WO2018101412A1 - 心電波形表示方法及び心電図解析装置 - Google Patents

心電波形表示方法及び心電図解析装置 Download PDF

Info

Publication number
WO2018101412A1
WO2018101412A1 PCT/JP2017/043078 JP2017043078W WO2018101412A1 WO 2018101412 A1 WO2018101412 A1 WO 2018101412A1 JP 2017043078 W JP2017043078 W JP 2017043078W WO 2018101412 A1 WO2018101412 A1 WO 2018101412A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveform
electrocardiogram
analysis
screen
displayed
Prior art date
Application number
PCT/JP2017/043078
Other languages
English (en)
French (fr)
Inventor
洋介 嶋井
博則 打田
佐藤 健一
Original Assignee
フクダ電子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by フクダ電子株式会社 filed Critical フクダ電子株式会社
Priority to JP2018554248A priority Critical patent/JP7229771B2/ja
Priority to EP17876282.9A priority patent/EP3549520A4/en
Priority to RU2019113451A priority patent/RU2748820C2/ru
Priority to US16/465,190 priority patent/US11058343B2/en
Priority to CN201780073650.0A priority patent/CN110022764B/zh
Publication of WO2018101412A1 publication Critical patent/WO2018101412A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/339Displays specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/333Recording apparatus specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • A61B5/364Detecting abnormal ECG interval, e.g. extrasystoles, ectopic heartbeats
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/7475User input or interface means, e.g. keyboard, pointing device, joystick
    • A61B5/748Selection of a region of interest, e.g. using a graphics tablet
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0481Interaction techniques based on graphical user interfaces [GUI] based on specific properties of the displayed interaction object or a metaphor-based environment, e.g. interaction with desktop elements like windows or icons, or assisted by a cursor's changing behaviour or appearance
    • G06F3/0482Interaction with lists of selectable items, e.g. menus
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0484Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
    • G06F3/0485Scrolling or panning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0487Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
    • G06F3/0488Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
    • G06F3/04886Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures by partitioning the display area of the touch-screen or the surface of the digitising tablet into independently controllable areas, e.g. virtual keyboards or menus
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/14Digital output to display device ; Cooperation and interconnection of the display device with other functional units
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H10/00ICT specially adapted for the handling or processing of patient-related medical or healthcare data
    • G16H10/60ICT specially adapted for the handling or processing of patient-related medical or healthcare data for patient-specific data, e.g. for electronic patient records
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • A61B5/366Detecting abnormal QRS complex, e.g. widening
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/048Indexing scheme relating to G06F3/048
    • G06F2203/04804Transparency, e.g. transparent or translucent windows

Definitions

  • the present invention relates to an electrocardiogram waveform display method and an electrocardiogram analyzer.
  • an electrocardiogram analyzer capable of automatic analysis of an electrocardiogram
  • a medical worker first attaches electrodes to a subject, then the electrocardiogram analyzer collects an electrocardiogram waveform, and then the electrocardiogram analyzer collects the heart The radio wave shape is automatically analyzed.
  • the analysis target waveform and the analysis result are displayed on a separate screen. Therefore, when the user wants to see the analysis result regarding a certain analysis target waveform, the user needs to switch the screen from the screen displaying the analysis target waveform to the screen displaying the analysis result.
  • the analysis result screen one beat of the representative waveform of the analysis target waveform and the analysis result (analysis findings, measurement values, subject information, examination information) are displayed.
  • the user wants to view the analysis target waveform that is the basis of the analysis result screen again, the user needs to switch the screen from the screen displaying the analysis result to the screen displaying the analysis target waveform again.
  • the present invention has been made in consideration of the above points, and provides an electrocardiogram waveform display method and an electrocardiogram analyzer that can present a relationship between an analysis target waveform and an analysis result thereof to a user in an easy-to-understand manner with few operations. provide.
  • the display control unit displays an analysis result related to the electrocardiogram waveform simultaneously with a screen on which the corresponding electrocardiogram waveform is displayed in response to a user operation on the user operation unit.
  • the analysis result related to the electrocardiographic waveform to be analyzed is displayed at the same time as the analysis target waveform screen, there is no need to switch the screen, and the electrocardiographic waveform and the analysis result can be viewed simultaneously. become able to. As a result, the relationship between the electrocardiographic waveform to be analyzed and the analysis result can be presented to the user in an easy-to-understand manner with few operations.
  • the perspective view which shows the external appearance structure of the electrocardiograph of embodiment Block diagram showing the main components of the electrocardiograph The figure which shows the initial screen of 12 lead inspection Diagram showing the screen when collecting ECG waveforms Figure showing the candidate list screen Figure showing the analysis result screen
  • the figure which serves for explanation of the method of extracting the candidate section where the arrhythmia waveform is included
  • FIG. 1 is a perspective view showing an external configuration of an electrocardiograph according to the present embodiment.
  • the electrocardiograph 100 is composed of a main body part 110 and a display part 120.
  • the main body unit 110 is provided with an input key 104 and a printer unit 105.
  • the display unit 120 is provided with a touch panel 121.
  • the size of the touch panel 121 is 15 inches.
  • the size of 15 inches is roughly equivalent to the A4 paper size.
  • FIG. 2 is a block diagram showing a main configuration of the electrocardiograph 100.
  • the main unit 110 includes a calculation unit 101, a measurement unit 102, a storage unit 103, an input key 104, a printer unit 105, and a display / print control unit 106.
  • the calculation unit 101 is configured by a CPU (Central Processing Unit) or the like, and executes an electrocardiogram data processing program to perform formation of an electrocardiogram waveform, analysis of the electrocardiogram waveform, and the like. In addition, the calculation unit 101 performs execution start, execution stop and execution condition (threshold value, etc.) setting of the electrocardiogram data processing program, control of various measurement devices such as the measurement unit 102, and control of various peripheral devices such as the touch panel 121 and the printer unit 105.
  • execution start, execution stop and execution condition threshold value, etc.
  • the measurement unit 102 is connected to an electrode unit worn by a subject (that is, an electrocardiogram measurement subject), performs an amplification process on the measurement voltage input from the electrode unit, and performs measurement after the process.
  • the voltage is output to the calculation unit 101.
  • the electrode unit for limbs and the electrode unit for chest are usually connected to the measurement unit 102, and a voltage necessary for obtaining a 12-lead electrocardiogram is input.
  • the storage unit 103 is configured by a hard disk drive, a semiconductor memory, or the like.
  • the storage unit 103 stores electrocardiographic waveform data obtained by the calculation unit 101 and analysis data thereof.
  • the storage unit 103 also stores measurement data output from the measurement unit 102.
  • the storage unit 103 also stores setting data of the electrocardiograph 100 input by the user from the touch panel 121 or the input key 104.
  • the electrocardiograph 100 operates based on setting data stored in the storage unit 103.
  • a menu screen and various setting screens are displayed on the touch panel 121, and the user can perform menu selection and various settings by touching the touch panel 121.
  • the touch panel 121 displays an electrocardiogram waveform obtained by the calculation unit 101, an analysis result, and the like.
  • the printer unit 105 is a printer of a laser type or a thermal head type, and prints an electrocardiogram waveform and an analysis result obtained by the calculation unit 101 according to an instruction from the user.
  • the display / print control unit 106 controls the layout of the electrocardiographic waveform displayed on the screen of the touch panel 121 and printed on the recording paper by the printer unit 105.
  • the display control of the electrocardiogram waveform and the analysis result in the present embodiment is mainly performed by the display / print control unit 106.
  • the electrocardiograph 100 automatically extracts candidate waveforms upon completion of waveform collection, analyzes the waveforms, and displays the candidate waveforms. Specifically, since the collected waveform is stored in the storage unit 103, the waveform of a plurality of candidate sections suitable for the calculation unit 101 to perform analysis from the collected waveform is extracted, and the extracted plurality of waveforms are extracted. Analyze the waveform of the candidate section. The extracted waveforms of a plurality of candidate sections are displayed on the touch panel 121.
  • a candidate section means an analysis unit section.
  • the user can make various selections with this analysis unit section as a unit, and hence it is called a candidate section. Note that the waveform extraction processing of a plurality of candidate sections by the calculation unit 101 will be described in detail later.
  • FIG. 5 shows an example of a candidate list screen displayed on the touch panel 121.
  • the waveform display area is divided into four, and four candidate sections of the first to fourth candidates are displayed. Specifically, the first candidate is displayed on the upper left, the second candidate is displayed on the upper right, the third candidate is displayed on the lower left, and the fourth candidate is displayed on the lower right.
  • the user since the electrocardiogram waveforms of a plurality of candidate sections are displayed on one screen, the user compares the plurality of candidate sections on one screen and records them from the plurality of candidate sections. It becomes possible to easily select the electrocardiogram waveform in the section to be.
  • the arrangement order of the candidate interval waveforms from the first candidate to the fourth candidate is set in descending order of severity in the analysis findings.
  • the user can see the waveforms in descending order of severity.
  • arrange them in chronological order By the way, if the severity is similar, arrange them in chronological order.
  • the arrangement order is not limited to this.
  • the arrangement order may be in chronological order regardless of severity.
  • one of the candidate section waveforms is surrounded by a selection frame W1.
  • the display position of the selection frame W1 can be selected by the user touching any one of the display areas in which the candidate section waveforms of the first to fourth candidates are displayed with a finger.
  • the waveform display area of the first candidate is surrounded by the selection frame W1, but for example, when the waveform display area of the second candidate is touched, the waveform display area of the second candidate is the selection frame W1. Surrounded.
  • the selection is made by touching with a finger.
  • the pointer is moved to the touch position and the mouse is clicked.
  • the same selection can be made.
  • FIG. 6 shows an example of a transition destination analysis result screen.
  • the analysis result screen includes a finding A1, a finding explanation A2, a measured value A3, and the like.
  • This recording waveform screen is a screen that displays a waveform obtained by returning the waveform enclosed by the selection frame W1 in FIG. 5 to the original recording size.
  • the electrocardiograph 100 proceeds to a process of saving the analysis result and waveform data of the currently selected candidate section in the storage unit 103.
  • the electrocardiograph 100 proceeds to a process of printing the analysis result of the currently selected candidate section by the printer unit 105.
  • the user may touch, for example, the “Return to examination” button B7 on the analysis result screen of FIG. 6 or the “Return” button B8 on the candidate list screen of FIG. .
  • the initial screen shown in FIG. 3 is displayed on the touch panel.
  • the display format of the electrocardiogram waveform on the candidate list screen can be changed. Specifically, the candidate list screen is sequentially changed as shown in FIGS. 9A to 9D according to the number of times the user touches the “screen selection” button B10 on the candidate list screen shown in FIG.
  • a 6-channel ⁇ 2 12-lead electrocardiogram and a 1-channel rhythm waveform are displayed in each candidate area (that is, one area that can be surrounded by the selection frame W1). More specifically, on the candidate list screen in FIG. 9A, an electrocardiographic waveform is displayed in a continuous method or a coherent method in each candidate region.
  • the continuous or coherent electrocardiogram among the 12 lead electrocardiograms, the limb lead waveforms I, II, III, aVR, aVL, and aVF are arranged on the left side, and the chest lead waveforms V1, V2, V3, V4, V5, and V6 are arranged on the right side.
  • the continuous method among the 10-second ECG waveforms, the first 0 to 5 second limb lead waveform is displayed on the left side, and the second 5 to 10 second chest lead waveform is displayed on the right side.
  • the coherent method the limb induction waveform of 0 to 5 seconds in the first half of the 10 second waveform is displayed on the left side, and the chest induction waveform of 0 to 5 seconds in the first half is displayed on the right side.
  • This continuous method and coherent method can display 12-lead waveforms in a single screen with a limited size so that the user can easily diagnose without reducing the amplitude of the waveform as much as possible. It is a display system that has a shape and is widely used in the past.
  • a 6-channel 12-lead electrocardiogram and a 1-channel rhythm waveform are displayed in each candidate area. More specifically, in the candidate list screen of FIG. 9C, the limb lead waveforms I, II, III, aVR, aVL, and aVF among the 12 lead electrocardiogram waveforms in each candidate region are displayed in the continuous method (or the coherent method). ) Without reducing the waveform of a part of the section, that is, all waveforms within a predetermined period (for example, 10 seconds) are displayed.
  • the candidate list screen of FIG. 9D 12-channel ECGs of 12 channels are displayed in each candidate area. More specifically, in the candidate list screen of FIG. 9D, among the 12 lead electrocardiogram waveforms, the limb lead waveforms I, II, III, aVR, aVL, aVF and the chest lead waveforms V1, V2, V3, V4, V5, and V6 are all arranged vertically by reducing the sensitivity (waveform amplitude) direction, and without reducing the waveform of some sections reduced by the continuous method (or coherent method), that is, within a predetermined period. All waveforms (for example, for 10 seconds) are displayed.
  • the extraction method of the present embodiment for extracting the waveform of the candidate section from the collected waveform temporarily stored in the storage unit 103 will be described.
  • the collection time is 60 seconds
  • one candidate section is 10 seconds
  • four candidate sections are extracted.
  • the collection time can be set, for example, from 30 seconds to 10 minutes (in increments of 1 second)
  • the section length of the candidate section can also be set, for example, from 8 to 24 seconds.
  • the number of sections is not limited to four.
  • the operation unit 101 functions as a candidate waveform extraction unit that extracts the electrocardiogram waveforms of a plurality of candidate sections from the collected electrocardiogram waveforms.
  • FIG. 10 is a diagram for explaining a method for extracting an electrocardiographic waveform in a candidate interval by excluding the noise interval.
  • the uppermost waveform in the figure shows a collected waveform for 60 seconds temporarily stored in the storage unit 103.
  • the second row shows a state where four candidate sections are formed by dividing the collected waveform every 10 seconds from the top, and the third row shows a candidate section extracted by excluding the noise section according to the present embodiment.
  • FIG. 10 is a diagram for explaining a method for extracting an electrocardiographic waveform in a candidate interval by excluding the noise interval.
  • the uppermost waveform in the figure shows a collected waveform for 60 seconds temporarily stored in the storage unit 103.
  • the second row shows a state where four candidate sections are formed by dividing the collected waveform every 10 seconds from the top
  • the third row shows a candidate section extracted by excluding the noise section according to the present embodiment.
  • the second, third, and fourth candidate sections contain noise.
  • the analysis results are greatly affected by noise, and it is impossible to obtain an analysis result in which the electrocardiogram waveform is correctly reflected. .
  • the present embodiment by extracting candidate sections excluding the noise section, it is possible to obtain an analysis result in which the influence of noise is small and the electrocardiographic waveform is correctly reflected in all candidate sections. It has become. Specifically, in the collected waveform stored in the storage unit 103 by the calculation unit 101, an interval in which an extreme high-frequency waveform appears with respect to an assumed electrocardiogram waveform (for example, AC, myoelectricity, drift is present). Detected as a noise interval in a section in which an extremely low frequency waveform appears (for example, a section in which noise due to electrode disconnection or poor contact occurs), and excludes this noise section as a candidate. Extract the ECG waveform of the interval. Note that the noise detection method is not limited to this, and in short, a waveform different from the assumed electrocardiographic waveform of the person may be detected as noise.
  • an assumed electrocardiogram waveform for example, AC, myoelectricity, drift
  • the electrocardiogram waveforms of the four candidate sections 1 to 4 indicated by shading are analyzed and analyzed as the ECG waveforms displayed on the candidate list screen (FIG. 5). Extracted as a target electrocardiogram.
  • FIG. 11 is a diagram for explaining a method of extracting candidate sections including an arrhythmia waveform.
  • the calculation unit 101 detects the position where the arrhythmia has occurred, and the electrocardiographic waveforms in the four candidate sections 1 to 4 indicated by shading centered on the position are displayed as candidates. Extracted as an electrocardiogram waveform displayed on the list screen (FIG. 5) and as an electrocardiogram waveform to be analyzed.
  • display and analysis suitable for an electrocardiogram examination can be performed.
  • the arrhythmia waveform is preferably arranged at the center of the candidate section. This is because if there are waveforms before and after the arrhythmia waveform, it is possible to confirm whether the arrhythmia suddenly occurred or there was a sign while looking at the waveforms before and after the arrhythmia waveform.
  • the position of the candidate section is set in the direction in which the waveform data exists. If the candidate sections overlap each other (candidate 2 and candidate 3), extraction may be performed by shifting the position of any candidate section in a direction that does not overlap.
  • the candidate section including the arrhythmia (candidate 2 in the figure)
  • the candidate sections may be extracted so that the candidate sections overlap. Good.
  • candidate 4 is extracted so as to overlap candidate 3.
  • the candidates 1 to 4 are extracted so that a part of all the candidates 1 to 4 overlaps by an equal length. Note that if no overlap is allowed, only three candidates 1 to 3 may be extracted.
  • candidate sections are extracted in the order of (i) noise exclusion, (ii) duplication prohibition, and (iii) extraction centering on arrhythmia.
  • noise exclusion if noise is present, a correct analysis result cannot be obtained, so noise exclusion is given the highest priority.
  • duplication occurs when extraction is performed centering on arrhythmia, priority is given to prohibiting duplication over extraction centering on arrhythmia.
  • FIG. 12 corresponds to this.
  • the number of candidate sections may be extracted in order from the section containing the arrhythmia with higher severity.
  • the number of candidate sections to be extracted is four, six arrhythmias are included in the acquired waveform, and six arrhythmias have two severity (high), two severity (medium), In the case of two severity (low), it is preferable to preferentially extract candidate sections including four arrhythmias having four high severity, that is, two severity (high) and two severity (medium).
  • priority may vary depending on the medical site or the like, so that priority may be set.
  • the waveform analysis result screen surrounded by the selection frame W1 is displayed. .
  • 16 and 17 show examples of the display.
  • the display area of the first candidate is surrounded by the selection frame W1 and the simple window W10.
  • the analysis result displayed in the simple window W10 is an analysis finding regarding the first candidate section waveform.
  • what is displayed on the simple window W10 may be other analysis results such as a measurement value and a representative waveform.
  • the analysis results displayed in the simple window W10 are in order of severity. Therefore, when the amount of analysis results is large, only the higher-order analysis results with higher severity are displayed in the simple window W10. Note that the user may be able to set which analysis result is displayed in the simple window W10.
  • the simple window W10 is preferably translucent. By doing in this way, even if the simple window W10 is displayed in the area surrounded by the selection frame W1, the electrocardiographic waveform at the position of the simple window W10 can be seen through. Further, the simple window W10 is not necessarily displayed in the selection frame W1.
  • the method for displaying the simple window W10 is not limited to a long press on the touch panel 121.
  • the pointer is moved into one of the display areas of the first to fourth candidates and the mouse button is pressed at that position.
  • the simple window W10 may be displayed by clicking or double-clicking. In this case, the simple window W10 may be closed with the mouse.
  • the window W10 when the simple window W10 is opened by long-pressing the touch panel 121 with a finger and the simple window W10 is closed when the finger is released from the touch panel 121, the window can be displayed and hidden with one action. Therefore, there is an advantage that analysis results of a plurality of candidate sections can be viewed quickly.
  • the second candidate display area is surrounded by the selection frame W1 and a simple window W10 is displayed.
  • An analysis result regarding the second candidate section waveform is displayed in W10.
  • the simple analysis result can be displayed in the simple window W10 by the same operation.
  • the analysis result can be confirmed without switching the screen by displaying the simple window W10 on which the analysis result related to the electrocardiogram waveform is displayed on the same screen as the electrocardiogram waveform. become able to.
  • the test result can be confirmed with a small number of procedures, and the electrocardiographic waveform and the analysis result can be compared on the same screen.
  • the analysis results for the electrocardiographic waveforms of each candidate section are selectively displayed on the same screen as the screen on which the electrocardiographic waveforms of the multiple candidate sections are displayed.
  • only the analysis result related to the electrocardiographic waveform of one candidate section selected by the user is displayed on the same screen among the electrocardiographic waveforms of the plurality of candidate sections displayed on the same screen.
  • the analysis results regarding the electrocardiographic waveforms of two or more candidate sections selected by the user may be displayed on the same screen.
  • the electrocardiogram waveforms of a plurality of candidate sections displayed on the candidate list screen are extracted by the calculation unit 101.
  • the electrocardiographic waveform in this candidate section is a waveform in a section determined to be appropriate for analysis by the calculation unit 101.
  • a waveform batch movement mode for extracting a section suitable for waveform confirmation and waveform comparison of an electrocardiogram waveform.
  • the operation unit 101 as an electrocardiogram waveform extraction unit is set to the waveform batch movement mode by a user operation, for example, candidates 1 to 4 as shown in FIG. 18 are extracted.
  • candidates 1 to 4 as shown in FIG. 18 are extracted.
  • an electrocardiogram waveform having a length of 10 minutes is collected in the storage unit 103, and 10-second segment length candidates 1 to 4 are extracted from the electrocardiogram waveform.
  • the intervals between the candidates 1 to 4 are made equal, and in the example of FIG. 18, it is 2.5 minutes.
  • candidate 1 is an electrocardiogram waveform from 0 seconds to 10 seconds
  • candidate 2 is an electrocardiogram waveform from 2 minutes 30 seconds to 2 minutes 40 seconds
  • candidate 3 is an electrocardiogram waveform from 5 minutes to 5 minutes 10 seconds
  • candidate 4 is an electrocardiographic waveform from 7 minutes 30 seconds to 7 minutes 40 seconds.
  • the head of adjacent sections of a plurality of sections is the time obtained by dividing the time length of the collected electrocardiogram waveform (10 minutes in the example in the figure) by the number of sections (4 in the example in the figure). (2.5 minutes in the case of the example in the figure).
  • FIG. 19A shows a state in which the ECG waveforms of candidates 1 to 4 in FIG.
  • the scroll bar S1 is moved rightward from the state shown in FIG. 19A as shown in FIG. 19A ⁇ FIG. 19B ⁇ FIG. 19C ⁇ FIG. 19D, all the electrocardiographic waveforms of the first to fourth candidates are moved by the scroll bar S1. Move right according to the amount.
  • the calculation unit 101 or the display / printing control unit 106 shifts the extraction positions of the first to fourth candidate electrocardiogram waveforms in the direction indicated by the arrow in FIG. 18 according to the movement of the scroll bar S1.
  • the scroll bar S1 is moved in the left direction
  • all of the first to fourth candidate electrocardiographic waveforms are moved in the left direction in accordance with the amount of movement of the scroll bar S1.
  • the electrocardiogram waveforms of a plurality of sections are extracted from the collected electrocardiogram waveforms, and the extracted electrocardiogram waveforms of the plurality of sections are displayed on one screen.
  • the electrocardiogram waveform in each candidate section can be moved in the time direction in a lump according to the user operation. It can be done.
  • the amount of movement in the substantial time direction with respect to the operation can be expanded, and the electrocardiogram that the user can see for the operation
  • the shape can be increased.
  • four electrocardiographic waveforms are moved in the time direction at a time, so that the electrocardiographic waveform for the operation is compared with the case where each candidate electrocardiographic waveform is moved individually.
  • the amount of movement in the time direction can be quadrupled.
  • the collection time is long. That is, if the collection time length is long, it takes time to visually confirm all the collected electrocardiogram waveforms.
  • the ECG waveform of a plurality of sections is displayed on one screen, and if it is moved in the time direction collectively according to one operation, it is collected. The time required to confirm all the electrocardiogram waveforms can be shortened.
  • an electrocardiogram waveform near the start of collection and an electrocardiogram waveform near the end of collection even the electrocardiogram waveforms at different times can be displayed on the same screen, and the electrocardiogram waveforms can be confirmed while comparing them.
  • the electrocardiogram waveform can be confirmed while comparing the electrocardiogram waveform near the start and near the end.
  • the extraction positions of the electrocardiogram waveforms of the plurality of sections are essentially the amount corresponding to the user operation. , To shift equally in the time direction.
  • Such processing is effective in addition to the long-term electrocardiographic waveform confirmation and waveform comparison as in the embodiment.
  • the collective movement processing of the electrocardiographic waveform according to the present embodiment is widely effective in confirming the state of changes in the time direction of the electrocardiographic waveform at different time points while comparing them with each other.
  • the analysis result can be confirmed.
  • the test result can be confirmed with a small number of procedures, and the electrocardiographic waveform and the analysis result can be simultaneously compared on the same screen.
  • the electrocardiogram waveforms of a plurality of candidate sections are displayed on one screen, and the analysis results for the electrocardiogram waveforms of each candidate section are selectively displayed on the electrocardiogram waveforms of the plurality of candidate sections. Because it is possible to check the analysis findings while comparing the analysis section waveforms with a plurality of analysis unit section waveforms displayed on one screen, there are fewer procedures. It becomes possible to confirm the inspection result.
  • the electrocardiogram analysis apparatus and the electrocardiogram waveform display method according to the present invention are executed by the electrocardiograph 100 .
  • the electrocardiogram analysis apparatus and the electrocardiogram waveform display method according to the present invention include an arithmetic unit. It can also be executed by devices other than an electrocardiograph having a display unit.
  • each process of the electrocardiogram analyzer and the electrocardiogram waveform display method according to the present invention can be realized by a device having a calculation unit and a display unit executing a program.
  • a program for realizing each process of the electrocardiogram analysis apparatus and the electrocardiogram waveform display method according to the present invention is recorded in a computer-readable recording medium such as a memory, a disk, a tape, a CD, a DVD, and the like.
  • the computer of the device having the display unit and the display unit may execute each process of the above-described embodiment by reading this program.
  • the present invention can be applied to an electrocardiograph having a function of automatically analyzing an electrocardiogram, for example.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Cardiology (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Veterinary Medicine (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physiology (AREA)
  • Psychiatry (AREA)
  • Primary Health Care (AREA)
  • Epidemiology (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

ユーザが第1候補の表示領域を指で長押しすると、第1候補の表示領域が選択枠(W1)で囲まれるとともに、簡易ウィンドウ(W10)が表示され、この簡易ウィンドウ(W10)内に第1候補の区間波形に関する解析結果が表示される。これにより、画面を切り替えなくても解析結果を確認できるようになり、この結果、少ない手順で検査結果を確認できるとともに、同一画面上で心電波形とその解析結果とを比較できるようになる。

Description

心電波形表示方法及び心電図解析装置
 本発明は、心電波形表示方法及び心電図解析装置に関する。
 従来、心臓疾患の診断指標として、心電図が広く用いられている。心電図は、心臓の電気的な活動を体表面で検出し、それを心電波形として表したものである。この心電波形(心電図)を解析することで、心臓の活動に関する様々な情報を得ることができる。
 近年では、心電図をデータ化して記録するデジタル心電計の開発により、コンピュータを用いて心電図を自動解析することが可能となっている(例えば特許文献1参照)。
 このような心電図の自動解析が可能な心電図解析装置においては、先ず医療従事者が被検者に電極を装着し、次いで心電図解析装置が心電波形を収集し、次いで心電図解析装置が収集した心電波形を自動解析するようになっている。
 なお、本明細書では、解析候補の心電波形を一時的に保存することを「収集」と言い、解析した心電波形や解析結果を記録することを「収録」と呼ぶ。
日本国特開2006-116207号公報
 ところで、従来の心電図解析装置においては、解析対象波形と、その解析結果は、別画面に表示される。よって、ユーザは、ある解析対象波形に関する解析結果を見たい場合には、解析対象波形が表示された画面から、解析結果が表示された画面へと画面を切り替える必要がある。因みに、解析結果画面では、解析対象波形のうちの代表波形1拍とその解析結果(解析所見、計測値、被検者情報、検査情報)が表示される。ユーザは、この解析結果画面から再びその基になっている解析対象波形を見たい場合には、再び解析結果が表示された画面から解析対象波形が表示された画面へと画面を切り替える必要がある。
 このような、画面切り替えの繰り返しは、ユーザ操作の増加へと繋がり、ユーザの負担が増加することとなる。一方で、解析対象波形や解析結果をプリントアウト(レポート印刷)すれば、解析対象波形とその解析結果とを簡単に比較することができる。しかしながら、レポート印刷はペーパーレス運用の施設などでは行えないなどの問題があった。
 本発明は、以上の点を考慮してなされたものであり、解析対象波形とその解析結果との関係を、少ない操作でかつ分かり易くユーザに提示できる、心電波形表示方法及び心電図解析装置を提供する。
 本発明の心電波形表示方法の一つの態様は、
 心電図解析装置に用いられる心電波形表示方法であって、
 解析対象の心電波形を解析対象波形画面に表示する解析対象波形画面表示ステップと、
 ユーザ操作に応じて、前記解析対象の心電波形に関する解析結果を前記解析対象波形画面と同時に表示する解析結果表示ステップと、
 を含む。
 本発明の心電図解析装置の一つの態様は、
 表示部と、表示制御部と、ユーザ操作部と、心電波形を解析することで解析結果を得る演算部と、を有し、
 前記表示制御部は、前記ユーザ操作部へのユーザ操作に応じて、前記心電波形に関する解析結果を、対応する心電波形が表示された画面と同時に表示する。
 本発明によれば、解析対象の心電波形に関する解析結果を解析対象波形画面と同時に表示するようにしたので、画面を切り替える必要がなくなり、かつ、心電波形とその解析結果を同時に見ることができるようになる。この結果、解析対象の心電波形とその解析結果との関係を、少ない操作でかつ分かり易くユーザに提示できるようになる。
実施の形態の心電計の外観構成を示す斜視図 心電計の要部構成を示すブロック図 12誘導検査の初期画面を示す図 心電波形の収集時の画面を示す図 候補一覧画面を示す図 解析結果画面を示す図 画面切り替えを行うためのウィンドウがポップアップ表示された画面を示す図 記録波形画面を示す図 各候補内に6チャネル×2の12誘導心電図と1チャネルのリズム波形が表示された候補一覧画面を示す図 各候補領域内に6チャネル×2の12誘導心電図が表示された候補一覧画面を示す図 各候補領域内に6チャネルの12誘導心電図と1チャネルのリズム波形が表示された候補一覧画面を示す図 各候補領域内に12チャネルの12誘導心電図が表示された候補一覧画面を示す図 ノイズ区間を除外した候補区間を抽出する方法の説明に供する図 不整脈波形が含まれる候補区間を抽出する方法の説明に供する図 波形データ不足や候補区間の重複があった場合に、候補区間をシフトさせる例を示す図 不整脈が生じている箇所が抽出しようとする候補区間の数よりも少ない場合の候補区間の抽出方法の説明に供する図 抽出しようとする候補区間に対して収集波形データが不足している場合における候補区間の抽出方法の説明に供する図 抽出しようとする候補区間に対して収集波形データが不足している場合における候補区間の抽出方法の説明に供する図 解析結果を表示する簡易ウィンドウが表示された画面を示す図 解析結果を表示する簡易ウィンドウが表示された画面を示す図 心電波形を一括移動させる場合の各区間の心電波形の抽出位置の例を示す図 心電波形の一括移動の説明に供する図 心電波形の一括移動の説明に供する図 心電波形の一括移動の説明に供する図 心電波形の一括移動の説明に供する図
 以下、本発明の実施の形態を、図面を参照して説明する。
 <1>全体構成
 図1は、本実施の形態の心電計の外観構成を示す斜視図である。心電計100は、本体部110と、表示部120と、から構成されている。本体部110には、入力キー104やプリンタ部105が設けられている。表示部120にはタッチパネル121が設けられている。
 本実施の形態の場合、タッチパネル121のサイズは、15インチとなっている。15インチのサイズは、概ねA4の用紙サイズに相当する。これにより、本実施の形態の心電計100では、A4サイズの用紙に記録したのと同様のレイアウト及び大きさの心電波形を、タッチパネル121上で見ることができるようになる。
 図2は、心電計100の要部構成を示すブロック図である。本体部110は、演算部101、測定部102、記憶部103、入力キー104、プリンタ部105及び表示/印刷制御部106を有する。
 演算部101は、CPU(Central Processing Unit)などにより構成されており、心電図データ処理プログラムを実行することにより、心電波形の形成、及び、心電波形の解析などを行う。また、演算部101は、心電図データ処理プログラムの実行開始、実行停止及び実行条件(閾値など)設定、測定部102などの各種計測機器制御、タッチパネル121やプリンタ部105などの各種周辺機器制御を、入力コマンドに従って行う。
 測定部102は、被検者(つまり、心電図計測の対象者)に装着される電極部に接続されており、電極部から入力される測定電圧に対して増幅処理などを施し、処理後の測定電圧を演算部101に出力する。因みに、測定部102には、通常、四肢用電極部及び胸部用電極部が接続されており、12誘導心電図を得るために必要な電圧が入力される。
 記憶部103は、ハードディスクドライブや半導体メモリなどにより構成される。記憶部103は、演算部101により得られた心電波形のデータ及びその解析データを記憶する。また、記憶部103は、測定部102から出力される測定データも記憶しておく。
 さらに、記憶部103には、タッチパネル121又は入力キー104からユーザによって入力された、心電計100の設定データも記憶される。心電計100は、記憶部103に記憶された設定データに基づいて動作する。
 タッチパネル121には、メニュー画面や各種の設定画面が表示され、ユーザは、タッチパネル121をタッチ操作することで、メニューの選択や各種の設定を行うことができる。また、タッチパネル121には、演算部101により得られた心電波形及び解析結果などが表示される。
 プリンタ部105は、レーザ式やサーマルヘッド式などのプリンタであり、演算部101により得られた心電波形及び解析結果などを、ユーザによる指示に従って印刷する。
 表示/印刷制御部106は、タッチパネル121の画面に表示する、及び、プリンタ部105で記録用紙に印刷する、心電波形のレイアウトなどを制御する。本実施の形態における心電波形及び解析結果の表示制御は、主に、表示/印刷制御部106によって行われる。
 <2>検査の流れと、検査時の画面表示
 次に、本実施の形態の心電計100を用いた場合の心電図解析検査と、心電計100における画面表示について説明する。なお、本実施の形態では、心電図解析検査として、標準12誘導検査を行う場合について説明するが、本発明は標準12誘導検査以外の心電図解析検査に用いることもできる。
 心電図解析検査が開始されると、先ず、タッチパネル121には図3に示すような12誘導検査の初期画面が表示される。この状態で被検者に電極が装着されると、心電波形の収集が開始され、タッチパネル121には図4に示すような心電波形が表示される。ここで、心電波形の収集時間は、例えば30秒~10分(1秒刻み)で設定可能となっている。この収集時間が収集完了までの待ち時間となり、収集時間を長く設定すれば、多くの心電波形データを収集できるので検査精度の向上を期待できる一方で、待ち時間も長くなるので、ユーザはこれらを加味しつつ収集時間を設定することになる。
 本実施の形態の心電計100は、波形の収集が完了すると、自動的に候補波形の抽出を行い、その波形に対して解析を行うとともに候補波形を表示する。具体的には、収集された波形は記憶部103に記憶されているので、演算部101がその収集波形の中から解析を行うのに適した複数の候補区間の波形を抽出し、抽出した複数の候補区間の波形を解析する。また、抽出された複数の候補区間の波形はタッチパネル121に表示される。
 本実施の形態において、候補区間とは解析単位区間のことを意味する。本実施の形態では、この解析単位区間を単位としてユーザが種々の選択を行うことができるようになっているので、候補区間と呼んでいる。なお、この演算部101による複数の候補区間の波形抽出処理については、後で詳しく説明する。
 図5は、タッチパネル121に表示される候補一覧画面の例を示す。図5の例では、波形表示領域を4分割して、第1~第4候補の4つの候補区間が表示されている。具体的には、第1候補は左上に、第2候補は右上に、第3候補は左下に、第4候補は右下に表示されている。
 本実施の形態では、1画面中に複数の候補区間の心電波形を表示するようにしたので、ユーザは、複数の候補区間を1画面内で比較して、複数の候補区間の中から収録すべき区間の心電波形を容易に選択できるようになる。
 本実施の形態では、第1候補から第4候補への候補区間波形の並び順は、解析所見において重症度が高い順とされている。これにより、ユーザは重症度が高い波形から順に見ることができるようになる。因みに、重症度が同程度の場合には、時系列で早いもの順に並べる。ただし、並び順はこれに限らず、例えば重症度に拘わらず時系列で早いもの順に並べてもよい。
 この候補一覧画面においては、候補区間波形の1つが選択枠W1で囲まれている。選択枠W1の表示位置は、ユーザが第1~第4候補の候補区間波形が表示されている表示領域のいずれか1つの表示領域を指でタッチすることにより選択できる。図5の例では、第1候補の波形表示領域が選択枠W1で囲まれているが、例えば第2候補の波形表示領域がタッチされると、第2候補の波形表示領域が選択枠W1で囲まれる。
 なお、実施の形態における説明では、表示画面上での選択を行う場合に、指でのタッチによって選択することとするが、勿論、タッチに代えてタッチ位置にポインタを移動してマウスをクリックしても同様の選択を行うことができる。
 図5の候補一覧画面において、ユーザが解析結果ボタンB1をタッチすると、選択枠W1で囲まれた波形の解析結果画面が表示される。図6は、遷移先の解析結果画面の例を示す。解析結果画面には、所見A1、所見解説A2、計測値A3などが含まれる。図6の解析結果画面において、ユーザが「候補波形へ」のボタンB2をタッチすると、タッチパネルには図5の候補一覧画面が再び表示される。これにより、ユーザは図5の画面において候補波形の選び直しができる。
 ユーザが図6の解析結果画面において「画面」のボタンB3をタッチすると、図7に示すように、画面切り替えを行うためのウィンドウW2がポップアップ表示された画面が表示される。さらに、ユーザがウィンドウW2の「記録波形」のボタンB4をタッチすると、図8に示したように、記録波形画面が表示される。この記録波形画面は、図5の選択枠W1で囲まれた波形を元の収録サイズに戻した波形を表示する画面である。
 また、図6の解析結果画面において「保存」のボタンB5がタッチされると、心電計100は、現在選択されている候補区間の解析結果及び波形データを記憶部103に保存する処理に移る。また、「サーマル」のボタンB6がタッチされると、心電計100は、現在選択されている候補区間の解析結果をプリンタ部105によって印刷する処理に移る。
 現在の検査を終了したい場合には、ユーザが例えば図6の解析結果画面における「検査へ」のボタンB7をタッチ、あるいは、図5の候補一覧画面における「戻る」のボタンB8をタッチすればよい。このような操作を行うと、タッチパネルには図3に示した初期画面が表示される。
 <3>候補一覧画面の表示形式変更
 本実施の形態では、候補一覧画面における心電波形の表示形式を変更できるようになっている。具体的には、ユーザが図5に示した候補一覧画面の「画面選択」のボタンB10をタッチする回数に応じて、候補一覧画面が図9A-図9Dに示すように順に変更される。
 図9Aの候補一覧画面では、各候補領域(つまり選択枠W1で囲まれ得る1つの領域)内に6チャネル×2の12誘導心電図と1チャネルのリズム波形が表示されている。より詳細には、図9Aの候補一覧画面では、各候補領域において、コンティニュアス方式又はコヒーレント方式で心電波形が表示される。コンティニュアス方式又はコヒーレント方式の心電波形では、12誘導心電波形のうち、四肢誘導波形I、II、III、aVR、aVL、aVFが左側に配置され、胸部誘導波形V1、V2、V3、V4、V5、V6が右側に配置される。コンティニュアス方式では、10秒間の心電波形のうち、前半の0~5秒の四肢誘導波形を左側に表示し、続く後半の5~10秒の胸部誘導波形を右側に表示するようになっている。一方、コヒーレント方式では、10秒間の波形のうち、前半の0~5秒の四肢誘導波形を左側に表示し、前半の0~5秒の胸部誘導波形を右側に表示するようになっている。このコンティニュアス方式及びコヒーレント方式は、限られた大きさの1画面の中に、できるだけ波形の振幅を縮めずに、ユーザが診断し易いよう、12誘導波形を一括して表示可能に心電波形を配置したものであり、従来から広く用いられている表示方式である。
 図9Bの候補一覧画面では、各候補領域内に6チャネル×2の12誘導心電図がコンティニュアス方式又はコヒーレント方式で表示されている。図9Aとの違いは、リズム波形が表示されていない点である。
 図9Cの候補一覧画面では、各候補領域内に6チャネルの12誘導心電図と1チャネルのリズム波形が表示されている。より詳細には、図9Cの候補一覧画面では、各候補領域において、12誘導心電波形のうち、四肢誘導波形I、II、III、aVR、aVL、aVFを、コンティニュアス方式(又はコヒーレント方式)で削減した一部の区間の波形を削減せずに、つまり、所定期間内(例えば10秒間)の全波形を表示するようになっている。
 図9Dの候補一覧画面では、各候補領域内に12チャネルの12誘導心電図が表示されている。より詳細には、図9Dの候補一覧画面では、各候補領域において、12誘導心電波形のうち、四肢誘導波形I、II、III、aVR、aVL、aVF及び胸部誘導波形V1、V2、V3、V4、V5、V6を感度(波形振幅)方向を縮小して全て縦に並べて、コンティニュアス方式(又はコヒーレント方式)で削減した一部の区間の波形を削減せずに、つまり、所定期間内(例えば10秒間)の全波形を表示するようになっている。
 <4>収集波形からの候補区間の抽出
 次に、記憶部103に一時的に保存された収集波形から、候補区間の波形を抽出する本実施の形態の抽出方法について説明する。ここでは、収集時間が60秒であり、1つの候補区間が10秒であり、4つの候補区間を抽出する例について説明する。なお、上述したように収集時間は例えば30秒~10分(1秒刻み)で設定可能であり、候補区間の区間長も例えば8~24秒で設定可能であり、一覧表示及び解析を行う候補区間の数も4に限らない。
 本実施の形態では、抽出の方法として、ノイズ区間を除外して抽出する方法と、不整脈波形を含めて抽出する方法を提示する。ここで、演算部101は、収集された心電波形から複数の候補区間の心電波形を抽出する候補波形抽出部として機能する。
 <4-1>ノイズ区間を除外して抽出する方法
 図10は、候補区間の心電波形を、ノイズ区間を除外して抽出する方法の説明に供する図である。図の最上段の波形は記憶部103に一時的に保存されている60秒間の収集波形を示す。2段目は収集波形を先頭から10秒毎に区切って4つの候補区間を形成した様子を示す図であり、3段目は本実施の形態によるノイズ区間を除外して候補区間を抽出した様子を示す図である。
 2段目に示したように先頭から10秒毎に区切って4つの候補区間を形成した例では、2番目、3番目、4番目の候補区間にはノイズが含まれている。この結果、2番目、3番目、4番目の候補区間の心電波形を解析すると、その解析結果はノイズによる影響を大きく受けるので、心電波形が正しく反映された解析結果を得ることができなくなる。
 そこで、本実施の形態では、ノイズ区間を除外して候補区間を抽出することで、全ての候補区間について、ノイズの影響が小さく、心電波形が正しく反映された解析結果を得ることができるようになっている。具体的には、演算部101が記憶部103に保存されている収集波形の中で、想定される心電波形に対して極端な高周波波形が現れている区間(例えば交流、筋電、ドリフトが発生している区間)、或いは、極端な低周波波形が現れている区間(例えば電極外れや接触不良によるノイズが発生している区間)をノイズ区間として検出し、このノイズ区間を除外して候補区間の心電波形を抽出する。なお、ノイズ検出方法はこれに限らず、要は想定される人の心電波形とは異なる波形をノイズとして検出すればよい。
 図10の例では、演算部101によって、網掛けで示した候補1~4の4つの候補区間の心電波形が、候補一覧画面(図5)に表示される心電波形として、及び、解析対象の心電波形として、抽出される。
 <4-2>不整脈波形を含めて抽出する方法
 図11は、不整脈波形が含まれる候補区間を抽出する方法の説明に供する図である。図11に示すように、演算部101は不整脈が発生している位置を検出し、その位置を中心にして、網掛けで示した候補1~4の4つの候補区間の心電波形を、候補一覧画面(図5)に表示される心電波形として、及び、解析対象の心電波形として、抽出する。このように、不整脈波形が含まれる候補区間を表示及び解析する候補区間として抽出することにより、心電図検査に適した表示及び解析を行うことができるようになる。
 ここで、不整脈波形は候補区間の中心に配置されることが好ましい。何故なら、不整脈波形の前後の波形があると、不整脈波形の前後の波形を見ながら、不整脈が突然発生したのか、或いは、予兆があったのかも確認することができるためである。
 なお、図12に示すように、不整脈位置を中心に候補区間を抽出しようとした際に、波形データが足りない場合(候補1と候補4)は候補区間の位置を波形データが存在する方向にシフトさせ、候補区間が重なる場合(候補2と候補3)にはいずれかの候補区間の位置を重ならない方向にシフトさせた抽出を行うようにすればよい。
 また、図13に示すように、不整脈が生じている箇所が抽出しようとする候補区間の数よりも少ない場合には、不整脈を含む候補区間(図の場合は候補2)を中心にして、その時間的に前後に隣接する区間を候補区間(図の場合は候補1と候補3)として抽出してもよい。さらに、このように抽出した候補1~3の3つのみを表示してもよいが、候補4として、例えば不整脈が生じていない0~10秒の区間の心電波形を抽出してこれを加えて表示してもよい。
 <4-3>収集波形データが不足している場合
 抽出しようとする候補区間に対して、収集波形データが不足している場合には、候補区間が重複するように候補区間を抽出してもよい。図14及び図15にその例を示す。図14及び図15の例では、抽出しようとする候補区間の合計時間が10秒×4=40秒なのに対して、収集波形の長さは35秒なので、収集波形データが不足している。
 そこで、図14の例では、候補4を候補3と重複するようにして抽出する。図15の例では、全ての候補1~4の一部が均等な長さだけ重複するように候補1~4を抽出する。なお、重複を許容しない場合は、候補1~3の3つのみを抽出してもよい。
 <4-4>抽出の優先度
 実際上、設定により決められた長さの収集波形から、決められた数の候補区間を抽出するにあたっては、様々な状況が想定される。例えば収集波形の中に不整脈波形が候補区間の数よりも多い場合などが想定される。そこで、ここでは候補区間を抽出する際の優先度について説明する。
 本実施の形態では、例えば、(i)ノイズの除外、(ii)重複禁止、(iii)不整脈を中心にした抽出、の順の優先度で候補区間の抽出を行う。つまり、ノイズがあると正しい解析結果を得ることができないのでノイズ除外を最優先する。また、不整脈を中心に抽出を行った際に重複が生じた場合には、不整脈を中心にした抽出よりも重複禁止を優先する。図12の例がこれに相当する。
 また、収集波形に候補区間の数に、抽出しようとする候補区間の数よりも多くの不整脈が存在した場合には、重症度のより高い不整脈を含む区間から順に抽出するとよい。例えば抽出しようとする候補区間の数が4個なのに対して、収集波形の中に6個の不整脈が含まれ、6個の不整脈が重症度(高)2個、重症度(中)2個、重症度(低)2個からなる場合には、重症度の高い4個、つまり重症度(高)2個、重症度(中)2個の不整脈を含む候補区間を優先的に抽出するとよい。さらに重症度(高)2個の不整脈が同じ種類である場合、重症度以外の優先度によりどちらか1つを候補区間とし、重症度(中)2個、重症度(低)1個を加えた4個の候補区間を抽出してもよい。
 勿論、どのパラメータを優先するのが好ましいかは、医療現場等に応じて異なる可能性もあるので、優先度を設定可能とするようにしてもよい。
 上述したように、本実施の形態の心電計100では、図5の候補一覧画面において、ユーザが解析結果ボタンB1をタッチすると、選択枠W1で囲まれた波形の解析結果画面が表示される。
 これに加えて、本実施の形態の心電計100では、心電波形を画面表示した状態で、その心電波形を表示している画面と同一画面に、表示している心電波形に関する解析結果を表示できるようになっている。
 図16及び図17は、その表示例を示すものである。図16に示すように、ユーザが第1候補の表示領域を指で長押しすると(つまり所定時間以上タッチし続けると)、第1候補の表示領域が選択枠W1で囲まれるとともに、簡易ウィンドウW10が表示され、この簡易ウィンドウW10内に第1候補の区間波形に関する解析結果が表示される。簡易ウィンドウW10に表示される解析結果は第1候補の区間波形に関する解析所見である。なお、簡易ウィンドウW10に表示されるのは、計測値や代表波形等のその他の解析結果であってもよい。タッチパネルから指を離すと、簡易ウィンドウW10は閉じられる。
 簡易ウィンドウW10に表示される解析結果は重症度順となっている。従って、解析結果の量が多い場合には、重症度の高い上位の解析結果のみが簡易ウィンドウW10内に表示される。なお、簡易ウィンドウW10内にどの解析結果を表示するかを、ユーザが設定できるようにしてもよい。
 ここで、簡易ウィンドウW10は半透明であることが好ましい。このようにすることで、選択枠W1で囲まれた領域内に簡易ウィンドウW10を表示しても、簡易ウィンドウW10の位置の心電波形を透かせて見せることができる。また、簡易ウィンドウW10は、必ずしも選択枠W1内に表示する必要はない。
 また、簡易ウィンドウW10を表示させるための方法は、タッチパネル121を長押しする場合に限らず、例えば第1~第4候補のいずれかの表示領域内にポインタを移動しその位置でマウスのボタンをクリック或いはダブルクリックすることで簡易ウィンドウW10を表示するようにしてもよい。この場合、簡易ウィンドウW10を閉じる操作もマウスによって行うようにすればよい。
 実施の形態のように、指によるタッチパネル121の長押しによって簡易ウィンドウW10を開き、タッチパネル121から指を離すと簡易ウィンドウW10を閉じるようにすると、1アクションでウィンドウの表示及び非表示が可能となるので、複数の候補区間の解析結果を迅速に見ていくことができるといった利点がある。
 同様に、図17に示すように、ユーザが第2候補の表示領域を指で長押しすると、第2候補の表示領域が選択枠W1で囲まれるとともに、簡易ウィンドウW10が表示され、この簡易ウィンドウW10内に第2候補の区間波形に関する解析結果が表示される。第3候補及び第4候補についても、同様の操作によって簡易ウィンドウW10内に簡易解析結果を表示することができる。
 このように、本実施の形態においては、心電波形と同一画面上に、その心電波形に関する解析結果が表示される簡易ウィンドウW10を表示したことにより、画面を切り替えなくても解析結果を確認できるようになる。この結果、少ない手順で検査結果を確認できるとともに、同一画面上で心電波形とその解析結果とを比較できるようになる。
 また、複数の候補区間の心電波形を一画面に表示するとともに、各候補区間の心電波形に対する解析結果を複数の候補区間の心電波形が表示された画面と同一画面に選択的に表示できるようにしたことにより、複数の収録波形を一画面に表示した状態で、収録波形同士の比較を行いながら、解析所見の確認も行えるようになるので、より少ない手順で検査結果を確認することができるようになる。
 なお、本実施の形態では、同一画面に表示された複数の候補区間の心電波形のうち、ユーザによって選択された1つの候補区間の心電波形に関する解析結果のみを同一画面に表示する場合について述べたが、ユーザによって選択された2つ以上の候補区間の心電波形に関する解析結果を同一画面に表示するようにしてもよい。
 <5>心電波形の一括移動
 上述したように、候補一覧画面に表示される複数の候補区間の心電波形は、演算部101によって抽出される。この候補区間の心電波形は、上述したように、演算部101によって解析を行うのに適切であると判断された区間の波形である。
 本実施の形態では、このような解析を行うのに適切な候補区間を設定するモード以外に、心電波形の波形確認や波形比較を行うのに好適な区間を抽出する波形一括移動モードを有する。心電波形抽出部としての演算部101は、ユーザ操作により、波形一括移動モードに設定されると、例えば図18に示すような候補1~4を抽出する。図18の例では、記憶部103に10分の長さの心電波形が収集されており、この心電波形からそれぞれ10秒の区間長の候補1~候補4を抽出する。ここで、各候補1~4の間の間隔は等しくされており、図18の例では2.5分となっている。つまり、候補1は0秒から10秒までの心電波形であり、候補2は2分30秒から2分40秒までの心電波形であり、候補3は5分から5分10秒までの心電波形であり、候補4は7分30秒から7分40秒までの心電波形である。厳密に言うと、複数区間の隣り合う区間の先頭は、収集された心電波形の時間長(図の例の場合は10分)を区間数(図の例の場合は4)で除した時間(図の例の場合は2.5分)だけ離れている。
 図19Aは、図18の候補1~4の心電波形をタッチパネル121に表示した状態を示す。図19Aに示す状態から図19A→図19B→図19C→図19Dのように、スクロールバーS1を右方向に移動操作すると、第1~第4候補の心電波形の全てがスクロールバーS1の移動量に応じて右方向に移動する。具体的には、演算部101又は表示/印刷制御部106が第1~第4候補の心電波形の抽出位置をスクロールバーS1の移動に応じて、図18の矢印で示す方向にシフトさせる。勿論、スクロールバーS1が左方向に移動されると、第1~第4候補の心電波形の全てがスクロールバーS1の移動量に応じて左方向に移動する。
 このように、本実施の形態では、収集された心電波形から複数区間(候補1~4)の心電波形を抽出し、抽出した複数区間の心電波形を1画面中に表示し、複数区間の心電波形の抽出位置をユーザ操作に応じた量だけ時間方向に等しくシフトしたことにより、ユーザ操作に応じて、各候補区間の心電波形を一括して時間方向に等しく移動させることができるようになっている。
 これにより、各区間の心電波形をそれぞれ単独で移動させる場合と比較して、操作に対する実質的な時間方向への移動量を拡大し得、操作に対してユーザが見ることが可能な心電波形を増加させることができる。例えば、図19A~図19Dの例では、4つの心電波形を一括して時間方向に移動させるので、各候補の心電波形をそれぞれ単独で移動させる場合と比較して、操作に対する心電波形の時間方向への移動量を4倍とすることができる。
 特に収集時間長が長い場合に効果的である。つまり、収集時間長が長いと、収集した全ての心電波形を目視確認する場合に時間がかかる。このような場合、本実施の形態のように、一画面に複数区間の心電波形を表示し、さらにそれを1つの操作に応じて一括して時間方向に移動させるようにすれば、収集した全ての心電波形を確認するのに要する時間を短くできる。
 また、本実施の形態では、例えば10分のように長時間に亘って収集された心電波形においても、収集の開始付近の心電波形と、収集の終了付近の心電波形といったように、離れた時間の心電波形でも同一画面に表示することができ、これらを比較しながら心電波形を確認できるようになる。この結果、ストレステストのときのように収集された心電波形が長時間に及ぶ場合でも、開始付近と終了付近の心電波形を比較しながら、心電波形を確認できるようになる。
 さらに、本実施の形態の処理は、本質的には、抽出した複数区間の心電波形を1画面中に表示するにあたって、複数区間の心電波形の抽出位置を、ユーザ操作に応じた量だけ、時間方向に等しくシフトすることである。このような処理は、実施の形態のような長時間の心電波形の波形確認及び波形比較以外にも有効である。
 例えば、収集された複数区間としてそれぞれ同じ種類の不整脈波形を含む区間を抽出し、それらを不整脈の中心が上下に一致するように画面の縦方向に並べて表示すれば、時間的に異なる複数の同じ種類の不整脈波形が縦方向に表示され、それらがユーザ操作に応じて一括して時間方向に等しく移動表示されることになる。これにより、ユーザは画面上で複数の不整脈の変化の様子を比較しながら見ることができるようになる。
 このように本実施の形態の心電波形の一括移動処理は、異なる時点の心電波形の時間方向での変化の様子を、互いに比較しながら確認する場合に広く有効である。
 <6>まとめ
 以上説明したように、本実施の形態によれば、心電波形と同時に、その心電波形に関する解析結果が表示される簡易ウィンドウW10を表示したことにより、画面を切り替えなくても解析結果を確認できるようになり、この結果、少ない手順で検査結果を確認できるとともに、同一画面上で同時に心電波形とその解析結果とを比較できるようになる。
 また、複数の候補区間(解析単位区間)の心電波形を1画面に表示するとともに、各候補区間の心電波形に対する解析結果を選択的に複数の候補区間の心電波形が表示された画面と同一画面に表示できるようにしたことにより、複数の解析単位区間波形を1画面に表示した状態で解析区間波形同士の比較を行いながら、解析所見の確認も行えるようになるので、より少ない手順で検査結果を確認することができるようになる。
 上述の実施の形態は、本発明を実施するにあたっての具体化の一例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその要旨、またはその主要な特徴から逸脱することの無い範囲で、様々な形で実施することができる。
 例えば上述の実施の形態では、本発明による心電図解析装置及び心電波形表示方法を、心電計100により実行した場合について述べたが、本発明による心電図解析装置及び心電波形表示方法は演算部及び表示部を有する心電計以外の他のデバイスにより実行することもできる。
 また、本発明による心電図解析装置及び心電波形表示方法の各処理は、演算部及び表示部を有するデバイスがプログラムを実行することによっても実現することが可能である。例えば、本発明による心電図解析装置及び心電波形表示方法の各処理を実現するためのプログラムを、メモリ、ディスク、テープ、CD、DVD等のコンピュータが読み取り可能な記録媒体に記録しておき、演算部及び表示部を有するデバイスのコンピュータがこのプログラムを読み出すことにより、上述の実施の形態の各処理を実行するようにしてもよい。
 2016年11月30日出願の特願2016-233323の日本出願に含まれる明細書、図面及び要約書の開示内容は、すべて本願に援用される。
 本発明は、例えば心電図を自動解析する機能を有する心電計に適用し得る。
 100 心電計
 101 演算部
 102 測定部
 103 記憶部
 104 入力キー
 105 プリンタ部
 106 表示/印刷制御部
 110 本体部
 120 表示部
 121 タッチパネル
 A1 所見
 A2 所見解説
 A3 計測値
 W1 選択枠
 W10 簡易ウィンドウ
 

Claims (10)

  1.  心電図解析装置に用いられる心電波形表示方法であって、
     解析対象の心電波形を解析対象波形画面に表示する解析対象波形画面表示ステップと、
     ユーザ操作に応じて、前記解析対象の心電波形に関する解析結果を前記解析対象波形画面と同時に表示する解析結果表示ステップと、
     を含む心電波形表示方法。
  2.  収集された心電波形から複数の解析単位区間の心電波形を抽出する解析単位区間抽出ステップを、さらに含み、
     前記解析対象波形画面表示ステップでは、前記解析単位区間抽出ステップで抽出した複数の解析単位区間の心電波形を1画面中に表示し、
     前記解析結果表示ステップでは、前記1画面中に表示された複数の解析単位区間の心電波形のうち、ユーザによって選択された解析単位区間の心電波形に関する解析結果を前記1画面と同時に表示する、
     請求項1に記載の心電波形表示方法。
  3.  前記解析結果表示ステップでは、前記解析結果を半透明のウィンドウ内に表示する、
     請求項1に記載の心電波形表示方法。
  4.  前記解析結果表示ステップでは、前記解析結果を重症度の高いものから順に表示する、
     請求項1に記載の心電波形表示方法。
  5.  前記解析結果表示ステップでは、2つ以上の解析単位区間に関する2つ以上の解析結果を同時に表示する、
     請求項2に記載の心電波形表示方法。
  6.  前記解析結果表示ステップでは、ユーザが画面を長押ししているときに、前記解析結果を表示する、
     請求項1に記載の心電波形表示方法。
  7.  前記解析単位区間抽出ステップで抽出され、前記解析対象波形画面表示ステップで1画面中に表示される前記複数の解析単位区間は、ノイズ区間が除外されたもの、及び又は、不整脈波形を含むものである、
     請求項2に記載の心電波形表示方法。
  8.  表示部と、表示制御部と、ユーザ操作部と、心電波形を解析することで解析結果を得る演算部と、を有し、
     前記表示制御部は、前記ユーザ操作部へのユーザ操作に応じて、前記心電波形に関する解析結果を、対応する心電波形が表示された画面と同時に表示する、
     心電図解析装置。
  9.  収集された心電波形から複数の解析単位区間の心電波形を抽出する解析単位波形抽出部を、さらに有し、
     前記表示制御部は、前記解析単位波形抽出部で抽出された複数の解析単位区間の心電波形を1画面中に表示するとともに、前記1画面中に表示した複数の解析単位区間の心電波形のうち、ユーザによって選択された解析単位区間の心電波形に関する解析結果を前記1画面と同時に表示する、
     請求項8に記載の心電図解析装置。
  10.  心電図解析装置に用いられる心電波形表示プログラムを格納し、コンピュータにより読み取り可能な記録媒体であって、
     前記心電波形表示プログラムは、解析対象の心電波形を解析対象波形画面に表示する解析対象波形画面表示ステップと、ユーザ操作に応じて、前記解析対象の心電波形に関する解析結果を前記解析対象波形画面と同時に表示する解析結果表示ステップと、を含む、
     記録媒体。
     
     
PCT/JP2017/043078 2016-11-30 2017-11-30 心電波形表示方法及び心電図解析装置 WO2018101412A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018554248A JP7229771B2 (ja) 2016-11-30 2017-11-30 心電波形表示方法及び心電図解析装置
EP17876282.9A EP3549520A4 (en) 2016-11-30 2017-11-30 METHOD FOR DISPLAYING AN ELECTROCARDIOGRAPHIC CURVE AND APPARATUS FOR ANALYZING AN ELECTROCARDIOGRAM
RU2019113451A RU2748820C2 (ru) 2016-11-30 2017-11-30 Способ отображения электрокардиографического волнового сигнала и устройство для анализа электрокардиограмм
US16/465,190 US11058343B2 (en) 2016-11-30 2017-11-30 Electrocardiographic waveform display method and electrocardiogram analysis device
CN201780073650.0A CN110022764B (zh) 2016-11-30 2017-11-30 心电波形显示方法及心电图分析装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-233323 2016-11-30
JP2016233323 2016-11-30

Publications (1)

Publication Number Publication Date
WO2018101412A1 true WO2018101412A1 (ja) 2018-06-07

Family

ID=62241810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/043078 WO2018101412A1 (ja) 2016-11-30 2017-11-30 心電波形表示方法及び心電図解析装置

Country Status (6)

Country Link
US (1) US11058343B2 (ja)
EP (1) EP3549520A4 (ja)
JP (1) JP7229771B2 (ja)
CN (1) CN110022764B (ja)
RU (1) RU2748820C2 (ja)
WO (1) WO2018101412A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021023426A (ja) * 2019-07-31 2021-02-22 フクダ電子株式会社 心電図検査装置、及び、心電図検査装置の作動方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3549520A4 (en) * 2016-11-30 2020-04-22 Fukuda Denshi Co., Ltd. METHOD FOR DISPLAYING AN ELECTROCARDIOGRAPHIC CURVE AND APPARATUS FOR ANALYZING AN ELECTROCARDIOGRAM
CN110432895B (zh) * 2019-08-09 2022-02-11 上海鹰瞳医疗科技有限公司 训练数据处理、心电波形检测方法及电子设备
CN113160943B (zh) * 2020-01-20 2023-11-14 深圳市理邦精密仪器股份有限公司 一种心电波形的显示方法、心电图机及计算机存储介质
US11523766B2 (en) * 2020-06-25 2022-12-13 Spacelabs Healthcare L.L.C. Systems and methods of analyzing and displaying ambulatory ECG data
JP1758846S (ja) * 2021-10-06 2023-12-05 心電図測定表示用画像
USD1024114S1 (en) * 2022-02-11 2024-04-23 Vuno Inc. Display panel with graphical user interface

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11216119A (ja) * 1998-02-04 1999-08-10 Nec Corp 生体情報編集装置及び編集方法並びに編集プログラムを記録した記録媒体
JP2006116207A (ja) 2004-10-25 2006-05-11 Fukuda Denshi Co Ltd 心電図の分類装置
JP2007020799A (ja) * 2005-07-14 2007-02-01 Fukuda Denshi Co Ltd 心電図の解析レポート及び解析装置
JP2007190227A (ja) * 2006-01-19 2007-08-02 Fukuda Denshi Co Ltd 心電図解析結果レポート及び心電図解析装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5215099A (en) * 1989-06-30 1993-06-01 Ralph Haberl System and method for predicting cardiac arrhythmia utilizing frequency informatiton derived from multiple segments of the late QRS and the ST portion
JP3047849B2 (ja) * 1997-03-28 2000-06-05 日本電気株式会社 心電図解析結果の確認および修正処理方法とそのための心電情報処理装置
EP1552786A4 (en) * 2002-10-15 2009-06-24 Dainippon Sumitomo Pharma Co PROCESSING UNIT FOR DISPLAYING GRAPHICS AND ASSOCIATED METHOD
CN101233519A (zh) * 2005-07-26 2008-07-30 皇家飞利浦电子股份有限公司 医学成像存档管理器的革命性系列控制
JP5413887B2 (ja) * 2009-03-31 2014-02-12 フクダ電子株式会社 心電図解析装置および心電図解析プログラム
EP2640457A1 (en) * 2010-11-18 2013-09-25 Cardiac Pacemakers, Inc. Guidewire and signal analyzer for pacing site optimization
CA2825195C (en) * 2011-01-18 2020-08-25 Airstrip Ip Holdings, Llc Systems and methods for viewing patient data
JP2013208420A (ja) * 2012-03-02 2013-10-10 Nippon Koden Corp 心電図解析レポート、心電図解析装置及び心電図解析プログラム
JP6050016B2 (ja) * 2012-03-30 2016-12-21 フクダ電子株式会社 心電図データ出力装置
JP2014033936A (ja) * 2012-08-10 2014-02-24 Fukuda Denshi Co Ltd 心電計
JP5677400B2 (ja) * 2012-11-08 2015-02-25 日本光電工業株式会社 生体情報表示装置、および生体情報表示システム
RU2546080C2 (ru) * 2012-12-25 2015-04-10 Пётр Павлович Кузнецов Способ визуализации функционального состояния индивида и система для реализации способа
US20150235394A1 (en) * 2014-02-19 2015-08-20 Mckesson Financial Holdings Method And Apparatus For Displaying One Or More Waveforms
US9646395B2 (en) * 2014-02-27 2017-05-09 Change Healthcare Llc Method and apparatus for comparing portions of a waveform
JP6345446B2 (ja) * 2014-03-10 2018-06-20 日本光電工業株式会社 生体情報解析装置
JP2016073373A (ja) * 2014-10-03 2016-05-12 日本光電工業株式会社 心電図表示装置
DE102016011700A1 (de) * 2016-09-28 2018-03-29 Personal Medsystems Gmbh Überwachung von Biosignalen, insbesondere Elektrokardiogrammen
JP6825628B2 (ja) * 2016-10-31 2021-02-03 日本電気株式会社 動線出力装置、動線出力方法及びプログラム
EP3549520A4 (en) * 2016-11-30 2020-04-22 Fukuda Denshi Co., Ltd. METHOD FOR DISPLAYING AN ELECTROCARDIOGRAPHIC CURVE AND APPARATUS FOR ANALYZING AN ELECTROCARDIOGRAM
EP3549521A4 (en) * 2016-11-30 2020-07-29 Fukuda Denshi Co., Ltd. ELECTROCARDIOGRAPHIC WAVEFORM DISPLAY METHOD AND ELECTROCARDIOGRAM MANALYSIS DEVICE

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11216119A (ja) * 1998-02-04 1999-08-10 Nec Corp 生体情報編集装置及び編集方法並びに編集プログラムを記録した記録媒体
JP2006116207A (ja) 2004-10-25 2006-05-11 Fukuda Denshi Co Ltd 心電図の分類装置
JP2007020799A (ja) * 2005-07-14 2007-02-01 Fukuda Denshi Co Ltd 心電図の解析レポート及び解析装置
JP2007190227A (ja) * 2006-01-19 2007-08-02 Fukuda Denshi Co Ltd 心電図解析結果レポート及び心電図解析装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3549520A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021023426A (ja) * 2019-07-31 2021-02-22 フクダ電子株式会社 心電図検査装置、及び、心電図検査装置の作動方法
JP7291566B2 (ja) 2019-07-31 2023-06-15 フクダ電子株式会社 心電図検査装置、及び、心電図検査装置の作動方法

Also Published As

Publication number Publication date
RU2748820C2 (ru) 2021-05-31
EP3549520A1 (en) 2019-10-09
EP3549520A4 (en) 2020-04-22
RU2019113451A (ru) 2021-01-11
US20200000357A1 (en) 2020-01-02
US11058343B2 (en) 2021-07-13
JPWO2018101412A1 (ja) 2019-10-24
CN110022764A (zh) 2019-07-16
RU2019113451A3 (ja) 2021-01-11
JP7229771B2 (ja) 2023-02-28
CN110022764B (zh) 2022-04-08

Similar Documents

Publication Publication Date Title
WO2018101412A1 (ja) 心電波形表示方法及び心電図解析装置
JP7018401B2 (ja) 心電波形表示方法及び心電図解析装置
JP6407871B2 (ja) Ecgを解釈するためのシステム及び該システムの作動方法
JP2020531225A (ja) 心電図の分析のためのユーザインターフェース
JP6077343B2 (ja) 心電図データ処理装置及びその制御方法
JP5425647B2 (ja) 心電図解析装置
JP2020151082A (ja) 情報処理装置、情報処理方法、プログラムおよび生体信号計測システム
JP6803733B2 (ja) 心電波形表示方法及び心電波形表示装置
JP6595045B2 (ja) 医療用検査装置
JP7038521B2 (ja) 生体情報測定装置、及び、生体情報測定装置における被検者取違い検出方法
JP6192267B2 (ja) 心電計及びその設定方法
US11523766B2 (en) Systems and methods of analyzing and displaying ambulatory ECG data
JP6813343B2 (ja) 画面表示方法及び検査装置
JP6080425B2 (ja) 心電波形出力方法及び心電計
JP6192268B2 (ja) 心電計及び心電波形の印刷方法
JP6444594B2 (ja) 医療用検査装置
JP7364386B2 (ja) 生理検査装置
JP7274969B2 (ja) 心電計、及び、心電計の作動方法
JP7291566B2 (ja) 心電図検査装置、及び、心電図検査装置の作動方法
JP2014033936A (ja) 心電計
KR20080088226A (ko) 심전도 판독을 위한 보조정보 제시방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17876282

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018554248

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019113451

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2017876282

Country of ref document: EP

Effective date: 20190701