WO2018098979A1 - 一种多源小功率低温等离子体聚合涂层装置及方法 - Google Patents

一种多源小功率低温等离子体聚合涂层装置及方法 Download PDF

Info

Publication number
WO2018098979A1
WO2018098979A1 PCT/CN2017/081772 CN2017081772W WO2018098979A1 WO 2018098979 A1 WO2018098979 A1 WO 2018098979A1 CN 2017081772 W CN2017081772 W CN 2017081772W WO 2018098979 A1 WO2018098979 A1 WO 2018098979A1
Authority
WO
WIPO (PCT)
Prior art keywords
low
electrode plate
porous electrode
power
source
Prior art date
Application number
PCT/CN2017/081772
Other languages
English (en)
French (fr)
Inventor
宗坚
Original Assignee
江苏菲沃泰纳米科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏菲沃泰纳米科技有限公司 filed Critical 江苏菲沃泰纳米科技有限公司
Priority to US16/095,179 priority Critical patent/US10541116B2/en
Publication of WO2018098979A1 publication Critical patent/WO2018098979A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/08Plant for applying liquids or other fluent materials to objects
    • B05B5/10Arrangements for supplying power, e.g. charging power
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • H01J37/32449Gas control, e.g. control of the gas flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/08Plant for applying liquids or other fluent materials to objects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/32541Shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/32568Relative arrangement or disposition of electrodes; moving means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32816Pressure
    • H01J37/32834Exhausting

Definitions

  • the invention belongs to the field of plasma technology, and in particular relates to a low temperature plasma polymerization coating device and method.
  • Plasma surface treatment is widely used in aerospace, automotive, mechanical rework and hardware tool manufacturing as an effective method to improve the surface properties of materials.
  • Plasma polymer coating is an important Surface treatment method.
  • it is necessary to pass a process gas and a gaseous organic monomer into the vacuum chamber.
  • the discharge plasmaizes the organic gaseous monomer to produce various active species, and the addition reaction between the active species or the active species and the monomer forms a polymer.
  • the polymer coating is generally non-conductive, it is usually necessary to use a high-frequency discharge source to generate plasma, and in order to improve production efficiency and reduce cost, the existing plasma polymerization coating The device maximizes the power supply area to handle more substrates simultaneously.
  • the large-area high-frequency discharge power source has a large power threshold, and the generated plasma energy is high and the density is high, and the chemical monomer structure is easily destroyed, so that the formed polymer coating is of poor quality.
  • the generated plasma is unevenly distributed in space, which makes the batch product quality uniformity poor.
  • the above-mentioned problems can be solved by combining a plurality of small-area, low-power high-frequency discharge power sources instead of a single large-area, high-power high-frequency discharge power source.
  • the distance between the high-frequency power sources has to be pulled apart, and the distance between the high-frequency power sources increases the plasma space generated. The distribution is uneven.
  • the object of the present invention is to address existing plasma polymer coatings
  • the plasma generated by the large-area, high-power high-frequency discharge power source is uneven in spatial distribution, the quality of batch products is poor, the plasma energy is high, the density is high, and the structure of the chemical monomer is easily destroyed.
  • the problem of poor quality of the polymer coating, and the crosstalk between the high-frequency discharge power sources existing in the combination of a plurality of small-area, low-power high-frequency discharge power sources, and the uneven spatial distribution of the plasma generated is provided.
  • a multi-source low-power low-temperature plasma polymerization coating device A multi-source low-power low-temperature plasma polymerization coating device.
  • a plurality of discharge cavities are mounted adjacent to each other on the wall of the main vacuum chamber, and a planar grounding grid is installed at an opening of each discharge chamber leading to the main vacuum chamber to shield each Mutual crosstalk between discharge cavities
  • a porous electrode plate is installed in each discharge chamber near the grid, and the porous electrode plate is parallel to the grid and maintains a small gap to eliminate the plasma between them, thereby preventing electromagnetic waves in each discharge chamber from propagating through the plasma into the main a vacuum chamber; a uniformly distributed through-hole on the porous electrode plate supplies a neutral discharge product and a reactive group into the main vacuum chamber through the grid; the porous electrode plate is fixed on the wall of the discharge chamber through the insulating bracket, and the small power is connected through the wire
  • the frequency power supply, the porous electrode plate in each discharge chamber is connected with a low-power high-frequency power source, so that the porous electrode plate discharges the discharge chamber wall, and generates plasma in the discharge chamber; the carrier gas pipeline and the single-unit steam pipeline are respectively connected.
  • each discharge chamber the other end of the carrier gas line and the monomer vapor line are respectively connected to a carrier gas source and a monomer vapor source; the vacuum exhaust pipe is connected to In the main vacuum chamber, the other end of the vacuum exhaust pipe is connected to the vacuum pump; the substrate to be treated is placed inside the main vacuum chamber and outside the discharge chamber.
  • the carrier gas and the monomer vapor are discharged in each discharge chamber, and the monomer vapor is polymerized.
  • the polymerization product passes through the small holes and the grid on the porous electrode plate and enters the vacuum chamber and deposits on the surface of the substrate. Polymer coating.
  • the discharge chamber is cylindrical and made of metal.
  • the diameter ranges from ⁇ 50 to ⁇ 200 mm and the depth is 30-150 mm. .
  • the spacing between adjacent axes of the discharge chamber is 70 ⁇ 400 mm.
  • the gap between the porous electrode plate and the grid is less than 8 mm.
  • the diameter of the through holes distributed on the porous electrode plate is 1 to 10 mm, and the hole spacing is 1 to 10 mm.
  • the low-power high-frequency power supply has a power of 5 to 100 W and a frequency of 20 kHz to 300 MHz.
  • the vacuum exhaust pipe is connected to a wall of the main vacuum chamber opposite to the discharge chamber.
  • a method for coating by using the multi-source low-power low-temperature plasma polymerization coating device described above which comprises the following steps:
  • the low-power high-frequency power source discharges the porous electrode plate to the discharge chamber wall, and the monomer vapor is polymerized.
  • the polymerization product passes through the small holes and the grid on the porous electrode plate and enters the vacuum chamber and deposits on the surface of the substrate. A polymer coating is formed.
  • the carrier gas is one or a mixture of argon or helium.
  • Figure 1 is a schematic diagram of a multi-source, low-power, low-temperature plasma polymerization coating device.
  • Figure 2 is a schematic view of the structure of the discharge chamber of Figure 1.
  • Multi-source low-power low-temperature plasma polymerization coating device in which the main A plurality of discharge cavities are mounted on the wall of the vacuum chamber, the discharge chamber is cylindrical, the material is metal, and the diameter ranges from ⁇ 50 mm to a depth of 150 mm; the spacing between adjacent discharge chamber axes is 70 mm.
  • a discharge grounding grid is installed at the opening of the discharge chamber to the main vacuum chamber; a porous electrode plate is installed in the discharge chamber near the grid, and the through hole is uniformly distributed on the porous electrode plate, the through hole diameter is 1 mm, and the hole spacing is 1 mm.
  • the porous electrode plate is parallel to the grid and the gap is less than 8 mm; the porous electrode plate is fixed by the insulating bracket, and the low-power high-frequency power source is connected through the wire, and the power of the low-power high-frequency power source is 5 W, and the frequency is 20 kHz.
  • a carrier gas line and a monomer vapor line are connected to each of the discharge chambers, and the other ends of the carrier gas line and the monomer vapor line are respectively connected to the carrier gas source and the monomer vapor source;
  • the vacuum exhaust pipe is connected to the main The vacuum chamber is opposite the discharge chamber, and the other end of the vacuum exhaust pipe is connected to the vacuum pump; the substrate to be treated is placed inside the main vacuum chamber and outside the discharge chamber.
  • the method for coating a multi-source low-power low-temperature plasma polymerization coating device is characterized in that it mainly comprises the following steps:
  • the carrier gas is argon gas, maintaining the vacuum degree in the vacuum chamber to 30 Pa; introducing monomer steam, Passing monomer vapor through a monomer vapor line into a vacuum chamber, the monomer vapor containing at least one unsaturated carbon-carbon bond, wherein one of the unsaturated carbon atoms does not contain a substituent, and the monomer may have a halogen structure a functional group or other functional group, wherein the halogen functional group is One or more of F, Cl, Br, I, other functional groups are one or more of a hydroxyl group, a carboxyl group, an epoxy group, and a siloxy group, for example, the monomer is dimethylvinylethoxysilane. ;
  • the low-power high-frequency power source discharges the porous electrode plate to the discharge chamber wall, and the monomer vapor is polymerized.
  • the polymerization product passes through the small holes and the grid on the porous electrode plate and enters the vacuum chamber and deposits on the surface of the substrate. A polymer coating is formed.
  • Multi-source low-power low-temperature plasma polymerization coating device in which the main A plurality of discharge cavities are mounted on the wall of the vacuum chamber.
  • the discharge chamber is cylindrical and the material is metal.
  • the diameter range is ⁇ 200 mm and the depth is 30 mm; the spacing between adjacent discharge chamber axes is 400 mm.
  • a discharge grounding grid is installed at the opening of the discharge chamber to the main vacuum chamber; a porous electrode plate is installed in the discharge chamber near the grid, and the through hole is uniformly distributed on the porous electrode plate, the through hole diameter is 10 mm, and the hole spacing is 10 mm.
  • the porous electrode plate is parallel to the grid and the gap is less than 8mm; the porous electrode plate is fixed by the insulating bracket, and the low-power high-frequency power source is connected through the wire.
  • the power of the low-power high-frequency power source is 100W, and the frequency is 300MHz.
  • the other end of the carrier gas line and the monomer vapor line are respectively connected to the carrier gas source and the monomer vapor source; the vacuum exhaust pipe is connected to the main The vacuum chamber is opposite the discharge chamber, and the other end of the vacuum exhaust pipe is connected to the vacuum pump; the substrate to be treated is placed inside the main vacuum chamber and outside the discharge chamber.
  • One embodiment 3 The method for coating a multi-source low-power low-temperature plasma polymerization coating device is characterized in that it mainly comprises the following steps:
  • the low-power high-frequency power source discharges the porous electrode plate to the discharge chamber wall, and the monomer vapor is polymerized.
  • the polymerization product passes through the small holes and the grid on the porous electrode plate and enters the vacuum chamber and deposits on the surface of the substrate. A polymer coating is formed.
  • Multi-source low-power low-temperature plasma polymerization coating device in which the main A plurality of discharge cavities are mounted on the wall of the vacuum chamber, the discharge chamber is cylindrical, and the material is metal, and the diameter ranges from ⁇ 100 mm to a depth of 90 mm; the spacing between adjacent discharge chamber axes is 200 mm.
  • a discharge grounding grid is connected to the opening of the main vacuum chamber; a porous electrode plate is installed in the discharge chamber near the grid, and the through hole is uniformly distributed on the porous electrode plate, the through hole diameter is 5 mm, and the hole spacing is 5 mm.
  • the porous electrode plate is parallel to the grid and the gap is less than 8mm; the porous electrode plate is fixed by the insulating bracket, and the low-power high-frequency power source is connected through the wire.
  • the power of the low-power high-frequency power source is 50W and the frequency is 100MHz.
  • the other end of the carrier gas line and the monomer vapor line are respectively connected to the carrier gas source and the monomer vapor source; the vacuum exhaust pipe is connected to the main The vacuum chamber is opposite the discharge chamber, and the other end of the vacuum exhaust pipe is connected to the vacuum pump; the substrate to be treated is placed inside the main vacuum chamber and outside the discharge chamber.
  • One embodiment 3 The method for coating a multi-source low-power low-temperature plasma polymerization coating device is characterized in that it mainly comprises the following steps:
  • the carrier gas is argon gas and helium gas, maintaining the vacuum degree in the vacuum chamber to 2 Pa; introducing monomer steam, Passing monomer vapor through a monomer vapor line into a vacuum chamber, the monomer vapor containing at least one unsaturated carbon-carbon bond, wherein one of the unsaturated carbon atoms does not contain a substituent, and the monomer may have a halogen structure a functional group or other functional group, wherein the halogen functional group is One or more of F, Cl, Br, I, other functional groups are one or more of a hydroxyl group, a carboxyl group, an epoxy group, and a siloxy group, for example, the monomers are methacrylic acid and methacrylic acid- 2-hydroxyethyl ester;
  • the low-power high-frequency power source discharges the porous electrode plate to the discharge chamber wall, and the monomer vapor is polymerized.
  • the polymerization product passes through the small holes and the grid on the porous electrode plate and enters the vacuum chamber and deposits on the surface of the substrate. A polymer coating is formed.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

一种多源小功率低温等离子体聚合涂层装置及方法,该装置包括主真空室(1),在主真空室(1)壁上安装多个放电腔(2),在每个放电腔(2)安装一个平面接地栅网(3)和多孔电极板(4),多孔电极板(4)与栅网(3)平行并保持间隙,并连接小功率高频电源(5);载体气体管路(6)和单体蒸汽管路(7)分别连接到每个放电腔(2)内,待处理的基材(9)放在主真空室(1)内部。该方法包括以下步骤:开启真空泵,通入载体气体和单体蒸汽,多孔电极板(4)对放电腔(2)壁放电,单体蒸汽发生聚合,聚合产物先后穿过多孔电极板(4)上的小孔和栅网(3)进入主真空室(1)并沉积在基材(9)表面形成聚合物涂层。该方法形成的等离子体空间分布均匀,批处理产品质量均一性好,等离子体能量、密度较低,化学单体结构不易被过度破坏,聚合物涂层质量好。

Description

一种多源小功率低温等离子体聚合涂层装置及方法
技术领域
本发明属于等离子体技术领域,特别涉及 一种低温等离子体聚合涂层装置及方法 。
背景技术
等离子体表面处理作为提升材料表面性能有效方法被广泛应用于航空航天、汽车制造、机械重工和五金工具制造等领域。等离子体 聚合涂层是一种重要的 表面处理方法。在等离子体 聚合涂层 过程中,需要在真空室中通入工艺气体和气态有机类单体,通过 放电把有机类气态单体等离子体化,使其产生各类活性种,由这些活性种之间或活性种与单体之间进行加成反应形成聚合物 。由于聚合物涂层一般不导电,通常必须使用高频放电源产生等离子体,而为了提高生产效率、降低成本,现有的等离子体 聚合涂层 装置尽可能增大放电源面积以能够同时处理更多基材。但大面积的高频放电源功率阈值大,产生的等离子体能量高、密度高,易将化学单体结构过度破坏,使形成的聚合物涂层质量不良。另外,大面积的高频放电源由于存在驻波效应,所产生的等离子体在空间分布不均匀,使批处理产品质量均一性不良。
理论上解决上述问题的可以用多个小面积、小功率的高频放电源组合起来代替单一的大面积、大功率高频放电源。但是实际上由于各不同高频放电源之间难以做到相位完全一致,存在相互之间的串扰,使各高频放电源工作不稳定,严重时可能烧坏供电电源。而为了减小各高频放电源相互之间的串扰,不得不拉开各高频放电源之间的距离,而各高频放电源之间距离的加大又会使所产生的等离子体空间分布不均匀。
发明内容
本发明的目的是针对现有的等离子体 聚合涂层 装置使用大面积、大功率高频放电源所产生的等离子体在空间分布不均匀、批处理产品质量均一性不良、等离子体能量高、密度高,易将化学单体结构过度破坏,使形成的聚合物涂层质量不良的问题,以及多个小面积、小功率高频放电源的组合所存在的各高频放电源之间相互串扰,所产生的等离子体空间分布不均匀等问题提供 一种多源小功率低温等离子体聚合涂层装置 。
本发明为实现上述目的所采用的技术方案如下:
在主真空室壁上相互靠近安装多个放电腔,在每个放电腔通往主真空室的开口处安装一个平面接地栅网以屏蔽各 放电腔之间的相互串扰 ;在每个放电腔内靠近栅网处安装多孔电极板,多孔电极板与栅网平行并保持一个小间隙以消除它们之间的等离子体,避免各放电腔内的电磁波通过等离子体传播进入主真空室;多孔电极板上均匀分布的通孔供电中性的放电产物和活性基团通过经栅网进入主真空室;多孔电极板通过绝缘支架固定在放电腔壁上,通过导线连接小功率高频电源,每个放电腔内的多孔电极板连接一个小功率高频电源,使多孔电极板对放电腔壁放电,在放电腔内产生等离子体;载体气体管路和单体蒸汽管路分别连接到每个放电腔内,载体气体管路和单体蒸汽管路另一端分别连接到载体气体源和单体蒸汽源;真空排气管连接到 主 真空室内,真空排气管另一端连接到真空泵;待处理的基材放在主真空室内 部,且位于放电腔外部, 载体气体和单体蒸汽在各放电腔内发生放电,单体蒸汽发生聚合,聚合产物在载体气流带动下先后穿过多孔电极板上的小孔和栅网进入真空室并沉积在基材表面形成聚合物涂层。
所述放电腔为圆筒形,材质为金属,其直径范围是 φ 50~ φ 200mm ,深度为 30-150mm 。
所述放电腔相邻 轴线之间的间距为 70~400mm 。
所述多孔电极板与所述栅网之间的间隙小于 8mm 。
所述多孔电极板上分布的通孔直径是 1~10mm ,孔间距 1~10mm 。
所述的小功率高频电源功率为 5~100W ,频率为 20kHz~300MHz 。
所述的真空排气管连接在主真空室与放电腔相对的壁上。
一种利用上述所述的多源小功率低温等离子体聚合涂层装置进行涂层的方法,其特征在于:主要包括以下步骤:
( 1 )、在真空室内放置待处理的基材,开启真空泵将真空室内真空度抽到 1Pa 以下;
( 2 )、开启载体气体管路和单体蒸汽管路,通入载体气体和单体蒸汽,维持真空室内的真空度为 2-30Pa ;
( 3 )、开启 小功率高频电源,多孔电极板对放电腔壁放电,单体蒸汽发生聚合,聚合产物在载体气流带动下先后穿过多孔电极板上的小孔和栅网进入真空室并沉积在基材表面形成聚合物涂层。
所述载体气体为氩气或氦气中的一种或两种混合物。
本发明的上述技术方案与现有技术相比具有以下优点:
  1. (1) 由于真空室内安装多个放电腔,分开但相互靠近的多个放电腔避免了单一大面积放电源存在的驻波效应,使得真空室内等离子体的空间分布均匀,批处理产品质量均一性良好。
  1. (2) 与单一大面积电极放电源相比,各小功率放电腔放电功率阈值小,放电总功率小,产生的等离子体能量、密度较低,化学单体结构不易被过度破坏,形成的聚合物涂层质量良好。
  1. (3) 栅网接地且多孔电极板平行靠近栅网, 消除它们之间的等离子体,有效阻挡各放电腔内的电磁波通过等离子体传播进入主真空室,避免各放电腔之间的相互干扰,使 各放电腔能够靠近安装,真空室内等离子体的空间分布均匀,批处理产品质量均一性良好。
附图说明
图 1 为一种 多源小功率低温等离子体聚合涂层装置 示意图。
图 2 为图 1 中放电腔的结构示意图。
图中: 1 、主真空室, 2 、放电腔, 3 、栅网, 4 、多孔电极板, 5 、小功率高频电源, 6 、载体气体管路, 7 、单体蒸汽管路, 8 、真空排气管, 9 、基材, 10 、绝缘支架, 11 、导线。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,但本发明并不局限于具体实施例。
实施例 1
一种 多源小功率低温等离子体聚合涂层装置,该装置中, 主 真空室的壁上安装多个放电腔,放电腔为圆筒形,材质是金属,其直径范围是φ 50mm ,深度为 150mm ;相邻放电腔轴线之间的间距为 70mm ;放电腔通往主真空室的开口处安装一个平面接地栅网;在放电腔内靠近栅网处安装多孔电极板,多孔电极板上均匀分布通孔,通孔直径 1mm ,孔间距 1mm ;多孔电极板与栅网平行且间隙小于 8mm ;多孔电极板通过绝缘支架固定,通过导线连接小功率高频电源,小功率高频电源的功率为 5W ,频率为 20kHz ;载体气体管路和单体蒸汽管路连接到每个放电腔内,载体气体管路和单体蒸汽管路另一端分别连接到载体气体源和单体蒸汽源;真空排气管连接到 主 真空室与放电腔相对的壁上,真空排气管另一端连接到真空泵;待处理的基材放在主真空室内部,并位于放电腔外部。
实施例 2
一种利用实施例 1 所述的多源小功率低温等离子体聚合涂层装置进行涂层的方法,其特征在于:主要包括以下步骤:
( 1 )、在真空室内放置待处理的基材,开启真空泵将真空室内真空度抽到 1Pa ;
( 2 )、通入载体气体,使载体气体经载体气体管路进入到放电腔及真空室,所述载体气体为氩气,维持真空室内的真空度为 30Pa ;通入单体蒸汽, 使单体蒸汽经单体蒸汽管路进入真空室,所述单体蒸汽含有至少一个不饱和碳碳键,其中一个不饱和碳原子上不含取代基,所述单体的结构中可以含有卤素官能团或其他官能团,所述卤素官能团为 F, Cl, Br, I 中一种或多种,其他官能团为羟基,羧基,环氧基团,硅氧基团中一种或多种,例如单体为二甲基乙烯基乙氧基硅烷;
( 3 )、开启 小功率高频电源,多孔电极板对放电腔壁放电,单体蒸汽发生聚合,聚合产物在载体气流带动下先后穿过多孔电极板上的小孔和栅网进入真空室并沉积在基材表面形成聚合物涂层。
实施例 3
一种 多源小功率低温等离子体聚合涂层装置,该装置中, 主 真空室的壁上安装多个放电腔,放电腔为圆筒形,材质是金属,其直径范围是φ 200mm ,深度为 30mm ;相邻放电腔轴线之间的间距为 400mm ;放电腔通往主真空室的开口处安装一个平面接地栅网;在放电腔内靠近栅网处安装多孔电极板,多孔电极板上均匀分布通孔,通孔直径 10mm ,孔间距 10mm ;多孔电极板与栅网平行且间隙小于 8mm ;多孔电极板通过绝缘支架固定,通过导线连接小功率高频电源,小功率高频电源的功率为 100W ,频率为 300MHz ;载体气体管路和单体蒸汽管路另一端分别连接到载体气体源和单体蒸汽源;真空排气管连接到 主 真空室与放电腔相对的壁上,真空排气管另一端连接到真空泵;待处理的基材放在主真空室内部,并位于放电腔外部。
实施例 4
一种利用实施例 3 所述的多源小功率低温等离子体聚合涂层装置进行涂层的方法,其特征在于:主要包括以下步骤:
( 1 )、在真空室内放置待处理的基材,开启真空泵将真空室内真空度抽到 0.5Pa 以下;
( 2 )、通入载体气体,使载体气体经载体气体管路进入到放电腔及真空室,所述载体气体为氦气,维持真空室内的真空度为 12Pa ;通入单体蒸汽, 使单体蒸汽经单体蒸汽管路进入真空室,所述单体蒸汽含有至少一个不饱和碳碳键,其中一个不饱和碳原子上不含取代基,所述单体的结构中可以含有卤素官能团或其他官能团,所述卤素官能团为 F, Cl, Br, I 中一种或多种,其他官能团为羟基,羧基,环氧基团,硅氧基团中一种或多种,例如单体为为甲基丙烯酸三氟乙酯;
( 3 )、开启 小功率高频电源,多孔电极板对放电腔壁放电,单体蒸汽发生聚合,聚合产物在载体气流带动下先后穿过多孔电极板上的小孔和栅网进入真空室并沉积在基材表面形成聚合物涂层。
实施例 5
一种 多源小功率低温等离子体聚合涂层装置,该装置中, 主 真空室的壁上安装多个放电腔,放电腔为圆筒形,材质是金属,其直径范围是φ 100mm ,深度为 90mm ;相邻放电腔轴线之间的间距为 200mm ;放电腔通往主真空室的开口处安装一个平面接地栅网;在放电腔内靠近栅网处安装多孔电极板,多孔电极板上均匀分布通孔,通孔直径 5mm ,孔间距 5mm ;多孔电极板与栅网平行且间隙小于 8mm ;多孔电极板通过绝缘支架固定,通过导线连接小功率高频电源,小功率高频电源的功率为 50W ,频率为 100MHz ;载体气体管路和单体蒸汽管路另一端分别连接到载体气体源和单体蒸汽源;真空排气管连接到 主 真空室与放电腔相对的壁上,真空排气管另一端连接到真空泵;待处理的基材放在主真空室内部,并位于放电腔外部。
实施例 6
一种利用实施例 3 所述的多源小功率低温等离子体聚合涂层装置进行涂层的方法,其特征在于:主要包括以下步骤:
( 1 )、在真空室内放置待处理的基材,开启真空泵将真空室内真空度抽到 0.06Pa ;
( 2 )、通入载体气体,使载体气体经载体气体管路进入到放电腔及真空室,所述载体气体为氩气和氦气,维持真空室内的真空度为 2Pa ;通入单体蒸汽, 使单体蒸汽经单体蒸汽管路进入真空室,所述单体蒸汽含有至少一个不饱和碳碳键,其中一个不饱和碳原子上不含取代基,所述单体的结构中可以含有卤素官能团或其他官能团,所述卤素官能团为 F, Cl, Br, I 中一种或多种,其他官能团为羟基,羧基,环氧基团,硅氧基团中一种或多种,例如单体为为甲基丙烯酸和甲基丙烯酸 -2- 羟乙酯;
( 3 )、开启 小功率高频电源,多孔电极板对放电腔壁放电,单体蒸汽发生聚合,聚合产物在载体气流带动下先后穿过多孔电极板上的小孔和栅网进入真空室并沉积在基材表面形成聚合物涂层。

Claims (9)

  1. 一种多源小功率低温等离子体聚合涂层装置,其特征在于:在主真空室( 1 )壁上安装多个放电腔( 2 ),在每个放电腔( 2 )通往主真空室( 1 )的开口处安装一个平面接地栅网( 3 ),在每个放电腔( 2 )内靠近栅网( 3 )处安装多孔电极板( 4 ),多孔电极板( 4 )与栅网( 3 )平行并保持间隙, 多孔电极板( 4 )通过绝缘支架( 10 )固定在 放电腔( 2 )壁上 ,多孔电极板( 4 )通过导线( 11 )连接小功率高频电源( 5 ), 多孔电极板( 4 )上均匀分布通孔,载体气体管路( 6 )和单体蒸汽管路( 7 )分别连接到每个放电腔( 2 )内,载体气体管路( 6 )和单体蒸汽管路( 7 )另一端分别连接到载体气体源和单体蒸汽源,真空排气管( 8 )连接到主真空室( 1 )内,真空排气管另一端连接到真空泵,待处理的基材( 9 )放在主真空室( 1 )内部,且位于放电腔( 2 )外部。
  2. 根据权利要求 1 所述的一种多源小功率低温等离子体聚合涂层装置,其特征在于:所述放电腔( 2 )为圆筒形,材质为金属,其直径范围是 φ 50~ φ 200mm ,深度为 30-150mm 。
  3. 根据权利要求 1 所述的一种多源小功率低温等离子体聚合涂层装置,其特征在于:所述放电腔( 2 )相邻 轴线之间的间距为 70~400mm 。
  4. 根据权利要求 1 所述的一种多源小功率低温等离子体聚合涂层装置,其特征在于:所述多孔电极板( 4 )与所述栅网( 3 )之间的间隙小于 8mm 。
  5. 根据权利要求 1 所述的一种多源小功率低温等离子体聚合涂层装置,其特征在于:所述多孔电极板( 4 )上分布的通孔直径是 1~10mm ,孔间距 1~10mm 。
  6. 根据权利要求 1 所述的一种多源小功率低温等离子体聚合涂层装置,其特征在于: 所述的小功率高频电源( 5 )功率为 5~100W ,频率为 20kHz~300MHz 。
  7. 根据权利要求 1 所述的一种多源小功率低温等离子体聚合涂层装置,其特征在于:所述的真空排气管( 8 )连接到主真空室( 1 )上与放电腔( 2 )相对的内壁上。
  8. 一种如权利要求 1 所述的一种多源小功率低温等离子体聚合涂层装置进行涂层的方法,其特征在于:主要包括以下步骤:
    ( 1 )、在真空室( 1 )内放置待处理的基材( 9 ),开启真空泵将真空室( 1 )内真空度抽到 1Pa 以下;
    ( 2 )、开启载体气体管路( 6 )和单体蒸汽管路( 7 ),通入载体气体和单体蒸汽,维持真空室( 1 )内的真空度为 2-30Pa ;
    ( 3 )、开启 小功率高频电源( 5 ),多孔电极板对放电腔壁放电,单体蒸汽发生聚合,聚合产物在载体气流带动下先后穿过多孔电极板上的小孔和栅网进入真空室并沉积在基材表面形成聚合物涂层。
  9. 根据权利要求 8 所述的一种多源小功率低温等离子体聚合涂层方法,其特征在于:所述载体气体为氩气或氦气中的一种或两种混合物。
PCT/CN2017/081772 2016-10-27 2017-04-25 一种多源小功率低温等离子体聚合涂层装置及方法 WO2018098979A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/095,179 US10541116B2 (en) 2016-10-27 2017-04-25 Multi-source low-power low-temperature plasma polymerized coating device and method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201610956694 2016-10-27
CN201611076507.0 2016-11-30
CN201611076507.0A CN106622716B (zh) 2016-10-27 2016-11-30 一种多源小功率低温等离子体聚合涂层装置及方法

Publications (1)

Publication Number Publication Date
WO2018098979A1 true WO2018098979A1 (zh) 2018-06-07

Family

ID=58813912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/081772 WO2018098979A1 (zh) 2016-10-27 2017-04-25 一种多源小功率低温等离子体聚合涂层装置及方法

Country Status (3)

Country Link
US (1) US10541116B2 (zh)
CN (1) CN106622716B (zh)
WO (1) WO2018098979A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106961779B (zh) * 2017-05-11 2024-02-02 江苏菲沃泰纳米科技股份有限公司 一种带有定转电极组的等离子体引发聚合装置
CN107217243B (zh) * 2017-05-21 2018-07-13 江苏菲沃泰纳米科技有限公司 一种大占空比脉冲放电制备多功能性纳米防护涂层的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101243733A (zh) * 2005-08-12 2008-08-13 国立大学法人东北大学 等离子体处理装置
CN101245449A (zh) * 2007-02-14 2008-08-20 北京行者多媒体科技有限公司 大批量生产薄膜的等离子箱
US8021514B2 (en) * 2007-07-11 2011-09-20 Applied Materials, Inc. Remote plasma source for pre-treatment of substrates prior to deposition
US20150099069A1 (en) * 2013-10-07 2015-04-09 AeonClad Coatings, LLC Technologies, Inc. Low-cost plasma reactor
CN205616834U (zh) * 2016-05-13 2016-10-05 无锡荣坚五金工具有限公司 一种栅控等离子体引发气相聚合表面涂层的装置
CN206215404U (zh) * 2016-10-27 2017-06-06 无锡荣坚五金工具有限公司 一种多源小功率低温等离子体聚合涂层装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101243733A (zh) * 2005-08-12 2008-08-13 国立大学法人东北大学 等离子体处理装置
CN101245449A (zh) * 2007-02-14 2008-08-20 北京行者多媒体科技有限公司 大批量生产薄膜的等离子箱
US8021514B2 (en) * 2007-07-11 2011-09-20 Applied Materials, Inc. Remote plasma source for pre-treatment of substrates prior to deposition
US20150099069A1 (en) * 2013-10-07 2015-04-09 AeonClad Coatings, LLC Technologies, Inc. Low-cost plasma reactor
CN205616834U (zh) * 2016-05-13 2016-10-05 无锡荣坚五金工具有限公司 一种栅控等离子体引发气相聚合表面涂层的装置
CN206215404U (zh) * 2016-10-27 2017-06-06 无锡荣坚五金工具有限公司 一种多源小功率低温等离子体聚合涂层装置

Also Published As

Publication number Publication date
US20190148117A1 (en) 2019-05-16
CN106622716B (zh) 2018-03-27
US10541116B2 (en) 2020-01-21
CN106622716A (zh) 2017-05-10

Similar Documents

Publication Publication Date Title
CN103227091B (zh) 等离子体处理装置
JP2022066224A5 (ja) 基板処理装置、プラズマ生成装置、反応管、プラズマ生成方法、基板処理方法、半導体装置の製造方法およびプログラム
CN107408486A (zh) 用于循环与选择性材料移除与蚀刻的处理腔室
TW469534B (en) Plasma processing method and apparatus
CN108203090B (zh) 一种石墨烯的制备方法
JPS59199035A (ja) 薄膜生成装置
ATE430376T1 (de) Plasmareaktor zur behandlung von grossflächigen substraten
WO2018098979A1 (zh) 一种多源小功率低温等离子体聚合涂层装置及方法
JP2019537668A (ja) プラズマ重合コーティング装置
US20110192348A1 (en) RF Hollow Cathode Plasma Generator
CN110337170A (zh) 一种基于电流驱动技术反场位形结构的高密度等离子体射流发生装置
CN210928112U (zh) 一种微波等离子体发生装置
CN103458599B (zh) 一种低温等离子体处理装置及方法
KR100457455B1 (ko) 박막 증착 속도를 조절하는 샤워헤드를 구비한 화학 기상증착 장치.
CN206215404U (zh) 一种多源小功率低温等离子体聚合涂层装置
KR20000077207A (ko) 박막형성장치의 클리닝방법 및 박막형성장치
JP3583294B2 (ja) プラズマ放出装置及びプラズマ処理装置
JPS6369981A (ja) プラズマ化学処理によって層を形成する方法および装置
TWI811587B (zh) 等離子體處理設備以及等離子體處理方法
WO2016108568A1 (ko) 플라즈마 처리장치
KR20100053255A (ko) 이단 진공 챔버를 가지는 유도결합 플라즈마 장치
CN216253322U (zh) 一种用于在真空状态下对镀层作出改性的离子源
CN216528734U (zh) 一种用于在真空状态下对基材件改性的离子源
TWI768546B (zh) 一種等離子體處理裝置
CN210765490U (zh) 一种辅助阳极装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17877162

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17877162

Country of ref document: EP

Kind code of ref document: A1