WO2018101281A1 - Optical device - Google Patents

Optical device Download PDF

Info

Publication number
WO2018101281A1
WO2018101281A1 PCT/JP2017/042695 JP2017042695W WO2018101281A1 WO 2018101281 A1 WO2018101281 A1 WO 2018101281A1 JP 2017042695 W JP2017042695 W JP 2017042695W WO 2018101281 A1 WO2018101281 A1 WO 2018101281A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
incident
diffraction
optical
optical axis
Prior art date
Application number
PCT/JP2017/042695
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 福岡
室 清文
Original Assignee
スペクトラ・クエスト・ラボ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by スペクトラ・クエスト・ラボ株式会社 filed Critical スペクトラ・クエスト・ラボ株式会社
Priority to JP2018554168A priority Critical patent/JP6893039B2/en
Publication of WO2018101281A1 publication Critical patent/WO2018101281A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/18Generating the spectrum; Monochromators using diffraction elements, e.g. grating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers

Definitions

  • the present invention relates to an optical device. More specifically, the present invention relates to an optical device applicable to a wavelength tunable filter.
  • a wavelength tunable filter that selectively transmits a light flux in a specific wavelength band is used in the field of optical measurement or optical communication.
  • the performance of the wavelength tunable filter is as follows: the transmittance of the light beam of the transmitted wavelength, the shielding rate of the light beam of the shielded wavelength, the bandwidth of the transmission wavelength band, the variable width of the center wavelength of the transmission band, and the cut-on of the rise / fall of the transmittance / Expressed by off steepness etc.
  • the wavelength tunable filter is used between the preceding optical system and the subsequent optical system for the purpose of use, the position and angle of the optical axis incident on the system and the optical axis emitted from the system are determined by the transmission wavelength. It is required to be invariant to change.
  • Wavelength tunable filters are generally divided into a configuration using a diffraction / dispersion element for wavelength separation and a configuration using a dielectric multilayer filter.
  • the wavelength tunable filter using the dielectric multilayer filter changes the transmission wavelength band by changing the incident angle of the incident light beam to the dielectric band multilayer filter. This is done by rotating the dielectric band multilayer filter about an axis perpendicular to the incident surface (see, for example, Patent Document 1 below).
  • wavelength tunability using wavelength diffractive / dispersive elements for wavelength separation is achieved by selecting the exit optical axis.
  • the rotation is performed by rotating the wavelength separation element about an axis perpendicular to the incident surface, or by translational movement of a slit, an optical fiber, or the like on the exit optical axis (for example, Patent Document 2 and Patent Document 3 below). reference).
  • Patent Document 1 discloses a tunable filter having a generally high transmittance reflecting the characteristics of a dielectric band multilayer filter. However, it is difficult to change the variable width of the transmission wavelength band beyond 100 nm. Further, the steepness of the shielding rate and cut-on / off is only to be realized by the dielectric band multilayer filter.
  • the present invention provides a wavelength tunable filter that solves the above-described problems and has a high transmittance in a wide wavelength band, and in which an incident / exit optical axis does not change when the transmission wavelength band changes. Objective.
  • An optical device that solves the above problems includes a transmissive diffraction element, a reflective element, and a rotating mechanism that supports the transmissive diffraction element and the reflective element. And a function of rotating around the rotation axis of the rotation mechanism.
  • the arrangement is such that the line of intersection of the diffraction grating plane of the diffraction element and the reflection surface of the reflection element coincides with the rotation axis of the rotation mechanism. Preferably there is.
  • the diffraction grating plane of the diffraction element and the reflection surface of the reflection element form an angle of 90 degrees and are aligned with the rotation axis of the rotation mechanism. It is preferable.
  • An optical device includes a transmission diffraction element, a reflection element, and a rotation mechanism that supports the transmission diffraction element and the reflection element.
  • the transmission diffraction element and the reflection element rotate. It is preferable to have a function of rotating around the rotation axis of the mechanism, and to include a retroreflective optical element outside the rotating mechanism.
  • an optical device that has a high transmittance in a wide wavelength band, and whose incident / exit optical axis does not change when the wavelength changes.
  • FIG. 1 is a schematic diagram of a transmissive diffraction grating according to Embodiment 1.
  • FIG. 3 is a schematic view of the performance of a transmission diffraction grating according to Embodiment 1.
  • FIG. 3 is a schematic view of the performance of a transmission diffraction grating according to Embodiment 1.
  • 2 is a schematic diagram of an optical arrangement of a wavelength tunable filter according to Embodiment 1.
  • FIG. 2A and 2B are a schematic view and an overhead view of an optical arrangement of a wavelength tunable filter according to the first embodiment.
  • FIG. 1 is a diagram schematically illustrating an external resonant laser according to Example 1.
  • FIG. FIG. 4 is a device photograph of the principle verification experiment of the external resonance laser according to Example 1.
  • 1 is a photograph of a prototype machine of an external resonant laser according to Example 1.
  • FIG. 6 is a photograph of a bandpass filter according to Embodiment 2.
  • FIG. It is a figure which shows the wavelength selection result of the band pass filter which concerns on Example 2.
  • FIG. 4 is a device photograph of the principle verification experiment of the external resonance laser according to Example 1.
  • 1 is a photograph of a prototype machine of an external resonant laser according to Example 1.
  • FIG. It is a figure which shows the LD injection current value dependence of the laser beam intensity
  • FIG. 6 is a photograph of a bandpass filter according to Embodiment 2.
  • FIG. It is a figure which shows the wavelength selection result of the band pass filter which concerns on Example 2.
  • FIG. 6 is a block diagram of a wavelength tunable picosecond laser according to Example 3.
  • FIG. 6 shows an output of an EO intensity modulator of a wavelength tunable picosecond laser according to Example 3.
  • FIG. 6 is a schematic diagram of a conventional group velocity dispersion generating system according to Embodiment 3.
  • FIG. It is a figure which shows the wavelength dependence of the distance L between diffraction elements required for the chirped pulse compression which concerns on Example 3.
  • FIG. It is a figure which shows the time waveform before and behind the pulse compression of the wavelength variable picosecond laser which concerns on Example 3.
  • FIG. 6 is a block diagram of a wavelength tunable picosecond laser according to Example 3.
  • FIG. 6 shows an output of an EO intensity modulator of a wavelength tunable picosecond laser according to Example 3.
  • FIG. 6 is a schematic diagram of a conventional group velocity dispersion generating system according to Embodiment 3.
  • FIG. It is a figure which shows the wavelength dependence of the distance
  • FIG. 1 is a diagram showing an outline of an optical arrangement of a wavelength tunable filter 1 which is an example of an optical device according to the present embodiment.
  • a wavelength tunable filter (hereinafter referred to as “the present wavelength tunable filter”) 1 according to the present embodiment includes a transmissive diffraction element 2 that diffracts incident light and a reflective element that reflects incident light. 3. Further, as shown in the figure, the wavelength tunable filter 1 includes a transmission type diffraction element 2 and a rotation mechanism 4 that supports the reflection element 3, and the transmission type diffraction element 2 and the reflection element 3 include a rotation mechanism. 4 has a function of rotating around the rotation axis.
  • VPH-G volume phase holographic grating
  • the diffractive element 2 and the reflective element 3 are diffracted by the diffractive element 2 on the rotary support 4 having a rotation axis that coincides with the intersection of the diffraction grating plane of the diffractive element 2 and the reflective surface of the reflective element 3.
  • the plane and the reflection plane of the reflection element 3 are fixed at an angle of 90 degrees and can be rotated together.
  • the diffraction grating plane in the diffraction element means a surface on which the diffraction grating is formed, not the surface (diffraction surface) including the optical axis of light.
  • the incident angle of the light beam incident on the reflecting element 3 coincides with ⁇ . That is, the optical axis angle of the light beam emitted from the reflecting element 3 matches the optical axis angle of the light beam incident on the diffraction element 2.
  • the distance between the rotation axis of the rotary support 4 and the incident optical axis is r
  • the distance between the rotation axis of the rotary support 4 and the intersection of the diffraction plane of the diffraction element 2 and the incident optical axis is r / Sin ⁇ .
  • the arrangement shown in FIG. 1 is based on the change in the incident angle of the incident light beam on the diffraction element 2, that is, the position / angle of the exit optical axis of the light beam having the wavelength ⁇ that satisfies the condition regardless of the rotation phase of the rotating mechanism 4. Is an invariant arrangement.
  • the condition of 90 degrees is merely an example in this arrangement.
  • the condition is satisfied even when the diffractive element 2 and the reflective element 3 are arranged with a deviation of ⁇ from 90 degrees.
  • the position and angle of the emission optical axis of the light beam having the wavelength ⁇ are not changed. That is, the diffraction grating plane in the diffraction element and the reflection surface in the reflection element are not necessarily 90 degrees.
  • the length of the line segment AB is expressed by the following equation, where A is the intersection of the perpendicular line from the rotation axis of the rotation mechanism 4 to the incident optical axis, and B is the intersection of the incident optical axis and the outgoing optical axis. Is done.
  • the slit 5 or an optical element having an equivalent function By arranging the slit 5 or an optical element having an equivalent function on the emission optical axis, it becomes possible to select only a light flux having a wavelength ⁇ that satisfies the above condition.
  • the transmission wavelength bandwidth and the like can be changed by using a lens system and a slit opening / closing mechanism in combination on the emission optical axis.
  • the diffractive element having optical characteristics corresponding to VPH-G or the like has high diffraction efficiency with respect to a broadband wavelength satisfying the condition. Therefore, the tunable filter of this arrangement has a high transmittance in the broadband, It becomes a filter whose incident and exit optical axes are unchanged.
  • This arrangement is effective for all optical systems using VPH-G or diffractive elements having optical characteristics equivalent thereto under the conditions of maximum efficiency and invariable incident / exit optical axes.
  • FIG. 6 shows an optical arrangement similar to that of the first embodiment, but is further a schematic view of the optical arrangement in which the retroreflective element 6 is arranged outside the rotation mechanism, specifically on the exit optical axis, and its bird's-eye view. is there.
  • this apparatus is suitable for a spectroscope.
  • the reflective element 7 is disposed on the incident optical axis.
  • the reflection element can adopt the same configuration as that of the reflection element 3, but may be one that reflects or transmits light (for example, a polarization beam splitter) depending on the state of light. What transmits and reflects a part of light (for example, a half mirror), a so-called beam splitter may be used.
  • a so-called beam splitter may be used.
  • the light beam incident from the incident optical axis has the maximum diffraction efficiency at a wavelength at which the incident angle ⁇ and the diffraction angle ⁇ to the diffraction element 2 coincide with each other as in FIG. Is done.
  • the emitted light beam is retroreflected by a retroreflective element 6 such as a retroreflector.
  • the retroreflective element 6 is installed so that the retroreflected light beam is offset in the rotation axis direction with respect to the original optical axis, and the projection on the incident surface coincides with the original optical axis.
  • a hollow roof mirror is suitable as described above, but is not limited thereto, and examples thereof include a hollow retroreflector, a corner cube prism, and a right-angle prism.
  • the retroreflected light beam follows the original optical path in the reverse direction and is emitted in the direction of the incident optical axis. Since the emitted light beam is emitted with an offset in the direction of the rotation axis with respect to the incident optical axis, it can be easily separated from the incident optical axis by the reflecting element 7 or the like.
  • the emitted light beam is shifted in parallel on the emission optical axis and aligned in parallel.
  • a wavelength filter for selectively extracting wavelengths with a slit or the like, and can also be used as a monochromator.
  • a multichannel spectroscope can be configured by imaging with a line sensor or the like. The center wavelength, resolution, bandwidth, and the like of the wavelength filter and the spectroscope can be easily adjusted and controlled by the rotation phase of the rotation mechanism and the optical path length from the diffraction element 2 to the retroreflective element 6.
  • the arrangement corresponds to the double passage of the optical arrangement of the first embodiment, and the emitted light of the light beam having the wavelength ⁇ that satisfies the incident / diffraction angle matching condition regardless of the rotation phase of the rotation mechanism 4. It goes without saying that the position and angle of the axes are invariable, and in addition to this, there is a function of keeping the incident and exit optical axes unchanged even when the above-mentioned conditions for matching the axes are not satisfied.
  • FIG. 7 is a schematic view and an overhead view of the optical device according to the present embodiment.
  • the engineering arrangement of the present optical apparatus is an optical arrangement in which retroreflective elements 6 and 8 are installed before and after the optical arrangement of the first embodiment, respectively. In addition to a bandpass filter with variable bandwidth, this arrangement is useful as a group velocity dispersion generator.
  • the rotating mechanism 4 has the same optical characteristics as in the first embodiment.
  • the light beam emitted from the diffractive element 2 is shifted by the retroreflective element 6 in parallel to the emitted light beam and within the incident plane, and is incident again on the diffractive element 2.
  • the light beam diffracted by the diffraction element 2 and reflected by the reflection element 3 is emitted parallel to the incident optical axis and shifted into the incident plane.
  • the light beam re-emitted in the direction of the incident optical axis is shifted again in the direction of the rotation axis parallel to the incident optical axis by the retroreflective element 8 and enters the reflective element 3 again.
  • the re-incident light beam is reflected and diffracted in the order of the reflective element 3, the diffractive element 2, the retroreflective element 6, the diffractive element 2, and the reflective element 3 in the order of the optical axis whose projection on the incident surface is exactly the same as the optical path so far. It is emitted again in the direction of the incident optical axis. At this time, since the light is emitted with an offset in the direction of the rotation axis with respect to the incident optical axis, it is easily separated from the incident optical axis by the reflecting element 7 or the like.
  • the incident light beam has a finite wavelength width
  • the diffraction element 2 After passing through the diffraction element 2 twice, it is separated into each wavelength in front of the retroreflective element 8 and aligned in parallel. Thereafter, it is re-integrated into one light beam by passing through the diffraction element 2 twice again.
  • the optical arrangement has a high tolerance such as a condition of matching the axes and a rotational axis deviation.
  • FIG. 8 is a diagram schematically showing an external resonant laser having a low loss in a wide band using the wavelength tunable filter according to one embodiment of the present invention as a wavelength selection element.
  • the collimated light from the laser diode chip 9 and the collimation lens 10 is used as incident light, the VPH-G as the diffraction element 2, and the total reflection mirror as the reflection element 3 are assembled in the structure serving as the rotation mechanism 4.
  • the laser diode chip 9 has a surface with a low reflection coating and a surface with a high reflection coating, and light emitted from the laser diode chip 9 is emitted from a surface with a low reflection coating.
  • Light incident on the wavelength tunable filter emitted from the laser diode chip 9 and the collimation lens 10 is spontaneous emission amplification (ASE) light having a wide wavelength band.
  • ASE spontaneous emission amplification
  • Light beams having other wavelengths emitted from the element 3 are emitted at an angle different from the incident optical axis.
  • the half mirror 11 is installed on the emission optical axis at an angle perpendicular to the incident optical axis, only the luminous flux is specularly reflected, and again passes through the reflective element 3, the diffractive element 2, and the collimation lens 10, and the laser diode chip. Is incident on.
  • the high reflection surface of the laser diode chip 9 and the front surface of the half mirror resonate with each other, and light having a wavelength selected by the wavelength tunable filter is laser-oscillated.
  • the laser oscillation wavelength is variable by selecting the wavelength of the wavelength tunable filter, and the optical axis of the emitted laser light does not change when the wavelength changes, so that it is excellent in convenience as a wavelength tunable light source.
  • the optical axis of the ASE light having a wavelength different from that of the laser light, which is noise of the laser light source, does not overlap with the laser light, it is separated from the laser light and completely blocked, and has an ASE-Free wavelength with high spectral purity.
  • a variable laser light source is realized.
  • FIG. 9 shows a photograph of the device during a proof-of-principle experiment
  • FIG. 10 shows a photograph of a prototype machine for an ASE-Free tunable laser light source using the wavelength filter according to the present invention as a wavelength selection element.
  • FIG. 11 shows the dependence of the laser beam intensity output from the prototype machine on the LD injection current value. Even at an oscillation wavelength of 1090 nm at the gain edge where ASE light becomes apparent, the output is close to 0 up to the oscillation threshold, and it was confirmed that ASE light other than 1090 nm was excluded from the laser output (ASE-Free). .
  • FIG. 12 is a photograph of a band pass filter configured using the optical arrangement of the third embodiment.
  • the reflective element 3 and the diffractive element 2 are assembled to the rotary stage 4, and retroreflective elements 6 and 8 and a reflective element 7 for emission are disposed before and after the reflective element 3 and the diffractive element 2.
  • the center wavelength of the bandpass filter is determined by the rotational phase of the rotary stage 4, and the bandwidth is determined by the wavelength that can enter the retroreflective element 6 among the light beams diffracted by the diffraction element 2.
  • the retroreflective element 6 is assembled to the linear motion stage.
  • Fig. 13 shows the wavelength selection result of the bandpass filter.
  • a light beam incident on the system and a light beam selected by a band pass were coupled to a single-mode polarization-maintaining fiber, and a spectrum was acquired by a spectroscope.
  • the incident light flux to the system has a broad spectrum width ranging from 1000 nm to 1100 nm, and the wavelength was selected by this system to the center wavelengths of 1010 nm and 1050 nm.
  • the selection of the center wavelength is performed only by adjusting the rotation phase of the rotation mechanism 4. Further, the bandwidth can be defined by the length of the optical path from the diffraction element 2 to the retroreflective element 6.
  • the bandwidth can be adjusted by a width of 5 nm to 10 nm, and the solid line and the dotted line in FIG. 13 are spectra when they are 5 nm and 10 nm, respectively.
  • the bandwidth can be freely adjusted by the number of lines of the diffractive element 2 and the use of slits.
  • the band-pass filter of this system has a blocking performance exceeding at least 50 dB (OD5), and no stray light is observed. Furthermore, it has a steep rise width of less than 1 nm. The steepness depends on the beam diameter at the time of wavelength selection, and can be further steepened by using a lens or the like.
  • Fig. 14 shows the wavelength dependence of the transmittance of this system. Monochromatic light was incident on this system, and its output and the output after single-mode polarization-preserving fiber coupling were compared with the incident light intensity. Regardless of four diffractions at the diffraction element 2 and eleven reflections at the reflection element, etc., it has a maximum transmittance of more than 60% in free space and a transmittance of 50% or more over 100 nm.
  • Example 3 An example of the group velocity dispersion generator configured by the optical arrangement of the third embodiment is shown below.
  • the constructed system is the same as that of FIG.
  • FIG. 15 is a block diagram of a tunable picosecond laser using pulse compression by a tunable laser, an EO modulator, and a group velocity dispersion generator.
  • a continuous wave / single frequency output (10 mW) of a wavelength tunable laser whose wavelength is tunable from 980 nm to 1080 nm is used as a light source, frequency modulation of 10 GHz is performed by an EO frequency modulator, and the carrier frequency is the center.
  • About 20 optical combs (wavelength width of about 0.5 nm) are generated.
  • the optical comb output is intensity-modulated at 10 GHz by an EO intensity modulator, and only the up-chirp portion is extracted by adjusting the phase difference between the two modulators.
  • This up-chirped pulse is amplified to 1 W by a broadband optical amplifier from 980 nm to 1080 nm, and then pulse-compressed by a group velocity dispersion generator to generate a pulse train of 10 W-3 ps.
  • FIG. 16 shows the optical comb spectrum of the up-chirp before pulse compression, which is the output of the EO intensity modulator.
  • the up-chirped pulse can be pulse-compressed by a group velocity dispersion generator using a dispersion element such as a diffraction grating.
  • FIG. 17 shows a general pulse compression system used in a single color. L is the distance between the dispersive elements. L varies depending on the center wavelength, wavelength width, and dispersion of the dispersive element. For example, when a diffraction grating having 1700 lines / mm is used, the inter-element distance L required for compression of a chirped pulse of about 0.6 nm is shown in FIG. As shown in FIG.
  • FIG. 19 shows time waveforms before and after pulse compression when the pulse compression is actually performed using the apparatus of FIG.
  • the time waveform was acquired with an autocorrelator.
  • the width of the obtained time waveform is an autocorrelation waveform by an autocollimator, and the time width of the compressed pulse calculated from this waveform is 5 ps.
  • the waveform shown in FIG. 19 is acquired at the center wavelength of 1040 nm.
  • similar picosecond pulses are obtained in the wavelength region from 980 nm to 1080 nm.
  • This wavelength band is only an example of the present invention, and pulse compression using this system can be performed in any wavelength band by changing the light source laser, the EO modulator, the optical amplifier, the transmission diffraction grating, and the like.
  • the wavelength dependency of the transmittance of this system and the stability of the fiber couple are the same as the values shown in FIG. 13 of Example 2, and have a high and stable transmittance in a wide wavelength band.
  • the reflecting element 3 and the diffractive element 2 need be installed on the rotary stage, which can be realized with a small and inexpensive stage.
  • the amount of group velocity dispersion can be adjusted by the length of the optical path that reflects the retroreflective element 3 from the diffractive element 2 and reaches the diffractive element 2 again.
  • the amount of the group velocity dispersion of the retroreflective element 3 assembled on a uniaxial linear motion stage This is done by changing the position. This not only realizes high transmittance in a wide band, but also reduces the number of expensive optics and stages to a minimum, which is beneficial for space saving and cost reduction.
  • This device has industrial applicability as an optical device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

The present invention provides an optical device having high transmittance in a wide wavelength band, and in which the incidence and emission optical axes do not change when the wavelength changes. For this purpose, an optical device according to the present invention includes a transmissive diffraction element (2) that diffracts incident light, a reflection element (3) that reflects the incident light, and a rotation mechanism (4) that supports the transmissive diffraction element (2) and the reflection element (3). The transmissive diffraction element (2) and the reflection element (3) are supported so as to be rotatable about one rotation shaft of the rotation mechanism (4). In this case, preferably provided is an optical device in which intersecting lines of a light-diffracting surface of the diffraction element (2) and a light-reflecting surface of the reflection element (3) are arranged so as to coincide with said rotation shaft.

Description

光学装置Optical device
 本発明は、光学装置に関する。より具体的には、波長可変フィルターに適用可能な光学装置に関する。 The present invention relates to an optical device. More specifically, the present invention relates to an optical device applicable to a wavelength tunable filter.
 特定の波長帯域の光束を選択的に透過させる波長可変フィルターは、光計測または光通信の分野において利用されている。 A wavelength tunable filter that selectively transmits a light flux in a specific wavelength band is used in the field of optical measurement or optical communication.
 波長可変フィルターの性能は、透過する波長の光束の透過率、遮蔽される波長の光束の遮蔽率、透過波長帯域の帯域幅、透過帯域中心波長の可変幅、透過率立ち上がりの/下がりのカットオン/オフ急峻度等によって表現される。 The performance of the wavelength tunable filter is as follows: the transmittance of the light beam of the transmitted wavelength, the shielding rate of the light beam of the shielded wavelength, the bandwidth of the transmission wavelength band, the variable width of the center wavelength of the transmission band, and the cut-on of the rise / fall of the transmittance / Expressed by off steepness etc.
 また、波長可変フィルターは、その用途から、前段の光学系と後段の光学系の間で用いられるため、系に入射する光軸と、系から射出する光軸の位置・角度が、透過波長の変化に対して不変であることが求められる。 In addition, since the wavelength tunable filter is used between the preceding optical system and the subsequent optical system for the purpose of use, the position and angle of the optical axis incident on the system and the optical axis emitted from the system are determined by the transmission wavelength. It is required to be invariant to change.
 波長可変フィルターは一般に、波長分離用の回折・分散素子による構成と、誘電体多層膜フィルターによる構成に大別される。 波長 Wavelength tunable filters are generally divided into a configuration using a diffraction / dispersion element for wavelength separation and a configuration using a dielectric multilayer filter.
 誘電体多層膜フィルターによる波長可変フィルターは、誘電帯多層膜フィルターへの入射光束の入射角度を変化させることで透過波長帯を変化させる。これは誘電帯多層膜フィルターを入射面に対して垂直な軸回りに回転させることで為される(例えば下記特許文献1参照)。 The wavelength tunable filter using the dielectric multilayer filter changes the transmission wavelength band by changing the incident angle of the incident light beam to the dielectric band multilayer filter. This is done by rotating the dielectric band multilayer filter about an axis perpendicular to the incident surface (see, for example, Patent Document 1 below).
 また、波長分離用の回折・分散素子を用いる波長可変フィルター波長可変性は射出光軸の選択により為される。一般的な構成では、入射面に垂直な軸回りについての波長分離素子の回転や、射出光軸上にあるスリットや光ファイバ等の並進移動により為される(例えば下記特許文献2及び特許文献3参照)。 Also, wavelength tunability using wavelength diffractive / dispersive elements for wavelength separation is achieved by selecting the exit optical axis. In a general configuration, the rotation is performed by rotating the wavelength separation element about an axis perpendicular to the incident surface, or by translational movement of a slit, an optical fiber, or the like on the exit optical axis (for example, Patent Document 2 and Patent Document 3 below). reference).
特許第2874439号公報Japanese Patent No. 2874439 特開2005-266625号公報JP 2005-266625 A 特開2008-151830号公報JP 2008-151830 A
 上記特許文献1の方法には、誘電帯多層膜フィルターの特性を反映して一般に高い透過率の波長可変フィルターが開示されている。しかしながら、透過波長帯域の可変幅を、100nmを超えて変化させることは困難である。また、遮蔽率やカットオン/オフの急峻性は誘電帯多層膜フィルターで実現される程度である。 The method of Patent Document 1 discloses a tunable filter having a generally high transmittance reflecting the characteristics of a dielectric band multilayer filter. However, it is difficult to change the variable width of the transmission wavelength band beyond 100 nm. Further, the steepness of the shielding rate and cut-on / off is only to be realized by the dielectric band multilayer filter.
 また、上記特許文献2、3の方法では、透過波長帯域の可変幅を大きくとることが原理的に容易である。しかしながら、波長分離用の素子に回折格子を用いる構成では、広帯域にわたって高い透過率を実現することは困難である。これは、一般的な回折格子の回折効率が最大で60%程度と低く、また、回折効率が波長や入射光束の入射角度に依存しているため、入射・射出光軸の不変性と、最大効率角度での入射・出の維持、との両立が困難であることによる。 In the methods of Patent Documents 2 and 3, it is in principle easy to increase the variable width of the transmission wavelength band. However, it is difficult to achieve a high transmittance over a wide band with a configuration using a diffraction grating as an element for wavelength separation. This is because the diffraction efficiency of a general diffraction grating is as low as about 60% at the maximum, and the diffraction efficiency depends on the wavelength and the incident angle of the incident light beam. This is because it is difficult to maintain both incidence and exit at an efficiency angle.
 そこで、本発明は、上述の諸問題を解決し、広い波長帯域において高い透過率を有しつつ、透過波長帯域の変化に際し、入射・射出光軸が不変となる波長可変フィルターを提供することを目的とする。 Accordingly, the present invention provides a wavelength tunable filter that solves the above-described problems and has a high transmittance in a wide wavelength band, and in which an incident / exit optical axis does not change when the transmission wavelength band changes. Objective.
 上記課題を解決する本発明の一観点に係る光学装置は、透過型回折素子と、反射素子と、透過型回折素子と反射素子を支持する回転機構とを備え、透過型回折素子と反射素子が、回転機構の回転軸回りに回転する機能を備えたものである。 An optical device according to an aspect of the present invention that solves the above problems includes a transmissive diffraction element, a reflective element, and a rotating mechanism that supports the transmissive diffraction element and the reflective element. And a function of rotating around the rotation axis of the rotation mechanism.
 また、本観点において、限定されるわけではないが、配置において、回折素子における回折格子平面と、反射素子における反射面との交線が、回転機構の回転軸と一致して配置されるものであることが好ましい。 Further, although not limited in this aspect, the arrangement is such that the line of intersection of the diffraction grating plane of the diffraction element and the reflection surface of the reflection element coincides with the rotation axis of the rotation mechanism. Preferably there is.
 また、本観点において、限定されるわけではないが、回折素子における回折格子平面と、反射素子における反射面とが、90度の角度を為し、回転機構の回転軸と一致して配置されるものであることが好ましい。 Further, in this aspect, although not limited, the diffraction grating plane of the diffraction element and the reflection surface of the reflection element form an angle of 90 degrees and are aligned with the rotation axis of the rotation mechanism. It is preferable.
 また、本発明の他の一観点に係る光学装置は、透過型回折素子と、反射素子と、透過型回折素子と反射素子を支持する回転機構を備え、透過型回折素子と反射素子が、回転機構の回転軸回りに回転する機能を備え、かつ、前記回転機構の外側に再帰反射光学素子を備えるものであることが好ましい。 An optical device according to another aspect of the present invention includes a transmission diffraction element, a reflection element, and a rotation mechanism that supports the transmission diffraction element and the reflection element. The transmission diffraction element and the reflection element rotate. It is preferable to have a function of rotating around the rotation axis of the mechanism, and to include a retroreflective optical element outside the rotating mechanism.
 以上、本発明によって、広い波長帯域において高い透過率を有しつつ、波長変化に際し、入射・射出光軸が不変となる光学装置を提供することが可能となる。 As described above, according to the present invention, it is possible to provide an optical device that has a high transmittance in a wide wavelength band, and whose incident / exit optical axis does not change when the wavelength changes.
実施形態1に係る波長可変フィルターの光学配置の概略図である。2 is a schematic diagram of an optical arrangement of a wavelength tunable filter according to Embodiment 1. FIG. 実施形態1に係る透過型回折格子の概略図である。1 is a schematic diagram of a transmissive diffraction grating according to Embodiment 1. FIG. 実施形態1に係る透過型回折格子の性能の概略図である。FIG. 3 is a schematic view of the performance of a transmission diffraction grating according to Embodiment 1. 実施形態1に係る透過型回折格子の性能の概略図である。FIG. 3 is a schematic view of the performance of a transmission diffraction grating according to Embodiment 1. 実施形態1に係る波長可変フィルターの光学配置の概略図である。2 is a schematic diagram of an optical arrangement of a wavelength tunable filter according to Embodiment 1. FIG. 実施形態1に係る波長可変フィルターの光学配置の概略図及び俯瞰図である。2A and 2B are a schematic view and an overhead view of an optical arrangement of a wavelength tunable filter according to the first embodiment. 実施形態1に係る波長可変フィルターの光学配置の概略図及び俯瞰図である。2A and 2B are a schematic view and an overhead view of an optical arrangement of a wavelength tunable filter according to the first embodiment. 実施例1に係る外部共振レーザの概略を示した図である。1 is a diagram schematically illustrating an external resonant laser according to Example 1. FIG. 実施例1に係る外部共振レーザの原理実証実験時の装置写真図である。FIG. 4 is a device photograph of the principle verification experiment of the external resonance laser according to Example 1. 実施例1に係る外部共振レーザのプロトタイプ機の写真図である。1 is a photograph of a prototype machine of an external resonant laser according to Example 1. FIG. 実施例1に係る外部共新レーザのレーザ光強度のLD注入電流値依存性を示す図である。It is a figure which shows the LD injection current value dependence of the laser beam intensity | strength of the external co-new laser which concerns on Example 1. FIG. 実施例2に係るバンドパスフィルタの写真図である。6 is a photograph of a bandpass filter according to Embodiment 2. FIG. 実施例2に係るバンドパスフィルタの波長選択結果を示す図である。It is a figure which shows the wavelength selection result of the band pass filter which concerns on Example 2. FIG. 実施例2に係るバンドパスフィルタの透過率の波長選択性を示す図である。It is a figure which shows the wavelength selectivity of the transmittance | permeability of the band pass filter which concerns on Example 2. FIG. 実施例3に係る波長可変ピコ秒レーザのブロックダイアグラムである。6 is a block diagram of a wavelength tunable picosecond laser according to Example 3. FIG. 実施例3に係る波長可変ピコ秒レーザのEO強度変調器の出力を示す。FIG. 6 shows an output of an EO intensity modulator of a wavelength tunable picosecond laser according to Example 3. FIG. 実施例3に係る従来の群速度分散発生系の概略図である。6 is a schematic diagram of a conventional group velocity dispersion generating system according to Embodiment 3. FIG. 実施例3に係るチャープドパルス圧縮に必要な回折素子間距離Lの波長依存性を示す図である。It is a figure which shows the wavelength dependence of the distance L between diffraction elements required for the chirped pulse compression which concerns on Example 3. FIG. 実施例3に係る波長可変ピコ秒レーザのパルス圧縮前後の時間波形を示す図である。It is a figure which shows the time waveform before and behind the pulse compression of the wavelength variable picosecond laser which concerns on Example 3. FIG.
 以下、本発明の実施形態について、図面を用いて詳細に説明する。ただし、本発明は多くの異なる形態による実施が可能であり、以下に示す実施形態、応用例の記載に限定されるものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, the present invention can be implemented in many different forms, and is not limited to the description of the following embodiments and application examples.
(実施形態1)
 図1は、本実施形態に係る光学装置の一例である波長可変フィルター1の光学配置の概略を示す図である。
(Embodiment 1)
FIG. 1 is a diagram showing an outline of an optical arrangement of a wavelength tunable filter 1 which is an example of an optical device according to the present embodiment.
 本図で示すように、本実施形態に係る波長可変フィルター(以下「本波長可変フィルター」という。)1は、入射した光を回折させる透過型回折素子2と、入射した光を反射させる反射素子3と、を有する。また、本図で示すように、本波長可変フィルター1は、透過型回折素子2と反射素子3を支持する回転機構4とを備えており、透過型回折素子2と反射素子3は、回転機構4の回転軸回りに回転する機能を備えている。 As shown in the figure, a wavelength tunable filter (hereinafter referred to as “the present wavelength tunable filter”) 1 according to the present embodiment includes a transmissive diffraction element 2 that diffracts incident light and a reflective element that reflects incident light. 3. Further, as shown in the figure, the wavelength tunable filter 1 includes a transmission type diffraction element 2 and a rotation mechanism 4 that supports the reflection element 3, and the transmission type diffraction element 2 and the reflection element 3 include a rotation mechanism. 4 has a function of rotating around the rotation axis.
 透過型回折素子2としては、図2の条件で最大90%の高い回折効率を有する透過型回折素子:ボリューム フェイズ ホログラフィック グレーティング(VPH-G)を念頭に置くが、当然のことながら、本配置で本特性を満たすものであれば、これに限るものではない。 As the transmissive diffraction element 2, a transmissive diffractive element having a high diffraction efficiency of 90% at maximum under the conditions of FIG. 2 is borne in mind: volume phase holographic grating (VPH-G). However, the present invention is not limited to this as long as it satisfies this characteristic.
 VPH-Gの回折効率は入射角をα、回折角をβとすると、α=βの条件において最大の回折効率が得られるように設計されている。透過型回折格子における回折光の波長λに対する、入射角α、回折角βの関係は、回折格子のライン本数(単位長さあたりの格子数)をN、回折次数をmとしたとき、Nmλ=sinα+sinβで与えられる。すなわち、VPH-Gにおいて、特定の回折次数・波長で最大の回折効率が得られる入射・回折角は一意に決まり、その値はα=β=Asin(Nmλ/2)となる。α=βの条件から外れると、VPH-Gの回折効率は減少する(図3参照)。一方で、入射する光束の波長帯域に合わせてα=β=Asin(Nmλ/2)の条件で入射角度を変化させると、300nm以上の広い波長帯域で90%を超える回折効率が実現される(図4参照)。 The diffraction efficiency of VPH-G is designed so that the maximum diffraction efficiency can be obtained under the condition of α = β, where α is the incident angle and β is the diffraction angle. The relationship between the incident angle α and the diffraction angle β with respect to the wavelength λ of the diffracted light in the transmissive diffraction grating is Nmλ = where N is the number of diffraction grating lines (the number of gratings per unit length) and m is the diffraction order. It is given by sin α + sin β. That is, in VPH-G, the incident / diffraction angle at which the maximum diffraction efficiency is obtained at a specific diffraction order / wavelength is uniquely determined, and its value is α = β = Asin (Nmλ / 2). When the condition of α = β is deviated, the diffraction efficiency of VPH-G decreases (see FIG. 3). On the other hand, if the incident angle is changed under the condition of α = β = Asin (Nmλ / 2) according to the wavelength band of the incident light beam, a diffraction efficiency exceeding 90% is realized in a wide wavelength band of 300 nm or more ( (See FIG. 4).
 図1では、回折素子2における回折格子平面と、反射素子3における反射面との交線に一致した回転軸を持つ回転支持体4に、回折素子2と反射素子3が、回折素子2の回折平面と反射素子3の反射平面が90度の角度を為して固定され、一体となって回転可能となっている。 In FIG. 1, the diffractive element 2 and the reflective element 3 are diffracted by the diffractive element 2 on the rotary support 4 having a rotation axis that coincides with the intersection of the diffraction grating plane of the diffractive element 2 and the reflective surface of the reflective element 3. The plane and the reflection plane of the reflection element 3 are fixed at an angle of 90 degrees and can be rotated together.
 ここで、回折格子において、回折素子における回折格子平面とは、光の光軸を含む面(回折面)そのものではなく、回折格子が形成されている面をいう。 Here, in the diffraction grating, the diffraction grating plane in the diffraction element means a surface on which the diffraction grating is formed, not the surface (diffraction surface) including the optical axis of light.
 回折素子2に入射角αで入射する光束のうち、条件α=β=Asin(Nmλ/2)を満たす波長λの光束は、βの回折角で回折素子2から射出し、反射素子3へ入射する。このとき、入射光束の光軸と該回折光束の光軸の為す角は、2(90°-α)=2θとなる。反射素子3へ入射する該光束の入射角はθと一致する。即ち、反射素子3から射出する該光束の光軸角度は、回折素子2へ入射する光束の光軸角度と一致する。 Of the light beams incident on the diffractive element 2 at an incident angle α, a light beam having a wavelength λ that satisfies the condition α = β = Asin (Nmλ / 2) exits from the diffractive element 2 at a diffraction angle of β and enters the reflective element 3. To do. At this time, the angle formed by the optical axis of the incident light beam and the optical axis of the diffracted light beam is 2 (90 ° −α) = 2θ. The incident angle of the light beam incident on the reflecting element 3 coincides with θ. That is, the optical axis angle of the light beam emitted from the reflecting element 3 matches the optical axis angle of the light beam incident on the diffraction element 2.
 入射面内において、回転支持体4の回転軸と入射光軸の距離をrとしたとき、回転支持体4の回転軸と、回折素子2の回折平面と入射光軸の交点の距離は、r/sinθとなる。該回折光束の、回折素子2から反射素子3までに至る光路の長さは、r/(sinθcosθ)となる。これらより、入射光束の光軸と、該光束の射出光軸の、入射面内での平行移動量は、r/(sinθcosθ) x sin2θ = 2 r となり、回折素子2への入射角度に依らず一定となる。 In the incident surface, when the distance between the rotation axis of the rotary support 4 and the incident optical axis is r, the distance between the rotation axis of the rotary support 4 and the intersection of the diffraction plane of the diffraction element 2 and the incident optical axis is r / Sinθ. The length of the optical path of the diffracted light beam from the diffraction element 2 to the reflection element 3 is r / (sin θ cos θ). From these, the amount of parallel movement of the optical axis of the incident light beam and the emission optical axis of the light beam within the incident surface is r / (sin θ cos θ) x sin 2θ = 2 r, regardless of the angle of incidence on the diffraction element 2. It becomes constant.
 以上から、図1に示す配置は、入射光束の回折素子2への入射角度の変化、すなわち回転機構4の回転位相に依らず、該条件を満たす波長λの光束の射出光軸の位置・角度が不変な配置である。 From the above, the arrangement shown in FIG. 1 is based on the change in the incident angle of the incident light beam on the diffraction element 2, that is, the position / angle of the exit optical axis of the light beam having the wavelength λ that satisfies the condition regardless of the rotation phase of the rotating mechanism 4. Is an invariant arrangement.
 なお、上記90度の条件は、本配置における一例に過ぎず、例えば図5に示すごとく、回折素子2と反射素子3が90度からγだけずれて配置される場合においても、該条件を満たす波長λの光束の射出光軸の位置・角度は不変となる。すなわち、回折素子における回折格子平面と反射素子における反射面は必ずしも90度である必要はない。 The condition of 90 degrees is merely an example in this arrangement. For example, as shown in FIG. 5, the condition is satisfied even when the diffractive element 2 and the reflective element 3 are arranged with a deviation of γ from 90 degrees. The position and angle of the emission optical axis of the light beam having the wavelength λ are not changed. That is, the diffraction grating plane in the diffraction element and the reflection surface in the reflection element are not necessarily 90 degrees.
 なお図5において、α=β=Asin(Nmλ/2)の条件を満たす波長λの光束が反射素子3から射出される角度は、入射光軸に対して2γとなる。回転機構4の回転軸から入射光軸までおろした垂線の、入射光軸との交点をA、入射光軸と射出光軸の交点をBとすると、線分ABの長さは下記式で表される。
Figure JPOXMLDOC01-appb-M000001
In FIG. 5, the angle at which the luminous flux having the wavelength λ satisfying the condition of α = β = Asin (Nmλ / 2) is emitted from the reflecting element 3 is 2γ with respect to the incident optical axis. The length of the line segment AB is expressed by the following equation, where A is the intersection of the perpendicular line from the rotation axis of the rotation mechanism 4 to the incident optical axis, and B is the intersection of the incident optical axis and the outgoing optical axis. Is done.
Figure JPOXMLDOC01-appb-M000001
 上記式より、線分ABの長さはγだけの関数となり、α=βの条件を満たす波長λの光束の射出光軸はγのみに依存する。すなわち、回折素子2と反射素子3との為す角が90度ではない配置も、実施形態1と同様に、広帯域な波長において高い透過率を持ち、入射・射出光軸が不変なフィルターを構成する配置である。 From the above equation, the length of the line segment AB is a function of only γ, and the exit optical axis of the light beam having the wavelength λ satisfying the condition of α = β depends only on γ. That is, an arrangement in which the angle formed by the diffractive element 2 and the reflective element 3 is not 90 degrees also forms a filter having high transmittance at a wide wavelength range and invariable incident / exit optical axes, as in the first embodiment. Arrangement.
 射出光軸上にスリット5、あるいはそれと同等の機能を有する光学素子を配置することで、該条件を満す波長λの光束だけを選択することが可能となる。当然のことながら、射出光軸上にレンズ系やスリット開閉機構を併用することで、透過波長帯域幅などを変化させることができる。 By arranging the slit 5 or an optical element having an equivalent function on the emission optical axis, it becomes possible to select only a light flux having a wavelength λ that satisfies the above condition. As a matter of course, the transmission wavelength bandwidth and the like can be changed by using a lens system and a slit opening / closing mechanism in combination on the emission optical axis.
 上述の通り、VPH-Gあるいはそれに相当する光学特性をもつ回折素子は、該条件を満たす広帯域な波長について高い回折効率を有するため、本配置の波長可変フィルターは、広帯域に高い透過率を持ち、入射・射出光軸が不変なフィルターとなる。また、本配置は、VPH-Gあるいはそれに相当する光学特性をもつ回折素子を、最大効率かつ入射・射出光軸不変の条件で用いる全ての光学系に有効な配置である。 As described above, the diffractive element having optical characteristics corresponding to VPH-G or the like has high diffraction efficiency with respect to a broadband wavelength satisfying the condition. Therefore, the tunable filter of this arrangement has a high transmittance in the broadband, It becomes a filter whose incident and exit optical axes are unchanged. This arrangement is effective for all optical systems using VPH-G or diffractive elements having optical characteristics equivalent thereto under the conditions of maximum efficiency and invariable incident / exit optical axes.
 なお、上記の原理に従う限りにおいて、入射光軸と射出光軸を入れ替えても、全く同様の機能が保たれることは言うまでもない。 Needless to say, the same function is maintained even if the incident optical axis and the outgoing optical axis are interchanged as long as the above principle is followed.
 また、上記配置は、α=βの条件において最大の回折効率を発揮するが、その近傍の射出角度であれば十分に高い回折効率を有する。すなわち、α=βとなる入射・射出の光軸は、本実施形態の一つの例に過ぎず、α=β以外の入射・射出光軸を持つ配置も本発明の技術的範囲に含まれうる。 Also, the above arrangement exhibits the maximum diffraction efficiency under the condition of α = β, but has a sufficiently high diffraction efficiency if the exit angle is in the vicinity thereof. That is, the incident / exit optical axis where α = β is only one example of this embodiment, and an arrangement having an incident / exit optical axis other than α = β can be included in the technical scope of the present invention. .
(実施形態2)
 図6は、実施形態1と同様の光学配置であるが、更に、回転機構の外側、具体的には射出光軸上に、再帰反射素子6を配置した光学配置の概略図、及びその鳥瞰図である。本装置は、波長フィルターの他、分光器にも適した配置である。
(Embodiment 2)
FIG. 6 shows an optical arrangement similar to that of the first embodiment, but is further a schematic view of the optical arrangement in which the retroreflective element 6 is arranged outside the rotation mechanism, specifically on the exit optical axis, and its bird's-eye view. is there. In addition to the wavelength filter, this apparatus is suitable for a spectroscope.
 また、本装置では、再帰反射素子6の他、入射光軸上に反射素子7を配置している。この反射素子は、上記反射素子3と同様の構成を採用することもできるが、光の状態によって反射又は透過を行うもの(例えば偏光ビームスプリッタ)であってもよく、また、一部の光を透過し一部の光を反射するもの(例えばハーフミラー)、いわゆるビームスプリッタであってもよい。ただし、再帰反射素子によって光軸を移動させることにより反射させることで光の利用率をより向上させる観点から、上記反射素子3と同様のものを採用することが好ましい。
 
In the present apparatus, in addition to the retroreflective element 6, the reflective element 7 is disposed on the incident optical axis. The reflection element can adopt the same configuration as that of the reflection element 3, but may be one that reflects or transmits light (for example, a polarization beam splitter) depending on the state of light. What transmits and reflects a part of light (for example, a half mirror), a so-called beam splitter may be used. However, from the viewpoint of further improving the utilization factor of light by reflecting by moving the optical axis by the retroreflective element, it is preferable to adopt the same element as the reflective element 3 described above.
 本装置において、入射光軸より入射した光束は、図1と同様に、回折素子2への入射角αと回折角βが一致する波長で最大の回折効率を持ち、入射光軸と平行に射出される。この射出光束をリトロリフレクタ等の再帰反射素子6により再帰反射させる。このとき、再帰反射した光束が元の光軸に対して回転軸方向にオフセットし、その入射面上の射影が元の光軸と一致するように、再帰反射素子6を設置する。 In this apparatus, the light beam incident from the incident optical axis has the maximum diffraction efficiency at a wavelength at which the incident angle α and the diffraction angle β to the diffraction element 2 coincide with each other as in FIG. Is done. The emitted light beam is retroreflected by a retroreflective element 6 such as a retroreflector. At this time, the retroreflective element 6 is installed so that the retroreflected light beam is offset in the rotation axis direction with respect to the original optical axis, and the projection on the incident surface coincides with the original optical axis.
 再帰反射素子6の例としては、上記の通り中空ルーフミラーが好適であるがこれに限定されず、例えば中空リトロリフレクタ、コーナキューブプリズム、直角プリズムを例示することができる。 As an example of the retroreflective element 6, a hollow roof mirror is suitable as described above, but is not limited thereto, and examples thereof include a hollow retroreflector, a corner cube prism, and a right-angle prism.
 再帰反射した光束は元の光路を逆向きに辿り、入射光軸方向に射出される。射出した光束は、入射光軸に対して回転軸方向にオフセットして射出されるため、反射素子7等により容易に入射光軸と分離することが可能である。 The retroreflected light beam follows the original optical path in the reverse direction and is emitted in the direction of the incident optical axis. Since the emitted light beam is emitted with an offset in the direction of the rotation axis with respect to the incident optical axis, it can be easily separated from the incident optical axis by the reflecting element 7 or the like.
 また、入射光束が有限の波長幅を有する場合、射出光束は、射出光軸上で、波長毎にシフトし平行に整列する。スリット等で選択的に波長を取り出す波長フィルターとして有用であり、またモノクロメータとしても使用できる。あるいは、ラインセンサ等で撮像することにより、マルチチャンネル分光器を構成することも可能である。波長フィルターや分光器の中心波長や分解能、バンド幅等は回転機構の回転位相や、回折素子2から再帰反射素子6に至る光路長などで容易に調整・制御可能である。 In addition, when the incident light beam has a finite wavelength width, the emitted light beam is shifted in parallel on the emission optical axis and aligned in parallel. It is useful as a wavelength filter for selectively extracting wavelengths with a slit or the like, and can also be used as a monochromator. Alternatively, a multichannel spectroscope can be configured by imaging with a line sensor or the like. The center wavelength, resolution, bandwidth, and the like of the wavelength filter and the spectroscope can be easily adjusted and controlled by the rotation phase of the rotation mechanism and the optical path length from the diffraction element 2 to the retroreflective element 6.
 前記配置は、実施形態1の光学配置を2重に通過させることに対応しており、回転機構4の回転位相に依らず、該入射・回折角一致の条件を満たす波長λの光束の射出光軸の位置・角度が不変な配置であることは言うまでもないが、これに加えて、前記した軸一致の条件を満たさない場合でも、入射・射出光軸を不変に保つ機能を備える。 The arrangement corresponds to the double passage of the optical arrangement of the first embodiment, and the emitted light of the light beam having the wavelength λ that satisfies the incident / diffraction angle matching condition regardless of the rotation phase of the rotation mechanism 4. It goes without saying that the position and angle of the axes are invariable, and in addition to this, there is a function of keeping the incident and exit optical axes unchanged even when the above-mentioned conditions for matching the axes are not satisfied.
 図1において前記した軸一致の条件を満たさない場合、α=βを満たす波長の射出光軸は、波長変化に伴い平行シフトする。ことのき、射出角度は不変である。平行シフトの量が再帰反射素子6の幅の範囲に収まる限り、再帰反射し入射光軸方向に射出する光束の入射面への射影は、入射光軸と重なるため、本配置は入射・射出光軸を不変に保つ。これは、反射素子2と回折素子3の設置位置アライメントの容易さ、及び回転機構4の軸ブレ等の精度の許容を上昇させ、装置の堅牢化・低コスト化に有用である。 In FIG. 1, when the above-mentioned condition of the axis coincidence is not satisfied, the emission optical axis having a wavelength satisfying α = β shifts in parallel with the wavelength change. At that time, the injection angle is unchanged. As long as the amount of parallel shift is within the range of the width of the retroreflective element 6, the projection onto the incident surface of the light beam that is retroreflected and emitted in the direction of the incident optical axis overlaps the incident optical axis. Keep the axis unchanged. This increases the ease of installation position alignment of the reflecting element 2 and the diffractive element 3 and the tolerance of accuracy such as axial blurring of the rotating mechanism 4, and is useful for making the apparatus robust and cost-effective.
(実施形態3)
 また、図7は、本実施形態に係る光学装置の概略図及び俯瞰図である。本光学装置の工学配置は、実施形態1の光学配置の前後にそれぞれ再帰反射素子6、8を設置した光学配置である。バンド幅可変なバンドパスフィルタの他、群速度分散発生器として有用な配置である。
(Embodiment 3)
FIG. 7 is a schematic view and an overhead view of the optical device according to the present embodiment. The engineering arrangement of the present optical apparatus is an optical arrangement in which retroreflective elements 6 and 8 are installed before and after the optical arrangement of the first embodiment, respectively. In addition to a bandpass filter with variable bandwidth, this arrangement is useful as a group velocity dispersion generator.
 回転機構4上は実施形態1と同様の光学的特性を有する。回折素子2より射出した光束は再帰反射素子6により、射出光束と平行かつ入射平面内にシフトさせて回折素子2へと再入射させる。回折素子2で回折し反射素子3で反射した光束は、入射光軸と平行かつ入射平面内にシフトして射出される。入射光軸方向に再射出した光束は、再帰反射素子8で入射光軸に平行かつ回転軸方向にシフトして反射素子3へ再度入射する。再入射した光束は、入射面内の射影がそれまでの光路と全く一致する光軸で反射素子3、回折素子2、再帰反射素子6、回折素子2、反射素子3の順に反射・回折され、入射光軸方向に再々度射出される。このとき、入射光軸に対して回転軸方向にオフセットして射出されるため、反射素子7等で容易に入射光軸から分離される。 The rotating mechanism 4 has the same optical characteristics as in the first embodiment. The light beam emitted from the diffractive element 2 is shifted by the retroreflective element 6 in parallel to the emitted light beam and within the incident plane, and is incident again on the diffractive element 2. The light beam diffracted by the diffraction element 2 and reflected by the reflection element 3 is emitted parallel to the incident optical axis and shifted into the incident plane. The light beam re-emitted in the direction of the incident optical axis is shifted again in the direction of the rotation axis parallel to the incident optical axis by the retroreflective element 8 and enters the reflective element 3 again. The re-incident light beam is reflected and diffracted in the order of the reflective element 3, the diffractive element 2, the retroreflective element 6, the diffractive element 2, and the reflective element 3 in the order of the optical axis whose projection on the incident surface is exactly the same as the optical path so far. It is emitted again in the direction of the incident optical axis. At this time, since the light is emitted with an offset in the direction of the rotation axis with respect to the incident optical axis, it is easily separated from the incident optical axis by the reflecting element 7 or the like.
 入射光束が有限の波長幅を有する場合、回折素子2を2度通過した後、再帰反射素子8の前で各波長に分離し平行に整列する。その後、再度回折素子2を2度通過することにより1つの光束へと再統合される。再帰反射素子8の前にスリット等を設置し通過する光束を選択することで、高効率で中心波長可変かつ、バンド幅可変なバンドパスフィルタを構成することができる。 When the incident light beam has a finite wavelength width, after passing through the diffraction element 2 twice, it is separated into each wavelength in front of the retroreflective element 8 and aligned in parallel. Thereafter, it is re-integrated into one light beam by passing through the diffraction element 2 twice again. By installing a slit or the like in front of the retroreflective element 8 and selecting a light beam passing therethrough, it is possible to configure a bandpass filter having a highly efficient center wavelength variable and variable bandwidth.
 また、回折素子2から再帰反射素子6を通り、再度回折素子2に至る光路は、波長により光路長が異なるため、高効率かつ波長可変な群速度分散発生器としても利用できる重要かつ汎用性の高い配置である。 Further, since the optical path from the diffraction element 2 through the retroreflective element 6 to the diffraction element 2 again has a different optical path length depending on the wavelength, it is important and versatile to be used as a highly efficient and variable wavelength group velocity dispersion generator. High arrangement.
 また、本実施形態では、実施形態2と同様に、軸一致の条件や回転軸ずれ等の許容度が高い光学配置である。 Further, in the present embodiment, as in the second embodiment, the optical arrangement has a high tolerance such as a condition of matching the axes and a rotational axis deviation.
(実施例)
 ここで、上記実施形態に係る光学配置を使用した装置の具体的な適用例について説明する。
(Example)
Here, a specific application example of the apparatus using the optical arrangement according to the embodiment will be described.
(実施例1)
 図8は本発明の一形態に係る波長可変フィルターを波長選択素子として使用した、広帯域に低損失な外部共振レーザの概略を示した図である。
Example 1
FIG. 8 is a diagram schematically showing an external resonant laser having a low loss in a wide band using the wavelength tunable filter according to one embodiment of the present invention as a wavelength selection element.
 レーザダイオードチップ9及びコリメーションレンズ10からのコリメート光を入射光とし、回折素子2としてVPH-Gが、反射素子3として全反射ミラーが、回転機構4となる構造体に組み付けられている。 The collimated light from the laser diode chip 9 and the collimation lens 10 is used as incident light, the VPH-G as the diffraction element 2, and the total reflection mirror as the reflection element 3 are assembled in the structure serving as the rotation mechanism 4.
 またレーザダイオードチップ9は低反射コートを施した面と高反射コートを施した面からなり、レーザダイオードチップ9からの射出光は低反射コートを施した面から射出する。レーザダイオードチップ9及びコリメーションレンズ10から射出する波長可変フィルターへの入射光は、幅広い波長帯域を有する自然放出光増幅(ASE)光である。 The laser diode chip 9 has a surface with a low reflection coating and a surface with a high reflection coating, and light emitted from the laser diode chip 9 is emitted from a surface with a low reflection coating. Light incident on the wavelength tunable filter emitted from the laser diode chip 9 and the collimation lens 10 is spontaneous emission amplification (ASE) light having a wide wavelength band.
 回折素子2、反射素子3、回転機構4からなる波長可変フィルターを通過したASE光のうち、α=β=Asin(Nmλ/2)の条件を満たす波長λの光束は入射光軸と平行に反射素子3から射出され、それ以外の波長の光束は入射光軸とは異なる角度で射出される。射出光軸上に、入射光軸に対して垂直の角度でハーフミラー11を設置すると、該光束のみが正反射し、再び反射素子3、回折素子2、コリメーションレンズ10を通過し、レーザダイオードチップに入射する。これにより、レーザダイオードチップ9の高反射面とハーフミラーの前面とが外部共振を為し、波長可変フィルターにより選択された波長の光がレーザ発振する。 Of the ASE light that has passed through the wavelength tunable filter including the diffractive element 2, the reflective element 3, and the rotating mechanism 4, the light flux having the wavelength λ that satisfies the condition of α = β = Asin (Nmλ / 2) is reflected parallel to the incident optical axis. Light beams having other wavelengths emitted from the element 3 are emitted at an angle different from the incident optical axis. When the half mirror 11 is installed on the emission optical axis at an angle perpendicular to the incident optical axis, only the luminous flux is specularly reflected, and again passes through the reflective element 3, the diffractive element 2, and the collimation lens 10, and the laser diode chip. Is incident on. As a result, the high reflection surface of the laser diode chip 9 and the front surface of the half mirror resonate with each other, and light having a wavelength selected by the wavelength tunable filter is laser-oscillated.
 共振器により発振するレーザ光の波長はVPH-Gの高回折効率条件を常に満たすため、広帯域にわたり低損失な外部共振器が実現される。 Since the wavelength of the laser light oscillated by the resonator always satisfies the high diffraction efficiency condition of VPH-G, an external resonator having a low loss over a wide band is realized.
 レーザ発振する波長は波長可変フィルターの波長選択により可変となり、波長変化の際に射出レーザ光の光軸は不変となるため、波長可変光源としての利便性に優れている。 The laser oscillation wavelength is variable by selecting the wavelength of the wavelength tunable filter, and the optical axis of the emitted laser light does not change when the wavelength changes, so that it is excellent in convenience as a wavelength tunable light source.
 レーザ光源のノイズであるレーザ光とは事なる波長を持つASE光の光軸はレーザ光と重畳していないため、レーザ光と分離され完全に遮断され、高いスペクトル純度を持つASE-Freeな波長可変レーザ光源が実現する。 Since the optical axis of the ASE light having a wavelength different from that of the laser light, which is noise of the laser light source, does not overlap with the laser light, it is separated from the laser light and completely blocked, and has an ASE-Free wavelength with high spectral purity. A variable laser light source is realized.
 本発明に係る波長フィルターを波長選択素子として用いたASE-Free波長可変レーザ光源について、図9に原理実証実験時の装置写真を、図10にプロトタイプ機の写真を示す。 FIG. 9 shows a photograph of the device during a proof-of-principle experiment and FIG. 10 shows a photograph of a prototype machine for an ASE-Free tunable laser light source using the wavelength filter according to the present invention as a wavelength selection element.
 図11はプロトタイプ機から出力されたレーザ光強度のLD注入電流値依存性である。ASE光が顕在化するゲイン端の発振波長1090nmにおいても、発振閾値まで出力は0に近接しており、1090nm以外のASE光がレーザ出力から排除されている(ASE-Free)ことが確認された。 FIG. 11 shows the dependence of the laser beam intensity output from the prototype machine on the LD injection current value. Even at an oscillation wavelength of 1090 nm at the gain edge where ASE light becomes apparent, the output is close to 0 up to the oscillation threshold, and it was confirmed that ASE light other than 1090 nm was excluded from the laser output (ASE-Free). .
(実施例2)
 図12は、上記実施形態3の光学配置を利用してバンドパスフィルタを構成した際の写真である。反射素子3と回折素子2が回転ステージ4に組み付いており、その前後に再帰反射素子6と8、射出用の反射素子7が配置されている。バンドパスフィルタの中心波長は回転ステージ4の回転位相により決定し、バンド幅は、回折素子2で回折される光束のうち再帰反射素子6へ入射可能な波長により決定される。なお、バンド幅調整のため、再帰反射素子6は直動ステージに組み付いている。
(Example 2)
FIG. 12 is a photograph of a band pass filter configured using the optical arrangement of the third embodiment. The reflective element 3 and the diffractive element 2 are assembled to the rotary stage 4, and retroreflective elements 6 and 8 and a reflective element 7 for emission are disposed before and after the reflective element 3 and the diffractive element 2. The center wavelength of the bandpass filter is determined by the rotational phase of the rotary stage 4, and the bandwidth is determined by the wavelength that can enter the retroreflective element 6 among the light beams diffracted by the diffraction element 2. In order to adjust the bandwidth, the retroreflective element 6 is assembled to the linear motion stage.
 図13にバンドパスフィルターの波長選択結果を示す。系に入射する光束、及びバンドパスにより波長選択された光束をシングルモード偏波面保存ファイバに結合し、分光器によりスペクトルを取得した。系への入射光束は1000nmから1100nmにわたる広帯域なスペクトル幅を有し、本系により中心波長1010nm及び、1050nmに波長選択された。中心波長の選択は回転機構4の回転位相の調整だけで行われる。また、回折素子2から再帰反射素子6へ至る光路の長さでバンド幅が規定できる。本系においては5 nm~10nmの幅でバンド幅が調整でき、図13の実線と点線はそれぞれ5nmと10 nmとした際のスペクトルである。バンド幅は回折素子2のライン数やスリットの使用などにより自由に調整することが可能である。 Fig. 13 shows the wavelength selection result of the bandpass filter. A light beam incident on the system and a light beam selected by a band pass were coupled to a single-mode polarization-maintaining fiber, and a spectrum was acquired by a spectroscope. The incident light flux to the system has a broad spectrum width ranging from 1000 nm to 1100 nm, and the wavelength was selected by this system to the center wavelengths of 1010 nm and 1050 nm. The selection of the center wavelength is performed only by adjusting the rotation phase of the rotation mechanism 4. Further, the bandwidth can be defined by the length of the optical path from the diffraction element 2 to the retroreflective element 6. In this system, the bandwidth can be adjusted by a width of 5 nm to 10 nm, and the solid line and the dotted line in FIG. 13 are spectra when they are 5 nm and 10 nm, respectively. The bandwidth can be freely adjusted by the number of lines of the diffractive element 2 and the use of slits.
 本系によるバンドパスフィルタは少なくとも50dB(OD5)を超えるブロッキング性能を有し、迷光も観測されていない。さらに1nmを下回る急峻な立ち上がり幅を有している。急峻性は波長選択時のビーム径に依存しており、レンズ等の使用によりさらに急峻にすることも可能である。 The band-pass filter of this system has a blocking performance exceeding at least 50 dB (OD5), and no stray light is observed. Furthermore, it has a steep rise width of less than 1 nm. The steepness depends on the beam diameter at the time of wavelength selection, and can be further steepened by using a lens or the like.
 図14に本系の透過率の波長依存性を示す。本系に単色光を入射させ、その出力、及びシングルモード偏波面保存ファイバカップル後の出力を入射光強度と比較した。回折素子2での4回の回折と反射素子等での11回の反射に関わらず、フリースペースで60%を上回る最大透過率を有しており、100nmにわたって50%以上の透過率を有する。 Fig. 14 shows the wavelength dependence of the transmittance of this system. Monochromatic light was incident on this system, and its output and the output after single-mode polarization-preserving fiber coupling were compared with the incident light intensity. Regardless of four diffractions at the diffraction element 2 and eleven reflections at the reflection element, etc., it has a maximum transmittance of more than 60% in free space and a transmittance of 50% or more over 100 nm.
 また、回転ステージの回転、及び直動ステージの移動に際しても、シングルモード偏波保存ファイバへのカップリングは良好を保ったままであり、再帰反射素子を用いる本配置は、堅牢性の高い光学装置を容易に実現できる。 Also, the rotation to the rotation stage and the movement of the linear motion stage remain in good coupling with the single-mode polarization-maintaining fiber, and this arrangement using the retroreflective element is a highly robust optical device. It can be easily realized.
(実施例3)
 また、実施形態3の光学配置で構成した群速度分散発生器の実施例を以下に示す。構築した系は実施例2の図12と同様である。
(Example 3)
An example of the group velocity dispersion generator configured by the optical arrangement of the third embodiment is shown below. The constructed system is the same as that of FIG.
 図15は波長可変レーザとEO変調器、及び群速度分散発生器によるパルス圧縮を利用した波長可変ピコ秒レーザのブロックダイアグラムである。 FIG. 15 is a block diagram of a tunable picosecond laser using pulse compression by a tunable laser, an EO modulator, and a group velocity dispersion generator.
 本実施例においては、980nmから1080nmまで波長可変な波長可変レーザの連続波・単一周波数出力(10mW)程度を光源とし、EO周波数変調器により10 GHzの周波数変調をかけ、キャリア周波数を中心とした20本程度の光コム(波長幅0.5 nm程度)を生成する。この光コム出力にEO強度変調器により10GHzの強度変調をかけ、両変調器間の位相差調整によりアップチャープ部分のみを取り出す。このアップチャープドパルスを980nmから1080nmまでの広帯域光増幅器により1Wまで増幅した後、群速度分散発生器によりパルス圧縮し、10W-3psのパルス列を生成する。 In this embodiment, a continuous wave / single frequency output (10 mW) of a wavelength tunable laser whose wavelength is tunable from 980 nm to 1080 nm is used as a light source, frequency modulation of 10 GHz is performed by an EO frequency modulator, and the carrier frequency is the center. About 20 optical combs (wavelength width of about 0.5 nm) are generated. The optical comb output is intensity-modulated at 10 GHz by an EO intensity modulator, and only the up-chirp portion is extracted by adjusting the phase difference between the two modulators. This up-chirped pulse is amplified to 1 W by a broadband optical amplifier from 980 nm to 1080 nm, and then pulse-compressed by a group velocity dispersion generator to generate a pulse train of 10 W-3 ps.
 図16に、EO強度変調器の出力である、パルス圧縮前のアップチャープの光コムスペクトルを示す。 FIG. 16 shows the optical comb spectrum of the up-chirp before pulse compression, which is the output of the EO intensity modulator.
 アップチャープドパルスは、回折格子等の分散素子を利用した群速度分散発生器によりパルス圧縮することが可能である。図17に、単色で用いられる一般的なパルス圧縮系を示す。Lは分散素子間の距離である。Lは中心波長や波長幅、分散素子の分散により異なり、例えばライン数1700本/mmの回折格子を用いた場合、0.6nm程度のチャープドパルスの圧縮に必要な素子間距離Lは、図18のような波長依存性となる。
 
The up-chirped pulse can be pulse-compressed by a group velocity dispersion generator using a dispersion element such as a diffraction grating. FIG. 17 shows a general pulse compression system used in a single color. L is the distance between the dispersive elements. L varies depending on the center wavelength, wavelength width, and dispersion of the dispersive element. For example, when a diffraction grating having 1700 lines / mm is used, the inter-element distance L required for compression of a chirped pulse of about 0.6 nm is shown in FIG. As shown in FIG.
 従来の系で広帯域な波長変化に対応するためには、回折格子の回折効率や射出角度を調整する複数台の回転ステージと、回転ステージ間の距離を変えるための直動ステージ等が必要となるため、かなり大掛かりな系とならざるを得ない。 In order to cope with a wide-range wavelength change in the conventional system, a plurality of rotary stages for adjusting the diffraction efficiency and the emission angle of the diffraction grating and a linear motion stage for changing the distance between the rotary stages are required. Therefore, it must be a fairly large system.
 図12に示した光学装置を用いることで、一軸の回転と一つの直動ステージのみで広帯域に波長可変な高効率パルス圧縮系を構成することが可能である。 By using the optical apparatus shown in FIG. 12, it is possible to construct a high-efficiency pulse compression system that can tune the wavelength in a wide band only by one axis rotation and one linear motion stage.
 図19に、実際に図11の装置を用いてパルス圧縮した際の、パルス圧縮前後の時間波形を示す。時間波形はオートコリレータにより取得した。 FIG. 19 shows time waveforms before and after pulse compression when the pulse compression is actually performed using the apparatus of FIG. The time waveform was acquired with an autocorrelator.
 得られた時間波形の幅はオートコリメータによる自己相関波形であり、この波形から算出された圧縮パルスの時間幅は5psである。また、図19に示した波形は中心波長1040nmにおいて取得したものであるが、本系では980nmから1080nmまでの波長域において同様のピコ秒パルスが得られている。この波長帯域は本発明の一例に過ぎず、光源レーザ、EO変調器、光増幅器、透過回折格子などを変更することで、あらゆる波長帯域において、本系を用いたパルス圧縮を行うことができる。 The width of the obtained time waveform is an autocorrelation waveform by an autocollimator, and the time width of the compressed pulse calculated from this waveform is 5 ps. The waveform shown in FIG. 19 is acquired at the center wavelength of 1040 nm. In the present system, similar picosecond pulses are obtained in the wavelength region from 980 nm to 1080 nm. This wavelength band is only an example of the present invention, and pulse compression using this system can be performed in any wavelength band by changing the light source laser, the EO modulator, the optical amplifier, the transmission diffraction grating, and the like.
 この系の透過率の波長依存性、ファイバカップルの安定性は、実施例2の図13で示される値と同様であり、広い波長帯域で高く安定的な透過率を有している。 The wavelength dependency of the transmittance of this system and the stability of the fiber couple are the same as the values shown in FIG. 13 of Example 2, and have a high and stable transmittance in a wide wavelength band.
 本装置に係る群速度分散発生光学系において、回転ステージには反射素子3と回折素子2だけが設置されておればよく、小型・安価なステージで実現可能である。群速度分散の量は、回折素子2から再帰反射素子3を反射し再度回折素子2に至る光路の長さで調整可能であり、本系では一軸の直動ステージに組み付けた再帰反射素子3の位置変化によりなしている。これらにより、広帯域に高い透過率を実現するだけでなく、高価なオプティクスやステージの数を最小限に減らし、省スペースかつ低コスト化にも有益である。 In the group velocity dispersion generating optical system according to the present apparatus, only the reflecting element 3 and the diffractive element 2 need be installed on the rotary stage, which can be realized with a small and inexpensive stage. The amount of group velocity dispersion can be adjusted by the length of the optical path that reflects the retroreflective element 3 from the diffractive element 2 and reaches the diffractive element 2 again. In this system, the amount of the group velocity dispersion of the retroreflective element 3 assembled on a uniaxial linear motion stage This is done by changing the position. This not only realizes high transmittance in a wide band, but also reduces the number of expensive optics and stages to a minimum, which is beneficial for space saving and cost reduction.
 本装置は、光学装置として産業上利用可能性がある。 This device has industrial applicability as an optical device.

Claims (4)

  1.  透過型回折素子と、反射素子と、前記透過型回折素子と前記反射素子を支持する回転機構とを備え、前記透過型回折素子と前記反射素子が、前記回転機構の回転軸回りに回転する機能を備える光学装置。 A transmission diffraction element; a reflection element; and a rotation mechanism that supports the transmission diffraction element and the reflection element, wherein the transmission diffraction element and the reflection element rotate around a rotation axis of the rotation mechanism. An optical device comprising:
  2.  前記配置において、前記回折素子における回折格子平面と、前記反射素子における反射面との交線が、前記回転機構の回転軸と一致して配置される請求項1記載の光学装置。 The optical apparatus according to claim 1, wherein, in the arrangement, an intersection line between a diffraction grating plane of the diffraction element and a reflection surface of the reflection element coincides with a rotation axis of the rotation mechanism.
  3.  前記回折素子における回折格子平面と、前記反射素子における反射面とが、90度の角度を為し、前記回転機構の回転軸と一致して配置される請求項1記載の光学装置。 The optical apparatus according to claim 1, wherein the diffraction grating plane of the diffraction element and the reflection surface of the reflection element form an angle of 90 degrees and are aligned with the rotation axis of the rotation mechanism.
  4.  透過型回折素子と、反射素子と、前記透過型回折素子と前記反射素子を支持する回転機構を備え、前記透過型回折素子と前記反射素子が、前記回転機構の回転軸回りに回転する機能を備え、かつ、前記回転機構の外側に再帰反射光学素子を備える光学装置。 A transmissive diffractive element; a reflective element; and a rotating mechanism that supports the transmissive diffractive element and the reflective element, wherein the transmissive diffractive element and the reflective element have a function of rotating around a rotation axis of the rotating mechanism. And an optical device including a retroreflective optical element outside the rotation mechanism.
PCT/JP2017/042695 2016-11-29 2017-11-28 Optical device WO2018101281A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018554168A JP6893039B2 (en) 2016-11-29 2017-11-28 Optical device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-231893 2016-11-29
JP2016231893 2016-11-29

Publications (1)

Publication Number Publication Date
WO2018101281A1 true WO2018101281A1 (en) 2018-06-07

Family

ID=62242228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/042695 WO2018101281A1 (en) 2016-11-29 2017-11-28 Optical device

Country Status (2)

Country Link
JP (1) JP6893039B2 (en)
WO (1) WO2018101281A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022033585A (en) * 2020-08-17 2022-03-02 アンリツ株式会社 Pulse modulated light measuring method, pulse modulated light measuring program, and optical spectrum analyzer
JP2022057669A (en) * 2020-09-30 2022-04-11 サンテック株式会社 Wavelength variable filter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6583873B1 (en) * 2000-09-25 2003-06-24 The Carnegie Institution Of Washington Optical devices having a wavelength-tunable dispersion assembly that has a volume dispersive diffraction grating
JP2010525604A (en) * 2008-01-18 2010-07-22 オープンベース カンパニーリミテッド Wavelength tuning apparatus and method
WO2015056049A1 (en) * 2013-10-15 2015-04-23 Uab Mgf Sviesos Konversija Laser pulse stretcher and compressor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6583873B1 (en) * 2000-09-25 2003-06-24 The Carnegie Institution Of Washington Optical devices having a wavelength-tunable dispersion assembly that has a volume dispersive diffraction grating
JP2010525604A (en) * 2008-01-18 2010-07-22 オープンベース カンパニーリミテッド Wavelength tuning apparatus and method
WO2015056049A1 (en) * 2013-10-15 2015-04-23 Uab Mgf Sviesos Konversija Laser pulse stretcher and compressor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022033585A (en) * 2020-08-17 2022-03-02 アンリツ株式会社 Pulse modulated light measuring method, pulse modulated light measuring program, and optical spectrum analyzer
JP7136854B2 (en) 2020-08-17 2022-09-13 アンリツ株式会社 Pulse-modulated light measurement method, pulse-modulated light measurement program, and optical spectrum analyzer
JP2022057669A (en) * 2020-09-30 2022-04-11 サンテック株式会社 Wavelength variable filter
US11927770B2 (en) 2020-09-30 2024-03-12 santec Holdings Corporation Variable wavelength filter

Also Published As

Publication number Publication date
JPWO2018101281A1 (en) 2020-01-09
JP6893039B2 (en) 2021-06-23

Similar Documents

Publication Publication Date Title
JP5558839B2 (en) Method, arrangement and apparatus for utilizing a wavelength swept laser using angular scanning and dispersion procedures
JP4425411B2 (en) Tunable laser source
WO2016013653A1 (en) Semiconductor laser device
JP4947367B2 (en) External resonator type tunable light source
US10969596B2 (en) Tunable spectral slicer and methods of use
JP4885494B2 (en) Tunable laser light source
EP1587185A1 (en) Wavelength tunable light sources and methods of operating the same
WO2018101281A1 (en) Optical device
EP0411942B1 (en) Parametric pulsed laser system
US9448363B2 (en) Device for compensation of time dispersion applied to the generation of ultrashort light pulses
US7116848B2 (en) Optical spectrum analyzer using a diffraction grating and multi-pass optics
US20120224181A1 (en) Wide-Band/High-Resolution Tunable Spectral Filter
JP5223064B2 (en) Wavelength scanning laser light source
JP4794720B2 (en) Laser source that filters out applied spontaneous emissions together
US9720250B1 (en) Tunable optical filter with adjustable bandwidth
US20050157397A1 (en) Wide-angle polarization-independent narrow-band spectral filter and method
CN107248691B (en) Programmable control ultra-short pulse fiber laser based on digital micromirror device
WO2012126427A2 (en) Laser with tunable outer cavity and method for using same
US20140209795A1 (en) High resolution fast tunable filter using a tunable comb filter
JP5988691B2 (en) Spectroscopic apparatus and confocal scanning microscope having the same
US8786924B1 (en) Grating for tuning a light source
JP2005338475A (en) Optical filter device
CA2396751A1 (en) Cascaded raman resonator with sampled grating structure
JP2004140172A (en) External cavity laser beam source
SU754221A1 (en) Interference filter with selective amplitude modulation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17876527

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018554168

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17876527

Country of ref document: EP

Kind code of ref document: A1