WO2018101256A1 - Die and method for manufacturing same - Google Patents

Die and method for manufacturing same Download PDF

Info

Publication number
WO2018101256A1
WO2018101256A1 PCT/JP2017/042611 JP2017042611W WO2018101256A1 WO 2018101256 A1 WO2018101256 A1 WO 2018101256A1 JP 2017042611 W JP2017042611 W JP 2017042611W WO 2018101256 A1 WO2018101256 A1 WO 2018101256A1
Authority
WO
WIPO (PCT)
Prior art keywords
base portion
mold
shaping
cavity
powder
Prior art date
Application number
PCT/JP2017/042611
Other languages
French (fr)
Japanese (ja)
Inventor
吉田 徳雄
田中 健一
阿部 諭
内野々 良幸
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2018554157A priority Critical patent/JP6785478B2/en
Publication of WO2018101256A1 publication Critical patent/WO2018101256A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/06Permanent moulds for shaped castings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/02Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing

Definitions

  • the present invention relates to a mold and a method of manufacturing the same. More particularly, the present invention relates to a mold comprising a shaped part and a shaped base part joined to the shaped part, and a method of manufacturing the same.
  • molding technology using molds Such molding techniques include, for example, pressure molding and injection molding. In these molding methods, molded articles are finally obtained from the molding material to be provided in the cavity in the mold.
  • Such a mold can be manufactured using a method of sequentially forming a plurality of solidified layers by light beam irradiation.
  • Such methods include, for example, the "powder bed melt bonding method".
  • "Powder bed melt bonding” is a method of producing a three-dimensional shaped object that is used as a mold or as a component of a mold by irradiating a powder material with a light beam. In this method, powder layer formation and solidified layer formation are alternately repeated based on the following steps (i) and (ii) to produce a three-dimensional shaped object.
  • the resulting three-dimensional shaped object can be used as a mold.
  • the squeegee blade 23 is moved to a predetermined thickness on the shaping base portion 21
  • the powder layer 22 is formed (see FIG. 11A).
  • a predetermined portion of the powder layer 22 is irradiated with the light beam L to form a solidified layer 24 from the powder layer 22 (see FIG. 11B).
  • a new powder layer is formed on the obtained solidified layer, and the light beam is irradiated again to form a new solidified layer.
  • the solidified layer 24 is laminated (see FIG.
  • the three-dimensional structure of the laminated solidified layer 24 is obtained.
  • a shaped object can be obtained. Since the solidified layer 24 formed as the lowermost layer is in a state of being bonded to the shaping base portion 21, the three-dimensional shaped object and the shaping base portion 21 form an integral body, and the integral body is used as a mold it can.
  • the present inventors have found that the following problems may occur when using an integrated product of the three-dimensional shaped object 100 'and the shaping base portion 21' as the mold 200 '(see FIG. 14).
  • the shape etc. of the three-dimensional shaped object 100 'finally obtained can be freely
  • the surface 100a 'of the three-dimensional shaped object 100' may generally be used as the cavity forming surface 200a 'of the mold 200'.
  • pores 50 ′ having a plurality of fine dimensions may be generated on the surface 100 a ′ of the three-dimensional shaped object 100 ′. Therefore, when using the surface 100a 'of the three-dimensional shaped object 100' where such a pore 50 'can occur as the cavity forming surface 200a' of the mold 200 ', a molded article finally obtained due to the generation of the pore 50'. There is a possibility that the transfer accuracy of the cavity forming surface 200a 'with respect to this may be reduced.
  • an object of the present invention is to provide a mold capable of avoiding a decrease in transfer accuracy of the cavity forming surface 200 a ′ with respect to a finally obtained molded product, and a method of manufacturing the same.
  • a mold comprising a shaped part and a shaped base joined to the shaped part, wherein A mold is provided, wherein the shaped base portion has a cavity forming surface.
  • a method of manufacturing a mold Forming a shaped portion by sequentially forming a plurality of solidified layers on the shaping base portion by light beam irradiation; Providing a cavity forming surface on the shaping base portion.
  • Sectional drawing which showed typically the technical idea of the manufacturing method of the metal mold
  • Sectional drawing which showed typically the manufacturing method of the metal mold
  • Sectional view schematically showing a method of manufacturing a mold according to another embodiment of the present invention Sectional drawing which showed typically the manufacturing method of the metal mold
  • Sectional drawing which showed typically the manufacturing method of the metal mold
  • the perspective view which showed the structure of the optical shaping compound processing machine typically Flow chart showing the general operation of the stereolithography compound processing machine
  • a three-dimensional shaped object to be used as a mold or a component of a mold by utilizing a method of sequentially forming a plurality of solidified layers by light beam irradiation.
  • Such methods include the "powder bed fusion bonding method” and the “LMD (Laser Metal Deposition) method".
  • Powder bed fusion bonding method The powder bed fusion bonding method is described below.
  • an optical shaping composite processing in which a cutting process of a three-dimensional shaped object is additionally performed will be exemplified.
  • FIG. 11 schematically shows the process aspect of the optical shaping composite processing
  • FIGS. 12 and 13 are flowcharts of the main configuration and operation of the optical shaping composite processing machine capable of performing the powder bed fusion bonding method and the cutting process. Respectively.
  • the optical shaping combined processing machine 1 is provided with a powder layer forming means 2, a light beam irradiating means 3 and a cutting means 4 as shown in FIG.
  • the powder layer forming means 2 is a means for forming a powder layer by laying a powder such as a metal powder or a resin powder with a predetermined thickness.
  • the light beam irradiation means 3 is a means for irradiating the light beam L to a predetermined portion of the powder layer.
  • the cutting means 4 is a means for shaving the surface of the laminated solidified layer, that is, the surface of the three-dimensional shaped object.
  • the powder layer forming means 2 mainly comprises a powder table 25, a squeezing blade 23, a shaping table 20 and a shaping base portion 21 as shown in FIG.
  • the powder table 25 is a table which can move up and down in the powder material tank 28 whose outer periphery is surrounded by the wall 26.
  • the squeezing blade 23 is a blade that can be moved horizontally to provide the powder 19 on the powder table 25 onto the shaping table 20 to obtain the powder layer 22.
  • the modeling table 20 is a table that can be moved up and down in the modeling tank 29 whose outer periphery is surrounded by the wall 27.
  • the modeling base part 21 is distribute
  • the light beam irradiating means 3 mainly comprises a light beam oscillator 30 and a galvano mirror 31 as shown in FIG.
  • the light beam oscillator 30 is a device that emits a light beam L.
  • the galvano mirror 31 is a means for scanning the emitted light beam L onto the powder layer 22, that is, a means for scanning the light beam L.
  • the cutting means 4 mainly comprises an end mill 40 and a drive mechanism 41, as shown in FIG.
  • the end mill 40 is a cutting tool for shaving the surface of the laminated solidified layer, that is, the surface of the three-dimensional shaped object.
  • the drive mechanism 41 is a means for moving the end mill 40 to a desired cutting position.
  • the operation of the optical forming combined processing machine 1 is composed of a powder layer forming step (S1), a solidified layer forming step (S2) and a cutting step (S3) as shown in the flowchart of FIG.
  • the powder layer forming step (S1) is a step for forming the powder layer 22.
  • the shaping table 20 is lowered by ⁇ t (S11) so that the level difference between the upper surface of the shaping base portion 21 and the upper end surface of the shaping tank 29 becomes ⁇ t.
  • the squeezing blade 23 is moved horizontally from the powder material tank 28 toward the shaping tank 29, as shown in FIG.
  • the solidified layer forming step (S2) is a step of forming the solidified layer 24 by light beam irradiation.
  • the light beam L is emitted from the light beam oscillator 30 (S21), and the light beam L is scanned to a predetermined place on the powder layer 22 by the galvano mirror 31 (S22). Thereby, the powder of the predetermined part of the powder layer 22 is sintered or melted and solidified to form a solidified layer 24 as shown in FIG. 11B (S23).
  • a carbon dioxide gas laser, an Nd: YAG laser, a fiber laser or ultraviolet light may be used as the light beam L.
  • the powder layer forming step (S1) and the solidified layer forming step (S2) are alternately repeated. Thereby, as shown in FIG. 11C, a plurality of solidified layers 24 are laminated.
  • the cutting step (S3) is a step for scraping the surface of the laminated solidified layer 24, ie, the surface of the three-dimensional shaped object.
  • the cutting step is started by driving the end mill 40 (see FIGS. 11 (c) and 12) (S31). For example, when the end mill 40 has an effective blade length of 3 mm, a cutting process of 3 mm can be performed along the height direction of the three-dimensional shaped object, so if ⁇ t is 0.05 mm, 60 layers When the solidified layer 24 is laminated, the end mill 40 is driven.
  • the surface of the laminated solidified layer 24 is subjected to a cutting process (S32).
  • a cutting process S32
  • the three-dimensional shaped object of since the solidified layer 24 formed as the lowermost layer is in a state of being bonded to the shaping base portion 21, the three-dimensional shaped object and the shaping base portion 21 form an integral body, and the integral body is used as a mold. It can be used as
  • the “LMD method” is a method of forming a solidified layer by substantially simultaneously supplying a raw material and irradiating a light beam on a modeling base. Compared to the above-described powder bed melt bonding method, the LMD method is characterized in that the step of forming a powder layer is not included in obtaining a solidified layer.
  • a powder or a filler may be used as a raw material used in the LMD method. That is, in the LMD method, the raw material supply portion is irradiated with the light beam, and the powder or the filler material as the raw material is supplied to form a solidified layer from the supplied powder or the filler material.
  • the type of powder may be the same as the type of powder used in the powder bed melt bonding process.
  • the filler material refers to the welding material, and refers to one that can melt when irradiated with a light beam.
  • the material of the filler is not particularly limited, but may be metal.
  • the shape of the filler is not particularly limited, but from the viewpoint of the ease of supply of the filler as a raw material to the raw material supply location to which the light beam is irradiated, the wire shape or rod shape is elongated The shape is preferred.
  • the supplied powder is sintered or solidified by light beam irradiation to form a solidified layer directly from the powder.
  • the powder is spray-supplied to the irradiated portion of the light beam to sinter or solidify the powder to form a solidified layer.
  • the filler material when a filler material is used as the raw material, the filler material is supplied to the irradiated part of the light beam, a part of the filler material is melted by the light beam, and a part of the filler material is melted thereby. Form a solidified layer.
  • the process proceeds to a cutting step, and finally, a three-dimensional shaped object having a desired shape comprising the solidified layer laminated is obtained.
  • the solidified layer formed as the lowermost layer is in a state of being bonded to the shaping base portion, the three-dimensional shaped object and the shaping base portion form an integral product, and the integrated component can be used as a mold. .
  • the inventors of the present invention can produce pores 50 'on the surface 100a' when the surface 100a 'of the three-dimensional shaped object 100' is used as the cavity forming surface 200a 'of the mold 200' as shown in FIG. It has been found that there is a possibility that the transfer accuracy of the cavity forming surface 200a 'with respect to the finally obtained molded product may be reduced due to the above. Therefore, the inventors of the present invention have studied earnestly in order to solve such technical problems, and came to devise a method of manufacturing a mold according to an embodiment of the present invention.
  • An embodiment of the present invention differs from the previous embodiments in which the surface of a three-dimensional shaped object obtained by a method of sequentially forming a plurality of solidified layers by light beam irradiation is used as a cavity forming surface of a mold. It has a feature in that it corresponds to
  • a three-dimensional shaped object formed by a method of sequentially forming a plurality of solidified layers by irradiation with a light beam, and a forming base portion joined to the three-dimensional shaped object
  • the present invention is characterized in that the shaping base portion is effectively used.
  • the “shaped portion” as referred to in the present specification refers to a method of sequentially forming a plurality of solidified layers by irradiation with a light beam, for example, those obtained by a powder bed fusion bonding method and / or an LMD method.
  • the “three-dimensional shaped object” in The “fabrication base portion” as referred to in the present specification means, in a broad sense, a base (base) for forming (fabrication) a molding portion.
  • the “shaped base portion” referred to in the present specification is not the above-described powder bed melt bonding method and / or LMD method, but a metal melt obtained by pouring a molten metal material into a mold having a predetermined shape, for example.
  • the term “cavity” refers to a space area (cavity) formed when the movable mold on one side and the stationary mold on the other side are mold-aligned.
  • the term “cavity forming surface” as used herein refers to a surface that forms a space area (cavity) formed during mold alignment of one movable mold and the other fixed mold.
  • the manufacturing method of the die 200A according to an embodiment of the present invention is characterized in that provision of the cavity forming surface 21A 11 into a shaped base portion 21A.
  • a feature is a point that is significantly different from the conventional aspect in which the surface of the three-dimensional shaped object is used as the cavity forming surface of the mold.
  • the overall shape of the shaping base portion 21A is not particularly limited as long as the shaping portion 100A can be formed on the shaping base portion 21A and the cavity forming surface 21A 11 can be provided to the shaping base portion 21A. . If an example is given, modeling base part 21A can take forms, such as rectangular parallelepiped shape and a cylindrical shape.
  • the surface (principal surface) of the shaping base portion 21A preferably has a planar shape.
  • the thickness of the shaping base portion 21A preferably has a cavity forming surface 21A 11 suitably formable thickness having a desired shape and dimensions.
  • the third, cavity forming surface 21A 11 to be subjected to the shaping base portion 21A preferably has a hardness achievable structural strength to withstand the forces exerted on the forming surface during molding.
  • the shaping base portion 21A be made of an iron-based material having relatively high rigidity.
  • the present invention because it forms a cavity forming surface 21A 11 into a shaped base portion 21A side, need not necessarily be used in the formation of the shaped portion 100A rigidity is relatively high iron-based powder. Therefore, as the metal powder for forming the shaped part 100A, it is possible to use a powder mainly composed of a copper-based powder and / or an aluminum-based powder having relatively high thermal conductivity. Details will be described later.
  • the cavity formation surface is not formed on the surface 100A 1 of the shaped portion 100A side of the mold 200A.
  • a method of sequentially forming a plurality of solidified layers 24A by irradiation with a light beam L, for example, the surface of a shaped part 100A (corresponding to a three-dimensional shaped object 100 'in the conventional embodiment (see FIG. 14)) obtained by powder bed fusion bonding method May have pores.
  • the cavity forming surface 21A 11 (a mold which is finally obtained in the shaping base portion 21A in which such pores can not occur, not the surface 100A 1 on the side of the shaped portion 100A where such pores can occur corresponds to the code 200A 1 in 200A) can be formed.
  • the molding material can be suitably filled in the cavity formed by the cavity forming surface 200A 1 because the pore can not occur. It can be done.
  • a suitable molding material into such cavity, it is possible to avoid the deterioration of the transfer accuracy of the cavity forming surface 200A 1 for finally obtained molded article. In other words, it is possible to improve the transfer accuracy of the cavity forming surface 200A 1 for finally obtained molded article.
  • the manufacturing method according to an embodiment of the present invention preferably adopts the following aspect.
  • the bottom of a forming base refers to the bottom of a base for forming (forming) a forming part in a broad sense, and in the narrow sense, the bottom of a forming base that is a base for forming a forming part Point to
  • the “bottom surface” refers to the lower surface or the base surface of a base (modeling base portion) for forming the modeling portion.
  • the formation base portion 21A is to be a base for forming the formation portion 100A. Therefore, the surface from the viewpoint of reducing the aspect and mold 200A overall dimensions size forming such shaped portion 100A in a stable condition, the main surface 21A 1 of the shaping base portion 21A, including a generally shaped base bottom 21A 12 It can be an area. More specifically, in a cross-sectional view, a width dimension of the main surface 21A 1 of the shaping base portion 21A comprising a shaped base bottom 21A 12 is relatively larger than the height of the side surface 21A 3 of the shaping base portion 21A obtain.
  • the cavity forming surface 21A 11 is formed on the side of the base 21A 12 of the shaping base portion 21A in consideration of this point, the following effects can be exhibited. Specifically, due to the width of the main surface 21A 1 of the shaping base portion 21A comprising a shaped base bottom 21A 12 is relatively large, with may be formed a shaped portion 100A in a stable condition, a cavity formed It may be able to improve the degree of freedom of the size of the face 21A 11. Incidentally, the formation of the shaped portion 100A of a stable state, in terms of both the improvement in dimensional freedom of the cavity forming surface 21A 11, the cavity forming surface 21A 11 in a cross-sectional view, shaped base bottom as shown in FIG. 1 21A 12 is more preferable. That is, the cavity forming surface 21A 11 viewed in cross section, it is more preferable to position so as to be continuous between one of the shaped base bottom 21A 12 and the other of the shaped base bottom 21A 12.
  • the manufacturing method according to an embodiment of the present invention may adopt the following aspect (see FIG. 2).
  • the cavity forming surface 21B 11 into a shaped base portion 21B.
  • a method is not particularly limited, but the main surface 21B 1 of the shaping base portion 21B (for example, the lower main surface including the shaping base bottom surface 21B 12 ) is cut using a rotary cutting tool such as an end mill.
  • the cavity forming surface 21B 11 may be formed.
  • rotary cutting tool as used herein means a tool that is rotationally driven and used in the cutting process. Examples of specific rotary cutting tools include end mills such as flat end mills and ball end mills. In a preferred embodiment, the cutting process is performed using a flat end mill as the rotary cutting tool.
  • An alloy coating (for example, AlTiN coating) may be provided on the surface of the rotary cutting tool to improve heat resistance.
  • the cutting process is suitable for forming a relatively simple shaped surface.
  • the cavity forming surface 21B 11 that can be formed by performing cutting processing has, for example, a rectangular, square, triangular, semicircular, or semielliptical shape in cross sectional view (as an example, It may be configured to have a lens shape shown in 2 (b).
  • a plurality of solidified layers 24B by the irradiation of the light beam L at the shaping base portion 21B having a cavity forming surface 21B 11 as shown in FIG. 2 (c) are sequentially formed to form a shaped part 100B.
  • FIG. 2 (d) in one embodiment of the present invention provided with a forming base portion 21B in which the cavity forming surface 21B 11 is formed, and a forming portion 100B formed on the forming base portion 21B.
  • the mold 200B is obtained.
  • the manufacturing method according to an embodiment of the present invention may adopt the following aspect (see FIG. 3).
  • the shaped portion 100C is formed by sequentially forming a plurality of solidified layers 24C on the shaped base portion 21C by irradiation with the light beam L. .
  • the cavity forming surface 21C 11 is provided on the shaped base portion 21C.
  • a rotary cutting tool such as an end mill
  • FIG. 3 (c) according to an embodiment of the present invention comprising a shaped base portion 21C and the shaped portion 100C formed on the shaping base portion 21C, the cavity forming surface 21C 11 is formed A mold 200C is obtained.
  • the manufacturing method according to an embodiment of the present invention may adopt the following aspect.
  • a mold having a fluid passage eg, a temperature control medium passage
  • a fluid passage eg, a temperature control medium passage
  • FIG. 4 a fluid passage
  • fluid passage refers broadly to a passage for fluid flow, and in a narrow sense, to a fluid corresponding to, for example, a temperature control medium route for flowing a temperature control medium.
  • temperature control medium refers to the medium for providing a heating energy or cooling thermal energy with respect to the molding material in the cavity mentioned later.
  • modeling base part 21D is provided on modeling table 20D.
  • fixing means such as a screw member.
  • After installing the shaping base portion 21D it is subjected to cutting to form a cavity forming surface 21D 11 using an end mill 40D on the main surface 21D 1 of the shaping base portion 21D.
  • polishing may be further performed using a polishing tool 42D or the like.
  • shaping base portion 21D After forming the cavity forming surface 21D 11 on the main surface 21D 1 of shaping base portion 21D, such shaping base portion 21D is upside down. Under the present circumstances, it is preferable to remove fixing means, such as a screw member, from a viewpoint of releasing fixation with modeling table 20D and modeling base part 21D. After the shaping base portion 21D is turned upside down, the main surface 21D 1 of the shaping base portion 21D is subjected to cutting with an end mill 40D like the main surface 21D 2 on the opposite side.
  • fixing means such as a screw member
  • the Vickers subjected to cutting on the main surface 21D 2 of the shaping base portion 21D may form a shaping part 100D on the shaping base portion 21D as shown in FIG. 4 (c) and FIG. 4 (d).
  • the step of forming the powder layer 22D using the squeezing blade 23D by the powder bed fusion bonding method, and the step of irradiating the predetermined portion of the powder layer 22D with the light beam L to form the solidified layer 24D are repeated.
  • You may form modeling part 100D on modeling base part 21D.
  • the light beam L is not irradiated to a predetermined portion of the powder layer 22D formed on the cut surface 21D 21 obtained by subjecting the main surface 21D 2 of the formation base portion 21D to the cutting process.
  • a fluid passage 60D is used for example as a temperature control medium passage 60D 1.
  • a mold 200D having a cavity forming surface 21D 11 formed in the shaping base portion 21D and a fluid passage 60D used as a temperature control medium passage inside.
  • the cut surface 21D 21 in addition to the formation of a cavity forming surface 21D 11 against the major surface 21D 1 of shaping base portion 21D, the cut surface 21D 21 by forming a cut surface 21D 21 on the main surface 21D 2 of the shaping base portion 21D It is characterized in that it is at least part of the forming surface of the fluid passage 60D.
  • the filling of a suitable molding material into the cavity due to the inability to form pores in the shaping base part and the molding in the cavity due to the relatively small distance between the cavity forming surface and the forming surface of the fluid passage By the more suitable heating or cooling of the material, the following effects can be achieved. That is, it is possible to more preferably avoid the lowering of the transfer accuracy of the cavity forming surface to the molded product. That is, it is possible to further improve the transfer accuracy of the cavity forming surface to the finally obtained molded product.
  • the step of forming the fluid passage 60D is performed after the step of forming the cavity forming surface 21D 11 is performed.
  • the present invention is not limited to this, and for example, the following embodiment may be adopted.
  • molding was subjected to cutting on a main surface 21E 2 of the base part 21E, for example, by the powder bed fusion bonding method by repeating a step of forming a step of forming a powder layer a solidified layer 24E
  • the forming unit 100E is formed on the forming base unit 21E (see FIG. 5A).
  • the fluid path 60E is formed by removing the non-irradiated portion powder.
  • a cavity forming surface 21E 11 formed on the shaping base unit 21E may produce a die 200E comprising a fluid passage 60E used as the temperature control medium passage 60E 1 therein.
  • the filling of a suitable molding material into the cavity due to the inability of pores to form in the molding base, and the distance between the cavity formation surface and the formation surface of the fluid passage are relative.
  • the following effects can be achieved. That is, it is possible to more preferably avoid the reduction in the transfer accuracy of the cavity forming surface to the finally obtained molded product.
  • fluid passages eg, venting passages
  • fluid passages eg, venting passages
  • FIG. 6 a mold having fluid passages (eg, venting passages) therein may be manufactured (see FIG. 6).
  • fluid passage refers in a broad sense to a passage for fluid flow, and in a narrow sense corresponds to a degassing passage for degassing, for example, gas generated in a cavity as a fluid.
  • the light beam L having a relatively small irradiation energy to the powder 19F in the space area formed by the concave 21F 21.
  • light of relatively small irradiation energy is applied to the powder 19F in the space area so that a low density region (solidification density 0 to 95% (not including 95%)) can be obtained from the filled powder 19F. It is preferable to irradiate the beam L.
  • the shaped portion 100F may be formed on the shaped base portion 21F.
  • the step of forming the powder layer using the squeezing blade 23F by the powder bed fusion bonding method, and the step of irradiating the light beam L to a predetermined portion of the powder layer to form the solidified layer 24F are repeated to form the shape
  • the portion 100F may be formed.
  • a part of the solidified layer 24F to be stacked is formed by the above-described concave surface 21F 21 in a cross-sectional view by irradiating the light beam L of relatively small irradiation energy to a predetermined portion of the powder layer. It is preferable to form continuously in the low density area obtained from the powder 19F filled in the space area.
  • solidification density (%) substantially means solidified cross-sectional density (occupied percentage of solidified material) obtained by image processing a cross-sectional photograph of a three-dimensional shaped object.
  • the image processing software to be used is Scion Image ver. 4.0.2 (freeware manufactured by Scion). After the sectional image is binarized into a solidified portion (white) and a void portion (black), the total number of pixels Px all of the image and the number of pixels Px white of the solidified portion (white) are counted to obtain the following equation
  • the solidified cross-sectional density ⁇ ⁇ ⁇ S can be determined by 1. [Equation 1]
  • the integrated product of the shaping base portion 21F and the shaping portion 100F is further turned upside down so that the shaping portion 100F is positioned above the shaping base portion 21F (FIG. 7C).
  • the mold 200F having the cavity forming surface 21F 11 formed in the shaping base portion 21F and the fluid passage 60F used as the gas vent passage inside.
  • the powder material used in the powder bed fusion bonding method and / or the LMD method to form the shaped part is preferably a metal powder in view of the use as a mold.
  • the metal powder may be, for example, a powder containing copper-based powder and / or aluminum-based powder as a main component.
  • the metal powder at least one selected from the group consisting of nickel powder, nickel-based alloy powder, graphite powder and the like, as needed, for powder mainly composed of copper-based powder and / or aluminum-based powder. It may be a powder further comprising The reason is as follows.
  • the force applied to the cavity forming surface at the time of molding is used for the shaping portion formed by the powder bed fusion bonding method and / or LMD method.
  • the structural strength that can be tolerated can be relatively reduced. Therefore, it is not always necessary to use iron-based powder having relatively high rigidity in forming the shaped part. Therefore, as a metal powder for forming a shaped portion, a copper-based powder having relatively high thermal conductivity and / or from the viewpoint of providing heat energy more suitably to the cavity forming surface side provided in the shaped base portion at the time of shaping Or it is possible to use the powder which made aluminum system powder the main ingredients.
  • the copper-based powder and / or the aluminum-based powder may also have the property of relatively low rigidity. Therefore, the following effects can also be achieved by using a powder based on a copper-based powder and / or an aluminum-based powder having a property of relatively low rigidity. That is, as compared with the case of using a powder having iron-based powder with relatively high rigidity as a main component, it is possible to easily cut the surface of the shaped part obtained due to the relatively low rigidity. It is.
  • the predetermined shape and dimensions of such cavity forming surfaces may need to be relatively large, depending on the shape and dimensions of the desired molded article.
  • the height dimension of the shaping base portion may be made relatively larger than the height dimension of the shaping portion.
  • the mold according to an embodiment of the present invention obtained by the above-described manufacturing method has the following configuration.
  • a mold 200A according to an embodiment of the present invention includes a shaping base portion 21A joined to a shaping portion 100A and a shaping portion 100A, and the shaping base portion 21A is a cavity forming surface 21A 11 It has a feature in that it has That is, the mold 200A according to the embodiment of the present invention is characterized in that the cavity forming surface 21A 11 is provided in the shaping base portion 21A. Such a feature is a point that is significantly different from the conventional aspect in which the surface of the three-dimensional shaped object corresponding to the shaped portion 100A is used as the cavity forming surface of the mold.
  • the cavity forming surface 21A 11 (reference numeral 200A 1 in the mold 200A) is not formed on the shaping base portion 21A where such pores can not occur, not the surface 100A 1 on the side ) Can be formed. If the cavity forming surface 21A 11 is formed in the shaping base portion 21A in which no pore can occur, the molding material can be suitably filled in the cavity formed by the cavity forming surface 200A 1 because the pore can not occur. It can be done. Thus, by the filling of a suitable molding material into such cavity, it is possible to avoid the deterioration of the transfer accuracy of the cavity forming surface 200A 1 for finally obtained molded article. In other words, it is possible to improve the transfer accuracy of the cavity forming surface 200A 1 for finally obtained molded article.
  • a cavity forming surface 200A 1 is the bonding surface 21A 2 side of the shaped portion 100A and the shaping base portion 21A provided on the main surface 21A 1 of the shaping base portion 21A located opposite Is preferred (see FIG. 8).
  • the “bonding surface 21A 2 side between the forming unit 100A and the forming base unit 21A” in the present specification substantially indicates the boundary surface side between the forming unit 100A and the forming base unit 21A.
  • the forming base portion 21A is to be a base (base) for forming the forming portion 100A. Therefore, from the viewpoint of reducing the aspect and mold 200A overall dimensions sized to form a shaped portion 100A in a stable state, in a cross-sectional view, a width dimension of the main surface 21A 1 of the shaping base portion 21A is shaped base portion 21A It may be relatively larger than the height of the side surface 21A 3 of the. Considering this point, the cavity forming surface 21A 11, when the bonding surface 21A 2 of the shaped portion 100A and the shaping base portion 21A is formed on the main surface 21A 1 side of the shaping base portion 21A located opposite, the following An effect can be exhibited. That is, the width dimension of the main surface 21A 1 of the shaping base portion 21A is due to the relatively large, it may be able to improve the degree of freedom of the size of the cavity forming surface 21A 11.
  • the main surface of the shaped base portion 21A it is preferable that the shaped base bottom 21A 12 in addition to the cavity forming surface 21A 11 is further included.
  • the main surface 21A 1 of such shaping base unit 21A includes a joint surface 21A 2 of the shaped portion 100A and the shaping base portion 21A is It can be located on the opposite side. Therefore, the main surface 21A 1 of the shaping base portion 21A, it is necessary to the bottom surface in order to obtain a mold 200A to form the molded portion 100A in a stable condition on a shaping base portion 21A.
  • the shaping base portion main surface 21A 1 of 21A forms a shaped base portion stably shaped base bottom 21A 12 not from the viewpoint of forming a state cavity forming surface 21A 11 only a shaped portion 100A at the 21A Is preferred.
  • the formation of a stable state of the shaped portion 100A from the viewpoint of compatibility between improvement in dimensional freedom of the cavity forming surface 21A 11, the cavity forming surface 21A 11 in a cross-sectional view is shaped base bottom as shown in FIG. 8 and it is more preferably formed so as to sandwich the 21A 12. That is, the cavity forming surface 21A 11 in cross section is more preferably positioned so as to continue between one of the shaped base bottom 21A 12 and the other of the shaped base bottom 21A 12.
  • the mold according to an embodiment of the present invention may adopt the following aspect.
  • a mold according to an embodiment of the present invention may comprise a fluid passage therein.
  • fluid passage refers to a passage for flowing a fluid in a broad sense, and in a narrow sense, a temperature control medium passage for flowing a temperature control medium as a fluid and / or a gas etc. which may occur in a cavity as a fluid Refers to the equivalent of the degassing path for degassing.
  • This aspect is characterized in that a fluid passage is provided inside the mold in addition to the cavity forming surface being formed on the main surface of the above-mentioned molding base portion.
  • a mold 200D may have fluid passages 60D (60D 1 to 60D 3 ) internally used as a temperature control medium passage. As described above, no pore can occur on the surface of the shaping base portion 21D. Therefore, when forming a cavity forming surface 21D 11 on the shaping base portion 21D, may be able due to the pores can not occur favorably fill the molding material into the cavity is shaped by the cavity forming surface.
  • fluid passages 60D (60D 1 to 60D 3 ) are provided inside the mold 200D. Therefore, the cavity forming surface 200D 1 of the mold 200D be subjected to suitable thermal energy of the temperature control medium in the molding material filled in the cavity is shaped by (corresponding to the cavity forming surface 21D 11 above the shaped base portion 21D) It can be done.
  • the fluid passage 60D used as a temperature control medium passage inside the mold 200D By suitable supply of thermal energy of the temperature control medium to the material, The following effects can be achieved. That is, it is possible to more preferably avoid the reduction in the transfer accuracy of the cavity forming surface to the finally obtained molded product. That is, it is possible to further improve the transfer accuracy of the cavity forming surface to the finally obtained molded product.
  • the fluid passage 60D 1 which is used as the temperature control medium channel as shown in FIG. 9 (i) is the interior of both shaping part 100D and the shaping base portion 21D may be provided so as to extend.
  • the fluid passage 60D 1 used as a temperature control medium passage characterized in that is also provided on the shaping base portion 21D side to form a cavity forming surface 200D 1.
  • the fluid passages 60D 1 is also provided on the shaping base portion 21D side. Therefore, may relatively small distance S between the forming surface of the fluid passage 60D 1 which faces the cavity forming surface 200D 1 and the cavity forming surface 200D 1. Due to such a relatively small distance, the heat energy of the temperature control medium may be better provided by the molding material in the cavity. Thus, the filling of a suitable molding material into the cavity due to the pores in the shaped base portion 21D can not occur, the molding was filled into the cavity due to the fluid passage 60D 1 is also provided on the shaping base portion 21D side By the more suitable supply of the thermal energy of the temperature control medium to the material, the following effects can be achieved. That is, it is possible to more preferably avoid the reduction in the transfer accuracy of the cavity forming surface to the finally obtained molded product. That is, it is possible to further improve the transfer accuracy of the cavity forming surface to the finally obtained molded product.
  • the fluid passage 60D 2 used as the temperature control medium channel as shown in FIG. 9 (ii) and Fig. 9 (iii) is, the interior of the shaped portion 100D side only may be provided so as to extend .
  • the fluid passages 60D 2 and 60D 3 are provided only on the shaped part 100D side. Therefore, a molding material can be suitably filled in a cavity by the fact that a pore can not arise in modeling base 21D. Furthermore, the cavity forming surface 200D 1 of the mold 200D be subjected to suitable thermal energy of the temperature control medium in the molding material filled in the cavity is shaped by (corresponding to the cavity forming surface 21D 11 above the shaped base portion 21D) It can be done. In addition to this, in the embodiment shown in FIG.
  • the shaped part 100D is formed by, for example, a powder bed fusion bonding method as described in the section of the manufacturing method of the present invention described above. Therefore, the shapes of the fluid passages 60D 2 and 60D 3 used as the temperature control medium passage can be freely formed according to the use environment of the mold 200D.
  • a fluid passage 60F used as a gas venting path extending in one direction from the cavity forming surface 21F 11 to the upper surface 100F 1 of the shaped part 100F (the surface of the solidified layer 24F of the uppermost layer) is formed It has a feature in
  • fluid passage 60F is formed such that the low-density region (solidified density 0-95% (not including 95%)) in order to function as a gas vent passage 60F 1. Therefore, due to the low density region, voids may exist inside the fluid passage 60F.
  • the presence of such voids, air, etc. that originally present in the gas and / or the cavity resulting from a molding material filled in the cavity is shaped by the cavity forming surface 200F 1 of the mold 200F, preferably outside through the fluid passage 60F Can be extracted.
  • the cavity forming surface 200F 1 of the mold 200F may correspond to the cavity forming surface 21F 11 above the shaped base portion 21F.
  • the cavity forming surface 21F 11 is formed into a shaped base portion 21F. Therefore, may be able to suitably fill the molding material into a shaped base portion due to the pores can not occur in the cavity is shaped by the cavity forming surface 21F 11.
  • the following effects can be achieved by That is, it is possible to more preferably avoid the reduction in the transfer accuracy of the cavity forming surface to the finally obtained molded product. That is, it is possible to further improve the transfer accuracy of the cavity forming surface to the finally obtained molded product.
  • a fluid passage used as a degassing passage may be provided only on the shaped part 100F side.
  • the fluid passage used as the degassing passage extends from the interface region between the shaping base portion 21F and the shaping portion 100F to the upper surface of the shaping portion 100F from the viewpoint of extracting the gas in the cavity to the suitable outside.
  • it is formed in Further, in this case, a part of the cavity forming surface formed in the shaping base portion 21F and the shaping base portion 21F from the viewpoint of suitably extracting the gas in the cavity to the outside through the fluid passage used as the gas venting path. It is preferable to form in the interface area
  • a cavity forming surface is provided in the shaping base portion (see FIG. 8 and the like).
  • a cavity forming surface is not particularly limited, for example, the main surface (for example, the lower main surface including the forming base bottom surface 21A 12 ) of the shaping base portion is cut using a rotary cutting tool such as an end mill. It can be formed by As a rotary cutting tool, end mills, such as a flat end mill and a ball end mill, can be mentioned, for example. Therefore, while the above-mentioned powder bed fusion bonding method is suitable for forming a relatively complicated shape surface, it is suitable for forming a relatively simple shape surface in a cutting process.
  • the cavity forming surface 21B 11 that can be formed by performing cutting processing has, for example, a rectangular, square, triangular, semicircular, or semielliptical shape in cross sectional view (as an example, It may be configured to have a lens shape shown in FIG.
  • First aspect A mold comprising a shaped portion and a shaped base portion joined to the shaped portion, the mold comprising: The mold wherein the shaped base portion has a cavity forming surface.
  • Second aspect The mold according to the first aspect, wherein the cavity forming surface is provided on a main surface of the shaping base portion which is located on the opposite side to a bonding surface side of the shaping portion and the shaping base portion.
  • Third aspect In the second aspect, the main surface of the modeling base portion further includes a modeling base bottom surface in addition to the cavity forming surface.
  • Fourth aspect In any one of the first to third aspects, the mold has a fluid passage inside.
  • the mold according to the fourth aspect wherein the fluid passage is provided in at least one of the shaping base portion and the shaping portion.
  • Sixth aspect The mold according to the fourth or fifth aspect, wherein the fluid passage is a temperature control medium passage or a degassing passage.
  • Seventh aspect A method of manufacturing a mold, Forming a shaped portion by sequentially forming a plurality of solidified layers on the shaping base portion by light beam irradiation; Providing a cavity forming surface on the modeling base portion.
  • Eighth aspect The manufacturing method according to the seventh aspect, wherein the cavity forming surface is formed on the bottom surface side of the forming base of the forming base portion.
  • the mold has a fluid passage inside; The method according to claim 1, wherein the fluid passage is formed in at least one of the shaping base portion and the shaping portion.
  • a temperature control medium path or a degassing path is formed as the fluid path.
  • the cavity forming surface is formed by cutting the shaping base portion.
  • the twelfth aspect The method according to any one of the seventh to eleventh aspects, wherein the shaped part is formed by a powder bed fusion bonding method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Powder Metallurgy (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

According to one embodiment of the present invention, a die having a fabricated part and a fabrication base part joined to the fabricated part is provided, said fabrication base part having a cavity-forming surface. According to one embodiment of the present invention, a method for manufacturing a die is provided, said method including: a step for forming, on a fabrication base part, a fabricated part by sequentially forming a plurality of solid layers by light beam irradiation; and a step for providing a cavity-forming surface to the fabrication base part.

Description

金型およびその製造方法Mold and method of manufacturing the same
 本発明は、金型およびその製造方法に関する。より詳細には、本発明は、造形部および造形部と接合した造形ベース部を有して成る金型、並びにその製造方法に関する。 The present invention relates to a mold and a method of manufacturing the same. More particularly, the present invention relates to a mold comprising a shaped part and a shaped base part joined to the shaped part, and a method of manufacturing the same.
 日本の「ものづくり」産業を支えてきた技術の一つに、金型を用いた成形技術がある。かかる成形技術としては、例えば加圧成形法および射出成形法などが挙げられる。これら成形法では、金型内のキャビティに供する成形材料から、最終的に成形品が得られる。 One of the technologies that has supported Japan's "manufacturing" industry is molding technology using molds. Such molding techniques include, for example, pressure molding and injection molding. In these molding methods, molded articles are finally obtained from the molding material to be provided in the cavity in the mold.
 かかる金型は、光ビームの照射により複数の固化層を逐次形成する方法を利用して製造することができる。かかる方法としては、例えば“粉末床溶融結合法”が挙げられる。“粉末床溶融結合法”は、光ビームを粉末材料に照射することを通じて金型又は金型の構成要素として用いる三次元形状造形物を製造する方法である。かかる方法は、以下の工程(i)および(ii)に基づいて粉末層形成と固化層形成とを交互に繰り返し実施して三次元形状造形物を製造する。
 (i)粉末層の所定箇所に光ビームを照射し、かかる所定箇所の粉末を焼結又は溶融固化させて固化層を形成する工程。
 (ii)得られた固化層の上に新たな粉末層を形成し、同様に光ビームを照射して更なる固化層を形成する工程。
Such a mold can be manufactured using a method of sequentially forming a plurality of solidified layers by light beam irradiation. Such methods include, for example, the "powder bed melt bonding method". "Powder bed melt bonding" is a method of producing a three-dimensional shaped object that is used as a mold or as a component of a mold by irradiating a powder material with a light beam. In this method, powder layer formation and solidified layer formation are alternately repeated based on the following steps (i) and (ii) to produce a three-dimensional shaped object.
(I) A step of irradiating a predetermined portion of the powder layer with a light beam and sintering or solidifying the powder of the predetermined portion to form a solidified layer.
(Ii) forming a new powder layer on the obtained solidified layer, and similarly irradiating a light beam to form a further solidified layer.
 このような製造技術に従えば、複雑な三次元形状造形物を短時間で製造することが可能となる。粉末材料として例えば無機質の金属粉末を用いる場合、得られる三次元形状造形物を金型として使用することができる。 According to such a manufacturing technique, it is possible to manufacture a complex three-dimensional shaped object in a short time. When using, for example, an inorganic metal powder as the powder material, the resulting three-dimensional shaped object can be used as a mold.
 粉末材料として金属粉末を用い、それによって得られる三次元形状造形物を金型として使用する場合、図11に示すように、まず、スキージング・ブレード23を動かして造形ベース部21上に所定厚みの粉末層22を形成する(図11(a)参照)。次いで、粉末層22の所定箇所に光ビームLを照射して粉末層22から固化層24を形成する(図11(b)参照)。引き続いて、得られた固化層の上に新たな粉末層を形成して再度光ビームを照射して新たな固化層を形成する。このようにして粉末層形成と固化層形成とを交互に繰り返し実施すると固化層24が積層することになり(図11(c)参照)、最終的には積層化した固化層24から成る三次元形状造形物を得ることができる。最下層として形成される固化層24は造形ベース部21と結合した状態になるので、三次元形状造形物と造形ベース部21とは一体化物を成すことになり、その一体化物を金型として使用できる。 When a metal powder is used as a powder material and a three-dimensional shaped object obtained thereby is used as a mold, first, as shown in FIG. 11, the squeegee blade 23 is moved to a predetermined thickness on the shaping base portion 21 The powder layer 22 is formed (see FIG. 11A). Next, a predetermined portion of the powder layer 22 is irradiated with the light beam L to form a solidified layer 24 from the powder layer 22 (see FIG. 11B). Subsequently, a new powder layer is formed on the obtained solidified layer, and the light beam is irradiated again to form a new solidified layer. Thus, when the powder layer formation and the solidified layer formation are alternately repeated, the solidified layer 24 is laminated (see FIG. 11C), and finally, the three-dimensional structure of the laminated solidified layer 24 is obtained. A shaped object can be obtained. Since the solidified layer 24 formed as the lowermost layer is in a state of being bonded to the shaping base portion 21, the three-dimensional shaped object and the shaping base portion 21 form an integral body, and the integral body is used as a mold it can.
特開2005-531692号公報JP 2005-351692 A
 本願発明者らは、三次元形状造形物100’と造形ベース部21’との一体化物を金型200’として使用する場合、以下の問題が生じ得ることを見出した(図14参照)。具体的には、光ビームL’の照射により複数の固化層24’を逐次形成する方法、例えば粉末床溶融結合法では、最終的に得られる三次元形状造形物100’の形状等を自在に形成し得るため、三次元形状造形物100’の表面100a’を金型200’のキャビティ形成面200a’として一般的に用いることができ得る。しかしながら、図14内の拡大図に示すように、三次元形状造形物100’の表面100a’には複数の微細な寸法を有するポア50’が生じ得る。そのため、かかるポア50’が生じ得る三次元形状造形物100’の表面100a’を金型200’のキャビティ形成面200a’として用いると、ポア50’発生に起因して最終的に得られる成形品に対するキャビティ形成面200a’の転写精度が低下し得る虞がある。 The present inventors have found that the following problems may occur when using an integrated product of the three-dimensional shaped object 100 'and the shaping base portion 21' as the mold 200 '(see FIG. 14). Specifically, in the method of sequentially forming the plurality of solidified layers 24 'by irradiation with the light beam L', for example, in the powder bed fusion bonding method, the shape etc. of the three-dimensional shaped object 100 'finally obtained can be freely To be able to form, the surface 100a 'of the three-dimensional shaped object 100' may generally be used as the cavity forming surface 200a 'of the mold 200'. However, as shown in the enlarged view in FIG. 14, pores 50 ′ having a plurality of fine dimensions may be generated on the surface 100 a ′ of the three-dimensional shaped object 100 ′. Therefore, when using the surface 100a 'of the three-dimensional shaped object 100' where such a pore 50 'can occur as the cavity forming surface 200a' of the mold 200 ', a molded article finally obtained due to the generation of the pore 50'. There is a possibility that the transfer accuracy of the cavity forming surface 200a 'with respect to this may be reduced.
 本発明は、かかる事情に鑑みて為されたものである。すなわち、本発明の目的は、最終的に得られる成形品に対するキャビティ形成面200a’の転写精度の低下を回避可能な金型およびその製造方法を提供することである。 The present invention has been made in view of such circumstances. That is, an object of the present invention is to provide a mold capable of avoiding a decrease in transfer accuracy of the cavity forming surface 200 a ′ with respect to a finally obtained molded product, and a method of manufacturing the same.
 上記目的を達成するために、本発明の一実施形態では、
 造形部および造形部と接合した造形ベース部を有して成る金型であって、
 造形ベース部がキャビティ形成面を有している、金型が提供される。
In order to achieve the above object, in one embodiment of the present invention:
A mold comprising a shaped part and a shaped base joined to the shaped part, wherein
A mold is provided, wherein the shaped base portion has a cavity forming surface.
 上記目的を達成するために、本発明の一実施形態では、
金型の製造方法であって、
 造形ベース部上に、光ビーム照射により複数の固化層を逐次形成することによって造形部を形成する工程と、
 造形ベース部にキャビティ形成面を設ける工程と
を含む、製造方法が提供される。
In order to achieve the above object, in one embodiment of the present invention:
A method of manufacturing a mold,
Forming a shaped portion by sequentially forming a plurality of solidified layers on the shaping base portion by light beam irradiation;
Providing a cavity forming surface on the shaping base portion.
 本発明の一実施形態によれば、最終的に得られる成形品に対するキャビティ形成面の転写精度の低下を回避することが可能である。 According to one embodiment of the present invention, it is possible to avoid a reduction in the transfer accuracy of the cavity forming surface to the finally obtained molded product.
本発明の一実施形態に係る金型の製造方法の技術的思想を模式的に示した断面図Sectional drawing which showed typically the technical idea of the manufacturing method of the metal mold | die which concerns on one Embodiment of this invention. 本発明の一実施形態に係る金型の製造方法を模式的に示した断面図Sectional drawing which showed typically the manufacturing method of the metal mold | die which concerns on one Embodiment of this invention. 本発明の別の実施形態に係る金型の製造方法を模式的に示した断面図Sectional view schematically showing a method of manufacturing a mold according to another embodiment of the present invention 本発明の別の実施形態に係る流体通路(温調媒体路)を内部に備えた金型の製造方法を模式的に示した断面図Sectional drawing which showed typically the manufacturing method of the metal mold | die equipped with the fluid channel (temperature control medium path) which concerns on another embodiment of this invention inside 本発明の別の実施形態に係る流体通路(温調媒体路)を内部に備えた金型の製造方法を模式的に示した断面図Sectional drawing which showed typically the manufacturing method of the metal mold | die equipped with the fluid channel (temperature control medium path) which concerns on another embodiment of this invention inside 本発明の別の実施形態に係る流体通路(ガス抜き路)を内部に備えた金型の製造方法を模式的に示した断面図Sectional drawing which showed typically the manufacturing method of the metal mold | die which equipped the fluid channel (gas degassing path) which concerns on another embodiment of this invention in the inside 本発明の別の実施形態に係る流体通路(ガス抜き路)を内部に備えた金型の製造方法を模式的に示した断面図(図6の続き)Sectional drawing which showed typically the manufacturing method of the metal mold | die equipped with the fluid channel (gas degassing channel | path) which concerns on another embodiment of this invention (continuation of FIG. 6) 本発明の一実施形態に係る金型を模式的に示した断面図Sectional view schematically showing a mold according to an embodiment of the present invention 本発明の別の実施形態に係る流体通路(温調媒体路)を内部に備えた金型を模式的に示した断面図Sectional view schematically showing a mold internally provided with a fluid passage (temperature control medium passage) according to another embodiment of the present invention 本発明の別の実施形態に係る流体通路(ガス抜き路)金型を模式的に示した断面図Cross-sectional view schematically showing a fluid passage (gas degassing passage) die according to another embodiment of the present invention 粉末床溶融結合法が実施される光造形複合加工のプロセス態様を模式的に示した断面図(図11(a):粉末層形成時、図11(b):固化層形成時、図11(c):積層途中)Sectional drawing which showed typically the process aspect of the photo formation compound processing in which the powder bed fusion bonding method is implemented (FIG. 11 (a): At the time of powder layer formation, FIG.11 (b): At the time of solidification layer formation. c): During lamination) 光造形複合加工機の構成を模式的に示した斜視図The perspective view which showed the structure of the optical shaping compound processing machine typically 光造形複合加工機の一般的な動作を示すフローチャートFlow chart showing the general operation of the stereolithography compound processing machine 本願発明者らが見出した技術的課題に関する態様の模式図A schematic view of an aspect related to a technical problem found by the present inventors
 以下では、図面を参照して本発明の一実施形態をより詳細に説明する。図面における各種要素の形態および寸法は、あくまでも例示にすぎず、実際の形態および寸法を反映するものではない。 Hereinafter, an embodiment of the present invention will be described in more detail with reference to the drawings. The forms and dimensions of various elements in the drawings are merely illustrative and do not reflect the actual forms and dimensions.
 本発明の一実施形態の特徴部分を説明するに先立って、光ビームの照射により複数の固化層を逐次形成する方法を利用して金型又は金型の構成要素として用いる三次元形状造形物を製造する態様に説明する。かかる方法としては、「粉末床溶融結合法」および「LMD(Laser Metal Deposition, レーザーメタルデポジション)法」が挙げられる。 Prior to describing the characterizing portion of an embodiment of the present invention, a three-dimensional shaped object to be used as a mold or a component of a mold by utilizing a method of sequentially forming a plurality of solidified layers by light beam irradiation. The embodiment will be described. Such methods include the "powder bed fusion bonding method" and the "LMD (Laser Metal Deposition) method".
[粉末床溶融結合法]
 以下、粉末床溶融結合法について説明する。特に粉末床溶融結合法において三次元形状造形物の切削処理を付加的に行う光造形複合加工を例として挙げる。図11は、光造形複合加工のプロセス態様を模式的に示しており、図12および図13は、粉末床溶融結合法と切削処理とを実施できる光造形複合加工機の主たる構成および動作のフローチャートをそれぞれ示している。
Powder bed fusion bonding method
The powder bed fusion bonding method is described below. In particular, in the powder bed fusion bonding method, an optical shaping composite processing in which a cutting process of a three-dimensional shaped object is additionally performed will be exemplified. FIG. 11 schematically shows the process aspect of the optical shaping composite processing, and FIGS. 12 and 13 are flowcharts of the main configuration and operation of the optical shaping composite processing machine capable of performing the powder bed fusion bonding method and the cutting process. Respectively.
 光造形複合加工機1は、図12に示すように、粉末層形成手段2、光ビーム照射手段3および切削手段4を備えている。 The optical shaping combined processing machine 1 is provided with a powder layer forming means 2, a light beam irradiating means 3 and a cutting means 4 as shown in FIG.
 粉末層形成手段2は、金属粉末または樹脂粉末などの粉末を所定厚みで敷くことによって粉末層を形成するための手段である。光ビーム照射手段3は、粉末層の所定箇所に光ビームLを照射するための手段である。切削手段4は、積層化した固化層の表面、すなわち、三次元形状造形物の表面を削るための手段である。 The powder layer forming means 2 is a means for forming a powder layer by laying a powder such as a metal powder or a resin powder with a predetermined thickness. The light beam irradiation means 3 is a means for irradiating the light beam L to a predetermined portion of the powder layer. The cutting means 4 is a means for shaving the surface of the laminated solidified layer, that is, the surface of the three-dimensional shaped object.
 粉末層形成手段2は、図11に示すように、粉末テーブル25、スキージング・ブレード23、造形テーブル20および造形ベース部21を主に有して成る。粉末テーブル25は、外周が壁26で囲まれた粉末材料タンク28内にて上下に昇降できるテーブルである。スキージング・ブレード23は、粉末テーブル25上の粉末19を造形テーブル20上へと供して粉末層22を得るべく水平方向に移動できるブレードである。造形テーブル20は、外周が壁27で囲まれた造形タンク29内にて上下に昇降できるテーブルである。そして、造形ベース部21は、造形テーブル20上に配され、三次元形状造形物の土台となるものである。 The powder layer forming means 2 mainly comprises a powder table 25, a squeezing blade 23, a shaping table 20 and a shaping base portion 21 as shown in FIG. The powder table 25 is a table which can move up and down in the powder material tank 28 whose outer periphery is surrounded by the wall 26. The squeezing blade 23 is a blade that can be moved horizontally to provide the powder 19 on the powder table 25 onto the shaping table 20 to obtain the powder layer 22. The modeling table 20 is a table that can be moved up and down in the modeling tank 29 whose outer periphery is surrounded by the wall 27. And the modeling base part 21 is distribute | arranged on the modeling table 20, and becomes a base of a three-dimensional-shaped molded article.
 光ビーム照射手段3は、図12に示すように、光ビーム発振器30およびガルバノミラー31を主に有して成る。光ビーム発振器30は、光ビームLを発する機器である。ガルバノミラー31は、発せられた光ビームLを粉末層22にスキャニングする手段、すなわち、光ビームLの走査手段である。 The light beam irradiating means 3 mainly comprises a light beam oscillator 30 and a galvano mirror 31 as shown in FIG. The light beam oscillator 30 is a device that emits a light beam L. The galvano mirror 31 is a means for scanning the emitted light beam L onto the powder layer 22, that is, a means for scanning the light beam L.
 切削手段4は、図12に示すように、エンドミル40および駆動機構41を主に有して成る。エンドミル40は、積層化した固化層の表面、すなわち、三次元形状造形物の表面を削るための切削工具である。駆動機構41は、エンドミル40を所望の切削すべき箇所へと移動させる手段である。 The cutting means 4 mainly comprises an end mill 40 and a drive mechanism 41, as shown in FIG. The end mill 40 is a cutting tool for shaving the surface of the laminated solidified layer, that is, the surface of the three-dimensional shaped object. The drive mechanism 41 is a means for moving the end mill 40 to a desired cutting position.
 光造形複合加工機1の動作について詳述する。光造形複合加工機1の動作は、図13のフローチャートに示すように、粉末層形成ステップ(S1)、固化層形成ステップ(S2)および切削ステップ(S3)から構成されている。粉末層形成ステップ(S1)は、粉末層22を形成するためのステップである。かかる粉末層形成ステップ(S1)では、まず造形テーブル20をΔt下げ(S11)、造形ベース部21の上面と造形タンク29の上端面とのレベル差がΔtとなるようにする。次いで、粉末テーブル25をΔt上げた後、図11(a)に示すようにスキージング・ブレード23を粉末材料タンク28から造形タンク29に向かって水平方向に移動させる。これによって、粉末テーブル25に配されていた粉末19を造形ベース部21上へと移送させることができ(S12)、粉末層22の形成が行われる(S13)。粉末層22を形成するための粉末材料としては、例えば「平均粒径5μm~100μm程度の金属粉末」および「平均粒径30μm~100μm程度のナイロン、ポリプロピレンまたはABS等の樹脂粉末」を挙げることができる。粉末層22が形成されたら、固化層形成ステップ(S2)へと移行する。固化層形成ステップ(S2)は、光ビーム照射によって固化層24を形成するステップである。かかる固化層形成ステップ(S2)においては、光ビーム発振器30から光ビームLを発し(S21)、ガルバノミラー31によって粉末層22上の所定箇所へと光ビームLをスキャニングする(S22)。これによって、粉末層22の所定箇所の粉末を焼結又は溶融固化させ、図11(b)に示すように固化層24を形成する(S23)。光ビームLとしては、炭酸ガスレーザ、Nd:YAGレーザ、ファイバレーザまたは紫外線などを用いてよい。 The operation of the optical forming combined processing machine 1 will be described in detail. The operation of the optical forming combined processing machine 1 is composed of a powder layer forming step (S1), a solidified layer forming step (S2) and a cutting step (S3) as shown in the flowchart of FIG. The powder layer forming step (S1) is a step for forming the powder layer 22. In the powder layer forming step (S1), first, the shaping table 20 is lowered by Δt (S11) so that the level difference between the upper surface of the shaping base portion 21 and the upper end surface of the shaping tank 29 becomes Δt. Next, after raising the powder table 25 by Δt, the squeezing blade 23 is moved horizontally from the powder material tank 28 toward the shaping tank 29, as shown in FIG. 11 (a). As a result, the powder 19 disposed on the powder table 25 can be transferred onto the shaping base portion 21 (S12), and the formation of the powder layer 22 is performed (S13). Examples of powder materials for forming the powder layer 22 include “metal powder with an average particle diameter of about 5 μm to 100 μm” and “resin powder such as nylon, polypropylene or ABS with an average particle diameter of about 30 μm to 100 μm”. it can. After the powder layer 22 is formed, the process proceeds to the solidified layer forming step (S2). The solidified layer forming step (S2) is a step of forming the solidified layer 24 by light beam irradiation. In the solidified layer forming step (S2), the light beam L is emitted from the light beam oscillator 30 (S21), and the light beam L is scanned to a predetermined place on the powder layer 22 by the galvano mirror 31 (S22). Thereby, the powder of the predetermined part of the powder layer 22 is sintered or melted and solidified to form a solidified layer 24 as shown in FIG. 11B (S23). As the light beam L, a carbon dioxide gas laser, an Nd: YAG laser, a fiber laser or ultraviolet light may be used.
 粉末層形成ステップ(S1)および固化層形成ステップ(S2)は、交互に繰り返して実施する。これにより、図11(c)に示すように複数の固化層24が積層化する。 The powder layer forming step (S1) and the solidified layer forming step (S2) are alternately repeated. Thereby, as shown in FIG. 11C, a plurality of solidified layers 24 are laminated.
 積層化した固化層24が所定厚みに達すると(S24)、切削ステップ(S3)へと移行する。切削ステップ(S3)は、積層化した固化層24の表面、すなわち、三次元形状造形物の表面を削るためのステップである。エンドミル40(図11(c)および図12参照)を駆動させることによって切削ステップが開始される(S31)。例えば、エンドミル40が3mmの有効刃長さを有する場合、三次元形状造形物の高さ方向に沿って3mmの切削処理を行うことができるので、Δtが0.05mmであれば60層分の固化層24が積層した時点でエンドミル40を駆動させる。具体的には駆動機構41によってエンドミル40を移動させながら、積層化した固化層24の表面を切削処理に付すことになる(S32)。このような切削ステップ(S3)の最終では、所望の三次元形状造形物が得られているか否かを判断する(S33)。所望の三次元形状造形物が依然得られていない場合では、粉末層形成ステップ(S1)へと戻る。以降、粉末層形成ステップ(S1)~切削ステップ(S3)を繰り返し実施して更なる固化層の積層化および切削処理を実施することによって、最終的には積層化した固化層24から成る所望形状の三次元形状造形物を得ることができる。なお、最下層として形成される固化層24は造形ベース部21と結合した状態になるので、三次元形状造形物と造形ベース部21とは一体化物を成すことになり、その一体化物を金型として使用できる。 When the solidified layer 24 which has been laminated reaches a predetermined thickness (S24), the process proceeds to the cutting step (S3). The cutting step (S3) is a step for scraping the surface of the laminated solidified layer 24, ie, the surface of the three-dimensional shaped object. The cutting step is started by driving the end mill 40 (see FIGS. 11 (c) and 12) (S31). For example, when the end mill 40 has an effective blade length of 3 mm, a cutting process of 3 mm can be performed along the height direction of the three-dimensional shaped object, so if Δt is 0.05 mm, 60 layers When the solidified layer 24 is laminated, the end mill 40 is driven. Specifically, while moving the end mill 40 by the drive mechanism 41, the surface of the laminated solidified layer 24 is subjected to a cutting process (S32). At the end of such a cutting step (S3), it is determined whether a desired three-dimensional shaped object is obtained (S33). If the desired three-dimensional shaped object is not yet obtained, the process returns to the powder layer forming step (S1). Thereafter, the powder layer forming step (S1) to the cutting step (S3) are repeatedly performed to carry out lamination of the solidified layer and cutting process, and finally, a desired shape comprising the solidified layer 24 laminated. The three-dimensional shaped object of In addition, since the solidified layer 24 formed as the lowermost layer is in a state of being bonded to the shaping base portion 21, the three-dimensional shaped object and the shaping base portion 21 form an integral body, and the integral body is used as a mold. It can be used as
[LMD法]
 以下、LMD(Laser Metal Deposition, レーザーメタルデポジション)法について説明する。「LMD法」とは、造形ベース部上にて原料の供給と光ビーム照射とを実質的に同時に行って固化層を形成する方法である。上記の粉末床溶融結合法と比べると、LMD法は、固化層を得るに際して粉末層の形成工程を含まない点に特徴を有する。
[LMD method]
Hereinafter, the LMD (Laser Metal Deposition) method will be described. The “LMD method” is a method of forming a solidified layer by substantially simultaneously supplying a raw material and irradiating a light beam on a modeling base. Compared to the above-described powder bed melt bonding method, the LMD method is characterized in that the step of forming a powder layer is not included in obtaining a solidified layer.
 LMD法で用いる原料としては、粉末または溶加材を用いてよい。つまり、LMD法では、原料供給箇所に光ビームが照射されると共に、原料としての粉末または溶加材が供給されることにより、その供給される粉末または溶加材から固化層を形成する。 As a raw material used in the LMD method, a powder or a filler may be used. That is, in the LMD method, the raw material supply portion is irradiated with the light beam, and the powder or the filler material as the raw material is supplied to form a solidified layer from the supplied powder or the filler material.
 粉末の種類は、粉末床溶融結合法で用いる粉末の種類と同じであってよい。一方、溶加材は、溶接原料のことを指しており、光ビームが照射されると溶融し得るものを指す。溶加材の材質は、特に限定されるものではないが金属であってよい。溶加材の形状は、特に限定されるわけではないが、光ビームが照射される原料供給箇所への原料としての溶加材の供給のし易さの観点からワイヤー形状又は棒形状等の細長い形状が好ましい。 The type of powder may be the same as the type of powder used in the powder bed melt bonding process. On the other hand, the filler material refers to the welding material, and refers to one that can melt when irradiated with a light beam. The material of the filler is not particularly limited, but may be metal. The shape of the filler is not particularly limited, but from the viewpoint of the ease of supply of the filler as a raw material to the raw material supply location to which the light beam is irradiated, the wire shape or rod shape is elongated The shape is preferred.
 原料として粉末が用いられる場合、供給された粉末を光ビーム照射によって焼結又は溶融固化させて粉末から固化層を直接的に形成する。好ましくは、光ビームの照射部分に対して粉末を噴霧供給して、粉末を焼結又は溶融固化させて固化層を形成する。 When powder is used as a raw material, the supplied powder is sintered or solidified by light beam irradiation to form a solidified layer directly from the powder. Preferably, the powder is spray-supplied to the irradiated portion of the light beam to sinter or solidify the powder to form a solidified layer.
 一方、原料として溶加材が用いられる場合、光ビームの照射部分に溶加材を供給し、溶加材の一部を光ビームによって溶融させ、それにより溶融させた溶加材の一部から固化層を形成する。 On the other hand, when a filler material is used as the raw material, the filler material is supplied to the irradiated part of the light beam, a part of the filler material is melted by the light beam, and a part of the filler material is melted thereby. Form a solidified layer.
 上記の粉末床溶融結合法と同様に積層化した固化層が所定厚みに達すると、切削ステップへと移行し、最終的には積層化した固化層から成る所望形状の三次元形状造形物を得ることができる。なお、最下層として形成される固化層は造形ベース部と結合した状態になるので、三次元形状造形物と造形ベース部とは一体化物を成すことになり、その一体化物を金型として使用できる。 When the solidified layer laminated in the same manner as the powder bed fusion bonding method described above reaches a predetermined thickness, the process proceeds to a cutting step, and finally, a three-dimensional shaped object having a desired shape comprising the solidified layer laminated is obtained. be able to. In addition, since the solidified layer formed as the lowermost layer is in a state of being bonded to the shaping base portion, the three-dimensional shaped object and the shaping base portion form an integral product, and the integrated component can be used as a mold. .
[本発明の金型の製造方法]
 本願発明者らは、図14に示すように三次元形状造形物100’の表面100a’を金型200’のキャビティ形成面200a’として用いる場合、かかる表面100a’にポア50’が生じ得ることに起因して最終的に得られる成形品に対するキャビティ形成面200a’の転写精度が低下し得る虞があることを見出した。そこで、本願発明者らはかかる技術的課題を解決するために鋭意検討し、本発明の一実施形態に係る金型の製造方法を案出するに至った。
[Method of producing mold of the present invention]
The inventors of the present invention can produce pores 50 'on the surface 100a' when the surface 100a 'of the three-dimensional shaped object 100' is used as the cavity forming surface 200a 'of the mold 200' as shown in FIG. It has been found that there is a possibility that the transfer accuracy of the cavity forming surface 200a 'with respect to the finally obtained molded product may be reduced due to the above. Therefore, the inventors of the present invention have studied earnestly in order to solve such technical problems, and came to devise a method of manufacturing a mold according to an embodiment of the present invention.
 本発明の一実施形態は、光ビームの照射により複数の固化層を逐次形成する方法で得られる三次元形状造形物の表面を金型のキャビティ形成面として用いるというこれまでの態様とは異なる態様で対応している点に特徴を有する。 An embodiment of the present invention differs from the previous embodiments in which the surface of a three-dimensional shaped object obtained by a method of sequentially forming a plurality of solidified layers by light beam irradiation is used as a cavity forming surface of a mold. It has a feature in that it corresponds to
 具体的には、本発明の一実施形態は、光ビームの照射により複数の固化層を逐次形成する方法により形成される三次元形状造形物と当該三次元形状造形物と接合する造形ベース部との一体化物を金型として用いる際に、造形ベース部を有効活用する点に特徴を有する。 Specifically, in one embodiment of the present invention, a three-dimensional shaped object formed by a method of sequentially forming a plurality of solidified layers by irradiation with a light beam, and a forming base portion joined to the three-dimensional shaped object When using the integrated product of the above as a mold, the present invention is characterized in that the shaping base portion is effectively used.
 本明細書でいう「造形部」とは、光ビームの照射により複数の固化層を逐次形成する方法、例えば粉末床溶融結合法および/又はLMD法により得られるものを指し、従来態様(図14参照)における「三次元形状造形物」に対応するものを指す。本明細書でいう「造形ベース部」とは、広義には造形部を形成(造形)するためのベース(土台)となるものを指す。本明細書でいう「造形ベース部」とは、狭義には上記の粉末床溶融結合法および/又はLMD法ではなく、溶融させた金属材料を例えば所定形状の鋳型等に流し込んで得られる金属溶製部材、または、溶融させた金属材料に圧延処理を施した金属溶製部材によって構成されたものを指す。なお、得られる金属溶製部材に対して切削加工処理が更に施されたものでもよい。本明細書でいう「キャビティ」とは、一方の可動側金型と他方の固定側金型との型合わせ時に形成される空間領域(空洞)を指す。本明細書でいう「キャビティ形成面」とは、一方の可動側金型と他方の固定側金型との型合わせ時に形成される空間領域(空洞)を形作る面を指す。 The “shaped portion” as referred to in the present specification refers to a method of sequentially forming a plurality of solidified layers by irradiation with a light beam, for example, those obtained by a powder bed fusion bonding method and / or an LMD method. Refer to the “three-dimensional shaped object” in The “fabrication base portion” as referred to in the present specification means, in a broad sense, a base (base) for forming (fabrication) a molding portion. In the narrow sense, the “shaped base portion” referred to in the present specification is not the above-described powder bed melt bonding method and / or LMD method, but a metal melt obtained by pouring a molten metal material into a mold having a predetermined shape, for example. It refers to a member made of metal or a member made of a molten metal obtained by subjecting a molten metal material to a rolling treatment. In addition, what the cutting process was further performed with respect to the metal melting member obtained may be used. As used herein, the term "cavity" refers to a space area (cavity) formed when the movable mold on one side and the stationary mold on the other side are mold-aligned. The term "cavity forming surface" as used herein refers to a surface that forms a space area (cavity) formed during mold alignment of one movable mold and the other fixed mold.
 本発明の一実施形態に係る金型200Aの製造方法は、造形ベース部21A上に、光ビームLの照射により複数の固化層24Aを逐次形成することによって造形部100Aを形成する工程と、造形ベース部21Aにキャビティ形成面21A11を設ける工程とを含む(図1参照)。つまり、本発明の一実施形態に係る金型200Aの製造方法は、造形ベース部21A上に造形部100Aを形成することと、造形ベース部21Aにてキャビティ形成面21A11を設けることとを組み合わせている点に特徴を有する。より端的に言うと、本発明の一実施形態に係る金型200Aの製造方法は、造形ベース部21Aにキャビティ形成面21A11を設ける点に特徴を有する。かかる特徴が、三次元形状造形物の表面を金型のキャビティ形成面として用いる従来の態様と顕著に異なる点である。なお、造形ベース部21A上に造形部100Aを形成し、かつ造形ベース部21Aにキャビティ形成面21A11を供することが可能ならば、造形ベース部21Aの全体的形状は特に限定されるものではない。一例を挙げると、造形ベース部21Aは直方体状、円柱状等の形態を採り得る。但し、第1に、所望形状を有する造形部100Aを造形ベース部21A上にて安定して形成する観点から、造形部100Aの構成要素である固化層24Aと造形ベース部21Aとの界面領域では、造形ベース部21Aの表面(主面)は平面形態を有することが好ましい。又、第2に、造形ベース部21Aの厚みは、所望形状および寸法を有するキャビティ形成面21A11を好適に形成可能な厚さを有することが好ましい。又、第3に、造形ベース部21Aに供されるキャビティ形成面21A11は、成形時に当該形成面にかかる力に耐え得る構造強度を達成可能な硬度を有することが好ましい。そのため、造形ベース部21Aは、剛性が相対的に高い鉄系材料から構成されていることが好ましい。一方、本発明では、造形ベース部21A側にキャビティ形成面21A11を形成しているため、剛性が相対的に高い鉄系粉末を造形部100Aの形成に際して必ずしも用いる必要がない。従って、造形部100Aを形成するための金属粉末として、熱伝導性が相対的に高い銅系粉末および/またはアルミニウム系粉末を主成分とした粉末を用いることが可能である。詳細については後述する。 In the method of manufacturing the mold 200A according to an embodiment of the present invention, a step of forming the shaped portion 100A by sequentially forming a plurality of solidified layers 24A on the shaping base portion 21A by irradiation of the light beam L; And a step of providing the cavity forming surface 21A 11 in the base portion 21A (see FIG. 1). That is, the method for manufacturing the mold 200A according to the embodiment of the present invention combines the formation of the shaped part 100A on the formation base 21A and the provision of the cavity forming surface 21A 11 in the formation base 21A. Is characterized by the fact that Speaking more clearly, the manufacturing method of the die 200A according to an embodiment of the present invention is characterized in that provision of the cavity forming surface 21A 11 into a shaped base portion 21A. Such a feature is a point that is significantly different from the conventional aspect in which the surface of the three-dimensional shaped object is used as the cavity forming surface of the mold. The overall shape of the shaping base portion 21A is not particularly limited as long as the shaping portion 100A can be formed on the shaping base portion 21A and the cavity forming surface 21A 11 can be provided to the shaping base portion 21A. . If an example is given, modeling base part 21A can take forms, such as rectangular parallelepiped shape and a cylindrical shape. However, first, from the viewpoint of stably forming the shaped portion 100A having a desired shape on the shaped base portion 21A, in the interface region between the solidified layer 24A, which is a component of the shaped portion 100A, and the shaped base portion 21A. The surface (principal surface) of the shaping base portion 21A preferably has a planar shape. Further, the second, the thickness of the shaping base portion 21A preferably has a cavity forming surface 21A 11 suitably formable thickness having a desired shape and dimensions. Further, the third, cavity forming surface 21A 11 to be subjected to the shaping base portion 21A preferably has a hardness achievable structural strength to withstand the forces exerted on the forming surface during molding. Therefore, it is preferable that the shaping base portion 21A be made of an iron-based material having relatively high rigidity. On the other hand, in the present invention, because it forms a cavity forming surface 21A 11 into a shaped base portion 21A side, need not necessarily be used in the formation of the shaped portion 100A rigidity is relatively high iron-based powder. Therefore, as the metal powder for forming the shaped part 100A, it is possible to use a powder mainly composed of a copper-based powder and / or an aluminum-based powder having relatively high thermal conductivity. Details will be described later.
 かかる特徴によれば、金型200Aの造形部100A側の表面100Aにキャビティ形成面が形成されないこととなる。光ビームLの照射により複数の固化層24Aを逐次形成する方法、例えば粉末床溶融結合法で得られる造形部100A(従来態様(図14参照)における三次元形状造形物100’に相当)の表面にはポアが生じ得る。しかしながら、本発明の一実施形態では、かかるポアが生じ得る造形部100A側の表面100Aではなく、かかるポアが生じ得ない造形ベース部21Aにキャビティ形成面21A11(最終的に得られる金型200Aにおける符号200Aに相当)が形成され得る。ポアが生じ得ない造形ベース部21Aにキャビティ形成面21A11を形成すると、ポアが生じ得ないことに起因して当該キャビティ形成面200Aにより形作られるキャビティ内に成形材料を好適に充填することができ得る。従って、かかるキャビティ内への好適な成形材料の充填により、最終的に得られる成形品に対するキャビティ形成面200Aの転写精度の低下を回避することが可能となる。つまり、最終的に得られる成形品に対するキャビティ形成面200Aの転写精度を向上させることが可能となる。 According to the feature, so that the cavity formation surface is not formed on the surface 100A 1 of the shaped portion 100A side of the mold 200A. A method of sequentially forming a plurality of solidified layers 24A by irradiation with a light beam L, for example, the surface of a shaped part 100A (corresponding to a three-dimensional shaped object 100 'in the conventional embodiment (see FIG. 14)) obtained by powder bed fusion bonding method May have pores. However, in one embodiment of the present invention, the cavity forming surface 21A 11 (a mold which is finally obtained in the shaping base portion 21A in which such pores can not occur, not the surface 100A 1 on the side of the shaped portion 100A where such pores can occur corresponds to the code 200A 1 in 200A) can be formed. If the cavity forming surface 21A 11 is formed in the shaping base portion 21A in which no pore can occur, the molding material can be suitably filled in the cavity formed by the cavity forming surface 200A 1 because the pore can not occur. It can be done. Thus, by the filling of a suitable molding material into such cavity, it is possible to avoid the deterioration of the transfer accuracy of the cavity forming surface 200A 1 for finally obtained molded article. In other words, it is possible to improve the transfer accuracy of the cavity forming surface 200A 1 for finally obtained molded article.
 本発明の一実施形態に係る製造方法は、下記態様を採ることが好ましい。 The manufacturing method according to an embodiment of the present invention preferably adopts the following aspect.
 本発明の一実施形態では、キャビティ形成面21A11を造形ベース部の造形土台底面側に形成することが好ましい(図1参照)。本明細書でいう「造形土台底面」とは、広義には造形部を形成(造形)するための土台の底面を指し、狭義には造形部を形成するための土台となる造形ベース部の底面を指す。なお、ここでいう「底面」とは、造形部を形成するための土台(造形ベース部)の下面または土台面を指す。 In one embodiment of the present invention, it is preferable to form the cavity forming surface 21A 11 on the shaping base bottom side of the shaping base portion (see FIG. 1). In the present specification, “the bottom of a forming base” refers to the bottom of a base for forming (forming) a forming part in a broad sense, and in the narrow sense, the bottom of a forming base that is a base for forming a forming part Point to Here, the “bottom surface” refers to the lower surface or the base surface of a base (modeling base portion) for forming the modeling portion.
 上述のように、造形ベース部21Aは造形部100Aを造形するためのベース(土台)となるものである。そのため、かかる造形部100Aを安定した状態で形成する観点および金型200A全体の寸法サイズの低減化の観点から、造形ベース部21Aの主面21Aは一般的に造形土台底面21A12を含む面領域であり得る。より具体的には、断面視において、造形土台底面21A12を含む造形ベース部21Aの主面21Aの幅寸法は、造形ベース部21Aの側面21Aの高さ寸法よりも相対的に大きくされ得る。かかる点を考慮し、キャビティ形成面21A11を造形ベース部21Aの造形土台底面21A12側に形成すると、以下の効果が奏され得る。具体的には、造形土台底面21A12を含む造形ベース部21Aの主面21Aの幅寸法が相対的に大きいことに起因して、造形部100Aを安定した状態で形成でき得ると共に、キャビティ形成面21A11の寸法の自由度を向上させることができ得る。なお、安定した状態での造形部100Aの形成と、キャビティ形成面21A11の寸法自由度の向上の両立の観点から、断面視においてキャビティ形成面21A11を、図1に示すように造形土台底面21A12に挟まれるように構成することがより好ましい。すなわち、断面視においてキャビティ形成面21A11を、一方の造形土台底面21A12と他方の造形土台底面21A12との間に連続するように位置付けることがより好ましい。 As described above, the formation base portion 21A is to be a base for forming the formation portion 100A. Therefore, the surface from the viewpoint of reducing the aspect and mold 200A overall dimensions size forming such shaped portion 100A in a stable condition, the main surface 21A 1 of the shaping base portion 21A, including a generally shaped base bottom 21A 12 It can be an area. More specifically, in a cross-sectional view, a width dimension of the main surface 21A 1 of the shaping base portion 21A comprising a shaped base bottom 21A 12 is relatively larger than the height of the side surface 21A 3 of the shaping base portion 21A obtain. If the cavity forming surface 21A 11 is formed on the side of the base 21A 12 of the shaping base portion 21A in consideration of this point, the following effects can be exhibited. Specifically, due to the width of the main surface 21A 1 of the shaping base portion 21A comprising a shaped base bottom 21A 12 is relatively large, with may be formed a shaped portion 100A in a stable condition, a cavity formed It may be able to improve the degree of freedom of the size of the face 21A 11. Incidentally, the formation of the shaped portion 100A of a stable state, in terms of both the improvement in dimensional freedom of the cavity forming surface 21A 11, the cavity forming surface 21A 11 in a cross-sectional view, shaped base bottom as shown in FIG. 1 21A 12 is more preferable. That is, the cavity forming surface 21A 11 viewed in cross section, it is more preferable to position so as to be continuous between one of the shaped base bottom 21A 12 and the other of the shaped base bottom 21A 12.
 本発明の一実施形態に係る製造方法は、下記態様を採ってよい(図2参照)。 The manufacturing method according to an embodiment of the present invention may adopt the following aspect (see FIG. 2).
 一態様では、図2(a)および図2(b)に示すように、造形ベース部21Bにキャビティ形成面21B11を設ける。特に限定されるものではないが、エンドミル等の回転切削工具を用いて造形ベース部21Bの主面21B(例えば造形土台底面21B12を含む下側主面)に切削加工を施すことで、かかるキャビティ形成面21B11を形成してよい。なお、ここでいう「回転切削工具」とは、切削加工処理に際して回転駆動させて使用する工具のことを意味する。具体的な回転切削工具としては、例えばフラットエンドミル、ボールエンドミル等のエンドミルを挙げることができる。ある好適な態様では、回転切削工具としてフラットエンドミルを用いて切削加工処理を行う。なお、回転切削工具の表面には、耐熱性を向上させるため合金コーティング(例えばAlTiNコーティング)が設けられたものであってもよい。 In one embodiment, as shown in FIG. 2 (a) and 2 (b), provided the cavity forming surface 21B 11 into a shaped base portion 21B. Such a method is not particularly limited, but the main surface 21B 1 of the shaping base portion 21B (for example, the lower main surface including the shaping base bottom surface 21B 12 ) is cut using a rotary cutting tool such as an end mill. The cavity forming surface 21B 11 may be formed. The term "rotary cutting tool" as used herein means a tool that is rotationally driven and used in the cutting process. Examples of specific rotary cutting tools include end mills such as flat end mills and ball end mills. In a preferred embodiment, the cutting process is performed using a flat end mill as the rotary cutting tool. An alloy coating (for example, AlTiN coating) may be provided on the surface of the rotary cutting tool to improve heat resistance.
 上記粉末床溶融結合法では相対的に複雑な形状面を形成するのに適当であるのに対して、切削加工処理では相対的に簡易な形状面を形成するのに適当である。かかる点に鑑み、特に限定されるものではないが、切削加工を施すことで形成され得るキャビティ形成面21B11は断面視で例えば矩形、正方形、三角形、半円、又は半楕円形状(一例として図2(b)に示すレンズ形状)を有するように構成されてよい。 While the above powder bed fusion bonding method is suitable for forming a relatively complex shaped surface, the cutting process is suitable for forming a relatively simple shaped surface. In view of this point, although not particularly limited, the cavity forming surface 21B 11 that can be formed by performing cutting processing has, for example, a rectangular, square, triangular, semicircular, or semielliptical shape in cross sectional view (as an example, It may be configured to have a lens shape shown in 2 (b).
 造形ベース部21Bにキャビティ形成面21B11を形成した後、図2(c)に示すようにキャビティ形成面21B11を備えた造形ベース部21B上にて光ビームLの照射により複数の固化層24Bを逐次形成することによって造形部100Bを形成する。 After forming the cavity forming surface 21B 11 into a shaped base portion 21B, a plurality of solidified layers 24B by the irradiation of the light beam L at the shaping base portion 21B having a cavity forming surface 21B 11 as shown in FIG. 2 (c) Are sequentially formed to form a shaped part 100B.
 以上により、図2(d)に示すように、キャビティ形成面21B11が形成された造形ベース部21B、および造形ベース部21B上に形成された造形部100Bを備えた本発明の一実施形態に係る金型200Bが得られる。 According to the above, as shown in FIG. 2 (d), in one embodiment of the present invention provided with a forming base portion 21B in which the cavity forming surface 21B 11 is formed, and a forming portion 100B formed on the forming base portion 21B. The mold 200B is obtained.
 本発明の一実施形態に係る製造方法は、下記態様を採ってよい(図3参照)。 The manufacturing method according to an embodiment of the present invention may adopt the following aspect (see FIG. 3).
 一態様では、図3(a)および図3(b)に示すように、造形ベース部21C上にて光ビームLの照射により複数の固化層24Cを逐次形成することによって造形部100Cを形成する。 In one aspect, as shown in FIGS. 3 (a) and 3 (b), the shaped portion 100C is formed by sequentially forming a plurality of solidified layers 24C on the shaped base portion 21C by irradiation with the light beam L. .
 造形ベース部21C上に造形部100Cを形成した後、造形ベース部21Cにキャビティ形成面21C11を設ける。特に限定されるものではないが、エンドミル等の回転切削工具を用いて造形ベース部21Cの表面(例えば下側主面21C)に切削加工を施すことで、かかるキャビティ形成面21C11を形成してよい。なお、用いる回転切削工具の回転数、回転切削工具の種類、および回転切削工具に対する表面処理については上記態様と同様であり得るため、説明を省略する。 After forming the shaped portion 100C on the shaped base portion 21C, the cavity forming surface 21C 11 is provided on the shaped base portion 21C. In particular but not limited to, by performing cutting on the surface (e.g., lower principal surface 21C 1) of the shaping base portion 21C using a rotary cutting tool such as an end mill, to form such a cavity forming surface 21C 11 You may In addition, about the rotation speed of the rotary cutting tool to be used, the kind of rotary cutting tool, and the surface treatment with respect to a rotary cutting tool, since it may be the same as that of the said aspect, description is abbreviate | omitted.
 以上により、図3(c)に示すように、キャビティ形成面21C11が形成された造形ベース部21C、および造形ベース部21C上に形成された造形部100Cを備える本発明の一実施形態に係る金型200Cが得られる。 By the above, as shown in FIG. 3 (c), according to an embodiment of the present invention comprising a shaped base portion 21C and the shaped portion 100C formed on the shaping base portion 21C, the cavity forming surface 21C 11 is formed A mold 200C is obtained.
 更に、本発明の一実施形態に係る製造方法は、下記態様を採ってよい。 Furthermore, the manufacturing method according to an embodiment of the present invention may adopt the following aspect.
 一態様では、流体通路(例えば温調媒体路)を内部に有して成る金型を製造してよい(図4参照)。以下、特に限定されるものではないが粉末床溶融結合法を用いる場合を例にとる。 In one aspect, a mold having a fluid passage (eg, a temperature control medium passage) therein may be manufactured (see FIG. 4). Hereinafter, although not particularly limited, the case of using a powder bed fusion bonding method is taken as an example.
 本明細書でいう「流体通路」とは、広義には流体を流すための通路を指し、狭義には流体として例えば温調媒体を流すための温調媒体路に相当するものを指す。また、本明細書でいう「温調媒体」とは、後述するキャビティ内の成形材料に対して加熱エネルギー又は冷却熱エネルギーを供するための媒体を指す。 The term "fluid passage" as used herein refers broadly to a passage for fluid flow, and in a narrow sense, to a fluid corresponding to, for example, a temperature control medium route for flowing a temperature control medium. Moreover, the "temperature control medium" as used in this specification refers to the medium for providing a heating energy or cooling thermal energy with respect to the molding material in the cavity mentioned later.
 特に限定されるものではないが、一例として、図4(a)に示すように、造形テーブル20D上に造形ベース部21Dを設ける。造形テーブル20D上に造形ベース部21Dを安定配置する観点から、例えばネジ部材等の固定手段を用いて造形テーブル20D上に造形ベース部21Dを固定することが好ましい。造形ベース部21Dを設置後、造形ベース部21Dの主面21Dにエンドミル40Dを用いて切削加工を施してキャビティ形成面21D11を形成する。なお、特に限定されるものではないが、図4(a)に示すように切削加工に加えて研磨具42D等を用いて研磨加工を更に施してもよい。 Although it does not specifically limit, as an example, as shown to Fig.4 (a), modeling base part 21D is provided on modeling table 20D. From the viewpoint of stably arranging the forming base portion 21D on the forming table 20D, for example, it is preferable to fix the forming base portion 21D on the forming table 20D using fixing means such as a screw member. After installing the shaping base portion 21D, it is subjected to cutting to form a cavity forming surface 21D 11 using an end mill 40D on the main surface 21D 1 of the shaping base portion 21D. Although not particularly limited, as shown in FIG. 4A, in addition to cutting, polishing may be further performed using a polishing tool 42D or the like.
 造形ベース部21Dの主面21Dにキャビティ形成面21D11を形成した後、かかる造形ベース部21Dを上下反転させる。この際、造形テーブル20Dと造形ベース部21Dとの固定を解除する観点から、ネジ部材等の固定手段を取り外すことが好ましい。造形ベース部21Dを上下反転させた後、造形ベース部21Dの主面21Dとは反対側の主面21Dにエンドミル40D等を用いて切削加工を施す。 After forming the cavity forming surface 21D 11 on the main surface 21D 1 of shaping base portion 21D, such shaping base portion 21D is upside down. Under the present circumstances, it is preferable to remove fixing means, such as a screw member, from a viewpoint of releasing fixation with modeling table 20D and modeling base part 21D. After the shaping base portion 21D is turned upside down, the main surface 21D 1 of the shaping base portion 21D is subjected to cutting with an end mill 40D like the main surface 21D 2 on the opposite side.
 造形ベース部21Dの主面21Dに切削加工を施した後、図4(c)および図4(d)に示すように造形ベース部21D上に造形部100Dを形成してよい。例えば、粉末床溶融結合法によりスキージング・ブレード23Dを用いて粉末層22Dを形成する工程と、粉末層22Dの所定箇所に光ビームLを照射して固化層24Dを形成する工程とを繰り返して造形ベース部21D上に造形部100Dを形成してよい。なお、この時、造形ベース部21Dの主面21Dに切削加工を施して得られる切削加工面21D21上に形成する粉末層22Dの所定箇所に光ビームLを照射しないことで非照射部を形成する。そして、かかる非照射部の粉末19Dを除去することで、例えば温調媒体路60Dとして用いる流体通路60Dを形成し得る。以上により、造形ベース部21Dに形成されたキャビティ形成面21D11と、内部に温調媒体路として用いる流体通路60Dとを有して成る金型200Dを製造し得る。 Was subjected to cutting on the main surface 21D 2 of the shaping base portion 21D, may form a shaping part 100D on the shaping base portion 21D as shown in FIG. 4 (c) and FIG. 4 (d). For example, the step of forming the powder layer 22D using the squeezing blade 23D by the powder bed fusion bonding method, and the step of irradiating the predetermined portion of the powder layer 22D with the light beam L to form the solidified layer 24D are repeated. You may form modeling part 100D on modeling base part 21D. At this time, the light beam L is not irradiated to a predetermined portion of the powder layer 22D formed on the cut surface 21D 21 obtained by subjecting the main surface 21D 2 of the formation base portion 21D to the cutting process. Form. Then, by removing the powder 19D of such non-irradiated portion to form a fluid passage 60D is used for example as a temperature control medium passage 60D 1. By the above, it is possible to manufacture a mold 200D having a cavity forming surface 21D 11 formed in the shaping base portion 21D and a fluid passage 60D used as a temperature control medium passage inside.
 本態様は、造形ベース部21Dの主面21Dに対するキャビティ形成面21D11の形成に加え、造形ベース部21Dの主面21Dに切削加工面21D21を形成することで切削加工面21D21を流体通路60Dの形成面の少なくとも一部とする点に特徴を有する。 This embodiment, in addition to the formation of a cavity forming surface 21D 11 against the major surface 21D 1 of shaping base portion 21D, the cut surface 21D 21 by forming a cut surface 21D 21 on the main surface 21D 2 of the shaping base portion 21D It is characterized in that it is at least part of the forming surface of the fluid passage 60D.
 上述のように、造形ベース部の表面にはポアが生じ得ない。そのため、当該造形ベース部21Dにキャビティ形成面21D11を形成すると、ポアが生じ得ないことに起因して当該キャビティ形成面により形作られるキャビティ内に成形材料を好適に充填することができ得る。 As mentioned above, no pores can form on the surface of the shaping base. Therefore, when forming a cavity forming surface 21D 11 on the shaping base portion 21D, may be able due to the pores can not occur favorably fill the molding material into the cavity is shaped by the cavity forming surface.
 これに加えて、本態様では、流体通路60Dの少なくとも一部が造形ベース部21D側に形成されているため、造形ベース部21Dの主面21Dに形成したキャビティ形成面21D11と流体通路60Dの形成面との間の距離を相対的に小さくし得る。従って、最終的に得られる金型200Dのキャビティ形成面200D(上記の造形ベース部21Dのキャビティ形成面21D11に相当)により形作られるキャビティ内に充填した成形材料に温調媒体の熱エネルギーをより好適に供することができ得る。 In addition to this, in this embodiment, since at least a portion of the fluid passage 60D is formed into a shaped base portion 21D side, the shaping base portion cavity forming surface 21D 11 and the fluid passage formed in the main surface 21D 1 of 21D 60D The distance between it and the forming surface of can be made relatively small. Thus, the thermal energy of the finally obtained mold 200D cavity forming surface 200D 1 temperature control in molding material filled in the cavity is shaped by (corresponding to the cavity forming surface 21D 11 above the shaped base portion 21D) medium It can be provided more suitably.
 従って、造形ベース部にポアが生じ得ないことによるキャビティ内への好適な成形材料の充填と、キャビティ形成面と流体通路の形成面との間の距離が相対的に小さいことによるキャビティ内の成形材料のより好適な加熱又は冷却により、以下の効果が奏され得る。すなわち、成形品に対するキャビティ形成面の転写精度の低下をより好適に回避することが可能となる。つまり、最終的に得られる成形品に対するキャビティ形成面の転写精度をより向上させることが可能となる。 Therefore, the filling of a suitable molding material into the cavity due to the inability to form pores in the shaping base part and the molding in the cavity due to the relatively small distance between the cavity forming surface and the forming surface of the fluid passage By the more suitable heating or cooling of the material, the following effects can be achieved. That is, it is possible to more preferably avoid the lowering of the transfer accuracy of the cavity forming surface to the molded product. That is, it is possible to further improve the transfer accuracy of the cavity forming surface to the finally obtained molded product.
 なお、上記態様では、キャビティ形成面21D11を形成する工程を実施した後に流体通路60Dを形成する工程を実施しているが、これに限定されず、例えば以下の態様を採ってよい。 In the above embodiment, the step of forming the fluid passage 60D is performed after the step of forming the cavity forming surface 21D 11 is performed. However, the present invention is not limited to this, and for example, the following embodiment may be adopted.
 まず、上記態様と同様に、造形ベース部21Eの主面21Eに切削加工を施した後、例えば粉末床溶融結合法により粉末層を形成する工程と固化層24Eを形成する工程とを繰り返して造形ベース部21E上に造形部100Eを形成する(図5(a)参照)。なお、この時、造形ベース部21Eの主面21Eに切削加工を施して得られる切削加工面21E21上に形成する粉末層の所定箇所に光ビームを照射しない非照射部を形成し、かかる非照射部の粉末を除去することで、流体通路60Eを形成する。 First, as in the above embodiment, molding was subjected to cutting on a main surface 21E 2 of the base part 21E, for example, by the powder bed fusion bonding method by repeating a step of forming a step of forming a powder layer a solidified layer 24E The forming unit 100E is formed on the forming base unit 21E (see FIG. 5A). At this time, to form a non-irradiated portion which is not irradiated with a light beam to a predetermined portion of the powder layer formed on the shaping base portion 21E of the main surface 21E 2 in cutting cutting surface 21E 21 obtained by performing, such The fluid path 60E is formed by removing the non-irradiated portion powder.
 流体通路60Eを形成した後、造形部100Eが造形ベース部21Eの下方に位置するように造形部100Eと造形ベース部21Eとの一体化物を上下反転させる(図5(b)参照)。上下反転させた後、造形ベース部21Eの主面21Eに切削加工を施して得られる切削加工面21E21とは反対側の造形ベース部21Eの主面21Eにエンドミル40Eを用いて切削加工を施してキャビティ形成面21E11を形成する。なお、特に限定されるものではないが、図5(b)に示すように切削加工に加えて研磨具42E等を用いて研磨加工を更に施してもよい。キャビティ形成面21E11を形成した後、造形部100Eが造形ベース部21Eの上方に位置するように造形部100Eと造形ベース部21Eとの一体化物を更に上下反転させる(図5(c)参照)。以上により、造形ベース部21Eに形成されたキャビティ形成面21E11と、内部に温調媒体路60Eとして用いる流体通路60Eとを有して成る金型200Eを製造し得る。 After the fluid passage 60E is formed, the integrated product of the modeling unit 100E and the modeling base unit 21E is vertically inverted so that the modeling unit 100E is located below the modeling base unit 21E (see FIG. 5B). After upside down, cutting with an end mill 40E to the main surface 21E 1 of shaping base portion 21E on the side opposite to the cut surface 21E 21 obtained by performing cutting on the main surface 21E 2 of the shaping base portion 21E subjected to forming a cavity forming surface 21E 11. In addition to the cutting process, as shown in FIG. 5 (b), the polishing process may be further performed using a polishing tool 42E or the like, although not particularly limited. After forming the cavity forming surface 21E 11 , the integrated product of the modeling unit 100E and the modeling base unit 21E is further vertically reversed so that the modeling unit 100E is located above the modeling base unit 21E (see FIG. 5C). . Thus, a cavity forming surface 21E 11 formed on the shaping base unit 21E, may produce a die 200E comprising a fluid passage 60E used as the temperature control medium passage 60E 1 therein.
 本態様は、上記態様と同様に造形ベース部21Eの主面21Eに切削加工面21E21を形成することに起因して、かかる切削加工面21E21を流体通路60Eの形成面の少なくとも一部としている点に特徴を有する。かかる特徴により、上記態様と同様に、流体通路60Eを温調媒体路として用いる場合に、キャビティ形成面21E11に温調媒体の熱エネルギーをより好適に供することが可能となる。また、本態様では、上述のように造形ベース部の表面にはポアが生じ得ない。そのため、当該造形ベース部21Eにキャビティ形成面21E11を形成すると、ポアが生じ得ないことに起因して当該キャビティ形成面により形作られるキャビティ内に成形材料を好適に充填することができ得る。 This embodiment is, due to forming the cut surface 21E 21 on the main surface 21E 2 of the shaping base portion 21E similarly to the above embodiment, such a cut surface 21E 21 at least a portion of the forming surface of the fluid passage 60E It is characterized in that Such characteristics, as in the above embodiment, when using the fluid passage 60E as the temperature control medium passage, it is possible to provide the heat energy of the temperature control medium in the cavity forming surface 21E 11 more preferably. Moreover, in the present embodiment, as described above, no pore can occur on the surface of the shaping base portion. Therefore, when forming a cavity forming surface 21E 11 on the shaping base unit 21E, may be able due to the pores can not occur favorably fill the molding material into the cavity is shaped by the cavity forming surface.
 従って、図4に示す態様と同様に造形ベース部にポアが生じ得ないことによるキャビティ内への好適な成形材料の充填と、キャビティ形成面と流体通路の形成面との間の距離が相対的に小さいことによるキャビティ内の成形材料のより好適な加熱又は冷却により、以下の効果が奏され得る。すなわち、最終的に得られる成形品に対するキャビティ形成面の転写精度の低下をより好適に回避することが可能となる。 Therefore, as in the embodiment shown in FIG. 4, the filling of a suitable molding material into the cavity due to the inability of pores to form in the molding base, and the distance between the cavity formation surface and the formation surface of the fluid passage are relative. By the more suitable heating or cooling of the molding material in the cavity due to the small size, the following effects can be achieved. That is, it is possible to more preferably avoid the reduction in the transfer accuracy of the cavity forming surface to the finally obtained molded product.
 なお、図4および図5に示す態様はあくまでも一例にすぎない。例えば、キャビティ形成面により形作られるキャビティ内に充填した成形材料に温調媒体の熱エネルギーを好適に供することが可能ならば、例えば温調媒体路として用いる流体通路は造形部側のみに設けられてよい(図9(i)および図9(ii)参照)。また、これに限定されることなく、例えば、キャビティ内に充填した成形材料に温調媒体の熱エネルギーを好適に供することが可能ならば、例えば温調媒体路として用いる流体通路は造形ベース部側のみに設けられてよい。 The modes shown in FIGS. 4 and 5 are merely examples. For example, if it is possible to suitably provide the heat energy of the temperature control medium to the molding material filled in the cavity formed by the cavity forming surface, for example, the fluid passage used as the temperature control medium path is provided only on the modeling portion side It is good (refer FIG. 9 (i) and FIG. 9 (ii)). Further, without being limited thereto, for example, if it is possible to suitably supply the heat energy of the temperature control medium to the molding material filled in the cavity, for example, the fluid passage used as the temperature control medium path is the molding base portion side It may only be provided.
 つまり、本態様では、例えば温調媒体路として用いる流体通路を造形ベース部および造形部の少なくとも一方に形成すればよい。 That is, in the present embodiment, for example, a fluid passage used as a temperature control medium passage may be formed in at least one of the shaping base portion and the shaping portion.
 一態様では、流体通路(例えばガス抜き路)を内部に有して成る金型を製造してよい(図6参照)。以下、特に限定されるものではないが粉末床溶融結合法を用いる場合を例にとる。本明細書でいう「流体通路」とは、広義には流体を流すための通路を指し、狭義には流体として例えばキャビティ内に生じるガスを抜くためのガス抜き路に相当するものを指す。 In one aspect, a mold having fluid passages (eg, venting passages) therein may be manufactured (see FIG. 6). Hereinafter, although not particularly limited, the case of using a powder bed fusion bonding method is taken as an example. The term "fluid passage" as used herein refers in a broad sense to a passage for fluid flow, and in a narrow sense corresponds to a degassing passage for degassing, for example, gas generated in a cavity as a fluid.
 特に限定されるものではないが、例えば、図6(a)に示すように、造形テーブル20F上に造形ベース部21Fを設ける。造形テーブル20F上に造形ベース部21Fを安定配置する観点から、例えばネジ部材等の固定手段を用いて造形テーブル20F上に造形ベース部21Fを固定することが好ましい。造形ベース部21Fを設置後、造形ベース部21Fの主面21Fにエンドミル40F等を用いて切削加工を施して凹面21F21を形成する。 Although not particularly limited, for example, as shown in FIG. 6A, the forming base portion 21F is provided on the forming table 20F. From the viewpoint of stably arranging the forming base portion 21F on the forming table 20F, for example, it is preferable to fix the forming base portion 21F on the forming table 20F using fixing means such as a screw member. After installing the shaping base portion 21F, to form a concave surface 21F 21 is subjected to cutting using a shaping base portion end mill 40F like the main surface 21F 2 of 21F.
 造形ベース部21Fの主面21Fの一部に凹面21F21を形成した後、図6(b)に示すようにかかる凹面21F21により形成される空間領域に例えば粉末供給手段70Fにより粉末19Fを充填する。かかる粉末19Fは、後刻の粉末層形成に用いる粉末と同じ種類であってよい。 After the concave surface 21F 21 is formed on a part of the main surface 21F 2 of the shaping base portion 21F, as shown in FIG. 6B, the powder 19F is applied to the space area formed by the concave surface 21F 21 by the powder supply means 70F, for example. To fill. Such powder 19F may be of the same type as the powder used for later formation of the powder layer.
 凹面21F21により形成される空間領域に粉末19Fを充填した後、凹面21F21により形成される空間領域内の粉末19Fに相対的に小さい照射エネルギーの光ビームLを照射することが好ましい。具体的には、充填した粉末19Fから低密度領域(固化密度0~95%(95%を含まず))が得られるように、当該空間領域内の粉末19Fに相対的に小さい照射エネルギーの光ビームLを照射することが好ましい。 After filling the powder 19F in the space area formed by the concave 21F 21, it is preferable to irradiate the light beam L having a relatively small irradiation energy to the powder 19F in the space area formed by the concave 21F 21. Specifically, light of relatively small irradiation energy is applied to the powder 19F in the space area so that a low density region (solidification density 0 to 95% (not including 95%)) can be obtained from the filled powder 19F. It is preferable to irradiate the beam L.
 次に、図6(c)に示すように、造形ベース部21F上に造形部100Fを形成してよい。例えば、粉末床溶融結合法によりスキージング・ブレード23Fを用いて粉末層を形成する工程と、粉末層の所定箇所に光ビームLを照射して固化層24Fを形成する工程とを繰り返して当該造形部100Fを形成してよい。なお、この時、積層される固化層24Fの一部は、粉末層の所定箇所に相対的に小さい照射エネルギーの光ビームLを照射して、断面視にて上述の凹面21F21により形成される空間領域に充填した粉末19Fから得られる低密度領域に連続して形成されることが好ましい。 Next, as shown in FIG. 6 (c), the shaped portion 100F may be formed on the shaped base portion 21F. For example, the step of forming the powder layer using the squeezing blade 23F by the powder bed fusion bonding method, and the step of irradiating the light beam L to a predetermined portion of the powder layer to form the solidified layer 24F are repeated to form the shape The portion 100F may be formed. At this time, a part of the solidified layer 24F to be stacked is formed by the above-described concave surface 21F 21 in a cross-sectional view by irradiating the light beam L of relatively small irradiation energy to a predetermined portion of the powder layer. It is preferable to form continuously in the low density area obtained from the powder 19F filled in the space area.
 以上により得られる低密度領域が、ガス抜き路60Fとして用いる流体通路60Fとなり得る。一方、かかる低密度領域に相当する粉末層の所定箇所以外の箇所については、相対的に大きい照射エネルギーの光ビームLを照射して高密度領域(固化密度95~100%)を形成することが好ましい。 Low-density region obtained by the above, can be a fluid passage 60F is used as a gas vent passage 60F 1. On the other hand, a light beam L of relatively large irradiation energy is applied to a portion other than the predetermined portion of the powder layer corresponding to the low density region to form a high density region (solidification density 95 to 100%). preferable.
 なお、ここでいう「固化密度(%)」とは、三次元形状造形物の断面写真を画像処理することによって求めた固化断面密度(固化材料の占有率)を実質的に意味している。使用する画像処理ソフトはScion Image ver. 4.0.2(Scion社製のフリーウェア)である。断面画像を固化部(白)と空孔部(黒)とに二値化した後、画像の全画素数Pxallおよび固化部(白)の画素数Pxwhiteをカウントすることで、以下の式1により固化断面密度ρを求めることができる。
[式1]

Figure JPOXMLDOC01-appb-I000001
In addition, "solidification density (%)" here substantially means solidified cross-sectional density (occupied percentage of solidified material) obtained by image processing a cross-sectional photograph of a three-dimensional shaped object. The image processing software to be used is Scion Image ver. 4.0.2 (freeware manufactured by Scion). After the sectional image is binarized into a solidified portion (white) and a void portion (black), the total number of pixels Px all of the image and the number of pixels Px white of the solidified portion (white) are counted to obtain the following equation The solidified cross-sectional density で き るS can be determined by 1.
[Equation 1]

Figure JPOXMLDOC01-appb-I000001
 流体通路60F(具体的には、ガス抜き路)として機能し得る低密度領域が形成されるように造形ベース部21F上に造形部100Fを形成した後(図6(c)および図7(a)参照)、造形ベース部21Fと造形部100Fの一体化物を上下反転させる。この際、造形テーブル20Fと造形ベース部21Fとの固定を解除する観点から、ネジ部材等の固定手段を取り外すことが好ましい。上下反転後、造形ベース部21Fの主面21Fにエンドミル40Fを用いて切削加工を施してキャビティ形成面21F11を形成する(図7(b)参照)。なお、特に限定されるものではないが、図7(b)に示すように切削加工に加えて研磨具42F等を用いて研磨加工を更に施してもよい。具体的には、成形時にキャビティ内に生じるガス等を、流体通路60F(具体的には、ガス抜き路)を介して外部に抜き出し可能となるように、流体通路60Fとして機能し得る低密度領域が露出するまで造形ベース部21Fの主面21Fに切削加工等を施す。これにより、当該キャビティ形成面21F11を形成することが好ましい。 After the shaped portion 100F is formed on the shaped base portion 21F so as to form a low density region that can function as the fluid passage 60F (specifically, the gas venting path) (FIG. 6 (c) and FIG. 7 (a) ), Vertically flip the integrated product of the shaping base portion 21F and the shaping portion 100F. Under the present circumstances, it is preferable to remove fixing means, such as a screw member, from a viewpoint of releasing fixation with modeling table 20F and modeling base part 21F. After upside down, by performing cutting on the main surface 21F 1 of the shaping base portion 21F with an end mill 40F to form a cavity forming surface 21F 11 (see FIG. 7 (b)). In addition to the cutting process, as shown in FIG. 7 (b), the polishing process may be further performed using a polishing tool 42F or the like, although not particularly limited. Specifically, a low density region that can function as fluid passage 60F so that gas or the like generated in the cavity at the time of molding can be extracted to the outside through fluid passage 60F (specifically, the gas venting passage) The main surface 21F 1 of the shaping base portion 21F is subjected to cutting or the like until Accordingly, it is preferable to form the cavity forming surface 21F 11.
 キャビティ形成面21F11を形成した後、造形ベース部21Fの上方に造形部100Fが位置するように造形ベース部21Fと造形部100Fの一体化物を更に上下反転させる(図7(c))。以上により、造形ベース部21Fに形成されたキャビティ形成面21F11と、内部にガス抜き路として用いる流体通路60Fとを有して成る金型200Fを製造し得る。 After the cavity forming surface 21F 11 is formed, the integrated product of the shaping base portion 21F and the shaping portion 100F is further turned upside down so that the shaping portion 100F is positioned above the shaping base portion 21F (FIG. 7C). By the above, it is possible to manufacture the mold 200F having the cavity forming surface 21F 11 formed in the shaping base portion 21F and the fluid passage 60F used as the gas vent passage inside.
 本態様は、キャビティ形成面21F11から造形部100Fの上面100F(最上層の固化層24Fの表面)まで一方向に延在する流体通路60Fが形成されている点に特徴を有する。流体通路60Fは上述のように低密度領域(固化密度0~95%(95%を含まず))であるため内部に空隙が存在し得る。かかる空隙の存在により、キャビティ形成面200Fにより形作られるキャビティ内に充填した成形材料から生じるガスおよび/又はキャビティ内に元々存在する空気等を、流体通路60Fを介して好適に外部に抜き出し可能とし得る。なお、キャビティ形成面200Fは、上記の造形ベース部21Fのキャビティ形成面21F11に相当し得る。また、本態様では、上述のように造形ベース部21Fの表面にはポアが生じ得ない。そのため、当該造形ベース部21Fにキャビティ形成面21F11を形成すると、ポアが生じ得ないことに起因して当該キャビティ形成面21F11により形作られるキャビティ内に成形材料を好適に充填することができ得る。 The present embodiment is characterized in that a fluid passage 60F extending in one direction from the cavity forming surface 21F 11 to the upper surface 100F 1 of the shaped part 100F (the surface of the uppermost solidified layer 24F) is formed. Since the fluid passage 60F is in the low density region (solidification density 0 to 95% (not including 95%)) as described above, voids may exist inside. Due to the presence of such a void, the gas generated from the molding material filled in the cavity formed by the cavity forming surface 200F 1 and / or the air originally existing in the cavity can be suitably extracted outside through the fluid passage 60F. obtain. Incidentally, the cavity forming surface 200F 1 may correspond to a cavity forming surface 21F 11 above the shaped base portion 21F. Further, in the present embodiment, as described above, no pore can occur on the surface of the shaping base portion 21F. Therefore, when forming a cavity forming surface 21F 11 on the shaping base section 21F, may be able due to the pores can not occur favorably fill the molding material into the cavity is shaped by the cavity forming surface 21F 11 .
 従って、造形ベース部にポアが生じ得ないことによるキャビティ内への好適な成形材料の充填と、低密度領域である流体通路60Fを介したキャビティ内のガスの好適な外部への抜き出しとにより、以下の効果が奏され得る。すなわち、最終的に得られる成形品に対するキャビティ形成面の転写精度の低下をより好適に回避することが可能となる。 Therefore, by filling of the suitable molding material in the cavity by the fact that pores can not occur in the shaping base, and the suitable extraction of the gas in the cavity through the fluid passage 60F, which is a low density region, The following effects can be achieved. That is, it is possible to more preferably avoid the reduction in the transfer accuracy of the cavity forming surface to the finally obtained molded product.
 なお、図6および図7に示す態様はあくまでも一例にすぎない。例えば、キャビティ内のガスの好適な外部への抜き出しが可能となるならば、例えばガス抜き路として用いる流体通路は造形部側のみに設けられてよい。この場合、ガス抜き路として用いる流体通路は、キャビティ内のガスの好適な外部への抜き出しの観点から、造形ベース部と造形部との界面領域から造形部の上面まで延在するように形成されることが好ましい。また、この場合、造形ベース部に形成されるキャビティ形成面の一部は、ガス抜き路として用いる流体通路を介してキャビティ内のガスを外部へと好適に抜き出しする観点から造形ベース部と造形部との界面領域に形成されていることが好ましい。 The modes shown in FIGS. 6 and 7 are merely examples. For example, if the gas inside the cavity can be suitably extracted to the outside, for example, a fluid passage used as a gas venting passage may be provided only on the side of the shaped portion. In this case, the fluid passage used as the degassing passage is formed to extend from the interface region between the shaping base portion and the shaping portion to the upper surface of the shaping portion from the viewpoint of extracting the gas in the cavity to the suitable outside. Is preferred. Moreover, in this case, a part of the cavity forming surface formed in the molding base part is a molding base part and the molding part from the viewpoint of suitably extracting the gas in the cavity to the outside through the fluid passage used as the gas venting path. Preferably, it is formed in the interface region with the
 一態様では、造形部を形成するために粉末床溶融結合法および/又はLMD法で使用する粉末材料としては、用途が金型である点に鑑み金属粉末であることが好ましい。かかる金属粉末としては、例えば銅系粉末および/またはアルミニウム系粉末を主成分とした粉末であってよい。また、かかる金属粉末としては、銅系粉末および/またはアルミニウム系粉末を主成分とした粉末に必要に応じてニッケル粉末、ニッケル系合金粉末、および黒鉛粉末などから成る群から選択される少なくとも1種類を更に含んで成る粉末であってよい。その理由は以下のとおりである。 In one aspect, the powder material used in the powder bed fusion bonding method and / or the LMD method to form the shaped part is preferably a metal powder in view of the use as a mold. The metal powder may be, for example, a powder containing copper-based powder and / or aluminum-based powder as a main component. In addition, as the metal powder, at least one selected from the group consisting of nickel powder, nickel-based alloy powder, graphite powder and the like, as needed, for powder mainly composed of copper-based powder and / or aluminum-based powder. It may be a powder further comprising The reason is as follows.
 金型として用いる従来の三次元形状造形物(本発明における造形部に対応)には、三次元形状造形物の表面をキャビティ形成面として用いることに鑑み、成形時にてキャビティ形成面にかかる力に耐え得る構造強度が三次元形状造形物に要求され得る。そのため、金型として用いる従来の三次元形状造形物を形成するために粉末床溶融結合法および/又はLMD法で使用する粉末材料は、剛性が相対的に高い鉄系粉末を用いる必要があり得る。 In view of using the surface of the three-dimensional shaped object as a cavity forming surface in the conventional three-dimensional shaped object (corresponding to the forming portion in the present invention) used as a mold, Tolerable structural strength may be required for three-dimensional shaped objects. Therefore, the powder material used in the powder bed fusion bonding method and / or the LMD method to form the conventional three-dimensional shaped object used as a mold may need to use an iron-based powder having relatively high rigidity. .
 一方、本発明の一実施形態では、造形ベース部にキャビティ形成面を形成しているため、粉末床溶融結合法および/又はLMD法で形成する造形部には成形時にキャビティ形成面にかかる力に耐え得る構造強度を相対的に小さくし得る。そのため、剛性が相対的に高い鉄系粉末を造形部の形成に際して必ずしも用いる必要がない。従って、造形部を形成するための金属粉末として、成形時において造形ベース部に設けたキャビティ形成面側へとより好適に熱エネルギーを供する観点から熱伝導性が相対的に高い銅系粉末および/またはアルミニウム系粉末を主成分とした粉末を用いることが可能である。また、銅系粉末および/またはアルミニウム系粉末は熱伝導性が相対的に高いという性質に加えて剛性が相対的に低いという性質も有し得る。そのため、剛性が相対的に低いという性質を有する銅系粉末および/またはアルミニウム系粉末を主成分とした粉末を用いると、以下の効果も奏され得る。すなわち、剛性が相対的に高い鉄系粉末を主成分とした粉末を用いる場合と比べて、剛性が相対的に低いことに起因して得られる造形部表面の切削加工を施し易くすることが可能である。 On the other hand, in the embodiment of the present invention, since the cavity forming surface is formed in the shaping base portion, the force applied to the cavity forming surface at the time of molding is used for the shaping portion formed by the powder bed fusion bonding method and / or LMD method. The structural strength that can be tolerated can be relatively reduced. Therefore, it is not always necessary to use iron-based powder having relatively high rigidity in forming the shaped part. Therefore, as a metal powder for forming a shaped portion, a copper-based powder having relatively high thermal conductivity and / or from the viewpoint of providing heat energy more suitably to the cavity forming surface side provided in the shaped base portion at the time of shaping Or it is possible to use the powder which made aluminum system powder the main ingredients. In addition to the property that the copper-based powder and / or the aluminum-based powder has relatively high thermal conductivity, it may also have the property of relatively low rigidity. Therefore, the following effects can also be achieved by using a powder based on a copper-based powder and / or an aluminum-based powder having a property of relatively low rigidity. That is, as compared with the case of using a powder having iron-based powder with relatively high rigidity as a main component, it is possible to easily cut the surface of the shaped part obtained due to the relatively low rigidity. It is.
 上述のように本発明の一実施形態では造形ベース部に所定形状および所定寸法を有するキャビティ形成面を形成する必要がある。かかるキャビティ形成面の所定形状および寸法は、所望の成形品の形状および寸法の如何によっては相対的に大きくする必要性がある。その一方で、本発明の一実施形態では造形部に所定形状および所定寸法を有したキャビティ形成面を形成する必要がない。以上の点に鑑み、一態様では例えば造形ベース部の高さ寸法を造形部の高さ寸法よりも相対的に大きくしてよい。 As described above, in one embodiment of the present invention, it is necessary to form a cavity forming surface having a predetermined shape and a predetermined dimension in the shaping base portion. The predetermined shape and dimensions of such cavity forming surfaces may need to be relatively large, depending on the shape and dimensions of the desired molded article. On the other hand, in the embodiment of the present invention, it is not necessary to form a cavity forming surface having a predetermined shape and a predetermined dimension in the shaped part. In view of the above, in one aspect, for example, the height dimension of the shaping base portion may be made relatively larger than the height dimension of the shaping portion.
[本発明の金型]
 本発明の一実施形態に係る金型は、光ビームの照射により複数の固化層を逐次形成する方法により形成される造形部と、当該造形部と接合した造形ベース部との一体化物を金型として用いる場合において、かかる造形ベース部を有効活用している点に特徴を有する。
[Mold of the Invention]
A mold according to an embodiment of the present invention is an integrated product of a molding unit formed by a method of sequentially forming a plurality of solidified layers by irradiation of a light beam and a molding base unit joined to the molding unit. In the case of using it, it is characterized in that such a molding base portion is effectively used.
 具体的には、上記の製造方法により得られた本発明の一実施形態に係る金型は、以下の構成を採っている。 Specifically, the mold according to an embodiment of the present invention obtained by the above-described manufacturing method has the following configuration.
 本発明の一実施形態に係る金型200Aは、図8に示すように、造形部100Aおよび造形部100Aと接合した造形ベース部21Aを有して成り、造形ベース部21Aがキャビティ形成面21A11を有している点に特徴を有する。つまり、本発明の一実施形態に係る金型200Aは、造形ベース部21Aにキャビティ形成面21A11が設けられている点に特徴を有する。かかる特徴が、造形部100Aに対応する三次元形状造形物の表面を金型のキャビティ形成面として用いる従来の態様と顕著に異なる点である。 A mold 200A according to an embodiment of the present invention, as shown in FIG. 8, includes a shaping base portion 21A joined to a shaping portion 100A and a shaping portion 100A, and the shaping base portion 21A is a cavity forming surface 21A 11 It has a feature in that it has That is, the mold 200A according to the embodiment of the present invention is characterized in that the cavity forming surface 21A 11 is provided in the shaping base portion 21A. Such a feature is a point that is significantly different from the conventional aspect in which the surface of the three-dimensional shaped object corresponding to the shaped portion 100A is used as the cavity forming surface of the mold.
 上記の製造方法の欄でも述べたが、かかる特徴によれば、金型200Aの造形部100A側の表面100Aにキャビティ形成面が形成されないこととなる。光ビームLの照射により複数の固化層24Aを逐次形成する方法、例えば粉末床溶融結合法で得られる造形部100Aの表面にはポアが生じ得る。なお、当該造形部100Aは、従来態様(図14参照)における三次元形状造形物100’に相当し得る。しかしながら、本発明の一実施形態では、かかるポアが生じ得る造形部100A側の表面100Aではなく、かかるポアが生じ得ない造形ベース部21Aにキャビティ形成面21A11(金型200Aにおける符号200Aに相当)が形成され得る。ポアが生じ得ない造形ベース部21Aにキャビティ形成面21A11を形成すると、ポアが生じ得ないことに起因して当該キャビティ形成面200Aにより形作られるキャビティ内に成形材料を好適に充填することができ得る。従って、かかるキャビティ内への好適な成形材料の充填により、最終的に得られる成形品に対するキャビティ形成面200Aの転写精度の低下を回避することが可能となる。つまり、最終的に得られる成形品に対するキャビティ形成面200Aの転写精度を向上させることが可能となる。 Although it mentioned in the column of the above-described manufacturing method, according to this aspect, so that the cavity forming surface on the surface 100A 1 of the shaped portion 100A side of the die 200A is not formed. Pores may be generated on the surface of the shaped part 100A obtained by a method of sequentially forming a plurality of solidified layers 24A by irradiation of the light beam L, for example, a powder bed fusion bonding method. In addition, the said modeling part 100A may correspond to three-dimensional-shaped molded article 100 'in a conventional aspect (refer FIG. 14). However, in one embodiment of the present invention, the cavity forming surface 21A 11 (reference numeral 200A 1 in the mold 200A) is not formed on the shaping base portion 21A where such pores can not occur, not the surface 100A 1 on the side ) Can be formed. If the cavity forming surface 21A 11 is formed in the shaping base portion 21A in which no pore can occur, the molding material can be suitably filled in the cavity formed by the cavity forming surface 200A 1 because the pore can not occur. It can be done. Thus, by the filling of a suitable molding material into such cavity, it is possible to avoid the deterioration of the transfer accuracy of the cavity forming surface 200A 1 for finally obtained molded article. In other words, it is possible to improve the transfer accuracy of the cavity forming surface 200A 1 for finally obtained molded article.
 本発明の一実施形態に係る金型は、下記態様を採ることが好ましい。 The mold according to an embodiment of the present invention preferably adopts the following aspect.
 本発明の一実施形態では、キャビティ形成面200Aが、造形部100Aと造形ベース部21Aとの接合面21A側とは反対側に位置する造形ベース部21Aの主面21Aに設けられていることが好ましい(図8参照)。本明細書でいう「造形部100Aと造形ベース部21Aとの接合面21A側」とは、造形部100Aと造形ベース部21Aとの境界面側を実質的に指す。 In one embodiment of the present invention, a cavity forming surface 200A 1 is the bonding surface 21A 2 side of the shaped portion 100A and the shaping base portion 21A provided on the main surface 21A 1 of the shaping base portion 21A located opposite Is preferred (see FIG. 8). The “bonding surface 21A 2 side between the forming unit 100A and the forming base unit 21A” in the present specification substantially indicates the boundary surface side between the forming unit 100A and the forming base unit 21A.
 造形ベース部21Aは造形部100Aを造形するためのベース(土台)となるものである。そのため、安定した状態で造形部100Aを形成する観点および金型200A全体の寸法サイズの低減化の観点から、断面視において、造形ベース部21Aの主面21Aの幅寸法は、造形ベース部21Aの側面21Aの高さ寸法よりも相対的に大きくされ得る。かかる点を考慮し、キャビティ形成面21A11を、造形部100Aと造形ベース部21Aとの接合面21Aとは反対側に位置する造形ベース部21Aの主面21A側に形成すると、以下の効果が奏され得る。すなわち、造形ベース部21Aの主面21Aの幅寸法が相対的に大きいことに起因して、キャビティ形成面21A11の寸法の自由度を向上させることができ得る。 The forming base portion 21A is to be a base (base) for forming the forming portion 100A. Therefore, from the viewpoint of reducing the aspect and mold 200A overall dimensions sized to form a shaped portion 100A in a stable state, in a cross-sectional view, a width dimension of the main surface 21A 1 of the shaping base portion 21A is shaped base portion 21A It may be relatively larger than the height of the side surface 21A 3 of the. Considering this point, the cavity forming surface 21A 11, when the bonding surface 21A 2 of the shaped portion 100A and the shaping base portion 21A is formed on the main surface 21A 1 side of the shaping base portion 21A located opposite, the following An effect can be exhibited. That is, the width dimension of the main surface 21A 1 of the shaping base portion 21A is due to the relatively large, it may be able to improve the degree of freedom of the size of the cavity forming surface 21A 11.
 本発明の一実施形態では、造形ベース部21Aの主面には、キャビティ形成面21A11に加えて造形土台底面21A12が更に含まれることが好ましい。 In one embodiment of the present invention, the main surface of the shaped base portion 21A, it is preferable that the shaped base bottom 21A 12 in addition to the cavity forming surface 21A 11 is further included.
 上述のキャビティ形成面21A11が形成され得る造形ベース部21Aの主面21Aに関して、かかる造形ベース部21Aの主面21Aは、造形部100Aと造形ベース部21Aとの接合面21Aとは反対側に位置し得る。そのため、造形ベース部21Aの主面21Aを、造形ベース部21A上に安定した状態で造形部100Aを形成して金型200Aを得るための底面とする必要がある。そこで、かかる造形ベース部21Aの主面21Aには、造形ベース部21A上にて造形部100Aを安定した状態で形成する観点からキャビティ形成面21A11のみならず造形土台底面21A12を形成することが好ましい。なお、造形部100Aの安定した状態での形成と、キャビティ形成面21A11の寸法自由度の向上の両立の観点から、断面視においてキャビティ形成面21A11は、図8に示すように造形土台底面21A12を挟むように構成されることがより好ましい。すなわち、断面視においてキャビティ形成面21A11が、一方の造形土台底面21A12と他方の造形土台底面21A12との間に連続するように位置付けられることがより好ましい。 Regard the main surface 21A 1 of the shaping base portion 21A of the cavity forming surface 21A 11 described above can be formed, the main surface 21A 1 of such shaping base unit 21A includes a joint surface 21A 2 of the shaped portion 100A and the shaping base portion 21A is It can be located on the opposite side. Therefore, the main surface 21A 1 of the shaping base portion 21A, it is necessary to the bottom surface in order to obtain a mold 200A to form the molded portion 100A in a stable condition on a shaping base portion 21A. Therefore, according to the shaping base portion main surface 21A 1 of 21A forms a shaped base portion stably shaped base bottom 21A 12 not from the viewpoint of forming a state cavity forming surface 21A 11 only a shaped portion 100A at the 21A Is preferred. Incidentally, the formation of a stable state of the shaped portion 100A, from the viewpoint of compatibility between improvement in dimensional freedom of the cavity forming surface 21A 11, the cavity forming surface 21A 11 in a cross-sectional view is shaped base bottom as shown in FIG. 8 and it is more preferably formed so as to sandwich the 21A 12. That is, the cavity forming surface 21A 11 in cross section is more preferably positioned so as to continue between one of the shaped base bottom 21A 12 and the other of the shaped base bottom 21A 12.
 本発明の一実施形態に係る金型は、下記態様を採ってよい。 The mold according to an embodiment of the present invention may adopt the following aspect.
 一態様では、本発明の一実施形態に係る金型は内部に流体通路を有して成ってよい。 In one aspect, a mold according to an embodiment of the present invention may comprise a fluid passage therein.
 ここでいう「流体通路」とは、広義には流体を流すための通路を指し、狭義には流体として温調媒体を流すための温調媒体路および/又は流体としてキャビティ内に生じ得るガス等を抜くためのガス抜き路に相当するものを指す。 The term "fluid passage" as used herein refers to a passage for flowing a fluid in a broad sense, and in a narrow sense, a temperature control medium passage for flowing a temperature control medium as a fluid and / or a gas etc. which may occur in a cavity as a fluid Refers to the equivalent of the degassing path for degassing.
 本態様は、上述の造形ベース部の主面にキャビティ形成面が形成されていることに加えて、金型の内部に流体通路が設けられている点に特徴を有する。 This aspect is characterized in that a fluid passage is provided inside the mold in addition to the cavity forming surface being formed on the main surface of the above-mentioned molding base portion.
 以下、流体通路として温調媒体路が用いられる場合について説明する(図9参照)。 Hereinafter, the case where a temperature control medium passage is used as the fluid passage will be described (see FIG. 9).
 図9に示す態様では、本発明の一実施形態に係る金型200Dは内部に温調媒体路として用いられる流体通路60D(60D~60D)を有して成ってよい。上述のように、造形ベース部21Dの表面にはポアが生じ得ない。そのため、当該造形ベース部21Dにキャビティ形成面21D11を形成すると、ポアが生じ得ないことに起因して当該キャビティ形成面により形作られるキャビティ内に成形材料を好適に充填することができ得る。 In the embodiment shown in FIG. 9, a mold 200D according to an embodiment of the present invention may have fluid passages 60D (60D 1 to 60D 3 ) internally used as a temperature control medium passage. As described above, no pore can occur on the surface of the shaping base portion 21D. Therefore, when forming a cavity forming surface 21D 11 on the shaping base portion 21D, may be able due to the pores can not occur favorably fill the molding material into the cavity is shaped by the cavity forming surface.
 これに加えて、本態様では、金型200Dの内部に流体通路60D(60D~60D)が設けられている。そのため、金型200Dのキャビティ形成面200D(上記の造形ベース部21Dのキャビティ形成面21D11に相当)により形作られるキャビティ内に充填した成形材料に温調媒体の熱エネルギーを好適に供することができ得る。 In addition to this, in the present embodiment, fluid passages 60D (60D 1 to 60D 3 ) are provided inside the mold 200D. Therefore, the cavity forming surface 200D 1 of the mold 200D be subjected to suitable thermal energy of the temperature control medium in the molding material filled in the cavity is shaped by (corresponding to the cavity forming surface 21D 11 above the shaped base portion 21D) It can be done.
 従って、造形ベース部21Dにポアが生じ得ないことによるキャビティ内への好適な成形材料の充填と、金型200Dの内部に温調媒体路として用いる流体通路60Dの設置によるキャビティ内に充填した成形材料への温調媒体の熱エネルギーの好適な供給により、
以下の効果が奏され得る。すなわち、最終的に得られる成形品に対するキャビティ形成面の転写精度の低下をより好適に回避することが可能となる。つまり、最終的に得られる成形品に対するキャビティ形成面の転写精度をより向上させることが可能となる。
Therefore, the filling of a suitable molding material in the cavity due to the inability to form pores in the shaping base 21D, and the molding filled in the cavity by the installation of the fluid passage 60D used as a temperature control medium passage inside the mold 200D. By suitable supply of thermal energy of the temperature control medium to the material,
The following effects can be achieved. That is, it is possible to more preferably avoid the reduction in the transfer accuracy of the cavity forming surface to the finally obtained molded product. That is, it is possible to further improve the transfer accuracy of the cavity forming surface to the finally obtained molded product.
 一例として、図9(i)に示すように温調媒体路として用いられる流体通路60Dが、造形部100Dおよび造形ベース部21Dの両方の内部を延在するように設けられていてよい。図9(i)に示す態様は、温調媒体路として用いられる流体通路60Dが、キャビティ形成面200Dを形成する造形ベース部21D側にも設けられている点に特徴を有する。 As an example, the fluid passage 60D 1 which is used as the temperature control medium channel as shown in FIG. 9 (i) is the interior of both shaping part 100D and the shaping base portion 21D may be provided so as to extend. Embodiment shown in FIG. 9 (i), the fluid passage 60D 1 used as a temperature control medium passage, characterized in that is also provided on the shaping base portion 21D side to form a cavity forming surface 200D 1.
 図9(i)に示す態様では、流体通路60Dが造形ベース部21D側にも設けられている。そのため、キャビティ形成面200Dとキャビティ形成面200Dに対向する流体通路60Dの形成面との間の距離Sを相対的に小さくし得る。かかる相対的に小さな距離に起因して、キャビティ内の成形材料により好適に温調媒体の熱エネルギーを供することができ得る。従って、造形ベース部21Dにポアが生じ得ないことによるキャビティ内への好適な成形材料の充填と、流体通路60Dが造形ベース部21D側にも設けられていることによるキャビティ内に充填した成形材料への温調媒体の熱エネルギーのより好適な供給により、以下の効果が奏され得る。すなわち、最終的に得られる成形品に対するキャビティ形成面の転写精度の低下を“更に”より好適に回避することが可能となる。つまり、最終的に得られる成形品に対するキャビティ形成面の転写精度を“更に”より向上させることが可能となる。 In the embodiment shown in FIG. 9 (i), the fluid passages 60D 1 is also provided on the shaping base portion 21D side. Therefore, may relatively small distance S between the forming surface of the fluid passage 60D 1 which faces the cavity forming surface 200D 1 and the cavity forming surface 200D 1. Due to such a relatively small distance, the heat energy of the temperature control medium may be better provided by the molding material in the cavity. Thus, the filling of a suitable molding material into the cavity due to the pores in the shaped base portion 21D can not occur, the molding was filled into the cavity due to the fluid passage 60D 1 is also provided on the shaping base portion 21D side By the more suitable supply of the thermal energy of the temperature control medium to the material, the following effects can be achieved. That is, it is possible to more preferably avoid the reduction in the transfer accuracy of the cavity forming surface to the finally obtained molded product. That is, it is possible to further improve the transfer accuracy of the cavity forming surface to the finally obtained molded product.
 別例として、図9(ii)および図9(iii)に示すように温調媒体路として用いられる流体通路60Dが、造形部100D側のみの内部を延在するように設けられていてよい。 As another example, the fluid passage 60D 2 used as the temperature control medium channel as shown in FIG. 9 (ii) and Fig. 9 (iii) is, the interior of the shaped portion 100D side only may be provided so as to extend .
 図9(ii)および図9(iii)に示す態様では、流体通路60D,60Dが造形部100D側にのみ設けられている。そのため、造形ベース部21Dにポアが生じ得ないことによりキャビティ内へ成形材料を好適に充填でき得る。更に、金型200Dのキャビティ形成面200D(上記の造形ベース部21Dのキャビティ形成面21D11に相当)により形作られるキャビティ内に充填した成形材料に温調媒体の熱エネルギーを好適に供することができ得る。これに加えて、図9(ii)に示す態様では、造形部100Dは、上述の本発明の製造方法の欄でも述べているように例えば粉末床溶融結合法で形成される。そのため、金型200Dの使用環境に応じて温調媒体路として用いられる流体通路60D,60Dの形状を自在に形成でき得る。 In the embodiment shown in FIG. 9 (ii) and FIG. 9 (iii), the fluid passages 60D 2 and 60D 3 are provided only on the shaped part 100D side. Therefore, a molding material can be suitably filled in a cavity by the fact that a pore can not arise in modeling base 21D. Furthermore, the cavity forming surface 200D 1 of the mold 200D be subjected to suitable thermal energy of the temperature control medium in the molding material filled in the cavity is shaped by (corresponding to the cavity forming surface 21D 11 above the shaped base portion 21D) It can be done. In addition to this, in the embodiment shown in FIG. 9 (ii), the shaped part 100D is formed by, for example, a powder bed fusion bonding method as described in the section of the manufacturing method of the present invention described above. Therefore, the shapes of the fluid passages 60D 2 and 60D 3 used as the temperature control medium passage can be freely formed according to the use environment of the mold 200D.
 次に、以下、流体通路としてガス抜き路が用いられる場合について説明する(図10参照)。 Next, the case where a degassing passage is used as the fluid passage will be described below (see FIG. 10).
 図10に示す態様は、キャビティ形成面21F11から造形部100Fの上面100F(最上層の固化層24Fの表面)まで一方向に延在するガス抜き路として用いられる流体通路60Fが形成されている点に特徴を有する。 In the embodiment shown in FIG. 10, a fluid passage 60F used as a gas venting path extending in one direction from the cavity forming surface 21F 11 to the upper surface 100F 1 of the shaped part 100F (the surface of the solidified layer 24F of the uppermost layer) is formed It has a feature in
 ここでいう「流体通路60F」はガス抜き路60Fとして機能するべく低密度領域(固化密度0~95%(95%を含まず))となるように形成されている。そのため、低密度領域であることに起因して、流体通路60Fの内部には空隙が存在し得る。かかる空隙の存在により、金型200Fのキャビティ形成面200Fにより形作られるキャビティ内に充填した成形材料から生じるガスおよび/又はキャビティ内に元々存在する空気等を、流体通路60Fを介して好適に外部に抜き出し可能とし得る。なお、金型200Fのキャビティ形成面200Fは、上記の造形ベース部21Fのキャビティ形成面21F11に相当し得る。また、図10に示す態様では、造形ベース部21Fにキャビティ形成面21F11が形成されている。そのため、造形ベース部にはポアが生じ得ないことに起因して当該キャビティ形成面21F11により形作られるキャビティ内に成形材料を好適に充填することができ得る。 The term "fluid passage 60F" is formed such that the low-density region (solidified density 0-95% (not including 95%)) in order to function as a gas vent passage 60F 1. Therefore, due to the low density region, voids may exist inside the fluid passage 60F. The presence of such voids, air, etc. that originally present in the gas and / or the cavity resulting from a molding material filled in the cavity is shaped by the cavity forming surface 200F 1 of the mold 200F, preferably outside through the fluid passage 60F Can be extracted. Incidentally, the cavity forming surface 200F 1 of the mold 200F may correspond to the cavity forming surface 21F 11 above the shaped base portion 21F. In the embodiment shown in FIG. 10, the cavity forming surface 21F 11 is formed into a shaped base portion 21F. Therefore, may be able to suitably fill the molding material into a shaped base portion due to the pores can not occur in the cavity is shaped by the cavity forming surface 21F 11.
 従って、造形ベース部にポアが生じ得ないことに起因したキャビティ内への好適な成形材料の充填と、低密度領域である流体通路60Fを介したキャビティ内のガスの好適な外部への抜き出しとにより、以下の効果が奏され得る。すなわち、最終的に得られる成形品に対するキャビティ形成面の転写精度の低下をより好適に回避することが可能となる。つまり、最終的に得られる成形品に対するキャビティ形成面の転写精度をより向上させることが可能となる。 Therefore, the filling of a suitable molding material into the cavity due to the inability to form pores in the shaping base, and the suitable extraction of the gas inside the cavity through the fluid passage 60F, which is a low density region, and the like. The following effects can be achieved by That is, it is possible to more preferably avoid the reduction in the transfer accuracy of the cavity forming surface to the finally obtained molded product. That is, it is possible to further improve the transfer accuracy of the cavity forming surface to the finally obtained molded product.
 なお、図10に示す態様はあくまでも一例にすぎない。例えば、キャビティ内のガスの好適な外部への抜き出しが可能となるならば、例えばガス抜き路として用いる流体通路は造形部100F側のみに設けられてよい。この場合、ガス抜き路として用いる流体通路は、キャビティ内のガスの好適な外部への抜き出しの観点から、造形ベース部21Fと造形部100Fとの界面領域から造形部100Fの上面まで延在するように形成されることが好ましい。また、この場合、造形ベース部21Fに形成されるキャビティ形成面の一部は、ガス抜き路として用いる流体通路を介してキャビティ内のガスを外部へと好適に抜き出しする観点から造形ベース部21Fと造形部100Fとの界面領域に形成されていることが好ましい。 The mode shown in FIG. 10 is merely an example. For example, if it is possible to appropriately extract the gas in the cavity to the outside, for example, a fluid passage used as a degassing passage may be provided only on the shaped part 100F side. In this case, the fluid passage used as the degassing passage extends from the interface region between the shaping base portion 21F and the shaping portion 100F to the upper surface of the shaping portion 100F from the viewpoint of extracting the gas in the cavity to the suitable outside. Preferably, it is formed in Further, in this case, a part of the cavity forming surface formed in the shaping base portion 21F and the shaping base portion 21F from the viewpoint of suitably extracting the gas in the cavity to the outside through the fluid passage used as the gas venting path. It is preferable to form in the interface area | region of the modeling part 100F.
 最後に、上述のように、本発明の一実施形態に係る金型では、造形ベース部にキャビティ形成面が設けられている(図8等参照)。かかるキャビティ形成面は、特に限定されるものではないが、例えばエンドミル等の回転切削工具を用いて造形ベース部の主面(例えば造形土台底面21A12を含む下側主面)に切削加工を施すことで形成され得る。回転切削工具としては、例えばフラットエンドミル、ボールエンドミル等のエンドミルを挙げることができる。そのため、上記粉末床溶融結合法では相対的に複雑な形状面を形成するのに適当であるのに対して、切削加工処理では相対的に簡易な形状面を形成するのに適当である。かかる点に鑑み、特に限定されるものではないが、切削加工を施すことで形成され得るキャビティ形成面21B11は断面視で例えば矩形、正方形、三角形、半円、又は半楕円形状(一例として図8に示すレンズ形状)を有するように構成されてよい。 Lastly, as described above, in the mold according to the embodiment of the present invention, a cavity forming surface is provided in the shaping base portion (see FIG. 8 and the like). Although such a cavity forming surface is not particularly limited, for example, the main surface (for example, the lower main surface including the forming base bottom surface 21A 12 ) of the shaping base portion is cut using a rotary cutting tool such as an end mill. It can be formed by As a rotary cutting tool, end mills, such as a flat end mill and a ball end mill, can be mentioned, for example. Therefore, while the above-mentioned powder bed fusion bonding method is suitable for forming a relatively complicated shape surface, it is suitable for forming a relatively simple shape surface in a cutting process. In view of this point, although not particularly limited, the cavity forming surface 21B 11 that can be formed by performing cutting processing has, for example, a rectangular, square, triangular, semicircular, or semielliptical shape in cross sectional view (as an example, It may be configured to have a lens shape shown in FIG.
 以上、本発明の一実施形態について説明してきたが、本発明の適用範囲のうちの典型例を例示したに過ぎない。従って、本発明はこれに限定されず、種々の改変がなされ得ることを当業者は容易に理解されよう。 While the embodiment of the present invention has been described above, it is merely exemplary of the scope of the present invention. Therefore, those skilled in the art will readily understand that the present invention is not limited thereto, and various modifications can be made.
 なお、上述のような本発明の一実施形態は、次の好適な態様を包含している。
第1態様
 造形部および該造形部と接合した造形ベース部を有して成る金型であって、
 前記造形ベース部がキャビティ形成面を有している、金型。
第2態様
 上記第1態様において、前記キャビティ形成面が、前記造形部と前記造形ベース部との接合面側とは反対側に位置する該造形ベース部の主面に設けられている、金型。
第3態様
 上記第2態様において、前記造形ベース部の前記主面には、前記キャビティ形成面に加えて造形土台底面が更に含まれる、金型。
第4態様
 上記第1態様~第3態様のいずれかにおいて、前記金型は内部に流体通路を有して成る、金型。
第5態様
 上記第4態様において、前記流体通路が前記造形ベース部および前記造形部の少なくとも一方に設けられている、金型。
第6態様
 上記第4態様又は第5態様において、前記流体通路が、温調媒体路又はガス抜き路である、金型。
第7態様
金型の製造方法であって、
 造形ベース部上に、光ビーム照射により複数の固化層を逐次形成することによって造形部を形成する工程と、
 前記造形ベース部にキャビティ形成面を設ける工程と
を含む、製造方法。
第8態様
 上記第7態様において、前記造形ベース部の造形土台底面側に前記キャビティ形成面を形成する、製造方法。
第9態様
 上記第7態様又は第8態様において、前記金型は内部に流体通路を有して成り、
前記流体通路を前記造形ベース部および前記造形部の少なくとも一方に形成する、製造方法。
第10態様
 上記第9態様において、前記流体通路として温調媒体路又はガス抜き路を形成する、製造方法。
第11態様
 上記第7態様~第10態様のいずれかにおいて、前記キャビティ形成面を、前記造形ベース部に切削加工を施して形成する、製造方法。
第12態様:上記第7態様~第11態様のいずれかにおいて、前記造形部を粉末床溶融結合法で形成する、製造方法。
Note that one embodiment of the present invention as described above includes the following preferred aspects.
First aspect :
A mold comprising a shaped portion and a shaped base portion joined to the shaped portion, the mold comprising:
The mold wherein the shaped base portion has a cavity forming surface.
Second aspect :
The mold according to the first aspect, wherein the cavity forming surface is provided on a main surface of the shaping base portion which is located on the opposite side to a bonding surface side of the shaping portion and the shaping base portion.
Third aspect :
In the second aspect, the main surface of the modeling base portion further includes a modeling base bottom surface in addition to the cavity forming surface.
Fourth aspect :
In any one of the first to third aspects, the mold has a fluid passage inside.
Fifth aspect :
The mold according to the fourth aspect, wherein the fluid passage is provided in at least one of the shaping base portion and the shaping portion.
Sixth aspect :
The mold according to the fourth or fifth aspect, wherein the fluid passage is a temperature control medium passage or a degassing passage.
Seventh aspect :
A method of manufacturing a mold,
Forming a shaped portion by sequentially forming a plurality of solidified layers on the shaping base portion by light beam irradiation;
Providing a cavity forming surface on the modeling base portion.
Eighth aspect :
The manufacturing method according to the seventh aspect, wherein the cavity forming surface is formed on the bottom surface side of the forming base of the forming base portion.
Ninth aspect :
In the seventh or eighth aspect, the mold has a fluid passage inside;
The method according to claim 1, wherein the fluid passage is formed in at least one of the shaping base portion and the shaping portion.
Tenth aspect :
In the above-mentioned ninth aspect, a temperature control medium path or a degassing path is formed as the fluid path.
Eleventh aspect :
In any of the seventh to tenth aspects, the cavity forming surface is formed by cutting the shaping base portion.
The twelfth aspect : The method according to any one of the seventh to eleventh aspects, wherein the shaped part is formed by a powder bed fusion bonding method.
 本発明の一実施形態に係る金型は、プラスチック射出成形用金型、プレス金型、ダイカスト金型、鋳造金型、鍛造金型などの金型として用いることができる。 The mold according to an embodiment of the present invention can be used as a mold for a plastic injection mold, a press mold, a die casting mold, a casting mold, a forging mold and the like.
関連出願の相互参照Cross-reference to related applications
 本出願は、日本国特許出願第2016-230780号(出願日:2016年11月29日、発明の名称:「金型およびその製造方法」)に基づくパリ条約上の優先権を主張する。当該出願に開示された内容は全て、この引用により、本明細書に含まれるものとする。 This application claims priority over the Paris Convention based on Japanese Patent Application No. 2016-230780 (filing date: November 29, 2016, title of the invention: "Mold and Method of Manufacturing the Same"). All the content disclosed in the said application shall be included in this specification by this reference.
  21A        造形ベース部
  21B        造形ベース部
  21C        造形ベース部
  21D        造形ベース部
  21E        造形ベース部
  21F        造形ベース部
  21A11,200A キャビティ形成面
  21B11,200B キャビティ形成面
  21C11,200C キャビティ形成面
  21D11,200D キャビティ形成面
  21E11,200E キャビティ形成面
  21F11,200F キャビティ形成面
  21A       接合面
  21A      造形ベース部の主面
  21B      造形ベース部の主面
  21C      造形ベース部の主面
  21D      造形ベース部の主面
  21E      造形ベース部の主面
  21F      造形ベース部の主面
  21A12      造形土台底面
  21B12      造形土台底面
  24A       固化層
  24B       固化層
  24C       固化層
  24D       固化層
  24E       固化層
  24F       固化層
  60D       流体通路
  60E       流体通路
  60F       流体通路
  100A      造形部
  100B      造形部
  100C      造形部
  100D      造形部
  100E      造形部
  100F      造形部
  200A      金型
  200B      金型
  200C      金型
  200D      金型
  200E      金型
  200F      金型
  L         光ビーム
21A shaping base portion 21B shaping base portion 21C shaping base portion 21D shaping base portion 21E shaping base section 21F shaping base portion 21A 11, 200A 1 cavity forming surface 21B 11, 200B 1 cavity forming surface 21C 11, 200C 1 cavity forming surface 21D 11 , 200D 1 cavity forming surface 21 E 11 , 200 E 1 cavity forming surface 21 F 11 , 200 F 1 cavity forming surface 21 A 2 bonding surface 21 A 1 main surface of the forming base portion 21 B 1 main surface of the forming base portion 21 C 1 main surface of the forming base portion the main surface 21A of the main surface 21F 1 shaping base portion of the main surface 21E 1 shaping base portion of 21D 1 shaped base portion 12 shaped base bottom 21B 12 shaped base bottom 24A solidified layer 24B solidified layer 2 C Solidified Layer 24D Solidified Layer 24E Solidified Layer 24F Solidified Layer 60D Fluid Passage 60F Fluid Passage 60F Fluid Passage 100A Shaped Part 100B Shaped Part 100C Shaped Part 100D Shaped Part 100E Shaped Part 100F Molded Part 200A Mold 200B Mold 200C Mold 200D Gold 200E mold 200F mold L light beam

Claims (12)

  1. 造形部および該造形部と接合した造形ベース部を有して成る金型であって、
     前記造形ベース部がキャビティ形成面を有している、金型。
    A mold comprising a shaped portion and a shaped base portion joined to the shaped portion, the mold comprising:
    The mold wherein the shaped base portion has a cavity forming surface.
  2. 前記キャビティ形成面が、前記造形部と前記造形ベース部との接合面側とは反対側に位置する該造形ベース部の主面に設けられている、請求項1に記載の金型。 The mold according to claim 1, wherein the cavity forming surface is provided on the main surface of the modeling base portion located on the opposite side to the bonding surface side of the modeling portion and the modeling base portion.
  3. 前記造形ベース部の前記主面には、前記キャビティ形成面に加えて造形土台底面が更に含まれる、請求項2に記載の金型。 The mold according to claim 2, wherein the main surface of the shaping base portion further includes a shaping base bottom surface in addition to the cavity forming surface.
  4. 前記金型は内部に流体通路を有して成る、請求項1~3のいずれかに記載の金型。 The mold according to any one of claims 1 to 3, wherein the mold has a fluid passage inside.
  5. 前記流体通路が前記造形ベース部および前記造形部の少なくとも一方に設けられている、請求項4に記載の金型。 The mold according to claim 4, wherein the fluid passage is provided in at least one of the shaping base portion and the shaping portion.
  6. 前記流体通路が、温調媒体路又はガス抜き路である、請求項4又は5に記載の金型。 The mold according to claim 4, wherein the fluid passage is a temperature control medium passage or a degassing passage.
  7. 金型の製造方法であって、
     造形ベース部上に、光ビーム照射により複数の固化層を逐次形成することによって造形部を形成する工程と、
     前記造形ベース部にキャビティ形成面を設ける工程と
    を含む、製造方法。
    A method of manufacturing a mold,
    Forming a shaped portion by sequentially forming a plurality of solidified layers on the shaping base portion by light beam irradiation;
    Providing a cavity forming surface on the modeling base portion.
  8. 前記造形ベース部の造形土台底面側に前記キャビティ形成面を形成する、請求項7に記載の製造方法。 The manufacturing method according to claim 7, wherein the cavity forming surface is formed on a side of a forming base of the forming base portion.
  9. 前記金型は内部に流体通路を有して成り、
    前記流体通路を前記造形ベース部および前記造形部の少なくとも一方に形成する、請求項7又は8に記載の製造方法。
    The mold comprises a fluid passage inside;
    The method according to claim 7, wherein the fluid passage is formed in at least one of the shaping base portion and the shaping portion.
  10. 前記流体通路として温調媒体路又はガス抜き路を形成する、請求項9に記載の製造方法。 The manufacturing method according to claim 9, wherein a temperature control medium path or a degassing path is formed as the fluid path.
  11. 前記キャビティ形成面を、前記造形ベース部に切削加工を施して形成する、請求項7~10のいずれかに記載の製造方法。 The manufacturing method according to any one of claims 7 to 10, wherein the cavity forming surface is formed by cutting the shaping base portion.
  12. 前記造形部を粉末床溶融結合法で形成する、請求項7~11のいずれかに記載の製造方法。 The manufacturing method according to any one of claims 7 to 11, wherein the shaped portion is formed by a powder bed fusion bonding method.
PCT/JP2017/042611 2016-11-29 2017-11-28 Die and method for manufacturing same WO2018101256A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018554157A JP6785478B2 (en) 2016-11-29 2017-11-28 Mold and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-230780 2016-11-29
JP2016230780 2016-11-29

Publications (1)

Publication Number Publication Date
WO2018101256A1 true WO2018101256A1 (en) 2018-06-07

Family

ID=62242164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/042611 WO2018101256A1 (en) 2016-11-29 2017-11-28 Die and method for manufacturing same

Country Status (2)

Country Link
JP (1) JP6785478B2 (en)
WO (1) WO2018101256A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006061924A (en) * 2004-08-25 2006-03-09 Sekiso Kanagata Kenkyusho:Kk Method for producing stacked die
JP2008221801A (en) * 2007-03-15 2008-09-25 Ngk Insulators Ltd Mold component member and its manufacturing method
JP2015058643A (en) * 2013-09-19 2015-03-30 日本電気株式会社 Mold and injection molding method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006061924A (en) * 2004-08-25 2006-03-09 Sekiso Kanagata Kenkyusho:Kk Method for producing stacked die
JP2008221801A (en) * 2007-03-15 2008-09-25 Ngk Insulators Ltd Mold component member and its manufacturing method
JP2015058643A (en) * 2013-09-19 2015-03-30 日本電気株式会社 Mold and injection molding method

Also Published As

Publication number Publication date
JPWO2018101256A1 (en) 2019-10-24
JP6785478B2 (en) 2020-11-18

Similar Documents

Publication Publication Date Title
JP5776004B2 (en) Manufacturing method of three-dimensional shaped object and three-dimensional shaped object
KR101521481B1 (en) Method for producing three-dimensionally shaped structure, and three-dimensionally shaped structure obtained by same
JP5539347B2 (en) Manufacturing method of three-dimensional shaped object and three-dimensional shaped object obtained therefrom
JP5555222B2 (en) Manufacturing method of three-dimensional shaped object and three-dimensional shaped object obtained therefrom
JP5653657B2 (en) Method for producing three-dimensional shaped object, three-dimensional shaped object to be obtained, and method for producing molded product
US11203065B2 (en) Method for manufacturing three-dimensional shaped object
WO2011102382A1 (en) Method for producing three-dimensional shaped article and three-dimensional shaped article
JP2011021218A (en) Powder material for laminate molding, and powder laminate molding method
JP2010121187A (en) Three-dimensional shaped article and method for producing the same
WO2017022144A1 (en) Method for producing three-dimensionally shaped moulded article, and three-dimensionally shaped moulded article
KR102099574B1 (en) Manufacturing method of 3D shape sculpture and 3D shape sculpture
WO2018101256A1 (en) Die and method for manufacturing same
JP6643643B2 (en) Manufacturing method of three-dimensional shaped object
JP6807554B2 (en) Manufacturing method of 3D shape model and 3D shape model
JP6643644B2 (en) Manufacturing method of three-dimensional shaped object

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17876525

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018554157

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17876525

Country of ref document: EP

Kind code of ref document: A1