WO2018101015A1 - 眼鏡レンズの設計方法、眼鏡レンズの製造方法、眼鏡レンズ発注装置、眼鏡レンズ受注装置、眼鏡レンズ受発注システム、累進屈折力レンズ、単焦点レンズ - Google Patents

眼鏡レンズの設計方法、眼鏡レンズの製造方法、眼鏡レンズ発注装置、眼鏡レンズ受注装置、眼鏡レンズ受発注システム、累進屈折力レンズ、単焦点レンズ Download PDF

Info

Publication number
WO2018101015A1
WO2018101015A1 PCT/JP2017/040785 JP2017040785W WO2018101015A1 WO 2018101015 A1 WO2018101015 A1 WO 2018101015A1 JP 2017040785 W JP2017040785 W JP 2017040785W WO 2018101015 A1 WO2018101015 A1 WO 2018101015A1
Authority
WO
WIPO (PCT)
Prior art keywords
spectacle lens
wearer
lens
design method
blur
Prior art date
Application number
PCT/JP2017/040785
Other languages
English (en)
French (fr)
Inventor
成鎮 趙
Original Assignee
株式会社ニコン・エシロール
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン・エシロール filed Critical 株式会社ニコン・エシロール
Priority to CA3044515A priority Critical patent/CA3044515C/en
Priority to CN201780073561.6A priority patent/CN110050225A/zh
Priority to EP17876641.6A priority patent/EP3550356A4/en
Priority to KR1020197015372A priority patent/KR102280371B1/ko
Priority to JP2018553747A priority patent/JP6994468B2/ja
Publication of WO2018101015A1 publication Critical patent/WO2018101015A1/ja
Priority to US16/417,088 priority patent/US11428953B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/024Methods of designing ophthalmic lenses
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C13/00Assembling; Repairing; Cleaning
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/024Methods of designing ophthalmic lenses
    • G02C7/027Methods of designing ophthalmic lenses considering wearer's parameters
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/06Lenses; Lens systems ; Methods of designing lenses bifocal; multifocal ; progressive
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/06Lenses; Lens systems ; Methods of designing lenses bifocal; multifocal ; progressive
    • G02C7/061Spectacle lenses with progressively varying focal power
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/06Lenses; Lens systems ; Methods of designing lenses bifocal; multifocal ; progressive
    • G02C7/061Spectacle lenses with progressively varying focal power
    • G02C7/063Shape of the progressive surface
    • G02C7/066Shape, location or size of the viewing zones
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C2202/00Generic optical aspects applicable to one or more of the subgroups of G02C7/00
    • G02C2202/24Myopia progression prevention

Definitions

  • the present invention relates to a spectacle lens design method, a spectacle lens manufacturing method, a spectacle lens ordering device, a spectacle lens order receiving device, a spectacle lens ordering system, a progressive power lens, and a single focus lens.
  • Patent Document 1 the lens design standard is selected in consideration of the living environment information of the wearer and the like.
  • the spectacle lens designing method includes presenting a plurality of blurred images created by applying different degrees of blur to an original image to allow a wearer to visually recognize the worn image, Obtaining information on the sensitivity of the wearer to blur and designing a spectacle lens based on the information on the sensitivity of the wearer to blur.
  • the spectacle lens manufacturing method designs the spectacle lens by the spectacle lens design method of the first aspect.
  • the spectacle lens ordering device presents a plurality of blurred images created by applying different degrees of blur to the original image, and obtained by causing the wearer to visually recognize the worn image.
  • the spectacle lens order receiving device presents a plurality of blurred images created by applying different degrees of blur to the original image, and acquired by causing the wearer to visually recognize the worn image.
  • a receiving unit that receives information on sensitivity to blur of the person or a design parameter calculated based on the information, and a design unit that designs a spectacle lens based on the information or the design parameter.
  • a spectacle lens ordering / order receiving system includes the spectacle lens ordering apparatus according to the third aspect and the spectacle lens order receiving apparatus according to the fourth aspect.
  • the progressive-power lens is designed by the method for setting the target aberration of the progressive-power lens based on the sensitivity information in the spectacle lens design method of the first aspect.
  • the single focus lens is designed by the method for setting the target aberration of the peripheral portion of the single focus lens based on the information on the sensitivity in the spectacle lens design method according to the first aspect. It is a thing.
  • FIG. 1A is a conceptual diagram showing an inspection mode according to the design method of an embodiment when an image to be presented is at a long distance
  • FIG. 1B is a diagram in which the image to be presented is at a medium distance
  • FIG.1 (c) is a conceptual diagram which shows the aspect of the said test
  • 2A is a diagram illustrating an original image before being processed into a blurred image
  • FIG. 2B is a diagram illustrating an example of a blurred image. It is a conceptual diagram for demonstrating the creation method of a blurred image. It is a figure which shows a spectacles lens ordering / ordering system.
  • FIG. 10A is a conceptual diagram for explaining a method for creating a blur image without direction dependency
  • FIG. 10B is a conceptual diagram for explaining a method for creating a direction-dependent blur image. It is.
  • the unit of refractive power is represented by diopter (D) unless otherwise specified.
  • D diopter
  • the spectacle lens when the spectacle lens is described as “upper”, “lower”, “upper”, “lower”, etc., it is based on the positional relationship of the lens when the spectacle lens is worn. .
  • FIG. 1 is a diagram showing an aspect of a blur sensitivity test performed on a spectacle lens wearer to be designed in the spectacle lens design method of the present embodiment.
  • the sensitivity to blur is the degree of blur that can be perceived by the wearer W who visually recognizes the blur image S when the blur image S obtained by blurring the image of the object by various methods can be visually recognized without discomfort. It is expressed by the degree of.
  • the sensitivity to blur is strong, it is easy to feel discomfort (discomfort) even in an image with a small blur degree (the range of the acceptable blur degree is narrow).
  • an inspector who performs a blur sensitivity test causes the wearer W to visually recognize a plurality of blur images S and / or original images So presented at a predetermined distance from the wearer W.
  • the plurality of blurred images S are created by applying different degrees of blur to the original image So.
  • the blurred image S and / or the original image So are displayed on a display such as a tablet terminal, a personal computer (hereinafter referred to as a PC), a printed matter such as paper, and the like and presented to the wearer W.
  • the blurred image S is preferably viewed with a visual acuity that allows the original image So to be clearly recognized, and the inspector presents the blurred image S after adjusting the corrected visual acuity of the wearer W using a correction lens or the like as necessary. To do.
  • the inspector asks the wearer W who is viewing the blurred image S or who has visually confirmed whether or not the blurred image S is acceptable, verbally or using an input device equipped with a button.
  • the inspector expresses the degree of sensitivity to the blur in the field of view of the wearer W from the answers of the wearer W with respect to the plurality of blur images S by numerical values or the like according to a predetermined criterion and inputs the degree to the ordering device. That is, the blurred image S is an image for sensitivity evaluation to which a degree of blur corresponding to the magnitude of the aberration of the spectacle lens is applied.
  • FIG. 1A is a conceptual diagram of the blur sensitivity test when the wearer W visually recognizes the blur image S presented at a position far from the wearer W (2 m in this example).
  • the line of sight when the wearer W visually recognizes the blurred image S at a distance Df of 2 m with both eyes is schematically indicated by a solid arrow.
  • the distance Df from the eye of the wearer W to the blurred image S can be appropriately set to a distance of 1 m or more. Note that the numerical ranges of distances corresponding to long distances and short distances and medium distances described below may be changed as appropriate. Further, the blur sensitivity test may be performed for each eye at each distance.
  • the blurred image S to be presented in the long-distance blur sensitivity test is created as an original image So that is an image of characters, symbols or sentences, or an image of an object that the wearer W visually recognizes at a long distance in daily life or in a specific situation. It is preferable that As the object to be visually recognized at a long distance, a television, a room or outdoor scenery, a blackboard on which characters and sentences are drawn, a white board, and the like can be used as appropriate.
  • FIG. 1B is a conceptual diagram of a blur sensitivity test when the wearer W visually recognizes the blur image S presented at a position at a medium distance (80 cm in this example) from the wearer W.
  • the line of sight when the wearer W visually recognizes the blurred image S at a distance Dm of 80 cm with both eyes is schematically indicated by a solid line arrow.
  • the distance Dm from the eye of the wearer W to the blur image S can be appropriately set to a distance of 50 cm or more and less than 1 m.
  • the blurred image S to be presented in the medium-distance blur sensitivity test is created as an original image So, which is an image of characters, symbols or sentences, or an image of an object that the wearer W visually recognizes at a medium distance in daily life or in a specific situation. It is preferable.
  • a PC screen or the like can be used as appropriate as the object visually recognized at a medium distance.
  • FIG. 1C is a conceptual diagram of the blur sensitivity test when the wearer W visually recognizes the blur image S presented at a position close to the wearer W (here, 30 cm).
  • the line of sight when the wearer W visually recognizes the blurred image S at a distance Dn of 30 cm with both eyes is schematically indicated by a solid line arrow.
  • the distance Dn from the eye of the wearer W to the blurred image S can be appropriately set to a distance of 25 cm or more and less than 50 cm.
  • the blurred image S to be presented in the near-field blur sensitivity test is created as an original image So that is an image of characters, symbols, or sentences, or an image of an object that the wearer W visually recognizes at a short distance in daily life or in a specific situation. It is preferable.
  • a mobile phone such as a smartphone, a tablet, a magazine, a newspaper, or the like can be used as appropriate.
  • the blur sensitivity test may be performed at one distance among a long distance, a middle distance, and a short distance, or may be performed at a plurality of distances.
  • the blur sensitivity test may be performed at two or more distances selected from the group consisting of a long distance, a medium distance, and a short distance.
  • the progressive-power lens includes a distance portion, a near portion, and an intermediate portion that connects the distance portion and the near portion so that the refractive index continuously changes, and the distance portion is located above the intermediate portion.
  • the eyeglass lens has a near portion disposed below the intermediate portion.
  • the wearer W is blurred at a medium distance and a short distance. It is preferable to perform a sensitivity test. In the design of a progressive power lens, it is preferable to use the information obtained by the blur sensitivity test for a long distance or medium distance for the design of the distance portion, and the information obtained by the blur sensitivity test for a short distance is used in the near field. It is preferable to use it for the design of the part.
  • FIG. 2 is a diagram illustrating the original image So and the blurred image S.
  • FIG. 2A shows an original image So composed of the letter “E”.
  • FIG. 2B shows a plurality of blurred images S created by applying different degrees of blur from the original image So in FIG.
  • the blurred image S1 has slight outline distortion and the like, and the degree of blur is small.
  • the blurred image S2 has such a degree that outline lines cannot be clearly recognized, and the degree of blur is moderate.
  • the blurred image S3 becomes unclear as a whole, and the degree of blur is large.
  • the blurred image S is a virtual image of a perceived image of the original image So when viewed through a refractive body such as an eye optical system that generates astigmatism or a spectacle lens that generates astigmatism.
  • the degree of astigmatism of the eye optical system and the degree of astigmatism of the refractive body correspond to the degree of blur of the created blurred image S. Therefore, based on the information about the sensitivity of the wearer W obtained with respect to the blurred image S corresponding to different degrees of blur, the optical characteristics such as astigmatism of the spectacle lens to be designed are appropriately matched to the wearer W. Can be set to
  • FIG. 3 is a conceptual diagram for explaining a method of creating the blurred image S.
  • the original image So is placed at a position away from the front surface of the eyeball 90 by a distance (corresponding to the above-described Df, Dm, and Dn) between the wearer W and the blurred image S when performing the blur sensitivity test.
  • the eyeglass lens L is placed in the optical path from the original image So to the retina of the eyeball 90, and ray tracing from each point of the original image So is performed.
  • the calculation of ray tracing can be appropriately performed using a PC or the like.
  • a light flux F1 from the upper end of the original image So in the drawing is represented by a broken line
  • a light flux F2 from the lower end of the original image So in the drawing is represented by a solid line.
  • the light rays from the original image So converge behind the retina due to refraction by the eyeglass lens L and the eye optical system in the eyeball 90. That is, the focal point is not on the retina. In this case, the image projected on the retina is blurred by the amount out of focus.
  • blur images S having different degrees of blur can be created by appropriately changing the optical characteristics of the spectacle lens L and the like. It is preferable to change the astigmatism of the spectacle lens L and create the correspondence between the degree of blur of the blurred image S and the aberration.
  • aberrations are expressed as the amount of aberration of eyeglass lenses or the amount of aberration of the eyeball. And create an interval between them, such as 0.1D, 0.25D, or 0.5D.
  • a blurred image is created by changing the aberration angle at an arbitrary interval between 15 degrees and 90 degrees.
  • the aberration is not a single aberration, but a plurality of aberrations and spherical power errors can be combined within the above range.
  • ray tracing may be performed using an eyeball model constructed in consideration of the distance to the object, the age of the wearer W, the strength of the adjustment power, and the like. As a result, the blurred image S can be created more precisely in consideration of changes in the accommodation power of the eye.
  • the target aberration at one or more points of the spectacle lens to be designed and the upper limit value of the allowable aberration are set based on the obtained information on the sensitivity of the wearer W. can do.
  • a blur susceptibility test is performed at a long distance and a short distance, and a progressive power lens having a distance portion having a refractive power corresponding to the long distance and a near portion having a refractive power corresponding to the short distance is designed.
  • a progressive power lens having a distance portion having a refractive power corresponding to the long distance and a near portion having a refractive power corresponding to the short distance is designed.
  • the spectacle lens ordering / order receiving system can provide a spectacle lens in which optical characteristics such as aberration are appropriately set according to the sensitivity of the wearer W to blur in the visual field.
  • FIG. 4 is a diagram showing a configuration of the eyeglass lens ordering / order receiving system 10 according to the present embodiment.
  • the spectacle lens ordering / order receiving system 10 includes an ordering device 1 installed at a spectacle store (orderer), an order receiving device 2 installed at a lens manufacturer, a processing machine control device 3, and an eyeglass lens processing machine 4. Composed.
  • the ordering device 1 and the order receiving device 2 are communicably connected via a network 5 such as the Internet.
  • a processing machine control device 3 is connected to the order receiving device 2, and a spectacle lens processing machine 4 is connected to the processing machine control device 3.
  • FIG. 4 only one ordering device 1 is shown for the sake of illustration, but actually, a plurality of ordering devices 1 installed in a plurality of spectacle stores are connected to the order receiving device 2.
  • the ordering device 1 is a computer that performs an ordering process for eyeglass lenses, and includes a control unit 11, a storage unit 12, a communication unit 13, a display unit 14, and an input unit 15.
  • the control unit 11 controls the ordering apparatus 1 by executing a program stored in the storage unit 12.
  • the control unit 11 includes an order processing unit 111 that performs spectacle lens ordering processing.
  • the communication unit 13 communicates with the order receiving device 2 via the network 5.
  • the display unit 14 is, for example, a display device such as a CRT or a liquid crystal display, and displays an ordering screen for inputting information (ordering information) on spectacle lenses to be ordered.
  • the input unit 15 includes, for example, a mouse and a keyboard. For example, ordering information corresponding to the content of the ordering screen is input via the input unit 15.
  • the display part 14 and the input part 15 may be integrally comprised by the touchscreen etc.
  • the order receiving device 2 is a computer that performs spectacle lens order receiving processing, design processing, optical performance calculation processing, and the like, and includes a control unit 21, a storage unit 22, a communication unit 23, a display unit 24, and an input unit 25. It is comprised including.
  • the control unit 21 controls the order receiving device 2 by executing a program stored in the storage unit 22.
  • the control unit 21 includes an order receiving processing unit 211 that performs spectacle lens order receiving processing and a design unit 212 that performs spectacle lens design processing.
  • the communication unit 23 communicates with the ordering device 1 via the network 5 and communicates with the processing machine control device 3.
  • the storage unit 22 stores various data for eyeglass lens design in a readable manner.
  • the display unit 24 is a display device such as a CRT or a liquid crystal display, and displays a design result of the spectacle lens.
  • the input unit 25 includes, for example, a mouse and a keyboard.
  • the display unit 24 and the input unit 25 may be integrally configured by a touch panel or the like.
  • FIG. 5 shows the procedure performed on the spectacle store side
  • the right side of FIG. 5 shows the procedure performed on the lens manufacturer side.
  • the spectacle lens is designed by the spectacle lens design method described above.
  • step S11 the orderer obtains information on the sensitivity of the wearer W to the blur.
  • FIG. 6 is a flowchart showing step S11 further divided into a plurality of stages.
  • the orderer uses a correction lens or the like to adjust the visual acuity of the wearer W so that the wearer W can clearly see the original image So at a distance where the blur sensitivity test is performed.
  • step S111 ends, the process proceeds to step S112.
  • the orderer presents a plurality of blurred images S created by applying different degrees of blur to the original image So to positions at a short distance, a medium distance, a long distance, etc. from the wearer W. Let the wearer visually recognize.
  • the orderer sequentially presents a plurality of blurred images S at a long distance, for example, a distance of 2 m from the wearer W, in order to create a progressive power lens for perspective.
  • the orderer similarly presents a plurality of blurred images S in the same manner for a short distance such as 30 cm from the wearer W, for example.
  • step S112 ends, the process proceeds to step S113.
  • step S ⁇ b> 113 the orderer obtains information regarding sensitivity to blurring in the field of view of the wearer W.
  • the orderer hears the degree of blurring that the wearer W can tolerate for each distance.
  • the orderer converts the intensity of the sensitivity of the wearer W to the blur for each distance into a numerical value according to a predetermined criterion and records it.
  • step S113 ends, the process proceeds to step S12.
  • the correction method suitable for the distance can be used for each distance.
  • the correction method suitable for the distance can be used for each distance. For example, in the design of a progressive power lens, when measuring a short distance, according to the required addition of the lens, correct by adding the spherical power to the addition power for the distance prescription. It can be determined as appropriate, for example, from the measurement.
  • step S12 the orderer determines ordering information for the spectacle lens to be ordered, including information on sensitivity to blur in the field of view of the wearer W acquired in step S113. Then, the orderer displays an ordering screen on the display unit 14 of the ordering apparatus 1 and inputs ordering information via the input unit 15.
  • FIG. 7 is a diagram illustrating an example of the ordering screen 100.
  • items related to the lens order power such as the product name, spherical power (S power), astigmatism power (C power), astigmatism axis degree, and addition power of the lens to be ordered are input.
  • the processing designation information item 102 is used when designating the outer diameter of the lens to be ordered or designating an arbitrary point thickness.
  • the staining information item 103 is used when a lens color is designated.
  • As the fitting point (FP) information 104 the position information of the eye of the wearer W is input.
  • PD represents the interpupillary distance.
  • the frame information item 105 a frame model name, a frame type, and the like are input.
  • a numerical value indicating the strength of sensitivity to blur is input in the blur sensitivity test for a long distance and a short distance.
  • the strength of sensitivity to blur is represented by 10-level numerical values for each of the long distance and the short distance (“5” for the long distance and “4” for the short distance).
  • the sensitivity to blur is defined so that the greater the number, the greater the sensitivity to blur. Images used for the blur sensitivity test are prepared as follows. The image created with the minimum aberration amount is set to 10, the image created with the maximum aberration amount is set to 0, and each image is divided into 10 stages.
  • the blurred image segment that the wearer can tolerate as much as possible is taken as a measure of sensitivity.
  • it may be expressed so that the smaller the sensitivity to blur, the larger the numerical value may be, or it may be defined by a symbol instead of a numerical value, and the sensitivity to blur is a predetermined criterion.
  • the method is not particularly limited as long as it can be expressed and communicated according to the above.
  • the ordering screen 100 adds various information such as the forward tilt angle of the frame, the warp angle, fitting parameters such as the distance between the eye and the lens, and information on the adjustment power of the wearer W. can do.
  • a design parameter calculated as an index indicating a range in which the astigmatism of the distance portion and / or the near portion is small is input. You may make it the structure to carry out.
  • the design parameter is, for example, a line segment extending left and right on the lens in the distance portion or the near portion as shown by a broken line arrow or an alternate long and short dash arrow in FIG. And so on.
  • step S ⁇ b> 13 the ordering device 1 transmits the ordering information to the order receiving device 2 via the communication unit 13.
  • the control unit 11 of the ordering apparatus 1 performs processing for displaying the ordering screen 100, processing for acquiring ordering information input on the ordering screen 100, and processing for transmitting the ordering information to the order receiving apparatus 2. This is performed by executing a predetermined program installed in the storage unit 12 in advance.
  • step S21 when the order receiving processing unit 211 of the order receiving device 2 receives the ordering information from the ordering device 1 via the communication unit 23, the process proceeds to step S22.
  • step S22 the design unit 212 of the order receiving device 2 designs a spectacle lens based on the received ordering information.
  • FIG. 8 is a flowchart showing a procedure for designing a spectacle lens corresponding to step S22.
  • the order receiving device 2 includes prescription data of the spectacle lens, information on the sensitivity of the wearer W to blur, or design parameters such as an index indicating a small range of astigmatism in the distance portion and / or the near portion. To get.
  • the order receiving device 2 also acquires fitting parameters such as the forward tilt angle, the warp angle, and the distance between the eye and the lens as appropriate.
  • step S221 ends, the process proceeds to step S222.
  • step S222 the design unit 212 of the order receiving device 2 sets the target aberration of the spectacle lens based on the information regarding the sensitivity to the blur in the visual field of the wearer W acquired in step S221 or the design parameters.
  • FIG. 9 is a conceptual diagram illustrating an example of setting a target aberration based on the sensitivity of the wearer W to blur.
  • Four aberration distribution charts are shown in the center of the figure, and the rightmost part of the figure shows the magnitude of aberration corresponding to the pattern used to represent the magnitude of aberration in the aberration distribution chart.
  • the broken-line arrows extend to the left and right in the distance portion and indicate the width of the portion where the magnitude of the aberration is equal to or less than a predetermined value, and this length serves as an index indicating a small range of astigmatism in the distance portion.
  • the dashed-dotted arrow extends to the left and right in the near portion and indicates the width of the portion where the magnitude of the aberration is equal to or less than a predetermined value, and this length is an index indicating a small range of astigmatism in the near portion.
  • the vertical position of the broken line arrow and the alternate long and short dash line arrow is arbitrarily set. For example, the position of the distance measurement point (distance frequency measurement position) or the position of the near measurement point (near frequency measurement position) is used as a reference Determined.
  • the upper left aberration distribution chart A11 is a lens for the wearer W having low sensitivity to short-distance and long-distance astigmatism, and has low astigmatism. Although the range is narrow, the distortion of the contour is small because the change in astigmatism is small.
  • the aberration distribution diagram A12 on the upper right is a lens for the wearer W in which the sensitivity of astigmatism at a long distance is stronger than that in the case of the aberration distribution diagram A11, and a small range of astigmatism in the distance portion is an aberration distribution diagram. It is designed wider than in the case of A11.
  • the aberration distribution diagram A21 in the lower left is a lens for the wearer W in which the sensitivity of astigmatism at a short distance is stronger than that in the aberration distribution diagram A11, and a small range of astigmatism in the near portion is an aberration distribution diagram. It is designed wider than in the case of A11.
  • the lower right aberration distribution diagram A22 is a lens for the wearer W in which the sensitivity of short-distance and long-distance astigmatism is stronger than that in the case of the aberration distribution diagram A11.
  • the range in which the aberration is small is designed wider than in the case of the aberration distribution diagram A11.
  • step S223 the order receiving device 2 determines the overall shape of the spectacle lens. When the shape of the entire lens is determined, the process proceeds to step S224.
  • step S224 the order receiving device 2 determines whether optical characteristics such as refractive power and astigmatism of the spectacle lens satisfy a desired condition. If the desired condition is satisfied, an affirmative decision is made in step S224, the design process is terminated, and the process proceeds to step S23 (see FIG. 5). If the desired condition is not satisfied, a negative determination is made in step S224, and the process returns to step S223.
  • step S23 the order receiving device 2 outputs the spectacle lens design data designed in step S22 to the processing machine control device 3.
  • the processing machine control device 3 sends a processing instruction to the spectacle lens processing machine 4 based on the design data output from the order receiving device 2.
  • a spectacle lens based on the design data is processed and manufactured by the spectacle lens processing machine 4.
  • the spectacle lens manufactured by the spectacle lens processing machine 4 is shipped to a spectacle store, is fitted into a spectacle frame, and is provided to a customer (wearer W).
  • the spectacle lens design method and spectacle lens manufacturing method of the present embodiment are configured so that a plurality of blurred images S created by applying different degrees of blur to the original image So are separated from the wearer W at a long distance. Presenting at a predetermined distance such as a distance, a short distance, etc., and causing the wearer W to visually recognize the information, and acquiring information regarding sensitivity to blur in the visual field of the wearer W. Thereby, an appropriate spectacle lens can be designed based on the sensitivity of the wearer W to blur.
  • the sensitivity information is information on whether or not the wearer W is allowed to visually recognize the blurred image S.
  • a spectacle lens suitable for the wearer W can be designed with reference to an allowable aberration range corresponding to the allowable blurred image S.
  • each of the plurality of blurred images S is created by ray tracing light that passes through the spectacle lens L that is emitted from the original image So and generates different aberrations.
  • a blur image S that more accurately represents blur generated by a refractor such as a spectacle lens can be created, and the sensitivity to blur in the field of view of the wearer W can be measured more accurately.
  • a plurality of refractors that generate different aberrations in ray tracing for creating different blurred images S have different spherical power, astigmatic power, or astigmatic axis.
  • a spectacle lens L is included. Thereby, the aberration of the spectacle lens L and the degree of blur of the blurred image S are made to correspond to each other, and the spectacle lens L can be designed more effectively from the information regarding sensitivity to the blur.
  • the original image So is viewed by the wearer W at a position away from the wearer W by a predetermined distance such as a long distance, a medium distance, or a short distance.
  • a predetermined distance such as a long distance, a medium distance, or a short distance.
  • the wearer W is presented with a plurality of blurred images at a plurality of different predetermined distances, and the plurality of predetermined distances is 25 cm or more and less than 50 cm. 2 or more distances selected from the group consisting of short distances, medium distances of 50 cm or more and less than 1 m, and long distances of 1 m or more.
  • the wearer W is caused to visually recognize the blurred image S in a state where the wearer W has obtained corrected visual acuity. Thereby, the sensitivity with respect to the blurring of the wearer W can be accurately measured.
  • the target aberration of the progressive addition lens is set based on information on sensitivity. Accordingly, an appropriate progressive-power lens can be designed based on the sensitivity of the wearer W to blur.
  • the eyeglass lens ordering apparatus generates a plurality of blurred images S created by applying different degrees of blur to the original image So, such as a long distance, a medium distance, and a short distance from the wearer W.
  • the spectacle lens which considered the sensitivity with respect to the blurring of the wearer W can be ordered.
  • the eyeglass lens order receiving apparatus generates a plurality of blurred images S created by applying different degrees of blur to the original image So, such as a long distance, a medium distance, and a short distance from the wearer W.
  • a receiving unit that receives information on sensitivity to blur in the field of view of the wearer W, or a design parameter calculated based on the information, obtained by presenting at a predetermined distance and visually recognized by the wearer W, and the information or design
  • a design unit that designs a spectacle lens based on the parameters As a result, it is possible to receive and design a spectacle lens in consideration of the sensitivity of the wearer W to blur.
  • the blurred image S is created by ray tracing from each point of the original image So, but a point spread function (PSF) is calculated by ray tracing from one point, and the point spread is obtained.
  • the blurred image S may be created by convolving and integrating the brightness and color density of each point of the original image So using a function.
  • FIG. 10A is a conceptual diagram illustrating the creation of a blurred image S4 due to a refractive power error when no astigmatism is generated.
  • a symbol in which X is drawn in a circle indicates a convolution integral.
  • an image in which each point is uniformly blurred such as a blurred image S4 is obtained.
  • the blurred image S4 is appropriately referred to as a direction-independent blurred image.
  • FIG. 10B is a conceptual diagram showing creation of a blurred image S5 when astigmatism occurs.
  • a symbol in which X is drawn in a circle indicates a convolution integral.
  • the original image So is convolved and integrated with a point spread function corresponding to the point spread P2 having direction dependency (direction of 45 degrees obliquely)
  • an image in which each point such as the blurred image S5 is blurred in the oblique direction. Is obtained.
  • the blurred image S5 is appropriately referred to as a direction-dependent blurred image.
  • the direction dependency of the direction-dependent blurred image S may be determined based on the direction of the astigmatic axis of the wearer W.
  • the direction-dependent blur image and the direction-independent blur image can be obtained from a refractor such as a spectacle lens L inserted in the optical path by the method shown in FIG. 3 in which the ray is traced from each point of the original image So.
  • a refractor such as a spectacle lens L inserted in the optical path by the method shown in FIG. 3 in which the ray is traced from each point of the original image So.
  • the plurality of blurred images S include a plurality of refractors in which light emitted from a point at a predetermined distance such as a long distance, a medium distance, and a short distance from the retina causes different aberrations. Can be created based on a point spread function obtained by ray tracing when passing through and entering the retina. Thereby, the blurred image S of various aspects can be created simply.
  • the blurred image S is created by ray tracing.
  • an arithmetic device such as a PC
  • image processing that performs a convolution calculation of luminance or color density of each point of the image using a specific distribution function as a kernel.
  • a blurred image S may be created.
  • various blurred images S can be created by a simple method.
  • a single focus lens can also be designed using information on the sensitivity of the wearer W. In designing a single focus lens, it is possible to set a spherical power error and astigmatism that are deviations in refractive power from the spherical power at the periphery of the lens based on information on the sensitivity of the wearer W. .
  • FIG. 11 is a diagram showing an example of setting the spherical power error and astigmatism of the single focus lens.
  • 11A to 11C show a distribution diagram of spherical power error and a distribution graph of astigmatism, and the rightmost part of the diagram shows a spherical power error corresponding to the pattern used in the distribution chart. Or the magnitude of aberration was shown.
  • FIG. 11A is a diagram showing an example of design that places importance on astigmatism.
  • the single focus lens having the spherical power error distribution E1 and the astigmatism distribution A1 shown in FIG. 11A is suitable for the wearer W who is highly sensitive to astigmatism because the astigmatism is suppressed.
  • FIG. 11B is a diagram illustrating an example of a design that emphasizes the balance between spherical power error and astigmatism.
  • the single focus lens with the spherical power error distribution E2 and the astigmatism distribution A2 in FIG. 11B has a larger astigmatism than the example in FIG. 11A, but the spherical power error is suppressed.
  • FIG. 11C is a diagram illustrating an example of design that places importance on spherical power.
  • the single focus lens having the spherical power error distribution E3 and the astigmatism distribution A3 in FIG. 11C is suitable for the wearer W having low sensitivity to astigmatism because the spherical power error is suppressed in magnitude. Used for.
  • the target aberration of the peripheral portion of the single focus lens is set based on information on sensitivity to blur.
  • a single focus lens suitable for the wearer W can be provided in consideration of the sensitivity of the wearer W to blurring.
  • the design parameters may be set as follows based on the measurement values of the wearer's blur sensitivity test and the statistical data of many testers who have undergone the blur sensitivity test.
  • the average value M and the standard deviation ⁇ of the measurement values of the blur sensitivity at a long distance are obtained from the results of examinations performed on a large number of testers (for example, 30 or more) in advance.
  • the tester can be inspected by age group, such as a tester who is 40 years of age or older, and in the case of a single focus lens, a tester who is younger than 40s.
  • the long-range sensitivity range constant K can be any value between 1 and 3 times the standard deviation ⁇ of the measured value. For example, if you want to reflect the difference in sensitivity of long-range aberration greatly in the lens design, decrease the K value. Conversely, if you want to reflect the difference in sensitivity of long-range aberration in the lens design small, use the K value. It can be taken big.
  • the distance design parameter P is calculated from the long distance sensitivity measurement D of the wearer.
  • P (DM) / K It is calculated in the form of
  • the target value Rtf of the range of small astigmatism in the distance portion is calculated from the maximum value Rfmax and the minimum value Rfmin using the design parameter P as shown in the following equation.
  • Rft (Rfmax + Rfmin) / 2 + P * (Rfmax-Rfmin) / 2
  • Rft (Rfmax + Rfmin) / 2 + P * (Rfmax-Rfmin) / 2
  • the upper left aberration distribution chart A11 has the minimum design values Rfmin and Rnmin for the design target values of the small range of astigmatism at short distance and far distance.
  • the range of small astigmatism is narrow, but since the change in astigmatism is small, the distortion of the contour is small.
  • the design target value of the range of small astigmatism in the distance portion is the maximum value Rfmax
  • the design target value of the range of small astigmatism in the near portion is the minimum.
  • This is a lens when the value Rnmin is adopted, and is a lens for the wearer W whose sensitivity at a long distance is stronger than that in the case of the aberration distribution diagram A11.
  • the design target value of the range of the astigmatism in the distance portion having a small range of astigmatism is the minimum value Rfmin
  • the design target value of the range of the near portion having a small astigmatism range is the maximum.
  • This is a lens when the value Rnmax is adopted, and is a lens for the wearer W in which the sensitivity of astigmatism at a short distance is stronger than in the case of the aberration distribution diagram A11.
  • the aberration distribution diagram A22 in the lower right is a lens when the design target values of the range of small astigmatism at the short distance and the long distance both have the maximum values Rfmax and Rnmax.
  • the design target value is determined by the long-range target value Rft and the short-range target value Rnt from the square range having these four corners.
  • a target area with a small astigmatism range may be set for the intermediate portion of the progressive addition lens.
  • a target area of a small astigmatism range is set in at least two regions selected from the distance portion, the intermediate portion, and the near portion of the progressive-power lens. be able to. Accordingly, it is possible to provide a progressive-power lens more suitable for the wearer based on the sensitivity of the wearer to the blur.
  • the present invention is not limited to the contents of the above embodiment.
  • Other embodiments conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention.
  • DESCRIPTION OF SYMBOLS 10 ... Glasses lens ordering system, 11 ... Control part of ordering apparatus, 13 ... Communication part of ordering apparatus, 21 ... Control part of order receiving apparatus, 23 ... Communication part of order receiving apparatus, 100 ... Ordering screen, 106 ... Sensitivity information item , S ... blurred image, So ... original image, W ... wearer.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Health & Medical Sciences (AREA)
  • Eyeglasses (AREA)

Abstract

眼鏡レンズの設計方法は、原画像に対して異なる度合のぼけを施して作成した複数のぼけ画像を提示して、装用者に視認させることと、装用者のぼけに対する感受性に関する情報を取得することと、装用者のぼけに対する感受性に関する情報に基づいて眼鏡レンズを設計することと、を備える。

Description

眼鏡レンズの設計方法、眼鏡レンズの製造方法、眼鏡レンズ発注装置、眼鏡レンズ受注装置、眼鏡レンズ受発注システム、累進屈折力レンズ、単焦点レンズ
 本発明は、眼鏡レンズの設計方法と、眼鏡レンズの製造方法と、眼鏡レンズ発注装置と、眼鏡レンズ受注装置と、眼鏡レンズ受発注システムと、累進屈折力レンズと、単焦点レンズに関する。
 個々の装用者の特性に適合するような眼鏡レンズを実現するための、種々の設計方法の提案がなされている。例えば、特許文献1では、装用者の生活環境情報等を考慮してレンズ設計基準を選択している。
国際公開第2009/133887号
 本発明の第1の態様によると、眼鏡レンズの設計方法は、原画像に対して異なる度合のぼけを施して作成した複数のぼけ画像を提示して、装用者に視認させることと、前記装用者のぼけに対する感受性に関する情報を取得することと、前記装用者のぼけに対する感受性に関する情報に基づいて眼鏡レンズを設計することと、を備える。
 本発明の第2の態様によると、眼鏡レンズの製造方法は、第1の態様の眼鏡レンズの設計方法により眼鏡レンズを設計する。
 本発明の第3の態様によると、眼鏡レンズ発注装置は、原画像に対して異なる度合のぼけを施して作成した複数のぼけ画像を提示して、装用者に視認させて取得した、前記装用者のぼけに対する感受性に関する情報を入力する入力部と、前記入力部を介して入力された前記情報または前記情報に基づいて算出した設計パラメータを眼鏡レンズ受注装置に送信する送信部と、を備える。
 本発明の第4の態様によると、眼鏡レンズ受注装置は、原画像に対して異なる度合のぼけを施して作成した複数のぼけ画像を提示して、装用者に視認させて取得した、前記装用者のぼけに対する感受性に関する情報または前記情報に基づいて算出した設計パラメータを受信する受信部と、前記情報または前記設計パラメータに基づいて眼鏡レンズを設計する設計部と、を備える。
 本発明の第5の態様によると、眼鏡レンズ受発注システムは、第3の態様の眼鏡レンズ発注装置と、第4の態様の眼鏡レンズ受注装置と、を備える。
 本発明の第6の態様によると、累進屈折力レンズは、第1の態様の眼鏡レンズの設計方法において、前記感受性に関する情報に基づいて累進屈折力レンズの目標収差を設定する方法により設計されたものである。
 本発明の第7の態様によると、単焦点レンズは、第1の態様の眼鏡レンズの設計方法において、前記感受性に関する情報に基づいて単焦点レンズの周辺部の目標収差を設定する方法により設計されたものである。
図1(a)は、提示する画像が遠距離にある場合の一実施形態の設計方法に係る検査の態様を示す概念図であり、図1(b)は、提示する画像が中距離にある場合の当該検査の態様を示す概念図であり、図1(c)は、提示する画像が近距離にある場合の当該検査の態様を示す概念図である。 図2(a)は、ぼけ画像に加工する前の原画像を示す図であり、図2(b)は、ぼけ画像の例を示す図である。 ぼけ画像の作成方法を説明するための概念図である。 眼鏡レンズ受発注システムを示す図である。 一実施形態の眼鏡レンズの設計方法の流れを示すフローチャートである。 一実施形態の眼鏡レンズの設計方法の流れを示すフローチャートである。 発注画面の例を示す図である。 一実施形態の眼鏡レンズの設計方法の流れを示すフローチャートである。 累進屈折力レンズにおける収差の設定の一例を示す概念図である。 図10(a)は、方向依存性の無いぼけ画像の作成方法を説明するための概念図であり、図10(b)は、方向依存的なぼけ画像の作成方法を説明するための概念図である。 単焦点レンズにおける球面度数エラーおよび収差の設定の例を示す概念図であり、(a)は非点収差を重視する場合、(b)は球面度数エラーと非点収差とのバランスを中程度に設定する場合、(c)は球面度数を重視する場合の例である。
 以下では、適宜図面を参照しながら、一実施形態の眼鏡レンズの設計方法と、眼鏡レンズの製造方法と、眼鏡レンズ発注装置と、眼鏡レンズ受注装置と、眼鏡レンズ受発注システム等について説明する。以下の記載において、屈折力の単位は、特に言及しない場合にはディオプター(D)によって表されるものとする。また、以下の説明において、眼鏡レンズの「上方」、「下方」、「上部」、「下部」等と表記する場合は、当該眼鏡レンズが装用されたときのレンズの位置関係に基づくものとする。
 図1は、本実施形態の眼鏡レンズの設計方法において、設計する眼鏡レンズの装用者に対して行うぼけ感受性検査の態様を示す図である。ぼけ感受性検査では、装用者Wの、視野におけるぼけに対する感受性に関する情報が検査される。ぼけに対する感受性は、対象物の画像に種々の方法でぼけを施したぼけ画像Sを作成したときに、ぼけ画像Sを視認する装用者Wが許容できるぼけの度合や、不快感無く視認できるぼけの度合等により表される。ぼけに対する感受性が強いと、ぼけの度合が小さい画像でも不快感(違和感)を感じやすい(許容できるぼけの度合の範囲が狭い)。一方、ぼけに対する感受性が弱いと、ぼけの度合が大きい画像でも不快感(違和感)を感じにくい(許容できるぼけの度合の範囲が広い)。以下の実施形態では、ぼけ感受性検査において、装用者Wが許容可能なぼけの度合を測定する場合を例に説明する。また、ぼけを施す前の画像を原画像Soと呼ぶ。
 眼鏡店において、ぼけ感受性検査を行う検査員は、装用者Wに、装用者Wから所定の距離に提示された複数のぼけ画像Sおよび/または原画像Soを視認させる。複数のぼけ画像Sは、原画像Soにそれぞれ異なる度合のぼけを施して作成されたものである。ぼけ画像Sおよび/または原画像Soは、タブレット型端末、パーソナルコンピュータ(以下、PCと呼ぶ)等のディスプレイ、紙等の印刷物等に表示して装用者Wに提示される。ぼけ画像Sは、原画像Soがはっきりと視認できる視力で視認することが好ましく、検査員は必要に応じて矯正レンズ等を用いて装用者Wの矯正視力を調整した後、ぼけ画像Sを提示する。
 検査員は、ぼけ画像Sを視認している、または視認した装用者Wから、ぼけ画像Sが許容可能かどうかを、口頭により、あるいはボタンを備えた入力機器等を用いて回答してもらう。検査員は、複数のぼけ画像Sについての装用者Wの回答から、装用者Wの視野におけるぼけに対する感受性の度合を、予め定められた基準に従って数値等により表して発注装置に入力する。すなわち、ぼけ画像Sは眼鏡レンズの収差の大きさに対応付けられた度合のぼけが施された、感受性評価用の画像である。
 図1(a)は、装用者Wが、装用者Wから遠距離(この例では2m)にある位置に提示されたぼけ画像Sを視認する場合のぼけ感受性検査の概念図である。図1(a)では、装用者Wが2mの距離Dfにあるぼけ画像Sを両眼により視認する場合の視線を実線矢印で模式的に示した。遠距離のぼけ感受性検査では、装用者Wの眼からぼけ画像Sまでの距離Dfは1m以上の距離に適宜設定することができる。
 なお、遠距離および以降で説明する近距離、中距離に対応する距離の数値範囲は適宜変更してよい。また、各距離においてぼけ感受性検査は片眼ごとに行ってもよい。
 遠距離のぼけ感受性検査で提示するぼけ画像Sは、文字、記号若しくは文章の画像、または装用者Wが日常生活若しくは特定の状況において遠距離で視認する対象物の画像を原画像Soとして作成されたものであることが好ましい。遠距離で視認する当該対象物として、テレビ、部屋または屋外の風景、文字、文章が描かれた黒板、白板等を、適宜用いることができる。
 図1(b)は、装用者Wが、装用者Wから中距離(この例では80cm)にある位置に提示されたぼけ画像Sを視認する場合のぼけ感受性検査の概念図である。図1(b)では、装用者Wが80cmの距離Dmにあるぼけ画像Sを両眼により視認する場合の視線を実線矢印で模式的に示した。中距離のぼけ感受性検査では、装用者Wの眼からぼけ画像Sまでの距離Dmは50cm以上1m未満の距離に適宜設定することができる。
 中距離のぼけ感受性検査で提示するぼけ画像Sは、文字、記号若しくは文章の画像または装用者Wが日常生活若しくは特定の状況において中距離で視認する対象物の画像を原画像Soとして作成されたものであることが好ましい。中距離で視認する当該対象物として、PCの画面等を、適宜用いることができる。
 図1(c)は、装用者Wが、装用者Wから近距離(ここでは30cm)にある位置に提示されたぼけ画像Sを視認する場合のぼけ感受性検査の概念図である。図1(c)では、装用者Wが30cmの距離Dnにあるぼけ画像Sを両眼により視認する場合の視線を実線矢印で模式的に示した。近距離のぼけ感受性検査では、装用者Wの眼からぼけ画像Sまでの距離Dnは25cm以上50cm未満の距離に適宜設定することができる。
 近距離のぼけ感受性検査で提示するぼけ画像Sは、文字、記号若しくは文章の画像または装用者Wが日常生活若しくは特定の状況において近距離で視認する対象物の画像を原画像Soとして作成されたものであることが好ましい。近距離で視認する当該対象物の例としては、スマートフォン等の携帯電話、タブレット、雑誌、新聞紙等を、適宜用いることができる。
 ぼけ感受性検査は、遠距離、中距離、近距離のうち1つの距離において行ってもよいし、複数の距離において行ってもよい。ぼけ感受性検査は、遠距離、中距離および近距離からなる群から選択される2以上の距離において行ってもよい。
 累進屈折力レンズは、遠用部、近用部、および、遠用部と近用部とを屈折率が連続的に変化するよう接続する中間部を備え、中間部の上方に遠用部が、中間部の下方に近用部が配置された眼鏡レンズである。遠距離に対応する屈折力を有する遠用部と、近距離に対応する屈折力を有する近用部とを備える累進屈折力レンズの設計においては、装用者Wに対し遠距離および近距離においてぼけ感受性検査を行うことが好ましい。中距離に対応する屈折力を有する遠用部と、近距離に対応する屈折力を有する近用部とを備える累進屈折力レンズの設計においては、装用者Wに対し中距離および近距離においてぼけ感受性検査を行うことが好ましい。累進屈折力レンズの設計においては、遠距離または中距離についてのぼけ感受性検査により得られた情報を遠用部の設計に用いることが好ましく、近距離についてのぼけ感受性検査により得られた情報を近用部の設計に用いることが好ましい。
 図2は、原画像Soおよびぼけ画像Sを例示する図である。図2(a)は文字「E」からなる原画像Soを示す。図2(b)は、図2(a)の原画像Soから、それぞれ異なる度合のぼけを施して作成した複数のぼけ画像Sである。ぼけ画像S1は、わずかな輪郭の歪み等を有し、ぼけの度合は小さい。ぼけ画像S2は、輪郭の線が明瞭に認識できない程度になっており、ぼけの度合は中程度である。ぼけ画像S3は、全体的に不明瞭となり、ぼけの度合は大きい。
 ぼけ画像Sは、乱視を発生させる眼光学系や、非点収差を発生させる眼鏡レンズ等の屈折体を通して視認した場合の原画像Soの知覚画像を仮想的に作成したものである。このような眼光学系の乱視の度合や、屈折体の非点収差の度合は作成されたぼけ画像Sのぼけの度合に対応する。従って、異なるぼけの度合に対応するぼけ画像Sに対して得られた装用者Wの感受性に関する情報に基づいて、設計する眼鏡レンズの非点収差等の光学特性を装用者Wに合うように適切に設定することができる。
 図3は、ぼけ画像Sの作成方法を説明するための概念図である。ぼけ画像Sの作成方法では、眼球90の前面から、ぼけ感受性検査を行う際の装用者Wとぼけ画像Sとの距離(上述のDf、Dm、Dnに相当)だけ離れた位置に原画像Soを配置し、眼鏡レンズLを原画像Soから眼球90の網膜に向かう光路中に配置して原画像Soの各点からの光線追跡が行われる。光線追跡の計算は、PC等を用いて適宜行うことができる。
 図3では、光線追跡を行う光線の例として、原画像Soの図中上端からの光束F1を破線を用いて表し、原画像Soの図中下端からの光束F2を実線を用いて表した。図3の例では、眼鏡レンズLと眼球90内の眼光学系による屈折により、網膜の後方に原画像Soからの光線が収束している。すなわち、焦点は網膜上に無い。この場合、網膜に投影される画像は焦点が合っていない分だけぼけることになる。公知の光線追跡計算により、眼光学系の光軸と垂直で、当該光軸と網膜との交点を含む投影面Bに到達する原画像Soからの光の量の分布を得ることができる。この光線追跡で得られた投影面B上に到達する光の量の分布に基づいて、ぼけ画像Sの分布(例えば輝度の分布や印刷画像の場合は色の濃さ)が決定される。
 図3で示された光線追跡を行うモデルにおいて、眼鏡レンズL等の光学特性を適宜変更することにより、異なるぼけの度合を有するぼけ画像Sを作成することができる。眼鏡レンズLの非点収差等を変更して作成することが、ぼけ画像Sのぼけの度合と収差との対応関係を得るうえでも好ましい。
 ぼけ感受性検査に使用する複数のぼけ画像を作成するに当たって、収差は眼鏡レンズの収差量または眼球の収差量として表され、例えば最小の収差量0Dから、最大の収差量を1Dないし3Dまでの範囲にし、その間を0.1D、0.25Dもしくは0.5D等任意の間隔で作成する。
非点収差のように方向性を持つ収差の場合は収差の角度15度から90度の間の任意の間隔で変化させ、ぼけ画像を作成する。
 なお、収差は単一の収差ではなく上記の範囲の中で複数の収差や球面度数エラーを合成させることも可能である。また、ぼけ画像Sの作成において、対象物との距離、装用者Wの年齢や調節力の強さ等を考慮して構築された眼球モデルを用いて光線追跡を行ってもよい。これにより、眼の調節力の変化を考慮してより精密にぼけ画像Sを作成することができる。
 本実施形態の眼鏡レンズの設計方法では、得られた装用者Wの感受性に関する情報に基づいて、設計する眼鏡レンズの一または複数の点における目標収差や、許容される収差の上限の値を設定することができる。
 以下では、遠距離および近距離においてぼけ感受性検査を行い、遠距離に対応する屈折力を有する遠用部と、近距離に対応する屈折力を有する近用部とを備える累進屈折力レンズを設計する例により説明する。
 眼鏡レンズの設計に係る眼鏡レンズ受発注システムについて説明する。本実施形態に係る眼鏡レンズ受発注システムは、上述したように装用者Wの視野におけるぼけに対する感受性に応じて、収差等の光学特性が適切に設定された眼鏡レンズを提供することができる。
 図4は、本実施形態に係る眼鏡レンズ受発注システム10の構成を示す図である。眼鏡レンズ受発注システム10は、眼鏡店(発注者)に設置される発注装置1と、レンズメーカに設置される受注装置2、加工機制御装置3、および眼鏡レンズ加工機4と、を含んで構成される。発注装置1と受注装置2とは、例えばインターネット等のネットワーク5を介して通信可能に接続されている。また、受注装置2には、加工機制御装置3が接続されており、加工機制御装置3には眼鏡レンズ加工機4が接続されている。なお、図4では、図示の都合上、発注装置1を1つのみ記載しているが、実際には複数の眼鏡店に設置された複数の発注装置1が受注装置2に接続されている。
 発注装置1は、眼鏡レンズの発注処理を行うコンピュータであり、制御部11と、記憶部12と、通信部13と、表示部14と、入力部15と、を含む。制御部11は、記憶部12に記憶されたプログラムを実行することにより、発注装置1を制御する。制御部11は、眼鏡レンズの発注処理を行う発注処理部111を備える。通信部13は、受注装置2とネットワーク5を介して通信を行う。表示部14は、例えばCRTや液晶ディスプレイ等の表示装置であり、発注する眼鏡レンズの情報(発注情報)を入力するための発注画面などを表示する。入力部15は、例えばマウスやキーボード等を含む。例えば、入力部15を介して、発注画面の内容に応じた発注情報が入力される。
 なお、表示部14と入力部15とはタッチパネル等により一体的に構成されていてもよい。
 受注装置2は、眼鏡レンズの受注処理や設計処理、光学性能の演算処理等を行うコンピュータであり、制御部21と、記憶部22と、通信部23と、表示部24と、入力部25とを含んで構成される。制御部21は、記憶部22に記憶されたプログラムを実行することにより、受注装置2を制御する。制御部21は、眼鏡レンズの受注処理を行う受注処理部211と、眼鏡レンズの設計処理を行う設計部212とを備える。通信部23は、発注装置1とネットワーク5を介して通信を行ったり、加工機制御装置3と通信を行ったりする。記憶部22は、眼鏡レンズ設計のための各種データを読み出し可能に記憶する。表示部24は、例えばCRTや液晶ディスプレイ等の表示装置であり、眼鏡レンズの設計結果等を表示する。入力部25は、例えばマウスやキーボード等を含んで構成される。
 なお、表示部24と入力部25とはタッチパネル等により一体的に構成されていてもよい。
 次に、眼鏡レンズ受発注システム10において、眼鏡レンズを提供する手順について、図5に示すフローチャートを用いて説明する。図5の左側には眼鏡店側で行う手順を示し、図5の右側にはレンズメーカ側で行う手順を示す。眼鏡レンズ受発注システム10における眼鏡レンズの製造方法では、上述の眼鏡レンズの設計方法により眼鏡レンズが設計される。
 ステップS11において、発注者は、装用者Wのぼけに対する感受性に関する情報を取得する。
 図6は、ステップS11をさらに複数の段階に分けて示したフローチャートである。ステップS111において、発注者は、矯正レンズ等を用いて、装用者Wの視力を調節し、装用者Wがぼけ感受性検査を行う距離にある原画像Soをはっきり視認できるようにする。ステップS111が終了したら、ステップS112に進む。
 ステップS112において、発注者は、原画像Soに対して異なる度合のぼけを施して作成した複数のぼけ画像Sを、装用者Wから近距離、中距離、遠距離等にある位置に提示して、装用者に視認させる。本実施形態では、発注者は、遠近用累進屈折力レンズの作成のため、遠距離、例えば装用者Wから2mの距離に複数のぼけ画像Sを順次提示する。発注者は、例えば装用者Wから30cm等の近距離についても同様に複数のぼけ画像Sを順次提示する。
 異なるぼけの度合を有するぼけ画像Sを提示する順番は特に限定されないが、ぼけに対する慣れが生じないように、装用者が十分許容可能なぼけの度合の小さい画像を少なくとも数画像に一回の割合で提示するようにすることが好ましい。ステップS112が終了したら、ステップS113に進む。
 ステップS113において、発注者は、装用者Wの視野におけるぼけに対する感受性に関する情報を取得する。発注者は、各距離に関して、装用者Wの許容できるぼけの度合を聞き取る。発注者は、各距離に関して、装用者Wのぼけに対する感受性の強さとを、予め定められた基準により数値に変換して記録する。ステップS113が終了したら、ステップS12に進む。
 なお、ある距離についてステップS111からS113を行った後、再びステップS11に戻って、異なる距離についてぼけ感受性検査を行う構成にしてもよい。これにより、各距離について、その距離に合った矯正方法を用いることができる。例えば、累進屈折力レンズの設計において、近距離の測定をする場合は、必要なレンズの加入度に応じて、遠用部の処方に球面度数を加入度の度数分プラスして矯正を行なってから測定をする等、適宜定めることができる。
 ステップS12において、発注者は、ステップS113において取得した装用者Wの視野におけるぼけに対する感受性に関する情報を含む、注文する眼鏡レンズの発注情報を決定する。そして、発注者は、発注装置1の表示部14に発注画面を表示させ、入力部15を介して発注情報を入力する。
 図7は、発注画面100の一例を示す図である。レンズ情報項目101では、注文するレンズの商品名、球面度数(S度数)、乱視度数(C度数)、乱視軸度、加入度等のレンズ注文度数に関連する項目を入力する。加工指定情報項目102は、注文するレンズの外径を指定する場合や、任意点厚さを指定する場合に利用される。染色情報項目103は、レンズの色を指定する場合に利用される。フィッティングポイント(FP)情報104は、装用者Wの眼の位置情報を入力する。PDは瞳孔間距離を表す。フレーム情報項目105では、フレームモデル名、フレーム種別等を入力する。感受性情報項目106では、遠距離および近距離についてのぼけ感受性検査において、ぼけに対する感受性の強さを示す数値を入力する。図7の例では、ぼけに対する感受性の強さを、遠距離および近距離のそれぞれで、10段階の数値により表した(遠距離で「5」、近距離で「4」)。図7の例では、数字が大きければ大きい程、ぼけに対する感受性が強くなるようにぼけに対する感受性の強さを定義している。
 ぼけ感受性検査で使用する画像は、以下のように準備する。
 最小収差量で作成した画像を10、最大収差量で作成した画像を0にし、各画像を10段階に区分する。そして、装用者が最大限許容可能であるとしたぼけの画像の区分を感受性の強さの測定値とする。
 なお、ぼけに対する感受性の表し方について、ぼけに対する感受性が小さい程大きな数値になるように表してもよいし、数値でなく記号で定義してもよいし、ぼけに対する感受性を、予め定められた基準に従って表し伝えることができれば特にその方法は制限されない。
 なお、発注画面100では、上述の項目の他にも、フレームの前傾角、そり角、眼とレンズの間の距離等のフィッティングパラメータや装用者Wの調節力に関する情報等、様々な情報を追加することができる。また、装用者Wのぼけに対する感受性の強さを示す数値に加え、またはその代わりに、遠用部および/または近用部の非点収差が小さい範囲を示す指標として算出された設計パラメータを入力する構成にしてもよい。設計パラメータは、例えば後述の図9の破線矢印または一点鎖線の矢印で示されるような、遠用部または近用部においてレンズ上を左右に伸びる線分で、収差が所定の値以下になる長さ等とすることができる。
 発注者が、図7の発注画面100の各項目を入力し、送信ボタン(不図示)をクリックすると、発注装置1の発注処理部111は、発注画面100の各項目において入力された情報(発注情報)を取得して、ステップS13に進む。ステップS13において、発注装置1は、当該発注情報を、通信部13を介して受注装置2へ送信する。
 発注装置1において、発注画面100を表示する処理、発注画面100において入力された発注情報を取得する処理、当該発注情報を受注装置2に送信する処理については、発注装置1の制御部11が、記憶部12に予めインストールされた所定のプログラムを実行することによって行う。
 ステップS21(図5)において、受注装置2の受注処理部211は、通信部23を介して、発注装置1から発注情報を受信すると、ステップS22に進む。ステップS22において、受注装置2の設計部212は、受信した発注情報に基づいて眼鏡レンズの設計を行う。
 図8は、ステップS22に対応する眼鏡レンズの設計の手順を示すフローチャートである。ステップS221において、受注装置2は、眼鏡レンズの処方データと、装用者Wのぼけに対する感受性に関する情報または遠用部および/若しくは近用部の非点収差の小さい範囲を示す指標等の設計パラメータとを取得する。受注装置2は、適宜フレームの前傾角、そり角、眼とレンズの間の距離等のフィッティングパラメータ等も取得する。ステップS221が終了したらステップS222に進む。
 ステップS222において、受注装置2の設計部212は、ステップS221で取得した装用者Wの視野におけるぼけに対する感受性に関する情報または設計パラメータに基づいて眼鏡レンズの目標収差を設定する。
 図9は、装用者Wのぼけに対する感受性に基づいた目標収差の設定の例を示す概念図である。図中央に4つの収差分布図を示し、図の最も右側の部分には、収差分布図で収差の大きさを表すのに用いられているパターンに対応する収差の大きさを示した。破線矢印は遠用部において左右に伸び、収差の大きさが所定の値以下の部分の幅を示し、この長さは遠用部の非点収差の小さい範囲を示す指標となる。一点鎖線の矢印は近用部において左右に伸び、収差の大きさが所定の値以下の部分の幅を示し、この長さは近用部の非点収差の小さい範囲を示す指標となる。破線矢印および一点鎖線矢印の上下方向の位置は任意に設定されるが、例えば遠用測定ポイントの位置(遠用度数測定位置)や、近用測定ポイントの位置(近用度数測定位置)を基準に定められる。
 図9に示した4つの収差分布図の中で、左上の収差分布図A11は、近距離、遠距離の非点収差の感受性が弱い装用者Wのためのレンズであり、非点収差の小さい範囲は狭いが、非点収差の変化が小さいため、輪郭の歪みは小さい。右上の収差分布図A12は、遠距離の非点収差の感受性が収差分布図A11の場合よりも強い装用者Wのためのレンズであり、遠用部の非点収差の小さい範囲が収差分布図A11の場合よりも広く設計されている。左下の収差分布図A21は、近距離の非点収差の感受性が収差分布図A11の場合よりも強い装用者Wのためのレンズであり、近用部の非点収差の小さい範囲が収差分布図A11の場合よりも広く設計されている。右下の収差分布図A22は、近距離、遠距離の非点収差の感受性が収差分布図A11の場合よりも強い装用者Wのためのレンズであり、近用部、遠用部の非点収差の小さい範囲が収差分布図A11の場合よりも広く設計されている。
 ステップS223(図8)において、受注装置2は、眼鏡レンズのレンズ全体の形状を決定する。レンズ全体の形状が決定されたら、ステップS224に進む。ステップS224において、受注装置2は、眼鏡レンズの屈折力、非点収差等の光学特性が所望の条件を満たすかを判定する。所望の条件を満たす場合、ステップS224を肯定判定し、設計処理を終了し、ステップS23(図5参照)に進む。所望の条件を満たさない場合、ステップS224を否定判定し、ステップS223に戻る。
 ステップS23において、受注装置2は、ステップS22で設計した眼鏡レンズの設計データを加工機制御装置3に出力する。加工機制御装置3は、受注装置2から出力された設計データに基づいて、眼鏡レンズ加工機4に加工指示を送る。この結果、眼鏡レンズ加工機4によって、当該設計データに基づく眼鏡レンズが加工され、製造される。眼鏡レンズ加工機4によって製造された眼鏡レンズが眼鏡店に出荷され、眼鏡フレームにはめ込まれて顧客(装用者W)に提供される。
 なお、受注装置2において、発注装置1から発注情報を受信する処理、受信した発注情報に基づいて眼鏡レンズを設計する処理、眼鏡レンズの設計データを加工機制御装置3に出力する処理については、受注装置2の制御部21が、記憶部22に予めインストールされた所定のプログラムを実行することによって行う。
 上述の実施の形態によれば、次の作用効果が得られる。
(1)本実施形態の眼鏡レンズの設計方法および眼鏡レンズの製造方法は、原画像Soに対して異なる度合のぼけを施して作成した複数のぼけ画像Sを、装用者Wから遠距離、中距離、近距離等の所定の距離に提示して、装用者Wに視認させることと、装用者Wの視野におけるぼけに対する感受性に関する情報を取得することと、を備える。これにより、装用者Wのぼけに対する感受性に基づいて適切な眼鏡レンズを設計することができる。
(2)本実施形態の眼鏡レンズの設計方法において、感受性に関する情報は、装用者Wがぼけ画像Sを視認することが許容可能かどうかについての情報である。これにより、許容可能なぼけ画像Sに対応する、許容可能な収差の範囲を参考にして、装用者Wに合った眼鏡レンズを設計することができる。
(3)本実施形態の眼鏡レンズの設計方法において、複数のぼけ画像Sのそれぞれは、原画像Soから出射しそれぞれ異なる収差を発生させる眼鏡レンズLを透過する光を光線追跡することにより作成される。これにより、眼鏡レンズ等の屈折体により発生されるぼけをより正確に表したぼけ画像Sを作成し、装用者Wの視野におけるぼけに対する感受性をより正確に測定することができる。
(4)本実施形態の眼鏡レンズの設計方法において、異なるぼけ画像Sを作成するための光線追跡で、それぞれ異なる収差を発生させる複数の屈折体は、球面度数、乱視度数、または乱視軸が異なる眼鏡レンズLを含む。これにより、眼鏡レンズLの収差とぼけ画像Sのぼけの度合とを対応させて、ぼけに対する感受性に関する情報からより効果的に眼鏡レンズLを設計することができる。
(5)本実施形態の眼鏡レンズの設計方法において、原画像Soは、装用者Wから遠距離、中距離、近距離等の所定の距離だけ離れた位置において、装用者Wが視認することを想定した対象物の画像である。これにより、実際に設計される眼鏡レンズが使用される状況に合わせ、適切に装用者Wのぼけに対する感受性を測定することができる。
(6)本実施形態の眼鏡レンズの設計方法において、異なる複数の所定の距離にある、複数のぼけ画像を装用者Wに提示することを備え、上記複数の所定の距離は、25cm以上50cm未満の近距離、50cm以上1m未満の中距離および1m以上の遠距離からなる群から選択される2以上の距離である。これにより、累進屈折力レンズの設計において、各距離に対応する部分について、装用者Wのぼけに対する感受性に基づいて適切に設計することができる
(7)本実施形態の眼鏡レンズの設計方法において、装用者Wが矯正視力を得た状態として、装用者Wにぼけ画像Sを視認させる。これにより、正確に装用者Wのぼけに対する感受性を測定することができる。
(8)本実施形態の眼鏡レンズの設計方法において、感受性に関する情報に基づいて累進屈折力レンズの目標収差を設定する。これにより、装用者Wのぼけに対する感受性に基づいて適切な累進屈折力レンズを設計することができる。
(9)本実施形態に係る眼鏡レンズ発注装置は、原画像Soに対して異なる度合のぼけを施して作成した複数のぼけ画像Sを、装用者Wから遠距離、中距離、近距離等の所定の距離に提示して、装用者Wに視認させて取得した、装用者Wの視野におけるぼけに対する感受性に関する情報を入力する入力部15と、入力部15を介して入力された当該情報または当該情報に基づいて算出した設計パラメータを眼鏡レンズ受注装置に送信する通信部13と、を備える。これにより、装用者Wのぼけに対する感受性を考慮した眼鏡レンズを発注することができる。
(10)本実施形態に係る眼鏡レンズ受注装置は、原画像Soに対して異なる度合のぼけを施して作成した複数のぼけ画像Sを、装用者Wから遠距離、中距離、近距離等の所定の距離に提示して、装用者Wに視認させて取得した、装用者Wの視野におけるぼけに対する感受性に関する情報または当該情報に基づいて算出した設計パラメータを受信する受信部と、当該情報または設計パラメータに基づいて眼鏡レンズを設計する設計部と、を備える。これにより、装用者Wのぼけに対する感受性を考慮した眼鏡レンズを受注、設計することができる。
 次のような変形例も本発明の範囲内であり、上述の実施形態と組み合わせることが可能である。
(変形例1)
 上述の実施形態では、原画像Soの各点から光線追跡をしてぼけ画像Sを作成したが、一点からの光線追跡により点像分布関数(Point Spread Function;PSF)を計算し、点像分布関数により原画像Soの各点の輝度や色の濃さを畳み込み積分することによりぼけ画像Sを作成してもよい。
 図10(a)は、非点収差を発生させない場合の屈折力エラーによるぼけ画像S4の作成を示す概念図である。丸の中にXが描かれた記号は畳み込み積分を示す。原画像Soを方向依存性の無い点像分布P1に対応する点像分布関数により畳み込み積分すると、ぼけ画像S4のような各点が一様にぼけたような画像が得られる。以下では、ぼけ画像S4を適宜、方向非依存的なぼけ画像と呼ぶ。
 図10(b)は、非点収差が発生する場合のぼけ画像S5の作成を示す概念図である。丸の中にXが描かれた記号は畳み込み積分を示す。原画像Soを方向依存性(斜め45度方向)を有する点像分布P2に対応する点像分布関数により畳み込み積分すると、ぼけ画像S5のような各点が斜め方向に向かってぼけたような画像が得られる。以下では、ぼけ画像S5を適宜、方向依存的なぼけ画像と呼ぶ。方向依存的なぼけ画像Sの方向依存性は、装用者Wの乱視軸の方向に基づいて定めてもよい。
 方向依存的なぼけ画像および方向非依存的なぼけ画像は、原画像Soの各点から光線追跡する図3に示された方法によっても、光路中に挿入される眼鏡レンズL等の屈折体の光学特性を調節することにより、適宜所望のぼけの度合のものを得ることができる。
 本変形例の眼鏡レンズの設計方法において、複数のぼけ画像Sは、網膜から遠距離、中距離、近距離等の所定の距離にある点から出射した光が異なる収差を発生させる複数の屈折体を透過して網膜に入射する際に光線追跡して得られる点像分布関数に基づいてそれぞれ作成することができる。これにより、簡便に様々な態様のぼけ画像Sを作成することができる。
(変形例2)
 上述の実施形態では、光線追跡によりぼけ画像Sを作成したが、PC等の演算装置を用い、特定の分布関数をカーネルとして画像の各点の輝度または色の濃さを畳み込み演算する画像処理によりぼけ画像Sを作成してもよい。これにより、簡便な方法で多様なぼけ画像Sを作成することができる。
(変形例3)
 上述した実施形態の設計方法では、累進屈折力レンズの目標収差を設定する例で説明したが、この内容に限定する必要はない。単焦点レンズに関しても装用者Wの感受性に関する情報を用いて設計を行うことができる。単焦点レンズの設計においては、装用者Wの感受性に関する情報に基づいて、レンズの周辺部における、球面度数からの屈折力のずれである球面度数エラーと非点収差との設定を行うことができる。
 図11は、単焦点レンズの球面度数エラーおよび非点収差の設定の例を示す図である。図11(a)~(c)において、球面度数エラーの分布図と非点収差の分布図を示し、図の最も右側の部分には、分布図に用いられているパターンに対応する球面度数エラーまたは収差の大きさを示した。
 図11(a)は、非点収差を重視する設計の例を示す図である。図11(a)の球面度数エラーの分布E1および非点収差の分布A1による単焦点レンズは、非点収差の大きさが抑えられているため、非点収差の感受性が強い装用者Wに好適に用いられる。図11(b)は、球面度数エラーと非点収差とのバランスを重視する設計の例を示す図である。図11(b)の球面度数エラーの分布E2および非点収差の分布A2による単焦点レンズは、非点収差の大きさは図11(a)の例より大きいものの、球面度数エラーが抑えられているため、非点収差の感受性が平均的な装用者Wに好適に用いられる。図11(c)は、球面度数を重視する設計の例を示す図である。図11(c)の球面度数エラーの分布E3および非点収差の分布A3による単焦点レンズは、球面度数エラーの大きさが抑えられているため、非点収差の感受性が弱い装用者Wに好適に用いられる。
 本変形例の眼鏡レンズの設計方法において、ぼけに対する感受性に関する情報に基づいて単焦点レンズの周辺部の目標収差を設定する。これにより、視野の周辺部に関し、装用者Wのぼけに対する感受性を考慮し、装用者Wに合った単焦点レンズを提供することができる。
(変形例4)
 上述の実施形態において、設計パラメータを装用者のぼけ感受性検査の測定値とぼけ感受性検査を受けた多数の試験者の統計データに基づいて以下のように設定してもよい。
 事前に多数(例えば30名以上)の試験者に行なわれた検査の結果から遠距離のぼけ感受性の測定値の平均値Mと標準偏差σを求める。試験者は、例えば累進屈折力レンズの場合は40代以上の年齢の試験者、単焦点レンズの場合は40代未満の試験者というように、年代別に分けて検査を行うことができる。遠距離感受性範囲定数Kを上記測定値の標準偏差σの1倍から3倍までの間の任意の値にすることができる。例えば遠距離の収差の感受性の高低差をレンズの設計に大きく反映させる場合はK値を小さくし、逆に遠距離の収差の感受性の高低差をレンズの設計に小さく反映させる場合はK値を大きくとることができる。
 遠用部設計パラメータPは装用者の遠距離感受性測定値Dから
P = (D-M)/K
の形で計算される。遠用部の非点収差の小さい範囲の広さの目標値Rtfは最大値Rfmaxと最小値Rfminから設計パラメータPを用いて下式のように計算する。
Rft = (Rfmax+Rfmin)/2 + P * (Rfmax-Rfmin)/2
近距離に対しても同様な計算を行なう。但しRft>Rfmaxの場合、RftはRfmaxにし、Rft<Rminの場合、RftはRfminにする。
同様にして近用部の非点収差の小さい範囲の広さの目標値Rntを求める。
 図9に示した4つの収差分布図の中で、左上の収差分布図A11は、近距離、遠距離の非点収差の小さい範囲の広さの設計目標値が両方最小値Rfmin, Rnminを採った場合のレンズであり、非点収差の小さい範囲は狭いが、非点収差の変化が小さいため、輪郭の歪みは小さい。右上の収差分布図A12は、遠用部の非点収差の小さい範囲の広さの設計目標値は最大値Rfmaxで、近用部の非点収差の小さい範囲の広さの設計目標値は最小値Rnminを採った場合のレンズであり遠距離の感受性が収差分布図A11の場合よりも強い装用者Wのためのレンズである。左下の収差分布図A21は、遠用部の非点収差の小さい範囲の広さの設計目標値は最小値Rfminで、近用部の非点収差の小さい範囲の広さの設計目標値は最大値Rnmaxを採った場合のレンズであり、近距離の非点収差の感受性が収差分布図A11の場合よりも強い装用者Wのためのレンズである。右下の収差分布図A22は、近距離、遠距離の非点収差の小さい範囲の広さの設計目標値が両方最大値Rfmax, Rnmaxをとった場合のレンズであり、近距離、遠距離の非点収差の感受性が収差分布図A11の場合よりも強い装用者Wのためのレンズである。
 設計の目標値はこの4つの角を持つ四角の範囲の中から、遠距離目標値Rft, 近距離目標値Rntの値で決定される。
 なお、感受性に関する情報に基づいて、累進屈折力レンズの中間部についても、非点収差の小さい範囲の目標広さを設定してもよい。
 本変形例では、感受性に関する情報に基づいて、累進屈折力レンズの遠用部、中間部、または近用部から選ばれる少なくとも2つの領域における、非点収差の小さい範囲の目標広さを設定することができる。これにより、装用者のぼけに対する感受性に基づいて、より装用者に合った累進屈折力レンズを提供することができる。
 本発明は上記実施形態の内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。
 次の優先権基礎出願の開示内容は引用文としてここに組み込まれる。
 日本国特許出願2016年第233004号(2016年11月30日出願)
1…発注装置、2…受注装置、9…加入度特性グラフ。10…眼鏡レンズ受発注システム、11…発注装置の制御部、13…発注装置の通信部、21…受注装置の制御部、23…受注装置の通信部、100…発注画面、106…感受性情報項目、S…ぼけ画像、So…原画像、W…装用者。

Claims (18)

  1.  原画像に対して異なる度合のぼけを施して作成した複数のぼけ画像を提示して、装用者に視認させることと、
     前記装用者のぼけに対する感受性に関する情報を取得することと、
     前記装用者のぼけに対する感受性に関する情報に基づいて眼鏡レンズを設計することと、を備える眼鏡レンズの設計方法。
  2.  請求項1に記載の眼鏡レンズの設計方法において、
     前記感受性に関する情報は、前記装用者が前記ぼけ画像を視認することが許容可能かどうかについての情報である眼鏡レンズの設計方法。
  3.  請求項1または2に記載の眼鏡レンズの設計方法において、
     前記複数のぼけ画像のそれぞれは、前記原画像から出射しそれぞれ異なる収差を発生させる屈折体を透過する光を光線追跡することにより作成される眼鏡レンズの設計方法。
  4.  請求項1から3までのいずれか一項に記載の眼鏡レンズの設計方法において、
     前記複数のぼけ画像は、網膜から所定の距離にある点から出射した光が異なる収差を発生させる複数の屈折体を透過して前記網膜に入射する際に光線追跡して得られる点像分布関数に基づいてそれぞれ作成される眼鏡レンズの設計方法。
  5.  請求項3または4に記載の眼鏡レンズの設計方法において、
     前記異なる収差を発生させる複数の屈折体は、球面度数、乱視度数、または乱視軸が異なる眼鏡レンズを含む眼鏡レンズの設計方法。
  6.  請求項1または2に記載の眼鏡レンズの設計方法において、
     前記複数のぼけ画像のそれぞれは、任意の分布関数に基づいて前記原画像の各点の輝度または色の濃さの畳み込み演算を行う画像処理により作成される眼鏡レンズの設計方法。
  7.  請求項1から6までのいずれか一項に記載の眼鏡レンズの設計方法において、
     前記原画像は、前記装用者から所定の距離だけ離れた位置において、前記装用者が視認することを想定した対象物の画像である眼鏡レンズの設計方法。
  8.  請求項1から7までのいずれか一項に記載の眼鏡レンズの設計方法において、
     異なる複数の所定の距離にある前記複数のぼけ画像を前記装用者に提示することを備える眼鏡レンズの設計方法。
  9.  請求項1から8までのいずれか一項に記載の眼鏡レンズの設計方法において、
     前記装用者が矯正視力を得た状態として、前記装用者に前記ぼけ画像を視認させる眼鏡レンズの設計方法。
  10.  請求項1から9までのいずれか一項に記載の眼鏡レンズの設計方法において、
     前記感受性に関する情報に基づいて累進屈折力レンズの目標収差を設定する眼鏡レンズの設計方法。
  11.  請求項1から10までのいずれか一項に記載の眼鏡レンズの設計方法において、
     前記感受性に関する情報に基づいて、累進屈折力レンズの遠用部、中間部、または近用部から選ばれる少なくとも2つの領域における、非点収差の小さい範囲の目標広さを設定する眼鏡レンズの設計方法。
  12.  請求項1から9までのいずれか一項に記載の眼鏡レンズの設計方法において、
     前記感受性に関する情報に基づいて単焦点レンズの周辺部の目標収差を設定する眼鏡レンズの設計方法。
  13.  請求項1から12までのいずれか一項に記載の設計方法により眼鏡レンズを設計する眼鏡レンズの製造方法。
  14.  原画像に対して異なる度合のぼけを施して作成した複数のぼけ画像を提示して、装用者に視認させて取得した、前記装用者のぼけに対する感受性に関する情報を入力する入力部と、
     前記入力部を介して入力された前記情報または前記情報に基づいて算出した設計パラメータを眼鏡レンズ受注装置に送信する送信部と、
    を備える眼鏡レンズ発注装置。
  15.  原画像に対して異なる度合のぼけを施して作成した複数のぼけ画像を提示して、装用者に視認させて取得した、前記装用者のぼけに対する感受性に関する情報または前記情報に基づいて算出した設計パラメータを受信する受信部と、
     前記情報または前記設計パラメータに基づいて眼鏡レンズを設計する設計部と、
    を備える眼鏡レンズ受注装置。
  16.  請求項14に記載の眼鏡レンズ発注装置と、請求項15に記載の眼鏡レンズ受注装置と、を備える眼鏡レンズ受発注システム。
  17.  請求項10に記載の眼鏡レンズの設計方法により設計された累進屈折力レンズ。
  18.  請求項12に記載の眼鏡レンズの設計方法により設計された単焦点レンズ。
PCT/JP2017/040785 2016-11-30 2017-11-13 眼鏡レンズの設計方法、眼鏡レンズの製造方法、眼鏡レンズ発注装置、眼鏡レンズ受注装置、眼鏡レンズ受発注システム、累進屈折力レンズ、単焦点レンズ WO2018101015A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA3044515A CA3044515C (en) 2016-11-30 2017-11-13 Progressive power and single focus lenses, and methods and systems for designing, manufacturing, and ordering spectacle lenses
CN201780073561.6A CN110050225A (zh) 2016-11-30 2017-11-13 眼镜镜片的设计方法、眼镜镜片的制造方法、眼镜镜片订购装置、眼镜镜片订购接受装置、眼镜镜片订购及订购接受***、渐进屈光力镜片、单焦点镜片
EP17876641.6A EP3550356A4 (en) 2016-11-30 2017-11-13 GLASS GLASS DESIGN PROCESS, GLASS GLASS MANUFACTURING PROCESS, GLASS CONTROL DEVICE, GLASS GLASS CONTROL AND RECEPTION DEVICE, A SYSTEM FOR ORDERING AND RECEIVING THE GLASS ORDER OF GLASS OF GLASSES, PROGRESSIVE LENS, AND MONOFOCAL LENS
KR1020197015372A KR102280371B1 (ko) 2016-11-30 2017-11-13 안경 렌즈의 설계 방법, 안경 렌즈의 제조 방법, 안경 렌즈 발주 장치, 안경 렌즈 수주 장치, 안경 렌즈 수발주 시스템, 누진 굴절력 렌즈, 단초점 렌즈
JP2018553747A JP6994468B2 (ja) 2016-11-30 2017-11-13 眼鏡レンズの設計方法、眼鏡レンズの製造方法、眼鏡レンズ発注装置、眼鏡レンズ受注装置、眼鏡レンズ受発注システム
US16/417,088 US11428953B2 (en) 2016-11-30 2019-05-20 Method for designing spectacle lens, method for manufacturing spectacle lens, spectacle lens order sending device, spectacle lens order receiving device, spectacle lens order sending/receiving system, progressive power lens, and single focus lens

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-233004 2016-11-30
JP2016233004 2016-11-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/417,088 Continuation US11428953B2 (en) 2016-11-30 2019-05-20 Method for designing spectacle lens, method for manufacturing spectacle lens, spectacle lens order sending device, spectacle lens order receiving device, spectacle lens order sending/receiving system, progressive power lens, and single focus lens

Publications (1)

Publication Number Publication Date
WO2018101015A1 true WO2018101015A1 (ja) 2018-06-07

Family

ID=62241417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/040785 WO2018101015A1 (ja) 2016-11-30 2017-11-13 眼鏡レンズの設計方法、眼鏡レンズの製造方法、眼鏡レンズ発注装置、眼鏡レンズ受注装置、眼鏡レンズ受発注システム、累進屈折力レンズ、単焦点レンズ

Country Status (7)

Country Link
US (1) US11428953B2 (ja)
EP (1) EP3550356A4 (ja)
JP (1) JP6994468B2 (ja)
KR (1) KR102280371B1 (ja)
CN (2) CN113325607A (ja)
CA (1) CA3044515C (ja)
WO (1) WO2018101015A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020126563A (ja) * 2019-02-06 2020-08-20 寛惠 榎 視認性評価装置、視認性評価プログラムおよび視認性評価方法
WO2021157001A1 (ja) 2020-02-06 2021-08-12 株式会社ニコン・エシロール 感受性の評価方法、眼鏡レンズの設計方法、眼鏡レンズの製造方法、眼鏡レンズ、眼鏡レンズ発注装置、眼鏡レンズ受注装置および眼鏡レンズ受発注システム
WO2023248717A1 (ja) * 2022-06-22 2023-12-28 株式会社ニコン・エシロール 感受性の評価方法および一対の眼鏡レンズの製造方法
WO2024034373A1 (ja) * 2022-08-12 2024-02-15 ホヤ レンズ タイランド リミテッド 眼鏡レンズの決定方法、および、眼鏡レンズの決定支援システム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3736617A1 (de) * 2019-05-10 2020-11-11 Carl Zeiss Vision International GmbH Verfahren zum herstellen eines optischen korrektionsmittels

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002315725A (ja) * 2001-04-20 2002-10-29 Menicon Co Ltd 視力検査表
WO2009133887A1 (ja) 2008-04-28 2009-11-05 Hoya株式会社 レンズ設計基準の選択方法
JP2013217948A (ja) * 2012-03-12 2013-10-24 Nikon-Essilor Co Ltd 眼鏡レンズ、眼鏡レンズの製造方法及び眼鏡レンズの設計方法
WO2014203440A1 (ja) * 2013-06-19 2014-12-24 パナソニックIpマネジメント株式会社 画像表示装置および画像表示方法
WO2015150432A1 (en) * 2014-04-03 2015-10-08 Essilor International (Compagnie Generale D'optique) Method for producing a customized progressive ophthalmic lens

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU769864B2 (en) 1999-02-12 2004-02-05 Hoya Corporation Eyeglass and its manufacturing method
EP1158338B1 (en) * 2000-05-22 2006-03-01 Hoya Corporation Method for simulating an ocular optical system and apparatus therefor
AUPQ842800A0 (en) * 2000-06-28 2000-07-20 Aivision Pty Ltd Flat screen vision testing
JP3735842B2 (ja) * 2002-05-28 2006-01-18 Hoya株式会社 眼光学系のシミュレーション装置を駆動するためのプログラムを記録したコンピュータ読み取り可能な記録媒体
JP4306702B2 (ja) * 2006-08-03 2009-08-05 セイコーエプソン株式会社 メガネレンズ発注システム
US7771051B2 (en) * 2007-06-13 2010-08-10 Rahim Hirji Near eye opthalmic device
WO2009135058A2 (en) * 2008-04-30 2009-11-05 Ophthonix, Inc. Method of designing progressive addition lenses
FR2944364B1 (fr) * 2009-04-14 2011-09-02 Essilor Int Realisation d'un verre de lunettes personnalise en fonction d'une perception de flou
FR2946762B1 (fr) * 2009-06-10 2011-07-15 Essilor Int Realisation d'un verre de lunettes progressif personnalise en fonction d'une perception de flou
FR2947165B1 (fr) 2009-06-29 2011-08-19 Essilor Int Caracterisation d'une perception de flou
JP5725646B2 (ja) * 2010-03-10 2015-05-27 ホーヤ レンズ マニュファクチャリング フィリピン インク 累進屈折力レンズの設計方法、累進屈折力レンズ設計システム、および累進屈折力レンズの製造方法
WO2013027755A1 (ja) 2011-08-24 2013-02-28 Hoya株式会社 眼鏡装用シミュレーション方法、プログラム、装置、眼鏡レンズ発注システム及び眼鏡レンズの製造方法
EP2642332B1 (en) * 2012-03-23 2015-05-06 Essilor International (Compagnie Générale d'Optique) A progressive addition lens for a wearer
US9791718B2 (en) * 2012-07-31 2017-10-17 Essilor International (Compagnie Generale D'optique) Progressive multifocal ophthalmic lens designed to inhibit progressive myopia of the wearer
US20150230744A1 (en) * 2012-08-10 2015-08-20 Valorisation-Recherche, Limited Partnership Method and system for assessing a stimulus property perceived by a subject
US10678815B2 (en) * 2012-10-02 2020-06-09 Banjo, Inc. Dynamic event detection system and method
US9265412B2 (en) * 2013-08-27 2016-02-23 Johnson & Johnson Vision Care, Inc. Means and method for demonstrating the effects of low cylinder astigmatism correction
EP3088938A4 (en) * 2013-12-26 2017-08-02 Hoya Lens Thailand Ltd. Method, program, and device for manufacturing progressive refractive power lens, progressive refractive power lens manufacturing method, and lens supply system
JP2015194511A (ja) * 2014-03-31 2015-11-05 ホヤ レンズ タイランド リミテッドHOYA Lens Thailand Ltd 眼鏡レンズを製造するための装置、方法及びプログラム並びに眼鏡レンズの製造方法及びレンズ供給システム
US9980638B2 (en) * 2014-05-12 2018-05-29 Essilor International (Compagnie Generale D'optique) Systems and methods for measuring refractive error and ophthalmic lenses provided therefrom
EP3006991A1 (en) * 2014-10-08 2016-04-13 Essilor International (Compagnie Generale D'optique) Method for determining a lens design of an optical lens adapted to a wearer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002315725A (ja) * 2001-04-20 2002-10-29 Menicon Co Ltd 視力検査表
WO2009133887A1 (ja) 2008-04-28 2009-11-05 Hoya株式会社 レンズ設計基準の選択方法
JP2013217948A (ja) * 2012-03-12 2013-10-24 Nikon-Essilor Co Ltd 眼鏡レンズ、眼鏡レンズの製造方法及び眼鏡レンズの設計方法
WO2014203440A1 (ja) * 2013-06-19 2014-12-24 パナソニックIpマネジメント株式会社 画像表示装置および画像表示方法
WO2015150432A1 (en) * 2014-04-03 2015-10-08 Essilor International (Compagnie Generale D'optique) Method for producing a customized progressive ophthalmic lens

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3550356A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020126563A (ja) * 2019-02-06 2020-08-20 寛惠 榎 視認性評価装置、視認性評価プログラムおよび視認性評価方法
WO2021157001A1 (ja) 2020-02-06 2021-08-12 株式会社ニコン・エシロール 感受性の評価方法、眼鏡レンズの設計方法、眼鏡レンズの製造方法、眼鏡レンズ、眼鏡レンズ発注装置、眼鏡レンズ受注装置および眼鏡レンズ受発注システム
JPWO2021157001A1 (ja) * 2020-02-06 2021-08-12
KR20220116320A (ko) 2020-02-06 2022-08-22 가부시키가이샤 니콘. 에시로루 감수성 평가 방법, 안경 렌즈의 설계 방법, 안경 렌즈의 제조 방법, 안경 렌즈, 안경 렌즈 발주 장치, 안경 렌즈 수주 장치 및 안경 렌즈 수발주 시스템
JP7406573B2 (ja) 2020-02-06 2023-12-27 株式会社ニコン・エシロール 検査制御装置、眼鏡レンズの設計方法および眼鏡レンズの製造方法
WO2023248717A1 (ja) * 2022-06-22 2023-12-28 株式会社ニコン・エシロール 感受性の評価方法および一対の眼鏡レンズの製造方法
WO2024034373A1 (ja) * 2022-08-12 2024-02-15 ホヤ レンズ タイランド リミテッド 眼鏡レンズの決定方法、および、眼鏡レンズの決定支援システム

Also Published As

Publication number Publication date
CN113325607A (zh) 2021-08-31
EP3550356A4 (en) 2020-08-12
KR20190068624A (ko) 2019-06-18
JPWO2018101015A1 (ja) 2019-10-17
US11428953B2 (en) 2022-08-30
CA3044515C (en) 2021-08-03
KR102280371B1 (ko) 2021-07-21
JP6994468B2 (ja) 2022-01-14
CN110050225A (zh) 2019-07-23
US20190271859A1 (en) 2019-09-05
CA3044515A1 (en) 2018-06-07
EP3550356A1 (en) 2019-10-09

Similar Documents

Publication Publication Date Title
WO2018101015A1 (ja) 眼鏡レンズの設計方法、眼鏡レンズの製造方法、眼鏡レンズ発注装置、眼鏡レンズ受注装置、眼鏡レンズ受発注システム、累進屈折力レンズ、単焦点レンズ
ES2577860B2 (es) Determinación computerizada de refracción y astigmatismo
CN110573061B (zh) 眼科检查方法及仪器
KR101848526B1 (ko) 사용자의 시각적인 장애를 보상하기 위해 디스플레이를 렌더링하는 시스템 및 방법
EP1158338A2 (en) Method for simulating an ocular optical system and apparatus therefor
US11754856B2 (en) Method for designing eyeglass lens, method for manufacturing eyeglass lens, eyeglass lens, eyeglass lens ordering device, eyeglass lens order receiving device, and eyeglass lens ordering and order receiving system
US20220350162A1 (en) Sensitivity evaluation method, ophthalmic lens design method, ophthalmic lens manufacturing method, ophthalmic lens, ophthalmic lens ordering device, ophthalmic lens order receiving device, and ophthalmic lens order receiving/ordering system
JP7434353B2 (ja) 視覚タスクのための視覚機器の性能を評価する装置及び方法
CN107924229A (zh) 一种虚拟现实设备中的图像处理方法和装置
KR20210152176A (ko) 맞춤형 아이웨어 제작 방법 및 장치
JP6220627B2 (ja) 計測方法、眼鏡レンズ選択方法、眼鏡レンズ設計方法、眼鏡レンズ製造方法および計測装置
Schulz et al. A framework for pervasive visual deficiency simulation
Hosp et al. Simulation Tool for Optical Systems: Evaluating and Optimizing Autofocals and Beyond
Perches et al. Development of a subjective refraction simulator
TW202339661A (zh) 折射度數決定方法
JP2024004042A (ja) シミュレーション装置、データ送信装置、モデル生成装置、事前データ生成装置、画像生成装置、シミュレーション方法、及びシミュレーションプログラム
KR20230142457A (ko) 시각 장비를 자동 평가하기 위한 장치 및 방법
JP2021162678A (ja) 眼鏡レンズの評価装置
ES2652164A2 (es) Método para determinar una distancia pupilar de una persona

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17876641

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018553747

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3044515

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20197015372

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017876641

Country of ref document: EP

Effective date: 20190701