WO2018100831A1 - Ignition plug - Google Patents

Ignition plug Download PDF

Info

Publication number
WO2018100831A1
WO2018100831A1 PCT/JP2017/032600 JP2017032600W WO2018100831A1 WO 2018100831 A1 WO2018100831 A1 WO 2018100831A1 JP 2017032600 W JP2017032600 W JP 2017032600W WO 2018100831 A1 WO2018100831 A1 WO 2018100831A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
electrode
ground electrode
spark plug
area
Prior art date
Application number
PCT/JP2017/032600
Other languages
French (fr)
Japanese (ja)
Inventor
和樹 伊藤
柴田 勉
大典 角力山
健介 藤野
Original Assignee
日本特殊陶業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本特殊陶業株式会社 filed Critical 日本特殊陶業株式会社
Publication of WO2018100831A1 publication Critical patent/WO2018100831A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • H01T13/39Selection of materials for electrodes

Definitions

  • This specification relates to a spark plug for igniting fuel gas in an internal combustion engine or the like.
  • An ignition plug used in an internal combustion engine for example, generates a spark discharge in a gap formed between a center electrode and a ground electrode, and ignites fuel gas in the internal combustion engine or the like.
  • These electrodes preferably have all of strength, oxidation resistance, and spark wear resistance.
  • improvement in strength contributes to improvement in ignition performance of the spark plug by reducing the diameter of the electrode
  • improvement in oxidation resistance and spark wear resistance contributes to improvement in durability of the ignition plug.
  • various electrode materials have been proposed in order to improve these characteristics.
  • Patent Document 1 discloses nickel (Ni) containing, as an electrode material, at least one element of titanium (Ti), vanadium (V), and niobium (Nb), a rare earth element, and manganese (Mn). Alloys have been proposed. According to this alloy, high thermal conductivity and strength can be maintained.
  • Patent Document 2 proposes a Ni alloy containing silicon (Si), aluminum (Al), and rare earth elements (for example, Y, Nd, Sm) as electrode materials. According to this alloy, both high-temperature oxidation resistance and spark wear resistance can be achieved.
  • the spark plug is required to have further improvement in strength, oxidation resistance, and spark consumption resistance.
  • This specification discloses a new technology capable of improving the strength, oxidation resistance, and spark consumption resistance of the electrode of the spark plug.
  • the Ni alloy contains 1% by mass or more in total of one or more elements selected from the group consisting of aluminum (Al), chromium (Cr), silicon (Si), and manganese (Mn).
  • the electrode in a cross section in which the portion formed of the Ni alloy is cut perpendicularly to the longitudinal direction of the electrode in the vicinity of the gap, The ratio of the area occupied by the precipitate containing Ag to the area of the measurement area of 80 ⁇ m ⁇ 80 ⁇ m starting from a point with a distance of 100 ⁇ m in the depth direction from the surface of the electrode and ending with a point of 180 ⁇ m is 0.1% That's it,
  • the spark plug, wherein the Ni alloy has an average particle size of 250 ⁇ m or less.
  • the strength, oxidation resistance, and spark consumption resistance of the spark plug electrode can be improved.
  • the spark wear resistance of the electrode can be further improved.
  • the spark plug according to Application Example 1 or 2 The Ni alloy is a spark plug including 85% by weight or more of Ni.
  • the spark wear resistance of the electrode can be further improved.
  • the electrode strength and spark wear resistance can be further improved.
  • the spark wear resistance of the electrode in a high temperature environment can be improved.
  • the present invention can be realized in various modes.
  • an ignition plug and an ignition device using the ignition plug an internal combustion engine equipped with the ignition plug, and an ignition device using the ignition plug are provided. It can be realized in the form of an internal combustion engine to be mounted, an electrode of a spark plug, an alloy for an electrode of the spark plug, or the like.
  • FIG. 2 is an enlarged cross-sectional view of the vicinity of a tip of a spark plug 100.
  • FIG. FIG. 3 is a diagram showing a cross-section CS that cuts the ground electrode 30 in the vicinity of a gap G perpendicular to the longitudinal direction of the ground electrode 30.
  • FIG. 2 is a Ni—Ag binary phase diagram. It is explanatory drawing of the measuring method of average particle diameter Rave. It is a figure which shows the cross section CS2 which cut
  • FIG. It is a figure which shows the cross section CS of the ground electrode 30b of a modification.
  • FIG. 1 is a sectional view of an example of a spark plug of an embodiment.
  • the dotted line shown in the figure indicates the axis CO of the spark plug 100.
  • the illustrated cross section is a cross section including the axis CO.
  • a direction parallel to the axis CO is also referred to as an “axis direction”.
  • the lower direction in FIG. 1 is referred to as a front end direction LD
  • the upper direction is also referred to as a rear end direction BD.
  • the tip direction LD is a direction from the terminal fitting 40 described later toward the electrodes 20 and 30.
  • radial direction of a circle centered on the axis CO and located on a plane perpendicular to the axis CO is simply referred to as “radial direction”, and the circumferential direction of the circle is also simply referred to as “circumferential direction”.
  • An end in the front end direction LD is also simply referred to as a front end
  • an end in the rear end direction BD is also simply referred to as a rear end.
  • the spark plug 100 includes an insulator 10, a center electrode 20, a ground electrode 30, a terminal fitting 40, a metal shell 50, a first conductive seal layer 60, a resistor 70, and a second conductive material.
  • a seal layer 80, a first packing 8, a talc 9, a second packing 6, and a third packing 7 are provided.
  • the insulator 10 is a substantially cylindrical member having an axial hole 12 extending along the axial direction and penetrating the insulator 10.
  • the insulator 10 is formed by firing alumina (other insulating materials can also be used).
  • the insulator 10 is arranged in order from the front end side toward the rear end direction BD, the leg portion 13, the reduced outer diameter portion 15, the first trunk portion 17, the flange portion 19, the second trunk portion 18, have.
  • the outer diameter of the reduced outer diameter portion 15 is gradually reduced toward the distal direction LD.
  • a reduced inner diameter portion 16 whose inner diameter is gradually reduced toward the distal direction LD is formed. Has been.
  • the center electrode 20 is located on the tip side in the shaft hole 12 of the insulator 10.
  • the center electrode 20 is a rod-shaped member extending along the axial direction.
  • the center electrode 20 has a leg portion 25, a flange portion 24, and a head portion 23 that are arranged in order from the front end side toward the rear end direction BD.
  • a portion on the distal end side of the leg portion 25 is exposed outside the shaft hole 12 on the distal end side of the insulator 10.
  • the other part of the center electrode 20 is held in the shaft hole 12.
  • the front end side surface of the flange portion 24 is supported by the reduced inner diameter portion 16 of the insulator 10.
  • the center electrode 20 is formed using, for example, nickel (Ni) or an alloy containing nickel as a main component (for example, NCF600, NCF601).
  • the terminal fitting 40 is located on the rear end side in the shaft hole 12 of the insulator 10.
  • the terminal fitting 40 is a rod-like body extending along the axial direction, and is formed using a conductive material (for example, a metal such as low carbon steel).
  • the terminal fitting 40 includes a leg portion 43, a flange portion 42, and a cap mounting portion 41 that are arranged in order from the front end side toward the rear end direction BD.
  • the leg portion 43 is inserted into the shaft hole 12 of the insulator 10.
  • the cap mounting portion 41 is exposed outside the shaft hole 12 on the rear end side of the insulator 10.
  • the columnar resistor 70 is disposed between the terminal fitting 40 and the center electrode 20 in the shaft hole 12 of the insulator 10.
  • the resistor 70 has a function of reducing radio noise when a spark is generated.
  • the resistor 70 is formed of, for example, a composition including glass particles that are main components, ceramic particles other than glass, and a conductive material.
  • the first conductive seal layer 60 is disposed between the center electrode 20 and the resistor 70, and the second conductive seal layer 80 is disposed between the terminal fitting 40 and the resistor 70.
  • the center electrode 20 and the terminal fitting 40 are electrically connected via the resistor 70 and the conductive seal layers 60 and 80.
  • the conductive seal layers 60 and 80 are formed of a composition containing glass particles such as B 2 O 3 —SiO 2 and metal particles (Cu, Fe, etc.), for example.
  • the metal shell 50 is a substantially cylindrical member having an insertion hole 59 that extends along the axis CO and passes through the metal shell 50.
  • the metal shell 50 is formed using a low carbon steel material (other conductive materials (for example, metal materials) can also be used).
  • the insulator 10 is inserted into the insertion hole 59 of the metal shell 50.
  • the metal shell 50 holds the insulator 10 in a state of being arranged around the insulator 10 in the radial direction.
  • the end portion on the distal end side of the insulator 10 (in this embodiment, the portion on the distal end side of the leg portion 13) is exposed outside the insertion hole 59.
  • the end portion on the rear end side of the insulator 10 (in this embodiment, the portion on the rear end side of the second body portion 18) is exposed outside the insertion hole 59.
  • the metal shell 50 includes a screw part 52, a seat part 54, a deforming part 58, a tool engaging part 51, and a caulking part 53, which are arranged in order from the front end side toward the rear end direction BD. ing.
  • An annular gasket 5 formed by bending a metal plate is fitted between the seat portion 54 and the screw portion 52.
  • the seat part 54 is a bowl-shaped part.
  • the screw portion 52 is a substantially cylindrical portion in which a screw for screwing into a mounting hole of the internal combustion engine is formed on the outer peripheral surface.
  • the metal shell 50 has a reduced inner diameter portion 56 disposed on the tip side of the deformable portion 58.
  • the inner diameter of the reduced inner diameter portion 56 gradually decreases from the rear end side toward the front end direction LD.
  • the first packing 8 is sandwiched between the reduced inner diameter portion 56 of the metal shell 50 and the reduced outer diameter portion 15 of the insulator 10.
  • the first packing 8 is an iron O-ring (other materials (for example, metal materials such as copper) can also be used).
  • the shape of the tool engaging portion 51 is a shape (for example, a hexagonal column) with which the spark plug wrench is engaged.
  • a caulking portion 53 is provided on the rear end side of the tool engaging portion 51.
  • the caulking portion 53 is disposed on the rear end side of the flange portion 19 of the insulator 10 and forms an end on the rear end side of the metal shell 50.
  • the caulking portion 53 is bent toward the inner side in the radial direction.
  • an annular space SP is formed between the inner peripheral surface of the metal shell 50 and the outer peripheral surface of the insulator 10.
  • the space SP is a space surrounded by the crimping portion 53 and the tool engagement portion 51 of the metal shell 50, the rear end portion of the flange portion 19 of the insulator 10, and the second body portion 18. It is.
  • a second packing 6 is disposed on the rear end side in the space SP.
  • a third packing 7 is disposed on the front end side in the space SP. In this embodiment, these packings 6 and 7 are iron C-rings (other materials are also employable). Between the two packings 6 and 7 in the space SP, powder of talc (talc) 9 is filled.
  • the crimping portion 53 is crimped so as to be bent inward. And the crimping part 53 is pressed to the front end side. Thereby, the deformation
  • the first packing 8 is pressed between the reduced outer diameter portion 15 and the reduced inner diameter portion 56, and seals between the metal shell 50 and the insulator 10. As a result, the gas in the combustion chamber of the internal combustion engine is prevented from leaking outside through the metal shell 50 and the insulator 10. In addition, the metal shell 50 is fixed to the insulator 10.
  • the ground electrode 30 is a rod-shaped member that is electrically connected to the metal shell 50.
  • the ground electrode 30 is formed using, for example, an alloy containing nickel (Ni) as a main component. Details of the nickel alloy forming the ground electrode 30 will be described later.
  • FIG. 2 is an enlarged cross-sectional view of the vicinity of the tip of the spark plug 100.
  • the distal end of the insulator 10 (that is, the distal end of the leg portion 13) is located closer to the distal end side than the distal end of the metal shell 50.
  • the tip of the center electrode 20 is located on the tip side of the insulator 10.
  • connection end 31 connected to the tip of the metal shell 50 by, for example, resistance welding so that the ground electrode 30 and the metal shell 50 are electrically connected.
  • the other end of the ground electrode 30 is a free end 32.
  • connection portion 33 which is a portion on the connection end 31 side connected to the metal shell 50, extends in parallel with the axis CO.
  • a free end portion 34 that is a portion on the free end 32 side extends perpendicular to the axis CO.
  • a curved portion 35 which is a portion between the connecting portion 33 and the free end portion 34, is bent by about 90 degrees.
  • the side surface 341 on the rear end side includes a second discharge surface 39 that faces the first discharge surface 29 that is the front end surface of the center electrode 20 in the axial direction.
  • the first discharge surface 29 of the center electrode 20 and the second discharge surface 39 of the ground electrode 30 form a gap G (also referred to as a spark gap) where spark discharge occurs.
  • the spark plug 100 of the present embodiment does not include a noble metal tip made of a noble metal such as iridium or palladium or an alloy containing the noble metal in a portion where the gap G of the ground electrode 30 is formed.
  • a noble metal tip made of a noble metal such as iridium or palladium or an alloy containing the noble metal in a portion where the gap G of the ground electrode 30 is formed.
  • FIG. 3 is a view showing a cross-section CS of the ground electrode 30 cut in the vicinity of the gap G in a direction perpendicular to the longitudinal direction of the ground electrode 30.
  • This cross section CS is a cross section passing through the second discharge surface 39, and is an AA cross section including the axis CO in the example of FIG.
  • the cross section CS has a substantially rectangular shape.
  • 3 is an enlarged view of the area SA in the vicinity of the surface in the upper cross section of FIG.
  • a material for forming ground electrode 30 will be described.
  • the cross-sectional area perpendicular to the longitudinal direction of the ground electrode 30 is smaller, the energy loss due to the action (extinguishing action) of absorbing the thermal energy of the spark or the combustion gas flame by the ground electrode 30 becomes smaller.
  • the ground electrode 30 is the most protruding portion in the combustion chamber, it is exposed to high-temperature combustion gas. For this reason, the material forming the ground electrode 30 is required to have high oxidation resistance from the viewpoint of ensuring the life of the spark plug 100. If the oxidation resistance is low, the oxidation consumption increases, and it becomes difficult to reduce the cross-sectional area perpendicular to the longitudinal direction of the ground electrode 30, so that the oxidation resistance is preferably high from the viewpoint of ignition performance.
  • the spark plug 100 of the present embodiment does not use a noble metal tip in the portion where the gap G is formed.
  • the material for forming the ground electrode 30 is required to have resistance to consumption due to the energy of spark discharge (spark wear resistance) from the viewpoint of ensuring the life of the spark plug 100. If the spark wear resistance is low, the wear due to the spark is increased, and it is difficult to reduce the cross-sectional area perpendicular to the longitudinal direction of the ground electrode 30, so that the spark wear resistance is also high from the viewpoint of ignition performance. Is preferred.
  • the temperature in the combustion chamber of the internal combustion engine has been further increased, and the spark plug 100 has been reduced in size.
  • the material forming 30 is required to have higher levels of oxidation resistance, spark wear resistance, and strength. For this reason, in this embodiment, in order to improve the oxidation resistance, spark wear resistance, and strength of the ground electrode 30, the material forming the ground electrode 30 is devised. This will be described in detail below.
  • the material of the ground electrode 30 is an alloy containing nickel (Ni) as a main component (hereinafter also simply referred to as Ni alloy). This Ni alloy (that is, the ground electrode 30 of the present embodiment) satisfies the following (1) to (5).
  • the Ni alloy contains 50% by weight or more of Ni.
  • the Ni alloy is a total of at least one element selected from the group consisting of aluminum (Al), chromium (Cr), silicon (Si), and manganese (Mn) as an additive. 1% by mass or more.
  • the Ni alloy further contains silver (Ag), and the ratio of the area occupied by the silver precipitate OP to the area of the measurement region MA (FIG. 2) in the cross-section CS (hereinafter also referred to as the surface vicinity area ratio SR) is , 0.1% or more.
  • the average particle diameter Rave (average particle diameter of the base material MP) of the Ni alloy is 250 ⁇ m or less.
  • the ratio of the area where Ni is exposed hereinafter also referred to as Ni exposure rate NR) is 50% or more.
  • a Ni alloy containing 50% by weight or more of Ni has a higher melting point and superior oxidation resistance compared to, for example, an alloy containing 50% by weight or more of iron (Fe).
  • Fe iron
  • the oxidation resistance of the base alloy is insufficient, so even if the additives described later are controlled, sufficient oxidation resistance cannot be obtained.
  • the Ni alloy when the proportion of Ni is reduced, the proportion of other elements is relatively increased and the thermal conductivity is lowered, so that the ground electrode 30 is likely to become high temperature. As a result, in the Ni alloy, when the Ni content is reduced, the spark wear resistance of the ground electrode 30 is reduced.
  • the Ni alloy of the present embodiment satisfies the above (1), the oxidation resistance and the spark wear resistance of the ground electrode 30 can be improved.
  • One or more additional elements selected from the group consisting of Al, Cr, Si, and Mn are oxides (for example, Al 2 O 3 , Cr 2 O 3 , SiO 2 , MnO 2 ) and Ni alloys. Therefore, the oxidation resistance of the Ni alloy can be improved.
  • the Ni alloy of the present embodiment satisfies the above (2), the oxidation resistance of the ground electrode 30 can be improved.
  • the Ni alloy (ground electrode 30) of the present embodiment includes a base material MP and silver precipitates OP that are dispersed and arranged inside the base material MP.
  • the silver precipitate OP is a precipitate containing silver (Ag) as a main component (for example, containing 98% by weight or more of Ag).
  • the silver precipitate OP is precipitated at the grain boundaries of the crystal grains of the base material MP (not shown).
  • the measurement area MA is a rectangular area of 80 ⁇ m ⁇ 80 ⁇ m starting from a point where the distance in the depth direction from the surface of the ground electrode 30 is 100 ⁇ m and ending at a point of 180 ⁇ m.
  • FIG. 3 the measurement area MA is a rectangular area of 80 ⁇ m ⁇ 80 ⁇ m starting from a point where the distance in the depth direction from the surface of the ground electrode 30 is 100 ⁇ m and ending at a point of 180 ⁇ m.
  • the measurement area MA is a rectangular area whose width in the direction parallel to the nearest surface SF is 80 ⁇ m and whose width in the direction perpendicular to the surface SF is 80 ⁇ m.
  • the distance between the side NE close to the surface SF and the surface SF among the two sides parallel to the surface SF of the measurement region MA is 100 ⁇ m.
  • the distance between the side FE far from the surface SF and the surface SF is 180 ⁇ m.
  • FIG. 4 is a Ni-Ag binary system phase diagram. As can be seen from this phase diagram, the solid solution amount of Ag in Ni is very small. Therefore, when a certain amount (for example, 0.1 wt% or more) of Ag is added to the Ni alloy, silver is contained in the base material MP. A precipitate OP is deposited.
  • the Ag content (solid solution amount) of the base material MP is very small. Therefore, the decrease in the thermal conductivity of the base material MP due to the addition of Ag is a solid solution in Ni. It is smaller than the case of adding an element that is easy to do. Similarly, the lowering of the melting point of the base material MP due to the addition of Ag is smaller than that in the case of adding an element that easily dissolves in Ni. Therefore, the decrease in the spark wear resistance of the base material MP due to the addition of Ag is very small.
  • Ag has higher thermal conductivity than Ni. Further, as can be seen from the phase diagram of FIG. 4, since the solid solution amount of Ni with respect to Ag is extremely small, it is considered that the purity of Ag in the silver precipitate OP is high. From this, it is considered that the thermal conductivity of the silver precipitate OP is very good. For this reason, since the silver precipitate OP improves the overall thermal conductivity of the Ni alloy, it is possible to suppress an increase in the temperature of the Ni alloy and to improve the spark wear resistance of the Ni alloy.
  • the presence of the silver precipitate OP improves the thermal conductivity in the vicinity of the surface of the ground electrode 30, and in turn, the spark wear resistance of the ground electrode 30. Can be improved.
  • precipitation strengthening by precipitates is significantly greater in the degree to which the material is strengthened than solid solution strengthening by solid additives.
  • the silver precipitate OP significantly improves the strength of the Ni alloy.
  • Most of the breakage of the ground electrode 30 caused by insufficient strength is due to fatigue failure due to the impact received in the combustion chamber of the internal combustion engine. Fatigue failure occurs when cracks generated on the surface of the ground electrode 30 propagate inside. For this reason, it is important to improve the strength in the vicinity of the surface of the ground electrode 30 (that is, the surface of the Ni alloy).
  • the strength in the vicinity of the surface of the ground electrode 30 can be improved by the presence of the silver precipitate OP.
  • the spark wear resistance of the ground electrode 30 can be improved.
  • the strength, oxidation resistance, and spark consumption resistance of the ground electrode 30 of the spark plug 100 are improved. be able to.
  • the oxidation resistance can be improved by increasing the additive elements (for example, Al, Cr, Si, and Mn described above) that form the oxide film. It is difficult to improve.
  • the oxide film and the Ni alloy main body are bonded with an intermolecular force having a weaker binding force than an intermetallic bond or a covalent bond.
  • the oxide film is relatively easily separated from the Ni alloy body by the impact of spark discharge. Therefore, in order to improve the spark wear resistance, it is effective to suppress the decrease in the melting point and the decrease in the thermal conductivity by suppressing the amount of the additive element and increasing the Ni content.
  • the Ni alloy of the present embodiment preferably contains 85% by weight or more of Ni. By so doing, the spark wear resistance of the ground electrode 30 can be further improved.
  • the temperature increase of the ground electrode 30 can be suppressed when the thermal conductivity is higher not only in the vicinity of the surface of the ground electrode 30 but also inside the ground electrode 30, the spark wear resistance of the ground electrode 30 is improved.
  • the strength of the entire ground electrode 30 can be improved when the strength of the interior of the ground electrode 30 is higher.
  • the ratio of the area occupied by the silver precipitate OP to the entire area of the cross-section CS (hereinafter also referred to as the overall area ratio AR) is preferably 0.1% or more. . In this way, the strength and spark wear resistance of the ground electrode 30 can be improved.
  • the temperature in the combustion chamber becomes a high temperature of 900 degrees Celsius or higher at a high rotation speed, so that if the structure in the ground electrode 30 changes at a high temperature, the strength and spark wear resistance of the ground electrode 30 may be reduced.
  • the strength and spark wear resistance of the ground electrode 30 may decrease.
  • the entire area of the silver precipitate OP in a state after a treatment hereinafter also referred to as a high-temperature holding treatment
  • the rate AR is preferably 0.1% or more
  • the average particle size Rave of the Ni alloy is preferably 250 ⁇ m or less. In this way, the spark wear resistance of the ground electrode 30 in a high temperature environment can be improved.
  • the ground electrode 30 is manufactured through a melting process, a cooling process, and a processing process.
  • a molten alloy having a desired component composition is prepared using a normal vacuum melting furnace.
  • an ingot is obtained by cooling the molten metal in a vacuum melting furnace.
  • the processing step the ingot is processed into a bar having a predetermined diameter (for example, 1.6 mm) by, for example, hot forging.
  • a wire having a predetermined cross-sectional dimension for example, a rectangle of 1.5 mm ⁇ 2.8 mm
  • the ground electrode 30 is obtained by cutting the wire into a predetermined length (for example, 10 mm).
  • the obtained ground electrode 30 is joined at one end to the tip of the metal shell 50 and then bent. Thereby, the ground electrode 30 is completed.
  • the amount of the silver precipitate OP and the adjustment of the average particle diameter Rave of the Ni alloy are adjusted by, for example, the composition of the Ni alloy prepared in the melting step, the conditions of the heat treatment in the melting step and the cooling step (retention temperature and This is realized by devising the processing conditions (processing rate, processing temperature, etc.) in the processing process.
  • the amount of the silver precipitate OP can be increased. Therefore, the surface area ratio SR and the overall area ratio AR of the silver precipitate OP are increased. Can be made. Further, under the heat treatment conditions, the amount of silver precipitate OP can be increased as the cooling rate is increased and the heat treatment time is increased.
  • the average particle size Rave of the Ni alloy can be reduced as the amount of impurities that do not affect the performance is increased. In addition, the average particle size Rave of the Ni alloy can be reduced as the heat treatment temperature is lowered under the heat treatment conditions. Further, in the processing conditions, the average particle size Rave of the Ni alloy can be reduced as the processing rate is increased.
  • suppressing an excessive decrease in the amount of the silver precipitate OP is realized by, for example, increasing the Ag content in advance in the composition of the Ni alloy, for example. be able to. For example, if the Ag content in the entire Ni alloy is 1% by weight or more, the overall area ratio AR of the silver precipitate OP can be maintained at 0.1% or more even after the high temperature holding treatment.
  • suppressing an excessive increase in the average particle size Rave of the Ni alloy in the state after the high temperature holding treatment is realized by, for example, reducing the average particle size Rave of the Ni alloy before the high temperature holding treatment. can do.
  • Screw diameter of metal shell 50 M14 Length from the metal shell 50 tip to the insulator 10 tip: 2 mm Length from the metal shell 50 tip to the center electrode 20 tip: 3 mm Diameter of center electrode 20 tip (diameter of first discharge surface 29): 0.6 mm
  • Dimension of cross section of ground electrode 30 before bending 1.5 mm ⁇ 2.8 mm Length in the longitudinal direction of the ground electrode 30 before bending: 10 mm Length of gap G (distance between first discharge surface 29 and second discharge surface 39): 0.85 mm
  • the materials forming the ground electrode 30 are different from each other.
  • the Ni alloy used for the ground electrode 30 of these samples has a composition and an area ratio of the silver precipitate OP before the high temperature holding treatment (surface area ratio SR and total area ratio AR). ), The overall area ratio AR of the silver precipitate OP after the high temperature holding treatment, the Ni exposure rate NR, and the average particle size Rave of the Ni alloy are different.
  • the alloy used for the ground electrode 30 of each type of sample is composed of the elements shown in Table 1 (Ni, Ag, Si, Cr, Al, Mn, etc.) and the contents shown in Table 1 (unit: wt%). Contains only. In the sample 16, “other” elements are 4% by weight of Fe, the remaining B, Mo, V, W, Co, Ti, C, and inevitable impurities. In Samples 6 to 10 and 17 to 23, 8 wt% Fe and the remaining B, Mo, V, W, Co, Ti, C, and unavoidable impurities. In Samples 5, 11 to 13, and 15, 16% by weight of Fe and the remaining B, Mo, V, W, Co, Ti, C, and unavoidable impurities.
  • sample 14 40 wt% Fe and the remaining B, Mo, V, W, Co, Ti, C, and inevitable impurities. In samples 1 to 4, 45% by weight of Fe and the remaining B, Mo, V, W, Co, Ti, C, and unavoidable impurities.
  • the content rate of the component of the ground electrode 30 of each sample is the high frequency inductively coupled plasma (ICP) emission spectroscopic analysis method for the portion of the ground electrode 30 that is 3 mm away from the metal shell 50 and the tip surface. was measured.
  • ICP inductively coupled plasma
  • the total content of Si, Cr, Al, and Mn in each sample is 0%, 0.9%, 1%, 2%, 3%, 4%, 9%, 28%, 29%, 30% , 32%, or 33%.
  • Table 2 shows, for each sample, the surface vicinity area ratio SR and the total area ratio AR before the high-temperature holding treatment, and the total area ratio AR after the high-temperature holding treatment.
  • the surface vicinity area ratio SR was measured as follows. First, a silver deposit OP in the measurement area MA is detected by taking a mapping image of the Ag component in the measurement area MA (FIG. 3) of the cross section CS of FIG. 3 of the ground electrode 30 of each sample. It was. The mapping image is captured using FE-EPMA (Field Emission-Electron Probe Micro-Analysis), specifically, WDS (Wavelength Dispersive X-ray Spectrometer) attached to JXA-8500F manufactured by JEOL Ltd. It was.
  • FE-EPMA Field Emission-Electron Probe Micro-Analysis
  • WDS Widelength Dispersive X-ray Spectrometer
  • the mapping image was taken at an acceleration voltage of 20 KV and a count of 150,000 or more. Then, using the mapping image of the Ag component, the area of the silver precipitate OP with respect to the area of the measurement region MA was calculated as the surface vicinity area ratio SR.
  • the total area ratio AR was measured by performing the same analysis using a 80 ⁇ m ⁇ 80 ⁇ m rectangular region (not shown) in the vicinity of the center of the cross section CS in FIG. 3 as a measurement region.
  • the surface area ratio SR before high temperature treatment of each sample is any of 0.05%, 0.06%, 0.07%, 0.08%, 0.09%, 0.10%, 0.20%. It was.
  • the total area ratio AR of each sample before high temperature treatment is 0.05%, 0.06%, 0.07%, 0.08%, 0.09%, 0.10%, 0.11%,. It was either 12%, 0.13%, or 0.15%.
  • the total area ratio AR of each sample after high temperature treatment is either 0.05%, 0.06%, 0.07%, 0.08%, 0.09%, 0.10%, or 0.12% Met.
  • Table 2 shows the Ni exposure rate NR of the second discharge surface 39 of each sample.
  • the Ni exposure rate NR was measured as follows. Using the 200 ⁇ m ⁇ 200 ⁇ m rectangular area (not shown) in the vicinity of the center of the second discharge surface 39 of the ground electrode 30 as a measurement area, the above-described Ni component mapping image using the FE-EPMA was taken. The mapping image was taken at an acceleration voltage of 20 KV and a count of 150,000 or more. Then, using the Ni component mapping image, the area of the portion where Ni was detected relative to the area of the measurement region was calculated as the Ni exposure rate NR.
  • the Ni exposure rate NR of each sample was 40%, 45%, 50%, 55%, or 80%.
  • FIG. 5 is an explanatory diagram of a method for measuring the average particle size Rave.
  • a cross section having the same shape as the cross section CS of FIG. 3
  • a cross section cut perpendicularly to the longitudinal direction is polished at a position 2 mm away from the free end 32 of the ground electrode 30 of each sample to obtain a mirror surface.
  • an enlarged photograph of the mirror surface is taken using a metal microscope.
  • a rectangular area SMA FIG.
  • a vertical line L1 and a horizontal line L2 that divide the rectangular area SMA into a grid of 0.2 mm ⁇ 0.2 mm are set (FIG. 5).
  • the vertical lines L1 are arranged at intervals of 0.2 mm.
  • the number of vertical lines L1 is 6, including the lines forming the outer frame of the rectangular area SMA.
  • the horizontal line L2 is six lines arranged at intervals of 0.2 mm. For each of these 12 lines L1 and L2, the number of intersections between the line and the grain boundary of the crystal grain of the base material MP of the Ni alloy is counted. The total number of intersections of each line is Mc.
  • the average particle size Rave before the high temperature holding treatment of each sample was any of 200 ⁇ m, 250 ⁇ m, and 260 ⁇ m.
  • the average particle size Rave after the high temperature holding treatment of each sample was either 250 ⁇ m or 260 ⁇ m.
  • These samples 1 to 23 were produced by the above-described manufacturing method, and were produced by changing at least one of the above-described Ni alloy composition, heat treatment conditions, and processing conditions for each sample.
  • a test in a low temperature range (a temperature range of about 700 degrees Celsius) and a test in a high temperature range (a temperature range of about 900 degrees Celsius) were performed.
  • the actual machine operation was performed for 200 hours, and the amount of increase in the gap G (spark gap) of each sample after the actual machine operation was measured.
  • the actual operation was carried out under the conditions of 4 cylinders, a displacement of 1.3 L, each sample attached to a naturally aspirated gasoline engine, full throttle (WOT (Wide-Open Throttle)), and a rotational speed of 3000 rpm.
  • WOT Wide-Open Throttle
  • the rotation speed was set to 5000 rpm, and the other conditions were the same as the low temperature region test.
  • the evaluation of the sample having an increase in the gap G of 0.3 mm or more is “D”, and the evaluation of the sample of 0.2 mm or more and less than 0.3 mm is “C”, and the evaluation is 0.1 mm or more and less than 0.2 mm.
  • the evaluation of the sample was “B”, and the evaluation of the sample that was less than 0.1 mm was “A”.
  • test temperature was set to 900 degrees Celsius, and the other conditions were the same as the low temperature range test.
  • the evaluation of the sample fractured in the test with a stress amplitude of 100 MP is “C”
  • the evaluation of the sample that is not broken in the test with the stress amplitude of 100 MP and the fracture with the test of the stress amplitude of 150 MP is “B”
  • the stress amplitude is The evaluation of the sample that did not break in the 150 MP test was designated as “A”.
  • Samples 1 to 12 are samples for comparison, and do not satisfy at least one of the above (1) to (5) that the above embodiment satisfies. Samples 13 to 23 satisfy at least all of the above (1) to (5).
  • Samples 1 to 10 do not satisfy at least one of the above (1), (3), and (5).
  • Samples 1 to 4 do not satisfy any of (1), (3), and (5).
  • Samples 5 and 6 satisfy (1) but do not satisfy (3) and (5).
  • Samples 7 and 8 satisfy (1) and (3), but do not satisfy (5).
  • Samples 9 and 10 satisfy (1) and (5), but do not satisfy (3).
  • samples 13 to 23 that satisfy all of the above (1) to (5) will be further described.
  • the evaluation of the spark wear resistance of samples 13 to 15 having a Ni content of less than 85% by weight was “C” in both the high temperature range and the low temperature range.
  • the evaluation of the spark wear resistance of Samples 16 to 23 having a Ni content of 85% by weight or more was “B” or more in both the high temperature range and the low temperature range. From this result, it was confirmed that the Ni alloy forming the ground electrode 30 can further improve the spark wear resistance of the ground electrode 30 by containing 85 wt% or more of Ni.
  • the low area of the samples 16 and 17 in which the total area ratio AR of the silver precipitate OP before the high temperature holding treatment is less than 0.10% The evaluation of the spark wear resistance and strength was “B”.
  • the average particle diameter Rave of the Ni alloy after the high temperature holding treatment exceeds 250 ⁇ m, or the total area ratio AR of the silver precipitate OP after the high temperature holding treatment is 0.10.
  • the average particle size Rave of the Ni alloy after the high temperature holding treatment is 250 ⁇ m or less, and the total area ratio AR of the silver precipitate OP after the high temperature holding treatment is 0.
  • the evaluation of the strength of the samples 22 and 23 at 10% or higher in the high temperature range was “A”.
  • the average particle size Rave of the Ni alloy after the high temperature holding treatment is 250 ⁇ m or less, and the total area ratio AR of the silver precipitate OP after the high temperature holding treatment is 0.10%.
  • the strength of the ground electrode 30 in the high temperature range could be further improved.
  • the material of the ground electrode 30 of the first embodiment can also be used as the material of the center electrode 20.
  • This example will be described as a second embodiment.
  • the configuration excluding the material of the center electrode 20 of the second embodiment is the same as the configuration of the spark plug 100 of the first example shown in FIGS.
  • FIG. 6 is a view showing a cross-section CS2 that cuts the center electrode 20 of the second embodiment in the vicinity of the gap G in a direction perpendicular to the longitudinal direction of the center electrode 20.
  • This section CS2 is a section taken along line BB in FIG.
  • the cross section CS2 is a cross section parallel to the first discharge surface 29 and having a distance ⁇ H with respect to the first discharge surface 29 of 0.3 mm or less.
  • the cross section CS has a circular shape. 6 shows an enlarged view of the area SAb in the vicinity of the surface in the upper cross section of FIG.
  • the material of the center electrode 20 satisfies the above (1) to (5) that the ground electrode 30 of the first embodiment satisfies.
  • the strength, oxidation resistance, and spark consumption resistance of the center electrode 20 of the spark plug can be improved.
  • the Ni alloy forming the center electrode 20 preferably contains 85% by weight or more of Ni.
  • the total area ratio AR of the silver precipitate OP is preferably 0.1% or more.
  • the total area ratio AR of the silver precipitate OP is preferably 0.1% or more, and the average particle size Rave of the Ni alloy is preferably 250 ⁇ m or less.
  • the surface vicinity area ratio SR and the overall area ratio AR measured in the cross section CS of FIG. 3 in the first embodiment are measured in the cross section CS2 of FIG.
  • the measurement area MAb of the near-surface area ratio SR of the second embodiment has a point (100 in FIG. 6) having a distance in the depth direction from the surface (side surface) of the center electrode 20 as shown in FIG. This is a rectangular region of 80 ⁇ m ⁇ 80 ⁇ m starting from a point P2) and ending at a point of 180 ⁇ m (point P1 in FIG. 6).
  • the start point P2 is a point on the straight line L1 passing through the center of the cross section CS2 (the position of the axis CO in FIG. 6), and the intersection point P3 of the line L1 and the surface of the central electrode 20 The distance is 100 ⁇ m.
  • the end point P1 is a point on the line L1, and is a point whose distance from the point P2 is 80 ⁇ m and whose distance from the point P3 is 180 ⁇ m.
  • Two of the four sides of the measurement region MAb are parallel to the line L1, and the other two sides are perpendicular to the line L1.
  • the overall area ratio AR is the ratio of the area occupied by the silver precipitate OP to the entire area of the cross section CS2 in FIG.
  • FIG. 7 is a diagram illustrating a cross-section CS of the ground electrode 30b according to the modification.
  • the ground electrode 30b of the modified example has a two-layer structure including an outer portion 301 formed of a Ni alloy and a core portion 302 formed of a material having higher thermal conductivity than a Ni alloy such as copper. .
  • the center electrode 20 of the second embodiment may also have a two-layer structure including an outer portion formed of a Ni alloy and a core portion formed of a material having high thermal conductivity. Also in this case, it is only necessary that the outer portion made of the Ni alloy satisfies the above (1) to (5).
  • the ground electrode 30 of the first embodiment satisfies the above (1) to (5) as described above.
  • the Ni exposure rate NR of the second discharge surface 39 in (5) satisfies that it is 50% or more, for example, when actual operation or the like is performed before the ignition plug is shipped. Is heated in the actual operation, thereby forming an oxide film of Al, Cr, Si, Mn or the like on the surface of the ground electrode 30.
  • the above (5) is not satisfied, but the strength, spark wear resistance, and strength of the ground electrode 30 are equivalent to those of the spark plug of the first embodiment.
  • the above (5) may not be satisfied.
  • the specific configuration of the spark plug 100 of FIGS. 1 and 2 is an example, and other configurations may be employed.
  • various configurations can be adopted as the configuration of the ignition portion of the spark plug.
  • the spark plug may be a spark plug of a type in which the ground electrode 30 and the center electrode 20 face each other in a direction perpendicular to the axis to form a gap.
  • a spark plug of a type that includes a plurality of ground electrodes 30 and one center electrode 20 and that has a plurality of gaps may be used.
  • the material of the insulator 10 and the material of the terminal fitting 40 are not limited to the above-described materials.
  • the insulator 10 is composed of other compounds (for example, AlN, ZrO 2 , SiC, TiO 2 , Y 2 O 3, etc.) as the main component instead of ceramics whose main component is alumina (Al 2 O 3 ). It may be formed using ceramics.
  • Metal fitting 51 ... Tool engagement part, 52 ... Screw part, 53 ... Clamping part, 54 ... Seat part, 56 ... Reduced inner diameter portion, 58 ... Deformed portion, 59 ... Insertion hole, 60 ... First conductive seal layer, 70 ... Resistor, 80 ... Second conductivity Seal layer, 100 ... Spark plug, MP ... Base material, OP ... Silver deposit, R ... total area ratio, SR ... near the surface area ratio

Abstract

The strength, the oxidation resistance, and the spark wear resistance of an electrode of this ignition plug are improved. A center electrode and/or a ground electrode of the ignition plug is formed using a nickel (Ni) alloy containing 50% or more by weight of Ni. The Ni alloy contains 1% or more by mass, in total, of one or more elements selected from the group consisting of Al, Cr, Si, and Mn, and contains Ag. In a cross section obtained by cutting, near a gap, a Ni-alloy made portion of the electrode in a direction perpendicular to the longitudinal direction of the electrode: the percentage of an area occupied by a precipitate containing Ag is at least 0.1% with respect to the area of a 80 µm × 80 µm measurement region having a start point at 100 µm and an end point at 180 µm in the depth direction from a surface of the electrode; and the average grain diameter of the Ni alloy is 250 µm or less.

Description

点火プラグSpark plug
 本明細書は、内燃機関等において燃料ガスに点火するための点火プラグに関する。 This specification relates to a spark plug for igniting fuel gas in an internal combustion engine or the like.
 内燃機関に用いられる点火プラグは、例えば、中心電極と接地電極との間に形成される間隙に火花放電を発生させて、内燃機関等において燃料ガスに点火する。これらの電極は、強度と、耐酸化性と、耐火花消耗性と、の全てを兼ね備えることが好ましい。例えば、強度の向上は、電極の小径化による点火プラグの着火性能の向上に貢献し、耐酸化性および耐火花消耗性の向上は、点火プラグの耐久性の向上に貢献する。このために、これらの特性を改善すべく、様々な電極用の材料が提案されている。 An ignition plug used in an internal combustion engine, for example, generates a spark discharge in a gap formed between a center electrode and a ground electrode, and ignites fuel gas in the internal combustion engine or the like. These electrodes preferably have all of strength, oxidation resistance, and spark wear resistance. For example, improvement in strength contributes to improvement in ignition performance of the spark plug by reducing the diameter of the electrode, and improvement in oxidation resistance and spark wear resistance contributes to improvement in durability of the ignition plug. For this reason, various electrode materials have been proposed in order to improve these characteristics.
 例えば、特許文献1には、電極材料として、チタン(Ti)とバナジウム(V)とニオブ(Nb)の少なくとも1種の元素と、希土類元素と、マンガン(Mn)と、を含むニッケル(Ni)合金が提案されている。この合金によれば、高い熱伝導性と、強度と、を維持できる、とされている。 For example, Patent Document 1 discloses nickel (Ni) containing, as an electrode material, at least one element of titanium (Ti), vanadium (V), and niobium (Nb), a rare earth element, and manganese (Mn). Alloys have been proposed. According to this alloy, high thermal conductivity and strength can be maintained.
 また、特許文献2には、電極材料として、シリコン(Si)と、アルミニウム(Al)と、希土類元素(例えば、Y、Nd、Sm)と、を含むNi合金が提案されている。この合金によれば、耐高温酸化性と、耐火花消耗性と、を両立できる、とされている。 Patent Document 2 proposes a Ni alloy containing silicon (Si), aluminum (Al), and rare earth elements (for example, Y, Nd, Sm) as electrode materials. According to this alloy, both high-temperature oxidation resistance and spark wear resistance can be achieved.
国際公開第2011/077619号International Publication No. 2011/077619 特開2004-206931号公報JP 2004-206931 A
 しかしながら、さらなる性能向上やコスト低減などの観点から、点火プラグには、強度と耐酸化性と耐火花消耗性とのさらなる向上が求められている。 However, from the viewpoint of further performance improvement and cost reduction, the spark plug is required to have further improvement in strength, oxidation resistance, and spark consumption resistance.
 本明細書は、点火プラグの電極の強度と耐酸化性と耐火花消耗性とを向上することができる新たな技術を開示する。 This specification discloses a new technology capable of improving the strength, oxidation resistance, and spark consumption resistance of the electrode of the spark plug.
 本明細書に開示される技術は、以下の適用例として実現することが可能である。 The technology disclosed in this specification can be realized as the following application examples.
[適用例1]中心電極と、前記中心電極との間に間隙を形成する接地電極と、を備え、前記中心電極と前記接地電極とのうちの少なくとも一方の電極は、50重量%以上のニッケル(Ni)を含むNi合金を用いて形成されている点火プラグであって、
 前記Ni合金は、アルミニウム(Al)と、クロム(Cr)と、ケイ素(Si)と、マンガン(Mn)と、から成る群から選択される1種以上の元素を合計で1質量%以上含有し、かつ、銀(Ag)を含有し、
 前記電極のうち、前記Ni合金で形成された部分を、前記間隙の近傍で前記電極の長手方向と垂直に切断する断面において、
  前記電極の表面からの深さ方向の距離が100μmの点を始点、180μmの点を終点とする80μm×80μmの測定領域の面積に対するAgを含む析出物が占める面積の割合は、0.1%以上であり、
  前記Ni合金の平均粒径は、250μm以下である、点火プラグ。
Application Example 1 A center electrode and a ground electrode that forms a gap between the center electrode, and at least one of the center electrode and the ground electrode is nickel of 50% by weight or more A spark plug formed using a Ni alloy containing (Ni),
The Ni alloy contains 1% by mass or more in total of one or more elements selected from the group consisting of aluminum (Al), chromium (Cr), silicon (Si), and manganese (Mn). And containing silver (Ag),
Of the electrode, in a cross section in which the portion formed of the Ni alloy is cut perpendicularly to the longitudinal direction of the electrode in the vicinity of the gap,
The ratio of the area occupied by the precipitate containing Ag to the area of the measurement area of 80 μm × 80 μm starting from a point with a distance of 100 μm in the depth direction from the surface of the electrode and ending with a point of 180 μm is 0.1% That's it,
The spark plug, wherein the Ni alloy has an average particle size of 250 μm or less.
 上記構成によれば、点火プラグの電極の強度と耐酸化性と耐火花消耗性とを向上することができる。 According to the above configuration, the strength, oxidation resistance, and spark consumption resistance of the spark plug electrode can be improved.
[適用例2]適用例1に記載の点火プラグであって、
 前記電極の表面のうち前記間隙を形成する放電面において、Niが露出する面積の割合は、50%以上である、点火プラグ。
[Application Example 2] The spark plug according to Application Example 1,
A spark plug in which a ratio of an area where Ni is exposed on a discharge surface forming the gap in the surface of the electrode is 50% or more.
 上記構成によれば、例えば、電極の耐火花消耗性をより向上することができる。 According to the above configuration, for example, the spark wear resistance of the electrode can be further improved.
[適用例3]適用例1または2に記載の点火プラグであって、
 前記Ni合金は、85重量%以上のNiを含む、点火プラグ。
[Application Example 3] The spark plug according to Application Example 1 or 2,
The Ni alloy is a spark plug including 85% by weight or more of Ni.
 上記構成によれば、さらに、電極の耐火花消耗性を向上できる。 According to the above configuration, the spark wear resistance of the electrode can be further improved.
[適用例4]適用例1~3のいずれかに記載の点火プラグであって、
 前記断面の全体の面積に対するAgを含む析出物が占める面積の割合は、0.1%以上である、点火プラグ。
[Application Example 4] The spark plug according to any one of Application Examples 1 to 3,
The ratio of the area which the deposit containing Ag with respect to the whole area of the said cross section occupies is 0.1% or more.
 上記構成によれば、さらに、電極の強度と耐火花消耗性とを向上できる。 According to the above configuration, the electrode strength and spark wear resistance can be further improved.
[適用例5]適用例1~4のいずれかに記載の点火プラグであって、
 アルゴン雰囲気中に摂氏1000度で50時間保持した後に水冷により常温まで冷却した状態において、
  前記断面の全体の面積に対するAgを含む析出物が占める面積の割合は、0.1%以上であり、
  前記Ni合金の平均粒径は、250μm以下である、点火プラグ。
[Application Example 5] The spark plug according to any one of Application Examples 1 to 4,
In a state cooled to room temperature by water cooling after holding at 1000 degrees Celsius for 50 hours in an argon atmosphere,
The ratio of the area occupied by the precipitate containing Ag to the total area of the cross section is 0.1% or more,
The spark plug, wherein the Ni alloy has an average particle size of 250 μm or less.
 上記構成によれば、高温環境下での電極の耐火花消耗性を向上できる。 According to the above configuration, the spark wear resistance of the electrode in a high temperature environment can be improved.
 なお、本発明は、種々の態様で実現することが可能であり、例えば、点火プラグや点火プラグを用いた点火装置、その点火プラグを搭載する内燃機関や、その点火プラグを用いた点火装置を搭載する内燃機関、点火プラグの電極、点火プラグの電極用の合金等の態様で実現することができる。 The present invention can be realized in various modes. For example, an ignition plug and an ignition device using the ignition plug, an internal combustion engine equipped with the ignition plug, and an ignition device using the ignition plug are provided. It can be realized in the form of an internal combustion engine to be mounted, an electrode of a spark plug, an alloy for an electrode of the spark plug, or the like.
実施形態の点火プラグの一例の断面図である。It is sectional drawing of an example of the ignition plug of embodiment. 点火プラグ100の先端近傍の拡大断面図である。2 is an enlarged cross-sectional view of the vicinity of a tip of a spark plug 100. FIG. 接地電極30を間隙Gの近傍で接地電極30の長手方向と垂直に切断する断面CSを示す図である。FIG. 3 is a diagram showing a cross-section CS that cuts the ground electrode 30 in the vicinity of a gap G perpendicular to the longitudinal direction of the ground electrode 30. Ni-Agの2元系状態図である。FIG. 2 is a Ni—Ag binary phase diagram. 平均粒径Raveの測定法の説明図である。It is explanatory drawing of the measuring method of average particle diameter Rave. 第2実施形態の中心電極20を間隙Gの近傍で中心電極20の長手方向と垂直に切断する断面CS2を示す図である。It is a figure which shows the cross section CS2 which cut | disconnects the center electrode 20 of 2nd Embodiment in the vicinity of the gap | interval G at right angles to the longitudinal direction of the center electrode 20. FIG. 変形例の接地電極30bの断面CSを示す図である。It is a figure which shows the cross section CS of the ground electrode 30b of a modification.
A.実施形態:
A-1.点火プラグの構成:
 図1は、実施形態の点火プラグの一例の断面図である。図示された一点波線は、点火プラグ100の軸線COを示している。図示された断面は、軸線COを含む断面である。以下、軸線COと平行な方向を「軸線方向」とも呼ぶ。軸線COと平行な方向のうち、図1における下方向を先端方向LDと呼び、上方向を後端方向BDとも呼ぶ。先端方向LDは、後述する端子金具40から電極20、30に向かう方向である。また、軸線COを中心とし、軸線COと垂直な面上に位置する円の径方向を、単に「径方向」とも呼び、当該円の円周方向を、単に「周方向」とも呼ぶ。先端方向LDの端を、単に、先端とも呼び、後端方向BDの端を、単に、後端とも呼ぶ。
A. Embodiment:
A-1. Spark plug configuration:
Drawing 1 is a sectional view of an example of a spark plug of an embodiment. The dotted line shown in the figure indicates the axis CO of the spark plug 100. The illustrated cross section is a cross section including the axis CO. Hereinafter, a direction parallel to the axis CO is also referred to as an “axis direction”. Of the directions parallel to the axis CO, the lower direction in FIG. 1 is referred to as a front end direction LD, and the upper direction is also referred to as a rear end direction BD. The tip direction LD is a direction from the terminal fitting 40 described later toward the electrodes 20 and 30. Further, the radial direction of a circle centered on the axis CO and located on a plane perpendicular to the axis CO is simply referred to as “radial direction”, and the circumferential direction of the circle is also simply referred to as “circumferential direction”. An end in the front end direction LD is also simply referred to as a front end, and an end in the rear end direction BD is also simply referred to as a rear end.
 点火プラグ100は、絶縁体10と、中心電極20と、接地電極30と、端子金具40と、主体金具50と、第1の導電性シール層60と、抵抗体70と、第2の導電性シール層80と、第1パッキン8と、タルク9と、第2パッキン6と、第3パッキン7と、を備えている。 The spark plug 100 includes an insulator 10, a center electrode 20, a ground electrode 30, a terminal fitting 40, a metal shell 50, a first conductive seal layer 60, a resistor 70, and a second conductive material. A seal layer 80, a first packing 8, a talc 9, a second packing 6, and a third packing 7 are provided.
 絶縁体10は、軸線方向に沿って延びて絶縁体10を貫通する軸孔12を有する略円筒状の部材である。絶縁体10は、アルミナを焼成して形成されている(他の絶縁材料も採用可能である)。絶縁体10は、先端側から後端方向BDに向かって順番に並ぶ、脚部13と、縮外径部15と、第1胴部17と、鍔部19と、第2胴部18と、を有している。縮外径部15の外径は、先端方向LDに向かって、徐々に縮径している。絶縁体10の縮外径部15の近傍(図1の例では、第1胴部17)の内部には、先端方向LDに向かって内径が徐々に縮径している縮内径部16が形成されている。 The insulator 10 is a substantially cylindrical member having an axial hole 12 extending along the axial direction and penetrating the insulator 10. The insulator 10 is formed by firing alumina (other insulating materials can also be used). The insulator 10 is arranged in order from the front end side toward the rear end direction BD, the leg portion 13, the reduced outer diameter portion 15, the first trunk portion 17, the flange portion 19, the second trunk portion 18, have. The outer diameter of the reduced outer diameter portion 15 is gradually reduced toward the distal direction LD. In the vicinity of the reduced outer diameter portion 15 of the insulator 10 (the first body portion 17 in the example of FIG. 1), a reduced inner diameter portion 16 whose inner diameter is gradually reduced toward the distal direction LD is formed. Has been.
 中心電極20は、絶縁体10の軸孔12内の先端側に位置している。中心電極20は、軸線方向に沿って延びる棒状の部材である。中心電極20は、先端側から後端方向BDに向かって順番に並ぶ、脚部25と、鍔部24と、頭部23と、を有している。脚部25の先端側の部分は、絶縁体10の先端側で、軸孔12の外に露出している。中心電極20の他の部分は、軸孔12内に保持されている。鍔部24の先端側の面は、絶縁体10の縮内径部16によって、支持されている。 The center electrode 20 is located on the tip side in the shaft hole 12 of the insulator 10. The center electrode 20 is a rod-shaped member extending along the axial direction. The center electrode 20 has a leg portion 25, a flange portion 24, and a head portion 23 that are arranged in order from the front end side toward the rear end direction BD. A portion on the distal end side of the leg portion 25 is exposed outside the shaft hole 12 on the distal end side of the insulator 10. The other part of the center electrode 20 is held in the shaft hole 12. The front end side surface of the flange portion 24 is supported by the reduced inner diameter portion 16 of the insulator 10.
 中心電極20は、例えば、ニッケル(Ni)またはニッケルを主成分として含む合金(例えば、NCF600、NCF601)を用いて形成されている。 The center electrode 20 is formed using, for example, nickel (Ni) or an alloy containing nickel as a main component (for example, NCF600, NCF601).
 端子金具40は、絶縁体10の軸孔12内の後端側に位置している。端子金具40は、軸線方向に沿って延びる棒状体であり、導電材料(例えば、低炭素鋼等の金属)を用いて形成されている。端子金具40は、先端側から後端方向BDに向かって順番で並ぶ、脚部43と、鍔部42と、キャップ装着部41と、を有している。脚部43は、絶縁体10の軸孔12に挿入されている。キャップ装着部41は、絶縁体10の後端側で、軸孔12の外に露出している。 The terminal fitting 40 is located on the rear end side in the shaft hole 12 of the insulator 10. The terminal fitting 40 is a rod-like body extending along the axial direction, and is formed using a conductive material (for example, a metal such as low carbon steel). The terminal fitting 40 includes a leg portion 43, a flange portion 42, and a cap mounting portion 41 that are arranged in order from the front end side toward the rear end direction BD. The leg portion 43 is inserted into the shaft hole 12 of the insulator 10. The cap mounting portion 41 is exposed outside the shaft hole 12 on the rear end side of the insulator 10.
 円柱状の抵抗体70は、絶縁体10の軸孔12内において、端子金具40と中心電極20との間に、配置されている。抵抗体70は、火花発生時の電波ノイズを低減する機能を有している。抵抗体70は、例えば、主成分であるガラス粒子と、ガラス以外のセラミック粒子と、導電性材料と、を含む組成物で形成されている。 The columnar resistor 70 is disposed between the terminal fitting 40 and the center electrode 20 in the shaft hole 12 of the insulator 10. The resistor 70 has a function of reducing radio noise when a spark is generated. The resistor 70 is formed of, for example, a composition including glass particles that are main components, ceramic particles other than glass, and a conductive material.
 第1の導電性シール層60は、中心電極20と抵抗体70との間に配置され、第2の導電性シール層80は、端子金具40と抵抗体70との間に配置されている。この結果、中心電極20と端子金具40とは、抵抗体70と導電性シール層60、80とを介して、電気的に接続される。導電性シール層60、80は、例えば、B23-SiO2系等のガラス粒子と金属粒子(Cu、Feなど)とを含む組成物で形成されている。 The first conductive seal layer 60 is disposed between the center electrode 20 and the resistor 70, and the second conductive seal layer 80 is disposed between the terminal fitting 40 and the resistor 70. As a result, the center electrode 20 and the terminal fitting 40 are electrically connected via the resistor 70 and the conductive seal layers 60 and 80. The conductive seal layers 60 and 80 are formed of a composition containing glass particles such as B 2 O 3 —SiO 2 and metal particles (Cu, Fe, etc.), for example.
 主体金具50は、軸線COに沿って延びて主体金具50を貫通する挿入孔59を有する略円筒状の部材である。主体金具50は、低炭素鋼材を用いて形成されている(他の導電材料(例えば、金属材料)も採用可能である)。主体金具50の挿入孔59には、絶縁体10が挿入されている。主体金具50は、絶縁体10の径方向の周囲に配置された状態で、絶縁体10を保持している。主体金具50の先端側では、絶縁体10の先端側の端部(本実施形態では、脚部13の先端側の部分)が、挿入孔59の外に露出している。主体金具50の後端側では、絶縁体10の後端側の端部(本実施形態では、第2胴部18の後端側の部分)が、挿入孔59の外に露出している。 The metal shell 50 is a substantially cylindrical member having an insertion hole 59 that extends along the axis CO and passes through the metal shell 50. The metal shell 50 is formed using a low carbon steel material (other conductive materials (for example, metal materials) can also be used). The insulator 10 is inserted into the insertion hole 59 of the metal shell 50. The metal shell 50 holds the insulator 10 in a state of being arranged around the insulator 10 in the radial direction. At the distal end side of the metal shell 50, the end portion on the distal end side of the insulator 10 (in this embodiment, the portion on the distal end side of the leg portion 13) is exposed outside the insertion hole 59. On the rear end side of the metal shell 50, the end portion on the rear end side of the insulator 10 (in this embodiment, the portion on the rear end side of the second body portion 18) is exposed outside the insertion hole 59.
 主体金具50は、先端側から後端方向BDに向かって順番に並ぶ、ネジ部52と、座部54と、変形部58と、工具係合部51と、加締部53と、を有している。座部54とネジ部52との間には、金属板を折り曲げて形成された環状のガスケット5が嵌め込まれている。 The metal shell 50 includes a screw part 52, a seat part 54, a deforming part 58, a tool engaging part 51, and a caulking part 53, which are arranged in order from the front end side toward the rear end direction BD. ing. An annular gasket 5 formed by bending a metal plate is fitted between the seat portion 54 and the screw portion 52.
 座部54は、鍔状の部分である。ネジ部52は、内燃機関の取付孔に螺合するためのネジが外周面に形成された略円筒状の部分である。 The seat part 54 is a bowl-shaped part. The screw portion 52 is a substantially cylindrical portion in which a screw for screwing into a mounting hole of the internal combustion engine is formed on the outer peripheral surface.
 主体金具50は、変形部58よりも先端側に配置された、縮内径部56を有している。縮内径部56の内径は、後端側から先端方向LDに向かって、徐々に小さくなる。主体金具50の縮内径部56と、絶縁体10の縮外径部15と、の間には、第1パッキン8が挟まれている。第1パッキン8は、鉄製のOリングである(他の材料(例えば、銅等の金属材料)も採用可能である)。 The metal shell 50 has a reduced inner diameter portion 56 disposed on the tip side of the deformable portion 58. The inner diameter of the reduced inner diameter portion 56 gradually decreases from the rear end side toward the front end direction LD. The first packing 8 is sandwiched between the reduced inner diameter portion 56 of the metal shell 50 and the reduced outer diameter portion 15 of the insulator 10. The first packing 8 is an iron O-ring (other materials (for example, metal materials such as copper) can also be used).
 工具係合部51の形状は、点火プラグレンチが係合する形状(例えば、六角柱)である。工具係合部51の後端側には、加締部53が設けられている。加締部53は、絶縁体10の鍔部19よりも後端側に配置され、主体金具50の後端側の端を形成する。加締部53は、径方向の内側に向かって屈曲されている。 The shape of the tool engaging portion 51 is a shape (for example, a hexagonal column) with which the spark plug wrench is engaged. A caulking portion 53 is provided on the rear end side of the tool engaging portion 51. The caulking portion 53 is disposed on the rear end side of the flange portion 19 of the insulator 10 and forms an end on the rear end side of the metal shell 50. The caulking portion 53 is bent toward the inner side in the radial direction.
 主体金具50の後端側では、主体金具50の内周面と、絶縁体10の外周面と、の間に、環状の空間SPが形成されている。本実施形態では、この空間SPは、主体金具50の加締部53および工具係合部51と、絶縁体10の鍔部19の後端部分および第2胴部18と、に囲まれた空間である。この空間SP内の後端側には、第2パッキン6が配置されている。この空間SP内の先端側には、第3パッキン7が配置されている。本実施形態では、これらのパッキン6、7は、鉄製のCリングである(他の材料も採用可能である)。空間SP内における2つのパッキン6、7の間には、タルク(滑石)9の粉末が充填されている。 On the rear end side of the metal shell 50, an annular space SP is formed between the inner peripheral surface of the metal shell 50 and the outer peripheral surface of the insulator 10. In the present embodiment, the space SP is a space surrounded by the crimping portion 53 and the tool engagement portion 51 of the metal shell 50, the rear end portion of the flange portion 19 of the insulator 10, and the second body portion 18. It is. A second packing 6 is disposed on the rear end side in the space SP. A third packing 7 is disposed on the front end side in the space SP. In this embodiment, these packings 6 and 7 are iron C-rings (other materials are also employable). Between the two packings 6 and 7 in the space SP, powder of talc (talc) 9 is filled.
 点火プラグ100の製造時には、加締部53が内側に折り曲がるように加締められる。そして、加締部53が先端側に押圧される。これにより、変形部58が変形し、パッキン6、7とタルク9とを介して、絶縁体10が、主体金具50内で、先端側に向けて押圧される。第1パッキン8は、縮外径部15と縮内径部56との間で押圧され、そして、主体金具50と絶縁体10との間をシールする。以上により、内燃機関の燃焼室内のガスが、主体金具50と絶縁体10との間を通って外に漏れることが、抑制される。また、主体金具50が、絶縁体10に、固定される。 When the spark plug 100 is manufactured, the crimping portion 53 is crimped so as to be bent inward. And the crimping part 53 is pressed to the front end side. Thereby, the deformation | transformation part 58 deform | transforms and the insulator 10 is pressed toward the front end side in the metal shell 50 through the packings 6 and 7 and the talc 9. The first packing 8 is pressed between the reduced outer diameter portion 15 and the reduced inner diameter portion 56, and seals between the metal shell 50 and the insulator 10. As a result, the gas in the combustion chamber of the internal combustion engine is prevented from leaking outside through the metal shell 50 and the insulator 10. In addition, the metal shell 50 is fixed to the insulator 10.
 接地電極30は、主体金具50と電気的に接続された棒状の部材である。接地電極30は、例えば、ニッケル(Ni)を主成分として含む合金を用いて形成されている。接地電極30を形成するニッケル合金の詳細については、後述する。 The ground electrode 30 is a rod-shaped member that is electrically connected to the metal shell 50. The ground electrode 30 is formed using, for example, an alloy containing nickel (Ni) as a main component. Details of the nickel alloy forming the ground electrode 30 will be described later.
A-2.点火プラグの先端近傍の構成
 図2を参照して、点火プラグ100の先端近傍の構成について、さらに、説明する。図2は、点火プラグ100の先端近傍の拡大断面図である。
A-2. Configuration near the tip of the spark plug The configuration near the tip of the spark plug 100 will be further described with reference to FIG. FIG. 2 is an enlarged cross-sectional view of the vicinity of the tip of the spark plug 100.
 絶縁体10の先端(すなわち、脚部13の先端)は、主体金具50の先端より、先端側に位置している。そして、中心電極20の先端は、絶縁体10の先端より先端側に位置している。 The distal end of the insulator 10 (that is, the distal end of the leg portion 13) is located closer to the distal end side than the distal end of the metal shell 50. The tip of the center electrode 20 is located on the tip side of the insulator 10.
 接地電極30の一端は、接地電極30と主体金具50とが電気的に導通するように、例えば、抵抗溶接によって、主体金具50の先端に接続されている接続端31である。接地電極30の他端は、自由端32である。接地電極30のうち、主体金具50に接続された接続端31側の部分である接続部33は、軸線COと平行に延びている。接地電極30のうち、自由端32側の部分である自由端部34は、軸線COと垂直に延びている。接地電極30のうち、接続部33と自由端部34との間の部分である曲部35は、約90度だけ曲げられている。 One end of the ground electrode 30 is a connection end 31 connected to the tip of the metal shell 50 by, for example, resistance welding so that the ground electrode 30 and the metal shell 50 are electrically connected. The other end of the ground electrode 30 is a free end 32. Of the ground electrode 30, the connection portion 33, which is a portion on the connection end 31 side connected to the metal shell 50, extends in parallel with the axis CO. Of the ground electrode 30, a free end portion 34 that is a portion on the free end 32 side extends perpendicular to the axis CO. Of the ground electrode 30, a curved portion 35, which is a portion between the connecting portion 33 and the free end portion 34, is bent by about 90 degrees.
 接地電極30の自由端部34の表面のうち、後端側の側面341は、中心電極20の先端面である第1放電面29と軸線方向に対向する第2放電面39を含む。中心電極20の第1放電面29と、接地電極30の第2放電面39とは、火花放電が発生する間隙G(火花ギャップとも呼ぶ)を形成している。 Among the surfaces of the free end portion 34 of the ground electrode 30, the side surface 341 on the rear end side includes a second discharge surface 39 that faces the first discharge surface 29 that is the front end surface of the center electrode 20 in the axial direction. The first discharge surface 29 of the center electrode 20 and the second discharge surface 39 of the ground electrode 30 form a gap G (also referred to as a spark gap) where spark discharge occurs.
 このように、本実施形態の点火プラグ100では、接地電極30の間隙Gを形成する部分に、イリジウムやパラジウムなどの貴金属や該貴金属を含む合金で形成された貴金属チップを備えていない。貴金属チップを備えないことによって、部品点数の削減、貴金属チップを接合する工程などの工程数の削減を実現することができる。これによって、接地電極30、ひいては、点火プラグ100の製造コストを低減できる。 As described above, the spark plug 100 of the present embodiment does not include a noble metal tip made of a noble metal such as iridium or palladium or an alloy containing the noble metal in a portion where the gap G of the ground electrode 30 is formed. By not providing the noble metal tip, it is possible to reduce the number of parts and the number of steps such as the step of joining the noble metal tip. As a result, the manufacturing cost of the ground electrode 30 and hence the spark plug 100 can be reduced.
 図3は、接地電極30を、間隙Gの近傍で、接地電極30の長手方向と垂直に切断する断面CSを示す図である。この断面CSは、第2放電面39を通る断面であり、図2の例では、軸線COを含むA-A断面である。本実施形態では、断面CSは、略矩形を有している。図3の下側には、図3の上側の断面における表面の近傍の領域SAの拡大図が示されている。 FIG. 3 is a view showing a cross-section CS of the ground electrode 30 cut in the vicinity of the gap G in a direction perpendicular to the longitudinal direction of the ground electrode 30. This cross section CS is a cross section passing through the second discharge surface 39, and is an AA cross section including the axis CO in the example of FIG. In the present embodiment, the cross section CS has a substantially rectangular shape. 3 is an enlarged view of the area SA in the vicinity of the surface in the upper cross section of FIG.
A-3.接地電極30を形成する材料
 接地電極30を形成する材料について説明する。接地電極30の太さ、すなわち、接地電極30の長手方向と垂直な断面積が小さいほど、接地電極30によって、火花や燃焼ガスの火炎の拡大が物理的に妨げられ難い。また、接地電極30の長手方向と垂直な断面積が小さいほど、接地電極30によって、火花や燃焼ガスの火炎の熱エネルギーが吸収される作用(消炎作用)によるエネルギーロスが小さくなる。このように、接地電極30の長手方向と垂直な断面積が小さいほど、点火プラグ100の着火性能が向上する。一方で、接地電極30の長手方向と垂直な断面積が小さいほど、接地電極30の物理的な強度が低下する。したがって、接地電極30を形成する材料自体の物理的な強度が高ければ、接地電極30の長手方向と垂直な断面積を小さくすることができ、点火プラグ100の着火性能を向上できる。このために、接地電極30を形成する材料は、物理的な強度が求められる。
A-3. Material for Forming Ground Electrode 30 A material for forming ground electrode 30 will be described. The smaller the thickness of the ground electrode 30, that is, the cross-sectional area perpendicular to the longitudinal direction of the ground electrode 30, the harder the physical expansion of the sparks and the flame of the combustion gas is prevented by the ground electrode 30. Further, as the cross-sectional area perpendicular to the longitudinal direction of the ground electrode 30 is smaller, the energy loss due to the action (extinguishing action) of absorbing the thermal energy of the spark or the combustion gas flame by the ground electrode 30 becomes smaller. Thus, the smaller the cross-sectional area perpendicular to the longitudinal direction of the ground electrode 30, the better the ignition performance of the spark plug 100. On the other hand, the smaller the cross-sectional area perpendicular to the longitudinal direction of the ground electrode 30, the lower the physical strength of the ground electrode 30. Therefore, if the physical strength of the material itself forming the ground electrode 30 is high, the cross-sectional area perpendicular to the longitudinal direction of the ground electrode 30 can be reduced, and the ignition performance of the spark plug 100 can be improved. For this reason, the material forming the ground electrode 30 is required to have physical strength.
 また、接地電極30は、燃焼室内に最も突出している部分であるので、高温の燃焼ガスに曝される。このために、接地電極30を形成する材料には、点火プラグ100の寿命を確保する観点から、高い耐酸化性が求められる。耐酸化性が低いと、酸化消耗が大きくなるため、接地電極30の長手方向と垂直な断面積を小さくすることも困難になるので、着火性能の観点からも耐酸化性が高いことが好ましい。 Further, since the ground electrode 30 is the most protruding portion in the combustion chamber, it is exposed to high-temperature combustion gas. For this reason, the material forming the ground electrode 30 is required to have high oxidation resistance from the viewpoint of ensuring the life of the spark plug 100. If the oxidation resistance is low, the oxidation consumption increases, and it becomes difficult to reduce the cross-sectional area perpendicular to the longitudinal direction of the ground electrode 30, so that the oxidation resistance is preferably high from the viewpoint of ignition performance.
 さらに、本実施形態の点火プラグ100は、上述したように、間隙Gを形成する部分に貴金属チップを用いていない。このために、接地電極30を形成する材料には、点火プラグ100の寿命を確保する観点から、火花放電のエネルギーによる消耗に対する耐性(耐火花消耗性)が求められる。耐火花消耗性が低いと、火花による消耗が大きくなるため、接地電極30の長手方向と垂直な断面積を小さくすることも困難になるので、着火性能の観点からも耐火花消耗性が高いことが好ましい。 Furthermore, as described above, the spark plug 100 of the present embodiment does not use a noble metal tip in the portion where the gap G is formed. For this reason, the material for forming the ground electrode 30 is required to have resistance to consumption due to the energy of spark discharge (spark wear resistance) from the viewpoint of ensuring the life of the spark plug 100. If the spark wear resistance is low, the wear due to the spark is increased, and it is difficult to reduce the cross-sectional area perpendicular to the longitudinal direction of the ground electrode 30, so that the spark wear resistance is also high from the viewpoint of ignition performance. Is preferred.
 特に、近年は、内燃機関のエミッションの低減や燃費向上のために、内燃機関の燃焼室内の更なる高温化が進んでいることや、点火プラグ100の小型化が進んでいることから、接地電極30を形成する材料には、より高いレベルの耐酸化性、耐火花消耗性、強度が求められている。このために、本実施形態では、接地電極30の耐酸化性、耐火花消耗性、強度を向上するために、接地電極30を形成する材料に、工夫がなされている。以下に詳しく説明する。 In particular, in recent years, in order to reduce the emission of an internal combustion engine and improve fuel efficiency, the temperature in the combustion chamber of the internal combustion engine has been further increased, and the spark plug 100 has been reduced in size. The material forming 30 is required to have higher levels of oxidation resistance, spark wear resistance, and strength. For this reason, in this embodiment, in order to improve the oxidation resistance, spark wear resistance, and strength of the ground electrode 30, the material forming the ground electrode 30 is devised. This will be described in detail below.
 接地電極30の材料は、ニッケル(Ni)を主成分とする合金(以下、単にNi合金とも呼ぶ)である。このNi合金(すなわち、本実施形態の接地電極30)は、以下の(1)~(5)を満たしている。 The material of the ground electrode 30 is an alloy containing nickel (Ni) as a main component (hereinafter also simply referred to as Ni alloy). This Ni alloy (that is, the ground electrode 30 of the present embodiment) satisfies the following (1) to (5).
(1)Ni合金は、50重量%以上のNiを含む。
(2)Ni合金は、添加物として、少なくともアルミニウム(Al)と、クロム(Cr)と、ケイ素(Si)と、マンガン(Mn)と、から成る群から選択される1種以上の元素を合計で1質量%以上含有している。
(3)Ni合金は、さらに、銀(Ag)を含み、断面CSにおける測定領域MA(図2)の面積に対する銀析出物OPが占める面積の割合(以下、表面近傍面積率SRとも呼ぶ)は、0.1%以上である。
(4)Ni合金の平均粒径Rave(母材MPの平均粒径)は、250μm以下である。
(5)第2放電面39において、Niが露出する面積の割合(以下、Ni露出率NRとも呼ぶ)は、50%以上である。
(1) The Ni alloy contains 50% by weight or more of Ni.
(2) The Ni alloy is a total of at least one element selected from the group consisting of aluminum (Al), chromium (Cr), silicon (Si), and manganese (Mn) as an additive. 1% by mass or more.
(3) The Ni alloy further contains silver (Ag), and the ratio of the area occupied by the silver precipitate OP to the area of the measurement region MA (FIG. 2) in the cross-section CS (hereinafter also referred to as the surface vicinity area ratio SR) is , 0.1% or more.
(4) The average particle diameter Rave (average particle diameter of the base material MP) of the Ni alloy is 250 μm or less.
(5) On the second discharge surface 39, the ratio of the area where Ni is exposed (hereinafter also referred to as Ni exposure rate NR) is 50% or more.
 50重量%以上のNiを含むNi合金は、例えば、鉄(Fe)を50重量%以上含む合金と比較して、融点が高く、耐酸化性に優れている。例えば、仮に、Feを50重量%以上含む合金を採用すれば、ベースの合金の耐酸化性が不十分であるので、後述する添加物を制御したとしても、十分な耐酸化性を得られない。また、Ni合金において、Niの割合が小さくなると、他の元素の割合が相対的に増加し、熱伝導率が低下するので、接地電極30が高温になりやすくなる。この結果、Ni合金において、Niの含有率が小さくなると、接地電極30の耐火花消耗性が低下する。 A Ni alloy containing 50% by weight or more of Ni has a higher melting point and superior oxidation resistance compared to, for example, an alloy containing 50% by weight or more of iron (Fe). For example, if an alloy containing 50% by weight or more of Fe is employed, the oxidation resistance of the base alloy is insufficient, so even if the additives described later are controlled, sufficient oxidation resistance cannot be obtained. . Further, in the Ni alloy, when the proportion of Ni is reduced, the proportion of other elements is relatively increased and the thermal conductivity is lowered, so that the ground electrode 30 is likely to become high temperature. As a result, in the Ni alloy, when the Ni content is reduced, the spark wear resistance of the ground electrode 30 is reduced.
 本実施形態のNi合金は、上記(1)を満たすので、接地電極30の耐酸化性と耐火花消耗性とを向上することができる。 Since the Ni alloy of the present embodiment satisfies the above (1), the oxidation resistance and the spark wear resistance of the ground electrode 30 can be improved.
 Al、Cr、Si、Mnと、から成る群から選択される1種以上の添加元素は、酸化物(例えば、Al、Cr、SiO、MnO)の被膜をNi合金の表面に形成するので、Ni合金の耐酸化性を向上することができる。 One or more additional elements selected from the group consisting of Al, Cr, Si, and Mn are oxides (for example, Al 2 O 3 , Cr 2 O 3 , SiO 2 , MnO 2 ) and Ni alloys. Therefore, the oxidation resistance of the Ni alloy can be improved.
 本実施形態のNi合金は、上記(2)を満たすので、接地電極30の耐酸化性を向上することができる。 Since the Ni alloy of the present embodiment satisfies the above (2), the oxidation resistance of the ground electrode 30 can be improved.
 本実施形態のNi合金(接地電極30)は、図3の下側の拡大図に示すように、母材MPと、母材MPの内部に分散して配置された銀析出物OPと、を含んでいる。銀析出物OPは、銀(Ag)を主成分(例えば、98重量%以上のAgを含む)とする析出物である。銀析出物OPは、図示しない母材MPの結晶粒の粒界に析出している。測定領域MAは、図3に示すように、接地電極30の表面から深さ方向の距離が100μmの点を始点、180μmの点を終点とする80μm×80μmの矩形の領域である。例えば、図3の例では、測定領域MAは、最も近い表面SFと平行な方向の幅が80μmであり、該表面SFと垂直な方向の幅が80μmである矩形の領域である。また、測定領域MAの表面SFと平行な2辺のうち、表面SFに近い側の辺NEと、表面SFと、の距離は、100μmである。測定領域MAの表面SFと平行な2辺のうち、表面SFから遠い側の辺FEと、表面SFと、の距離は、180μmである。 As shown in the lower enlarged view of FIG. 3, the Ni alloy (ground electrode 30) of the present embodiment includes a base material MP and silver precipitates OP that are dispersed and arranged inside the base material MP. Contains. The silver precipitate OP is a precipitate containing silver (Ag) as a main component (for example, containing 98% by weight or more of Ag). The silver precipitate OP is precipitated at the grain boundaries of the crystal grains of the base material MP (not shown). As shown in FIG. 3, the measurement area MA is a rectangular area of 80 μm × 80 μm starting from a point where the distance in the depth direction from the surface of the ground electrode 30 is 100 μm and ending at a point of 180 μm. For example, in the example of FIG. 3, the measurement area MA is a rectangular area whose width in the direction parallel to the nearest surface SF is 80 μm and whose width in the direction perpendicular to the surface SF is 80 μm. The distance between the side NE close to the surface SF and the surface SF among the two sides parallel to the surface SF of the measurement region MA is 100 μm. Of the two sides parallel to the surface SF of the measurement area MA, the distance between the side FE far from the surface SF and the surface SF is 180 μm.
 図4は、Ni-Agの2元系状態図である。この状態図から解るように、Niに対するAgの固溶量は非常に小さいため、Ni合金にある程度の量(例えば、0.1重量%以上)のAgを添加すると、母材MP内に、銀析出物OPが析出する。 FIG. 4 is a Ni-Ag binary system phase diagram. As can be seen from this phase diagram, the solid solution amount of Ag in Ni is very small. Therefore, when a certain amount (for example, 0.1 wt% or more) of Ag is added to the Ni alloy, silver is contained in the base material MP. A precipitate OP is deposited.
 銀析出物OPが発生することによって、母材MPのAgの含有率(固溶量)は、非常に小さくなるので、Agの添加による母材MPの熱伝導性の低下は、Niに固溶しやすい元素を添加する場合より小さい。同様に、Agの添加による母材MPの融点の低下もNiに固溶しやすい元素を添加する場合より小さい。したがって、Agの添加による母材MPの耐火花消耗性の低下は、非常に小さい。 Since the silver precipitate OP is generated, the Ag content (solid solution amount) of the base material MP is very small. Therefore, the decrease in the thermal conductivity of the base material MP due to the addition of Ag is a solid solution in Ni. It is smaller than the case of adding an element that is easy to do. Similarly, the lowering of the melting point of the base material MP due to the addition of Ag is smaller than that in the case of adding an element that easily dissolves in Ni. Therefore, the decrease in the spark wear resistance of the base material MP due to the addition of Ag is very small.
 そして、Agは、Niよりも熱伝導性が高い。また、図4の状態図から解るように、Agに対するNiの固溶量は極めて小さいため、銀析出物OPのAgの純度は、高いと考えられる。このことから、銀析出物OPの熱伝導性は、非常に良好であると考えられる。このために、銀析出物OPは、Ni合金の全体の熱伝導性を向上させるので、Ni合金の温度の上昇を抑制して、Ni合金の耐火花消耗性を向上させることができる。 And Ag has higher thermal conductivity than Ni. Further, as can be seen from the phase diagram of FIG. 4, since the solid solution amount of Ni with respect to Ag is extremely small, it is considered that the purity of Ag in the silver precipitate OP is high. From this, it is considered that the thermal conductivity of the silver precipitate OP is very good. For this reason, since the silver precipitate OP improves the overall thermal conductivity of the Ni alloy, it is possible to suppress an increase in the temperature of the Ni alloy and to improve the spark wear resistance of the Ni alloy.
 本実施形態のNi合金は、上記(3)を満たすので、銀析出物OPの存在によって、接地電極30の表面近傍の熱伝導性を向上し、引いては、接地電極30の耐火花消耗性を向上することができる。 Since the Ni alloy of the present embodiment satisfies the above (3), the presence of the silver precipitate OP improves the thermal conductivity in the vicinity of the surface of the ground electrode 30, and in turn, the spark wear resistance of the ground electrode 30. Can be improved.
 また、析出物による析出強化は、固溶した添加物による固溶強化と比較して、材料が強化される程度が大幅に大きい。このために、銀析出物OPは、Ni合金の強度を大幅に向上させる。強度不足によって発生する接地電極30の折損は、内燃機関の燃焼室内で受ける衝撃に起因する疲労破壊によるものがほとんどである。疲労破壊は、接地電極30の表面に発生したクラックが内部に進展することによって発生する。このため、接地電極30の表面(すなわち、Ni合金の表面)近傍の強度の向上が重要である。 In addition, precipitation strengthening by precipitates is significantly greater in the degree to which the material is strengthened than solid solution strengthening by solid additives. For this reason, the silver precipitate OP significantly improves the strength of the Ni alloy. Most of the breakage of the ground electrode 30 caused by insufficient strength is due to fatigue failure due to the impact received in the combustion chamber of the internal combustion engine. Fatigue failure occurs when cracks generated on the surface of the ground electrode 30 propagate inside. For this reason, it is important to improve the strength in the vicinity of the surface of the ground electrode 30 (that is, the surface of the Ni alloy).
 本実施形態のNi合金は、上記(3)を満たすので、銀析出物OPの存在によって、接地電極30の表面近傍の強度を向上することができる。 Since the Ni alloy of the present embodiment satisfies the above (3), the strength in the vicinity of the surface of the ground electrode 30 can be improved by the presence of the silver precipitate OP.
 Ni合金の平均粒径Raveが小さいほど、材料の強度が向上する。本実施形態のNi合金は、上記(4)を満たすので、接地電極30の強度、特に、低温(具体的には、摂氏約700度)での接地電極30の強度を向上することができる。 The smaller the average particle diameter Rave of the Ni alloy, the higher the strength of the material. Since the Ni alloy of the present embodiment satisfies the above (4), the strength of the ground electrode 30, particularly the strength of the ground electrode 30 at a low temperature (specifically, about 700 degrees Celsius) can be improved.
 第2放電面39の表面の近傍は、火花のエネルギーを直接受ける部位であるので、耐火花消耗性が高いNiが露出する面積の割合が大きいほど、耐火花消耗性が向上する。本実施形態のNi合金は、上記(5)を満たすので、接地電極30の耐火花消耗性を向上することができる。 Since the vicinity of the surface of the second discharge surface 39 is a part that directly receives the energy of sparks, the greater the proportion of the area where Ni is exposed to high spark wear resistance, the better the spark wear resistance. Since the Ni alloy of the present embodiment satisfies the above (5), the spark wear resistance of the ground electrode 30 can be improved.
 以上の説明から解るように、本実施形態では、上記の(1)~(5)が満たされることによって、点火プラグ100の接地電極30の強度と耐酸化性と耐火花消耗性とを向上することができる。 As can be seen from the above description, in the present embodiment, when the above (1) to (5) are satisfied, the strength, oxidation resistance, and spark consumption resistance of the ground electrode 30 of the spark plug 100 are improved. be able to.
 また、耐酸化性は、酸化被膜を形成する添加元素(例えば、上述したAl、Cr、Si、Mn)を増やすことによっても向上し得るが、これらの添加元素を増やすことによって耐火花消耗性を向上することは困難である。酸化被膜とNi合金本体との間は、金属間結合や共有結合などと比較して結合力が弱い分子間力で結合されている。この結果、火花放電の衝撃によって、酸化被膜は比較的容易にNi合金本体から剥離するためである。したがって、耐火花消耗性を向上するためには、添加元素の量を抑えて、Niの含有率を増やすことによって、融点の低下や熱伝導率の低下を抑制することが有効である。このために、本実施形態のNi合金は、85重量%以上のNiを含むことが好ましい。こうすれば、接地電極30の耐火花消耗性を、さらに、向上することができる。 In addition, the oxidation resistance can be improved by increasing the additive elements (for example, Al, Cr, Si, and Mn described above) that form the oxide film. It is difficult to improve. The oxide film and the Ni alloy main body are bonded with an intermolecular force having a weaker binding force than an intermetallic bond or a covalent bond. As a result, the oxide film is relatively easily separated from the Ni alloy body by the impact of spark discharge. Therefore, in order to improve the spark wear resistance, it is effective to suppress the decrease in the melting point and the decrease in the thermal conductivity by suppressing the amount of the additive element and increasing the Ni content. For this reason, the Ni alloy of the present embodiment preferably contains 85% by weight or more of Ni. By so doing, the spark wear resistance of the ground electrode 30 can be further improved.
 また、接地電極30の表面の近傍でなく、接地電極30の内部についても熱伝導率が高い方が、接地電極30の温度上昇を抑制できるので、接地電極30の耐火花消耗性が向上する。また、接地電極30の内部についても強度が高い方が、接地電極30の全体の強度を向上することができる。このために、本実施形態のNi合金は、断面CSの全体の面積に対する銀析出物OPが占める面積の割合(以下、全体面積率ARとも呼ぶ)は、0.1%以上であることが好ましい。こうすれば、接地電極30の強度と耐火花消耗性とを向上できる。 Moreover, since the temperature increase of the ground electrode 30 can be suppressed when the thermal conductivity is higher not only in the vicinity of the surface of the ground electrode 30 but also inside the ground electrode 30, the spark wear resistance of the ground electrode 30 is improved. Also, the strength of the entire ground electrode 30 can be improved when the strength of the interior of the ground electrode 30 is higher. For this reason, in the Ni alloy of the present embodiment, the ratio of the area occupied by the silver precipitate OP to the entire area of the cross-section CS (hereinafter also referred to as the overall area ratio AR) is preferably 0.1% or more. . In this way, the strength and spark wear resistance of the ground electrode 30 can be improved.
 内燃機関では、高回転時には燃焼室内の温度が、摂氏900度以上の高温になるので、高温時において接地電極30内の構造が変化すると、接地電極30の強度や耐火花消耗性が低下するおそれがある。例えば、高温環境下で使用された場合に、銀析出物OPの消失や、Ni合金の平均粒径Raveの増大が起こると、接地電極30の強度や耐火花消耗性が低下し得る。このために、本実施例では、アルゴン雰囲気中に摂氏1000度で50時間保持した後に水冷により常温まで冷却する処理(以下、高温保持処理とも呼ぶ)後の状態において、銀析出物OPの全体面積率ARは、0.1%以上であり、Ni合金の平均粒径Raveは、250μm以下であることが好ましい。こうすれば、高温環境下での接地電極30の耐火花消耗性を向上できる。 In an internal combustion engine, the temperature in the combustion chamber becomes a high temperature of 900 degrees Celsius or higher at a high rotation speed, so that if the structure in the ground electrode 30 changes at a high temperature, the strength and spark wear resistance of the ground electrode 30 may be reduced. There is. For example, when used in a high-temperature environment, if the silver precipitate OP disappears or the average particle size Rave of the Ni alloy increases, the strength and spark wear resistance of the ground electrode 30 may decrease. For this reason, in this example, the entire area of the silver precipitate OP in a state after a treatment (hereinafter also referred to as a high-temperature holding treatment) that is cooled to room temperature by water cooling after being held at 1000 degrees Celsius for 50 hours in an argon atmosphere. The rate AR is preferably 0.1% or more, and the average particle size Rave of the Ni alloy is preferably 250 μm or less. In this way, the spark wear resistance of the ground electrode 30 in a high temperature environment can be improved.
A-4.接地電極30の製造方法
 接地電極30は、溶解工程、冷却工程、加工工程を経て製造される。溶解工程では、通常の真空溶解炉を用いて、所望の成分組成を持った合金の溶湯が調製される。冷却工程では、真空溶解炉内にて、溶湯を冷却することによって、インゴットが得られる。加工工程では、インゴットを、例えば、熱間鍛造にて、所定の直径(例えば、1.6mm)の棒材に加工する。加工工程では、さらに、棒材に冷間で伸線加工を施すことによって、所定の断面寸法(例えば、1.5mm×2.8mmの矩形)を有する線材が得られる。線材を所定の長さ(例えば、10mm)に切断することによって、接地電極30が得られる。
A-4. Manufacturing Method of Ground Electrode 30 The ground electrode 30 is manufactured through a melting process, a cooling process, and a processing process. In the melting step, a molten alloy having a desired component composition is prepared using a normal vacuum melting furnace. In the cooling step, an ingot is obtained by cooling the molten metal in a vacuum melting furnace. In the processing step, the ingot is processed into a bar having a predetermined diameter (for example, 1.6 mm) by, for example, hot forging. In the processing step, a wire having a predetermined cross-sectional dimension (for example, a rectangle of 1.5 mm × 2.8 mm) can be obtained by cold-drawing the bar. The ground electrode 30 is obtained by cutting the wire into a predetermined length (for example, 10 mm).
 得られた接地電極30は、主体金具50の先端に一端が接合され、その後に曲げ加工がなされる。これによって、接地電極30が完成する。 The obtained ground electrode 30 is joined at one end to the tip of the metal shell 50 and then bent. Thereby, the ground electrode 30 is completed.
 ここで、銀析出物OPの量、および、Ni合金の平均粒径Raveの調整は、例えば、溶解工程おいて調製されるNi合金の組成、溶解工程および冷却工程における熱処理の条件(保持温度や冷却速度など)、加工工程における加工条件(加工率や加工時の温度など)を工夫することによって実現される。 Here, the amount of the silver precipitate OP and the adjustment of the average particle diameter Rave of the Ni alloy are adjusted by, for example, the composition of the Ni alloy prepared in the melting step, the conditions of the heat treatment in the melting step and the cooling step (retention temperature and This is realized by devising the processing conditions (processing rate, processing temperature, etc.) in the processing process.
 例えば、Ni合金の組成において、例えば、Agの含有率を高くするほど、銀析出物OPの量を増大させることができるので、銀析出物OPの表面近傍面積率SRおよび全体面積率ARを増大させることができる。また、熱処理の条件において、冷却速度を速くするほど、熱処理時間を長くするほど、銀析出物OPの量を増大させることができる。一方、Ni合金の組成において、性能に影響しない不純物の量を増やすほど、Ni合金の平均粒径Raveを小さくすることができる。また、熱処理の条件において、熱処理温度を低くするほど、Ni合金の平均粒径Raveを小さくすることができる。また、加工条件において、加工率を高くするほど、Ni合金の平均粒径Raveを小さくすることができる。 For example, in the composition of the Ni alloy, for example, as the Ag content is increased, the amount of the silver precipitate OP can be increased. Therefore, the surface area ratio SR and the overall area ratio AR of the silver precipitate OP are increased. Can be made. Further, under the heat treatment conditions, the amount of silver precipitate OP can be increased as the cooling rate is increased and the heat treatment time is increased. On the other hand, in the composition of the Ni alloy, the average particle size Rave of the Ni alloy can be reduced as the amount of impurities that do not affect the performance is increased. In addition, the average particle size Rave of the Ni alloy can be reduced as the heat treatment temperature is lowered under the heat treatment conditions. Further, in the processing conditions, the average particle size Rave of the Ni alloy can be reduced as the processing rate is increased.
 また、高温保持処理後の状態において、銀析出物OPの量の過度な低下を抑制することは、例えば、予めNi合金の組成において、例えば、Agの含有率を高くしておくことによって実現することができる。例えば、Ni合金全体におけるAgの含有率を1重量%以上とすれば、高温保持処理後においても、銀析出物OPの全体面積率ARを0.1%以上に維持することができる。 In addition, in the state after the high temperature holding treatment, suppressing an excessive decrease in the amount of the silver precipitate OP is realized by, for example, increasing the Ag content in advance in the composition of the Ni alloy, for example. be able to. For example, if the Ag content in the entire Ni alloy is 1% by weight or more, the overall area ratio AR of the silver precipitate OP can be maintained at 0.1% or more even after the high temperature holding treatment.
 同様に、高温保持処理後の状態において、Ni合金の平均粒径Raveの過度な増大を抑制することは、例えば、高温保持処理前のNi合金の平均粒径Raveを小さくしておくことによって実現することができる。 Similarly, suppressing an excessive increase in the average particle size Rave of the Ni alloy in the state after the high temperature holding treatment is realized by, for example, reducing the average particle size Rave of the Ni alloy before the high temperature holding treatment. can do.
B.評価試験
 点火プラグのサンプルを用いて、耐火花消耗性と、耐酸化性と、強度と、を評価する評価試験が実行された。評価試験では、下の表1、2に示すように、23種類のサンプル1~23が作成された。各サンプルにおいて、接地電極30を形成する材料(Ni合金)以外の構成は、共通である。
B. Evaluation Test An evaluation test for evaluating spark wear resistance, oxidation resistance, and strength was performed using a sample of a spark plug. In the evaluation test, 23 types of samples 1 to 23 were prepared as shown in Tables 1 and 2 below. In each sample, the configuration other than the material (Ni alloy) forming the ground electrode 30 is common.
 各サンプル間で共通な事項は以下の通りである。
 主体金具50のネジ径:M14
 主体金具50先端から絶縁体10先端までの長さ:2mm
 主体金具50先端から中心電極20先端までの長さ:3mm
 中心電極20先端の径(第1放電面29の径):0.6mm
 曲げ加工前の接地電極30の断面の寸法:1.5mm×2.8mm
 曲げ加工前の接地電極30の長手方向の長さ:10mm
 間隙Gの長さ(第1放電面29と第2放電面39との間の距離):0.85mm
Items common to each sample are as follows.
Screw diameter of metal shell 50: M14
Length from the metal shell 50 tip to the insulator 10 tip: 2 mm
Length from the metal shell 50 tip to the center electrode 20 tip: 3 mm
Diameter of center electrode 20 tip (diameter of first discharge surface 29): 0.6 mm
Dimension of cross section of ground electrode 30 before bending: 1.5 mm × 2.8 mm
Length in the longitudinal direction of the ground electrode 30 before bending: 10 mm
Length of gap G (distance between first discharge surface 29 and second discharge surface 39): 0.85 mm
 下の表1、2に示すように、各サンプルでは、接地電極30を形成する材料が互いに異なる。 As shown in Tables 1 and 2 below, in each sample, the materials forming the ground electrode 30 are different from each other.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 これらのサンプルの接地電極30に用いられたNi合金は、表1、2に示すように、組成と、高温保持処理前の銀析出物OPの面積率(表面近傍面積率SRおよび全体面積率AR)と、高温保持処理後の銀析出物OPの全体面積率ARと、Ni露出率NRと、Ni合金の平均粒径Raveと、の少なくとも一つが異なっている。 As shown in Tables 1 and 2, the Ni alloy used for the ground electrode 30 of these samples has a composition and an area ratio of the silver precipitate OP before the high temperature holding treatment (surface area ratio SR and total area ratio AR). ), The overall area ratio AR of the silver precipitate OP after the high temperature holding treatment, the Ni exposure rate NR, and the average particle size Rave of the Ni alloy are different.
 各種類のサンプルの接地電極30に用いられた合金は、表1に示す元素(Ni、Ag、Si、Cr、Al、Mn、その他)を、表1に示す含有率(単位は、重量%)だけ含んでいる。「その他」の元素は、サンプル16では、4重量%のFeと、残余のB、Mo、V、W、Co、Ti、C、および、不可避不純物である。サンプル6~10、17~23では、8重量%のFeと、残余のB、Mo、V、W、Co、Ti、C、および、不可避不純物である。サンプル5、11~13、15では、16重量%のFeと、残余のB、Mo、V、W、Co、Ti、C、および、不可避不純物である。サンプル14では、40重量%のFeと、残余のB、Mo、V、W、Co、Ti、C、および不可避不純物である。サンプル1~4では、45重量%のFeと、残余のB、Mo、V、W、Co、Ti、C、および、不可避不純物である。なお、各サンプルの接地電極30の成分の含有率は、接地電極30のうち、主体金具50と先端面から3mm離れた位置より先端側の部分について、高周波誘導結合プラズマ(ICP)発光分光分析法を用いて測定された。 The alloy used for the ground electrode 30 of each type of sample is composed of the elements shown in Table 1 (Ni, Ag, Si, Cr, Al, Mn, etc.) and the contents shown in Table 1 (unit: wt%). Contains only. In the sample 16, “other” elements are 4% by weight of Fe, the remaining B, Mo, V, W, Co, Ti, C, and inevitable impurities. In Samples 6 to 10 and 17 to 23, 8 wt% Fe and the remaining B, Mo, V, W, Co, Ti, C, and unavoidable impurities. In Samples 5, 11 to 13, and 15, 16% by weight of Fe and the remaining B, Mo, V, W, Co, Ti, C, and unavoidable impurities. In sample 14, 40 wt% Fe and the remaining B, Mo, V, W, Co, Ti, C, and inevitable impurities. In samples 1 to 4, 45% by weight of Fe and the remaining B, Mo, V, W, Co, Ti, C, and unavoidable impurities. In addition, the content rate of the component of the ground electrode 30 of each sample is the high frequency inductively coupled plasma (ICP) emission spectroscopic analysis method for the portion of the ground electrode 30 that is 3 mm away from the metal shell 50 and the tip surface. Was measured.
 なお、各サンプルのSi、Cr、Al、Mnの合計の含有率は、0%、0.9%、1%、2%、3%、4%、9%、28%、29%、30%、32%、33%のいずれかであった。 The total content of Si, Cr, Al, and Mn in each sample is 0%, 0.9%, 1%, 2%, 3%, 4%, 9%, 28%, 29%, 30% , 32%, or 33%.
 表2には、各サンプルについて、高温保持処理前の表面近傍面積率SRおよび全体面積率ARと、高温保持処理後の全体面積率ARと、が示されている。表面近傍面積率SRは、以下のように測定された。まず、各サンプルの接地電極30の図3の断面CSの測定領域MA(図3)に対して、Ag成分のマッピング画像の撮影を行うことによって、測定領域MA内の銀析出物OPが検出された。マッピング画像の撮影には、FE-EPMA(Field Emission-Electron Probe Micro Analysis)、具体的には、日本電子株式会社製のJXA-8500Fに付属されたWDS(Wavelength Dispersive X-ray Spectrometer)が用いられた。マッピング画像の撮影は、加速電圧20KV、カウント数15万以上で行われた。そして、Ag成分のマッピング画像を用いて、測定領域MAの面積に対する銀析出物OPの面積が、表面近傍面積率SRとして算出された。 Table 2 shows, for each sample, the surface vicinity area ratio SR and the total area ratio AR before the high-temperature holding treatment, and the total area ratio AR after the high-temperature holding treatment. The surface vicinity area ratio SR was measured as follows. First, a silver deposit OP in the measurement area MA is detected by taking a mapping image of the Ag component in the measurement area MA (FIG. 3) of the cross section CS of FIG. 3 of the ground electrode 30 of each sample. It was. The mapping image is captured using FE-EPMA (Field Emission-Electron Probe Micro-Analysis), specifically, WDS (Wavelength Dispersive X-ray Spectrometer) attached to JXA-8500F manufactured by JEOL Ltd. It was. The mapping image was taken at an acceleration voltage of 20 KV and a count of 150,000 or more. Then, using the mapping image of the Ag component, the area of the silver precipitate OP with respect to the area of the measurement region MA was calculated as the surface vicinity area ratio SR.
 全体面積率ARは、図3の断面CSの中心近傍の80μm×80μmの矩形の領域(図示省略)を測定領域として同様の分析を行うことによって測定された。 The total area ratio AR was measured by performing the same analysis using a 80 μm × 80 μm rectangular region (not shown) in the vicinity of the center of the cross section CS in FIG. 3 as a measurement region.
 各サンプルの高温処理前の表面近傍面積率SRは、0.05%、0.06%、0.07%、0.08%、0.09%、0.10%、0.20%のいずれかであった。 The surface area ratio SR before high temperature treatment of each sample is any of 0.05%, 0.06%, 0.07%, 0.08%, 0.09%, 0.10%, 0.20%. It was.
 各サンプルの高温処理前の全体面積率ARは、0.05%、0.06%、0.07%、0.08%、0.09%、0.10%、0.11%、0.12%、0.13%、0.15%のいずれかであった。 The total area ratio AR of each sample before high temperature treatment is 0.05%, 0.06%, 0.07%, 0.08%, 0.09%, 0.10%, 0.11%,. It was either 12%, 0.13%, or 0.15%.
 各サンプルの高温処理後の全体面積率ARは、0.05%、0.06%、0.07%、0.08%、0.09%、0.10%、0.12%のいずれかであった。 The total area ratio AR of each sample after high temperature treatment is either 0.05%, 0.06%, 0.07%, 0.08%, 0.09%, 0.10%, or 0.12% Met.
 表2には、各サンプルの第2放電面39のNi露出率NRが示されている。Ni露出率NRは、以下のように測定された。接地電極30の第2放電面39の中心近傍の200μm×200μmの矩形の領域(図示省略)を測定領域として、上述したFE-EPMAを用いたNi成分のマッピング画像の撮影が行われた。マッピング画像の撮影は、加速電圧20KV、カウント数15万以上で行われた。そして、Ni成分のマッピング画像を用いて、測定領域の面積に対するNiが検出された部分の面積が、Ni露出率NRとして算出された。 Table 2 shows the Ni exposure rate NR of the second discharge surface 39 of each sample. The Ni exposure rate NR was measured as follows. Using the 200 μm × 200 μm rectangular area (not shown) in the vicinity of the center of the second discharge surface 39 of the ground electrode 30 as a measurement area, the above-described Ni component mapping image using the FE-EPMA was taken. The mapping image was taken at an acceleration voltage of 20 KV and a count of 150,000 or more. Then, using the Ni component mapping image, the area of the portion where Ni was detected relative to the area of the measurement region was calculated as the Ni exposure rate NR.
 各サンプルのNi露出率NRは、40%、45%、50%、55%、80%のいずれかであった。 The Ni exposure rate NR of each sample was 40%, 45%, 50%, 55%, or 80%.
 表2には、各サンプルの接地電極30のNi合金の高温保持処理前の平均粒径Raveと、高温保持処理後の平均粒径Raveが示されている。Ni合金の平均粒径Raveは、以下のように測定された。図5は、平均粒径Raveの測定法の説明図である。先ず、各サンプルの接地電極30の自由端32から2mm離れた位置を、長手方向と垂直に切断した断面(図3の断面CSと同様な形状を有する)を研磨して鏡面を得る。そして、該鏡面の拡大写真を、金属顕微鏡を用いて撮影する。該拡大写真において、該鏡面の中心に1mm×1mm(実寸値)の矩形領域SMA(図5)を特定する。そして、該矩形領域SMAを0.2mm×0.2mmの升目状に区切る縦方向の線L1、および、横方向の線L2を設定する(図5)。縦方向の線L1は、0.2mm間隔で並んでいる。縦方向の線L1の本数は、矩形領域SMAの外枠を形成する線を含めて、6本である。同様に、横方向の線L2は、0.2mm間隔で並んだ6本の線である。これらの12本の線L1、L2のそれぞれについて、当該線と、Ni合金の母材MPの結晶粒の粒界と、が交差する交差数を数える。そして、各線の交差数の合計をMcとする。この場合に、平均粒径Rave(単位はμm)は、図5に示すように、以下の式(1)を用いて算出される。
 Rave=(1000×12)/(Mc-12) ...(1)
Table 2 shows the average particle size Rave before the high temperature holding treatment of the Ni alloy of the ground electrode 30 of each sample and the average particle size Rave after the high temperature holding treatment. The average particle size Rave of the Ni alloy was measured as follows. FIG. 5 is an explanatory diagram of a method for measuring the average particle size Rave. First, a cross section (having the same shape as the cross section CS of FIG. 3) cut perpendicularly to the longitudinal direction is polished at a position 2 mm away from the free end 32 of the ground electrode 30 of each sample to obtain a mirror surface. Then, an enlarged photograph of the mirror surface is taken using a metal microscope. In the enlarged photograph, a rectangular area SMA (FIG. 5) of 1 mm × 1 mm (actual size value) is specified at the center of the mirror surface. Then, a vertical line L1 and a horizontal line L2 that divide the rectangular area SMA into a grid of 0.2 mm × 0.2 mm are set (FIG. 5). The vertical lines L1 are arranged at intervals of 0.2 mm. The number of vertical lines L1 is 6, including the lines forming the outer frame of the rectangular area SMA. Similarly, the horizontal line L2 is six lines arranged at intervals of 0.2 mm. For each of these 12 lines L1 and L2, the number of intersections between the line and the grain boundary of the crystal grain of the base material MP of the Ni alloy is counted. The total number of intersections of each line is Mc. In this case, the average particle size Rave (unit: μm) is calculated using the following formula (1) as shown in FIG.
Rave = (1000 × 12) / (Mc−12) (1)
 各サンプルの高温保持処理前の平均粒径Raveは、200μm、250μm、260μmのいずれかであった。各サンプルの高温保持処理後の平均粒径Raveは、250μm、260μmのいずれかであった。 The average particle size Rave before the high temperature holding treatment of each sample was any of 200 μm, 250 μm, and 260 μm. The average particle size Rave after the high temperature holding treatment of each sample was either 250 μm or 260 μm.
 これらのサンプル1~23は、上述した製造方法で作製され、上述したNi合金の組成、熱処理の条件、加工条件の少なくとも1個をサンプルごとに変更することによって、作製された。 These samples 1 to 23 were produced by the above-described manufacturing method, and were produced by changing at least one of the above-described Ni alloy composition, heat treatment conditions, and processing conditions for each sample.
 耐火花消耗性の評価試験では、低温域(摂氏約700度程度の温度域)での試験と、高温域(摂氏約900度の温度域)での試験と、が行われた。 In the evaluation test for spark wear resistance, a test in a low temperature range (a temperature range of about 700 degrees Celsius) and a test in a high temperature range (a temperature range of about 900 degrees Celsius) were performed.
 低温域の試験では、200時間の実機運転が行われ、実機運転後の各サンプルの間隙G(火花ギャップ)の増加量が測定された。実機運転は、4気筒、排気量1.3L、自然吸気のガソリンエンジンに各サンプルを取り付けて、スロットル全開(WOT(Wide-Open Throttle))、回転速度3000rpmの条件で行われた。 In the low-temperature region test, the actual machine operation was performed for 200 hours, and the amount of increase in the gap G (spark gap) of each sample after the actual machine operation was measured. The actual operation was carried out under the conditions of 4 cylinders, a displacement of 1.3 L, each sample attached to a naturally aspirated gasoline engine, full throttle (WOT (Wide-Open Throttle)), and a rotational speed of 3000 rpm.
 高温域の試験では、回転速度が5000rpmに設定され、その他の条件は、低温域の試験と同様の条件で行われた。 In the high temperature region test, the rotation speed was set to 5000 rpm, and the other conditions were the same as the low temperature region test.
 間隙Gの増加量が0.3mm以上であるサンプルの評価を「D」とし、0.2mm以上0.3mm未満であるサンプルの評価を「C」とし、0.1mm以上0.2mm未満であるサンプルの評価を「B」とし、0.1mm未満であるサンプルの評価を「A」とした。 The evaluation of the sample having an increase in the gap G of 0.3 mm or more is “D”, and the evaluation of the sample of 0.2 mm or more and less than 0.3 mm is “C”, and the evaluation is 0.1 mm or more and less than 0.2 mm. The evaluation of the sample was “B”, and the evaluation of the sample that was less than 0.1 mm was “A”.
 耐酸化性の試験では、200時間の実機運転が行われた。実機運転では、4気筒、排気量1.3L、自然吸気のガソリンエンジンに各サンプルを取り付けて、1分間のスロットル全開(WOT(Wide-Open Throttle))での運転の後に1分間のアイドリング運転を行うサイクルが、繰り返し行われた。スロットル全開の運転での回転速度は、3500rpmとされ、アイドリング運転での回転速度は、760rpmとされた。 In the oxidation resistance test, 200 hours of actual machine operation was performed. In actual operation, each sample was attached to a 4-cylinder, 1.3-liter, naturally aspirated gasoline engine, and a 1-minute idling operation was performed after a 1-minute full throttle operation (WOT (Wide-Open Throttle)). The cycle to be performed was repeated. The rotational speed in the fully throttle operation was 3500 rpm, and the rotational speed in the idling operation was 760 rpm.
 実機運転後の各サンプルの接地電極30の図3の断面CSを観察し、後端方向BD側(燃焼室の中心側)の表面における酸化物の層の厚さが測定された。酸化物の層の厚さがが0.1mm以上であるサンプルの評価を「B」とし、0.1mm未満であるサンプルの評価を「A」とした。 The cross section CS of FIG. 3 of the ground electrode 30 of each sample after actual machine operation was observed, and the thickness of the oxide layer on the surface on the rear end direction BD side (combustion chamber center side) was measured. The evaluation of the sample whose oxide layer thickness is 0.1 mm or more was “B”, and the evaluation of the sample whose thickness was less than 0.1 mm was “A”.
 強度の評価試験では、低温域での試験と、高温域での試験と、が行われた。 In the strength evaluation test, a test in a low temperature range and a test in a high temperature range were performed.
 低温域の試験では、小野式回転曲げ疲労試験機を用いて、各サンプルの接地電極30の材料について、JIS Z 2274に準拠した回転曲げ疲労試験が行われた。具体的な試験条件は、雰囲気:大気、試験温度:摂氏700度、繰り返し速度:3000rpm、加重波形:正弦波、応力比:-1(両振り)、繰り返し回数:10である。また、応力振幅は、100MP、150MPとの2種類を用いた。 In the low temperature region test, a rotating bending fatigue test based on JIS Z 2274 was performed on the material of the ground electrode 30 of each sample using an Ono type rotating bending fatigue tester. Specific test conditions, Atmosphere: air, test temperature: 700 degrees Celsius, repetition rate: 3000 rpm, the weighted waveform: sinusoidal, stress ratio: -1 (Reversed), number of repetitions: 10 7. Two types of stress amplitudes of 100MP and 150MP were used.
 高温域の試験では、試験温度が、摂氏900度に設定され、その他の条件は、低温域の試験と同様の条件で行われた。 In the high temperature range test, the test temperature was set to 900 degrees Celsius, and the other conditions were the same as the low temperature range test.
 応力振幅が100MPの試験で破断したサンプルの評価を「C」とし、応力振幅が100MPの試験で破断せず、応力振幅が150MPの試験で破断したサンプルの評価を「B」とし、応力振幅が150MPの試験で破断しなかったサンプルの評価を「A」とした。 The evaluation of the sample fractured in the test with a stress amplitude of 100 MP is “C”, the evaluation of the sample that is not broken in the test with the stress amplitude of 100 MP and the fracture with the test of the stress amplitude of 150 MP is “B”, and the stress amplitude is The evaluation of the sample that did not break in the 150 MP test was designated as “A”.
 評価結果は、以下の表3に示す通りである。 Evaluation results are as shown in Table 3 below.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 サンプル1~12は、比較のためのサンプルであり、上記実施形態が満たす上記(1)~(5)の少なくとも1つを満たしていない。サンプル13~23は、少なくとも上記(1)~(5)を全て満たしている。 Samples 1 to 12 are samples for comparison, and do not satisfy at least one of the above (1) to (5) that the above embodiment satisfies. Samples 13 to 23 satisfy at least all of the above (1) to (5).
 上記(2)を満たしていないサンプル1、2は、耐酸化性の評価は「B」であった。これに対して、上記(2)を満たしているサンプル3~23の耐酸化性の評価は「A」であった。この結果から、上記(2)を満たすことによって、接地電極30の耐酸化性を確保できることが確認できた。 Samples 1 and 2 that did not satisfy the above (2) had an oxidation resistance evaluation of “B”. In contrast, the evaluation of oxidation resistance of Samples 3 to 23 satisfying the above (2) was “A”. From this result, it was confirmed that the oxidation resistance of the ground electrode 30 can be ensured by satisfying the above (2).
 サンプル1~10は、上記(1)、(3)、(5)のうちの少なくとも1個を満たしていない。例えば、サンプル1~4は、(1)、(3)、(5)のいずれも満たしていない。サンプル5、6は、(1)を満たしているが、(3)、(5)を満たしていない。サンプル7、8は、(1)、(3)を満たしているが、(5)を満たしていない。サンプル9、10は、(1)、(5)を満たしているが、(3)を満たしていない。 Samples 1 to 10 do not satisfy at least one of the above (1), (3), and (5). For example, Samples 1 to 4 do not satisfy any of (1), (3), and (5). Samples 5 and 6 satisfy (1) but do not satisfy (3) and (5). Samples 7 and 8 satisfy (1) and (3), but do not satisfy (5). Samples 9 and 10 satisfy (1) and (5), but do not satisfy (3).
 上記(1)、(3)、(5)のうちの少なくとも1個を満たしていないサンプル1~10の低温域での耐火花消耗性の評価は、「D」であった。これに対して、上記(1)、(3)、(5)を全て満たすサンプル11~23の低温域での耐火花消耗性の評価は、「C」以上であった。この結果から、上記(1)、(3)、(5)を満たすことによって、接地電極30の低火花消耗性、特に低温域での耐火花消耗性を向上できることが確認できた。 The evaluation of the spark wear resistance in the low temperature range of Samples 1 to 10 that did not satisfy at least one of the above (1), (3), and (5) was “D”. In contrast, the samples 11 to 23 satisfying all of the above (1), (3), and (5) had an evaluation of spark wear resistance in a low temperature range of “C” or more. From this result, it was confirmed that satisfying the above (1), (3), and (5) can improve the low-spark wear resistance of the ground electrode 30, particularly the low-temperature range.
 上記(4)を満たしていないサンプル1~12の低温域での強度の評価は、「C」であった。これに対して、上記(4)を満たすサンプル13~23の低温域での強度の評価は、「B」以上であった。この結果から、上記(4)を満たすことによって、低温域での強度を向上できることが確認できた。 The evaluation of the strength in the low temperature range of Samples 1 to 12 not satisfying the above (4) was “C”. In contrast, the evaluation of the strength of the samples 13 to 23 satisfying the above (4) in the low temperature range was “B” or more. From this result, it was confirmed that the strength in the low temperature range can be improved by satisfying the above (4).
 以上の説明から解るように、上記(1)~(5)を全て満たすことによって、接地電極30の強度と耐酸化性と耐火花消耗性とを向上できることが確認できた。 As can be seen from the above description, it was confirmed that the strength, oxidation resistance, and spark consumption resistance of the ground electrode 30 can be improved by satisfying all of the above (1) to (5).
 さらに、上記(1)~(5)を全て満たすサンプル13~23について、さらに、説明する。これらのサンプル13~23のうち、Niの含有率が85重量%未満であるサンプル13~15の耐火花消耗性の評価は、高温域でも低温域でも「C」であった。これに対して、Niの含有率が85重量%以上であるサンプル16~23の耐火花消耗性の評価は、高温域でも低温域でも「B」以上であった。この結果から、接地電極30を形成するNi合金は、85重量%以上のNiを含むことで、接地電極30の耐火花消耗性を、さらに、向上できることが確認できた。 Further, samples 13 to 23 that satisfy all of the above (1) to (5) will be further described. Among these samples 13 to 23, the evaluation of the spark wear resistance of samples 13 to 15 having a Ni content of less than 85% by weight was “C” in both the high temperature range and the low temperature range. In contrast, the evaluation of the spark wear resistance of Samples 16 to 23 having a Ni content of 85% by weight or more was “B” or more in both the high temperature range and the low temperature range. From this result, it was confirmed that the Ni alloy forming the ground electrode 30 can further improve the spark wear resistance of the ground electrode 30 by containing 85 wt% or more of Ni.
 さらに、Niの含有率が85重量%以上であるサンプル16~23のうち、高温保持処理前の銀析出物OPの全体面積率ARが、0.10%未満であるサンプル16、17の低温域での耐火花消耗性および強度の評価は、「B」であった。これに対して、サンプル16~23のうち、高温保持処理前の銀析出物OPの全体面積率ARが、0.10%以上であるサンプル18~23の低温域での耐火花消耗性および強度の評価は、「A」であった。この結果から、高温保持処理前の銀析出物OPの全体面積率ARが、0.10%以上であることで、接地電極30の低温域での耐火花消耗性および強度を、さらに、向上できることが確認できた。 Further, among the samples 16 to 23 in which the Ni content is 85% by weight or more, the low area of the samples 16 and 17 in which the total area ratio AR of the silver precipitate OP before the high temperature holding treatment is less than 0.10% The evaluation of the spark wear resistance and strength was “B”. On the other hand, among samples 16 to 23, the spark wear resistance and strength in the low temperature range of samples 18 to 23 where the total area ratio AR of the silver precipitate OP before the high temperature holding treatment is 0.10% or more. The evaluation was “A”. From this result, it is possible to further improve the spark wear resistance and strength in the low temperature region of the ground electrode 30 when the overall area ratio AR of the silver precipitate OP before the high temperature holding treatment is 0.10% or more. Was confirmed.
 また、サンプル16~23のうち、高温保持処理後の銀析出物OPの全体面積率ARが、0.10%未満であるサンプル16~20の高温域での耐火花消耗性の評価は、「B」であった。これに対して、サンプル16~23のうち、高温保持処理後の銀析出物OPの全体面積率ARが、0.10%以上であるサンプル21~23の高温域での耐火花消耗性の評価は、「A」であった。この結果から、高温保持処理後の銀析出物OPの全体面積率ARが、0.10%以上であることで、接地電極30の高温域での耐火花消耗性を、さらに、向上できることが確認できた。 In addition, among samples 16 to 23, the evaluation of the spark wear resistance in the high temperature range of samples 16 to 20 in which the total area ratio AR of the silver precipitate OP after the high temperature holding treatment is less than 0.10% is “ B ". On the other hand, among samples 16 to 23, evaluation of the spark wear resistance in the high temperature region of samples 21 to 23 where the total area ratio AR of the silver precipitate OP after the high temperature holding treatment is 0.10% or more Was “A”. From this result, it is confirmed that the spark wear resistance in the high temperature region of the ground electrode 30 can be further improved when the overall area ratio AR of the silver precipitate OP after the high temperature holding treatment is 0.10% or more. did it.
 さらに、サンプル16~23のうち、高温保持処理後のNi合金の平均粒径Raveが、250μmを超えている、または、高温保持処理後の銀析出物OPの全体面積率ARが、0.10%未満であるサンプル16~21の高温域での強度の評価は、「B」であった。これに対して、サンプル16~23のうち、高温保持処理後のNi合金の平均粒径Raveが、250μm以下であり、かつ、高温保持処理後の銀析出物OPの全体面積率ARが、0.10%以上であるサンプル22、23の高温域での強度の評価は、「A」であった。この結果から、これに対して、高温保持処理後のNi合金の平均粒径Raveが、250μm以下であり、かつ、高温保持処理後の銀析出物OPの全体面積率ARが、0.10%以上であることで、接地電極30の高温域での強度をさらに向上できることが確認できた。 Further, among samples 16 to 23, the average particle diameter Rave of the Ni alloy after the high temperature holding treatment exceeds 250 μm, or the total area ratio AR of the silver precipitate OP after the high temperature holding treatment is 0.10. The evaluation of the strength in the high temperature range of Samples 16 to 21, which was less than%, was “B”. On the other hand, among samples 16 to 23, the average particle size Rave of the Ni alloy after the high temperature holding treatment is 250 μm or less, and the total area ratio AR of the silver precipitate OP after the high temperature holding treatment is 0. The evaluation of the strength of the samples 22 and 23 at 10% or higher in the high temperature range was “A”. From this result, in contrast, the average particle size Rave of the Ni alloy after the high temperature holding treatment is 250 μm or less, and the total area ratio AR of the silver precipitate OP after the high temperature holding treatment is 0.10%. As a result, it was confirmed that the strength of the ground electrode 30 in the high temperature range could be further improved.
C.第2実施形態
 上記第1実施形態の接地電極30の材料は、中心電極20の材料としても用いることができる。この例を第2実施形態として説明する。第2実施形態の中心電極20の材料を除く構成は、図1、図2に示す第1実施例の点火プラグ100の構成と同一である。
C. Second Embodiment The material of the ground electrode 30 of the first embodiment can also be used as the material of the center electrode 20. This example will be described as a second embodiment. The configuration excluding the material of the center electrode 20 of the second embodiment is the same as the configuration of the spark plug 100 of the first example shown in FIGS.
 図6は、第2実施形態の中心電極20を、間隙Gの近傍で、中心電極20の長手方向と垂直に切断する断面CS2を示す図である。この断面CS2は、図2のB-B断面である。この断面CS2は、第1放電面29と平行で、第1放電面29との距離ΔHが、0.3mm以下である断面である。本実施形態では、断面CSは、円形を有している。図6の下側には、図6の上側の断面における表面の近傍の領域SAbの拡大図が示されている。 FIG. 6 is a view showing a cross-section CS2 that cuts the center electrode 20 of the second embodiment in the vicinity of the gap G in a direction perpendicular to the longitudinal direction of the center electrode 20. This section CS2 is a section taken along line BB in FIG. The cross section CS2 is a cross section parallel to the first discharge surface 29 and having a distance ΔH with respect to the first discharge surface 29 of 0.3 mm or less. In the present embodiment, the cross section CS has a circular shape. 6 shows an enlarged view of the area SAb in the vicinity of the surface in the upper cross section of FIG.
 第2実施形態では、中心電極20の材料は、第1実施形態の接地電極30が満たす上記(1)~(5)を満たしている。この結果、点火プラグの中心電極20の強度と耐酸化性と耐火花消耗性とを向上することができる。なお、第2実施形態においても、中心電極20を形成するNi合金は、85重量%以上のNiを含むことが好ましい。また、銀析出物OPの全体面積率ARは、0.1%以上であることが好ましい。さらには、高温保持処理後の状態において、銀析出物OPの全体面積率ARは、0.1%以上であり、Ni合金の平均粒径Raveは、250μm以下であることが好ましい。 In the second embodiment, the material of the center electrode 20 satisfies the above (1) to (5) that the ground electrode 30 of the first embodiment satisfies. As a result, the strength, oxidation resistance, and spark consumption resistance of the center electrode 20 of the spark plug can be improved. In the second embodiment as well, the Ni alloy forming the center electrode 20 preferably contains 85% by weight or more of Ni. The total area ratio AR of the silver precipitate OP is preferably 0.1% or more. Furthermore, in the state after the high temperature holding treatment, the total area ratio AR of the silver precipitate OP is preferably 0.1% or more, and the average particle size Rave of the Ni alloy is preferably 250 μm or less.
 ただし、第2実施形態では、第1実施形態において図3の断面CSにおいて測定された表面近傍面積率SRおよび全体面積率ARは、図6の断面CS2において測定される。具体的には、第2実施例の表面近傍面積率SRの測定領域MAbは、図6に示すように、中心電極20の表面(側面)から深さ方向の距離が100μmの点(図6の点P2)を始点、180μmの点(図6の点P1)を終点とする80μm×80μmの矩形の領域である。例えば、図6の例では、始点P2は、断面CS2の中心(図6では軸線COの位置)を通る直線L1上の点であって、線L1と中心電極20の表面との交点P3との距離が100μmである点である。また、終点P1は、線L1上の点であって、点P2との距離が80μmであり、点P3との距離が180μmである点である。測定領域MAbの4辺のうちの2辺は、線L1と平行であり、他の2辺は、線L1と垂直である。測定領域MAbの線L1と垂直な2辺のうち、表面に近い一辺の中心は、始点P2と一致し、表面から遠い他の一辺の中心は、終点P1と一致する。また、第2実施形態では、全体面積率ARは、図6の断面CS2の全体の面積に対する銀析出物OPが占める面積の割合である。 However, in the second embodiment, the surface vicinity area ratio SR and the overall area ratio AR measured in the cross section CS of FIG. 3 in the first embodiment are measured in the cross section CS2 of FIG. Specifically, the measurement area MAb of the near-surface area ratio SR of the second embodiment has a point (100 in FIG. 6) having a distance in the depth direction from the surface (side surface) of the center electrode 20 as shown in FIG. This is a rectangular region of 80 μm × 80 μm starting from a point P2) and ending at a point of 180 μm (point P1 in FIG. 6). For example, in the example of FIG. 6, the start point P2 is a point on the straight line L1 passing through the center of the cross section CS2 (the position of the axis CO in FIG. 6), and the intersection point P3 of the line L1 and the surface of the central electrode 20 The distance is 100 μm. The end point P1 is a point on the line L1, and is a point whose distance from the point P2 is 80 μm and whose distance from the point P3 is 180 μm. Two of the four sides of the measurement region MAb are parallel to the line L1, and the other two sides are perpendicular to the line L1. Of the two sides perpendicular to the line L1 of the measurement region MAb, the center of one side close to the surface coincides with the start point P2, and the center of the other side far from the surface coincides with the end point P1. In the second embodiment, the overall area ratio AR is the ratio of the area occupied by the silver precipitate OP to the entire area of the cross section CS2 in FIG.
D.変形例1 D. Modification 1
(1)上記第1実施形態では、接地電極30は、全体がNi合金を用いて形成されている。図7は、変形例の接地電極30bの断面CSを示す図である。変形例の接地電極30bは、Ni合金で形成された外側部分301と、銅などのNi合金より熱伝導性が高い材料で形成された芯部302と、を備える2層構造を有している。この場合には、接地電極30のうち、Ni合金で形成された外側部分301が、上記(1)~(5)を満たしていれば良い。 (1) In the first embodiment, the ground electrode 30 is entirely formed using a Ni alloy. FIG. 7 is a diagram illustrating a cross-section CS of the ground electrode 30b according to the modification. The ground electrode 30b of the modified example has a two-layer structure including an outer portion 301 formed of a Ni alloy and a core portion 302 formed of a material having higher thermal conductivity than a Ni alloy such as copper. . In this case, it is only necessary that the outer portion 301 made of the Ni alloy of the ground electrode 30 satisfies the above (1) to (5).
 同様に、第2実施形態の中心電極20も、Ni合金で形成された外側部分と、熱伝導性が高い材料で形成された芯部と、を備える2層構造を有していても良い。この場合も、Ni合金で形成された外側部分が、上記(1)~(5)を満たしていれば良い。 Similarly, the center electrode 20 of the second embodiment may also have a two-layer structure including an outer portion formed of a Ni alloy and a core portion formed of a material having high thermal conductivity. Also in this case, it is only necessary that the outer portion made of the Ni alloy satisfies the above (1) to (5).
(2)上記第1実施例の接地電極30は、上述したように上記(1)~(5)を満たしている。しかしながら、上記(5)の第2放電面39のNi露出率NRは、50%以上であることを満たしていたとしても、例えば、点火プラグの出荷の前に、実機運転等が行われる場合には、該実機運転で加熱されることによって、接地電極30の表面に、Al、Cr、Si、Mnなどの酸化皮膜が形成される。この結果、点火プラグの出荷時には、上記(5)は満たされないが、接地電極30の強度、耐火花消耗性、強度は、第1実施形態の点火プラグと同等である。このように、点火プラグの出荷時には、上記(5)は満たされていなくても良い。第2実施例の中心電極20についても同様である。 (2) The ground electrode 30 of the first embodiment satisfies the above (1) to (5) as described above. However, even if the Ni exposure rate NR of the second discharge surface 39 in (5) satisfies that it is 50% or more, for example, when actual operation or the like is performed before the ignition plug is shipped. Is heated in the actual operation, thereby forming an oxide film of Al, Cr, Si, Mn or the like on the surface of the ground electrode 30. As a result, when the spark plug is shipped, the above (5) is not satisfied, but the strength, spark wear resistance, and strength of the ground electrode 30 are equivalent to those of the spark plug of the first embodiment. Thus, when the spark plug is shipped, the above (5) may not be satisfied. The same applies to the center electrode 20 of the second embodiment.
(3)図1、2の点火プラグ100の具体的構成は、一例であり、他の構成が採用され得る。例えば、点火プラグの発火部の構成は、様々な構成が採用され得る。例えば、点火プラグは、軸線と垂直な方向に接地電極30と中心電極20とが対向して、ギャップを形成するタイプの点火プラグでも良い。また、複数個の接地電極30と、1個の中心電極20と、を備え、複数個のギャップが形成されるタイプの点火プラグでも良い。 (3) The specific configuration of the spark plug 100 of FIGS. 1 and 2 is an example, and other configurations may be employed. For example, various configurations can be adopted as the configuration of the ignition portion of the spark plug. For example, the spark plug may be a spark plug of a type in which the ground electrode 30 and the center electrode 20 face each other in a direction perpendicular to the axis to form a gap. Further, a spark plug of a type that includes a plurality of ground electrodes 30 and one center electrode 20 and that has a plurality of gaps may be used.
 また、例えば、絶縁体10の材料や、端子金具40の材料は、上述の材料に限られない。例えば、絶縁体10は、アルミナ(Al)を主成分とするセラミックスに代えて、他の化合物(例えば、AlN、ZrO、SiC、TiO、Yなど)を主成分とするセラミックスを用いて形成されてもよい。 For example, the material of the insulator 10 and the material of the terminal fitting 40 are not limited to the above-described materials. For example, the insulator 10 is composed of other compounds (for example, AlN, ZrO 2 , SiC, TiO 2 , Y 2 O 3, etc.) as the main component instead of ceramics whose main component is alumina (Al 2 O 3 ). It may be formed using ceramics.
以上、本発明の実施形態および変形例について説明したが、本発明はこれらの実施形態および変形例になんら限定されるものではなく、その要旨を逸脱しない範囲内において種々の態様での実施が可能である。 As mentioned above, although embodiment and modification of this invention were described, this invention is not limited to these embodiment and modification at all, and implementation in a various aspect is possible within the range which does not deviate from the summary. It is.
 5...ガスケット、6...第2パッキン、7...第3パッキン、8...第1パッキン、9...タルク、10...絶縁体、12...軸孔、13...脚部、15...縮外径部、16...縮内径部、17...第1胴部、18...第2胴部、19...鍔部、20...中心電極、23...頭部、24...鍔部、25...脚部、29...第1放電面、30、30b...接地電極、31...接続端、32...自由端、33...接続部、34...自由端部、39...第2放電面、40...端子金具、41...キャップ装着部、42...鍔部、43...脚部、50...主体金具、51...工具係合部、52...ネジ部、53...加締部、54...座部、56...縮内径部、58...変形部、59...挿入孔、60...第1の導電性シール層、70...抵抗体、80...第2の導電性シール層、100...点火プラグ、MP...母材、OP...銀析出物、AR...全体面積率、SR...表面近傍面積率 5 ... gasket, 6 ... second packing, 7 ... third packing, 8 ... first packing, 9 ... talc, 10 ... insulator, 12 ... shaft hole, 13 ... Leg part, 15 ... Reduced outer diameter part, 16 ... Reduced inner diameter part, 17 ... First trunk part, 18 ... Second trunk part, 19 ... Gutter part, 20 ... center electrode, 23 ... head, 24 ... collar, 25 ... leg, 29 ... first discharge surface, 30, 30b ... ground electrode, 31 ... connection End, 32 ... Free end, 33 ... Connection part, 34 ... Free end part, 39 ... Second discharge surface, 40 ... Terminal fitting, 41 ... Cap mounting part, 42. .. Butt part, 43 ... Leg part, 50 ... Metal fitting, 51 ... Tool engagement part, 52 ... Screw part, 53 ... Clamping part, 54 ... Seat part, 56 ... Reduced inner diameter portion, 58 ... Deformed portion, 59 ... Insertion hole, 60 ... First conductive seal layer, 70 ... Resistor, 80 ... Second conductivity Seal layer, 100 ... Spark plug, MP ... Base material, OP ... Silver deposit, R ... total area ratio, SR ... near the surface area ratio

Claims (5)

  1.  中心電極と、前記中心電極との間に間隙を形成する接地電極と、を備え、前記中心電極と前記接地電極とのうちの少なくとも一方の電極は、50重量%以上のニッケル(Ni)を含むNi合金を用いて形成されている点火プラグであって、
     前記Ni合金は、アルミニウム(Al)と、クロム(Cr)と、ケイ素(Si)と、マンガン(Mn)と、から成る群から選択される1種以上の元素を合計で1質量%以上含有し、かつ、銀(Ag)を含有し、
     前記電極のうち、前記Ni合金で形成された部分を、前記間隙の近傍で前記電極の長手方向と垂直に切断する断面において、
      前記電極の表面からの深さ方向の距離が100μmの点を始点、180μmの点を終点とする80μm×80μmの測定領域の面積に対するAgを含む析出物が占める面積の割合は、0.1%以上であり、
      前記Ni合金の平均粒径は、250μm以下である、点火プラグ。
    A center electrode and a ground electrode that forms a gap between the center electrode, and at least one of the center electrode and the ground electrode includes 50% by weight or more of nickel (Ni) A spark plug formed using a Ni alloy,
    The Ni alloy contains 1% by mass or more in total of one or more elements selected from the group consisting of aluminum (Al), chromium (Cr), silicon (Si), and manganese (Mn). And containing silver (Ag),
    Of the electrode, in a cross section in which the portion formed of the Ni alloy is cut perpendicularly to the longitudinal direction of the electrode in the vicinity of the gap,
    The ratio of the area occupied by the precipitate containing Ag to the area of the measurement area of 80 μm × 80 μm starting from a point with a distance of 100 μm in the depth direction from the surface of the electrode and ending with a point of 180 μm is 0.1% That's it,
    The spark plug, wherein the Ni alloy has an average particle size of 250 μm or less.
  2.  請求項1に記載の点火プラグであって、
     前記電極の表面のうち前記間隙を形成する放電面において、Niが露出する面積の割合は、50%以上である、点火プラグ。
    The spark plug according to claim 1,
    A spark plug in which a ratio of an area where Ni is exposed on a discharge surface forming the gap in the surface of the electrode is 50% or more.
  3.  請求項1または2に記載の点火プラグであって、
     前記Ni合金は、85重量%以上のNiを含む、点火プラグ。
    The spark plug according to claim 1 or 2,
    The Ni alloy is a spark plug including 85% by weight or more of Ni.
  4.  請求項1~3のいずれかに記載の点火プラグであって、
     前記断面の全体の面積に対するAgを含む析出物が占める面積の割合は、0.1%以上である、点火プラグ。
    The spark plug according to any one of claims 1 to 3,
    The ratio of the area which the deposit containing Ag with respect to the whole area of the said cross section occupies is 0.1% or more.
  5.  請求項1~4のいずれかに記載の点火プラグであって、
     アルゴン雰囲気中に摂氏1000度で50時間保持した後に水冷により常温まで冷却した状態において、
      前記断面の全体の面積に対するAgを含む析出物が占める面積の割合は、0.1%以上であり、
      前記Ni合金の平均粒径は、250μm以下である、点火プラグ。
    The spark plug according to any one of claims 1 to 4,
    In a state cooled to room temperature by water cooling after holding at 1000 degrees Celsius for 50 hours in an argon atmosphere,
    The ratio of the area occupied by the precipitate containing Ag to the total area of the cross section is 0.1% or more,
    The spark plug, wherein the Ni alloy has an average particle size of 250 μm or less.
PCT/JP2017/032600 2016-11-30 2017-09-11 Ignition plug WO2018100831A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016233693A JP6456343B2 (en) 2016-11-30 2016-11-30 Spark plug
JP2016-233693 2016-11-30

Publications (1)

Publication Number Publication Date
WO2018100831A1 true WO2018100831A1 (en) 2018-06-07

Family

ID=62241570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032600 WO2018100831A1 (en) 2016-11-30 2017-09-11 Ignition plug

Country Status (2)

Country Link
JP (1) JP6456343B2 (en)
WO (1) WO2018100831A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7206983B2 (en) * 2019-02-08 2023-01-18 株式会社Ihi Ni alloy creep life evaluation method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03111534A (en) * 1989-09-26 1991-05-13 Mitsubishi Materials Corp Electrode material for spark plug
JPH09291327A (en) * 1996-04-26 1997-11-11 Sumitomo Electric Ind Ltd Electrode material for ignition plug

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4203250A1 (en) * 1992-02-05 1993-08-12 Beru Werk Ruprecht Gmbh Co A SILVER-NICKEL COMPOSITE FOR ELECTRICAL CONTACTS AND ELECTRODES
JPH06314587A (en) * 1993-04-30 1994-11-08 Tanaka Kikinzoku Kogyo Kk Composite material of electrode causing discharge

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03111534A (en) * 1989-09-26 1991-05-13 Mitsubishi Materials Corp Electrode material for spark plug
JPH09291327A (en) * 1996-04-26 1997-11-11 Sumitomo Electric Ind Ltd Electrode material for ignition plug

Also Published As

Publication number Publication date
JP6456343B2 (en) 2019-01-23
JP2018092751A (en) 2018-06-14

Similar Documents

Publication Publication Date Title
JP5341752B2 (en) Spark plug for internal combustion engine and method for manufacturing the same
JP5200247B2 (en) Ignition electrode
US8618725B2 (en) Spark plug
EP1677400B1 (en) Spark plug
EP1309053B1 (en) Spark plug
JP4965692B2 (en) Spark plug
JP4753432B2 (en) Spark plug for internal combustion engine
EP2325960B1 (en) Spark plug
WO2013003325A2 (en) Electrode material for a spark plug
WO2011068834A2 (en) Electrode material for a spark plug
WO2012056599A1 (en) Spark plug
KR101392129B1 (en) Spark Plug
WO2012094359A2 (en) Ruthenium-based electrode material for a spark plug
WO2013018252A1 (en) Spark plug
JP6456343B2 (en) Spark plug
JP2009087925A (en) Spark plug
US8593045B2 (en) Spark plug
JP5815649B2 (en) Spark plug
WO2014097983A1 (en) Spark plug
JP4746707B1 (en) Spark plug
JP6061307B2 (en) Spark plug
JP2003105467A (en) Spark plug
JP6335979B2 (en) Spark plug
JP6276216B2 (en) Spark plug

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17876760

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17876760

Country of ref document: EP

Kind code of ref document: A1