  14. 나노구조 양자점으로서, 상기 양자점은 발광 양자 수율을 70% 이상으로 나타내며, 발광 스펙트럼은 550nm 내지 650nm의 방출 최대를 갖고 발광 스펙트럼의 반치전폭이 60nm 이하이고, 이때 나노구조가 InP/ZnSe1 - xSx/ZnS 코어/쉘(이때 0.72≤x≤0.92 임)인 양자점.As a nanostructured quantum dot, the quantum dot has a light emission quantum yield of 70% or more, the emission spectrum has an emission maximum of 550 nm to 650 nm, and a full width at half maximum of the emission spectrum is 60 nm or less, wherein the nanostructure is InP / ZnSe 1 - x S Quantum dots with x / ZnS cores / shells, where 0.72 ≦ x ≦ 0.92.
  15. 제 14항에 있어서,The method of claim 14,
    상기 나노구조가 평균 직경이 10.0nm 미만이고, 상기 InP 코어가 평균 직경이 1.0nm 내지 4.0nm이며,The nanostructure has an average diameter of less than 10.0 nm, the InP core has an average diameter of 1.0 nm to 4.0 nm,
    상기 ZnSe1 - xSx 쉘이 1.0nm 내지 3.0nm의 단일층 두께를 갖고, 상기 ZnS 쉘이 0.3nm 내지 1.0nm의 단일층 두께를 갖는 양자점. The ZnSe 1 - x S x shell has a single layer thickness of 1.0 nm to 3.0 nm, and the ZnS shell has a single layer thickness of 0.3 nm to 1.0 nm.
PCT/KR2017/013740 2016-11-29 2017-11-29 Luminescent composition, quantum dots, and preparation method therefor WO2018101716A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20160160451 2016-11-29
KR10-2016-0160451 2016-11-29

Publications (1)

Publication Number Publication Date
WO2018101716A1 true WO2018101716A1 (en) 2018-06-07

Family

ID=62242275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/013740 WO2018101716A1 (en) 2016-11-29 2017-11-29 Luminescent composition, quantum dots, and preparation method therefor

Country Status (2)

Country Link
KR (1) KR20180060923A (en)
WO (1) WO2018101716A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112266791A (en) * 2020-10-14 2021-01-26 苏州星烁纳米科技有限公司 Quantum dot and preparation method thereof, quantum dot film and display device
CN113061436A (en) * 2021-03-04 2021-07-02 苏州星烁纳米科技有限公司 Electro-cadmium-free quantum dot, preparation method thereof and light emitting diode
CN114836214A (en) * 2022-06-07 2022-08-02 兰州大学 Preparation and application of narrow-band blue light quantum dots
CN114958341A (en) * 2022-07-18 2022-08-30 合肥福纳科技有限公司 InP quantum dot and preparation method thereof

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102131854B1 (en) * 2018-10-12 2020-07-08 한국화학연구원 Method for manufacturing of chalcogenide nanoparticles having core-shell structure
WO2020257510A1 (en) 2019-06-20 2020-12-24 Nanosys, Inc. Bright silver based quaternary nanostructures
KR102103009B1 (en) 2019-08-05 2020-04-21 주식회사 신아티앤씨 Method for producing a quantum dot nanoparticles, Quantum dot nanoparticles prepared by the method, Quantum dot nanoparticles having a core-shell structure, and Light emitting element
KR20210041374A (en) 2019-10-07 2021-04-15 삼성전자주식회사 Quantum dots, and an electronic device including the same
KR102236315B1 (en) * 2020-04-14 2021-04-05 주식회사 신아티앤씨 Method for producing a quantum dot nanoparticles, Quantum dot nanoparticles prepared by the method, Quantum dot nanoparticles having a core-shell structure, and Light emitting element
KR102236316B1 (en) * 2020-04-14 2021-04-05 주식회사 신아티앤씨 Method for producing a quantum dot nanoparticles, Quantum dot nanoparticles prepared by the method, Quantum dot nanoparticles having a core-shell structure, and Light emitting element
US11926776B2 (en) 2020-12-22 2024-03-12 Shoei Chemical Inc. Films comprising bright silver based quaternary nanostructures
US11407940B2 (en) 2020-12-22 2022-08-09 Nanosys, Inc. Films comprising bright silver based quaternary nanostructures
US11360250B1 (en) 2021-04-01 2022-06-14 Nanosys, Inc. Stable AIGS films
KR20230135252A (en) * 2022-03-16 2023-09-25 덕산네오룩스 주식회사 Quantum dot-ligand compound, electroluminescent diode and electronic device comprising it

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080252209A1 (en) * 2007-03-26 2008-10-16 Samsung Electronics Co., Ltd. Multilayer nanocrystal structure and method for producing the same
WO2011008064A2 (en) * 2009-07-17 2011-01-20 서울대학교 산학협력단 Particles containing quantum dot and method for producing same
KR101509648B1 (en) * 2006-07-24 2015-04-06 삼성전자 주식회사 Nanocrystal doped matrixes
KR101525525B1 (en) * 2014-02-05 2015-06-03 삼성전자주식회사 Nanocrystals particles and processes for preparing the same
KR20160113996A (en) * 2015-03-23 2016-10-04 꼼미사리아 아 레네르지 아토미끄 에뜨 옥스 에너지스 앨터네이티브즈 Process for increasing the photoluminescence internal quantum efficiency of nanocrystals, in particular of AgInS2-ZnS nanocrystals

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101187663B1 (en) * 2010-08-27 2012-10-05 아주대학교산학협력단 Sinthesizing Method for Indium Posphate Quantum Dot Core and Indium Posphate/Zinc Sulfide Core-Shell Quantum Dot
TWI596188B (en) * 2012-07-02 2017-08-21 奈米系統股份有限公司 Highly luminescent nanostructures and methods of producing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101509648B1 (en) * 2006-07-24 2015-04-06 삼성전자 주식회사 Nanocrystal doped matrixes
US20080252209A1 (en) * 2007-03-26 2008-10-16 Samsung Electronics Co., Ltd. Multilayer nanocrystal structure and method for producing the same
WO2011008064A2 (en) * 2009-07-17 2011-01-20 서울대학교 산학협력단 Particles containing quantum dot and method for producing same
KR101525525B1 (en) * 2014-02-05 2015-06-03 삼성전자주식회사 Nanocrystals particles and processes for preparing the same
KR20160113996A (en) * 2015-03-23 2016-10-04 꼼미사리아 아 레네르지 아토미끄 에뜨 옥스 에너지스 앨터네이티브즈 Process for increasing the photoluminescence internal quantum efficiency of nanocrystals, in particular of AgInS2-ZnS nanocrystals

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112266791A (en) * 2020-10-14 2021-01-26 苏州星烁纳米科技有限公司 Quantum dot and preparation method thereof, quantum dot film and display device
CN113061436A (en) * 2021-03-04 2021-07-02 苏州星烁纳米科技有限公司 Electro-cadmium-free quantum dot, preparation method thereof and light emitting diode
CN113061436B (en) * 2021-03-04 2023-03-31 苏州星烁纳米科技有限公司 Electro-cadmium-free quantum dot, preparation method thereof and light emitting diode
CN114836214A (en) * 2022-06-07 2022-08-02 兰州大学 Preparation and application of narrow-band blue light quantum dots
CN114836214B (en) * 2022-06-07 2023-04-07 兰州大学 Preparation and application of narrow-band blue light quantum dots
CN114958341A (en) * 2022-07-18 2022-08-30 合肥福纳科技有限公司 InP quantum dot and preparation method thereof

Also Published As

Publication number Publication date
KR20180060923A (en) 2018-06-07

Similar Documents

Publication Publication Date Title
WO2018101716A1 (en) Luminescent composition, quantum dots, and preparation method therefor
KR101739751B1 (en) Manufacturing method of alloy-shell quantum dot, alloy-shell quantum dot and backlight unit including same
JP7308433B2 (en) Semiconductor nanoparticles, manufacturing method thereof, and light-emitting device
US11652194B2 (en) Semiconductor nanoparticles, method of producing the semiconductor nanoparticles, and light-emitting device
US9884993B2 (en) Highly luminescent nanostructures and methods of producing same
KR101178410B1 (en) Blue light emitting semiconductor nanocrystal materials
US20170306227A1 (en) Stable inp quantum dots with thick shell coating and method of producing the same
WO2012109046A1 (en) Indium phosphide colloidal nanocrystals
EP3922604A1 (en) Semiconductor nanoparticles and method for producing same
KR20190055390A (en) MANUFACTURING METHOD OF InP/ZnS CORE/SHELL QUATUM DOTS
US10519369B2 (en) Core shell particles, method for producing core shell particles, and film
KR20150045196A (en) AgInS2 quantum dot doped Zn2+, Composition of the same and Preparing method of the same
US10868222B2 (en) Method of manufacturing gallium nitride quantum dots
KR20210033253A (en) Method for preparing a quantum dot, and a quantum dot prepared by the same
CN111748349A (en) Quantum dot and manufacturing method thereof
KR20160059546A (en) Manufacturing method of alloy-shell quantum dot, alloy-shell quantum dot and backlight unit including same
KR101984113B1 (en) Fluorescent nanocomposite and preparation method thereof
KR102236316B1 (en) Method for producing a quantum dot nanoparticles, Quantum dot nanoparticles prepared by the method, Quantum dot nanoparticles having a core-shell structure, and Light emitting element
CN113549460B (en) Method for preparing nanocrystalline
EP4073202B1 (en) Rohs compliant quantum dot films
KR102236315B1 (en) Method for producing a quantum dot nanoparticles, Quantum dot nanoparticles prepared by the method, Quantum dot nanoparticles having a core-shell structure, and Light emitting element
KR102103009B1 (en) Method for producing a quantum dot nanoparticles, Quantum dot nanoparticles prepared by the method, Quantum dot nanoparticles having a core-shell structure, and Light emitting element
KR20230076759A (en) Quantum dot particles containing organic-inorganic mixed ligands
CN115477945A (en) Core-shell structure quantum dot and preparation method thereof
CN114540008A (en) InP quantum dots with high-efficiency luminescence and preparation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17875472

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17875472

Country of ref document: EP

Kind code of ref document: A1