WO2018100744A1 - Control device, imaging device, moving body, determination method, and program - Google Patents

Control device, imaging device, moving body, determination method, and program Download PDF

Info

Publication number
WO2018100744A1
WO2018100744A1 PCT/JP2016/085978 JP2016085978W WO2018100744A1 WO 2018100744 A1 WO2018100744 A1 WO 2018100744A1 JP 2016085978 W JP2016085978 W JP 2016085978W WO 2018100744 A1 WO2018100744 A1 WO 2018100744A1
Authority
WO
WIPO (PCT)
Prior art keywords
altitude
scanning range
width
information
imaging device
Prior art date
Application number
PCT/JP2016/085978
Other languages
French (fr)
Japanese (ja)
Inventor
本庄謙一
永山佳範
Original Assignee
エスゼット ディージェイアイ テクノロジー カンパニー リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エスゼット ディージェイアイ テクノロジー カンパニー リミテッド filed Critical エスゼット ディージェイアイ テクノロジー カンパニー リミテッド
Priority to PCT/JP2016/085978 priority Critical patent/WO2018100744A1/en
Priority to JP2017559737A priority patent/JP6543879B2/en
Publication of WO2018100744A1 publication Critical patent/WO2018100744A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U20/00Constructional aspects of UAVs
    • B64U20/80Arrangement of on-board electronics, e.g. avionics systems or wiring
    • B64U20/87Mounting of imaging devices, e.g. mounting of gimbals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/36Systems for automatic generation of focusing signals using image sharpness techniques, e.g. image processing techniques for generating autofocus signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports

Definitions

  • the present invention relates to a control device, an imaging device, a moving body, a determination method, and a program.
  • Patent Document 1 when the elapsed time from the power-on to the image input device is included in the time range corresponding to the fluctuation period of the ambient temperature of the distance measuring sensor, the elapsed time corresponds to the stable period of the ambient temperature. It is described that the scanning range of the focus lens in autofocus is set wider than that included in the time range. Patent Document 1 Japanese Patent No. 4226936
  • the environment such as the ambient temperature of the imaging device may change. Such environmental changes may affect the movement of the focus lens of the imaging apparatus.
  • the control device may include an acquisition unit that acquires altitude information of the imaging device.
  • the control device may include a determination unit that determines a scanning range of the focus lens when determining the focus position of the imaging device based on the altitude information.
  • the determining unit may determine the width of the scanning range based on the altitude information.
  • the determination unit may determine the width of the scanning range as the first width when the height indicated by the height information is the first height.
  • the determining unit may determine the width of the scanning range to a second width that is narrower than the first width.
  • the determination unit may narrow the width of the scanning range when the altitude indicated by the altitude information is higher.
  • the determining unit may determine the width of the scanning range as the first width.
  • the determination unit may determine the width of the scanning range as the second width.
  • the determining unit may determine the end on the closest end side of the scanning range to a position closer to the infinity end side.
  • the determining unit may determine the end on the closest end side of the scanning range as the first position.
  • the determining unit may determine the end on the closest end side of the scanning range as the second position on the infinity end side from the first position.
  • the acquisition unit may acquire temperature information of the imaging device.
  • the determination unit may determine the scanning range based on altitude information and temperature information.
  • the determining unit may determine the width of the scanning range as the first width.
  • the determining unit determines the width of the scanning range to be a third width that is narrower than the first width. It's okay.
  • the control device may include a detection unit that detects an object existing within a predetermined range from the imaging device.
  • the determination unit may determine the scanning range without using the altitude information.
  • An imaging device may include the control device.
  • the imaging device may include a focus lens.
  • the imaging apparatus may include a control unit that controls the movement of the focus lens based on the scanning range determined by the determination unit.
  • the moving body according to one embodiment of the present invention may move with the imaging device.
  • the determination method may include a step of acquiring altitude information of the imaging device.
  • the determination method may include a step of determining a scan range of the focus lens when determining the focus position of the imaging device based on the altitude information.
  • the program may cause a computer to execute the step of acquiring altitude information of the imaging device.
  • the program may cause the computer to execute a step of determining the scanning range of the focus lens when determining the focus position of the imaging device based on the altitude information.
  • FIG. 1 Various embodiments of the present invention may be described with reference to flowcharts and block diagrams.
  • the blocks in the flowcharts and block diagrams may represent (1) the stage of the process in which the operation is performed or (2) the “part” of the device responsible for performing the operation.
  • Certain stages and “parts” are provided with dedicated circuitry, programmable circuitry supplied with computer readable instructions stored on a computer readable storage medium, and / or computer readable instructions stored on a computer readable storage medium. It may be implemented by a processor.
  • Dedicated circuitry may include digital and / or analog hardware circuitry. Integrated circuits (ICs) and / or discrete circuits may be included.
  • Programmable circuits may be logical products, logical sums, exclusive logical sums, negative logical products, negative logical sums, and other logical operations, such as field programmable gate arrays (FPGAs) and programmable logic arrays (PLA), for example. , Flip-flops, registers, and memory elements, including reconfigurable hardware circuitry.
  • FPGAs field programmable gate arrays
  • PLA programmable logic arrays
  • a computer-readable storage medium may include any tangible device capable of storing instructions to be executed by a suitable device.
  • a computer readable storage medium having instructions stored thereon comprises a product that includes instructions that can be executed to create a means for performing the operations specified in the flowcharts or block diagrams.
  • Examples of computer readable storage media may include electronic storage media, magnetic storage media, optical storage media, electromagnetic storage media, semiconductor storage media, and the like. More specific examples of computer-readable storage media include floppy disks, diskettes, hard disks, random access memory (RAM), read only memory (ROM), erasable programmable read only memory (EPROM or flash memory).
  • EEPROM Electrically erasable programmable read only memory
  • SRAM static random access memory
  • CD-ROM compact disc read only memory
  • DVD digital versatile disc
  • Blu-ray registered trademark
  • the computer readable instructions may include either source code or object code written in any combination of one or more programming languages.
  • the source code or object code includes a conventional procedural programming language.
  • Conventional procedural programming languages include assembler instructions, instruction set architecture (ISA) instructions, machine instructions, machine dependent instructions, microcode, firmware instructions, state setting data, or Smalltalk, JAVA, C ++, etc. It may be an object-oriented programming language and a “C” programming language or a similar programming language.
  • Computer readable instructions may be directed to a general purpose computer, special purpose computer, or other programmable data processing device processor or programmable circuit locally or in a wide area network (WAN) such as a local area network (LAN), the Internet, etc. ).
  • the processor or programmable circuit may execute computer readable instructions to create a means for performing the operations specified in the flowcharts or block diagrams. Examples of processors include computer processors, processing units, microprocessors, digital signal processors, controllers, microcontrollers, and the like.
  • FIG. 1 shows an example of the appearance of an unmanned aerial vehicle (UAV) 100.
  • the UAV 100 includes a UAV main body 102, a gimbal 200, an imaging device 300, and a plurality of imaging devices 230.
  • the UAV 100 is an example of a moving object.
  • the moving body is a concept including, in addition to UAV, other aircraft that moves in the air, vehicles that move on the ground, ships that move on the water, and the like.
  • the gimbal 200 and the imaging device 300 are an example of an imaging system.
  • the UAV main body 102 includes a plurality of rotor blades.
  • the UAV main body 102 flies the UAV 100 by controlling the rotation of a plurality of rotor blades.
  • the UAV main body 102 causes the UAV 100 to fly using four rotary wings.
  • the number of rotor blades is not limited to four.
  • the UAV 100 may be a fixed wing aircraft that does not have a rotating wing.
  • the imaging device 300 is a camera for capturing a moving image or a still image.
  • the plurality of imaging devices 230 are sensing cameras that image the surroundings of the UAV 100 in order to control the flight of the UAV 100.
  • Two imaging devices 230 may be provided on the front surface that is the nose of the UAV 100.
  • Two other imaging devices 230 may be provided on the bottom surface of the UAV 100.
  • the two imaging devices 230 on the front side may be paired and function as a so-called stereo camera.
  • the two imaging devices 230 on the bottom side may also be paired and function as a stereo camera.
  • the distance from the UAV 100 to the object may be measured based on images captured by the plurality of imaging devices 230.
  • Three-dimensional spatial data around the UAV 100 may be generated based on images captured by the plurality of imaging devices 230.
  • the number of imaging devices 230 included in the UAV 100 is not limited to four.
  • the UAV 100 only needs to include at least one imaging device 230.
  • the UAV 100 may include at least one imaging device 230 on each of the nose, the tail, the side surface, the bottom surface, and the ceiling surface of the UAV 100.
  • the angle of view that can be set by the imaging device 230 may be wider than the angle of view that can be set by the imaging device 300.
  • the imaging device 230 may have a single focus lens or a fisheye lens.
  • the imaging device 300 mounted on the UAV 100 configured as described above images a target at various altitudes.
  • the temperature of the imaging device 300 may change.
  • the hardness of the grease used to drive the focus lens of the imaging device 300 may change.
  • the imaging apparatus 300 adjusts the altitude of the UAV 100, that is, the focus lens scanning range when determining the focus position of the imaging apparatus 300 according to the altitude of the imaging apparatus 300. For example, when the altitude is higher, the width of the scanning range is made narrower. This prevents the time for determining the focus position from increasing as the altitude increases.
  • FIG. 2 shows an example of functional blocks of the UAV100.
  • the UAV 100 includes a UAV control unit 110, a communication interface 150, a memory 160, a gimbal 200, a rotating blade mechanism 210, an imaging device 300, an imaging device 230, a GPS receiver 240, an inertial measurement device (IMU) 250, a magnetic compass 260, and an atmospheric pressure.
  • An altimeter 270 is provided.
  • the communication interface 150 communicates with an external transmitter.
  • the communication interface 150 receives various commands for the UAV control unit 110 from a remote transmitter.
  • the memory 160 stores programs necessary for the UAV control unit 110 to control the gimbal 200, the rotary blade mechanism 210, the imaging device 300, the imaging device 230, the GPS receiver 240, the IMU 250, the magnetic compass 260, and the barometric altimeter 270.
  • the memory 160 may be a computer-readable recording medium and may include at least one of flash memory such as SRAM, DRAM, EPROM, EEPROM, and USB memory.
  • the memory 160 may be provided inside the UAV main body 102. It may be provided so as to be removable from the UAV main body 102.
  • the gimbal 200 supports the imaging direction of the imaging device 300 so that it can be adjusted.
  • the gimbal 200 supports the imaging device 300 rotatably around at least one axis.
  • the gimbal 200 is an example of a support mechanism.
  • the gimbal 200 may support the imaging device 300 rotatably about the yaw axis, the pitch axis, and the roll axis.
  • the gimbal 200 may change the imaging direction of the imaging device 300 by rotating the imaging device 300 about at least one of the yaw axis, the pitch axis, and the roll axis.
  • the rotary blade mechanism 210 includes a plurality of rotary blades and a plurality of drive motors that rotate the plurality of rotary blades.
  • the imaging device 230 captures the surroundings of the UAV 100 and generates image data. Image data of the imaging device 230 is stored in the memory 160.
  • the GPS receiver 240 receives a plurality of signals indicating times transmitted from a plurality of GPS satellites. The GPS receiver 240 calculates the position of the GPS receiver 240, that is, the position of the UAV 100, based on the received signals.
  • the inertial measurement device (IMU) 250 detects the posture of the UAV 100.
  • the IMU 250 detects, as the posture of the UAV 100, acceleration in the three axial directions of the front, rear, left, and upper sides of the UAV 100, and angular velocity in the three axial directions of pitch, roll, and yaw.
  • the magnetic compass 260 detects the heading of the UAV 100.
  • the barometric altimeter 270 detects the altitude at which the UAV 100 flies.
  • the UAV control unit 110 controls the flight of the UAV 100 in accordance with a program stored in the memory 160.
  • the UAV control unit 110 may be configured by a microprocessor such as a CPU or MPU, a microcontroller such as an MCU, or the like.
  • the UAV control unit 110 controls the flight of the UAV 100 according to a command received from a remote transmitter via the communication interface 150.
  • the UAV control unit 110 may specify the environment around the UAV 100 by analyzing a plurality of images captured by the plurality of imaging devices 230.
  • the UAV control unit 110 controls the flight while avoiding obstacles based on the environment around the UAV 100, for example.
  • the UAV control unit 110 may generate three-dimensional spatial data around the UAV 100 based on a plurality of images captured by the plurality of imaging devices 230, and control the flight based on the three-dimensional spatial data.
  • the UAV control unit 110 may measure the distance between the UAV 100 and the object by a triangulation method based on a plurality of images captured by the plurality of imaging devices 230.
  • the UAV control unit 110 may measure the distance between the UAV 100 and the object using an ultrasonic sensor, an infrared sensor, a radar sensor, or the like.
  • the imaging apparatus 300 includes an imaging control unit 310, a lens control unit 320, a lens moving mechanism 322, a lens position detection unit 324, a plurality of lenses 326, an imaging element 330, a temperature sensor 332, and a memory 340.
  • the imaging control unit 310 may be configured by a microprocessor such as a CPU or MPU, a microcontroller such as an MCU, or the like.
  • the imaging control unit 310 may control the imaging device 300 in accordance with an operation command for the imaging device 300 from the UAV control unit 110.
  • the imaging control unit 310 is an example of a control device.
  • the memory 340 may be a computer readable recording medium and may include at least one of flash memory such as SRAM, DRAM, EPROM, EEPROM, and USB memory.
  • the memory 340 may be provided inside the housing of the imaging device 300.
  • the memory 340 may be provided so as to be removable from the housing of the imaging apparatus 300.
  • the plurality of lenses 326 includes a zoom lens and a focus lens.
  • the lens 326 of the imaging device 300 may be a lens unit that can be detached from the imaging device 300.
  • a lens 326, a lens controller 320, a lens position detector 324, and a temperature sensor 332 are mounted on the lens unit.
  • the imaging device 330 may be configured by a CCD or a CMOS.
  • the image pickup device 330 is held inside the housing of the image pickup apparatus 300, and outputs image data of an optical image formed through the plurality of lenses 326 to the image pickup control unit 310.
  • the temperature sensor 332 detects the temperature of the imaging device 300.
  • the temperature sensor 332 may be provided in the imaging device 300 or may be provided outside the imaging device 300.
  • the temperature sensor 332 may be provided in the UAV main body 102.
  • the lens control unit 320 controls the movement of the plurality of lenses 326 via the lens moving mechanism 322. Some or all of the plurality of lenses 326 are moved along the optical axis by the lens moving mechanism 322.
  • the lens control unit 320 moves at least one of the plurality of lenses 326 along the optical axis in accordance with a lens operation command from the imaging control unit 310.
  • the lens control unit 320 executes at least one of a zoom operation and a focus operation by moving at least one of the plurality of lenses 326 along the optical axis.
  • the lens control unit 320 moves the focus lens within the scanning range designated by the imaging control unit 310 and executes an autofocus operation.
  • the lens position detection unit 324 detects the position of each of the plurality of lenses 326.
  • the lens position detection unit 324 detects the current zoom position and focus position.
  • the imaging control unit 310 performs a series of image processing such as noise reduction, demosaicing, gamma correction, and edge cooperation on the image data.
  • the imaging control unit 310 stores image data after a series of image processing in the memory 340.
  • the imaging control unit 310 may output and store the image data in the memory 160 via the UAV control unit 110.
  • the imaging control unit 310 performs an autofocus operation using the image data.
  • the imaging control unit 310 includes an acquisition unit 312, a determination unit 314, an AF processing unit 316, a lens position management unit 318, and a detection unit 319.
  • the acquisition unit 312 acquires altitude information of the imaging device 300.
  • the acquisition unit 312 may acquire the altitude information of the UAV 100 from the UAV control unit 110 as the altitude information of the imaging apparatus 300.
  • the acquisition unit 312 may acquire temperature information of the imaging apparatus 300.
  • the acquisition unit 312 may acquire temperature information of the imaging device 300 from the temperature sensor 332.
  • the determining unit 314 determines the scanning range of the focus lens when determining the focus position of the imaging apparatus 300 based on the altitude information.
  • the scan range has two ends. One end is located at the end on the infinity end side of the scanning range. The other end is located at the closest end of the scanning range.
  • the end on the infinity end side may be a control end on the infinity end side of the scanning range.
  • the end on the close end side may be a control end on the close end side of the scanning range.
  • the determination unit 314 may determine the width of the scanning range based on the altitude information. When the altitude indicated by the altitude information is the first altitude, the determination unit 314 may determine the width of the scanning range as the first width.
  • the determination unit 314 may determine the width of the scanning range as a second width that is narrower than the first width.
  • the determination unit 314 may narrow the width of the scanning range when the altitude indicated by the altitude information is higher.
  • the determination unit 314 may determine the end on the closest end side of the scanning range to a position closer to the infinity end side.
  • the determining unit 314 may determine the end on the closest end side of the scanning range as the first position.
  • the determination unit 314 may determine the end on the closest end side of the scanning range as the second position on the infinity end side from the first position.
  • the scanning range determined by the determination unit 314 is not limited to the above.
  • the determination unit 314 is configured so that the width of the scanning range centered on a predetermined focus position between the infinity end and the close end becomes narrower when the altitude indicated by the altitude information is higher.
  • the scan range may be determined.
  • the determination unit 314 may determine the width of the scanning range as the width 10 when the altitude is 50 [m].
  • the determination unit 314 may determine the width of the scanning range to be a width 12 narrower than the width 10 when the altitude is 150 [m].
  • the determination unit 314 may determine the end on the closest end side of the scanning range as the position 14.
  • the determination unit 314 may determine the end portion on the closest end side of the scanning range as the position 16 on the infinity end side from the position 14.
  • the determination unit 314 may determine the width of the scanning range as the first width.
  • the determination unit 314 may determine the width of the scanning range as the second width. For example, as illustrated in FIG. 4, the determination unit 314 may determine the width of the scanning range as the width 20 when the altitude is 20 [m] or less. When the altitude is higher than 20 [m], the determination unit 314 may determine the width of the scanning range as a width 22 narrower than the width 20.
  • the determination unit 314 may determine the scanning range based on altitude information and temperature information.
  • the determining unit 314 may determine the width of the scanning range as the first width.
  • the determining unit 314 determines the width of the scanning range as the third width narrower than the first width. You can do it.
  • the determination unit 314 may determine the width of the scanning range as the width 30 when the altitude is 100 [m] and the temperature is T1 [° C.].
  • the determination unit 314 may determine the width of the scanning range as a width 32 narrower than the width 30.
  • the AF processing unit 316 determines the focus position of the focus lens according to the contrast AF method.
  • the AF processing unit 316 may determine the focus position by moving the focus lens from the end on the infinity end side to the end on the close end side of the scanning range.
  • the AF processing unit 316 sequentially derives the contrast evaluation values from the image data output from the image sensor 330 while moving the focus lens through the lens control unit 320 within the scanning range determined by the determination unit 314. To do.
  • the AF processing unit 316 determines the position of the focus lens when the contrast evaluation value is the highest as the focus position.
  • the lens position management unit 318 manages the position information of the plurality of lenses 326 provided from the lens position detection unit 324.
  • the lens position management unit 318 may register the current zoom position and the current focus position provided from the lens position detection unit 324 in the memory 340.
  • the scanning range of the focus lens when determining the focus position of the imaging device 300 is determined according to the altitude of the imaging device 300. Thereby, it is possible to prevent the time for determining the focus position from increasing as the altitude increases.
  • the imaging apparatus 300 images an object existing on the ground while the UAV 100 is flying.
  • the scanning range of the focus lens is limited to the far end side and the scanning range is narrowed.
  • the object imaged by the imaging device 300 may exist at an altitude similar to the altitude of the UAV 100 in flight.
  • the scanning range of the focus lens is limited to the far end side, the focus position may not be set appropriately.
  • the focus position may not be set appropriately.
  • the detection unit 319 detects an object existing within a predetermined range from the imaging device 300.
  • the detection unit 319 may acquire distance information indicating the distance between the UAV 100 and the object from the UAV control unit 110.
  • the detection unit 319 may detect whether or not the distance indicated by the distance information is included in a predetermined range.
  • the predetermined range may be a range set in advance to prevent the UAV 100 from colliding with an obstacle.
  • the predetermined range may be set by the user.
  • the predetermined range may be set according to the flight mode of the UAV 100. If an object exists in a predetermined range, the UAV 100 changes, for example, the flight path in order to prevent a collision with the object.
  • the determination unit 314 may determine the scanning range without using altitude information.
  • the determination unit 314 may determine the initial scan range as the scan range without using the altitude information.
  • the determination unit 314 may determine the entire range from the infinity end to the closest end as the scanning range without using altitude information.
  • FIG. 6 is a flowchart illustrating an example of a procedure in which the imaging control unit 310 determines the scanning range of the focus lens.
  • the detection unit 319 determines whether or not an object exists within a predetermined range from the imaging device 300 (S100). When such an object exists, the determination unit 314 determines the initial scan range as the focus lens scan range without using altitude information (S102).
  • the acquisition unit 312 acquires the altitude information of the UAV 100 provided from the UAV control unit 110 as the altitude information of the imaging apparatus 300 (S104).
  • the determination unit 314 determines the scan range of the focus lens based on the altitude information, for example, according to the relationship between the altitude and the scan range as shown in FIG. 3 or FIG. 4 (S106).
  • the AF processing unit 316 performs autofocus processing by the contrast AF method within the scanning range determined by the determination unit 314.
  • FIG. 7 illustrates an example of a computer 1200 in which aspects of the present invention may be embodied in whole or in part.
  • a program installed in the computer 1200 can cause the computer 1200 to function as an operation associated with the apparatus according to the embodiment of the present invention or as one or more “units” of the apparatus.
  • the program can cause the computer 1200 to execute the operation or the one or more “units”.
  • the program can cause the computer 1200 to execute a process according to an embodiment of the present invention or a stage of the process.
  • Such a program may be executed by CPU 1212 to cause computer 1200 to perform certain operations associated with some or all of the blocks in the flowcharts and block diagrams described herein.
  • the computer 1200 includes a CPU 1212 and a RAM 1214, which are connected to each other by a host controller 1210.
  • the computer 1200 also includes a communication interface 1222 and an input / output unit, which are connected to the host controller 1210 via the input / output controller 1220.
  • Computer 1200 also includes ROM 1230.
  • the CPU 1212 operates according to programs stored in the ROM 1230 and the RAM 1214, thereby controlling each unit.
  • the communication interface 1222 communicates with other electronic devices via a network.
  • a hard disk drive may store programs and data used by CPU 1212 in computer 1200.
  • the ROM 1230 stores therein a boot program executed by the computer 1200 at the time of activation and / or a program depending on the hardware of the computer 1200.
  • the program is provided via a computer-readable recording medium such as a CR-ROM, a USB memory, or an IC card or a network.
  • the program is installed in the RAM 1214 or the ROM 1230 that is also an example of a computer-readable recording medium, and is executed by the CPU 1212.
  • Information processing described in these programs is read by the computer 1200 to bring about cooperation between the programs and the various types of hardware resources.
  • An apparatus or method may be configured by implementing information operations or processing in accordance with the use of computer 1200.
  • the CPU 1212 executes a communication program loaded in the RAM 1214 and performs communication processing on the communication interface 1222 based on the processing described in the communication program. You may order.
  • the communication interface 1222 reads transmission data stored in a RAM 1214 or a transmission buffer area provided in a recording medium such as a USB memory under the control of the CPU 1212 and transmits the read transmission data to a network, or The reception data received from the network is written into a reception buffer area provided on the recording medium.
  • the CPU 1212 allows the RAM 1214 to read all or necessary portions of a file or database stored in an external recording medium such as a USB memory, and executes various types of processing on the data on the RAM 1214. Good. The CPU 1212 may then write back the processed data to an external recording medium.
  • the CPU 1212 describes various types of operations, information processing, conditional judgment, conditional branching, unconditional branching, and information retrieval that are described throughout the present disclosure for data read from the RAM 1214 and specified by the instruction sequence of the program. Various types of processing may be performed, including / replacement, etc., and the result is written back to RAM 1214.
  • the CPU 1212 may search for information in files, databases, etc. in the recording medium. For example, when a plurality of entries each having an attribute value of the first attribute associated with the attribute value of the second attribute are stored in the recording medium, the CPU 1212 specifies the attribute value of the first attribute. The entry that matches the condition is searched from the plurality of entries, the attribute value of the second attribute stored in the entry is read, and thereby the first attribute that satisfies the predetermined condition is associated. The attribute value of the obtained second attribute may be acquired.
  • the program or software module described above may be stored in a computer-readable storage medium on the computer 1200 or in the vicinity of the computer 1200.
  • a recording medium such as a hard disk or a RAM provided in a server system connected to a dedicated communication network or the Internet can be used as a computer-readable storage medium, whereby the program is transferred to the computer 1200 via the network.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)
  • Camera Bodies And Camera Details Or Accessories (AREA)
  • Automatic Focus Adjustment (AREA)
  • Lens Barrels (AREA)

Abstract

When the altitude of an imaging device changes, there are cases when the environment of the imaging device, such as the surrounding temperature, also changes. There are cases when such a change in environment affects the movement of a focus lens of the imaging device. In the present invention, a control device may be provided with an acquisition unit for acquiring altitude information of the imaging device. The control device may also be provided with a determination unit for determining, on the basis of the altitude information, the scanning range for the focus lens for when the focal position of the imaging device is to be determined.

Description

制御装置、撮像装置、移動体、決定方法、およびプログラムControl device, imaging device, moving body, determination method, and program
 本発明は、制御装置、撮像装置、移動体、決定方法、およびプログラムに関する。 The present invention relates to a control device, an imaging device, a moving body, a determination method, and a program.
 特許文献1には、測距センサの周辺温度の変動期間に対応する時間範囲内に、画像入力装置への電源投入からの経過時間が含まれる場合、経過時間が周辺温度の安定期間に対応する時間範囲内に含まれる場合よりも、オートフォーカスでのフォーカスレンズの走査範囲を広く設定することが記載されている。
 特許文献1 特許第4226936号公報
In Patent Document 1, when the elapsed time from the power-on to the image input device is included in the time range corresponding to the fluctuation period of the ambient temperature of the distance measuring sensor, the elapsed time corresponds to the stable period of the ambient temperature. It is described that the scanning range of the focus lens in autofocus is set wider than that included in the time range.
Patent Document 1 Japanese Patent No. 4226936
解決しようとする課題Challenges to be solved
 撮像装置の高度が変化すると、撮像装置の周囲の温度などの環境が変化する場合がある。このような環境の変化が、撮像装置のフォーカスレンズの移動に影響を与える場合がある。 When the altitude of the imaging device changes, the environment such as the ambient temperature of the imaging device may change. Such environmental changes may affect the movement of the focus lens of the imaging apparatus.
一般的開示General disclosure
 本発明の一態様に係る制御装置は、撮像装置の高度情報を取得する取得部を備えてよい。制御装置は、高度情報に基づいて、撮像装置のフォーカス位置を決定する場合のフォーカスレンズの走査範囲を決定する決定部を備えてよい。 The control device according to one aspect of the present invention may include an acquisition unit that acquires altitude information of the imaging device. The control device may include a determination unit that determines a scanning range of the focus lens when determining the focus position of the imaging device based on the altitude information.
 決定部は、高度情報に基づいて走査範囲の幅を決定してよい。決定部は、高度情報で示される高度が第1高度の場合、走査範囲の幅を第1幅に決定してよい。決定部は、高度情報で示される高度が第1高度より高い第2高度の場合、走査範囲の幅を第1幅より狭い第2幅に決定してよい。 The determining unit may determine the width of the scanning range based on the altitude information. The determination unit may determine the width of the scanning range as the first width when the height indicated by the height information is the first height. When the altitude indicated by the altitude information is a second altitude that is higher than the first altitude, the determining unit may determine the width of the scanning range to a second width that is narrower than the first width.
 決定部は、高度情報で示される高度がより高い場合に、走査範囲の幅をより狭くしてよい。決定部は、高度情報で示される高度が第1高度を含む第1高度範囲にある場合、走査範囲の幅を第1幅に決定してよい。決定部は、高度情報で示される高度が第2高度を含む第2高度範囲にある場合、走査範囲の幅を第2幅に決定してよい。 The determination unit may narrow the width of the scanning range when the altitude indicated by the altitude information is higher. When the altitude indicated by the altitude information is in the first altitude range including the first altitude, the determining unit may determine the width of the scanning range as the first width. When the altitude indicated by the altitude information is in the second altitude range including the second altitude, the determination unit may determine the width of the scanning range as the second width.
 決定部は、高度情報で示される高度がより高い場合に、走査範囲の至近端側の端部をより無限遠端側に近い位置に決定してよい。 When the altitude indicated by the altitude information is higher, the determining unit may determine the end on the closest end side of the scanning range to a position closer to the infinity end side.
 決定部は、高度情報で示される高度が第1高度の場合、走査範囲の至近端側の端部を第1位置に決定してよい。決定部は、高度情報で示される高度が第2高度の場合、走査範囲の至近端側の端部を第1位置より無限遠端側の第2位置に決定してよい。 When the altitude indicated by the altitude information is the first altitude, the determining unit may determine the end on the closest end side of the scanning range as the first position. When the altitude indicated by the altitude information is the second altitude, the determining unit may determine the end on the closest end side of the scanning range as the second position on the infinity end side from the first position.
 取得部は、撮像装置の温度情報を取得してよい。決定部は、高度情報および温度情報に基づいて、走査範囲を決定してよい。 The acquisition unit may acquire temperature information of the imaging device. The determination unit may determine the scanning range based on altitude information and temperature information.
 決定部は、高度情報で示される高度が第1高度で、温度情報で示される温度が第1温度の場合、走査範囲の幅を第1幅に決定してよい。決定部は、高度情報で示される高度が第1高度で、温度情報で示される温度が第1温度より低い第2温度の場合、走査範囲の幅を第1幅より狭い第3幅に決定してよい。 When the altitude indicated by the altitude information is the first altitude and the temperature indicated by the temperature information is the first temperature, the determining unit may determine the width of the scanning range as the first width. When the altitude indicated by the altitude information is the first altitude and the temperature indicated by the temperature information is the second temperature lower than the first temperature, the determining unit determines the width of the scanning range to be a third width that is narrower than the first width. It's okay.
 制御装置は、撮像装置から予め定められた範囲内に存在する対象物を検出する検出部を備えてよい。検出部が対象物を検出した場合、決定部は、高度情報を用いずに、走査範囲を決定してよい。 The control device may include a detection unit that detects an object existing within a predetermined range from the imaging device. When the detection unit detects the object, the determination unit may determine the scanning range without using the altitude information.
 本発明の一態様に係る撮像装置は、上記制御装置を備えてよい。撮像装置は、フォーカスレンズを備えてよい。撮像装置は、決定部により決定された走査範囲に基づいてフォーカスレンズの移動を制御する制御部を備えてよい。 An imaging device according to one embodiment of the present invention may include the control device. The imaging device may include a focus lens. The imaging apparatus may include a control unit that controls the movement of the focus lens based on the scanning range determined by the determination unit.
 本発明の一態様に係る移動体は、上記撮像装置を備えて移動してよい。 The moving body according to one embodiment of the present invention may move with the imaging device.
 本発明の一態様に係る決定方法は、撮像装置の高度情報を取得する段階を備えてよい。決定方法は、高度情報に基づいて、撮像装置のフォーカス位置を決定する場合のフォーカスレンズの走査範囲を決定する段階を備えてよい。 The determination method according to one aspect of the present invention may include a step of acquiring altitude information of the imaging device. The determination method may include a step of determining a scan range of the focus lens when determining the focus position of the imaging device based on the altitude information.
 本発明の一態様に係るプログラムは、撮像装置の高度情報を取得する段階をコンピュータに実行させてよい。プログラムは、高度情報に基づいて、撮像装置のフォーカス位置を決定する場合のフォーカスレンズの走査範囲を決定する段階をコンピュータに実行させてよい。 The program according to one aspect of the present invention may cause a computer to execute the step of acquiring altitude information of the imaging device. The program may cause the computer to execute a step of determining the scanning range of the focus lens when determining the focus position of the imaging device based on the altitude information.
 撮像装置の高度の変化で撮像装置のフォーカス位置の決定に影響が生じる場合に発生する影響を抑制できる。 It is possible to suppress the influence that occurs when the change in the height of the imaging apparatus affects the determination of the focus position of the imaging apparatus.
 上記の発明の概要は、本発明の特徴の全てを列挙したものではない。これらの特徴群のサブコンビネーションも発明となりうる。 The above summary of the invention does not enumerate all the features of the present invention. A sub-combination of these feature groups can also be an invention.
無人航空機の外観の一例を示す図である。It is a figure which shows an example of the external appearance of an unmanned aircraft. UAVの機能ブロックの一例を示す図である。It is a figure which shows an example of the functional block of UAV. 高度とフォーカスレンズの走査範囲との関係の一例を示す図である。It is a figure which shows an example of the relationship between an altitude and the scanning range of a focus lens. 高度とフォーカスレンズの走査範囲との関係の一例を示す図である。It is a figure which shows an example of the relationship between an altitude and the scanning range of a focus lens. 高度および温度とフォーカスレンズの走査範囲との関係の一例を示す図である。It is a figure which shows an example of the relationship between an altitude and temperature, and the scanning range of a focus lens. フォーカスレンズの走査範囲を決定する手順の一例を示す図である。It is a figure which shows an example of the procedure which determines the scanning range of a focus lens. ハードウェア構成の一例を示す図である。It is a figure which shows an example of a hardware constitutions.
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。 Hereinafter, the present invention will be described through embodiments of the invention. However, the following embodiments do not limit the invention according to the claims. In addition, not all the combinations of features described in the embodiments are essential for the solving means of the invention.
 請求の範囲、明細書、図面、および要約書には、著作権による保護の対象となる事項が含まれる。著作権者は、これらの書類の何人による複製に対しても、特許庁のファイルまたはレコードに表示される通りであれば異議を唱えない。ただし、それ以外の場合、一切の著作権を保留する。 The claims, the description, the drawings, and the abstract include matters that are subject to copyright protection. The copyright owner will not object to any number of copies of these documents as they appear in the JPO file or record. However, in other cases, all copyrights are withheld.
 本発明の様々な実施形態は、フローチャート及びブロック図を参照して記載されてよい。フローチャート及びブロック図におけるブロックは、(1)オペレーションが実行されるプロセスの段階又は(2)オペレーションを実行する役割を持つ装置の「部」を表わしてよい。特定の段階及び「部」が、専用回路、コンピュータ可読記憶媒体上に格納されるコンピュータ可読命令と共に供給されるプログラマブル回路、及び/又はコンピュータ可読記憶媒体上に格納されるコンピュータ可読命令と共に供給されるプロセッサによって実装されてよい。専用回路は、デジタルおよび/またはアナログハードウェア回路を含んでよい。集積回路(IC)および/またはディスクリート回路を含んでよい。プログラマブル回路は、例えば、フィールドプログラマブルゲートアレイ(FPGA)、及びプログラマブルロジックアレイ(PLA)等のような、論理積、論理和、排他的論理和、否定論理積、否定論理和、及び他の論理演算、フリップフロップ、レジスタ、並びにメモリエレメントを含む、再構成可能なハードウェア回路を含んでよい。 Various embodiments of the present invention may be described with reference to flowcharts and block diagrams. The blocks in the flowcharts and block diagrams may represent (1) the stage of the process in which the operation is performed or (2) the “part” of the device responsible for performing the operation. Certain stages and “parts” are provided with dedicated circuitry, programmable circuitry supplied with computer readable instructions stored on a computer readable storage medium, and / or computer readable instructions stored on a computer readable storage medium. It may be implemented by a processor. Dedicated circuitry may include digital and / or analog hardware circuitry. Integrated circuits (ICs) and / or discrete circuits may be included. Programmable circuits may be logical products, logical sums, exclusive logical sums, negative logical products, negative logical sums, and other logical operations, such as field programmable gate arrays (FPGAs) and programmable logic arrays (PLA), for example. , Flip-flops, registers, and memory elements, including reconfigurable hardware circuitry.
 コンピュータ可読記憶媒体は、適切なデバイスによって実行される命令を格納可能な任意の有形なデバイスを含んでよい。その結果、そこに格納される命令を有するコンピュータ可読記憶媒体は、フローチャートまたはブロック図で指定されたオペレーションを実行するための手段を作成すべく実行され得る命令を含む、製品を備えることになる。コンピュータ可読記憶媒体の例としては、電子記憶媒体、磁気記憶媒体、光記憶媒体、電磁記憶媒体、半導体記憶媒体等が含まれてよい。コンピュータ可読記憶媒体のより具体的な例としては、フロッピー(登録商標)ディスク、ディスケット、ハードディスク、ランダムアクセスメモリ(RAM)、リードオンリメモリ(ROM)、消去可能プログラマブルリードオンリメモリ(EPROMまたはフラッシュメモリ)、電気的消去可能プログラマブルリードオンリメモリ(EEPROM)、静的ランダムアクセスメモリ(SRAM)、コンパクトディスクリードオンリメモリ(CD-ROM)、デジタル多用途ディスク(DVD)、ブルーレイ(登録商標)ディスク、メモリスティック、集積回路カード等が含まれてよい。 A computer-readable storage medium may include any tangible device capable of storing instructions to be executed by a suitable device. As a result, a computer readable storage medium having instructions stored thereon comprises a product that includes instructions that can be executed to create a means for performing the operations specified in the flowcharts or block diagrams. Examples of computer readable storage media may include electronic storage media, magnetic storage media, optical storage media, electromagnetic storage media, semiconductor storage media, and the like. More specific examples of computer-readable storage media include floppy disks, diskettes, hard disks, random access memory (RAM), read only memory (ROM), erasable programmable read only memory (EPROM or flash memory). Electrically erasable programmable read only memory (EEPROM), static random access memory (SRAM), compact disc read only memory (CD-ROM), digital versatile disc (DVD), Blu-ray (registered trademark) disc, memory stick Integrated circuit cards and the like may be included.
 コンピュータ可読命令は、1または複数のプログラミング言語の任意の組み合わせで記述されたソースコードまたはオブジェクトコードの何れかを含んでよい。ソースコードまたはオブジェクトコードは、従来の手続型プログラミング言語を含む。従来の手続型プログラミング言語は、アセンブラ命令、命令セットアーキテクチャ(ISA)命令、マシン命令、マシン依存命令、マイクロコード、ファームウェア命令、状態設定データ、またはSmalltalk、JAVA(登録商標)、C++等のようなオブジェクト指向プログラミング言語、および「C」プログラミング言語または同様のプログラミング言語でよい。 The computer readable instructions may include either source code or object code written in any combination of one or more programming languages. The source code or object code includes a conventional procedural programming language. Conventional procedural programming languages include assembler instructions, instruction set architecture (ISA) instructions, machine instructions, machine dependent instructions, microcode, firmware instructions, state setting data, or Smalltalk, JAVA, C ++, etc. It may be an object-oriented programming language and a “C” programming language or a similar programming language.
 コンピュータ可読命令は、汎用コンピュータ、特殊目的のコンピュータ、若しくは他のプログラム可能なデータ処理装置のプロセッサまたはプログラマブル回路に対し、ローカルにまたはローカルエリアネットワーク(LAN)、インターネット等のようなワイドエリアネットワーク(WAN)を介して提供されてよい。プロセッサまたはプログラマブル回路は、フローチャートまたはブロック図で指定されたオペレーションを実行するための手段を作成すべく、コンピュータ可読命令を実行してよい。プロセッサの例としては、コンピュータプロセッサ、処理ユニット、マイクロプロセッサ、デジタル信号プロセッサ、コントローラ、マイクロコントローラ等を含む。 Computer readable instructions may be directed to a general purpose computer, special purpose computer, or other programmable data processing device processor or programmable circuit locally or in a wide area network (WAN) such as a local area network (LAN), the Internet, etc. ). The processor or programmable circuit may execute computer readable instructions to create a means for performing the operations specified in the flowcharts or block diagrams. Examples of processors include computer processors, processing units, microprocessors, digital signal processors, controllers, microcontrollers, and the like.
 図1は、無人航空機(UAV)100の外観の一例を示す。UAV100は、UAV本体102、ジンバル200、撮像装置300、および複数の撮像装置230を備える。UAV100は、移動体の一例である。移動体とは、UAVの他、空中を移動する他の航空機、地上を移動する車両、水上を移動する船舶等を含む概念である。ジンバル200および撮像装置300は、撮像システムの一例である。 FIG. 1 shows an example of the appearance of an unmanned aerial vehicle (UAV) 100. The UAV 100 includes a UAV main body 102, a gimbal 200, an imaging device 300, and a plurality of imaging devices 230. The UAV 100 is an example of a moving object. The moving body is a concept including, in addition to UAV, other aircraft that moves in the air, vehicles that move on the ground, ships that move on the water, and the like. The gimbal 200 and the imaging device 300 are an example of an imaging system.
 UAV本体102は、複数の回転翼を備える。UAV本体102は、複数の回転翼の回転を制御することでUAV100を飛行させる。UAV本体102は、例えば、4つの回転翼を用いてUAV100を飛行させる。回転翼の数は、4つには限定されない。また、UAV100は、回転翼を有さない固定翼機でもよい。 The UAV main body 102 includes a plurality of rotor blades. The UAV main body 102 flies the UAV 100 by controlling the rotation of a plurality of rotor blades. For example, the UAV main body 102 causes the UAV 100 to fly using four rotary wings. The number of rotor blades is not limited to four. Further, the UAV 100 may be a fixed wing aircraft that does not have a rotating wing.
 撮像装置300は、動画または静止画を撮像するためのカメラである。複数の撮像装置230は、UAV100の飛行を制御するためにUAV100の周囲を撮像するセンシング用のカメラである。2つの撮像装置230が、UAV100の機首である正面に設けられてよい。さらに他の2つの撮像装置230が、UAV100の底面に設けられてよい。正面側の2つの撮像装置230はペアとなり、いわゆるステレオカメラとして機能してよい。底面側の2つの撮像装置230もペアとなり、ステレオカメラとして機能してよい。複数の撮像装置230により撮像された画像に基づいて、UAV100から対象物までの距離が計測されてよい。複数の撮像装置230により撮像された画像に基づいて、UAV100の周囲の3次元空間データが生成されてよい。UAV100が備える撮像装置230の数は4つには限定されない。UAV100は、少なくとも1つの撮像装置230を備えていればよい。UAV100は、UAV100の機首、機尾、側面、底面、および天井面のそれぞれに少なくとも1つの撮像装置230を備えてもよい。撮像装置230で設定できる画角は、撮像装置300で設定できる画角より広くてよい。撮像装置230は、単焦点レンズまたは魚眼レンズを有してもよい。 The imaging device 300 is a camera for capturing a moving image or a still image. The plurality of imaging devices 230 are sensing cameras that image the surroundings of the UAV 100 in order to control the flight of the UAV 100. Two imaging devices 230 may be provided on the front surface that is the nose of the UAV 100. Two other imaging devices 230 may be provided on the bottom surface of the UAV 100. The two imaging devices 230 on the front side may be paired and function as a so-called stereo camera. The two imaging devices 230 on the bottom side may also be paired and function as a stereo camera. The distance from the UAV 100 to the object may be measured based on images captured by the plurality of imaging devices 230. Three-dimensional spatial data around the UAV 100 may be generated based on images captured by the plurality of imaging devices 230. The number of imaging devices 230 included in the UAV 100 is not limited to four. The UAV 100 only needs to include at least one imaging device 230. The UAV 100 may include at least one imaging device 230 on each of the nose, the tail, the side surface, the bottom surface, and the ceiling surface of the UAV 100. The angle of view that can be set by the imaging device 230 may be wider than the angle of view that can be set by the imaging device 300. The imaging device 230 may have a single focus lens or a fisheye lens.
 以上のように構成されたUAV100に搭載された撮像装置300は、様々な高度で対象物を撮像する。UAV100が存在する高度が変化すると、撮像装置300の温度が変化する場合がある。温度が変化すると、例えば、撮像装置300のフォーカスレンズを駆動するために用いられるグリースの硬さが変化する場合がある。例えば、高度が高くなり、温度が低くなると、グリースが硬化し、フォーカスレンズが動かしにくくなる。これにより、フォーカスレンズの位置を移動させながらフォーカス位置を決定するための時間が長くなる場合がある。そこで、本実施形態に係る撮像装置300は、UAV100の高度、すなわち、撮像装置300のフォーカス位置を決定する場合のフォーカスレンズの走査範囲を、撮像装置300の高度に応じて調整する。例えば、高度がより高い場合に、走査範囲の幅をより狭くする。これにより、高度が高くなるにつれて、フォーカス位置を決定するための時間が長くなることを防止する。 The imaging device 300 mounted on the UAV 100 configured as described above images a target at various altitudes. When the altitude at which the UAV 100 exists changes, the temperature of the imaging device 300 may change. When the temperature changes, for example, the hardness of the grease used to drive the focus lens of the imaging device 300 may change. For example, when the altitude is high and the temperature is low, the grease hardens and the focus lens becomes difficult to move. As a result, it may take a long time to determine the focus position while moving the position of the focus lens. Therefore, the imaging apparatus 300 according to the present embodiment adjusts the altitude of the UAV 100, that is, the focus lens scanning range when determining the focus position of the imaging apparatus 300 according to the altitude of the imaging apparatus 300. For example, when the altitude is higher, the width of the scanning range is made narrower. This prevents the time for determining the focus position from increasing as the altitude increases.
 図2は、UAV100の機能ブロックの一例を示す。UAV100は、UAV制御部110、通信インタフェース150、メモリ160、ジンバル200、回転翼機構210、撮像装置300、撮像装置230、GPS受信機240、慣性計測装置(IMU)250、磁気コンパス260、および気圧高度計270を備える。 FIG. 2 shows an example of functional blocks of the UAV100. The UAV 100 includes a UAV control unit 110, a communication interface 150, a memory 160, a gimbal 200, a rotating blade mechanism 210, an imaging device 300, an imaging device 230, a GPS receiver 240, an inertial measurement device (IMU) 250, a magnetic compass 260, and an atmospheric pressure. An altimeter 270 is provided.
 通信インタフェース150は、外部の送信機と通信する。通信インタフェース150は、遠隔の送信機からUAV制御部110に対する各種の命令を受信する。メモリ160は、UAV制御部110がジンバル200、回転翼機構210、撮像装置300、撮像装置230、GPS受信機240、IMU250、磁気コンパス260、および気圧高度計270を制御するのに必要なプログラム等を格納する。メモリ160は、コンピュータ読み取り可能な記録媒体でよく、SRAM、DRAM、EPROM、EEPROM、およびUSBメモリ等のフラッシュメモリの少なくとも1つを含んでよい。メモリ160は、UAV本体102の内部に設けられてよい。UAV本体102から取り外し可能に設けられてよい。 The communication interface 150 communicates with an external transmitter. The communication interface 150 receives various commands for the UAV control unit 110 from a remote transmitter. The memory 160 stores programs necessary for the UAV control unit 110 to control the gimbal 200, the rotary blade mechanism 210, the imaging device 300, the imaging device 230, the GPS receiver 240, the IMU 250, the magnetic compass 260, and the barometric altimeter 270. Store. The memory 160 may be a computer-readable recording medium and may include at least one of flash memory such as SRAM, DRAM, EPROM, EEPROM, and USB memory. The memory 160 may be provided inside the UAV main body 102. It may be provided so as to be removable from the UAV main body 102.
 ジンバル200は、撮像装置300の撮像方向を調整可能に支持する。ジンバル200は、少なくとも1つの軸を中心に撮像装置300を回転可能に支持する。ジンバル200は、支持機構の一例である。ジンバル200は、ヨー軸、ピッチ軸、およびロール軸を中心に撮像装置300を回転可能に支持してよい。ジンバル200は、ヨー軸、ピッチ軸、およびロール軸の少なくとも1つを中心に撮像装置300を回転させることで、撮像装置300の撮像方向を変更してよい。回転翼機構210は、複数の回転翼と、複数の回転翼を回転させる複数の駆動モータとを有する。 The gimbal 200 supports the imaging direction of the imaging device 300 so that it can be adjusted. The gimbal 200 supports the imaging device 300 rotatably around at least one axis. The gimbal 200 is an example of a support mechanism. The gimbal 200 may support the imaging device 300 rotatably about the yaw axis, the pitch axis, and the roll axis. The gimbal 200 may change the imaging direction of the imaging device 300 by rotating the imaging device 300 about at least one of the yaw axis, the pitch axis, and the roll axis. The rotary blade mechanism 210 includes a plurality of rotary blades and a plurality of drive motors that rotate the plurality of rotary blades.
 撮像装置230は、UAV100の周囲を撮像して画像データを生成する。撮像装置230の画像データは、メモリ160に格納される。GPS受信機240は、複数のGPS衛星から発信された時刻を示す複数の信号を受信する。GPS受信機240は、受信された複数の信号に基づいてGPS受信機240の位置、つまりUAV100の位置を算出する。慣性計測装置(IMU)250は、UAV100の姿勢を検出する。IMU250は、UAV100の姿勢として、UAV100の前後、左右、および上下の3軸方向の加速度と、ピッチ、ロール、およびヨーの3軸方向の角速度とを検出する。磁気コンパス260は、UAV100の機首の方位を検出する。気圧高度計270は、UAV100が飛行する高度を検出する。 The imaging device 230 captures the surroundings of the UAV 100 and generates image data. Image data of the imaging device 230 is stored in the memory 160. The GPS receiver 240 receives a plurality of signals indicating times transmitted from a plurality of GPS satellites. The GPS receiver 240 calculates the position of the GPS receiver 240, that is, the position of the UAV 100, based on the received signals. The inertial measurement device (IMU) 250 detects the posture of the UAV 100. The IMU 250 detects, as the posture of the UAV 100, acceleration in the three axial directions of the front, rear, left, and upper sides of the UAV 100, and angular velocity in the three axial directions of pitch, roll, and yaw. The magnetic compass 260 detects the heading of the UAV 100. The barometric altimeter 270 detects the altitude at which the UAV 100 flies.
 UAV制御部110は、メモリ160に格納されたプログラムに従ってUAV100の飛行を制御する。UAV制御部110は、CPUまたはMPU等のマイクロプロセッサ、MCU等のマイクロコントローラ等により構成されてよい。UAV制御部110は、通信インタフェース150を介して遠隔の送信機から受信した命令に従って、UAV100の飛行を制御する。 The UAV control unit 110 controls the flight of the UAV 100 in accordance with a program stored in the memory 160. The UAV control unit 110 may be configured by a microprocessor such as a CPU or MPU, a microcontroller such as an MCU, or the like. The UAV control unit 110 controls the flight of the UAV 100 according to a command received from a remote transmitter via the communication interface 150.
 UAV制御部110は、複数の撮像装置230により撮像された複数の画像を解析することで、UAV100の周囲の環境を特定してよい。UAV制御部110は、UAV100の周囲の環境に基づいて、例えば、障害物を回避して飛行を制御する。UAV制御部110は、複数の撮像装置230により撮像された複数の画像に基づいてUAV100の周囲の3次元空間データを生成し、3次元空間データに基づいて飛行を制御してよい。 The UAV control unit 110 may specify the environment around the UAV 100 by analyzing a plurality of images captured by the plurality of imaging devices 230. The UAV control unit 110 controls the flight while avoiding obstacles based on the environment around the UAV 100, for example. The UAV control unit 110 may generate three-dimensional spatial data around the UAV 100 based on a plurality of images captured by the plurality of imaging devices 230, and control the flight based on the three-dimensional spatial data.
 UAV制御部110は、複数の撮像装置230により撮像された複数の画像に基づいて三角測距方式でUAV100と対象物との距離を測定してよい。UAV制御部110は、超音波式センサ、赤外線センサ、またはレーダ式センサなどを用いてUAV100と対象物との距離を測定してよい。 The UAV control unit 110 may measure the distance between the UAV 100 and the object by a triangulation method based on a plurality of images captured by the plurality of imaging devices 230. The UAV control unit 110 may measure the distance between the UAV 100 and the object using an ultrasonic sensor, an infrared sensor, a radar sensor, or the like.
 撮像装置300は、撮像制御部310、レンズ制御部320、レンズ移動機構322、レンズ位置検出部324、複数のレンズ326、撮像素子330、温度センサ332およびメモリ340を有する。撮像制御部310は、CPUまたはMPUなどのマイクロプロセッサ、MCUなどのマイクロコントローラなどにより構成されてよい。撮像制御部310は、UAV制御部110からの撮像装置300の動作命令に応じて、撮像装置300を制御してよい。撮像制御部310は、制御装置の一例である。メモリ340は、コンピュータ可読可能な記録媒体でよく、SRAM、DRAM、EPROM、EEPROM、およびUSBメモリなどのフラッシュメモリの少なくとも1つを含んでよい。メモリ340は、撮像装置300の筐体の内部に設けられてよい。メモリ340は、撮像装置300の筐体から取り外し可能に設けられてよい。複数のレンズ326は、ズームレンズ、およびフォーカスレンズを含む。撮像装置300のレンズ326は、撮像装置300から取り外しが可能なレンズユニットでもよい。例えばレンズ326、レンズ制御部320、レンズ位置検出部324、温度センサ332がレンズユニットに搭載される。 The imaging apparatus 300 includes an imaging control unit 310, a lens control unit 320, a lens moving mechanism 322, a lens position detection unit 324, a plurality of lenses 326, an imaging element 330, a temperature sensor 332, and a memory 340. The imaging control unit 310 may be configured by a microprocessor such as a CPU or MPU, a microcontroller such as an MCU, or the like. The imaging control unit 310 may control the imaging device 300 in accordance with an operation command for the imaging device 300 from the UAV control unit 110. The imaging control unit 310 is an example of a control device. The memory 340 may be a computer readable recording medium and may include at least one of flash memory such as SRAM, DRAM, EPROM, EEPROM, and USB memory. The memory 340 may be provided inside the housing of the imaging device 300. The memory 340 may be provided so as to be removable from the housing of the imaging apparatus 300. The plurality of lenses 326 includes a zoom lens and a focus lens. The lens 326 of the imaging device 300 may be a lens unit that can be detached from the imaging device 300. For example, a lens 326, a lens controller 320, a lens position detector 324, and a temperature sensor 332 are mounted on the lens unit.
 撮像素子330は、CCDまたはCMOSにより構成されてよい。撮像素子330は、撮像装置300の筐体の内部に保持され、複数のレンズ326を介して結像された光学像の画像データを撮像制御部310に出力する。温度センサ332は、撮像装置300の温度を検出する。温度センサ332は、撮像装置300内に設けられてもよいし、撮像装置300の外部に設けられてもよい。温度センサ332は、UAV本体102に設けられてもよい。 The imaging device 330 may be configured by a CCD or a CMOS. The image pickup device 330 is held inside the housing of the image pickup apparatus 300, and outputs image data of an optical image formed through the plurality of lenses 326 to the image pickup control unit 310. The temperature sensor 332 detects the temperature of the imaging device 300. The temperature sensor 332 may be provided in the imaging device 300 or may be provided outside the imaging device 300. The temperature sensor 332 may be provided in the UAV main body 102.
 レンズ制御部320は、レンズ移動機構322を介して複数のレンズ326の移動を制御する。複数のレンズ326の一部または全部は、レンズ移動機構322により光軸に沿って移動する。レンズ制御部320は、撮像制御部310からのレンズ動作命令に従って、複数のレンズ326の少なくとも一つを光軸に沿って移動させる。レンズ制御部320は、複数のレンズ326の少なくとも一つを光軸に沿って移動させることで、ズーム動作およびフォーカス動作の少なくとも一方を実行する。レンズ制御部320は、撮像制御部310から指定された走査範囲内でフォーカスレンズを移動させて、オートフォーカス動作を実行する。レンズ位置検出部324は、複数のレンズ326のそれぞれの位置を検出する。レンズ位置検出部324は、現在のズーム位置およびフォーカス位置を検出する。 The lens control unit 320 controls the movement of the plurality of lenses 326 via the lens moving mechanism 322. Some or all of the plurality of lenses 326 are moved along the optical axis by the lens moving mechanism 322. The lens control unit 320 moves at least one of the plurality of lenses 326 along the optical axis in accordance with a lens operation command from the imaging control unit 310. The lens control unit 320 executes at least one of a zoom operation and a focus operation by moving at least one of the plurality of lenses 326 along the optical axis. The lens control unit 320 moves the focus lens within the scanning range designated by the imaging control unit 310 and executes an autofocus operation. The lens position detection unit 324 detects the position of each of the plurality of lenses 326. The lens position detection unit 324 detects the current zoom position and focus position.
 撮像制御部310は、画像データに対してノイズ低減、デモザイキング、ガンマ補正、エッジ協調などの一連の画像処理を施す。撮像制御部310は、一連の画像処理後の画像データをメモリ340に格納する。撮像制御部310は、画像データをUAV制御部110を介してメモリ160に出力して格納してもよい。撮像制御部310は、画像データを用いてオートフォーカス動作を実行する。 The imaging control unit 310 performs a series of image processing such as noise reduction, demosaicing, gamma correction, and edge cooperation on the image data. The imaging control unit 310 stores image data after a series of image processing in the memory 340. The imaging control unit 310 may output and store the image data in the memory 160 via the UAV control unit 110. The imaging control unit 310 performs an autofocus operation using the image data.
 撮像制御部310は、取得部312、決定部314、AF処理部316、レンズ位置管理部318、および検出部319を有する。取得部312は、撮像装置300の高度情報を取得する。取得部312は、UAV制御部110からUAV100の高度情報を、撮像装置300の高度情報として取得してよい。取得部312は、撮像装置300の温度情報を取得してよい。取得部312は、温度センサ332から撮像装置300の温度情報を取得してよい。 The imaging control unit 310 includes an acquisition unit 312, a determination unit 314, an AF processing unit 316, a lens position management unit 318, and a detection unit 319. The acquisition unit 312 acquires altitude information of the imaging device 300. The acquisition unit 312 may acquire the altitude information of the UAV 100 from the UAV control unit 110 as the altitude information of the imaging apparatus 300. The acquisition unit 312 may acquire temperature information of the imaging apparatus 300. The acquisition unit 312 may acquire temperature information of the imaging device 300 from the temperature sensor 332.
 決定部314は、高度情報に基づいて、撮像装置300のフォーカス位置を決定する場合のフォーカスレンズの走査範囲を決定する。走査範囲は、2つの端部を有する。一方の端部は、走査範囲の無限遠端側の端に位置する。他方の端部は、走査範囲の至近端側の端に位置する。無限遠端側の端部は、走査範囲の無限遠端側の制御端でよい。至近端側の端部は、走査範囲の至近端側の制御端でよい。決定部314は、高度情報に基づいて走査範囲の幅を決定してよい。決定部314は、高度情報で示される高度が第1高度の場合、走査範囲の幅を第1幅に決定してよい。決定部314は、高度情報で示される高度が第1高度より高い第2高度の場合、走査範囲の幅を第1幅より狭い第2幅に決定してよい。決定部314は、高度情報で示される高度がより高い場合に、走査範囲の幅をより狭くしてよい。決定部314は、高度情報で示される高度がより高い場合に、走査範囲の至近端側の端部をより無限遠端側に近い位置に決定してよい。決定部314は、高度情報で示される高度が第1高度の場合、走査範囲の至近端側の端部を第1位置に決定してよい。決定部314は、高度情報で示される高度が第2高度の場合、走査範囲の至近端側の端部を第1位置より無限遠端側の第2位置に決定してよい。決定部314により決定される走査範囲は上記には限定されない。例えば、決定部314は、無限遠端と至近端との間の予め定められたフォーカス位置を中心とする走査範囲の幅が、高度情報で示される高度がより高い場合により狭くなるように、走査範囲を決定してよい。 The determining unit 314 determines the scanning range of the focus lens when determining the focus position of the imaging apparatus 300 based on the altitude information. The scan range has two ends. One end is located at the end on the infinity end side of the scanning range. The other end is located at the closest end of the scanning range. The end on the infinity end side may be a control end on the infinity end side of the scanning range. The end on the close end side may be a control end on the close end side of the scanning range. The determination unit 314 may determine the width of the scanning range based on the altitude information. When the altitude indicated by the altitude information is the first altitude, the determination unit 314 may determine the width of the scanning range as the first width. When the altitude indicated by the altitude information is the second altitude higher than the first altitude, the determination unit 314 may determine the width of the scanning range as a second width that is narrower than the first width. The determination unit 314 may narrow the width of the scanning range when the altitude indicated by the altitude information is higher. When the altitude indicated by the altitude information is higher, the determination unit 314 may determine the end on the closest end side of the scanning range to a position closer to the infinity end side. When the altitude indicated by the altitude information is the first altitude, the determining unit 314 may determine the end on the closest end side of the scanning range as the first position. When the altitude indicated by the altitude information is the second altitude, the determination unit 314 may determine the end on the closest end side of the scanning range as the second position on the infinity end side from the first position. The scanning range determined by the determination unit 314 is not limited to the above. For example, the determination unit 314 is configured so that the width of the scanning range centered on a predetermined focus position between the infinity end and the close end becomes narrower when the altitude indicated by the altitude information is higher. The scan range may be determined.
 例えば、図3に示すように、決定部314は、高度が50[m]の場合、走査範囲の幅を幅10に決定してよい。決定部314は、高度が150[m]の場合、走査範囲の幅を幅10より狭い幅12に決定してよい。決定部314は、高度が50[m]の場合、走査範囲の至近端側の端部を位置14に決定してよい。決定部314は、高度が150[m]の場合、走査範囲の至近端側の端部を位置14より無限遠端側の位置16に決定してよい。 For example, as illustrated in FIG. 3, the determination unit 314 may determine the width of the scanning range as the width 10 when the altitude is 50 [m]. The determination unit 314 may determine the width of the scanning range to be a width 12 narrower than the width 10 when the altitude is 150 [m]. When the altitude is 50 [m], the determination unit 314 may determine the end on the closest end side of the scanning range as the position 14. When the altitude is 150 [m], the determination unit 314 may determine the end portion on the closest end side of the scanning range as the position 16 on the infinity end side from the position 14.
 決定部314は、高度情報で示される高度が第1高度を含む第1高度範囲にある場合、走査範囲の幅を第1幅に決定してよい。決定部314は、高度情報で示される高度が第2高度を含む第2高度範囲にある場合、走査範囲の幅を第2幅に決定してよい。例えば、図4に示すように、決定部314は、高度が20[m]以下の場合、走査範囲の幅を幅20に決定してよい。決定部314は、高度が20[m]より高い場合、走査範囲の幅を幅20より狭い幅22に決定してよい。 When the altitude indicated by the altitude information is in the first altitude range including the first altitude, the determination unit 314 may determine the width of the scanning range as the first width. When the altitude indicated by the altitude information is in the second altitude range including the second altitude, the determination unit 314 may determine the width of the scanning range as the second width. For example, as illustrated in FIG. 4, the determination unit 314 may determine the width of the scanning range as the width 20 when the altitude is 20 [m] or less. When the altitude is higher than 20 [m], the determination unit 314 may determine the width of the scanning range as a width 22 narrower than the width 20.
 撮像装置300が存在している高度が同じでも、周囲の温度が異なることで、撮像装置300の温度も異なる場合がある。高度が同じでも、温度が異なると、フォーカスレンズの移動のしやすさが異なる場合がある。そこで、決定部314は、高度情報および温度情報に基づいて、走査範囲を決定してよい。決定部314は、高度情報で示される高度が第1高度で、温度情報で示される温度が第1温度の場合、走査範囲の幅を第1幅に決定してよい。決定部314は、高度情報で示される高度が第1高度で、温度情報で示される温度が第1温度より低い第2温度の場合、走査範囲の幅を第1幅より狭い第3幅に決定してよい。例えば、図5に示すように、決定部314は、高度が100[m]で、温度がT1[℃]の場合、走査範囲の幅を幅30に決定してよい。決定部314は、高度が100[m]で、温度がT1[℃]より低いT2[℃]の場合、走査範囲の幅を幅30より狭い幅32に決定してよい。 Even if the altitude at which the imaging apparatus 300 is present is the same, the temperature of the imaging apparatus 300 may be different due to the ambient temperature being different. Even at the same altitude, the ease of movement of the focus lens may differ at different temperatures. Therefore, the determination unit 314 may determine the scanning range based on altitude information and temperature information. When the altitude indicated by the altitude information is the first altitude and the temperature indicated by the temperature information is the first temperature, the determining unit 314 may determine the width of the scanning range as the first width. When the altitude indicated by the altitude information is the first altitude and the temperature indicated by the temperature information is the second temperature lower than the first temperature, the determining unit 314 determines the width of the scanning range as the third width narrower than the first width. You can do it. For example, as illustrated in FIG. 5, the determination unit 314 may determine the width of the scanning range as the width 30 when the altitude is 100 [m] and the temperature is T1 [° C.]. When the altitude is 100 [m] and the temperature is T2 [° C.] lower than T1 [° C.], the determination unit 314 may determine the width of the scanning range as a width 32 narrower than the width 30.
 AF処理部316は、コントラストAF方式に従ってフォーカスレンズのフォーカス位置を決定する。AF処理部316は、走査範囲の無限遠端側の端部から至近端側の端部までの間でフォーカスレンズを移動させて、フォーカス位置を決定してよい。AF処理部316は、決定部314により決定された走査範囲内でレンズ制御部320を介してフォーカスレンズを移動させている間に、撮像素子330から出力される画像データからコントラスト評価値を順次導出する。AF処理部316は、コントラスト評価値が最も高いときのフォーカスレンズの位置を、フォーカス位置として決定する。 The AF processing unit 316 determines the focus position of the focus lens according to the contrast AF method. The AF processing unit 316 may determine the focus position by moving the focus lens from the end on the infinity end side to the end on the close end side of the scanning range. The AF processing unit 316 sequentially derives the contrast evaluation values from the image data output from the image sensor 330 while moving the focus lens through the lens control unit 320 within the scanning range determined by the determination unit 314. To do. The AF processing unit 316 determines the position of the focus lens when the contrast evaluation value is the highest as the focus position.
 レンズ位置管理部318は、レンズ位置検出部324から提供される複数のレンズ326の位置情報を管理する。レンズ位置管理部318は、レンズ位置検出部324から提供される現在のズーム位置、および現在のフォーカス位置をメモリ340に登録してよい。 The lens position management unit 318 manages the position information of the plurality of lenses 326 provided from the lens position detection unit 324. The lens position management unit 318 may register the current zoom position and the current focus position provided from the lens position detection unit 324 in the memory 340.
 以上の通り、撮像装置300の高度に応じて、撮像装置300のフォーカス位置を決定する場合のフォーカスレンズの走査範囲を決定する。これにより、高度が高くなるにつれて、フォーカス位置を決定するための時間が長くなることを防止できる。 As described above, the scanning range of the focus lens when determining the focus position of the imaging device 300 is determined according to the altitude of the imaging device 300. Thereby, it is possible to prevent the time for determining the focus position from increasing as the altitude increases.
 上記の例では、UAV100が飛行中に撮像装置300が地上に存在する対象物を撮像する場合などを想定している。このような想定の下、撮像装置300の高度が高くなるにつれて、フォーカスレンズの走査範囲を遠端側に限定して、走査範囲を狭くする。しかし、撮像装置300により撮像される対象物が、飛行中のUAV100の高度と同じような高度に存在する場合もある。このような場合、フォーカスレンズの走査範囲を遠端側に限定してしまうと、フォーカス位置を適切に設定できない可能性がある。例えば、UAV100が飛行中に、UAV100の周囲に存在する高層ビル、または高層ビルの屋上などに存在する対象物を撮像装置300が撮像するような場合、フォーカス位置を適切に設定できない可能性がある。 In the above example, it is assumed that the imaging apparatus 300 images an object existing on the ground while the UAV 100 is flying. Under such assumption, as the altitude of the imaging apparatus 300 increases, the scanning range of the focus lens is limited to the far end side and the scanning range is narrowed. However, the object imaged by the imaging device 300 may exist at an altitude similar to the altitude of the UAV 100 in flight. In such a case, if the scanning range of the focus lens is limited to the far end side, the focus position may not be set appropriately. For example, when the image capturing apparatus 300 captures an image of a high-rise building around the UAV 100 or an object existing on the roof of the high-rise building while the UAV 100 is flying, the focus position may not be set appropriately. .
 そこで、検出部319が、撮像装置300から予め定められた範囲内に存在する対象物を検出する。検出部319は、UAV制御部110からUAV100と対象物との間の距離を示す距離情報を取得してよい。検出部319が距離情報で示される距離が予め定められた範囲内に含まれるか否かを検出してよい。予め定められた範囲は、UAV100が障害物に衝突することを防止するために予め設定される範囲でよい。予め定められた範囲は、ユーザにより設定されてよい。予め定められた範囲は、UAV100の飛行モードに応じて設定されてよい。予め定められた範囲に対象物が存在すると、UAV100は対象物への衝突を防止するために、例えば飛行経路を変更する。 Therefore, the detection unit 319 detects an object existing within a predetermined range from the imaging device 300. The detection unit 319 may acquire distance information indicating the distance between the UAV 100 and the object from the UAV control unit 110. The detection unit 319 may detect whether or not the distance indicated by the distance information is included in a predetermined range. The predetermined range may be a range set in advance to prevent the UAV 100 from colliding with an obstacle. The predetermined range may be set by the user. The predetermined range may be set according to the flight mode of the UAV 100. If an object exists in a predetermined range, the UAV 100 changes, for example, the flight path in order to prevent a collision with the object.
 検出部319がそのような対象物を検出した場合、決定部314は、高度情報を用いずに、走査範囲を決定してよい。決定部314は、高度情報を用いずに、初期設定の走査範囲を走査範囲に決定してよい。決定部314は、高度情報を用いずに、無限遠端から至近端までの全範囲を走査範囲に決定してよい。これにより、例えば、撮像装置300により撮像される対象物が、UAV100の高度と同じような高度に存在する場合に、フォーカス位置を適切に設定できなくなることを防止できる。 When the detection unit 319 detects such an object, the determination unit 314 may determine the scanning range without using altitude information. The determination unit 314 may determine the initial scan range as the scan range without using the altitude information. The determination unit 314 may determine the entire range from the infinity end to the closest end as the scanning range without using altitude information. Thereby, for example, when the object imaged by the imaging apparatus 300 exists at an altitude similar to the altitude of the UAV 100, it is possible to prevent the focus position from being appropriately set.
 図6は、撮像制御部310がフォーカスレンズの走査範囲を決定する手順の一例を示すフローチャートである。 FIG. 6 is a flowchart illustrating an example of a procedure in which the imaging control unit 310 determines the scanning range of the focus lens.
 検出部319がUAV制御部110から提供された距離情報に基づいて、撮像装置300から予め定められた範囲内に対象物が存在するか否かを判定する(S100)。そのような対象物が存在する場合、決定部314は、高度情報を用いずに、初期設定の走査範囲をフォーカスレンズの走査範囲に決定する(S102)。 Based on the distance information provided from the UAV control unit 110, the detection unit 319 determines whether or not an object exists within a predetermined range from the imaging device 300 (S100). When such an object exists, the determination unit 314 determines the initial scan range as the focus lens scan range without using altitude information (S102).
 一方、そのような対象物が存在する場合、取得部312がUAV制御部110から提供されるUAV100の高度情報を撮像装置300の高度情報として取得する(S104)。決定部314は、高度情報に基づいて、例えば、図3または図4に示すような高度と走査範囲との関係に従って、フォーカスレンズの走査範囲を決定する(S106)。AF処理部316は、決定部314により決定された走査範囲でコントラストAF方式でオートフォーカス処理を実行する。 On the other hand, when such an object exists, the acquisition unit 312 acquires the altitude information of the UAV 100 provided from the UAV control unit 110 as the altitude information of the imaging apparatus 300 (S104). The determination unit 314 determines the scan range of the focus lens based on the altitude information, for example, according to the relationship between the altitude and the scan range as shown in FIG. 3 or FIG. 4 (S106). The AF processing unit 316 performs autofocus processing by the contrast AF method within the scanning range determined by the determination unit 314.
 図7は、本発明の複数の態様が全体的または部分的に具現化されてよいコンピュータ1200の一例を示す。コンピュータ1200にインストールされたプログラムは、コンピュータ1200に、本発明の実施形態に係る装置に関連付けられるオペレーションまたは当該装置の1または複数の「部」として機能させることができる。または、当該プログラムは、コンピュータ1200に当該オペレーションまたは当該1または複数の「部」を実行させることができる。当該プログラムは、コンピュータ1200に、本発明の実施形態に係るプロセスまたは当該プロセスの段階を実行させることができる。そのようなプログラムは、コンピュータ1200に、本明細書に記載のフローチャートおよびブロック図のブロックのうちのいくつかまたはすべてに関連付けられた特定のオペレーションを実行させるべく、CPU1212によって実行されてよい。 FIG. 7 illustrates an example of a computer 1200 in which aspects of the present invention may be embodied in whole or in part. A program installed in the computer 1200 can cause the computer 1200 to function as an operation associated with the apparatus according to the embodiment of the present invention or as one or more “units” of the apparatus. Alternatively, the program can cause the computer 1200 to execute the operation or the one or more “units”. The program can cause the computer 1200 to execute a process according to an embodiment of the present invention or a stage of the process. Such a program may be executed by CPU 1212 to cause computer 1200 to perform certain operations associated with some or all of the blocks in the flowcharts and block diagrams described herein.
 本実施形態によるコンピュータ1200は、CPU1212、およびRAM1214を含み、それらはホストコントローラ1210によって相互に接続されている。コンピュータ1200はまた、通信インタフェース1222、入力/出力ユニットを含み、それらは入力/出力コントローラ1220を介してホストコントローラ1210に接続されている。コンピュータ1200はまた、ROM1230を含む。CPU1212は、ROM1230およびRAM1214内に格納されたプログラムに従い動作し、それにより各ユニットを制御する。 The computer 1200 according to this embodiment includes a CPU 1212 and a RAM 1214, which are connected to each other by a host controller 1210. The computer 1200 also includes a communication interface 1222 and an input / output unit, which are connected to the host controller 1210 via the input / output controller 1220. Computer 1200 also includes ROM 1230. The CPU 1212 operates according to programs stored in the ROM 1230 and the RAM 1214, thereby controlling each unit.
 通信インタフェース1222は、ネットワークを介して他の電子デバイスと通信する。ハードディスクドライブが、コンピュータ1200内のCPU1212によって使用されるプログラムおよびデータを格納してよい。ROM1230はその中に、アクティブ化時にコンピュータ1200によって実行されるブートプログラム等、および/またはコンピュータ1200のハードウェアに依存するプログラムを格納する。プログラムが、CR-ROM、USBメモリまたはICカードのようなコンピュータ可読記録媒体またはネットワークを介して提供される。プログラムは、コンピュータ可読記録媒体の例でもあるRAM1214、またはROM1230にインストールされ、CPU1212によって実行される。これらのプログラム内に記述される情報処理は、コンピュータ1200に読み取られ、プログラムと、上記様々なタイプのハードウェアリソースとの間の連携をもたらす。装置または方法が、コンピュータ1200の使用に従い情報のオペレーションまたは処理を実現することによって構成されてよい。 The communication interface 1222 communicates with other electronic devices via a network. A hard disk drive may store programs and data used by CPU 1212 in computer 1200. The ROM 1230 stores therein a boot program executed by the computer 1200 at the time of activation and / or a program depending on the hardware of the computer 1200. The program is provided via a computer-readable recording medium such as a CR-ROM, a USB memory, or an IC card or a network. The program is installed in the RAM 1214 or the ROM 1230 that is also an example of a computer-readable recording medium, and is executed by the CPU 1212. Information processing described in these programs is read by the computer 1200 to bring about cooperation between the programs and the various types of hardware resources. An apparatus or method may be configured by implementing information operations or processing in accordance with the use of computer 1200.
 例えば、通信がコンピュータ1200および外部デバイス間で実行される場合、CPU1212は、RAM1214にロードされた通信プログラムを実行し、通信プログラムに記述された処理に基づいて、通信インタフェース1222に対し、通信処理を命令してよい。通信インタフェース1222は、CPU1212の制御の下、RAM1214、またはUSBメモリのような記録媒体内に提供される送信バッファ領域に格納された送信データを読み取り、読み取られた送信データをネットワークに送信し、またはネットワークから受信した受信データを記録媒体上に提供される受信バッファ領域等に書き込む。 For example, when communication is performed between the computer 1200 and an external device, the CPU 1212 executes a communication program loaded in the RAM 1214 and performs communication processing on the communication interface 1222 based on the processing described in the communication program. You may order. The communication interface 1222 reads transmission data stored in a RAM 1214 or a transmission buffer area provided in a recording medium such as a USB memory under the control of the CPU 1212 and transmits the read transmission data to a network, or The reception data received from the network is written into a reception buffer area provided on the recording medium.
 また、CPU1212は、USBメモリ等のような外部記録媒体に格納されたファイルまたはデータベースの全部または必要な部分がRAM1214に読み取られるようにし、RAM1214上のデータに対し様々なタイプの処理を実行してよい。CPU1212は次に、処理されたデータを外部記録媒体にライトバックしてよい。 In addition, the CPU 1212 allows the RAM 1214 to read all or necessary portions of a file or database stored in an external recording medium such as a USB memory, and executes various types of processing on the data on the RAM 1214. Good. The CPU 1212 may then write back the processed data to an external recording medium.
 様々なタイプのプログラム、データ、テーブル、およびデータベースのような様々なタイプの情報が記録媒体に格納され、情報処理を受けてよい。CPU1212は、RAM1214から読み取られたデータに対し、本開示の随所に記載され、プログラムの命令シーケンスによって指定される様々なタイプのオペレーション、情報処理、条件判断、条件分岐、無条件分岐、情報の検索/置換等を含む、様々なタイプの処理を実行してよく、結果をRAM1214に対しライトバックする。また、CPU1212は、記録媒体内のファイル、データベース等における情報を検索してよい。例えば、各々が第2の属性の属性値に関連付けられた第1の属性の属性値を有する複数のエントリが記録媒体内に格納される場合、CPU1212は、第1の属性の属性値が指定される、条件に一致するエントリを当該複数のエントリの中から検索し、当該エントリ内に格納された第2の属性の属性値を読み取り、それにより予め定められた条件を満たす第1の属性に関連付けられた第2の属性の属性値を取得してよい。 Various types of information such as various types of programs, data, tables, and databases may be stored in the recording medium and subjected to information processing. The CPU 1212 describes various types of operations, information processing, conditional judgment, conditional branching, unconditional branching, and information retrieval that are described throughout the present disclosure for data read from the RAM 1214 and specified by the instruction sequence of the program. Various types of processing may be performed, including / replacement, etc., and the result is written back to RAM 1214. In addition, the CPU 1212 may search for information in files, databases, etc. in the recording medium. For example, when a plurality of entries each having an attribute value of the first attribute associated with the attribute value of the second attribute are stored in the recording medium, the CPU 1212 specifies the attribute value of the first attribute. The entry that matches the condition is searched from the plurality of entries, the attribute value of the second attribute stored in the entry is read, and thereby the first attribute that satisfies the predetermined condition is associated. The attribute value of the obtained second attribute may be acquired.
 上で説明したプログラムまたはソフトウェアモジュールは、コンピュータ1200上またはコンピュータ1200近傍のコンピュータ可読記憶媒体に格納されてよい。また、専用通信ネットワークまたはインターネットに接続されたサーバーシステム内に提供されるハードディスクまたはRAMのような記録媒体が、コンピュータ可読記憶媒体として使用可能であり、それによりプログラムを、ネットワークを介してコンピュータ1200に提供する。 The program or software module described above may be stored in a computer-readable storage medium on the computer 1200 or in the vicinity of the computer 1200. In addition, a recording medium such as a hard disk or a RAM provided in a server system connected to a dedicated communication network or the Internet can be used as a computer-readable storage medium, whereby the program is transferred to the computer 1200 via the network. provide.
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。 As mentioned above, although this invention was demonstrated using embodiment, the technical scope of this invention is not limited to the range as described in the said embodiment. It will be apparent to those skilled in the art that various modifications or improvements can be added to the above-described embodiment. It is apparent from the scope of the claims that the embodiments added with such changes or improvements can be included in the technical scope of the present invention.
 請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。 The execution order of each process such as operations, procedures, steps, and stages in the apparatus, system, program, and method shown in the claims, the description, and the drawings is particularly “before” or “prior”. It should be noted that they can be implemented in any order unless the output of the previous process is used in the subsequent process. Regarding the operation flow in the claims, the description, and the drawings, even if it is described using “first”, “next”, etc. for the sake of convenience, it means that it is essential to carry out in this order. is not.
100 UAV
102 UAV本体
110 UAV制御部
150 通信インタフェース
160 メモリ
200 ジンバル
210 回転翼機構
230 撮像装置
240 GPS受信機
260 磁気コンパス
270 気圧高度計
300 撮像装置
310 撮像制御部
312 取得部
314 決定部
316 AF処理部
318 レンズ位置管理部
319 検出部
320 レンズ制御部
322 レンズ移動機構
324 レンズ位置検出部
326 レンズ
330 撮像素子
332 温度センサ
340 メモリ
1200 コンピュータ
1210 ホストコントローラ
1212 CPU
1214 RAM
1220 入力/出力コントローラ
1222 通信インタフェース
1230 ROM
100 UAV
102 UAV main body 110 UAV control unit 150 Communication interface 160 Memory 200 Gimbal 210 Rotary blade mechanism 230 Imaging device 240 GPS receiver 260 Magnetic compass 270 Barometric altimeter 300 Imaging device 310 Imaging control unit 312 Acquisition unit 314 Determination unit 316 AF processing unit 318 Lens Position management unit 319 Detection unit 320 Lens control unit 322 Lens movement mechanism 324 Lens position detection unit 326 Lens 330 Image sensor 332 Temperature sensor 340 Memory 1200 Computer 1210 Host controller 1212 CPU
1214 RAM
1220 Input / output controller 1222 Communication interface 1230 ROM

Claims (14)

  1.  撮像装置の高度情報を取得する取得部と、
     前記高度情報に基づいて、前記撮像装置のフォーカス位置を決定する場合のフォーカスレンズの走査範囲を決定する決定部と
    を備える制御装置。
    An acquisition unit for acquiring altitude information of the imaging device;
    And a determining unit that determines a scanning range of the focus lens when determining a focus position of the imaging device based on the altitude information.
  2.  前記決定部は、前記高度情報に基づいて前記走査範囲の幅を決定する、請求項1に記載の制御装置。 The control device according to claim 1, wherein the determination unit determines a width of the scanning range based on the altitude information.
  3.  前記決定部は、前記高度情報で示される高度が第1高度の場合、前記走査範囲の幅を第1幅に決定し、前記高度情報で示される高度が前記第1高度より高い第2高度の場合、前記走査範囲の幅を前記第1幅より狭い第2幅に決定する、請求項2に記載の制御装置。 When the altitude indicated by the altitude information is a first altitude, the determining unit determines the width of the scanning range as a first width, and the altitude indicated by the altitude information is a second altitude higher than the first altitude. 3. The control device according to claim 2, wherein a width of the scanning range is determined to be a second width narrower than the first width.
  4.  前記決定部は、前記高度情報で示される高度がより高い場合に、前記走査範囲の幅をより狭くする、請求項3に記載の制御装置。 The control device according to claim 3, wherein the determination unit narrows the width of the scanning range when the altitude indicated by the altitude information is higher.
  5.  前記決定部は、前記高度情報で示される高度が前記第1高度を含む第1高度範囲にある場合、前記走査範囲の幅を前記第1幅に決定し、前記高度情報で示される高度が前記第2高度を含む第2高度範囲にある場合、前記走査範囲の幅を前記第2幅に決定する、請求項3に記載の制御装置。 When the altitude indicated by the altitude information is in a first altitude range including the first altitude, the determining unit determines the width of the scanning range as the first width, and the altitude indicated by the altitude information is 4. The control device according to claim 3, wherein a width of the scanning range is determined as the second width when the second height range includes a second height. 5.
  6.  前記決定部は、前記高度情報で示される高度がより高い場合に、前記走査範囲の至近端側の端部をより無限遠端側に近い位置に決定する、請求項3に記載の制御装置。 4. The control device according to claim 3, wherein the determination unit determines an end on the closest end side of the scanning range to a position closer to an infinite end side when the altitude indicated by the altitude information is higher. .
  7.  前記決定部は、前記高度情報で示される高度が前記第1高度の場合、前記走査範囲の至近端側の端部を第1位置に決定し、前記高度情報で示される高度が前記第2高度の場合、前記走査範囲の至近端側の端部を前記第1位置より無限遠端側の第2位置に決定する、請求項3に記載の制御装置。 When the altitude indicated by the altitude information is the first altitude, the determining unit determines the end on the closest end side of the scanning range as the first position, and the altitude indicated by the altitude information is the second altitude. 4. The control device according to claim 3, wherein in the case of altitude, an end portion on the closest end side of the scanning range is determined to be a second position on the infinity end side from the first position.
  8.  前記取得部は、前記撮像装置の温度情報をさらに取得し、
     前記決定部は、前記高度情報および前記温度情報に基づいて、前記走査範囲を決定する、請求項1に記載の制御装置。
    The acquisition unit further acquires temperature information of the imaging device,
    The control device according to claim 1, wherein the determination unit determines the scanning range based on the altitude information and the temperature information.
  9.  前記決定部は、前記高度情報で示される高度が第1高度で、前記温度情報で示される温度が第1温度の場合、前記走査範囲の幅を第1幅に決定し、前記高度情報で示される高度が前記第1高度で、前記温度情報で示される温度が前記第1温度より低い第2温度の場合、前記走査範囲の幅を前記第1幅より狭い第3幅に決定する、請求項8に記載の制御装置。 When the altitude indicated by the altitude information is the first altitude and the temperature indicated by the temperature information is the first temperature, the determining unit determines the width of the scanning range as the first width and indicates the altitude information. The scanning range is determined to be a third width narrower than the first width when the altitude to be measured is the first altitude and the temperature indicated by the temperature information is a second temperature lower than the first temperature. 8. The control device according to 8.
  10.  前記撮像装置から予め定められた範囲内に存在する対象物を検出する検出部をさらに備え、
     前記検出部が前記対象物を検出した場合、前記決定部は、前記高度情報を用いずに、前記走査範囲を決定する、請求項1に記載の制御装置。
    A detection unit for detecting an object existing within a predetermined range from the imaging device;
    The control device according to claim 1, wherein when the detection unit detects the object, the determination unit determines the scanning range without using the altitude information.
  11.  請求項1から10の何れか1つに記載の制御装置と、
     前記フォーカスレンズと
     前記決定部により決定された前記走査範囲に基づいてフォーカスレンズの移動を制御する制御部と
    を備える撮像装置。
    A control device according to any one of claims 1 to 10,
    An imaging apparatus comprising: the focus lens; and a control unit that controls movement of the focus lens based on the scanning range determined by the determination unit.
  12.  請求項11に記載の撮像装置を備えて移動する移動体。 A moving body that moves with the imaging device according to claim 11.
  13.  撮像装置の高度情報を取得する段階と、
     前記高度情報に基づいて、前記撮像装置のフォーカス位置を決定する場合のフォーカスレンズの走査範囲を決定する段階と
    を備える決定方法。
    Acquiring altitude information of the imaging device;
    Determining a focus lens scanning range when determining a focus position of the imaging device based on the altitude information.
  14.  撮像装置の高度情報を取得する段階と、
     前記高度情報に基づいて、前記撮像装置のフォーカス位置を決定する場合のフォーカスレンズの走査範囲を決定する段階と
    をコンピュータに実行させるためのプログラム。
    Acquiring altitude information of the imaging device;
    A program for causing a computer to execute a step of determining a scanning range of a focus lens when determining a focus position of the imaging device based on the altitude information.
PCT/JP2016/085978 2016-12-02 2016-12-02 Control device, imaging device, moving body, determination method, and program WO2018100744A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2016/085978 WO2018100744A1 (en) 2016-12-02 2016-12-02 Control device, imaging device, moving body, determination method, and program
JP2017559737A JP6543879B2 (en) 2016-12-02 2016-12-02 Unmanned aerial vehicles, decision methods and programs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/085978 WO2018100744A1 (en) 2016-12-02 2016-12-02 Control device, imaging device, moving body, determination method, and program

Publications (1)

Publication Number Publication Date
WO2018100744A1 true WO2018100744A1 (en) 2018-06-07

Family

ID=62241453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/085978 WO2018100744A1 (en) 2016-12-02 2016-12-02 Control device, imaging device, moving body, determination method, and program

Country Status (2)

Country Link
JP (1) JP6543879B2 (en)
WO (1) WO2018100744A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020052220A (en) * 2018-09-26 2020-04-02 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd Controller, imaging device, mobile body, method for control, and program

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006154524A (en) * 2004-11-30 2006-06-15 Fuji Photo Film Co Ltd Imaging apparatus and focusing position searching method
JP2006317593A (en) * 2005-05-11 2006-11-24 Fuji Photo Film Co Ltd Imaging apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006270457A (en) * 2005-03-23 2006-10-05 Nec Saitama Ltd Power-off system, method, and program for mobile terminal equipment
JP2008065193A (en) * 2006-09-08 2008-03-21 Canon Inc Imaging apparatus and focus control method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006154524A (en) * 2004-11-30 2006-06-15 Fuji Photo Film Co Ltd Imaging apparatus and focusing position searching method
JP2006317593A (en) * 2005-05-11 2006-11-24 Fuji Photo Film Co Ltd Imaging apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020052220A (en) * 2018-09-26 2020-04-02 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd Controller, imaging device, mobile body, method for control, and program

Also Published As

Publication number Publication date
JP6543879B2 (en) 2019-07-17
JPWO2018100744A1 (en) 2018-12-06

Similar Documents

Publication Publication Date Title
JP6496955B1 (en) Control device, system, control method, and program
US20190258255A1 (en) Control device, imaging system, movable object, control method, and program
WO2019238044A1 (en) Determination device, mobile object, determination method and program
US20210014427A1 (en) Control device, imaging device, mobile object, control method and program
JP6384000B1 (en) Control device, imaging device, imaging system, moving object, control method, and program
JP2020012878A (en) Controller, moving object, control method, and program
US11363195B2 (en) Control device, imaging device, imaging system, movable object, control method, and program
JP6587006B2 (en) Moving body detection device, control device, moving body, moving body detection method, and program
JP6651693B2 (en) Control device, moving object, control method, and program
WO2018100744A1 (en) Control device, imaging device, moving body, determination method, and program
JP6565072B2 (en) Control device, lens device, flying object, control method, and program
JP6515423B2 (en) CONTROL DEVICE, MOBILE OBJECT, CONTROL METHOD, AND PROGRAM
JP6481228B1 (en) Determination device, control device, imaging system, flying object, determination method, and program
WO2018109847A1 (en) Control device, imaging device, mobile body, control method, and program
WO2018185940A1 (en) Imaging control device, imaging device, imaging system, mobile body, imaging control method and program
WO2018116417A1 (en) Control device, imaging device, moving body, control method, and program
JP6668570B2 (en) Control device, imaging device, moving object, control method, and program
JP6746856B2 (en) Control device, imaging system, moving body, control method, and program
JP2020016703A (en) Control device, moving body, control method, and program
JP6413170B1 (en) Determination apparatus, imaging apparatus, imaging system, moving object, determination method, and program
JP6696094B2 (en) Mobile object, control method, and program
JP6409239B1 (en) Imaging apparatus, imaging system, flying object, recording method, and program
WO2019085794A1 (en) Control device, camera device, flight body, control method and program

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017559737

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16923089

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09/09/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16923089

Country of ref document: EP

Kind code of ref document: A1