WO2018097523A1 - 이차전지용 전해액 및 이를 포함하는 이차전지 - Google Patents

이차전지용 전해액 및 이를 포함하는 이차전지 Download PDF

Info

Publication number
WO2018097523A1
WO2018097523A1 PCT/KR2017/012702 KR2017012702W WO2018097523A1 WO 2018097523 A1 WO2018097523 A1 WO 2018097523A1 KR 2017012702 W KR2017012702 W KR 2017012702W WO 2018097523 A1 WO2018097523 A1 WO 2018097523A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbonate
secondary battery
lithium
electrolyte
formula
Prior art date
Application number
PCT/KR2017/012702
Other languages
English (en)
French (fr)
Inventor
방지민
신정주
고종관
Original Assignee
에스케이케미칼주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이케미칼주식회사 filed Critical 에스케이케미칼주식회사
Publication of WO2018097523A1 publication Critical patent/WO2018097523A1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a secondary battery electrolyte comprising a glyoxal sulfate and difluorophosphate and a secondary battery comprising the same, the secondary battery has excellent output characteristics and capacity characteristics at high temperature storage, and exhibits improved high temperature life characteristics. .
  • lithium secondary batteries having high energy density, excellent lifespan characteristics, and low self discharge rate have been commercialized and widely used.
  • the lithium secondary battery is composed of a negative electrode such as a carbon material that occludes and releases lithium ions, a positive electrode made of a lithium-containing oxide, and the like, and a non-aqueous electrolyte solution in which lithium salt is dissolved in an appropriate amount.
  • a number of additives and electrolyte composition techniques are added to improve the output stability of the non-aqueous electrolyte.
  • a number of additives and electrolyte composition techniques are known that form a high quality film (solid electrolyte interface) on the positive electrode and the negative electrode to improve the capacity storage characteristics of the secondary battery.
  • Japanese Patent No. 3439085 discloses an additive for a secondary battery including lithium fluorophosphate or lithium difluorophosphate.
  • the registered patent discloses that a lithium fluorophosphate or lithium difluorophosphate additive reacts with lithium to form a good film at the interface between the positive electrode and the negative electrode, and the film inhibits direct contact between the active material and the organic solvent in a non-aqueous system.
  • disassembly of electrolyte solution is disclosed.
  • the registered patent discloses that the storage characteristics are improved by suppressing self discharge of the battery when the secondary battery is stored for a predetermined period after charging of the secondary battery.
  • lithium fluorophosphate or lithium difluorophosphate can improve the storage characteristics and lifespan characteristics of the secondary battery to some extent, there was a lack of long-term storage or lifetime characteristics of the battery at high temperatures.
  • the registered patent does not disclose that the high output characteristics of the secondary battery including lithium fluorophosphate or lithium difluorophosphate is improved.
  • an object of the present invention is to include an additive for forming a more dense coating on the negative electrode of the secondary battery, the secondary battery electrolyte excellent in the output characteristics and capacity characteristics during high temperature storage, and at the same time improve the high temperature life characteristics and It is to provide a secondary battery including the same.
  • the present invention to achieve the above object
  • the present invention provides a secondary battery comprising the secondary battery electrolyte.
  • the electrolyte solution for a secondary battery of the present invention forms a stable film on the positive electrode and the negative electrode of the secondary battery, thereby improving output characteristics and capacity characteristics during high temperature storage of the secondary battery, and at the same time, improving the high temperature life characteristics of the battery.
  • the secondary battery electrolyte of the present invention is a carbonate solvent; Lithium salts; A compound of Formula 1; And lithium difluorophosphate (LiPO 2 F 2 ).
  • the compound of formula 1 is a known compound (CAS No. 496-45-7), bicyclo-glyoxal sulfate, glyoxal sulfate, or 3a, 6a-dihydro- [1,3,2] dioxathiolo [4,5-d] [1,3,2] dioxathiol 2,2,5,5-tetraoxide (3a, 6a-dihydro- [1,3, 2] dioxathiolo [4,5-d] [1,3,2] dioxathiole 2,2,5,5-tetraoxide), etc., and can be purchased commercially.
  • the compound of Formula 1 may be prepared by a known synthesis method, for example, by reacting sulfuric acid with 1,1,2,2-tetrachloroethane as a starting material (US Patent No. 1,999,995 and US Patent Registration). 2,415,397).
  • lithium difluorophosphate (CAS No. 845910-47-6, difluorophosphate lithium) is a commercially available compound and can be purchased commercially or prepared by known synthetic methods.
  • the electrolyte may include 0.1 to 10% by weight of the compound of Formula 1 and 0.05 to 10% by weight of lithium difluorophosphate relative to the total weight.
  • the electrolyte solution is 0.1 to 8% by weight, 0.2 to 5% by weight, or 0.5 to 3% by weight of the compound of Formula 1; And 0.05-8%, 0.1-5%, or 0.2-2% by weight of lithium difluorophosphate.
  • the compound of Formula 1 is included in an amount within the content range
  • the secondary battery including the electrolyte of the present invention has an effect of suppressing an increase in resistance in a high temperature environment and an excessive improvement of initial resistance at room temperature.
  • the electrode surface of the secondary battery is coated with an appropriate thickness, it is possible to prevent an increase in the resistance of the secondary battery.
  • the carbonate solvent has high solubility in the lithium salt, the compound of Formula 1, and lithium difluorophosphate.
  • the carbonate solvent is diethyl carbonate (DEC), ethylmethyl carbonate (EMC), dimethyl carbonate (DMC), dipropyl carbonate (DPC), methylpropyl carbonate (methylpropyl carbonate; MPC), ethylpropyl carbonate (EPC), ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), propyl propionate ( It may be at least one selected from the group consisting of propyl propionate (PP) and fluoroethylene carbonate (FEC).
  • the electrolyte is a carbonate solvent, diethyl carbonate (DEC), ethyl methyl carbonate (EMC), dimethyl carbonate (DMC), dipropyl carbonate (DPC), methylpropyl carbonate (MPC) and ethylpropyl carbonate (EPC
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • DMC dimethyl carbonate
  • DPC dipropyl carbonate
  • MPC methylpropyl carbonate
  • EPC methylpropyl carbonate
  • EPC methylpropyl carbonate
  • EPC methylpropyl carbonate
  • EPC methylpropyl carbonate
  • EPC methylpropyl carbonate
  • EPC methylpropyl carbonate
  • MPC methylpropyl carbonate
  • EPC methylpropyl carbonate
  • EPC methylpropyl carbonate
  • EPC methylpropyl carbonate
  • EPC methylpropyl carbonate
  • the carbonate solvent may be dehydrated, and specifically, the carbonate solvent may include water of 30 ppm by weight or less.
  • the lithium salt is not particularly limited as long as it is commonly used in an electrolyte solution for secondary batteries.
  • the lithium salt is LiPF 6 , LiBF 4 , LiBF 6 , LiSbF 6 , LiAsF 6 , LiClO 4 , LiSO 3 CF 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , It may be one or more selected from the group consisting of LiN (SO 2 F) 2 and LiC (CF 3 SO 2 ) 3 .
  • the electrolyte may include 0.05 to 5.0 moles of lithium salt based on 1 liter of the carbonate solvent.
  • the electrolyte may include 0.1 to 5.0 mol, 0.1 to 3.0 mol, 0.1 to 2.5 mol, 0.5 to 3.0 mol or 0.5 to 2.5 mol lithium salt based on 1 liter of the carbonate solvent.
  • the lithium salt is included in the content within the above range, the ionic conductivity of the electrolyte is appropriately secured, and the effect of improving the ion conductivity of the electrolyte that can be obtained compared to the concentration of the added lithium salt is high and economical.
  • the secondary battery electrolyte according to the present invention can be prepared by simply mixing and stirring a carbonate solvent, a lithium salt, glyoxal sulfate and lithium difluorophosphate represented by the formula (1).
  • the electrolyte solution for a secondary battery of the present invention is used in the manufacture of a secondary battery, it is possible to improve the output characteristics, capacity storage characteristics, and lifespan characteristics of the battery by lowering the interfacial resistance of the secondary battery and suppressing the increase in resistance over a wide temperature range.
  • the present invention provides a secondary battery including the secondary battery electrolyte.
  • the secondary battery includes a positive electrode including a positive electrode active material; A negative electrode including a negative electrode active material; A separator disposed between the anode and the cathode; And it may include the secondary battery electrolyte.
  • the positive electrode includes a positive electrode active material capable of reversibly occluding and desorbing lithium ions.
  • the positive electrode active material is at least one metal selected from the group consisting of cobalt, manganese and nickel; And a composite metal oxide including lithium.
  • the solid solution ratio between the metals may be various, and the positive electrode active material may be Mg, Al, K, Na, Ca, Si, Ti, Sn, V, Ge, Ga, B, As, Zr, Cr, Fe, in addition to the above-described metals. It may further include one or more elements selected from the group consisting of, Sr and rare earth elements.
  • the negative electrode includes a negative electrode active material capable of occluding and desorbing lithium ions.
  • the negative electrode active material may be a crystalline or amorphous carbon, or a carbon-based negative electrode active material (thermally decomposed carbon, coke, graphite) of the carbon composite; Burnt organic polymer compound; Carbon fiber; Tin oxide compounds; Lithium metal; Or lithium alloys.
  • the amorphous carbon may include hard carbon, coke, mesocarbon microbead (MCMB) fired at 1500 ° C. or lower, mesophase pitch-based carbon fiber (MPCF), or the like. Can be.
  • the crystalline carbon may be a graphite material, and examples thereof include natural graphite, artificial graphite, graphitized coke, graphitized MCMB, graphitized MPCF, and the like.
  • Other elements constituting the alloy with lithium of the lithium alloy may be aluminum, zinc, bismuth, cadmium, antimony, silicon, lead, tin, gallium or indium.
  • the separator is for preventing a short circuit due to direct contact between the positive electrode and the negative electrode, for example, a polymer membrane such as polyolefin, polypropylene, polyethylene, or a multilayer thereof; Microporous film; web; And nonwoven fabrics.
  • the separator may be coated with a metal oxide or the like on one or both surfaces.
  • lithium difluorophosphate difluorophosphate lithium, CAS No. 845910-47-6.
  • the compound of Formula 1 may be prepared according to known synthesis methods as follows.
  • Ethylene carbonate (EC), ethylmethyl carbonate (EMC) and diethyl carbonate (DEC) were mixed at a volume ratio of 20:40:40 to prepare a mixed solution, and LiPF 6 was dissolved in the mixed solution at a concentration of 1 mol / l.
  • 1% by weight of glyoxal sulfate represented by Formula 1 and 1% by weight of lithium difluorophosphate were added and mixed to prepare an electrolyte solution (electrolyte solution) for a secondary battery.
  • An electrolyte solution was prepared in the same manner as in Example 1, except that glyoxal sulfate represented by Chemical Formula 1 was added in an amount of 2 wt% and lithium difluorophosphate in an amount of 1 wt%.
  • An electrolyte solution was prepared in the same manner as in Example 1, except that lithium difluorophosphate was not added.
  • An electrolyte solution was prepared in the same manner as in Example 2, except that lithium difluorophosphate was not added.
  • An electrolyte solution was prepared in the same manner as in Example 1, except that glyoxal sulfate represented by Chemical Formula 1 was not added.
  • An electrolyte solution was prepared in the same manner as in Example 1, except that glyoxal sulfate and lithium difluorophosphate represented by Chemical Formula 1 were not added.
  • Example 1 Lithium Difluorophosphate of 1% by weight of Formula 1 + 1% by weight 35.7 41.7
  • Example 2 2% by weight of formula 1 + 1% by weight of lithium difluorophosphate 39.5 40.2 Comparative Example 1 1 weight% of formula 1 36.1 48.6 Comparative Example 2 2% by weight of formula 1 38.4 42.9 Comparative Example 3 1% by weight of lithium difluorophosphate 33.7 58.0 Comparative Example 4 No additives 36.1 74.6
  • the battery was stored in a 60 ° C. high temperature oven for 6 weeks, and the discharge capacity after 6 weeks was measured in the same manner as described above, and the capacity retention ratio with respect to the initial capacity was calculated and shown in Table 2.
  • Example 1 Lithium Difluorophosphate of 1% by weight of Formula 1 + 1% by weight 93%
  • Example 2 2% by weight of formula 1 + 1% by weight of lithium difluorophosphate 93% Comparative Example 1 1 weight% of formula 1 87% Comparative Example 2 2% by weight of formula 1 92% Comparative Example 3 1% by weight of lithium difluorophosphate 78% Comparative Example 4 No additives 71%
  • the electrolyte solutions of Examples 1 and 2 were prepared by comparing the initial charge of the battery with no additives (Comparative Example 4) or one type of additives used (Comparative Examples 1 to 3).
  • the discharge amount after high temperature (60 degreeC) storage was remarkably excellent. This is a result showing that the reduction of the electrochemical electrode capacity generated during the high temperature storage of the battery by using an electrolyte containing a combination of the compound of formula (1) and lithium difluorophosphate significantly reduced.
  • the secondary battery including the electrolyte solution of the present invention realized stable charge and discharge capacity even at a high temperature.
  • Example 1 Lithium Difluorophosphate of 1% by weight of Formula 1 + 1% by weight 97%
  • Example 2 2% by weight of formula 1 + 1% by weight of lithium difluorophosphate 96% Comparative Example 1 1 weight% of formula 1 86% Comparative Example 2 2% by weight of formula 1 90% Comparative Example 3 1% by weight of lithium difluorophosphate 83% Comparative Example 4 No additives 6%

Abstract

본 발명은 글리옥살 설페이트와 디플루오로 인산염을 포함하는 이차전지용 전해액 및 이를 포함하는 이차전지에 관한 것으로, 상기 이차전지는 고온 저장 시 출력 특성 및 용량 특성이 우수하고 개선된 고온 수명 특성을 나타낸다.

Description

이차전지용 전해액 및 이를 포함하는 이차전지
본 발명은 글리옥살 설페이트와 디플루오로인산염을 포함하는 이차전지용 전해액 및 이를 포함하는 이차전지에 관한 것으로, 상기 이차전지는 고온 저장 시 출력 특성 및 용량 특성이 우수하고, 개선된 고온 수명 특성을 나타낸다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차전지에 대해 수요가 급격히 증가하고 있다. 이차전지 중에서도 높은 에너지 밀도, 우수한 수명 특성 및 자기 방전율이 낮은 리튬 이차전지가 상용화되어 널리 사용되고 있다.
최근에는 환경문제에 대한 관심이 커짐에 따라 대기오염의 주요 원인의 하나인 가솔린 차량, 디젤 차량 등 화석연료를 사용하는 차량을 대체할 수 있는 전기자동차, 하이브리드 전기자동차 등에 대한 연구가 많이 진행되고 있다. 이러한 전기자동차, 하이브리드 전기자동차 등의 동력원으로는 높은 에너지 밀도, 높은 방전 전압 및 출력 안정성의 리튬 이차전지를 사용하는 연구가 활발히 진행되고 있으며, 일부 상용화되어 있다.
이러한 리튬 이차전지는 리튬 이온을 흡장 및 방출하는 탄소재 등의 음극, 리튬 함유 산화물 등으로 된 양극 및 혼합 유기 용매에 리튬염이 적당량 용해된 비수계 전해액으로 구성되어 있다. 상기 비수계 전해액의 출력 안정성 향상을 위해 첨가하는 다수의 첨가제와 전해액 조성물 기술이 공지되어 있다. 또한, 양극과 음극에 양질의 피막(solid electrolyte interface)을 형성하여 이차전지의 용량 보존 특성을 개선하는 다수의 첨가제와 전해액 조성물 기술이 공지되어 있다.
예컨대, 일본 등록특허 제 3439085 호는 플루오로인산리튬 또는 디플루오로인산리튬을 포함하는 이차전지용 첨가제를 개시하고 있다. 상기 등록특허는 플루오로인산리튬 또는 디플루오로인산리튬 첨가제가 리튬과 반응하여 양극 및 음극의 계면에 양질의 피막을 형성하고 그 피막이 충전 상태의 활물질과 유기 용매와의 직접접촉을 억제하여 비수계 전해액의 분해를 억제하는 효과를 개시하고 있다. 또한, 상기 등록특허는 상술한 효과로 인해 이차전지의 충전 후 일정 기간 동안 보존하였을 때 전지의 자기방전을 억제하여 보존 특성이 향상됨을 개시하고 있다.
그러나, 플루오로인산리튬 또는 디플루오로인산리튬은 이차전지의 저장특성 및 수명특성을 어느 정도 개선할 수 있으나, 고온에서 전지의 장기 저장 또는 수명 특성은 부족함이 있었다. 또한, 상기 등록특허는 플루오로인산리튬 또는 디플루오로인산리튬을 포함하는 이차전지의 고출력 특성이 개선됨을 개시하고 있지 않다.
따라서, 이차전지의 고온 특성을 현저히 개선하면서 동시에 고출력 특성을 만족시킬 수 있는 전해액의 연구개발이 필요하게 되었다.
이에, 본 발명의 목적은 이차전지의 음극에 보다 치밀한 피막을 형성시키는 첨가제를 포함하여 이차전지의 고온 저장시 출력 특성 및 용량 특성이 우수하고, 동시에 고온 수명 특성을 개선할 수 있는 이차전지용 전해액 및 이를 포함하는 이차전지를 제공하는 것이다.
상기 목적을 달성하기 위해 본 발명은
카보네이트계 용매;
리튬염;
하기 화학식 1의 화합물; 및
디플루오로인산리튬(LiPO2F2)을 포함하는, 이차전지용 전해액을 제공한다:
Figure PCTKR2017012702-appb-C000001
또한, 본 발명은 상기 이차전지용 전해액을 포함하는 이차전지를 제공한다.
본 발명의 이차전지용 전해액은 이차전지의 양극 및 음극에 안정적인 피막을 형성시켜 이차전지의 고온 저장시 출력 특성 및 용량 특성을 향상시키고, 동시에 전지의 고온 수명 특성을 개선하는 효과가 있다.
본 발명의 이차전지용 전해액은 카보네이트계 용매; 리튬염; 하기 화학식 1의 화합물; 및 디플루오로인산리튬(LiPO2F2)을 포함한다.
[화학식 1]
Figure PCTKR2017012702-appb-I000001
상기 화학식 1의 화합물은 공지의 화합물(CAS No. 496-45-7)로서, 바이사이클로-글리옥살 설페이트(bicyclo-glyoxal sulfate), 글리옥살 설페이트(glyoxal sulfate), 또는 3a,6a-디하이드로-[1,3,2]디옥사티올로[4,5-d][1,3,2]디옥사티올 2,2,5,5-테트라옥사이드(3a,6a-dihydro-[1,3,2]dioxathiolo[4,5-d][1,3,2]dioxathiole 2,2,5,5-tetraoxide) 등의 명칭으로 불리며, 시중에서 구매할 수 있다. 또한 상기 화학식 1의 화합물은 예를 들어, 1,1,2,2-테트라클로로에탄을 출발물질로 하여 황산 등과 반응시키는 공지의 합성법으로 제조될 수 있다(미국 등록특허 제1,999,995호 및 미국 등록특허 제2,415,397호 참조).
또한, 디플루오로인산리튬(CAS No. 845910-47-6, difluorophosphate lithium)은 공지의 화합물로서 시중에서 구매하거나 공지의 합성법으로 제조될 수 있다.
상기 전해액은 총 중량 대비 0.1 내지 10 중량%의 상기 화학식 1의 화합물 및 0.05 내지 10 중량%의 디플루오로인산리튬을 포함할 수 있다. 구체적으로, 상기 전해액은 총 중량 대비 0.1 내지 8 중량%, 0.2 내지 5 중량%, 또는 0.5 내지 3 중량%의 상기 화학식 1의 화합물; 및 0.05 내지 8 중량%, 0.1 내지 5 중량%, 또는 0.2 내지 2 중량%의 디플루오로인산리튬을 포함할 수 있다. 상기 함량 범위 내의 양으로 화학식 1의 화합물을 포함할 경우, 본 발명의 전해액을 포함하는 이차전지의 고온환경에서의 저항증가를 억제하는 효과 및 상온 초기 저항의 과도한 향상이 방지되는 효과가 있다. 또한, 상기 함량 범위 내의 양으로 디플루오로인산리튬을 포함할 경우, 상기 이차전지의 전극 표면이 적절한 두께로 코팅되며, 이차전지의 저항 증가를 방지할 수 있다.
상기 카보네이트계 용매는 상기 리튬염, 상기 화학식 1의 화합물 및 디플루오로인산리튬에 대한 용해도가 높은 것이 바람직하다. 구체적으로, 상기 카보네이트계 용매는 디에틸 카보네이트(diethyl carbonate; DEC), 에틸메틸 카보네이트(ethylmethyl carbonate; EMC), 디메틸 카보네이트(dimethyl carbonate; DMC), 디프로필 카보네이트(dipropyl carbonate; DPC), 메틸프로필 카보네이트(methylpropyl carbonate; MPC), 에틸프로필 카보네이트(ethylpropyl carbonate; EPC), 에틸렌 카보네이트(ethylene carbonate; EC), 프로필렌 카보네이트(propylene carbonate; PC), 부틸렌 카보네이트(butylene carbonate; BC), 프로필 프로피오네이트(propyl propionate; PP) 및 플루오로에틸렌 카보네이트(fluoroethylene carbonate; FEC)로 이루어진 군으로부터 선택된 1종 이상일 수 있다. 보다 구체적으로, 상기 전해액은 카보네이트계 용매로서 디에틸 카보네이트(DEC), 에틸메틸 카보네이트(EMC), 디메틸 카보네이트(DMC), 디프로필 카보네이트(DPC), 메틸프로필 카보네이트(MPC) 및 에틸프로필 카보네이트(EPC)로 이루어진 군으로부터 선택된 1종 이상의 제1 카보네이트계 용매(선형 카보네이트); 및 에틸렌 카보네이트(EC), 프로필렌 카보네이트(PC), 부틸렌 카보네이트(BC), 프로필 프로피오네이트(PP) 및 플루오로에틸렌 카보네이트(FEC)로 이루어진 군으로부터 선택된 1종 이상의 제2 카보네이트계 용매(선형 또는 환형 카보네이트)를 포함할 수 있다.
상기 카보네이트계 용매는 탈수된 것을 사용할 수 있으며, 구체적으로, 카보네이트계 용매는 30 중량ppm 이하의 수분을 포함할 수 있다.
상기 리튬염은 이차전지용 전해액에 통상 사용되는 것이라면 특별히 한정하지 않는다. 구체적으로, 상기 리튬염은 LiPF6, LiBF4, LiBF6, LiSbF6, LiAsF6, LiClO4, LiSO3CF3, LiN(CF3SO2)2, LiN(C2F5SO2)2, LiN(SO2F)2 및 LiC(CF3SO2)3로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
상기 전해액은 상기 카보네이트계 용매 1 리터를 기준으로 0.05 내지 5.0 몰의 리튬염을 포함할 수 있다. 구체적으로, 상기 전해액은 상기 카보네이트계 용매 1 리터를 기준으로 0.1 내지 5.0 몰, 0.1 내지 3.0 몰, 0.1 내지 2.5 몰, 0.5 내지 3.0 몰 또는 0.5 내지 2.5 몰의 리튬염을 포함할 수 있다. 상기 범위 내의 함량으로 리튬염을 포함할 경우, 전해액의 이온 전도도가 적절하게 확보되며, 첨가한 리튬염의 농도대비 수득할 수 있는 전해액의 이온 전도도 향상 효과가 높아 경제적이다.
본 발명에 따른 이차전지용 전해액은 카보네이트계 용매, 리튬염, 상기 화학식 1로 표시되는 글리옥살 설페이트 및 디플루오로인산리튬을 단순히 혼합하고 교반함으로서 제조될 수 있다.
본 발명의 이차전지용 전해액은 이차전지의 제조에 사용될 경우, 넓은 온도 범위에서 이차전지의 계면 저항을 낮추고 저항의 증가를 억제함으로써 전지의 출력 특성, 용량 보존 특성, 및 수명 특성을 개선할 수 있다.
본 발명은 상기 이차전지용 전해액을 포함하는 이차전지를 제공한다. 구체적으로, 상기 이차전지는 양극 활물질을 포함하는 양극; 음극 활물질을 포함하는 음극; 상기 양극과 음극 사이에 배치되는 분리막; 및 상기 이차전지용 전해액을 포함할 수 있다.
상기 양극은 리튬 이온을 가역적으로 흡장 및 탈리할 수 있는 양극 활물질을 포함한다. 상기 양극 활물질은 코발트, 망간 및 니켈로 이루어진 군으로부터 선택된 1 종 이상의 금속; 및 리튬을 포함하는 복합 금속 산화물을 포함할 수 있다. 금속 사이의 고용율은 다양하게 이루어질 수 있으며, 상기 양극 활물질은 상술한 금속 외에 Mg, Al, K, Na, Ca, Si, Ti, Sn, V, Ge, Ga, B, As, Zr, Cr, Fe, Sr 및 희토류 원소로 이루어진 군에서 선택되는 1종 이상의 원소를 더 포함할 수 있다.
상기 음극은 리튬 이온을 흡장 및 탈리할 수 있는 음극 활물질을 포함한다. 상기 음극 활물질은 결정질 또는 비정질의 탄소, 또는 탄소 복합체의 탄소계 음극 활물질(열적으로 분해된 탄소, 코크, 흑연); 연소된 유기 중합체 화합물; 탄소 섬유; 산화 주석 화합물; 리튬 금속; 또는 리튬 합금을 포함할 수 있다. 예를 들어, 상기 비정질 탄소로는 하드 카본, 코크스, 1500 ℃ 이하에서 소성한 메조카본 마이크로비드(mesocarbon microbead; MCMB), 메조페이스 피치계 탄소 섬유(mesophase pitch-based carbon fiber; MPCF) 등을 들 수 있다. 상기 결정질 탄소는 흑연계 재료일 수 있으며, 예를 들어, 천연흑연, 인조흑연, 흑연화 코크스, 흑연화 MCMB, 흑연화 MPCF 등을 들 수 있다. 상기 리튬 합금 중 리튬과 합금을 이루는 다른 원소는 알루미늄, 아연, 비스무스, 카드뮴, 안티몬, 실리콘, 납, 주석, 갈륨 또는 인듐일 수 있다.
상기 분리막은 양극과 음극 사이의 직접적인 접촉으로 인한 단락을 방지하기 위한 것으로, 예를 들어, 폴리올레핀, 폴리프로필렌, 폴리에틸렌 등의 고분자막 또는 이들의 다중막; 미세다공성 필름; 직포; 및 부직포 등을 들 수 있다. 상기 분리막은 단면 혹은 양면에 금속 산화물 등이 코팅된 것일 수 있다.
이하, 구체적인 실시예 및 비교예를 통하여 본 발명을 더욱 상세히 설명한다. 하기 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로서, 본 발명이 하기 실시예에 의해 한정되는 것은 아니다.
이하의 실시예 및 비교예에서 사용되는 화학식 1의 화합물 및 디플루오로인산리튬(LiPO2F2)(화학식 2)은 모두 공지의 화합물로서, 이들의 구조식, 화학명 및 CAS No.는 아래와 같다:
(1) 화학식 1의 화합물: 글리옥살 설페이트, glyoxal sulfate, CAS No. 496-45-7.
[화학식 1]
Figure PCTKR2017012702-appb-I000002
(2) 디플루오로인산리튬: difluorophosphate lithium, CAS No. 845910-47-6.
[화학식 2]
Figure PCTKR2017012702-appb-I000003
제조예 1. 글리옥살 설페이트의 제조
상기 화학식 1의 화합물은 다음과 같은 공지의 합성법에 따라 제조될 수 있다.
먼저, 60 ℃의 오일 배쓰에 1,000 mL의 3구 플라스크와 컨덴서를 장착하였다. 상기 3구 플라스크에 1,1,2,2-테트라클로로에탄 70 g을 넣고 온도를 60 ℃로 안정화시킨 후, 황산(60 % fuming grade) 320 g을 투입하여 반응을 개시하였다. 반응액은 초기에 투명 내지 연한 갈색의 점성을 나타내었으며, 반응 개시로부터 4 시간 경과 후에 결정성 고체가 생성되었다. 오일 배쓰를 상온으로 식히고 추가 3 시간 동안 저속 교반하였다. 이후 5~7 ℃의 냉수 배쓰로 교체하고 추가 2 시간 동안 저속 교반하였다. 결정성 고체의 추가 생성이 없을 때 반응을 종결시켰다. 수득한 슬러리 용액을 여과기로 고액 분리한 후, 20 Torr 하에서 12 시간 동안 진공 건조하였다. 그 결과 상기 화학식 1로 표시되는 글리옥살 설페이트 72.8 g을 수득하였다(수율: 84.4%).
실시예 1. 전해질 용액의 제조
에틸렌 카보네이트(EC), 에틸메틸 카보네이트(EMC) 및 디에틸 카보네이트(DEC)를 20 : 40 : 40의 부피비로 혼합하여 혼합액을 제조하고, 상기 혼합액에 LiPF6을 1 몰/ℓ의 농도로 용해하고, 전해액 총 중량에 대하여 1 중량%의 상기 화학식 1로 표시되는 글리옥살 설페이트 및 1 중량%의 디플루오로인산리튬을 첨가하고 혼합하여, 이차전지용 전해액(전해질 용액)을 제조하였다.
실시예 2.
상기 화학식 1로 표시되는 글리옥살 설페이트를 2 중량%의 함량 및 디플루오로인산리튬을 1 중량%의 함량으로 첨가한 것을 제외하고는, 실시예 1과 동일한 방법으로 전해액을 제조하였다.
비교예 1.
디플루오로인산리튬을 첨가하지 않는 것을 제외하고는, 실시예 1과 동일한 방법으로 전해액을 제조하였다.
비교예 2.
디플루오로인산리튬을 첨가하지 않는 것을 제외하고는, 실시예 2와 동일한 방법으로 전해액을 제조하였다.
비교예 3.
상기 화학식 1로 표시되는 글리옥살 설페이트를 첨가하지 않는 것을 제외하고는, 실시예 1과 동일한 방법으로 전해액을 제조하였다.
비교예 4.
상기 화학식 1로 표시되는 글리옥살 설페이트 및 디플루오로인산리튬을 첨가하지 않는 것을 제외하고는, 실시예 1과 동일한 방법으로 전해액을 제조하였다.
실험예 1. 리튬 이차전지의 고온 저장 시 출력 특성
양극 활물질인 LiNi1 / 3Co1 / 3Mn1 /3을 사용한 양극재와 음극 활물질인 인조흑연과 천연흑연을 1:1 중량비로 사용한 음극재를 사용하여 통상의 방법으로 1.4 Ah 파우치 전지를 조립하고, 상기 실시예 1 및 2, 및 비교예 1 내지 4의 전해액을 각각 6.5 g씩 주입하여 이차전지를 완성하였다. 상기 전지 화성 공정을 통해 얻은 1.4 Ah 파우치 전지를 25 ℃에서 만충전 대비 60 % 충전 상태 전압을 유지한 채 3 C(쿨롱)으로 10 초간 방전시키고, 이때 발생하는 전압차를 PNE-0506 충방전기(제조사: (주)PNE 솔루션)로 측정하고, 이로부터 초기 저항을 계산하였다.
또한, 상기 전지를 만충전 후, 60 ℃ 고온 오븐에서 6주 동안 저장하고 6주 경과 후의 저항을 상기와 동일한 방법으로 측정하여 표 1에 나타냈다.
전해액 중 첨가제의 함량 DC-IR (mΩ)
25 ℃ 초기 60 ℃ 6주 후
실시예 1 1 중량%의 화학식 1 + 1 중량%의 디플루오로인산리튬 35.7 41.7
실시예 2 2 중량%의 화학식 1 + 1 중량%의 디플루오로인산리튬 39.5 40.2
비교예 1 1 중량%의 화학식 1 36.1 48.6
비교예 2 2 중량%의 화학식 1 38.4 42.9
비교예 3 1 중량%의 디플루오로인산리튬 33.7 58.0
비교예 4 첨가제 없음 36.1 74.6
표 1에서 보는 바와 같이, 실시예 1 및 2의 전해액은, 첨가제를 첨가하지 않거나(비교예 4), 한 종류의 첨가제를 사용한 경우(비교예 1 내지 3)와 비교하여, 전지 내부 저항이 낮아졌다. 이는 화학식 1의 화합물 및 디플루오로인산리튬의 조합을 포함하는 전해액을 사용함으로써 전지의 방전 과정에서 전극과 전해질 계면의 낮은 저항 특성으로 인해 전지의 출력 특성이 향상됨을 보여주는 결과이다. 특히, 디플루오로인산리튬만 사용한 비교예 3보다 디플루오로인산리튬과 화학식 1의 화합물을 함께 사용한 실시예 1 및 2가 낮은 저항을 보여 전지의 출력 특성이 향상됨을 확인할 수 있었다.
실험예 2. 리튬 이차전지의 고온 저장 시 용량 특성
상기 실험예 1과 동일한 방법으로 전지 화성공정을 수행하여 이차전지(1.4 Ah 파우치 전지)를 얻은 후, 25 ℃에서 정전류/정전압(CC/CV) 조건에서 4.2 V/140 mA까지 1 C로 충전한 다음, 정전류(CC) 조건에서 3 V까지 1 C로 방전시키며 PNE-0506 충방전기로 초기 방전 용량을 측정하였다.
또한, 상기 전지를 만충전 후, 60 ℃ 고온 오븐에서 6주 동안 저장하고 6주 경과 후의 방전 용량을 상기와 동일한 방법으로 측정하고, 초기 용량 대비 용량 유지율을 계산하여 표 2에 나타냈다.
전해액 중 첨가제의 함량 60 ℃ 6주 후 용량 유지율
실시예 1 1 중량%의 화학식 1 + 1 중량%의 디플루오로인산리튬 93 %
실시예 2 2 중량%의 화학식 1 + 1 중량%의 디플루오로인산리튬 93 %
비교예 1 1 중량%의 화학식 1 87 %
비교예 2 2 중량%의 화학식 1 92 %
비교예 3 1 중량%의 디플루오로인산리튬 78 %
비교예 4 첨가제 없음 71 %
표 2에서 보는 바와 같이, 실시예 1 및 2의 전해액은, 첨가제를 첨가하지 않거나(비교예 4), 한 종류의 첨가제를 사용한 경우(비교예 1 내지 3)와 비교하여, 전지 초기 충전량 대비한 고온(60℃) 저장 후의 방전량이 현저히 우수했다. 이는 화학식 1의 화합물 및 디플루오로인산리튬의 조합을 포함하는 전해액을 사용함으로써 전지의 고온 저장 중 발생하는 전기화학적 전극용량 감소가 현저히 줄어들었음을 보여주는 결과이다. 이로써 본 발명의 전해액을 포함하는 이차전지는 고온에서도 안정적인 충방전 용량을 구현함을 확인할 수 있었다.
실험예 3. 리튬 이차전지의 고온 수명 특성
상기 실험예 1과 동일한 방법으로 전지 화성공정을 수행하여 이차전지(1.4 Ah 파우치 전지)를 얻은 후, 45 ℃에서 정전류/정전압(CC/CV) 조건에서 4.2 V/140 mA까지 1 C로 충전한 다음, 정전류(CC) 조건에서 3 V까지 2 C로 방전시키며 PNE-0506 충방전기로 초기 방전 용량을 측정하였다. 이를 500 회 반복 실시하였고, 500 회 반복 후 측정한 방전 용량을 전지의 초기 용량 대비 용량 유지율로 계산하여 표 3에 나타내었다.
전해액 중 첨가제의 함량 45℃ 수명 500회 후 용량 유지율
실시예 1 1 중량%의 화학식 1 + 1 중량%의 디플루오로인산리튬 97 %
실시예 2 2 중량%의 화학식 1 + 1 중량%의 디플루오로인산리튬 96 %
비교예 1 1 중량%의 화학식 1 86 %
비교예 2 2 중량%의 화학식 1 90 %
비교예 3 1 중량%의 디플루오로인산리튬 83 %
비교예 4 첨가제 없음 6 %
표 3에서 보는 바와 같이, 실시예 1 및 2의 전해액은, 첨가제를 첨가하지 않거나(비교예 4), 한 종류의 첨가제를 사용한 경우(비교예 1 내지 3)와 비교하여, 고온 수명 특성이 개선되었다. 이는 화학식 1의 화합물 및 디플루오로인산리튬의 조합을 포함하는 전해액을 사용함으로써 전지를 고온에서 연속 사용할 경우 발생하는 부반응이 현저히 감소하는 것을 보여주는 결과이다. 이로써 본 발명의 전해액을 포함하는 이차전지는 고온에서도 안정적인 수명 특성을 구현할 수 있었다.

Claims (7)

  1. 카보네이트계 용매;
    리튬염;
    하기 화학식 1의 화합물; 및
    디플루오로인산리튬(LiPO2F2)을 포함하는, 이차전지용 전해액.
    [화학식 1]
    Figure PCTKR2017012702-appb-I000004
  2. 제1항에 있어서,
    상기 카보네이트계 용매가 디에틸 카보네이트(diethyl carbonate), 에틸메틸 카보네이트(ethylmethyl carbonate), 디메틸 카보네이트(dimethyl carbonate), 디프로필 카보네이트(dipropyl carbonate), 메틸프로필 카보네이트(methylpropyl carbonate), 에틸프로필 카보네이트(ethylpropyl carbonate), 에틸렌 카보네이트(ethylene carbonate), 프로필렌 카보네이트(propylene carbonate), 부틸렌 카보네이트(butylene carbonate), 프로필 프로피오네이트(propyl propionate) 및 플루오로에틸렌 카보네이트(fluoroethylene carbonate)로 이루어진 군으로부터 선택된 1종 이상을 포함하는, 이차전지용 전해액.
  3. 제2항에 있어서,
    상기 카보네이트계 용매가
    디에틸 카보네이트, 에틸메틸 카보네이트, 디메틸 카보네이트, 디프로필 카보네이트, 메틸프로필 카보네이트 및 에틸프로필 카보네이트로 이루어진 군으로부터 선택된 1종 이상의 제1 카보네이트계 용매, 및
    에틸렌 카보네이트, 프로필렌 카보네이트, 부틸렌 카보네이트, 프로필 프로피오네이트 및 플루오로에틸렌 카보네이트로 이루어진 군으로부터 선택된 1종 이상의 제2 카보네이트계 용매를 포함하는, 이차전지용 전해액.
  4. 제1항에 있어서,
    상기 리튬염이 LiPF6, LiBF4, LiBF6, LiSbF6, LiAsF6, LiClO4, LiSO3CF3, LiN(CF3SO2)2, LiN(C2F5SO2)2, LiN(SO2F)2 및 LiC(CF3SO2)3로 이루어진 군으로부터 선택된 1종 이상을 포함하는, 이차전지용 전해액.
  5. 제1항에 있어서,
    상기 전해액이 총 중량 대비 0.1 내지 10 중량%의 상기 화학식 1의 화합물 및 0.05 내지 10 중량%의 디플루오로인산리튬을 포함하는, 이차전지용 전해액.
  6. 제1항에 있어서,
    상기 전해액이 상기 카보네이트계 용매 1 리터를 기준으로 0.05 내지 5.0 몰의 리튬염을 포함하는, 이차전지용 전해액.
  7. 제1항 내지 제6항 중 어느 한 항에 따른 이차전지용 전해액을 포함하는 이차전지.
PCT/KR2017/012702 2016-11-23 2017-11-10 이차전지용 전해액 및 이를 포함하는 이차전지 WO2018097523A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0156512 2016-11-23
KR1020160156512A KR102661978B1 (ko) 2016-11-23 2016-11-23 이차전지용 전해액 및 이를 포함하는 이차전지

Publications (1)

Publication Number Publication Date
WO2018097523A1 true WO2018097523A1 (ko) 2018-05-31

Family

ID=62195116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/012702 WO2018097523A1 (ko) 2016-11-23 2017-11-10 이차전지용 전해액 및 이를 포함하는 이차전지

Country Status (2)

Country Link
KR (1) KR102661978B1 (ko)
WO (1) WO2018097523A1 (ko)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110931853A (zh) * 2018-09-19 2020-03-27 三星Sdi株式会社 锂电池
CN110931857A (zh) * 2018-09-19 2020-03-27 三星Sdi株式会社 锂电池
CN110931858A (zh) * 2018-09-19 2020-03-27 三星Sdi株式会社 锂电池
CN110931854A (zh) * 2018-09-19 2020-03-27 三星Sdi株式会社 锂电池
CN110931855A (zh) * 2018-09-19 2020-03-27 三星Sdi株式会社 锂电池
CN110931859A (zh) * 2018-09-19 2020-03-27 三星Sdi株式会社 锂电池
CN110931856A (zh) * 2018-09-19 2020-03-27 三星Sdi株式会社 锂电池
CN111261939A (zh) * 2020-01-20 2020-06-09 宁德新能源科技有限公司 电解液和使用其的电化学装置
US11251432B2 (en) 2016-02-12 2022-02-15 Samsung Sdi Co., Ltd. Lithium battery
US11264645B2 (en) 2016-02-12 2022-03-01 Samsung Sdi Co., Ltd. Lithium battery
US11264644B2 (en) 2016-02-12 2022-03-01 Samsung Sdi Co., Ltd. Lithium battery
US11335952B2 (en) 2016-02-12 2022-05-17 Samsung Sdi Co., Ltd. Lithium battery
WO2023004821A1 (zh) * 2021-07-30 2023-02-02 宁德时代新能源科技股份有限公司 电解液、二次电池、电池模块、电池包和用电装置
US11637322B2 (en) 2016-02-12 2023-04-25 Samsung Sdi Co., Ltd. Lithium battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102549975B1 (ko) * 2019-11-20 2023-06-30 제이투에이치바이오텍 (주) 이차 전지용 수성 전해액

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012147818A1 (ja) * 2011-04-26 2012-11-01 宇部興産株式会社 非水電解液、それを用いた蓄電デバイス、及び環状スルホン酸エステル化合物
KR20150050149A (ko) * 2013-10-31 2015-05-08 주식회사 엘지화학 리튬 이차 전지용 전해액 첨가제, 상기 전해액 첨가제를 포함하는 비수성 전해액 및 리튬 이차 전지
KR20150072239A (ko) * 2013-12-19 2015-06-29 에스케이이노베이션 주식회사 리튬 이차전지 전해액 및 이를 포함하는 리튬 이차전지
US20160294007A1 (en) * 2015-03-31 2016-10-06 Ningde Contemporary Amperex Technology Limited Electrolyte additive and use thereof in lithium-ion battery
JP2016531389A (ja) * 2013-07-23 2016-10-06 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se リチウムイオン電池の電解質添加剤としてのオキシラニルアシル誘導体

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014170689A (ja) 2013-03-04 2014-09-18 Mitsui Chemicals Inc 非水電解液及びリチウム二次電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012147818A1 (ja) * 2011-04-26 2012-11-01 宇部興産株式会社 非水電解液、それを用いた蓄電デバイス、及び環状スルホン酸エステル化合物
JP2016531389A (ja) * 2013-07-23 2016-10-06 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se リチウムイオン電池の電解質添加剤としてのオキシラニルアシル誘導体
KR20150050149A (ko) * 2013-10-31 2015-05-08 주식회사 엘지화학 리튬 이차 전지용 전해액 첨가제, 상기 전해액 첨가제를 포함하는 비수성 전해액 및 리튬 이차 전지
KR20150072239A (ko) * 2013-12-19 2015-06-29 에스케이이노베이션 주식회사 리튬 이차전지 전해액 및 이를 포함하는 리튬 이차전지
US20160294007A1 (en) * 2015-03-31 2016-10-06 Ningde Contemporary Amperex Technology Limited Electrolyte additive and use thereof in lithium-ion battery

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11251432B2 (en) 2016-02-12 2022-02-15 Samsung Sdi Co., Ltd. Lithium battery
US11637322B2 (en) 2016-02-12 2023-04-25 Samsung Sdi Co., Ltd. Lithium battery
US11335952B2 (en) 2016-02-12 2022-05-17 Samsung Sdi Co., Ltd. Lithium battery
US11264644B2 (en) 2016-02-12 2022-03-01 Samsung Sdi Co., Ltd. Lithium battery
US11264645B2 (en) 2016-02-12 2022-03-01 Samsung Sdi Co., Ltd. Lithium battery
CN110931855A (zh) * 2018-09-19 2020-03-27 三星Sdi株式会社 锂电池
CN110931856A (zh) * 2018-09-19 2020-03-27 三星Sdi株式会社 锂电池
CN110931859A (zh) * 2018-09-19 2020-03-27 三星Sdi株式会社 锂电池
CN110931853A (zh) * 2018-09-19 2020-03-27 三星Sdi株式会社 锂电池
CN110931854A (zh) * 2018-09-19 2020-03-27 三星Sdi株式会社 锂电池
CN110931858A (zh) * 2018-09-19 2020-03-27 三星Sdi株式会社 锂电池
CN110931854B (zh) * 2018-09-19 2022-10-18 三星Sdi株式会社 锂电池
CN110931857A (zh) * 2018-09-19 2020-03-27 三星Sdi株式会社 锂电池
CN110931856B (zh) * 2018-09-19 2023-08-25 三星Sdi株式会社 锂电池
CN111261939A (zh) * 2020-01-20 2020-06-09 宁德新能源科技有限公司 电解液和使用其的电化学装置
WO2023004821A1 (zh) * 2021-07-30 2023-02-02 宁德时代新能源科技股份有限公司 电解液、二次电池、电池模块、电池包和用电装置

Also Published As

Publication number Publication date
KR20180057969A (ko) 2018-05-31
KR102661978B1 (ko) 2024-04-29

Similar Documents

Publication Publication Date Title
WO2018097523A1 (ko) 이차전지용 전해액 및 이를 포함하는 이차전지
WO2017010820A1 (ko) 이차전지용 전해액 첨가제, 이를 포함하는 전해액 및 이차전지
CN108428940B (zh) 用于锂二次电池的电解液和包括其的锂二次电池
US9847553B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery containing the same
WO2013165077A1 (ko) 전해액 첨가제, 상기 첨가제를 포함하는 비수성 전해액 및 리튬 이차 전지
WO2013191476A1 (ko) 첨가제를 포함하는 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
WO2013168882A1 (ko) 리튬 이차 전지용 비수 전해액 및 이를 구비하는 리튬 이차 전지
WO2015088052A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2015126082A1 (ko) 리튬 이차전지용 전해액 및 이를 구비한 리튬 이차전지
JP5104310B2 (ja) 非水電解液及びそれを用いたリチウム二次電池
KR102582754B1 (ko) 이차전지용 전해액 첨가제, 이를 포함하는 전해액 및 이차전지
WO2014204185A1 (ko) 수명 특성이 향상된 리튬 이차전지
WO2015083861A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2013157867A1 (ko) 레이트 특성이 향상된 리튬 이차전지
US7858241B2 (en) Nonaqueous electrolyte for lithium secondary battery and lithium secondary batter using the same
KR101340031B1 (ko) 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
WO2015093885A1 (ko) 리튬 이차전지 전해액 및 이를 포함하는 리튬 이차전지
WO2012074299A2 (ko) 리튬 이차전지
WO2015088051A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2015083863A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
KR20150072188A (ko) 리튬 이차전지 전해액 및 이를 포함하는 리튬 이차전지
KR20200041135A (ko) 리튬 이차전지 전해액 및 이를 포함하는 리튬 이차전지
WO2015088053A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2018097519A1 (ko) 이차전지용 전해액 및 이를 포함하는 이차전지
KR20180119842A (ko) 이차전지용 전해액 및 이를 포함하는 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17872940

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17872940

Country of ref document: EP

Kind code of ref document: A1