WO2018097150A1 - エポキシ化合物の製造方法 - Google Patents

エポキシ化合物の製造方法 Download PDF

Info

Publication number
WO2018097150A1
WO2018097150A1 PCT/JP2017/041914 JP2017041914W WO2018097150A1 WO 2018097150 A1 WO2018097150 A1 WO 2018097150A1 JP 2017041914 W JP2017041914 W JP 2017041914W WO 2018097150 A1 WO2018097150 A1 WO 2018097150A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
production method
mmol
cyclopentene
Prior art date
Application number
PCT/JP2017/041914
Other languages
English (en)
French (fr)
Inventor
英良 土屋
Original Assignee
帝人ファーマ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 帝人ファーマ株式会社 filed Critical 帝人ファーマ株式会社
Publication of WO2018097150A1 publication Critical patent/WO2018097150A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/12Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with hydrogen peroxide or inorganic peroxides or peracids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/38Compounds containing oxirane rings with hydrocarbon radicals, substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D303/40Compounds containing oxirane rings with hydrocarbon radicals, substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals by ester radicals

Definitions

  • the present invention relates to a method for stereoselectively epoxidizing a double bond of a mono-substituted 3-cyclopentene compound at the 1-position.
  • metachloroperbenzoic acid is known as an epoxidizing agent for olefins, but epoxidation of mono-substituted 3-cyclopentene compounds is not highly stereoselective.
  • mCPBA metachloroperbenzoic acid
  • the ratio is 3: 1 (Non-Patent Document 1)
  • the ratio is 3: 2 (Non-Patent Document 2).
  • the ratio is 8: 1.
  • Non-patent Document 3 Although the stereoselectivity is improved (Non-patent Document 3), in addition to using an expensive silyl compound, the molecular weight of the substrate increases. This increases the amount of waste and is not suitable for an industrial manufacturing method from the viewpoint of process conversion efficiency (Atom Economy).
  • Patent Document 1 a method for epoxidizing a cyclohexene compound using hydrogen peroxide as an oxidizing agent in the presence of a quaternary ammonium hydrogen sulfate salt, a phosphoric acid compound or a phosphonic acid compound, and a Group 6 metal compound is known (Patent Document 1). ).
  • this reaction is a multifunctional substrate in which the steric pathway to the olefin plane of the oxidant is controlled by replacing the two positions at positions 1 and 2 of the cyclohexene ring of the reaction substrate with an allyl ester group in the syn configuration. (Details will be described later).
  • An object of the present invention is to provide a method for producing a corresponding epoxy compound from a mono-substituted 3-cyclopentene compound with high anti / syn stereoselectivity.
  • phase transfer catalyst for example, a quaternary ammonium salt, a phosphoric acid compound and / or a phosphonic acid compound, and a Group 6 metal compound are used as a catalyst, and the 1-position is mono-substituted with a specific substituent. It was found that by reacting the 3-cyclopentene compound with hydrogen peroxide, the corresponding epoxy compound can be produced stereoselectively in a high yield.
  • the inventors of the present invention have continued research based on such knowledge and have completed the present invention.
  • the present invention includes a step of reacting a compound represented by the formula (1) by adding a phosphoric acid compound and / or a phosphonic acid compound, a Group 6 metal compound, a phase transfer catalyst, and hydrogen peroxide, and reacting them. It is a manufacturing method of the compound represented by 2).
  • R in the formula (1) and the formula (2) is a C 1 -C 6 alkoxy group which may be substituted with 1 to 2 (phenyl group and / or halogen atom), 1 to 2 C 1 ⁇ C 4 alkyl optionally benzyloxy group optionally substituted with a group, one to two (phenyl group and / or halogen atom) with optionally substituted C 1 to C 6 alkyl group or 1, Represents a phenyl group which may be substituted by ⁇ 2 C 1 -C 4 alkyl groups;
  • a corresponding epoxy compound can be produced with high anti / syn stereoselectivity and high yield from the reaction of 3-cyclopentene compound monosubstituted with a specific substituent at the 1-position with hydrogen peroxide. .
  • the cyclohexene ring is on the left side of the figure.
  • the cyclopentene ring is on the right side of the figure.
  • the compound represented by the above formula (1) is oxidized using hydrogen peroxide in the presence of a phosphoric acid compound and / or a phosphonic acid compound, a group 6 metal compound, and a phase transfer catalyst, and the above formula (2).
  • This is a method for producing a compound represented by
  • R is a C 1 -C 6 alkoxy group which may be substituted with 1 to 2 (phenyl group and / or halogen atom), 1 to two C 1 ⁇ C 4 alkyl group which may be substituted benzyloxy group, 1-2 (phenyl group and / or a halogen atom) alkyl ⁇ C 6 optionally C 1 optionally substituted with Or a phenyl group optionally substituted by 1 to 2 C 1 -C 4 alkyl groups.
  • R is preferably a C 1 -C 6 alkoxy group, a benzyloxy group, a C 1 -C 6 alkyl group, or a phenyl group, and particularly preferably a C 1 -C 6 alkoxy group.
  • the hydrogen peroxide source in the production method of the present invention for example, urea-hydrogen peroxide and hydrogen peroxide water are used.
  • hydrogen peroxide water is inexpensive and non-corrosive, and the by-product after the reaction is water. Therefore, the environmental load is small and it is excellent for industrial use.
  • the concentration thereof is not limited, but is generally selected from the range of 1 to 80%, preferably 20 to 80%.
  • the amount of hydrogen peroxide used at that time is not limited, but it is generally selected from the range of 0.8 to 3.0 equivalents, preferably 1.0 to 2.0 equivalents, relative to the olefins.
  • phase transfer catalyst used in the production method of the present invention a quaternary ammonium salt is suitable.
  • Such quaternary ammonium salts include, for example, methyltri n-octylammonium chloride, tetra n-butylammonium chloride, tetra n-butylammonium bromide, tetra n-butylammonium hydroxide, tetra n-hexylammonium hydrogen sulfate, tetrahydrogen hydrogen sulfate.
  • n-Octylammonium hydrogen, methyltri-n-octylammonium hydrogensulfate, tetra-n-butylammonium hydrogensulfate, and ethyltri-n-octylammonium hydrogensulfate are preferred, for example, tetra-n-butylammonium hydrogensulfate and methyltri-n-octylammonium hydrogensulfate
  • a quaternary ammonium hydrogen sulfate salt such as These quaternary ammonium salts may be used alone or in combination of two or more. The amount used is generally selected from the range of 0.0001 to 10 mol%, preferably 0.01 to 5 mol%, based on the olefins of the substrate.
  • molybdenum or tungsten is preferable.
  • the molybdenum compound used in the production method of the present invention is a compound that generates molybdate anions in water.
  • molybdic acid molybdenum oxide, molybdenum sulfide, molybdenum chloride, phosphomolybdic acid, molybdic acid Ammonium, potassium molybdate, and sodium molybdate.
  • the tungsten compound used in the production method of the present invention is a compound that generates a tungstate anion in water.
  • tungstic acid tungsten oxide, tungsten sulfide, tungsten chloride, phosphotungstic acid, tungstic acid Ammonium, potassium tungstate (including hydrate), and sodium tungstate (including hydrate).
  • molybdic acid, molybdenum oxide, phosphomolybdic acid, molybdate, tungstic acid, tungsten oxide, phosphotungstic acid, and tungstate are preferable.
  • molybdate and tungstate are preferable, and tungstate is more preferable, and sodium tungstate is particularly preferable, but sodium tungstate dihydrate is most preferable.
  • These group 6 metal compounds may be used alone or in combination of two or more.
  • the amount used is generally selected from the range of 0.0001 to 20 mol%, preferably 0.01 to 20 mol%, based on the olefins of the substrate.
  • a phosphoric acid compound and / or a phosphonic acid compound as a cocatalyst in order to improve the catalytic activity.
  • Such phosphoric acid compounds and / or phosphonic acid compounds include phosphoric acid, polyphosphoric acid, pyrophosphoric acid, ⁇ -aminomethylphosphonic acid, ⁇ -aminoethylphosphonic acid, nitrilotris (methylenephosphonic acid), phenylphosphonic acid, and these Sodium salts and potassium salts are mentioned, among which phosphoric acid and phenylphosphonic acid are preferable.
  • the amount of the phosphoric acid compound and / or phosphonic acid compound used is generally selected from the range of 0.0001 to 20 mol%, preferably 0.01 to 20 mol%, based on the olefins of the substrate.
  • sulfates such as sodium sulfate, sodium sulfate decahydrate, lithium sulfate, potassium sulfate, ammonium sulfate, or magnesium sulfate may be used as the additive, such an additive is the stereoselective object of the present invention. There is no particular influence on the properties, and forms without using such additives are also included in the embodiments of the present invention.
  • the solvent used in the production method of the present invention is not particularly limited, and examples thereof include toluene, xylene, chloroform, dichloromethane, 1,2-dichloroethane, acetonitrile, hexane, and heptane.
  • a mixture of these solvents and water can be used, and the reaction can be performed without using a solvent, but a reaction without using a solvent is particularly preferable.
  • the epoxidation reaction is usually performed in the range of 20 to 100 ° C, preferably in the range of 20 to 70 ° C.
  • the range of 40 to 60 ° C. is preferable.
  • Example 1 of Patent Document 1 shows the most stable conformation of the compound (1) which is the starting material described in Example 1 of Patent Document 1 by molecular mechanics calculation.
  • the configuration of the two allyl ester groups in this compound is not specified, the two allyl groups in compound (1) are determined from the three-dimensional structure of product (2) and compound (3). It is clear that the steric configuration of the ester group was a syn configuration.
  • the most stable conformation of compound (1) has two of the same energy level (potential energy: both 23.353 kcal / mol).
  • potential energy both 23.353 kcal / mol.
  • one of the substituents at the 1,2-position of the cyclohexene ring is always in the axial position, and the side on which the substituent exists is present with respect to the ring surface containing the double bond of the cyclohexene ring. Will be crowded in three dimensions. Therefore, it is strongly suggested that the oxidizing agent as an epoxidizing agent is selectively approached from the surface opposite to the substituent, and therefore high anti / syn stereoselectivity can be expected.
  • FIG. 2 shows the most stable conformation of ethyl 3-cyclopentene-1-carboxylate used in Example 1 as an example of the starting material in the present invention by molecular mechanics calculation under the same conditions (potential energy: -31.69 kcal / mol). Since the ethyl ester group, which is the 1-position substituent, is located in parallel with the cyclopentene ring, it strongly suggests that there is almost no steric difference on either side of the ring surface containing the double bond of the cyclopentene ring. Is done.
  • ethyl 3-cyclopentene-1-carboxylate (10.00 g, 71.34 mmol), sodium molybdate dihydrate (174 mg, 0.72 mmol), phenylphosphonic acid (57 mg, 0.36 mmol) ), And tetra n-butylammonium hydrogen sulfate (242 mg, 0.71 mmol).
  • 30% aqueous hydrogen peroxide (9.48 mL, 92.79 mmol) was added over 2.5 hours.
  • isopropyl acetate (30 mL) was added and the aqueous layer was removed.
  • ethyl 3-cyclopentene-1-carboxylate (10.00 g, 71.34 mmol), sodium tungstate dihydrate (471 mg, 1.43 mmol), phosphoric acid (content 85%, 82 mg, 0.71 mmol), methyltri-n-octylammonium hydrogensulfate (665 mg, 1.43 mmol), and sodium sulfate (3.04 g, 21.40 mmol) were added, and 30% aqueous hydrogen peroxide (9.48 mL, 92.79 mmol) was added. Was added at room temperature over 2 hours. After stirring at 20-30 ° C.
  • the method for producing an epoxy compound of the present invention is used, for example, in the chemical industry including the pharmaceutical manufacturing industry.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epoxy Compounds (AREA)

Abstract

1位がC~Cのアルコキシカルボニル基、ベンジルオキシカルボニル基、C~Cのアルキルカルボニル基、ベンジルオキシカルボニル基、C~Cのアルキル基、またはベンゾイル基(これらの置換基はさらに特定の置換基で置換されていてもよい)で置換された3-シクロペンテンに、リン酸化合物および/またはホスホン酸化合物、6属金属化合物、相間移動触媒、ならびに過酸化水素を加えて反応させる工程を含む、対応するエポキシ化合物の製造方法。1位が特定の置換基でモノ置換された3-シクロペンテン化合物から高い立体選択性で対応するエポキシ化合物を製造できる。

Description

エポキシ化合物の製造方法
 本発明は、1位モノ置換3-シクロペンテン化合物の2重結合を立体選択的にエポキシ化する方法に関する。
 従来、1位モノ置換3-シクロペンテン化合物のエポキシ化は立体選択性が低く、工業的製造方法として課題があった。
 具体的には、オレフィン類のエポキシ化剤としてメタクロロ過安息香酸(mCPBA)が知られているが、1位モノ置換3-シクロペンテン化合物のエポキシ化は立体選択性が高くない。例えば1位の置換基がメチルエステル基の場合は3:1であり(非特許文献1)、ベンジルオキシメチル基の場合は3:2(非特許文献2)である。また、tert-ブチルジメチルシリルオキシメチル基の場合は8:1であり、立体選択性は向上するものの(非特許文献3)、高価なシリル化合物を使用することに加え、基質の分子量が増大することで廃棄物量が増え、プロセスの変換効率(アトムエコノミー)の観点でも工業的製造方法には適さない。
 また、硫酸水素4級アンモニウム塩、リン酸化合物もしくはホスホン酸化合物、および6属金属化合物の存在下、過酸化水素水を酸化剤としたシクロヘキセン化合物のエポキシ化法が知られている(特許文献1)。しかし、この反応は反応基質のシクロヘキセン環の1,2位の2か所がアリルエステル基によりsyn配置で置換されていることで酸化剤のオレフィン平面への立体経路が制御された多官能性基質のエポキシ化である(詳細は後述する)。
 これに対し、モノ置換シクロペンテン環の立体選択性の高いエポキシ化反応は知られていない。
特開2008-94741号公報
Bioorganic & Medicinal Chemistry Letters, 17(19), 5336-5339(2007) Perkin 1, (2), 153-163(2000) Nucleosides & Nucleotides, 13(5), 1147-60(1994)
 本発明の課題は、1位モノ置換3-シクロペンテン化合物から、高いanti/synの立体選択性をもって、対応するエポキシ化合物を製造する方法を提供することである。
 本発明者らが鋭意研究した結果、相間移動触媒として例えば4級アンモニウム塩、リン酸化合物および/またはホスホン酸化合物、ならびに6族金属化合物を触媒に用いて1位が特定の置換基でモノ置換された3-シクロペンテン化合物と過酸化水素の反応を行うと、対応するエポキシ化合物を高収率で立体選択的に製造できることを見出した。本発明者らは、かかる知見に基づいて研究を続け、本発明を完成するに至った。
 すなわち本発明は、式(1)で表される化合物に、リン酸化合物および/またはホスホン酸化合物、6属金属化合物、相間移動触媒、ならびに過酸化水素を加えて反応させる工程を含む、式(2)で表される化合物の製造方法である。
Figure JPOXMLDOC01-appb-C000003
                  
 ここで、式(1)および式(2)におけるRは1~2個の(フェニル基および/もしくはハロゲン原子)で置換されていてもよいC~Cのアルコキシ基、1~2個のC~Cアルキル基で置換されていてもよいベンジルオキシ基、1~2個の(フェニル基および/もしくはハロゲン原子)で置換されていてもよいC~Cのアルキル基、または1~2個のC~Cアルキル基で置換されていてもよいフェニル基を表す。
 本発明によれば、1位が特定の置換基でモノ置換された3-シクロペンテン化合物と過酸化水素との反応から高いanti/synの立体選択性および高収率をもって対応するエポキシ化合物を製造できる。
(1R,2S)-4-シクロヘキセン-1,2-ジカルボン酸ジアリルの最安定コンホメーションの分子力学計算結果を表示した図。シクロヘキセン環は図の左方。 3-シクロペンテン-1-カルボン酸エチルの最安定コンホメーションの分子力学計算結果を表示した図。シクロペンテン環は図の右方。
 本発明はリン酸化合物および/またはホスホン酸化合物、6属金属化合物、ならびに相間移動触媒の存在下、過酸化水素を用いて前記式(1)で表される化合物を酸化して前記式(2)で表される化合物を製造する方法である。
 ここで、前記式(1)および前記式(2)において、Rは1~2個の(フェニル基および/もしくはハロゲン原子)で置換されていてもよいC~Cのアルコキシ基、1~2個のC~Cアルキル基で置換されていてもよいベンジルオキシ基、1~2個の(フェニル基および/もしくはハロゲン原子)で置換されていてもよいC~Cのアルキル基、または1~2個のC~Cアルキル基で置換されていてもよいフェニル基を表す。なかでもRとしては、C~Cのアルコキシ基、ベンジルオキシ基、C~Cのアルキル基、およびフェニル基が好ましく、C~Cのアルコキシ基が特に好ましい。
 本発明の製造方法における過酸化水素源としては、例えば尿素-過酸化水素、過酸化水素水が用いられるが、なかでも過酸化水素水は安価で腐食性がなく、反応後の副生物は水であるため環境負荷が小さく、工業的に利用するには優れている。
 本発明の製造方法において過酸化水素水を用いる場合、その濃度に制限はないが、一般的には1~80%、好ましくは20~80%の範囲から選ばれる。
 その際の過酸化水素水の使用量に制限はないが、一般的にはオレフィン類に対して0.8~3.0当量、好ましくは1.0~2.0当量の範囲から選ばれる。
 本発明の製造方法で用いられる相間移動触媒としては、4級アンモニウム塩が好適である。
 かかる4級アンモニウム塩としては、例えばメチルトリn-オクチルアンモニウムクロリド、テトラn-ブチルアンモニウムクロリド、テトラn-ブチルアンモニウムブロミド、テトラn-ブチルアンモニウムヒドロキシド、硫酸水素テトラn-へキシルアンモニウム、硫酸水素テトラn-オクチルアンモニウム、硫酸水素メチルトリn-オクチルアンモニウム、硫酸水素テトラn-ブチルアンモニウム、および硫酸水素エチルトリn-オクチルアンモニウムが好ましく、なかでも例えば硫酸水素テトラn-ブチルアンモニウムおよび硫酸水素メチルトリn-オクチルアンモニウムのような硫酸水素4級アンモニウム塩が好ましい。これら4級アンモニウム塩は単独で使用しても、二種以上を混合使用してもよい。その使用量は、一般的には基質のオレフィン類に対して0.0001~10モル%、好ましくは0.01~5モル%の範囲から選ばれる。
 本発明の製造方法で用いられる6族金属化合物における6族金属としては、モリブデンやタングステンが好ましい。
 6族金属がモリブデンの場合、本発明の製造方法で用いられるモリブデン化合物は水中でモリブデン酸アニオンを生成する化合物であり、例えばモリブデン酸、酸化モリブデン、硫化モリブデン、塩化モリブデン、リンモリブデン酸、モリブデン酸アンモニウム、モリブデン酸カリウム、およびモリブデン酸ナトリウムが挙げられる。
 6族金属がタングステンの場合、本発明の製造方法で用いられるタングステン化合物は水中でタングステン酸アニオンを生成する化合物であり、例えばタングステン酸、酸化タングステン、硫化タングステン、塩化タングステン、リンタングステン酸、タングステン酸アンモニウム、タングステン酸カリウム(水和物を含む)、およびタングステン酸ナトリウム(水和物を含む)が挙げられる。
 本発明で用いる6族金属化合物としてはモリブデン酸、酸化モリブデン、リンモリブデン酸、モリブデン酸塩、タングステン酸、酸化タングステン、リンタングステン酸、およびタングステン酸塩が好ましい。なかでもモリブデン酸塩およびタングステン酸塩が好ましく、これらのなかではタングステン酸塩がより好ましく、特にタングステン酸ナトリウムが好ましいが、タングステン酸ナトリウム二水和物が最も好ましい。
 これら6族金属化合物は単独で使用しても、2種以上を混合使用してもよい。その使用量は、基質のオレフィン類に対して一般的には0.0001~20モル%、好ましくは0.01~20モル%の範囲から選ばれる。
 本発明の製造方法において、助触媒としてリン酸化合物および/またはホスホン酸化合物を用いることは、触媒活性を向上させるために必要である。かかるリン酸化合物および/またはホスホン酸化合物としては、リン酸、ポリリン酸、ピロリン酸、α-アミノメチルホスホン酸、α-アミノエチルホスホン酸、ニトリロトリス(メチレンホスホン酸)、フェニルホスホン酸、ならびにこれらのナトリウム塩およびカリウム塩が挙げられるが、なかでもリン酸およびフェニルホスホン酸が好ましい。リン酸化合物および/またはホスホン酸化合物の使用量は、基質のオレフィン類に対して一般的には0.0001~20モル%、好ましくは0.01~20モル%の範囲から選ばれる。
 なお、添加剤として硫酸ナトリウム、硫酸ナトリウム十水和物、硫酸リチウム、硫酸カリウム、硫酸アンモニウム、または硫酸マグネシウムなどの硫酸塩を使用してもよいが、こうした添加剤が本発明の目的である立体選択性に特に影響することはなく、かかる添加剤を用いない形態も本発明の実施形態に含まれる。
 本発明の製造方法において使用する溶媒は特に限定されないが、例えばトルエン、キシレン、クロロホルム、ジクロロメタン、1,2-ジクロロエタン、アセトニトリル、ヘキサン、およびヘプタンを挙げることができる。また、これらの溶媒と水との混合物も使用可能であるし、溶媒を用いずに反応を行うこともできるが、特に溶媒を用いない反応が好ましい。
 本発明の製造方法において、エポキシ化反応は通常20~100℃の範囲で、好ましくは20~70℃の範囲で行われる。ただし4級アンモニウム塩として硫酸水素テトラn-ブチルアンモニウムを用いた場合は40~60℃の範囲が好ましい。
 本実施例において、分析は以下の機器等を使用した。
ガスクロマトグラフィー(GC)
装置:アジレントテクノロジー社 7890B GCシステム
カラム:DB-624(長さ:30.0m、内径:0.32mm、膜厚:1.80μm)
注入口温度:180℃
検出器温度:260℃
初期温度:80℃
初期保持時間:2分間
昇温速度:18℃/分
最終温度:170℃
最終保持時間:24.8分間
スプリット比:1:10
キャリアガス:ヘリウム
キャリアガス流量:2mL/分
 
核磁気共鳴(NMR)
装置:ブルカー社 Ultra Shield(400MHz)
ソフト:ブルカー社 TopSpin
 
分子力学計算
ソフトウェア:シュレディンガー社「Maestro」バージョン10.7
計算方法:Advanced mode mixed-torstional /low-mode samples 機能(分子力学計算)によるコンホメーションサーチ(真空中)
計算条件:上記モードのデフォルト値を使用(真空中)
力場:OPLS3
 
[実施例1]
(1R,3s,5S)-6-オキサビシクロ[3.1.0]ヘキサン-3-カルボン酸エチルの合成
Figure JPOXMLDOC01-appb-C000004
                  
 反応容器に窒素気流下、3-シクロペンテン-1-カルボン酸エチル(10.01g、71.38mmol)、タングステン酸ナトリウム二水和物(235mg、0.71mmol)、フェニルホスホン酸(56mg、0.36mmol)、および硫酸水素テトラn-ブチルアンモニウム(242mg、0.71mmol)を加えた。反応液を50℃に昇温後、30%過酸化水素水(9.48mL、92.79mmol)を4時間かけて添加した。50℃で1時間撹拌した後、酢酸イソプロピル(30mL)を添加し、水層を除去した。有機層を1mol/Lチオ硫酸ナトリウム水溶液(28.6mL)、10%食塩水(22.0mL)で順次洗浄した。得られた有機層を減圧下で濃縮し、表題化合物(10.40g、anti/syn=93/7)を得た。収率93%。
H-NMR (400MHz、 CDCl) δ 1.25 (t、J=7.2Hz, 3H)、1.89 (dd、J=9.6、 14.0Hz、2H)、 2.35 (dd、J=8.0、14.0Hz、2H)、 2.59-2.68 (m、1H)、3.52 (s、 2H)、 4.13 (q、J=7.2Hz、2H).
 図1に、分子力学計算による特許文献1の実施例1に記載された出発物質である化合物(1)の最安定コンホメーションを示す。なお、この化合物中の2つのアリルエステル基の立体配置は特定されていないが、生成物である化合物(2)および化合物(3)の立体構造からして、化合物(1)中の2つのアリルエステル基の立体配置はsyn配置であったことは明らかである。
 図1に示すように、化合物(1)の最安定コンホメーションは、同等のエネルギーレベルのものが2つあるが(ポテンシャルエネルギー:いずれも23.353kcal/mol)、この結果からすると、いずれのコンホメーションをとる場合でも、シクロヘキセン環の1,2位置換基のいずれか一方の置換基は必ずアキシアル位となり、シクロヘキセン環の二重結合を含む環面に対し、当該置換基が存在する側の面は立体的に混み合うことになる。そのためエポキシ化剤たる酸化剤は当該置換基とは反対側の面から選択的に近づくことが強く示唆され、それ故、高いanti/synの立体選択性が期待できたものである。
 一方、図2に同様の条件での分子力学計算による、本発明における出発物質の一例として実施例1で用いた3-シクロペンテン-1-カルボン酸エチルの最安定コンホメーションを示す(ポテンシャルエネルギー:-31.69kcal/mol)。その1位置換基であるエチルエステル基はシクロペンテン環と平行に位置するため、シクロペンテン環の二重結合を含む環面に対して、いずれの面についても立体的な差異はほとんど無いことが強く示唆される。すなわち、この計算結果からは、エポキシ化反応のRe面とSi面の立体的環境の差異はほとんどなく、したがって本発明のエポキシ化反応に高いanti/synの立体選択性は期待できなかったところ、実際には予想外に高い立体選択性があることが判明したのである。
[実施例2]
(1R,3s,5S)-6-オキサビシクロ[3.1.0]ヘキサン-3-カルボン酸エチルの合成
Figure JPOXMLDOC01-appb-C000005
 反応容器に窒素気流下、3-シクロペンテン-1-カルボン酸エチル(10.00g、71.34mmol)、モリブデン酸ナトリウム二水和物(174mg、0.72mmol)、フェニルホスホン酸(57mg、0.36mmol)、および硫酸水素テトラn-ブチルアンモニウム(242mg、0.71mmol)を加えた。反応液を50℃に昇温後、30%過酸化水素水(9.48mL、92.79mmol)を2.5時間かけて添加した。50℃で46時間撹拌した後、酢酸イソプロピル(30mL)を添加し、水層を除去した。有機層を1mol/Lチオ硫酸ナトリウム水溶液(28.5mL)、10%食塩水(22.0mL)で順次洗浄した。得られた有機層を減圧下で濃縮し、表題化合物(9.12g、anti/syn=89/11)を得た。収率82%。
 
[実施例3]
(1R,3s,5S)-6-オキサビシクロ[3.1.0]ヘキサン-3-カルボン酸エチルの合成
Figure JPOXMLDOC01-appb-C000006
 反応容器に窒素気流下、3-シクロペンテン-1-カルボン酸エチル(20.00g、142.67mmol)、タングステン酸ナトリウム二水和物(941mg、2.85mmol)、フェニルホスホン酸(226mg、1.43mmol)、硫酸水素メチルトリn-オクチルアンモニウム(1.33g、2.85mmol)、および硫酸ナトリウム(6.08g、42.80mmol)を加え、30%過酸化水素水(9.48mL、92.79mmol)を室温で3時間かけて添加した。20~30℃で19時間撹拌した後、酢酸イソプロピル(60mL)を添加し、水層を除去した。有機層を10%チオ硫酸ナトリウム水溶液(67.67g)、10%食塩水(44mL)で順次洗浄した。得られた有機層を減圧下で濃縮し、表題化合物(23.96g、anti/syn=92/8)を得た。収率108%。
 
[実施例4]
(1R,3s,5S)-6-オキサビシクロ[3.1.0]ヘキサン-3-カルボン酸エチルの合成
Figure JPOXMLDOC01-appb-C000007
 反応容器に窒素気流下、3-シクロペンテン-1-カルボン酸エチル(1.00g、7.13mmol)、タングステン酸ナトリウム二水和物(47mg、0.14mmol)、フェニルホスホン酸(58mg、0.07mmol)、メチルトリn-オクチルアンモニウムクロリド(58mg、0.14mmol)、および硫酸ナトリウム(0.304g、2.14mmol)を加え、30%過酸化水素水(0.95mL、9.27mmol)を室温で1.5時間かけて添加し、23~24℃で22時間、47℃で3時間撹拌した。後処理は行わず反応終点で評価した。ガスクロマトグラフィーによる定量収率は84%、生成比はanti/syn=89/11であった。
 
[実施例5]
(1R,3s,5S)-6-オキサビシクロ[3.1.0]ヘキサン-3-カルボン酸エチルの合成
Figure JPOXMLDOC01-appb-C000008
 反応容器に窒素気流下、3-シクロペンテン-1-カルボン酸エチル(10.00g、71.34mmol)、タングステン酸ナトリウム二水和物(471mg、1.43mmol)、リン酸(含量85%、82mg、0.71mmol)、硫酸水素メチルトリn-オクチルアンモニウム(665mg、1.43mmol)、および硫酸ナトリウム(3.04g、21.40mmol)を加え、30%過酸化水素水(9.48mL、92.79mmol)を室温で2時間かけて添加した。20~30℃で16.5時間撹拌した後、酢酸イソプロピル(30mL)を添加し、水層を除去した。有機層を1mol/Lチオ硫酸ナトリウム水溶液(21.4mL)、10%食塩水(20.0mL)で順次洗浄した。得られた有機層をガスクロマトグラフィーで評価した。定量収率は83%、生成比はanti/syn=87/13であった。
 
[実施例6]
(1R,3s,5S)-6-オキサビシクロ[3.1.0]ヘキサン-3-カルボン酸エチルの合成
Figure JPOXMLDOC01-appb-C000009
 反応容器に窒素気流下、酢酸イソプロピル(300mL)、3-シクロペンテン-1-カルボン酸エチル(125.02g、891.82mmol)、タングステン酸ナトリウム二水和物(2.94g、8.92mmol)、フェニルホスホン酸(0.71g、4.46mmol)、および硫酸水素テトラn-ブチルアンモニウム(3.03g、8.92mmol)を加えた。反応液を50℃に昇温後、30%過酸化水素水(118.41mL、1159.37mmol)を5.5時間かけて添加した。50℃で21時間撹拌した後、酢酸イソプロピル(100mL)を添加し、水層を除去した。有機層を1mol/Lチオ硫酸ナトリウム水溶液(357mL)、10%食塩水(250mL)で順次洗浄した。得られた有機層を減圧下で濃縮し、表題化合物(113.38g、anti/syn=94/6)を得た。収率81%。
 
[実施例7]
(1R,3s,5S)-6-オキサビシクロ[3.1.0]ヘキサン-3-カルボン酸エチルの合成
Figure JPOXMLDOC01-appb-C000010
 反応容器に窒素気流下、トルエン(2.0mL)、3-シクロペンテン-1-カルボン酸エチル(1.00g、7.13mmol)、タングステン酸ナトリウム二水和物(47mg、0.14mmol)、フェニルホスホン酸(11mg、0.07mmol)、硫酸水素メチルトリn-オクチルアンモニウム(66mg、0.14mmol)、および硫酸ナトリウム(304mg、2.14mmol)を加え、30%過酸化水素水(0.95mL、9.27mmol)を室温で1.5時間かけて添加し、20~30℃で46時間撹拌した。後処理は行わず反応終点をガスクロマトグラフィーで評価した。生成比はanti/syn=87/13であった。
 
[実施例8]
(1R,3s,5S)-6-オキサビシクロ[3.1.0]ヘキサン-3-カルボン酸イソプロピルの合成
Figure JPOXMLDOC01-appb-C000011
 反応容器に窒素気流下、3-シクロペンテン-1-カルボン酸イソプロピル(10.00g、64.87mmol)、タングステン酸ナトリウム二水和物(428mg、1.30mmol)、フェニルホスホン酸(103mg、0.65mmol)、およびテトラn-ブチルアンモニウム(441mg、1.30mmol)を加えた。反応液を50℃に昇温後、30%過酸化水素水(8.61mL、84.33mmol)を4時間かけて添加した。50℃で2時間撹拌した後、酢酸イソプロピル(30mL)を添加し、水層を除去した。有機層を1mol/Lチオ硫酸ナトリウム水溶液(19.5mL)、10%食塩水(22mL)で順次洗浄した。得られた有機層を減圧下で濃縮し、表題化合物(11.92g、anti/syn=94/6)を得た。収率103%。
H-NMR (400MHz, CDCl) δ 1.23 (d、J=6.4Hz、6H)、 1.89 (dd、J=8.8、 14.4Hz、2H)、 2.64-2.70 (m、3H)、 3.46 (s、2H)、 4.99 (m、1H).
 
[実施例9]
(1R,3s,5S)-6-オキサビシクロ[3.1.0]ヘキサン-3-カルボン酸イソブチルの合成
Figure JPOXMLDOC01-appb-C000012
 反応容器に窒素気流下、3-シクロペンテン-1-カルボン酸イソブチル(1.00g、5.95mmol)、タングステン酸ナトリウム二水和物(39mg、0.12mmol)、フェニルホスホン酸(9.4mg、0.06mmol)、硫酸水素メチルトリn-オクチルアンモニウム(55mg、0.12mmol)、および硫酸ナトリウム(254mg、1.78mmol)を加え、30%過酸化水素水(0.79mL、7.73mmol)を室温で1時間かけて添加した。20~30℃で17.5時間撹拌した後、1mol/Lチオ硫酸ナトリウム水溶液(1.8mL)および酢酸イソプロピル(10mL)を添加し、水層を除去した。水層を酢酸イソプロピル(10mL)で再抽出し、合わせた有機層を水(5mL)で洗浄した。得られた有機層をガスクロマトグラフィーで評価した。生成比はanti/syn=91/9であった。
[比較例1]
Figure JPOXMLDOC01-appb-C000013
 反応容器に窒素気流下、3-シクロペンテン-1-メチルベンゾエート(1.00g、7.13mmol)、タングステン酸ナトリウム二水和物(23.5mg、0.07mmol)、フェニルホスホン酸(5.7mg、0.04mmol)、および硫酸水素テトラn-ブチルアンモニウム(24.4mg、0.07mmol)を加えた。反応液を50℃に昇温後、30%過酸化水素水(0.95mL、9.27mmol)を2時間かけて添加した。50℃で2時間撹拌した後、酢酸イソプロピル(3mL)を添加し、水層を除去した。有機層を1mol/Lチオ硫酸ナトリウム水溶液(2.9mL)で洗浄し、得られた有機層をガスクロマトグラフィーで評価した。生成比はanti/syn=64/36であった。
 この結果は、式(1)におけるシクロペンテン環の1位の置換基を、R(C=O)-に代えてベンゾイルオキシメチル基とした場合、シクロペンテン環のエポキシ化反応のanti/synの立体選択性が顕著に低下することを示している。
 本発明のエポキシ化合物の製造方法は、例えば医薬品製造業を含む化学工業で利用される。

Claims (9)

  1.  式(1)で表される化合物に、リン酸化合物および/またはホスホン酸化合物、6属金属化合物、相間移動触媒、ならびに過酸化水素を加えて反応させる工程を含む、式(2)で表される化合物の製造方法。ここで、式(1)および式(2)におけるRは1~2個の(フェニル基および/もしくはハロゲン原子)で置換されていてもよいC~Cのアルコキシ基、1~2個のC~Cアルキル基で置換されていてもよいベンジルオキシ基、1~2個の(フェニル基および/もしくはハロゲン原子)で置換されていてもよいC~Cのアルキル基、または1~2個のC~Cアルキル基で置換されていてもよいフェニル基を表す。
    Figure JPOXMLDOC01-appb-C000001
                      
    Figure JPOXMLDOC01-appb-C000002
  2.  RがC~Cのアルコキシ基、ベンジルオキシ基、C~Cのアルキル基、またはフェニル基である、請求項1に記載の製造方法。
  3.  RがC~Cのアルコキシ基である、請求項1に記載の製造方法。
  4.  リン酸化合物および/またはホスホン酸化合物がフェニルホスホン酸またはリン酸である、請求項1から3のいずれかに記載の製造方法。
  5.  6属金属化合物がタングステン酸塩またはモリブデン酸塩である、請求項1から4のいずれかに記載の製造方法。
  6.  6属金属化合物がタングステン酸ナトリウム二水和物である、請求項1から4のいずれかに記載の製造方法。
  7.  相間移動触媒が4級アンモニウム塩である、請求項1から6のいずれかに記載の製造方法。
  8.  4級アンモニウム塩が硫酸水素4級アンモニウム塩である、請求項7に記載の製造方法。
  9.  硫酸水素4級アンモニウム塩が硫酸水素テトラn-ブチルアンモニウムまたは硫酸水素メチルトリn-オクチルアンモニウムである、請求項8に記載の製造方法。
PCT/JP2017/041914 2016-11-24 2017-11-22 エポキシ化合物の製造方法 WO2018097150A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-227931 2016-11-24
JP2016227931 2016-11-24

Publications (1)

Publication Number Publication Date
WO2018097150A1 true WO2018097150A1 (ja) 2018-05-31

Family

ID=62195577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041914 WO2018097150A1 (ja) 2016-11-24 2017-11-22 エポキシ化合物の製造方法

Country Status (2)

Country Link
TW (1) TW201825470A (ja)
WO (1) WO2018097150A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116375667A (zh) * 2023-06-04 2023-07-04 北京世纪迈劲生物科技有限公司 一种3-环己烯-1-甲酸-3-环己烯-1-基甲酯的环氧化方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007081889A2 (en) * 2006-01-05 2007-07-19 Teva Gyógyszergyár Zártkörüen Müködö Részvénytársaság Production of dolasetron
JP2008094741A (ja) * 2006-10-10 2008-04-24 Showa Denko Kk トリオレフィン化合物の選択的酸化による多官能性エポキシ化合物の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007081889A2 (en) * 2006-01-05 2007-07-19 Teva Gyógyszergyár Zártkörüen Müködö Részvénytársaság Production of dolasetron
JP2008094741A (ja) * 2006-10-10 2008-04-24 Showa Denko Kk トリオレフィン化合物の選択的酸化による多官能性エポキシ化合物の製造方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
CRESSWELL, A. J. ET AL.: "Catalytic, stereospecific syn-dichlorination of alkenes", NATURE CHEMISTRY, vol. 7, no. 2, 2015, pages 146 - 152, XP055487923, ISSN: 1755-4330 *
ENKVIST, E. ET AL.: "Carbocyclic 3'-deoxyadenosine-based highly potent bisubstrate-analog inhibitor of basophilic protein kinases", BIORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 17, 2007, pages 5336 - 5339, XP022249711, ISSN: 0960-894X *
GIANNELLA, M. ET AL.: "Synthesis and muscarinic properties of (1S*,3R*,5R*)-trimethyl(1-methyl-6-oxabicyclo[3.1. 0]hex-3-yl)methyl ammonium iodide", CHEMICAL & PHARMACEUTICAL BULLETIN, vol. 42, no. 6, 1994, pages 1286 - 1290, XP055487922, ISSN: 0009-2363 *
GRELLEPOIS, F. ET AL.: "1-(Trifluoromethyl) cyclopent-3-enecarboxylic Acid Derivatives: Platforms for Bifunctional Cyclic Trifluoromethyl BuildingBlocks", EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, vol. 2012, no. 3, 2012, pages 509 - 517, XP055487918, ISSN: 1099-0690 *
MARTINEZ, L. E. ET AL.: "Highly Efficient and Enantioselective Synthesis of Carbocyclic Nucleoside Analogs Using Selective Early Transition Metal Catalysis", JOURNAL OF ORGANIC CHEMISTRY, vol. 61, no. 22, 1996, pages 7963 - 7966, XP002041317, ISSN: 0022-3263 *
WHITE, D. E ET AL.: "Abroadly applicable and practical oligomeric (salen) Co catalyst for enantioselective epoxide ring-opening reactions", TETRAHEDRON, vol. 70, no. 27-28, 2014, pages 4165 - 4180, XP029026739, ISSN: 0040-4020 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116375667A (zh) * 2023-06-04 2023-07-04 北京世纪迈劲生物科技有限公司 一种3-环己烯-1-甲酸-3-环己烯-1-基甲酯的环氧化方法

Also Published As

Publication number Publication date
TW201825470A (zh) 2018-07-16

Similar Documents

Publication Publication Date Title
JP6138834B2 (ja) スルフィルイミン化合物の製造方法
Chakravarthy et al. A molybdenum based metallomicellar catalyst for controlled and selective sulfoxidation reactions in aqueous medium
JP5800709B2 (ja) エポキシ化合物の製造方法
WO2018097150A1 (ja) エポキシ化合物の製造方法
JP4841129B2 (ja) ペナム結晶の製造法
CN103965242A (zh) 新型二氟亚甲基鏻内盐的合成及其应用
JP2009256262A (ja) 光学活性なシアノヒドリン化合物の製造方法
JP6682968B2 (ja) エポキシ化合物の製造方法
JP2015063501A (ja) 5−X(X=F,Cl,Br)−1,2−ベンズヨードキソール−3−(1H)−オン部位を有する新規超原子価ヨウ素化合物
US20120277458A1 (en) Method for producing difluorocyclopropane compound
JP2006328011A (ja) 光学活性1,1,1−トリフルオロ−2,3−エポキシプロパンの製造方法
JP6464970B2 (ja) オキサジリジン化合物の製造方法
JP5633672B2 (ja) スチレンオキシド化合物の製造方法
JP6723817B2 (ja) (トリフルオロメチル)マロン酸エステルの製造方法
CN107365243A (zh) 一种一锅法合成对苯二醌类化合物的方法
JP6779057B2 (ja) 多価グリシジル化合物の製造方法
JP6754131B2 (ja) 脱離基を有する有機化合物と有機ホウ素化合物とのカップリング体の製造方法
JP2013001653A (ja) フルオロ硫酸エノールエステル類の製造方法
JP2011079766A (ja) 4−ハロフェニルアルキルスルホンの製造方法
JP4995633B2 (ja) 2−アダマンタノンの製造方法
JP2015189695A (ja) ビニル基又はアリル基を有する環状オレフィン化合物のモノエポキシ化方法。
JP2014208629A (ja) ホウ素化合物の製造方法
JP2013129616A (ja) 臭素化剤及びその利用
JP2013121923A (ja) 4,4−ジフルオロ−3,4−ジヒドロイソキノリン類の製造法
EP3015466A1 (en) Method for producing azole derivative

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17874012

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17874012

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP