WO2018097086A1 - Electrostatic type transducer and method for manufacturing same - Google Patents

Electrostatic type transducer and method for manufacturing same Download PDF

Info

Publication number
WO2018097086A1
WO2018097086A1 PCT/JP2017/041614 JP2017041614W WO2018097086A1 WO 2018097086 A1 WO2018097086 A1 WO 2018097086A1 JP 2017041614 W JP2017041614 W JP 2017041614W WO 2018097086 A1 WO2018097086 A1 WO 2018097086A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
electrode sheet
laminated
roll
electrostatic
Prior art date
Application number
PCT/JP2017/041614
Other languages
French (fr)
Japanese (ja)
Inventor
克彦 中野
将樹 那須
貴範 村瀬
Original Assignee
住友理工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017125881A external-priority patent/JP6873843B2/en
Application filed by 住友理工株式会社 filed Critical 住友理工株式会社
Priority to DE112017004134.1T priority Critical patent/DE112017004134T5/en
Priority to CN201780072412.8A priority patent/CN109983783B/en
Publication of WO2018097086A1 publication Critical patent/WO2018097086A1/en
Priority to US16/281,123 priority patent/US10792704B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R31/00Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor

Definitions

  • the present invention relates to an electrostatic transducer and a manufacturing method thereof.
  • JP2013-182374A JP2005312230A, JP2012-65426A, and JP63-10594A are disclosed.
  • JP2013-182374A describes a sensory presentation device using an electrostrictive material.
  • the apparatus prepares a first sheet in which a first electrode is formed on one side of an electrostrictive material layer, and a second sheet in which a second electrode is formed on one side of an electrostrictive material layer.
  • Japanese Patent Application Laid-Open No. 2005-312230 describes an apparatus using a piezoelectric element.
  • the apparatus is manufactured by forming a roll body by providing electrodes on both surfaces of a piezoelectric sheet base material and winding the sheet base material into a roll. And the connection electrode is arrange
  • JP 2012-65426 A describes a dielectric actuator.
  • dielectric elastomer layers and conductive rubber layers are alternately stacked in the thickness direction, and the conductive rubber layers are sequentially shifted in the width direction with respect to the dielectric elastomer layer, and the stacked sheet body is used as a core material.
  • Manufactured by winding in a spiral is used as a core material.
  • Japanese Patent Publication No. 63-10594 discloses a device using a piezoelectric element.
  • this apparatus a large number of piezoelectric elements having electrode thin films formed on the upper and lower surfaces are alternately stacked with the upper and lower surfaces reversed, and the side electrodes are formed so as to commonly connect the electrode thin films.
  • This manufacturing method is referred to as a single wafer lamination method.
  • the electrode is exposed over the entire surface before being formed into a roll shape. , Handle with care. For example, a defect such as a scratch may occur in the exposed electrode.
  • An object of the present invention is to provide an electrostatic transducer having a good handling property and a manufacturing method thereof while increasing the number of layers by applying a method of winding in a roll.
  • the electrostatic transducer includes an electrostatic unit.
  • the electrostatic unit has a first electrode sheet formed in a strip shape, and has a width larger than the width of the first electrode sheet, and the first end in the width direction is the width of the first electrode sheet.
  • a first laminated sheet comprising two first dielectric sheets laminated on both sides of the first electrode sheet in a state aligned with the first end in the direction, a second electrode sheet formed in a strip shape, and a strip shape Formed on the both sides of the second electrode sheet with a width greater than the width of the second electrode sheet, with the first end in the width direction aligned with the first end in the width direction of the second electrode sheet.
  • a second laminated sheet comprising two second dielectric sheets to be laminated.
  • the electrostatic unit is formed in a flat shape in a state of being wound in a roll shape by the first laminated sheet and the second laminated sheet.
  • the first laminated sheet is formed in a roll shape and in a flat shape.
  • the second laminated sheet is formed in a flat state with the first laminated sheet wound in a roll shape in a state of being laminated on the first laminated sheet.
  • the first electrode sheet and the second electrode sheet are offset in the width direction.
  • the first electrode sheet is exposed at the first end surface in the roll-shaped axial direction
  • the second electrode sheet is exposed at the second end surface in the roll-shaped axial direction.
  • the electrostatic unit is formed in a flat shape in a state of being wound in a roll shape by the first laminated sheet and the second laminated sheet. Therefore, a large number of electrodes and a large number of dielectrics can be easily stacked. Further, in the first laminated sheet constituting the electrostatic unit, the first electrode sheet is sandwiched between two first dielectric sheets. Therefore, in the first laminated sheet, the planar portion of the first electrode sheet is covered with the two first dielectric sheets. That is, in the first laminated sheet, the planar portion of the first electrode sheet is not exposed over the entire surface. The same applies to the second laminated sheet. Therefore, the handleability of a 1st lamination sheet and a 2nd lamination sheet is favorable, and generation
  • a method of manufacturing an electrostatic transducer includes a first electrode sheet formed in a strip shape, a width formed larger than the width of the first electrode sheet, and a first end in the width direction.
  • a first laminated sheet for producing a first laminated sheet comprising two first dielectric sheets laminated on both sides of the first electrode sheet in a state aligned with the first end in the width direction of the first electrode sheet
  • a manufacturing process a second electrode sheet formed in a strip shape, and formed in a strip shape, having a width larger than the width of the second electrode sheet, and a first end in the width direction in the width direction of the second electrode sheet
  • the first electrode sheet and the second electrode sheet are offset in the width direction.
  • the first electrode sheet is exposed on a first end surface in the roll-shaped axial direction
  • the second electrode sheet is exposed on a second end surface in the roll-shaped axial direction.
  • the first laminated sheet produced in the first laminated sheet production process is configured by sandwiching the first electrode sheet between two first dielectric sheets. Therefore, in the first laminated sheet, the planar portion of the first electrode sheet is covered with the two first dielectric sheets. That is, in the first laminated sheet, the planar portion of the first electrode sheet is not exposed over the entire surface.
  • the handleability of a 1st lamination sheet and a 2nd lamination sheet is favorable, and generation
  • the composite laminated sheet in which the first laminated sheet and the second laminated sheet are laminated is wound into a roll shape and formed into a flat shape. Therefore, a large number of electrodes and a large number of dielectrics can be easily stacked.
  • FIG. 3 is a cross-sectional view of the electrostatic transducer 1 and is a cross-sectional view taken along the line II in FIG. 2.
  • FIG. 2 is a cross-sectional view taken along the line II-II in FIG. 1 is a perspective view of an electrostatic unit 10 constituting an electrostatic transducer 1.
  • FIG. FIG. 3 is a diagram showing an electrical connection state of a central laminated portion 16 constituting the electrostatic type unit 10.
  • 3 is a flowchart showing a method for manufacturing the electrostatic unit 10. It is a figure which shows the 1st lamination sheet manufacturing process in S1 of FIG. It is a figure which shows the 2nd lamination sheet manufacturing process in S2 of FIG. It is a figure which shows the composite lamination sheet manufacturing process in S3 of FIG.
  • FIG. 9 is an enlarged cross-sectional view taken along IX-IX in FIG. 8. It is an expanded sectional view of the direction orthogonal to the roll-shaped axial direction about the composite laminated roll body 140 after the roll process in S4 of FIG. It is an expanded sectional view of the direction orthogonal to the roll-shaped axial direction about the flat roll body 150 after the flat process in S5 of FIG. It is sectional drawing of the direction orthogonal to the roll-shaped axial direction about the electrostatic type unit 310 of 2nd embodiment. It is sectional drawing of the direction orthogonal to the roll-shaped axial direction about the electrostatic type unit 450 of 3rd embodiment.
  • FIG. 15 is a cross-sectional view taken along the line XV-XV in FIG.
  • FIG. 15 is a cross-sectional view taken along the line XVI-XVI in FIG. 14, showing a state in which the surface direction of the first laminated sheet is aligned with the horizontal direction in the figure.
  • FIG. 18 is a cross-sectional view taken along the line XVIII-XVIII in FIG. 17, showing a state in which the surface direction of the second laminated sheet is aligned with the horizontal direction in the figure.
  • FIG. 18 is a cross-sectional view taken along the line XIX-XIX in FIG.
  • the electrostatic transducer 1 is an actuator that uses a change in capacitance and generates vibration or sound, or a sensor that detects vibration or sound.
  • the electrostatic transducer 1 as an actuator generates vibration and sound by applying a voltage to the electrodes.
  • the electrostatic transducer 1 as a sensor generates a voltage at an electrode when the sensor vibrates due to vibration or sound input.
  • the electrostatic transducer 1 as the vibration actuator is, for example, a device that presents tactile vibration to a human, a device that generates vibrations in the opposite phase of the vibrations of the structure for damping the structure, and the like.
  • the electrostatic transducer 1 as an actuator that generates sound is a speaker that generates sound waves felt by human hearing, a sound masking device that cancels noise noise, and the like.
  • the vibration generated by the vibration actuator is relatively low-frequency vibration, and the sound generated by the actuator that generates sound is relatively high-frequency vibration.
  • the electrostatic transducer 1 as an actuator in this embodiment is suitable for a low-frequency vibration exciter and a low-frequency sound generator because it uses spring mass vibration.
  • the electrostatic transducer 1 will be described with an example of a vibration actuator that presents tactile vibration to humans.
  • the electrostatic transducer 1 is applied to an actuator that is mounted on a mobile terminal and vibrates the mobile terminal.
  • the electrostatic transducer 1 as a sensor has substantially the same configuration.
  • the electrostatic transducer 1 includes an electrostatic unit 10, a first conduction part 20, a second conduction part 30, a first elastic body 41, a second elastic body 42, and a third elasticity.
  • a body 43, a control board 50, and a cover 60 are provided.
  • the electrostatic unit 10 is formed in a flat shape by an elastomer as shown in FIGS.
  • the electrostatic unit 10 includes a plurality of electrode sheets 111 and 121 and a plurality of dielectric sheets 112, 113, 122, and 123 that are stacked in a direction orthogonal to the flat surface.
  • the electrostatic unit 10 is formed in a roll shape and in a flat shape by a composite laminated sheet 130. Since the electrostatic unit 10 is formed in a roll shape and a flat shape, when viewed from the roll axial direction, the electrostatic unit 10 has two planes facing away from each other and is curved as a surface connecting the two planes. Having a side surface. Further, the electrostatic unit 10 has planar end faces on both sides in the roll-like axial direction.
  • the composite laminated sheet 130 is formed by laminating one first laminated sheet 110 and one second laminated sheet 120.
  • the first laminated sheet 110 includes one first electrode sheet 111 and two first dielectric sheets so that one first electrode sheet 111 is sandwiched between two first dielectric sheets 112 and 113 in the thickness direction. It is formed by laminating body sheets 112 and 113.
  • the second laminated sheet 120 is composed of one second electrode sheet 121 and two second dielectric sheets so that one second electrode sheet 121 is sandwiched between two second dielectric sheets 122 and 123 in the thickness direction. It is formed by laminating body sheets 122 and 123.
  • the electrostatic unit 10 includes a plurality of first electrode sheets 111, a plurality of second electrode sheets 121, and a plurality of dielectric sheets 112, 113, 122, 123 in a direction orthogonal to the flat surface. It is formed by laminating.
  • the first electrode sheet 111 and the second electrode sheet 121 are formed into a sheet shape from an elastically deformable material, for example, an elastomer.
  • the first electrode sheet 111 and the second electrode sheet 121 are made of the same material.
  • the first electrode sheet 111 and the second electrode sheet 121 are formed by blending a conductive filler in an elastomer. Therefore, the 1st electrode sheet 111 and the 2nd electrode sheet 121 have the property which has flexibility and can be expanded and contracted.
  • the elastomer constituting the first electrode sheet 111 and the second electrode sheet 121 include silicone rubber, ethylene-propylene copolymer rubber, natural rubber, styrene-butadiene copolymer rubber, acrylonitrile-butadiene copolymer rubber, acrylic rubber, Epichlorohydrin rubber, chlorosulfonated polyethylene, chlorinated polyethylene, urethane rubber and the like can be applied.
  • blended with the 1st electrode sheet 111 and the 2nd electrode sheet 121 should just be the particle
  • the first electrode sheet 111 and the second electrode sheet 121 are formed into a sheet shape by printing an electrode material on the surface of a sheet-like base material (not shown).
  • the base material is formed so as not to inhibit the deformation of the first electrode sheet 111 and the second electrode sheet 121.
  • a resin material that is formed thinner than the electrode material and has flexibility is used for the base material.
  • the first electrode sheet 111 and the second electrode sheet 121 may be formed into a sheet shape that can exist as a single body only by the electrode material, or the dielectric sheets 112, 113, 122, 123 may be formed. You may make it shape
  • the first dielectric sheets 112 and 113 and the second dielectric sheets 122 and 123 are formed into a sheet shape from an elastically deformable material, for example, an elastomer.
  • the first dielectric sheets 112 and 113 and the second dielectric sheets 122 and 123 are formed thicker than the first electrode sheet 111 and the second electrode sheet 121.
  • the first dielectric sheets 112 and 113 and the second dielectric sheets 122 and 123 are formed of an elastomer. Therefore, the first dielectric sheets 112 and 113 and the second dielectric sheets 122 and 123 have flexibility and can be stretched and contracted. In particular, the first dielectric sheets 112 and 113 and the second dielectric sheets 122 and 123 expand and contract in the thickness direction, and enable expansion and contraction in the flat plane direction along with expansion and contraction in the thickness direction.
  • the first dielectric sheets 112 and 113 and the second dielectric sheets 122 and 123 are made of a material that functions as a dielectric in an electrostatic body.
  • Examples of the elastomer constituting the first dielectric sheets 112 and 113 and the second dielectric sheets 122 and 123 include silicone rubber, acrylonitrile-butadiene copolymer rubber, acrylic rubber, epichlorohydrin rubber, chlorosulfonated polyethylene, and chlorine. Polyethylene, urethane rubber, etc. can be applied.
  • the first dielectric sheets 112 and 113 may be formed into a sheet shape by printing a dielectric material on the surface of a sheet-like base material (not shown). Alternatively, it may be formed into a sheet shape that can exist as a single body only with a dielectric material. The same applies to the second dielectric sheets 122 and 123.
  • the electrostatic unit 10 is divided into a central laminated portion 16, a first end laminated portion 17, and a second end laminated portion 18 in the roll-shaped axial direction. .
  • the center lamination part 16, the first end lamination part 17 and the second end lamination part 18 are different in lamination object.
  • the central laminated portion 16 is located in the center of the electrostatic unit 10 in the roll axial direction.
  • the central laminated portion 16 is formed by laminating the first electrode sheet 111, the second electrode sheet 121, the first dielectric sheets 112 and 113, and the second dielectric sheets 122 and 123. That is, the center laminated part 16 functions as an electrostatic body.
  • the central laminated portion 16 mainly includes the first dielectric sheet 112, the first electrode sheet 111, the first dielectric sheet 113, the second dielectric sheet 122, the second electrode sheet 121, and the second dielectric sheet.
  • the layers are repeatedly laminated in the order of 123.
  • the first end laminated portion 17 is located on the first end side from the central laminated portion 16 in the roll axial direction of the electrostatic unit 10, that is, on the left side in FIGS. 2 and 3.
  • the first end laminated portion 17 is formed by laminating the first electrode sheet 111, the first dielectric sheets 112 and 113, and the second dielectric sheets 122 and 123. That is, the first end laminated portion 17 functions as a terminal by the first electrode sheet 111.
  • the first end laminate portion 17 is mainly composed of the first dielectric sheet 112, the first electrode sheet 111, the first dielectric sheet 113, the second dielectric sheet 122, and the second dielectric sheet 123 in this order. It is laminated repeatedly. That is, the first end laminated portion 17 does not have the second electrode sheet 121.
  • the second end laminated portion 18 is located on the second end side from the central laminated portion 16 in the roll-shaped axial direction of the electrostatic unit 10, that is, on the right side in FIGS. 2 and 3.
  • the second end laminated portion 18 is formed by laminating the second electrode sheet 121, the first dielectric sheets 112 and 113, and the second dielectric sheets 122 and 123. That is, the second end laminated portion 18 functions as a terminal by the second electrode sheet 121.
  • the second end laminated portion 18 is mainly repeatedly laminated in the order of the first dielectric sheet 112, the first dielectric sheet 113, the second dielectric sheet 122, the second electrode sheet 121, and the second dielectric sheet 123. Yes. That is, the second end laminated portion 18 does not have the first electrode sheet 111.
  • the end of the first electrode sheet 111 is exposed on the first end surface in the axial direction (roll axial direction) around which the composite laminated sheet 130 is wound in the electrostatic unit 10, that is, on the end surface of the first end laminated portion 17. is doing.
  • the first end surface is the left end surface of the electrostatic unit 10 of FIG.
  • the end of the second electrode sheet 121 is exposed at the second end surface of the electrostatic unit 10, that is, the end surface of the second end stacked portion 18.
  • the second end surface is the right end surface of the electrostatic unit 10 of FIG.
  • the first conducting portion 20 and the second conducting portion 30 are formed into a sheet shape from an elastically deformable material (for example, an elastomer) and bent into an L shape.
  • the first conductive portion 20 and the second conductive portion 30 are formed by blending a conductive filler in the elastomer, like the first electrode sheet 111.
  • One side of the L-shape of the first conduction portion 20 is in surface contact with the first end surface of the electrostatic unit 10 (the end surface of the first end laminated portion 17). That is, the first conduction part 20 is conducted to the end of the first electrode sheet 111 in the first end laminated part 17.
  • the other side of the L shape of the first conduction part 20 is formed to extend in a direction away from the electrostatic unit 10.
  • One side of the L shape of the second conducting portion 30 is in surface contact with the second end face of the electrostatic unit 10 (end face in the second end laminated portion 18). In other words, the second conducting portion 30 is conducted to the end of the second electrode sheet 121 in the second end laminated portion 18.
  • the other side of the L shape of the second conducting portion 30 is formed to extend in a direction away from the electrostatic unit 10.
  • the first elastic body 41 covers the entire circumference of the roll-shaped outer peripheral surface of the electrostatic unit 10.
  • the second elastic body 42 covers the surface of the first conducting portion 20 opposite to the electrostatic unit 10.
  • the third elastic body 43 covers the surface of the second conducting portion 30 opposite to the electrostatic unit 10.
  • the 1st elastic body 41, the 2nd elastic body 42, and the 3rd elastic body 43 were made into a different body, they are good also as integral.
  • the first elastic body 41, the second elastic body 42, and the third elastic body 43 have small elastic moduli E (41) , E (42) , E (43) and small loss coefficients tan ⁇ (41) , tan ⁇ . (42) , tan ⁇ (43) is used.
  • the first elastic body 41, the second elastic body 42, and the third elastic body 43 are preferably made of a soft material with low damping characteristics.
  • the elastic modulus E (41) of the first elastic body 41 is smaller than the elastic modulus E1 (16) in the direction (stacking direction) orthogonal to the flat surface of the central stacked portion 16 of the electrostatic unit 10. Furthermore, the elastic modulus E (41) of the first elastic body 41 is smaller than the elastic modulus E2 (16) in the direction (plane direction) parallel to the flat surface of the central laminated portion 16. Further, the elastic moduli E (42) and E (43) of the second elastic body 42 and the third elastic body 43 are smaller than the elastic modulus E2 (16) in the surface direction of the central laminated portion 16.
  • the ratio of the elastic modulus E (41) of the first elastic body 41 to the elastic modulus E1 (16) in the stacking direction of the central stacked portion 16 is 15% or less. Further, the ratio of the elastic modulus E (41) of the first elastic body 41 to the elastic modulus E2 (16) in the surface direction of the central laminated portion 16 is 15% or less. The ratio of the elastic moduli E (42) and E (42) of the second elastic body 42 and the third elastic body 43 to the elastic modulus E2 (16) in the plane direction of the central laminated portion 16 is 15% or less. These ratios are preferably 10% or less.
  • the first elastic member 41, the second elastic member 42 and the third elastic member 43 is under a predetermined condition, the loss factor of the loss factor tan [delta (16) and equal to or less than the central laminated part 16 tan ⁇ (41), tan ⁇ ( 42) , tan ⁇ (43) .
  • the predetermined condition means a use environment where the temperature is ⁇ 10 to 50 ° C. and the vibration frequency is 300 Hz or less.
  • silicone rubber is suitable for the first elastic body 41, the second elastic body 42, and the third elastic body 43.
  • silicone rubber has better damping characteristics than silicone rubber, urethane rubber is less suitable for the first elastic body 41, second elastic body 42, and third elastic body 43 than silicone rubber.
  • urethane rubber may be used for the first elastic body 41, the second elastic body 42, and the third elastic body 43 depending on the intended characteristics.
  • the control board 50 is disposed in parallel to the flat surface of the electrostatic unit 10 and is disposed in contact with the surface of the first elastic body 41 on the side opposite to the central laminated portion 16. Furthermore, the control board 50 is in contact with the other L-shaped surfaces of the first conduction part 20 and the second conduction part 30.
  • the cover 60 surrounds the electrostatic unit 10, the first conduction part 20, the second conduction part 30, the first elastic body 41, the second elastic body 42, the third elastic body 43 and the control board 50.
  • Various materials such as metal and resin are applied to the cover 60, for example.
  • the cover 60 includes a planar first cover 61 for fixing the control board 50 and a second cover 62 attached to the first cover 61.
  • the first cover 61 and the second cover 62 compress the central laminated portion 16 and the first elastic body 41 in a direction perpendicular to the flat surface of the electrostatic unit 10 (stacking direction, vertical direction in FIGS. 1 and 2). Hold in the state. In this state, from the relationship of the elastic modulus E of each member, the 1st elastic body 41 will be in the state compressed more largely than the center laminated part 16 in the direction (laminating direction) orthogonal to a flat surface.
  • the second cover 62 is configured to roll the central laminated portion 16, the first elastic body 41, the second elastic body 42, and the third elastic body 43 of the electrostatic unit 10 out of the surface direction of the electrostatic unit 10. And held in a compressed state in the axial direction (left-right direction in FIG. 2). In this state, the first elastic body 41, the second elastic body 42, and the third elastic body 43 are arranged in the central laminated portion 16 in the roll axial direction of the electrostatic unit 10 from the relationship of the elastic modulus E of each member. The compressed state becomes larger.
  • the second cover 62 extends the central laminated portion 16 and the first elastic body 41 in a direction orthogonal to the roll-shaped axial direction of the electrostatic unit 10 in the surface direction of the electrostatic unit 10 (left and right in FIG. 1). Direction).
  • the first elastic body 41 is compressed more than the central laminated portion 16 in the direction orthogonal to the roll-shaped axial direction in the surface direction of the electrostatic unit 10. It becomes a state.
  • FIG. 4 (1-3. Electrical connection state of the central laminated portion 16)
  • stacking part 16 is demonstrated with reference to FIG.
  • one electrostatic cell constituting the central stacked unit 16 is illustrated.
  • the electrostatic cell is one first electrode sheet 111, one second electrode sheet 121, and dielectric sheets 112, 113, 122 sandwiched between the first electrode sheet 111 and the second electrode sheet 121. , 123.
  • the first electrode sheet 111 and the second electrode sheet 121 are arranged to face each other with a distance in the stacking direction of the center stacking portion 16.
  • the first electrode sheet 111 is electrically connected to a first terminal for supplying a periodic voltage to the central laminated portion 16 by a drive circuit in the control board 50.
  • a second terminal for supplying a periodic voltage to the central laminated portion 16 is electrically connected to the second electrode sheet 121.
  • the first electrode sheet 111 is connected to the output terminal of the control board 50, and a periodic voltage is applied thereto.
  • the second electrode sheet 121 is connected to the ground potential.
  • a periodic voltage is applied to the first electrode sheet 111 and the second electrode sheet 121.
  • the periodic voltage may be an AC voltage (periodic voltage including positive and negative) or a periodic positive voltage offset to a positive value.
  • the dielectric sheets 112, 113, 122, 123 are compressed and deformed. That is, as shown in FIG. 4, the thickness of the central laminated portion 16 is reduced, and the size of the central laminated portion 16 in the surface direction (width and depth in FIG. 4) is increased.
  • the dielectric sheets 112, 113, 122, and 123 return to their original thickness. That is, the thickness of the central laminated portion 16 is increased, and the size of the central laminated portion 16 in the surface direction is reduced.
  • the central stacked portion 16 expands and contracts in the stacking direction and expands and contracts in the surface direction.
  • the electrostatic transducer 1 When the central laminated portion 16 performs an expansion / contraction operation, the electrostatic transducer 1 operates as follows. As shown in FIG. 1, the electrostatic transducer 1 has a state where the first elastic body 41 is compressed as an initial state. Therefore, when the thickness of the central laminated portion 16 is reduced due to the increase in charge, the first elastic body 41 is deformed so that the compression amount becomes smaller than the initial state. On the other hand, when the thickness of the central laminated portion 16 increases due to the decrease in charge, the first elastic body 41 operates to return to the initial state. That is, the first elastic body 41 is deformed so that the amount of compression becomes larger than in the case of an increase in charge.
  • the displacement of the central laminated portion 16 in the lamination direction (d33 direction: the same direction as the electric field) is transmitted to the cover 60 via the first elastic body 41.
  • the elastic deformation force of the first elastic body 41 is changed by the expansion / contraction operation of the central laminated portion 16.
  • a change in the elastic deformation force of the first elastic body 41 is transmitted to the cover 60. Therefore, as the initial state, the first elastic body 41 is compressed, so that the vibration in the stacking direction (d33 direction) of the central stacked portion 16 can be efficiently applied to the cover 60. That is, tactile vibration can be applied to the cover 60 even if the center laminated portion 16 is small vibration.
  • the displacement in the surface direction (d31 direction: direction orthogonal to the electric field) of the central laminated portion 16 causes the first elastic body 41, the second elastic body 42, and the third elastic force. It is transmitted to the cover 60 via the body 43.
  • the vibration in the surface direction (d31 direction) of the central laminated portion 16 is applied to the cover 60.
  • the vibration in the plane direction (d31 direction) of the central laminated portion 16 is smaller than the vibration in the lamination direction (d33 direction).
  • a large tactile vibration can be applied to the entire cover 60 by applying a vibration in the surface direction (d31) direction to the vibration in the stacking direction (d33 direction) of the central stacking portion 16.
  • the central laminated portion 16 absorbs the vibration. In this case, even if the central laminated portion 16 performs an expansion / contraction operation, it is not transmitted to the cover 60.
  • the first elastic body 41, the second elastic body 42, and the third elastic body 43 use materials having small loss coefficients tan ⁇ (41) , tan ⁇ (42) , and tan ⁇ (43) . Therefore, vibration due to the expansion / contraction operation of the central laminated portion 16 is transmitted to the cover 60 with almost no absorption by the first elastic body 41, the second elastic body 42 and the third elastic body 43.
  • the elastic modulus E (41) of the first elastic body 41 is smaller than the elastic modulus E1 (16) in the stacking direction of the central stacked portion 16. Therefore, in the initial state in which no voltage is applied to the first electrode sheet 111 and the second electrode sheet 121, the center laminated portion 16 is almost not compressed. Therefore, even if the cover 60 presses the central laminated portion 16 in the laminating direction, the expansion / contraction operation of the central laminated portion 16 in the laminating direction is not affected. That is, the center laminated portion 16 can reliably perform the expansion / contraction operation.
  • the elastic moduli E (41) , E (42) , E (43) of the first elastic body 41, the second elastic body 42, and the third elastic body 43 are the elastic moduli E2 ( 16) Less than. Therefore, in the initial state in which no voltage is applied to the first electrode sheet 111 and the second electrode sheet 121, the center laminated portion 16 is almost not compressed. Therefore, even if the cover 60 presses the central laminated portion 16 in the surface direction, the expansion / contraction operation in the surface direction of the central laminated portion 16 is not affected. That is, the center laminated portion 16 can reliably perform the expansion / contraction operation.
  • the 1st lamination sheet 110 is manufactured (S1: 1st lamination sheet manufacturing process).
  • the first laminated sheet 110 is formed by laminating a first electrode sheet 111, two first dielectric sheets 112 and 113, and two separators 114 and 115.
  • the first electrode sheet 111 is formed in a strip shape, that is, a long shape having a predetermined width.
  • the two first dielectric sheets 112 and 113 and the two separators 114 and 115 are formed in a strip shape, that is, a long shape having a predetermined width.
  • the first electrode sheet 111 and the two first dielectric sheets 112 and 113 may be formed into sheets by printing materials on the surface of a sheet-like base material (not shown), respectively. Alternatively, it may be formed into a sheet that can exist as a single body.
  • the width of the two first dielectric sheets 112 and 113 and the width of the two separators 114 and 115 are larger than the width of the first electrode sheet 111.
  • the second end laminated portion 18 includes the two first dielectric sheets 112 and 113, but does not include the first electrode sheet 111. That is, the two first dielectric sheets 112 and 113 and the two separators 114 and 115 have a width corresponding to the second end laminated portion 18 shown in FIGS. 2 and 3 with respect to the first electrode sheet 111. It is formed longer by the minute. Further, the length in the longitudinal direction of the two first dielectric sheets 112 and 113 and the length in the longitudinal direction of the two separators 114 and 115 are the same as the length in the longitudinal direction of the first electrode sheet 111. Have
  • the two first dielectric sheets 112 and 113 are arranged in such a manner that the first end in the width direction is aligned with the first end in the width direction of the first electrode sheet 111. Are laminated on both sides.
  • the second end in the width direction of the two first dielectric sheets 112 and 113 is positioned outside the second end in the width direction of the first electrode sheet 111 in the width direction.
  • the two separators 114 and 115 are laminated on the outer surfaces of the two first dielectric sheets 112 and 113.
  • the first electrode sheet 111, the two first dielectric sheets 112 and 113, and the two separators 114 and 115 are in a state in which both ends in the longitudinal direction coincide with each other.
  • the first laminated sheet 110 is formed by laminating the five long sheets 111, 112, 113 and the separators 114, 115. Furthermore, the 1st lamination roll body 110a is formed by winding the 1st lamination sheet 110 in roll shape.
  • the 2nd lamination sheet 120 is manufactured (S2: 2nd lamination sheet manufacturing process).
  • the second laminated sheet 120 is formed by laminating a second electrode sheet 121, two second dielectric sheets 122 and 123, and two separators 124 and 125.
  • the second electrode sheet 121 is formed in a strip shape, that is, a long shape having a predetermined width.
  • the two second dielectric sheets 122 and 123 and the two separators 124 and 125 are formed in a strip shape, that is, a long shape having a predetermined width.
  • the second electrode sheet 121 and the two second dielectric sheets 122 and 123 may be formed into a sheet shape by printing a material on the surface of a sheet-like base material (not shown). Alternatively, it may be formed into a sheet that can exist as a single body.
  • the width of the two second dielectric sheets 122 and 123 and the width of the two separators 124 and 125 are larger than the width of the second electrode sheet 121.
  • the first end laminated portion 17 includes the two second dielectric sheets 122 and 123, but does not include the second electrode sheet 121. That is, the two second dielectric sheets 122 and 123 and the two separators 124 and 125 have a width corresponding to the first end laminated portion 17 shown in FIGS. 2 and 3 with respect to the second electrode sheet 121. It is formed longer by the minute.
  • the length in the longitudinal direction of the two second dielectric sheets 122 and 123 and the length in the longitudinal direction of the two separators 124 and 125 are the same as the length in the longitudinal direction of the second electrode sheet 121.
  • the two second dielectric sheets 122 and 123 are arranged such that the first end in the width direction is aligned with the first end in the width direction of the second electrode sheet 121. Are laminated on both sides.
  • the second end in the width direction of the two second dielectric sheets 122 and 123 is located outside the second end in the width direction of the second electrode sheet 121 in the width direction.
  • the two separators 124 and 125 are laminated on the outer surfaces of the two second dielectric sheets 122 and 123.
  • the second electrode sheet 121, the two second dielectric sheets 122 and 123, and the two separators 124 and 125 are in a state in which both ends in the longitudinal direction coincide with each other.
  • the second laminated sheet 120 is formed by laminating the five long sheets 121, 122, 123 and the separators 124, 125, and the second laminated sheet 120 is further wound into a roll.
  • the second laminated roll body 120a is formed.
  • a composite laminate sheet 130 in which the first laminate sheet 110 and the second laminate sheet 120 are laminated is produced (S3: composite laminate sheet production step).
  • the composite lamination roll body 140 is formed by winding the composite lamination sheet 130 in roll shape (S4: roll process).
  • the composite laminated sheet manufacturing process and the roll process are performed as shown in FIG.
  • the first laminated sheet 110 is pulled out from the first laminated roll body 110 a while the first laminated sheet 110 is supported by the plurality of rollers 231, 232 and 233.
  • the two separators 114 and 115 are peeled off from the first laminated sheet 110 and wound around the bobbins 241 and 242.
  • the second laminated sheet 120 is pulled out from the second laminated roll body 120a while the second laminated sheet 120 is supported by the plurality of rollers 251, 252, and 253.
  • the two separators 124 and 125 are peeled off from the second laminated sheet 120 and wound around bobbins 261 and 262.
  • the first laminated sheet 110 from which the separators 114 and 115 are peeled off and the second laminated sheet 120 from which the separators 124 and 125 are peeled off are laminated to form a composite laminated sheet 130 (S3: composite laminated sheet manufacturing process) ).
  • the composite laminated sheet 130 is formed by a first electrode sheet 111, two first dielectric sheets 112 and 113, a second electrode sheet 121, and two second dielectric sheets 122 and 123. Has been.
  • FIG. 9 composite laminated sheet manufacturing process
  • the width of the first electrode sheet 111 is W (111)
  • the width of the first dielectric sheets 112 and 113 is W (112)
  • the width of the second electrode sheet 121 is , W (121)
  • the width of the second dielectric sheets 122, 123 is W (122) .
  • the first dielectric sheets 112 and 113 and the second dielectric sheets 122 and 123 are coincident at both ends in the width direction.
  • the first electrode sheet 111 and the second electrode sheet 121 are offset in the width direction. That is, the first electrode sheet 111 and the second electrode sheet 121 exist at the center in the width direction, and only one of the first electrode sheet 111 and the second electrode sheet 121 exists at the end in the width direction. Yes.
  • the composite lamination roll body 140 shown in FIG. 10 is formed by winding the composite lamination sheet 130 around the bobbin 270 shown in FIG. 8 (S4: roll process).
  • the composite laminated roll body 140 is formed as shown in FIG.
  • At least one round of the innermost layer in the composite laminated roll body 140 is composed of only the first laminated sheet 110 or only the second laminated sheet 120.
  • at least one round of the innermost layer is composed of only the second laminated sheet 120 connected to the ground potential.
  • a range that is longer than one and a half of the innermost layer and shorter than two is constituted only by the second laminated sheet 120.
  • At least one round of the outermost layer in the composite laminated roll body 140 is composed of only the second laminated sheet 120 connected to the ground potential.
  • the range that is longer than one turn of the outermost layer and shorter than one and a half turns is composed of only the second laminated sheet 120.
  • the flat roll body 150 is formed by flattening the composite laminated roll body 140 (S5: flattening step).
  • S5 flattening step
  • at least one round of the innermost circumference is constituted only by the second laminated sheet 120 connected to the ground potential.
  • at least one round of the outermost layer in the flat roll body 150 is configured only by the second laminated sheet 120 connected to the ground potential.
  • the electrostatic unit 10 is formed by slightly cutting both ends of the flat roll 150 in the axial direction. Specifically, the end of the first electrode sheet 111 is exposed by cutting the axial first end of the flat roll body 150 (S6: cutting step). Furthermore, the edge of the 2nd electrode sheet 121 is exposed by cut
  • At least one of the innermost circumferences is composed only of the second laminated sheet 120 connected to the ground potential.
  • the separation distance of the 1st electrode sheet 111 and the 2nd electrode sheet 121 can be made more than predetermined distance.
  • at least one round of the outermost layer is configured only by the second laminated sheet 120 connected to the ground potential. Thereby, the electrostatic transducer 1 having high safety is formed.
  • the roll process of S4, the flat process of S5, and the cutting process of S6 are called an electrostatic type unit manufacturing process.
  • the roll process of S4 and the flat process of S5 are called flat roll processes.
  • the electrostatic transducer 1 includes the electrostatic unit 10.
  • the electrostatic type unit 10 includes a first laminated sheet 110 and a second laminated sheet 120.
  • the 1st lamination sheet 110 is formed in strip
  • Two first dielectric sheets 112 and 113 are provided on both surfaces of the first electrode sheet 111 in a state of being aligned with the first end in the width direction of the sheet 111.
  • the second laminated sheet 120 and the second electrode sheet 121 formed in a strip shape are formed in a strip shape and have a width larger than the width of the second electrode sheet 121, and the first end in the width direction is the second electrode sheet 121.
  • the electrostatic unit 10 is formed in a flat state in a state of being wound in a roll shape by the first laminated sheet 110 and the second laminated sheet 120.
  • the 1st lamination sheet 110 is formed in the state wound by roll shape, and flat.
  • the second laminated sheet 120 is formed in a flat shape with the first laminated sheet 110 wound in a roll shape while being laminated on the first laminated sheet 110.
  • the first electrode sheet 111 and the second electrode sheet 121 are offset in the width direction.
  • the first electrode sheet 111 is exposed on the first end surface in the roll-shaped axial direction
  • the second electrode sheet 121 is exposed on the second end surface in the roll-shaped axial direction.
  • the electrostatic unit 10 is formed into a flat shape in a state of being wound in a roll shape by the first laminated sheet 110 and the second laminated sheet 120. Therefore, a large number of electrode sheets 111 and 121 and a large number of dielectric sheets 112, 113, 122, and 123 can be easily laminated. Further, the first laminated sheet 110 constituting the electrostatic unit 10 has the first electrode sheet 111 sandwiched between two first dielectric sheets 112 and 113. Accordingly, in the first laminated sheet 110, the planar portion of the first electrode sheet 111 is covered with the two first dielectric sheets 112 and 113. That is, in the first laminated sheet 110, the planar portion of the first electrode sheet 111 is not exposed over the entire surface.
  • the handleability of the 1st lamination sheet 110 and the 2nd lamination sheet 120 is favorable, and generation
  • At least one round of the innermost layer of the roll shape in the electrostatic unit 10 is configured by only the first laminated sheet 110 or only the second laminated sheet 120.
  • the separation distance of the 1st electrode sheet 111 and the 2nd electrode sheet 121 can be made more than predetermined distance. That is, the performance as the electrostatic transducer 1 can be improved.
  • the second electrode sheet 121 is connected to the ground potential, and at least one round of the roll-shaped outermost layer in the electrostatic unit 10 is connected to the ground potential. It consists only of. Thereby, the electrostatic transducer 1 having high safety is formed.
  • the electrostatic transducer 1 is manufactured by the first laminated sheet manufacturing process (S1), the second laminated sheet manufacturing process (S2), the composite laminated sheet manufacturing process (S3), and the flat roll process (S4, S5). Is done.
  • the first laminated sheet manufacturing process the first laminated sheet 110 is manufactured.
  • the second laminated sheet manufacturing process the second laminated sheet 120 is manufactured.
  • a composite laminate sheet 130 in which the first laminate sheet 110 and the second laminate sheet 120 are laminated is produced.
  • a flat roll process manufactures the flat roll body 150 by winding the composite lamination sheet 130 in roll shape, and forming in flat shape.
  • the electrostatic unit 10 described above can be manufactured. That is, the first laminated sheet 110 manufactured in the first laminated sheet manufacturing process is configured by sandwiching the first electrode sheet 111 between the two first dielectric sheets 112 and 113. Accordingly, in the first laminated sheet 110, the planar portion of the first electrode sheet 111 is covered with the two first dielectric sheets 112 and 113. That is, in the first laminated sheet 110, the planar portion of the first electrode sheet 111 is not exposed over the entire surface. The same applies to the second laminated sheet 120.
  • the handleability of the 1st lamination sheet 110 and the 2nd lamination sheet 120 is favorable, and generation
  • the composite laminated sheet 130 in which the first laminated sheet 110 and the second laminated sheet 120 are laminated is wound into a roll shape and formed into a flat shape. Therefore, a large number of electrode sheets 111 and 121 and a large number of dielectric sheets 112, 113, 122, and 123 can be easily laminated.
  • the electrostatic transducer 1 cuts the roll-shaped axial first end and the second end of the flat roll body 150 to expose the first electrode sheet 111 and the second electrode sheet 121 ( Manufactured by S6). Thereby, since the 1st electrode sheet 111 and the 2nd electrode sheet 121 are exposed reliably, in the electrostatic transducer 1, electroconductivity becomes favorable.
  • the electrostatic transducer 1 further includes a first elastic body 41 that covers at least a flat surface of the roll-shaped outer peripheral surface of the electrostatic unit 10. Further, the electrostatic transducer 1 presses the electrostatic unit 10 at least in the laminating direction (vertical direction in FIG. 1), and the first elastic body 41 is compressed more greatly than the electrostatic unit 10 in the laminating direction. A holding cover 60 is provided. Thereby, in the stacking direction of the electrostatic unit 10, even if the electrostatic unit 10 alone is a small vibration, a large vibration can be applied to the cover 60.
  • the first elastic body 41 may cover the roll-shaped outer peripheral surface of the electrostatic unit 10 over the entire circumference.
  • the cover 60 presses the electrostatic unit 10 in the surface direction (left-right direction in FIG. 1) in addition to the stacking direction.
  • the cover 60 holds the first elastic body 41 in a state of being compressed more than the electrostatic unit 10 in the surface direction. Thereby, small vibrations of the electrostatic unit 10 in the surface direction of the electrostatic unit 10 can be reliably transmitted to the cover 60.
  • the elastic modulus E (41) of the first elastic body 41 is smaller than the elastic modulus E1 (16) of the central laminated portion 16 of the electrostatic unit 10. That is, in the initial state, in the state where the central laminated portion 16 and the first elastic body 41 are pressed by the cover 60, the amount of compression of the central laminated portion 16 is small. Therefore, even if the central laminated portion 16 is pressed by the cover 60, the expansion / contraction operation of the central laminated portion 16 is not significantly affected.
  • the central laminated portion 16 expands and contracts in the laminating direction and the plane direction.
  • the displacement of the surface of the central laminated part 16 caused by the expansion / contraction operation of the central laminated part 16 is transmitted to the cover 60 via the first elastic body 41.
  • the elastic deformation force of the first elastic body 41 is changed by the expansion / contraction operation of the central laminated portion 16, and the change in the elastic deformation force of the first elastic body 41 is transmitted to the cover 60. Therefore, as the initial state, the first elastic body 41 is compressed, so that the cover 60 can be efficiently vibrated. That is, tactile vibration can be imparted to the cover 60 even if the center laminated portion 16 alone of the electrostatic unit 10 is a small vibration.
  • the first elastic body 41 is made of a material having a small loss coefficient tan ⁇ (41) . Thereby, the first elastic body 41 can be transmitted to the cover 60 without absorbing vibration due to the expansion and contraction operation of the central laminated portion 16. In particular, when the silicone rubber is applied to the first elastic body 41, the above operation can be realized with certainty.
  • the loss coefficient tan ⁇ (41) of the first elastic body 41 is equal to or less than the loss coefficient tan ⁇ (16) of the central laminated portion 16 of the electrostatic unit 10 under a predetermined condition.
  • the predetermined condition is a use environment in which the temperature is ⁇ 10 to 50 ° C. and the vibration frequency is 300 Hz or less.
  • the roll-shaped outermost layer in the electrostatic unit 10 is formed so that the elastic modulus is larger than that of the roll-shaped inside in the electrostatic unit 10.
  • a nano-order cured layer is formed by performing surface modification by UV irradiation on the outermost layer of the electrostatic unit 10 manufactured in S1-S6 of FIG.
  • a sheet having a desired elastic modulus may be disposed.
  • the outermost layer of the central laminated portion 16 is preferably a layer whose surface has been modified by UV irradiation.
  • the outermost layer can have a very thin thickness on the nano order.
  • the transmission efficiency of the vibration by the expansion / contraction operation can be improved without hindering the expansion / contraction operation itself of the central laminated portion 16.
  • the end on the inner layer side and the end on the outer layer side of the first laminated sheet 110 are curled to form a second curl portion 312 and a third curl portion 313. That is, the first electrode sheet 111 at the inner layer end and the outer layer end of the first laminated sheet 110 is in contact with the first dielectric sheets 112 and 113. Therefore, the distance between the end on the inner layer side of the first electrode sheet 111 and the second electrode sheet 121 can be surely set to a predetermined distance or more. Similarly, the separation distance between the end on the outer layer side of the first electrode sheet 111 and the second electrode sheet 121 can be reliably set to a predetermined distance or more. As a result, an insulation state between both ends of the first electrode sheet 111 and the second electrode sheet 121 is ensured.
  • the curled portions 311, 312, and 313 may be formed by hooking each end of the first laminated sheet 110 and the second laminated sheet 120 to a hook (not shown) provided on the bobbin 270 shown in FIG. That is, the curled portions 311, 312, and 313 are formed in a process in which the composite laminated sheet 130 in which the first laminated sheet 110 and the second laminated sheet 120 are laminated is wound in a roll shape.
  • the electrostatic unit 310 in at least one of the first laminated sheet 110 and the second laminated sheet 120, at least one of the first end and the second end in the belt-like longitudinal direction is the electrostatic unit 310. Is curled to a smaller radius of curvature than the roll shape. In the curled part, the separation distance between the first electrode sheet 111 and the second electrode sheet 121 can be surely set to a predetermined distance or more.
  • the end of the roll-shaped inner layer side is curled in the first laminated sheet 110, and the end of the roll-shaped inner layer side is curled in the second laminated sheet 120.
  • the separation distance of the 1st electrode sheet 111 and the 2nd electrode sheet 121 can be reliably made into predetermined distance or more in two front-end
  • the edge located other than a roll-shaped outermost layer is curled. That is, the ends located inside the electrostatic unit 310 are all curled. Accordingly, in this way, the separation distance between the first electrode sheet 111 and the second electrode sheet 121 can be reliably set to a predetermined distance or more inside the electrostatic unit 310.
  • the end on the outer layer side of the second laminated sheet 120 located in the outermost layer of the electrostatic unit 310 is not curled. However, since at least one round of the outermost layer of the electrostatic unit 310 is formed by the second laminated sheet 120 connected to the ground potential, the end on the outer layer side of the second laminated sheet 120 is the first electrode sheet. A sufficient distance from 111 is secured. However, all of the end portions (four end portions) may be curled.
  • the electrostatic unit 450 includes a first laminated sheet 410 and a second laminated sheet 420.
  • the first laminated sheet 410 and the second laminated sheet 420 correspond to the first laminated sheet 110 and the second laminated sheet 120 of the first embodiment.
  • the first laminated sheet 410 and the second laminated sheet 420 differ from the first laminated sheet 110 and the second laminated sheet 120 of the first embodiment in the following points.
  • the first laminated sheet 410 is composed of a first electrode sheet 111 and two first dielectric sheets 112 and 113. However, in the first laminated sheet 410, both ends in the longitudinal direction of the strips of the two first dielectric sheets 112 and 113 are outside in the longitudinal direction with respect to both ends in the longitudinal direction of the strips of the first electrode sheet 111. To position. That is, both ends of the first electrode sheet 111 in the longitudinal direction of the belt are closed by the two first dielectric sheets 112 and 113.
  • the inner layer side end and the outer layer side end of the first laminated sheet 410 are formed by only the two first dielectric sheets 112 and 113. ing. Accordingly, the portion where the first electrode sheet 111 is exposed is only the first end in the width direction (left side in FIG. 2). In the first electrode sheet 111, the second end in the width direction (the right side in FIG. 2) and both ends in the longitudinal direction are closed by the two first dielectric sheets 112 and 113 and are not exposed. .
  • the separation distance between the inner layer side end of the first electrode sheet 111 and the second electrode sheet 121, and the outer layer side end of the first electrode sheet 111 and the second electrode sheet 121.
  • the separation distance can be surely set to a predetermined distance or more.
  • an insulation state is ensured between the inner layer side end of the first electrode sheet 111 and the second electrode sheet 121, and between the outer layer side end of the first electrode sheet 111 and the second electrode sheet 121. The insulation state at is ensured.
  • the second laminated sheet 420 includes a second electrode sheet 121 and two second dielectric sheets 122 and 123. However, in the second laminated sheet 420, both ends of the strip-like longitudinal direction of the two second dielectric sheets 122 and 123 are outside the longitudinal direction with respect to both ends of the strip-like longitudinal direction of the second electrode sheet 121. To position. That is, both ends of the strip-like longitudinal direction of the second electrode sheet 121 are closed by the two second dielectric sheets 122 and 123.
  • the portion where the second electrode sheet 121 is exposed is only the first end in the width direction (the right side in FIG. 2).
  • the second end in the width direction (left side in FIG. 2) and both ends in the longitudinal direction are closed by the two second dielectric sheets 122 and 123 and are not exposed. .
  • the separation distance between the first electrode sheet 111 and the inner layer side end of the second electrode sheet 121, and the outer layer side end of the first electrode sheet 111 and the second electrode sheet 121 can be surely set to a predetermined distance or more.
  • an insulation state between the first electrode sheet 111 and the inner layer side end of the second electrode sheet 121 is ensured, and between the first electrode sheet 111 and the outer layer side end of the second electrode sheet 121. The insulation state at is ensured.
  • both ends of the first electrode sheet 111 in the longitudinal direction of the belt are closed by the two first dielectric sheets 112 and 113 and the longitudinal direction of the second electrode sheet 121 in the longitudinal direction of the belt. Both ends are closed by the two second dielectric sheets 122 and 123.
  • both ends of the first electrode sheet 111 connected to the positive electrode potential in the longitudinal direction are closed by the two first dielectric sheets 112 and 113 and connected to the ground potential.
  • the end on the inner layer side of the electrode sheet 121 may be blocked by the two second dielectric sheets 122 and 123. In this case, the outer layer side end of the second electrode sheet 121 connected to the ground potential is exposed without being blocked by the two second dielectric sheets 122 and 123.
  • the electrodes are not exposed at all ends located inside the electrostatic unit 450. Accordingly, in this way, the separation distance between the first electrode sheet 111 and the second electrode sheet 121 can be reliably set to a predetermined distance or more inside the electrostatic unit 450.
  • both ends of the belt-like longitudinal direction of only the first electrode sheet 111 connected to the positive electrode potential may be blocked by the two first dielectric sheets 112 and 113.
  • both ends of the strip-like longitudinal direction of the second electrode sheet 121 connected to the ground potential are exposed without being blocked by the two second dielectric sheets 122 and 123.
  • a method for manufacturing the electrostatic unit 450 will be described with reference to FIGS.
  • the manufacturing method of the electrostatic unit 450 is the same as the manufacturing method of the electrostatic unit 10 of the first embodiment shown in FIG. However, in the method for manufacturing the electrostatic unit 450, the process of manufacturing the first laminated sheet 410 (S1 in FIG. 5) and the process of manufacturing the second laminated sheet 420 (S2 in FIG. 5) are different.
  • the first electrode sheet 111, the two first dielectric sheets 112 and 113, and the two separators 114 and 115 have a strip shape, that is, a predetermined width. It is formed in a long shape.
  • the first electrode sheet 111 and the two first dielectric sheets 112 and 113 may be formed into sheets by printing materials on the surface of a sheet-like base material (not shown), respectively. Alternatively, it may be formed into a sheet that can exist as a single body.
  • the length in the longitudinal direction of the two first dielectric sheets 112 and 113 and the length in the longitudinal direction of the two separators 114 and 115 are longer than the length in the longitudinal direction of the first electrode sheet 111. Further, the width of the two first dielectric sheets 112 and 113 and the width of the two separators 114 and 115 are larger than the width of the first electrode sheet 111.
  • the first laminated sheet 410 is manufactured by laminating the separator 114, the first dielectric sheet 112, the first electrode sheet 111, the first dielectric sheet 113, and the separator 115 in this order.
  • the length of the strip in the longitudinal direction of the first electrode sheet 111 L (111), the strip-shaped longitudinal two first dielectric sheets 112 and 113 length L ( 112) is shorter by twice the length of ⁇ L (111) .
  • belt-shaped longitudinal direction of the two 1st dielectric sheets 112 and 113 are strip
  • the length from the first end in the strip-like longitudinal direction of the two first dielectric sheets 112 and 113 (the right end in FIG. 15) to the first end in the strip-like longitudinal direction of the first electrode sheet 111 is , ⁇ L (111) .
  • the length from the second end in the strip-like longitudinal direction of the first dielectric sheets 112 and 113 (the left end in FIG.
  • the thickness of the first dielectric sheet 112 is H (112) .
  • the thickness of the other first dielectric sheet 113 is the same as the thickness of the first dielectric sheet 112.
  • the length ⁇ L (111) is set to be equal to or greater than the thickness H (112) .
  • the distance between the first electrode sheet 111 and the surfaces of the two first dielectric sheets 112 and 113 is the first dielectric sheet at all positions. It becomes more than each thickness H (112) of 112,113. As a result, the insulation state of the first electrode sheet 111 can be reliably ensured.
  • the width W of the first electrode sheet 111 (111), the width W of the first dielectric sheet 112 (112 ) Is shorter by a width ⁇ W (111) .
  • the first end in the width direction of the first electrode sheet 111 (the left end in FIG. 16) coincides with the first end in the width direction of the two first dielectric sheets 112 and 113.
  • stacking roll body 410a is formed by winding the 1st lamination sheet 410 in roll shape.
  • the second electrode sheet 121, the two second dielectric sheets 122 and 123, and the two separators 124 and 125 are strip-shaped, that is, have a predetermined width. It is formed in a long shape.
  • the second electrode sheet 121 and the two second dielectric sheets 122 and 123 may be formed into a sheet shape by printing a material on the surface of a sheet-like base material (not shown). Alternatively, it may be formed into a sheet that can exist as a single body.
  • the length in the longitudinal direction of the two second dielectric sheets 122 and 123 and the length in the longitudinal direction of the two separators 124 and 125 are longer than the length in the longitudinal direction of the second electrode sheet 121.
  • the widths of the two second dielectric sheets 122 and 123 and the widths of the two separators 124 and 125 are larger than the width of the second electrode sheet 121.
  • the second laminated sheet 420 is manufactured by laminating the separator 124, the second dielectric sheet 122, the second electrode sheet 121, the second dielectric sheet 123, and the separator 125 in this order.
  • both ends of the strip-like longitudinal directions of the two second dielectric sheets 122 and 123 are strip-like of the second electrode sheet 121. It is located outside the longitudinal direction with respect to both ends in the longitudinal direction. Specifically, the length from the first end in the strip-like longitudinal direction of the two second dielectric sheets 122 and 123 (the right end in FIG. 18) to the first end in the strip-like longitudinal direction of the second electrode sheet 121 is , ⁇ L (121) . Similarly, the length from the second end in the strip-like longitudinal direction (left end in FIG.
  • the thickness of the second dielectric sheet 122 is H (122) .
  • the thickness of the other second dielectric sheet 123 is the same as the thickness of the second dielectric sheet 122.
  • length (DELTA) L (121) is set more than thickness H (122) .
  • the distance between the second electrode sheet 121 and the surfaces of the two second dielectric sheets 122 and 123 is the second dielectric sheet at all positions. It becomes more than each thickness H (122) of 122,123. As a result, the insulation state of the second electrode sheet 121 can be reliably ensured.
  • the width W of the second electrode sheet 121 (121), the width W of the second dielectric sheet 122 (122 ) Is shorter by the width ⁇ W (121) .
  • the first end in the width direction of the second electrode sheet 121 (the right end in FIG. 19) coincides with the first end in the width direction of the two second dielectric sheets 122 and 123.
  • the 2nd lamination roll body 420a is formed by winding the 2nd lamination sheet 420 in roll shape.
  • the electrostatic unit 450 shown in FIG. 13 is manufactured.
  • the 1st elastic body 41 decided to coat
  • the first elastic body 41 is not limited to this, and may cover only the flat surface of the outer peripheral surface of the electrostatic unit 10.
  • the second cover 62 does not compress the surfaces (left and right surfaces in FIG. 1) adjacent to the flat surface in the roll-shaped outer peripheral surface of the electrostatic unit 10 in the surface direction of the electrostatic unit 10. Become.
  • the 1st elastic body 41 is the state which coat
  • the first elastic body 41 is not limited to this, and the first elastic body 41 is compressed only in the stacking direction of the electrostatic unit 10 by the cover 60 and is not compressed in the surface direction of the electrostatic unit 10 by the cover 60. Good. Further, the second elastic body 42 and the third elastic body 43 may not be compressed by the cover 60.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)

Abstract

Provided is an electrostatic type transducer (1) in which an electrostatic type unit (10) is formed so as to be flat and wound into a roll, from a first laminate sheet (110) and a second laminate sheet (120). The first laminate sheet (110) is provided with a first electrode sheet (111) and two first dielectric sheets (112, 113) laminated onto both surfaces of the first electrode sheet (111). The second laminate sheet (120) is provided with a second electrode sheet (121) and two second dielectric sheets (122, 123) laminated onto both surfaces of the second electrode sheet (121).

Description

静電型トランスデューサおよびその製造方法Electrostatic transducer and manufacturing method thereof
 本発明は、静電型トランスデューサおよびその製造方法に関するものである。 The present invention relates to an electrostatic transducer and a manufacturing method thereof.
 静電型トランスデューサにおいて、電極と誘電体の積層数が多いほど、静電容量が大きくなる。そこで、静電型トランスデューサの構造として、積層数を多くした構成を容易に形成できることが求められている。 In an electrostatic transducer, the greater the number of stacked electrodes and dielectrics, the greater the capacitance. Therefore, it is required that a structure with a large number of layers can be easily formed as the structure of the electrostatic transducer.
 静電型トランスデューサとは異なるタイプの装置について、特開2013-182374号公報、特開2005-312230号公報、特開2012-65426号公報、および特公昭63-10594号公報に記載されたものが知られている。特開2013-182374号公報には、電歪材料を用いた感覚提示装置が記載されている。当該装置は、電歪材料層の片面に第一電極を形成した第一シートと、電歪材料層の片面に第二電極を形成した第二シートとを準備し、2枚のシートを第一電極と第二電極とが電歪材料層を介して交互に配置されるように重ね合わせ、重ね合わせた2枚のシートを芯巻に巻回し、芯巻を抜き出した後に扁平化することにより製造される(特開2013-182374号公報の図4参照)。 Regarding types of devices different from electrostatic transducers, those described in JP2013-182374A, JP2005312230A, JP2012-65426A, and JP63-10594A are disclosed. Are known. Japanese Unexamined Patent Application Publication No. 2013-182374 describes a sensory presentation device using an electrostrictive material. The apparatus prepares a first sheet in which a first electrode is formed on one side of an electrostrictive material layer, and a second sheet in which a second electrode is formed on one side of an electrostrictive material layer. Manufactured by superposing electrodes and second electrodes so that they are arranged alternately via electrostrictive material layers, winding the two superposed sheets around a core roll, extracting the core roll, and then flattening (Refer to FIG. 4 of JP2013-182374A).
 特開2005-312230号公報には、圧電素子を用いた装置が記載されている。当該装置は、圧電性を有するシート基材の両面に電極を設け、シート基材をロール状に巻き回すことによりロール体を形成することで製造される。そして、接続電極が、それぞれロール体の軸方向の両端面に配置されている。 Japanese Patent Application Laid-Open No. 2005-312230 describes an apparatus using a piezoelectric element. The apparatus is manufactured by forming a roll body by providing electrodes on both surfaces of a piezoelectric sheet base material and winding the sheet base material into a roll. And the connection electrode is arrange | positioned at the both end surfaces of the axial direction of a roll body, respectively.
 特開2012-65426号公報には、誘電アクチュエータが記載されている。当該アクチュエータは、誘電エラストマー層と導電ゴム層とを交互に厚み方向に交互に積層し、導電ゴム層を誘電エラストマー層に対して幅方向に順次ずらして積層し、積層したシート体を芯材に渦巻き状に巻き付けることにより製造される。 JP 2012-65426 A describes a dielectric actuator. In the actuator, dielectric elastomer layers and conductive rubber layers are alternately stacked in the thickness direction, and the conductive rubber layers are sequentially shifted in the width direction with respect to the dielectric elastomer layer, and the stacked sheet body is used as a core material. Manufactured by winding in a spiral.
 特公昭63-10594号公報には、圧電素子を用いた装置が記載されている。当該装置では、上下面に電極薄膜が形成された圧電素子を交互に上下面を逆にして多数積層され、各電極薄膜をそれぞれ共通接続するように側面電極が形成されている。当該製造方法は、枚葉積層法と言われる。 Japanese Patent Publication No. 63-10594 discloses a device using a piezoelectric element. In this apparatus, a large number of piezoelectric elements having electrode thin films formed on the upper and lower surfaces are alternately stacked with the upper and lower surfaces reversed, and the side electrodes are formed so as to commonly connect the electrode thin films. This manufacturing method is referred to as a single wafer lamination method.
 静電型トランスデューサにおいて、特公昭63-10594号公報に記載のような枚葉積層法よりも、特開2013-182374号公報、特開2005-312230号公報および特開2012-65426号公報に記載のようなロール状に巻き回す方法が、より効率的に積層数を多数にすることができる。 In the electrostatic transducer, it is described in JP 2013-182374 A, JP 2005-312230 A, and JP 2012-65426 A, rather than the single wafer lamination method described in Japanese Patent Publication No. 63-10594. Such a method of winding into a roll can increase the number of stacked layers more efficiently.
 しかし、特開2013-182374号公報、特開2005-312230号公報および特開2012-65426号公報に記載のように、ロール状に形成する前において、電極が全面に亘って露出していると、取り扱いに注意を要する。例えば、露出する電極に傷などの欠陥が生じるおそれがある。 However, as described in JP2013-182374A, JP2005312230A, and JP2012-65426A, the electrode is exposed over the entire surface before being formed into a roll shape. , Handle with care. For example, a defect such as a scratch may occur in the exposed electrode.
 本発明は、ロール状に巻き回す方法を適用することにより積層数を多数にしつつ、取り扱い性が良好な静電型トランスデューサおよびその製造方法を提供することを目的とする。 An object of the present invention is to provide an electrostatic transducer having a good handling property and a manufacturing method thereof while increasing the number of layers by applying a method of winding in a roll.
 本発明に係る静電型トランスデューサは、静電型ユニットを備える。静電型ユニットは、帯状に形成された第一電極シートと、帯状に形成され、前記第一電極シートの幅より大きな幅を有し、幅方向の第一端を前記第一電極シートの幅方向の第一端に合わせた状態で前記第一電極シートの両面に積層される2枚の第一誘電体シートとを備える第一積層シートと、帯状に形成された第二電極シートと、帯状に形成され、前記第二電極シートの幅より大きな幅を有し、幅方向の第一端を前記第二電極シートの幅方向の第一端に合わせた状態で前記第二電極シートの両面に積層される2枚の第二誘電体シートとを備える第二積層シートと、を備える。 The electrostatic transducer according to the present invention includes an electrostatic unit. The electrostatic unit has a first electrode sheet formed in a strip shape, and has a width larger than the width of the first electrode sheet, and the first end in the width direction is the width of the first electrode sheet. A first laminated sheet comprising two first dielectric sheets laminated on both sides of the first electrode sheet in a state aligned with the first end in the direction, a second electrode sheet formed in a strip shape, and a strip shape Formed on the both sides of the second electrode sheet with a width greater than the width of the second electrode sheet, with the first end in the width direction aligned with the first end in the width direction of the second electrode sheet. And a second laminated sheet comprising two second dielectric sheets to be laminated.
 前記静電型ユニットは、前記第一積層シートおよび前記第二積層シートによりロール状に巻き回された状態かつ扁平状に形成されている。前記第一積層シートは、ロール状に巻き回された状態かつ扁平状に形成されている。前記第二積層シートは、前記第一積層シートに積層された状態で、前記第一積層シートと共にロール状に巻き回された状態かつ扁平状に形成されている。 The electrostatic unit is formed in a flat shape in a state of being wound in a roll shape by the first laminated sheet and the second laminated sheet. The first laminated sheet is formed in a roll shape and in a flat shape. The second laminated sheet is formed in a flat state with the first laminated sheet wound in a roll shape in a state of being laminated on the first laminated sheet.
 前記第一電極シートと前記第二電極シートとは、幅方向にオフセットされている。前記第一電極シートは、前記ロール状の軸方向の第一端面に露出し、前記第二電極シートは、前記ロール状の軸方向の第二端面に露出する。 The first electrode sheet and the second electrode sheet are offset in the width direction. The first electrode sheet is exposed at the first end surface in the roll-shaped axial direction, and the second electrode sheet is exposed at the second end surface in the roll-shaped axial direction.
 本発明に係る静電型トランスデューサによれば、静電型ユニットは、第一積層シートおよび第二積層シートによりロール状に巻き回された状態かつ扁平状に形成されている。従って、容易に、多数の電極および多数の誘電体を積層することができる。さらに、静電型ユニットを構成する第一積層シートは、2枚の第一誘電体シートにより第一電極シートを挟んでいる。従って、第一積層シートにおいて、第一電極シートの面状の部分が、2枚の第一誘電体シートにより被覆されている。すなわち、第一積層シートにおいて、第一電極シートは、面状の部分が全面に亘って露出していない。第二積層シートも同様である。そのため、第一積層シートおよび第二積層シートの取り扱い性が良好であり、第一電極シートおよび第二電極シートに対する欠陥の発生を抑制できる。 According to the electrostatic transducer according to the present invention, the electrostatic unit is formed in a flat shape in a state of being wound in a roll shape by the first laminated sheet and the second laminated sheet. Therefore, a large number of electrodes and a large number of dielectrics can be easily stacked. Further, in the first laminated sheet constituting the electrostatic unit, the first electrode sheet is sandwiched between two first dielectric sheets. Therefore, in the first laminated sheet, the planar portion of the first electrode sheet is covered with the two first dielectric sheets. That is, in the first laminated sheet, the planar portion of the first electrode sheet is not exposed over the entire surface. The same applies to the second laminated sheet. Therefore, the handleability of a 1st lamination sheet and a 2nd lamination sheet is favorable, and generation | occurrence | production of the defect with respect to a 1st electrode sheet and a 2nd electrode sheet can be suppressed.
 本発明に係る静電型トランスデューサの製造方法は、帯状に形成された第一電極シートと、帯状に形成され、前記第一電極シートの幅より大きな幅を有し、幅方向の第一端を前記第一電極シートの幅方向の第一端に合わせた状態で前記第一電極シートの両面に積層される2枚の第一誘電体シートとを備える第一積層シートを製造する第一積層シート製造工程と、帯状に形成された第二電極シートと、帯状に形成され、前記第二電極シートの幅より大きな幅を有し、幅方向の第一端を前記第二電極シートの幅方向の第一端に合わせた状態で前記第二電極シートの両面に積層される2枚の第二誘電体シートとを備える第二積層シートを製造する第二積層シート製造工程と、前記第一積層シートと前記第二積層シートとが積層された複合積層シートを製造する複合積層シート製造工程と、前記複合積層シートをロール状に巻き回しかつ扁平状に形成することで扁平ロール体を製造する扁平ロール工程とを備える。 A method of manufacturing an electrostatic transducer according to the present invention includes a first electrode sheet formed in a strip shape, a width formed larger than the width of the first electrode sheet, and a first end in the width direction. A first laminated sheet for producing a first laminated sheet comprising two first dielectric sheets laminated on both sides of the first electrode sheet in a state aligned with the first end in the width direction of the first electrode sheet A manufacturing process, a second electrode sheet formed in a strip shape, and formed in a strip shape, having a width larger than the width of the second electrode sheet, and a first end in the width direction in the width direction of the second electrode sheet A second laminated sheet producing step for producing a second laminated sheet comprising two second dielectric sheets laminated on both sides of the second electrode sheet in a state aligned with the first end; and the first laminated sheet And a composite laminated sheet in which the second laminated sheet is laminated Producing comprises a composite laminated sheet production process, and a flat roll step of producing a flat roll body by forming the composite laminate sheet wound into a roll and flat.
 前記複合積層シートにおいて前記第一電極シートと前記第二電極シートとは、幅方向にオフセットされている。前記複合積層シートにおいて前記第一電極シートは、前記ロール状の軸方向の第一端面に露出し、前記複合積層シートにおいて前記第二電極シートは、前記ロール状の軸方向の第二端面に露出する。 In the composite laminate sheet, the first electrode sheet and the second electrode sheet are offset in the width direction. In the composite laminate sheet, the first electrode sheet is exposed on a first end surface in the roll-shaped axial direction, and in the composite laminate sheet, the second electrode sheet is exposed on a second end surface in the roll-shaped axial direction. To do.
 本発明に係る製造方法によれば、第一積層シート製造工程にて製造される第一積層シートは、2枚の第一誘電体シートにより第一電極シートを挟んで構成されている。従って、第一積層シートにおいて、第一電極シートの面状の部分が、2枚の第一誘電体シートにより被覆されている。すなわち、第一積層シートにおいて、第一電極シートは、面状の部分が全面に亘って露出していない。第二積層シートも同様である。そのため、第一積層シートおよび第二積層シートの取り扱い性が良好であり、第一電極シートおよび第二電極シートに対する欠陥の発生を抑制できる。そして、扁平ロール工程にて、第一積層シートと第二積層シートが積層された複合積層シートが、ロール状に巻き回しかつ扁平状に形成されている。従って、容易に、多数の電極および多数の誘電体を積層することができる。 According to the manufacturing method according to the present invention, the first laminated sheet produced in the first laminated sheet production process is configured by sandwiching the first electrode sheet between two first dielectric sheets. Therefore, in the first laminated sheet, the planar portion of the first electrode sheet is covered with the two first dielectric sheets. That is, in the first laminated sheet, the planar portion of the first electrode sheet is not exposed over the entire surface. The same applies to the second laminated sheet. Therefore, the handleability of a 1st lamination sheet and a 2nd lamination sheet is favorable, and generation | occurrence | production of the defect with respect to a 1st electrode sheet and a 2nd electrode sheet can be suppressed. In the flat roll process, the composite laminated sheet in which the first laminated sheet and the second laminated sheet are laminated is wound into a roll shape and formed into a flat shape. Therefore, a large number of electrodes and a large number of dielectrics can be easily stacked.
静電型トランスデューサ1の断面図であって、図2のI-I断面図である。FIG. 3 is a cross-sectional view of the electrostatic transducer 1 and is a cross-sectional view taken along the line II in FIG. 2. 図1のII-II断面図である。FIG. 2 is a cross-sectional view taken along the line II-II in FIG. 静電型トランスデューサ1を構成する静電型ユニット10の斜視図である。1 is a perspective view of an electrostatic unit 10 constituting an electrostatic transducer 1. FIG. 静電型ユニット10を構成する中央積層部16の電気的な接続状態を示す図である。FIG. 3 is a diagram showing an electrical connection state of a central laminated portion 16 constituting the electrostatic type unit 10. 静電型ユニット10の製造方法を示すフローチャートである。3 is a flowchart showing a method for manufacturing the electrostatic unit 10. 図5のS1における第一積層シート製造工程を示す図である。It is a figure which shows the 1st lamination sheet manufacturing process in S1 of FIG. 図5のS2における第二積層シート製造工程を示す図である。It is a figure which shows the 2nd lamination sheet manufacturing process in S2 of FIG. 図5のS3における複合積層シート製造工程およびS4におけるロール工程を示す図である。It is a figure which shows the composite lamination sheet manufacturing process in S3 of FIG. 5, and the roll process in S4. 図8のIX-IXにおける拡大断面図である。FIG. 9 is an enlarged cross-sectional view taken along IX-IX in FIG. 8. 図5のS4におけるロール工程の後の複合積層ロール体140についてのロール状の軸方向に直交する方向の拡大断面図である。It is an expanded sectional view of the direction orthogonal to the roll-shaped axial direction about the composite laminated roll body 140 after the roll process in S4 of FIG. 図5のS5における扁平工程の後の扁平ロール体150についてのロール状の軸方向に直交する方向の拡大断面図である。It is an expanded sectional view of the direction orthogonal to the roll-shaped axial direction about the flat roll body 150 after the flat process in S5 of FIG. 第二実施形態の静電型ユニット310についてのロール状の軸方向に直交する方向の断面図である。It is sectional drawing of the direction orthogonal to the roll-shaped axial direction about the electrostatic type unit 310 of 2nd embodiment. 第三実施形態の静電型ユニット450についてのロール状の軸方向に直交する方向の断面図である。It is sectional drawing of the direction orthogonal to the roll-shaped axial direction about the electrostatic type unit 450 of 3rd embodiment. 第三実施形態の静電型ユニット450の製造方法において第一積層シート製造工程を示す図である。It is a figure which shows a 1st lamination sheet manufacturing process in the manufacturing method of the electrostatic type unit 450 of 3rd embodiment. 図14のXV-XV断面図であって、第一積層シートの面方向を図の横方向に一致させた状態の図である。FIG. 15 is a cross-sectional view taken along the line XV-XV in FIG. 図14のXVI-XVI断面図であって、第一積層シートの面方向を図の横方向に一致させた状態の図である。FIG. 15 is a cross-sectional view taken along the line XVI-XVI in FIG. 14, showing a state in which the surface direction of the first laminated sheet is aligned with the horizontal direction in the figure. 第三実施形態の静電型ユニット450の製造方法において第二積層シート製造工程を示す図である。It is a figure which shows a 2nd lamination sheet manufacturing process in the manufacturing method of the electrostatic type unit 450 of 3rd embodiment. 図17のXVIII-XVIII断面図であって、第二積層シートの面方向を図の横方向に一致させた状態の図である。FIG. 18 is a cross-sectional view taken along the line XVIII-XVIII in FIG. 17, showing a state in which the surface direction of the second laminated sheet is aligned with the horizontal direction in the figure. 図17のXIX-XIX断面図であって、第二積層シートの面方向を図の横方向に一致させた状態の図である。FIG. 18 is a cross-sectional view taken along the line XIX-XIX in FIG.
 (1.第一実施形態)
 (1-1.静電型トランスデューサ1の概要)
 静電型トランスデューサ1は、静電容量の変化を利用しており、振動や音などを発生させるアクチュエータ、または、振動や音などを検出するセンサである。アクチュエータとしての静電型トランスデューサ1は、電極に電圧を印加することにより振動や音を発生する。センサとしての静電型トランスデューサ1は、振動や音の入力に起因してセンサが振動することで電極に電圧を発生する。
(1. First embodiment)
(1-1. Outline of electrostatic transducer 1)
The electrostatic transducer 1 is an actuator that uses a change in capacitance and generates vibration or sound, or a sensor that detects vibration or sound. The electrostatic transducer 1 as an actuator generates vibration and sound by applying a voltage to the electrodes. The electrostatic transducer 1 as a sensor generates a voltage at an electrode when the sensor vibrates due to vibration or sound input.
 加振アクチュエータとしての静電型トランスデューサ1は、例えば、人間に触覚振動を提示する装置、構造物の制振のために構造物の振動の逆位相の振動を発生する装置などである。音を発生するアクチュエータとしての静電型トランスデューサ1は、人間の聴覚にて感じる音波を発生するスピーカ、ノイズ音をキャンセルするサウンドマスキング装置などである。 The electrostatic transducer 1 as the vibration actuator is, for example, a device that presents tactile vibration to a human, a device that generates vibrations in the opposite phase of the vibrations of the structure for damping the structure, and the like. The electrostatic transducer 1 as an actuator that generates sound is a speaker that generates sound waves felt by human hearing, a sound masking device that cancels noise noise, and the like.
 加振アクチュエータが発生する振動は、相対的に低周波振動であり、音を発生するアクチュエータが発生する音は、相対的に高周波振動である。本実施形態におけるアクチュエータとしての静電型トランスデューサ1は、バネマス系の振動を利用するため、低周波振動の加振器、および、低周波音の発生器に適している。 The vibration generated by the vibration actuator is relatively low-frequency vibration, and the sound generated by the actuator that generates sound is relatively high-frequency vibration. The electrostatic transducer 1 as an actuator in this embodiment is suitable for a low-frequency vibration exciter and a low-frequency sound generator because it uses spring mass vibration.
 本実施形態においては、静電型トランスデューサ1は、人間に触覚振動を提示する加振アクチュエータを例に挙げて説明する。例えば、静電型トランスデューサ1は、携帯端末に搭載して、携帯端末を振動させるアクチュエータに適用される。なお、センサとしての静電型トランスデューサ1についても、実質的に同様の構成となる。 In the present embodiment, the electrostatic transducer 1 will be described with an example of a vibration actuator that presents tactile vibration to humans. For example, the electrostatic transducer 1 is applied to an actuator that is mounted on a mobile terminal and vibrates the mobile terminal. The electrostatic transducer 1 as a sensor has substantially the same configuration.
 (1-2.静電型トランスデューサ1の構成)
 静電型トランスデューサ1の構成について図1-図3を参照して説明する。ここで、図1-図3は、分かりやすくするために、各部材の厚みを誇張して図示している。そのため、実際には、静電型トランスデューサ1の図1の上下方向の厚みは、非常に薄く形成されている。静電型トランスデューサ1は、図1-図3に示すように、静電型ユニット10、第一導通部20、第二導通部30、第一弾性体41、第二弾性体42、第三弾性体43、制御基板50、および、カバー60を備える。
(1-2. Configuration of the electrostatic transducer 1)
The configuration of the electrostatic transducer 1 will be described with reference to FIGS. Here, FIGS. 1 to 3 exaggerate the thickness of each member for easy understanding. Therefore, the thickness of the electrostatic transducer 1 in the vertical direction in FIG. 1 is actually very thin. As shown in FIGS. 1 to 3, the electrostatic transducer 1 includes an electrostatic unit 10, a first conduction part 20, a second conduction part 30, a first elastic body 41, a second elastic body 42, and a third elasticity. A body 43, a control board 50, and a cover 60 are provided.
 静電型ユニット10は、図1-図3に示すように、エラストマーにより、扁平状に形成されている。静電型ユニット10は、扁平面に直交する方向において、積層された複数の電極シート111,121と複数の誘電体シート112,113,122,123とを備える。詳細には、静電型ユニット10は、図1および図3に示すように、複合積層シート130により、ロール状に巻き回した状態かつ扁平状に形成されている。静電型ユニット10は、ロール状かつ扁平状に形成されているため、ロール状の軸方向から見た場合に、背向する2つの平面を有すると共に、当該2つの平面を繋ぐ面として湾曲凸状の側面を有する。さらに、静電型ユニット10は、ロール状の軸方向の両側に平面状の端面を有する。 The electrostatic unit 10 is formed in a flat shape by an elastomer as shown in FIGS. The electrostatic unit 10 includes a plurality of electrode sheets 111 and 121 and a plurality of dielectric sheets 112, 113, 122, and 123 that are stacked in a direction orthogonal to the flat surface. Specifically, as shown in FIGS. 1 and 3, the electrostatic unit 10 is formed in a roll shape and in a flat shape by a composite laminated sheet 130. Since the electrostatic unit 10 is formed in a roll shape and a flat shape, when viewed from the roll axial direction, the electrostatic unit 10 has two planes facing away from each other and is curved as a surface connecting the two planes. Having a side surface. Further, the electrostatic unit 10 has planar end faces on both sides in the roll-like axial direction.
 ここで、複合積層シート130は、1枚の第一積層シート110と1枚の第二積層シート120とを積層することにより形成されている。第一積層シート110は、1枚の第一電極シート111を2枚の第一誘電体シート112,113により厚み方向に挟むように、1枚の第一電極シート111および2枚の第一誘電体シート112,113を積層することにより形成されている。第二積層シート120は、1枚の第二電極シート121を2枚の第二誘電体シート122,123により厚み方向に挟むように、1枚の第二電極シート121および2枚の第二誘電体シート122,123を積層することにより形成されている。つまり、静電型ユニット10は、扁平面に直交する方向において、複数枚の第一電極シート111、複数枚の第二電極シート121、および、複数枚の誘電体シート112,113,122,123を積層することにより形成されている。 Here, the composite laminated sheet 130 is formed by laminating one first laminated sheet 110 and one second laminated sheet 120. The first laminated sheet 110 includes one first electrode sheet 111 and two first dielectric sheets so that one first electrode sheet 111 is sandwiched between two first dielectric sheets 112 and 113 in the thickness direction. It is formed by laminating body sheets 112 and 113. The second laminated sheet 120 is composed of one second electrode sheet 121 and two second dielectric sheets so that one second electrode sheet 121 is sandwiched between two second dielectric sheets 122 and 123 in the thickness direction. It is formed by laminating body sheets 122 and 123. That is, the electrostatic unit 10 includes a plurality of first electrode sheets 111, a plurality of second electrode sheets 121, and a plurality of dielectric sheets 112, 113, 122, 123 in a direction orthogonal to the flat surface. It is formed by laminating.
 第一電極シート111および第二電極シート121は、弾性変形可能な材料、例えば、エラストマーによりシート状に形成される。第一電極シート111および第二電極シート121は、同一材質により形成されている。 The first electrode sheet 111 and the second electrode sheet 121 are formed into a sheet shape from an elastically deformable material, for example, an elastomer. The first electrode sheet 111 and the second electrode sheet 121 are made of the same material.
 第一電極シート111および第二電極シート121は、エラストマー中に導電性フィラーを配合させることにより成形されている。従って、第一電極シート111および第二電極シート121は、可撓性を有しかつ伸縮自在な性質を有する。第一電極シート111および第二電極シート121を構成するエラストマーには、例えば、シリコーンゴム、エチレン-プロピレン共重合ゴム、天然ゴム、スチレン-ブタジエン共重合ゴム、アクリロニトリル-ブタジエン共重合ゴム、アクリルゴム、エピクロロヒドリンゴム、クロロスルホン化ポリエチレン、塩素化ポリエチレン、ウレタンゴムなどが適用できる。また、第一電極シート111および第二電極シート121に配合される導電性フィラーは、導電性を有する粒子であればよく、例えば、炭素材料や金属等の微粒子を適用できる。 The first electrode sheet 111 and the second electrode sheet 121 are formed by blending a conductive filler in an elastomer. Therefore, the 1st electrode sheet 111 and the 2nd electrode sheet 121 have the property which has flexibility and can be expanded and contracted. Examples of the elastomer constituting the first electrode sheet 111 and the second electrode sheet 121 include silicone rubber, ethylene-propylene copolymer rubber, natural rubber, styrene-butadiene copolymer rubber, acrylonitrile-butadiene copolymer rubber, acrylic rubber, Epichlorohydrin rubber, chlorosulfonated polyethylene, chlorinated polyethylene, urethane rubber and the like can be applied. Moreover, the electroconductive filler mix | blended with the 1st electrode sheet 111 and the 2nd electrode sheet 121 should just be the particle | grains which have electroconductivity, for example, fine particles, such as a carbon material and a metal, can be applied.
 ここで、第一電極シート111および第二電極シート121は、シート状の基材(図示せず)の表面に電極材料を印刷することによってシート状に成形される。この場合、基材は、第一電極シート111および第二電極シート121の変形を阻害しないように形成される。例えば、基材には、電極材料の厚みに比べて薄く形成され、かつ、可撓性を有する樹脂材料などが用いられる。この他に、第一電極シート111および第二電極シート121は、電極材料のみによって単体として存在可能なシート状に成形されるようにしてもよいし、誘電体シート112,113,122,123の表面に電極材料を直接印刷することによってシート状に成形されるようにしてもよい。 Here, the first electrode sheet 111 and the second electrode sheet 121 are formed into a sheet shape by printing an electrode material on the surface of a sheet-like base material (not shown). In this case, the base material is formed so as not to inhibit the deformation of the first electrode sheet 111 and the second electrode sheet 121. For example, a resin material that is formed thinner than the electrode material and has flexibility is used for the base material. In addition, the first electrode sheet 111 and the second electrode sheet 121 may be formed into a sheet shape that can exist as a single body only by the electrode material, or the dielectric sheets 112, 113, 122, 123 may be formed. You may make it shape | mold into a sheet form by printing an electrode material directly on the surface.
 第一誘電体シート112,113および第二誘電体シート122,123は、弾性変形可能な材料、例えば、エラストマーによりシート状に形成される。第一誘電体シート112,113および第二誘電体シート122,123の厚みは、第一電極シート111および第二電極シート121に比べて厚く形成されている。 The first dielectric sheets 112 and 113 and the second dielectric sheets 122 and 123 are formed into a sheet shape from an elastically deformable material, for example, an elastomer. The first dielectric sheets 112 and 113 and the second dielectric sheets 122 and 123 are formed thicker than the first electrode sheet 111 and the second electrode sheet 121.
 第一誘電体シート112,113および第二誘電体シート122,123は、エラストマーにより成形されている。従って、第一誘電体シート112,113および第二誘電体シート122,123は、可撓性を有しかつ伸縮自在な性質を有する。特に、第一誘電体シート112,113および第二誘電体シート122,123は、厚み方向に伸縮すると共に、厚み方向の伸縮に伴って扁平面方向の伸縮を可能とする。第一誘電体シート112,113および第二誘電体シート122,123は、静電体における誘電体として機能する材料が適用される。第一誘電体シート112,113および第二誘電体シート122,123を構成するエラストマーには、例えば、シリコーンゴム、アクリロニトリル-ブタジエン共重合ゴム、アクリルゴム、エピクロロヒドリンゴム、クロロスルホン化ポリエチレン、塩素化ポリエチレン、ウレタンゴムなどが適用できる。 The first dielectric sheets 112 and 113 and the second dielectric sheets 122 and 123 are formed of an elastomer. Therefore, the first dielectric sheets 112 and 113 and the second dielectric sheets 122 and 123 have flexibility and can be stretched and contracted. In particular, the first dielectric sheets 112 and 113 and the second dielectric sheets 122 and 123 expand and contract in the thickness direction, and enable expansion and contraction in the flat plane direction along with expansion and contraction in the thickness direction. The first dielectric sheets 112 and 113 and the second dielectric sheets 122 and 123 are made of a material that functions as a dielectric in an electrostatic body. Examples of the elastomer constituting the first dielectric sheets 112 and 113 and the second dielectric sheets 122 and 123 include silicone rubber, acrylonitrile-butadiene copolymer rubber, acrylic rubber, epichlorohydrin rubber, chlorosulfonated polyethylene, and chlorine. Polyethylene, urethane rubber, etc. can be applied.
 ここで、第一誘電体シート112,113は、第一電極シート111と同様に、シート状の基材(図示せず)の表面に誘電体材料を印刷することによってシート状に成形してもよいし、誘電体材料のみにより単体として存在可能なシート状に成形されるようにしてもよい。第二誘電体シート122,123も同様である。 Here, similarly to the first electrode sheet 111, the first dielectric sheets 112 and 113 may be formed into a sheet shape by printing a dielectric material on the surface of a sheet-like base material (not shown). Alternatively, it may be formed into a sheet shape that can exist as a single body only with a dielectric material. The same applies to the second dielectric sheets 122 and 123.
 ここで、静電型ユニット10は、図2および図3に示すように、ロール状の軸方向において、中央積層部16、第一端積層部17および第二端積層部18に区分されている。中央積層部16、第一端積層部17および第二端積層部18は、それぞれ積層対象が異なる。 Here, as shown in FIGS. 2 and 3, the electrostatic unit 10 is divided into a central laminated portion 16, a first end laminated portion 17, and a second end laminated portion 18 in the roll-shaped axial direction. . The center lamination part 16, the first end lamination part 17 and the second end lamination part 18 are different in lamination object.
 中央積層部16は、静電型ユニット10のロール状の軸方向における中央に位置する。中央積層部16は、第一電極シート111、第二電極シート121、第一誘電体シート112,113および第二誘電体シート122,123を積層することにより形成されている。つまり、中央積層部16は、静電体として機能する。詳細には、中央積層部16は、主として、第一誘電体シート112、第一電極シート111、第一誘電体シート113、第二誘電体シート122、第二電極シート121および第二誘電体シート123の順に、繰り返し積層されている。 The central laminated portion 16 is located in the center of the electrostatic unit 10 in the roll axial direction. The central laminated portion 16 is formed by laminating the first electrode sheet 111, the second electrode sheet 121, the first dielectric sheets 112 and 113, and the second dielectric sheets 122 and 123. That is, the center laminated part 16 functions as an electrostatic body. Specifically, the central laminated portion 16 mainly includes the first dielectric sheet 112, the first electrode sheet 111, the first dielectric sheet 113, the second dielectric sheet 122, the second electrode sheet 121, and the second dielectric sheet. The layers are repeatedly laminated in the order of 123.
 第一端積層部17は、静電型ユニット10のロール状の軸方向において中央積層部16より第一端側、すなわち図2および図3における左側に位置する。第一端積層部17は、第一電極シート111、第一誘電体シート112,113および第二誘電体シート122,123を積層することにより形成されている。つまり、第一端積層部17は、第一電極シート111による端子として機能する。詳細には、第一端積層部17は、主として、第一誘電体シート112、第一電極シート111、第一誘電体シート113、第二誘電体シート122および第二誘電体シート123の順に、繰り返し積層されている。つまり、第一端積層部17は、第二電極シート121を有しない。 The first end laminated portion 17 is located on the first end side from the central laminated portion 16 in the roll axial direction of the electrostatic unit 10, that is, on the left side in FIGS. 2 and 3. The first end laminated portion 17 is formed by laminating the first electrode sheet 111, the first dielectric sheets 112 and 113, and the second dielectric sheets 122 and 123. That is, the first end laminated portion 17 functions as a terminal by the first electrode sheet 111. Specifically, the first end laminate portion 17 is mainly composed of the first dielectric sheet 112, the first electrode sheet 111, the first dielectric sheet 113, the second dielectric sheet 122, and the second dielectric sheet 123 in this order. It is laminated repeatedly. That is, the first end laminated portion 17 does not have the second electrode sheet 121.
 第二端積層部18は、静電型ユニット10のロール状の軸方向において中央積層部16より第二端側、すなわち図2および図3における右側に位置する。第二端積層部18は、第二電極シート121、第一誘電体シート112,113および第二誘電体シート122,123を積層することにより形成されている。つまり、第二端積層部18は、第二電極シート121による端子として機能する。第二端積層部18は、主として、第一誘電体シート112、第一誘電体シート113、第二誘電体シート122、第二電極シート121および第二誘電体シート123の順に、繰り返し積層されている。つまり、第二端積層部18は、第一電極シート111を有しない。 The second end laminated portion 18 is located on the second end side from the central laminated portion 16 in the roll-shaped axial direction of the electrostatic unit 10, that is, on the right side in FIGS. 2 and 3. The second end laminated portion 18 is formed by laminating the second electrode sheet 121, the first dielectric sheets 112 and 113, and the second dielectric sheets 122 and 123. That is, the second end laminated portion 18 functions as a terminal by the second electrode sheet 121. The second end laminated portion 18 is mainly repeatedly laminated in the order of the first dielectric sheet 112, the first dielectric sheet 113, the second dielectric sheet 122, the second electrode sheet 121, and the second dielectric sheet 123. Yes. That is, the second end laminated portion 18 does not have the first electrode sheet 111.
 そして、静電型ユニット10における複合積層シート130を巻き回す軸方向(ロール状の軸方向)の第一端面、すなわち第一端積層部17の端面には、第一電極シート111の端が露出している。第一端面は、図2の静電型ユニット10の左側の端面である。一方、静電型ユニット10の第二端面、すなわち第二端積層部18の端面には、第二電極シート121の端が露出している。第二端面は、図2の静電型ユニット10の右側の端面である。 The end of the first electrode sheet 111 is exposed on the first end surface in the axial direction (roll axial direction) around which the composite laminated sheet 130 is wound in the electrostatic unit 10, that is, on the end surface of the first end laminated portion 17. is doing. The first end surface is the left end surface of the electrostatic unit 10 of FIG. On the other hand, the end of the second electrode sheet 121 is exposed at the second end surface of the electrostatic unit 10, that is, the end surface of the second end stacked portion 18. The second end surface is the right end surface of the electrostatic unit 10 of FIG.
 第一導通部20および第二導通部30は、弾性変形可能な材料(例えば、エラストマー)によりシート状に形成され、L字型に屈曲形成されている。第一導通部20および第二導通部30は、第一電極シート111と同様に、エラストマー中に導電性フィラーを配合させることにより成形されている。第一導通部20のL字の一方の辺は、静電型ユニット10の第一端面(第一端積層部17における端面)に面接触している。つまり、第一導通部20は、第一端積層部17における第一電極シート111の端に導通している。第一導通部20のL字の他方の辺は、静電型ユニット10から離れる方向に延びるように形成されている。 The first conducting portion 20 and the second conducting portion 30 are formed into a sheet shape from an elastically deformable material (for example, an elastomer) and bent into an L shape. The first conductive portion 20 and the second conductive portion 30 are formed by blending a conductive filler in the elastomer, like the first electrode sheet 111. One side of the L-shape of the first conduction portion 20 is in surface contact with the first end surface of the electrostatic unit 10 (the end surface of the first end laminated portion 17). That is, the first conduction part 20 is conducted to the end of the first electrode sheet 111 in the first end laminated part 17. The other side of the L shape of the first conduction part 20 is formed to extend in a direction away from the electrostatic unit 10.
 第二導通部30のL字の一方の辺は、静電型ユニット10の第二端面(第二端積層部18における端面)に面接触している。つまり、第二導通部30は、第二端積層部18における第二電極シート121の端に導通している。第二導通部30のL字の他方の辺は、静電型ユニット10から離れる方向に延びるように形成されている。 One side of the L shape of the second conducting portion 30 is in surface contact with the second end face of the electrostatic unit 10 (end face in the second end laminated portion 18). In other words, the second conducting portion 30 is conducted to the end of the second electrode sheet 121 in the second end laminated portion 18. The other side of the L shape of the second conducting portion 30 is formed to extend in a direction away from the electrostatic unit 10.
 第一弾性体41は、図1および図2に示すように、静電型ユニット10におけるロール状の外周面を全周に亘って被覆する。第二弾性体42は、図2に示すように、第一導通部20における静電型ユニット10とは反対側の面を被覆する。第三弾性体43は、第二導通部30における静電型ユニット10とは反対側の面を被覆する。なお、第一弾性体41、第二弾性体42および第三弾性体43は、別体としたが、一体としてもよい。 As shown in FIGS. 1 and 2, the first elastic body 41 covers the entire circumference of the roll-shaped outer peripheral surface of the electrostatic unit 10. As shown in FIG. 2, the second elastic body 42 covers the surface of the first conducting portion 20 opposite to the electrostatic unit 10. The third elastic body 43 covers the surface of the second conducting portion 30 opposite to the electrostatic unit 10. In addition, although the 1st elastic body 41, the 2nd elastic body 42, and the 3rd elastic body 43 were made into a different body, they are good also as integral.
 第一弾性体41、第二弾性体42および第三弾性体43には、小さな弾性率E(41),E(42),E(43)を有すると共に、小さな損失係数tanδ(41),tanδ(42),tanδ(43)を有する材料が用いられる。言い換えると、第一弾性体41、第二弾性体42および第三弾性体43は、柔らかく、且つ、減衰特性が低い材料が好適である。 The first elastic body 41, the second elastic body 42, and the third elastic body 43 have small elastic moduli E (41) , E (42) , E (43) and small loss coefficients tan δ (41) , tan δ. (42) , tan δ (43) is used. In other words, the first elastic body 41, the second elastic body 42, and the third elastic body 43 are preferably made of a soft material with low damping characteristics.
 特に、第一弾性体41の弾性率E(41)は、静電型ユニット10の中央積層部16の扁平面に直交する方向(積層方向)の弾性率E1(16)より小さい。さらに、第一弾性体41の弾性率E(41)は、中央積層部16の扁平面に平行な方向(面方向)の弾性率E2(16)より小さい。また、第二弾性体42および第三弾性体43の弾性率E(42),E(43)は、中央積層部16の面方向の弾性率E2(16)より小さい。 In particular, the elastic modulus E (41) of the first elastic body 41 is smaller than the elastic modulus E1 (16) in the direction (stacking direction) orthogonal to the flat surface of the central stacked portion 16 of the electrostatic unit 10. Furthermore, the elastic modulus E (41) of the first elastic body 41 is smaller than the elastic modulus E2 (16) in the direction (plane direction) parallel to the flat surface of the central laminated portion 16. Further, the elastic moduli E (42) and E (43) of the second elastic body 42 and the third elastic body 43 are smaller than the elastic modulus E2 (16) in the surface direction of the central laminated portion 16.
 詳細には、中央積層部16の積層方向の弾性率E1(16)に対する第一弾性体41の弾性率E(41)の比は、15%以下である。また、中央積層部16の面方向の弾性率E2(16)に対する第一弾性体41の弾性率E(41)の比は、15%以下である。また、中央積層部16の面方向の弾性率E2(16)に対する第二弾性体42および第三弾性体43の弾性率E(42),E(42)の比は、15%以下である。これらの比は、好ましくは、10%以下である。 Specifically, the ratio of the elastic modulus E (41) of the first elastic body 41 to the elastic modulus E1 (16) in the stacking direction of the central stacked portion 16 is 15% or less. Further, the ratio of the elastic modulus E (41) of the first elastic body 41 to the elastic modulus E2 (16) in the surface direction of the central laminated portion 16 is 15% or less. The ratio of the elastic moduli E (42) and E (42) of the second elastic body 42 and the third elastic body 43 to the elastic modulus E2 (16) in the plane direction of the central laminated portion 16 is 15% or less. These ratios are preferably 10% or less.
 さらに、第一弾性体41、第二弾性体42および第三弾性体43は、所定条件下において、中央積層部16の損失係数tanδ(16)と同等以下の損失係数tanδ(41),tanδ(42),tanδ(43)を有する。所定条件下とは、温度を-10~50℃、振動周波数を300Hz以下とする使用環境下を意味する。 Furthermore, the first elastic member 41, the second elastic member 42 and the third elastic member 43 is under a predetermined condition, the loss factor of the loss factor tan [delta (16) and equal to or less than the central laminated part 16 tanδ (41), tanδ ( 42) , tan δ (43) . The predetermined condition means a use environment where the temperature is −10 to 50 ° C. and the vibration frequency is 300 Hz or less.
 上記を満たす材料として、第一弾性体41、第二弾性体42および第三弾性体43には、例えば、シリコーンゴムが好適である。例えば、ウレタンゴムは、シリコーンゴムに比べて減衰特性が良いため、第一弾性体41、第二弾性体42および第三弾性体43には、ウレタンゴムはシリコーンゴムに比べてあまり適しない。ただし、目的の特性によっては、第一弾性体41、第二弾性体42および第三弾性体43に、ウレタンゴムを使用することも可能である。 As a material satisfying the above, for example, silicone rubber is suitable for the first elastic body 41, the second elastic body 42, and the third elastic body 43. For example, since urethane rubber has better damping characteristics than silicone rubber, urethane rubber is less suitable for the first elastic body 41, second elastic body 42, and third elastic body 43 than silicone rubber. However, urethane rubber may be used for the first elastic body 41, the second elastic body 42, and the third elastic body 43 depending on the intended characteristics.
 制御基板50は、静電型ユニット10の扁平面に平行に配置され、第一弾性体41における中央積層部16と反対側の面に接触して配置される。さらに、制御基板50は、第一導通部20および第二導通部30のL字の他方の面に接触する。 The control board 50 is disposed in parallel to the flat surface of the electrostatic unit 10 and is disposed in contact with the surface of the first elastic body 41 on the side opposite to the central laminated portion 16. Furthermore, the control board 50 is in contact with the other L-shaped surfaces of the first conduction part 20 and the second conduction part 30.
 カバー60は、静電型ユニット10、第一導通部20、第二導通部30、第一弾性体41、第二弾性体42、第三弾性体43および制御基板50を囲む。カバー60には、例えば、金属、樹脂など、種々の材料が適用される。カバー60は、制御基板50を固定するための面状の第一カバー61と、第一カバー61に取り付けられる第二カバー62とを備える。 The cover 60 surrounds the electrostatic unit 10, the first conduction part 20, the second conduction part 30, the first elastic body 41, the second elastic body 42, the third elastic body 43 and the control board 50. Various materials such as metal and resin are applied to the cover 60, for example. The cover 60 includes a planar first cover 61 for fixing the control board 50 and a second cover 62 attached to the first cover 61.
 第一カバー61および第二カバー62は、中央積層部16および第一弾性体41を、静電型ユニット10の扁平面に直交する方向(積層方向、図1および図2の上下方向)に圧縮した状態で保持する。この状態において、各部材の弾性率Eの関係から、扁平面に直交する方向(積層方向)において、第一弾性体41が、中央積層部16より大きく圧縮された状態となる。 The first cover 61 and the second cover 62 compress the central laminated portion 16 and the first elastic body 41 in a direction perpendicular to the flat surface of the electrostatic unit 10 (stacking direction, vertical direction in FIGS. 1 and 2). Hold in the state. In this state, from the relationship of the elastic modulus E of each member, the 1st elastic body 41 will be in the state compressed more largely than the center laminated part 16 in the direction (laminating direction) orthogonal to a flat surface.
 さらには、第二カバー62は、中央積層部16、第一弾性体41、第二弾性体42および第三弾性体43を、静電型ユニット10の面方向のうち静電型ユニット10のロール状の軸方向(図2の左右方向)に圧縮した状態で保持する。この状態において、各部材の弾性率Eの関係から、静電型ユニット10のロール状の軸方向において、第一弾性体41、第二弾性体42および第三弾性体43は、中央積層部16より大きく圧縮された状態となる。 Further, the second cover 62 is configured to roll the central laminated portion 16, the first elastic body 41, the second elastic body 42, and the third elastic body 43 of the electrostatic unit 10 out of the surface direction of the electrostatic unit 10. And held in a compressed state in the axial direction (left-right direction in FIG. 2). In this state, the first elastic body 41, the second elastic body 42, and the third elastic body 43 are arranged in the central laminated portion 16 in the roll axial direction of the electrostatic unit 10 from the relationship of the elastic modulus E of each member. The compressed state becomes larger.
 また、第二カバー62は、中央積層部16および第一弾性体41を、静電型ユニット10の面方向のうち静電型ユニット10のロール状の軸方向に直交する方向(図1の左右方向)に圧縮した状態で保持する。この状態において、各部材の弾性率Eの関係から、静電型ユニット10の面方向のうちロール状の軸方向に直交する方向において、第一弾性体41が、中央積層部16より大きく圧縮された状態となる。 Further, the second cover 62 extends the central laminated portion 16 and the first elastic body 41 in a direction orthogonal to the roll-shaped axial direction of the electrostatic unit 10 in the surface direction of the electrostatic unit 10 (left and right in FIG. 1). Direction). In this state, from the relationship of the elastic modulus E of each member, the first elastic body 41 is compressed more than the central laminated portion 16 in the direction orthogonal to the roll-shaped axial direction in the surface direction of the electrostatic unit 10. It becomes a state.
 (1-3.中央積層部16の電気的接続状態)
 中央積層部16の電気的接続状態について、図4を参照して説明する。ここで、図4の上下方向と図1の上下方向とは、一致する。ただし、図4には、中央積層部16を構成する1つの静電セルについて図示する。静電セルとは、1つの第一電極シート111、1つの第二電極シート121、および、第一電極シート111と第二電極シート121との間に挟まれた誘電体シート112,113,122,123である。
(1-3. Electrical connection state of the central laminated portion 16)
The electrical connection state of the center lamination | stacking part 16 is demonstrated with reference to FIG. Here, the vertical direction of FIG. 4 and the vertical direction of FIG. However, in FIG. 4, one electrostatic cell constituting the central stacked unit 16 is illustrated. The electrostatic cell is one first electrode sheet 111, one second electrode sheet 121, and dielectric sheets 112, 113, 122 sandwiched between the first electrode sheet 111 and the second electrode sheet 121. , 123.
 図4に示すように、第一電極シート111と第二電極シート121とは、中央積層部16の積層方向に距離を隔てて対向して配置される。第一電極シート111には、制御基板50における駆動回路によって中央積層部16に周期的な電圧を供給するための第一端子が電気的に接続される。第二電極シート121には、中央積層部16に周期的な電圧を供給するための第二端子が電気的に接続される。本実施形態においては、第一電極シート111は、制御基板50の出力端子に接続され、周期的な電圧が印加されている。第二電極シート121は、グランド電位に接続されている。 As shown in FIG. 4, the first electrode sheet 111 and the second electrode sheet 121 are arranged to face each other with a distance in the stacking direction of the center stacking portion 16. The first electrode sheet 111 is electrically connected to a first terminal for supplying a periodic voltage to the central laminated portion 16 by a drive circuit in the control board 50. A second terminal for supplying a periodic voltage to the central laminated portion 16 is electrically connected to the second electrode sheet 121. In the present embodiment, the first electrode sheet 111 is connected to the output terminal of the control board 50, and a periodic voltage is applied thereto. The second electrode sheet 121 is connected to the ground potential.
 (1-4.静電型トランスデューサ1の動作)
 静電型トランスデューサ1の動作について、図4を参照して説明する。第一電極シート111および第二電極シート121には、周期的な電圧が印加される。ここで、周期的な電圧は、交流電圧(正負を含む周期的な電圧)としてもよいし、正値にオフセットされた周期的な正極電圧としてもよい。
(1-4. Operation of the electrostatic transducer 1)
The operation of the electrostatic transducer 1 will be described with reference to FIG. A periodic voltage is applied to the first electrode sheet 111 and the second electrode sheet 121. Here, the periodic voltage may be an AC voltage (periodic voltage including positive and negative) or a periodic positive voltage offset to a positive value.
 第一電極シート111と第二電極シート121に蓄積される電荷が増加すると、誘電体シート112,113,122,123が圧縮変形する。つまり、図4に示すように、中央積層部16の厚みが小さくなり、中央積層部16の面方向の大きさ(図4の幅および奥行き)が大きくなる。反対に、第一電極シート111および第二電極シート121に蓄積される電荷が減少すると、誘電体シート112,113,122,123が元の厚みに戻る。つまり、中央積層部16の厚みが大きくなり、中央積層部16の面方向の大きさが小さくなる。このように、中央積層部16は、積層方向に伸縮すると共に、面方向に伸縮する。 When the electric charges accumulated in the first electrode sheet 111 and the second electrode sheet 121 increase, the dielectric sheets 112, 113, 122, 123 are compressed and deformed. That is, as shown in FIG. 4, the thickness of the central laminated portion 16 is reduced, and the size of the central laminated portion 16 in the surface direction (width and depth in FIG. 4) is increased. On the contrary, when the electric charges accumulated in the first electrode sheet 111 and the second electrode sheet 121 decrease, the dielectric sheets 112, 113, 122, and 123 return to their original thickness. That is, the thickness of the central laminated portion 16 is increased, and the size of the central laminated portion 16 in the surface direction is reduced. As described above, the central stacked portion 16 expands and contracts in the stacking direction and expands and contracts in the surface direction.
 中央積層部16が伸縮動作を行うとき、静電型トランスデューサ1は、以下のように動作する。静電型トランスデューサ1は、図1に示すように、第一弾性体41が圧縮された状態を初期状態とする。従って、電荷の増加によって中央積層部16の厚みが小さくなると、第一弾性体41は、初期状態に対して圧縮量が小さくなるように変形する。反対に、電荷の減少によって中央積層部16の厚みが大きくなると、第一弾性体41は初期状態に戻るように動作する。つまり、第一弾性体41は、電荷の増加の場合に比べて、圧縮量が大きくなるように変形する。 When the central laminated portion 16 performs an expansion / contraction operation, the electrostatic transducer 1 operates as follows. As shown in FIG. 1, the electrostatic transducer 1 has a state where the first elastic body 41 is compressed as an initial state. Therefore, when the thickness of the central laminated portion 16 is reduced due to the increase in charge, the first elastic body 41 is deformed so that the compression amount becomes smaller than the initial state. On the other hand, when the thickness of the central laminated portion 16 increases due to the decrease in charge, the first elastic body 41 operates to return to the initial state. That is, the first elastic body 41 is deformed so that the amount of compression becomes larger than in the case of an increase in charge.
 印加電圧は周期的に変化するため、上記動作が繰り返される。そうすると、中央積層部16の中央が図1および図2の上側に凸となる状態(下側に凹)と、中央積層部16の中央が図1の下側に凸となる状態(上側に凹)とを繰り返す。中央積層部16は、第一弾性体41を介してカバー60によって規制されているために、上記動作となる。 Since the applied voltage changes periodically, the above operation is repeated. Then, the center of the central laminated portion 16 is convex in the upper side of FIGS. 1 and 2 (recessed downward), and the center of the central laminated portion 16 is convex in the lower side of FIG. 1 (recessed upward). ) And repeat. Since the center laminated portion 16 is regulated by the cover 60 via the first elastic body 41, the above operation is performed.
 中央積層部16の上記変形動作に伴って、中央積層部16の積層方向(d33方向:電場と同じ方向)の変位が、第一弾性体41を介してカバー60に伝達される。加えて、中央積層部16の伸縮動作によって第一弾性体41の弾性変形力が変化する。第一弾性体41の弾性変形力の変化が、カバー60に伝達される。従って、初期状態として、第一弾性体41が圧縮されていることにより、カバー60に中央積層部16の積層方向(d33方向)の振動を効率的に付与することができる。つまり、中央積層部16単体としては小さな振動であっても、カバー60に触覚振動を付与することができる。 Along with the deformation operation of the central laminated portion 16, the displacement of the central laminated portion 16 in the lamination direction (d33 direction: the same direction as the electric field) is transmitted to the cover 60 via the first elastic body 41. In addition, the elastic deformation force of the first elastic body 41 is changed by the expansion / contraction operation of the central laminated portion 16. A change in the elastic deformation force of the first elastic body 41 is transmitted to the cover 60. Therefore, as the initial state, the first elastic body 41 is compressed, so that the vibration in the stacking direction (d33 direction) of the central stacked portion 16 can be efficiently applied to the cover 60. That is, tactile vibration can be applied to the cover 60 even if the center laminated portion 16 is small vibration.
 さらに、中央積層部16の上記変形動作に伴って、中央積層部16の面方向(d31方向:電場に直交する方向)の変位が、第一弾性体41、第二弾性体42および第三弾性体43を介してカバー60に伝達される。その結果、中央積層部16の面方向(d31方向)の振動が、カバー60に付与される。ここで、中央積層部16の面方向(d31方向)の振動は、積層方向(d33方向)の振動に比べて小さい。しかし、中央積層部16の積層方向(d33方向)の振動に、面方向(d31)方向の振動が加えられることで、カバー60全体として、大きな触覚振動を付与することができる。 Further, along with the deformation operation of the central laminated portion 16, the displacement in the surface direction (d31 direction: direction orthogonal to the electric field) of the central laminated portion 16 causes the first elastic body 41, the second elastic body 42, and the third elastic force. It is transmitted to the cover 60 via the body 43. As a result, the vibration in the surface direction (d31 direction) of the central laminated portion 16 is applied to the cover 60. Here, the vibration in the plane direction (d31 direction) of the central laminated portion 16 is smaller than the vibration in the lamination direction (d33 direction). However, a large tactile vibration can be applied to the entire cover 60 by applying a vibration in the surface direction (d31) direction to the vibration in the stacking direction (d33 direction) of the central stacking portion 16.
 ここで、仮に、第一弾性体41、第二弾性体42および第三弾性体43の損失係数tanδ(41),tanδ(42),tanδ(43)が非常に大きいとすると、中央積層部16が伸縮動作を行ったとしても、第一弾性体41、第二弾性体42および第三弾性体43によって振動が吸収されてしまう。この場合、中央積層部16が伸縮動作を行ったとしても、カバー60に伝達されることはない。 Here, if the loss coefficients tan δ (41) , tan δ (42) , tan δ (43) of the first elastic body 41, the second elastic body 42, and the third elastic body 43 are very large, the central laminated portion 16 However, even if it expands and contracts, the first elastic body 41, the second elastic body 42 and the third elastic body 43 absorb the vibration. In this case, even if the central laminated portion 16 performs an expansion / contraction operation, it is not transmitted to the cover 60.
 しかし、本実施形態においては、第一弾性体41、第二弾性体42および第三弾性体43は、損失係数tanδ(41),tanδ(42),tanδ(43)の小さな材料を用いる。従って、中央積層部16の伸縮動作による振動が、第一弾性体41、第二弾性体42および第三弾性体43にほとんど吸収されることなく、カバー60に伝達される。 However, in the present embodiment, the first elastic body 41, the second elastic body 42, and the third elastic body 43 use materials having small loss coefficients tan δ (41) , tan δ (42) , and tan δ (43) . Therefore, vibration due to the expansion / contraction operation of the central laminated portion 16 is transmitted to the cover 60 with almost no absorption by the first elastic body 41, the second elastic body 42 and the third elastic body 43.
 さらに、第一弾性体41の弾性率E(41)は、中央積層部16の積層方向の弾性率E1(16)より小さい。そのため、第一電極シート111および第二電極シート121に電圧を印加していない初期状態において、中央積層部16はほとんど圧縮されていない状態となる。従って、カバー60が中央積層部16を積層方向に押圧したとしても、中央積層部16の積層方向の伸縮動作に影響を与えることはない。つまり、中央積層部16は確実に伸縮動作を行うことができる。 Furthermore, the elastic modulus E (41) of the first elastic body 41 is smaller than the elastic modulus E1 (16) in the stacking direction of the central stacked portion 16. Therefore, in the initial state in which no voltage is applied to the first electrode sheet 111 and the second electrode sheet 121, the center laminated portion 16 is almost not compressed. Therefore, even if the cover 60 presses the central laminated portion 16 in the laminating direction, the expansion / contraction operation of the central laminated portion 16 in the laminating direction is not affected. That is, the center laminated portion 16 can reliably perform the expansion / contraction operation.
 また、第一弾性体41、第二弾性体42および第三弾性体43の弾性率E(41),E(42),E(43)は、中央積層部16の面方向の弾性率E2(16)より小さい。そのため、第一電極シート111および第二電極シート121に電圧を印加していない初期状態において、中央積層部16はほとんど圧縮されていない状態となる。従って、カバー60が中央積層部16を面方向に押圧したとしても、中央積層部16の面方向の伸縮動作に影響を与えることはない。つまり、中央積層部16は確実に伸縮動作を行うことができる。 Further, the elastic moduli E (41) , E (42) , E (43) of the first elastic body 41, the second elastic body 42, and the third elastic body 43 are the elastic moduli E2 ( 16) Less than. Therefore, in the initial state in which no voltage is applied to the first electrode sheet 111 and the second electrode sheet 121, the center laminated portion 16 is almost not compressed. Therefore, even if the cover 60 presses the central laminated portion 16 in the surface direction, the expansion / contraction operation in the surface direction of the central laminated portion 16 is not affected. That is, the center laminated portion 16 can reliably perform the expansion / contraction operation.
 (1-5.静電型ユニット10の製造方法)
 静電型ユニット10の製造方法について、図5-図11を参照して説明する。まず、図5に示すように、第一積層シート110を製造する(S1:第一積層シート製造工程)。第一積層シート110は、図6に示すように、第一電極シート111、2枚の第一誘電体シート112,113、および、2枚のセパレータ114,115を積層することにより形成される。
(1-5. Manufacturing method of electrostatic unit 10)
A method for manufacturing the electrostatic unit 10 will be described with reference to FIGS. First, as shown in FIG. 5, the 1st lamination sheet 110 is manufactured (S1: 1st lamination sheet manufacturing process). As shown in FIG. 6, the first laminated sheet 110 is formed by laminating a first electrode sheet 111, two first dielectric sheets 112 and 113, and two separators 114 and 115.
 第一電極シート111は、帯状、すなわち所定幅の長尺状に形成されている。2枚の第一誘電体シート112,113および2枚のセパレータ114,115は、帯状、すなわち所定幅の長尺状に形成されている。第一電極シート111および2枚の第一誘電体シート112,113は、それぞれシート状の基材(図示せず)の表面に材料を印刷することによってシート状に成形してもよいし、材料のみにより単体として存在可能なシート状に成形されるようにしてもよい。 The first electrode sheet 111 is formed in a strip shape, that is, a long shape having a predetermined width. The two first dielectric sheets 112 and 113 and the two separators 114 and 115 are formed in a strip shape, that is, a long shape having a predetermined width. The first electrode sheet 111 and the two first dielectric sheets 112 and 113 may be formed into sheets by printing materials on the surface of a sheet-like base material (not shown), respectively. Alternatively, it may be formed into a sheet that can exist as a single body.
 ここで、2枚の第一誘電体シート112,113の幅および2枚のセパレータ114,115の幅は、第一電極シート111の幅より大きな幅を有する。ここで、図2および図3に示すように、第二端積層部18は、2枚の第一誘電体シート112,113を有するのに対して、第一電極シート111を有しない。つまり、2枚の第一誘電体シート112,113および2枚のセパレータ114,115は、第一電極シート111に対して、図2および図3に示す第二端積層部18に相当する幅の分だけ長く形成されている。また、2枚の第一誘電体シート112,113の長手方向の長さおよび2枚のセパレータ114,115の長手方向の長さは、第一電極シート111の長手方向の長さと同一の長さを有する。 Here, the width of the two first dielectric sheets 112 and 113 and the width of the two separators 114 and 115 are larger than the width of the first electrode sheet 111. Here, as shown in FIGS. 2 and 3, the second end laminated portion 18 includes the two first dielectric sheets 112 and 113, but does not include the first electrode sheet 111. That is, the two first dielectric sheets 112 and 113 and the two separators 114 and 115 have a width corresponding to the second end laminated portion 18 shown in FIGS. 2 and 3 with respect to the first electrode sheet 111. It is formed longer by the minute. Further, the length in the longitudinal direction of the two first dielectric sheets 112 and 113 and the length in the longitudinal direction of the two separators 114 and 115 are the same as the length in the longitudinal direction of the first electrode sheet 111. Have
 2枚の第一誘電体シート112,113は、図6に示すように、幅方向の第一端を第一電極シート111の幅方向の第一端に合わせた状態で、第一電極シート111の両面に積層されている。一方、2枚の第一誘電体シート112,113の幅方向の第二端は、第一電極シート111の幅方向の第二端よりも幅方向の外側に位置している。さらに、2枚のセパレータ114,115は、2枚の第一誘電体シート112,113の外側面に積層されている。このとき、第一電極シート111、2枚の第一誘電体シート112,113、および、2枚のセパレータ114,115は、長手方向の両端が一致する状態となる。 As shown in FIG. 6, the two first dielectric sheets 112 and 113 are arranged in such a manner that the first end in the width direction is aligned with the first end in the width direction of the first electrode sheet 111. Are laminated on both sides. On the other hand, the second end in the width direction of the two first dielectric sheets 112 and 113 is positioned outside the second end in the width direction of the first electrode sheet 111 in the width direction. Further, the two separators 114 and 115 are laminated on the outer surfaces of the two first dielectric sheets 112 and 113. At this time, the first electrode sheet 111, the two first dielectric sheets 112 and 113, and the two separators 114 and 115 are in a state in which both ends in the longitudinal direction coincide with each other.
 このように、5枚の長尺状のシート111,112,113,およびセパレータ114,115を積層することにより第一積層シート110が形成される。さらに、第一積層シート110をロール状に巻き回すことにより第一積層ロール体110aが形成される。 Thus, the first laminated sheet 110 is formed by laminating the five long sheets 111, 112, 113 and the separators 114, 115. Furthermore, the 1st lamination roll body 110a is formed by winding the 1st lamination sheet 110 in roll shape.
 次に、図5に示すように、第二積層シート120を製造する(S2:第二積層シート製造工程)。第二積層シート120は、図7に示すように、第二電極シート121、2枚の第二誘電体シート122,123、および、2枚のセパレータ124,125を積層することにより形成される。 Next, as shown in FIG. 5, the 2nd lamination sheet 120 is manufactured (S2: 2nd lamination sheet manufacturing process). As shown in FIG. 7, the second laminated sheet 120 is formed by laminating a second electrode sheet 121, two second dielectric sheets 122 and 123, and two separators 124 and 125.
 第二電極シート121は、帯状、すなわち所定幅の長尺状に形成されている。2枚の第二誘電体シート122,123および2枚のセパレータ124,125は、帯状、すなわち所定幅の長尺状に形成されている。第二電極シート121および2枚の第二誘電体シート122,123は、それぞれシート状の基材(図示せず)の表面に材料を印刷することによってシート状に成形してもよいし、材料のみにより単体として存在可能なシート状に成形されるようにしてもよい。 The second electrode sheet 121 is formed in a strip shape, that is, a long shape having a predetermined width. The two second dielectric sheets 122 and 123 and the two separators 124 and 125 are formed in a strip shape, that is, a long shape having a predetermined width. The second electrode sheet 121 and the two second dielectric sheets 122 and 123 may be formed into a sheet shape by printing a material on the surface of a sheet-like base material (not shown). Alternatively, it may be formed into a sheet that can exist as a single body.
 ここで、2枚の第二誘電体シート122,123の幅および2枚のセパレータ124,125の幅は、第二電極シート121の幅より大きな幅を有する。ここで、図2および図3に示すように、第一端積層部17は、2枚の第二誘電体シート122,123を有するのに対して、第二電極シート121を有しない。つまり、2枚の第二誘電体シート122,123および2枚のセパレータ124,125は、第二電極シート121に対して、図2および図3に示す第一端積層部17に相当する幅の分だけ長く形成されている。また、2枚の第二誘電体シート122,123の長手方向の長さおよび2枚のセパレータ124,125の長手方向の長さは、第二電極シート121の長手方向の長さと同一の長さを有する。 Here, the width of the two second dielectric sheets 122 and 123 and the width of the two separators 124 and 125 are larger than the width of the second electrode sheet 121. Here, as shown in FIGS. 2 and 3, the first end laminated portion 17 includes the two second dielectric sheets 122 and 123, but does not include the second electrode sheet 121. That is, the two second dielectric sheets 122 and 123 and the two separators 124 and 125 have a width corresponding to the first end laminated portion 17 shown in FIGS. 2 and 3 with respect to the second electrode sheet 121. It is formed longer by the minute. In addition, the length in the longitudinal direction of the two second dielectric sheets 122 and 123 and the length in the longitudinal direction of the two separators 124 and 125 are the same as the length in the longitudinal direction of the second electrode sheet 121. Have
 2枚の第二誘電体シート122,123は、図7に示すように、幅方向の第一端を第二電極シート121の幅方向の第一端に合わせた状態で、第二電極シート121の両面に積層されている。一方、2枚の第二誘電体シート122,123の幅方向の第二端は、第二電極シート121の幅方向の第二端よりも幅方向の外側に位置している。さらに、2枚のセパレータ124,125は、2枚の第二誘電体シート122,123の外側面に積層されている。このとき、第二電極シート121、2枚の第二誘電体シート122,123、および、2枚のセパレータ124,125は、長手方向の両端が一致する状態となる。 As shown in FIG. 7, the two second dielectric sheets 122 and 123 are arranged such that the first end in the width direction is aligned with the first end in the width direction of the second electrode sheet 121. Are laminated on both sides. On the other hand, the second end in the width direction of the two second dielectric sheets 122 and 123 is located outside the second end in the width direction of the second electrode sheet 121 in the width direction. Further, the two separators 124 and 125 are laminated on the outer surfaces of the two second dielectric sheets 122 and 123. At this time, the second electrode sheet 121, the two second dielectric sheets 122 and 123, and the two separators 124 and 125 are in a state in which both ends in the longitudinal direction coincide with each other.
 このように、5枚の長尺状のシート121,122,123,およびセパレータ124,125を積層することにより第二積層シート120が形成され、さらに、第二積層シート120をロール状に巻き回すことにより第二積層ロール体120aが形成される。 In this manner, the second laminated sheet 120 is formed by laminating the five long sheets 121, 122, 123 and the separators 124, 125, and the second laminated sheet 120 is further wound into a roll. Thus, the second laminated roll body 120a is formed.
 次に、図5に示すように、第一積層シート110および第二積層シート120が積層された複合積層シート130を製造する(S3:複合積層シート製造工程)。続いて、複合積層シート130をロール状に巻き回すことにより、複合積層ロール体140を形成する(S4:ロール工程)。 Next, as shown in FIG. 5, a composite laminate sheet 130 in which the first laminate sheet 110 and the second laminate sheet 120 are laminated is produced (S3: composite laminate sheet production step). Then, the composite lamination roll body 140 is formed by winding the composite lamination sheet 130 in roll shape (S4: roll process).
 複合積層シート製造工程およびロール工程は、図8に示すように行う。複数のローラ231,232,233により第一積層シート110を支持しながら、第一積層ロール体110aから第一積層シート110を引き出す。この途中にて、第一積層シート110から2枚のセパレータ114,115を剥がして、ボビン241,242に巻き取る。同様に、複数のローラ251,252,253により第二積層シート120を支持しながら、第二積層ロール体120aから第二積層シート120を引き出す。この途中にて、第二積層シート120から2枚のセパレータ124,125を剥がして、ボビン261,262に巻き取る。 The composite laminated sheet manufacturing process and the roll process are performed as shown in FIG. The first laminated sheet 110 is pulled out from the first laminated roll body 110 a while the first laminated sheet 110 is supported by the plurality of rollers 231, 232 and 233. In the middle of this, the two separators 114 and 115 are peeled off from the first laminated sheet 110 and wound around the bobbins 241 and 242. Similarly, the second laminated sheet 120 is pulled out from the second laminated roll body 120a while the second laminated sheet 120 is supported by the plurality of rollers 251, 252, and 253. In the middle of this, the two separators 124 and 125 are peeled off from the second laminated sheet 120 and wound around bobbins 261 and 262.
 セパレータ114,115が剥がされた第一積層シート110と、セパレータ124,125が剥がされた第二積層シート120とが、積層されて複合積層シート130が形成される(S3:複合積層シート製造工程)。複合積層シート130は、図9に示すように、第一電極シート111、2枚の第一誘電体シート112,113、第二電極シート121、2枚の第二誘電体シート122,123により形成されている。ここで、図9において、第一電極シート111の幅は、W(111)であり、第一誘電体シート112,113の幅は、W(112)であり、第二電極シート121の幅は、W(121)であり、第二誘電体シート122,123の幅は、W(122)である。 The first laminated sheet 110 from which the separators 114 and 115 are peeled off and the second laminated sheet 120 from which the separators 124 and 125 are peeled off are laminated to form a composite laminated sheet 130 (S3: composite laminated sheet manufacturing process) ). As shown in FIG. 9, the composite laminated sheet 130 is formed by a first electrode sheet 111, two first dielectric sheets 112 and 113, a second electrode sheet 121, and two second dielectric sheets 122 and 123. Has been. In FIG. 9, the width of the first electrode sheet 111 is W (111) , the width of the first dielectric sheets 112 and 113 is W (112) , and the width of the second electrode sheet 121 is , W (121) , and the width of the second dielectric sheets 122, 123 is W (122) .
 詳細には、複合積層シート130において、第一誘電体シート112,113と第二誘電体シート122,123とは、幅方向の両端が一致している。一方、複合積層シート130において、第一電極シート111と第二電極シート121とは、幅方向にオフセットされている。つまり、幅方向の中央では、第一電極シート111と第二電極シート121とが存在しており、幅方向の端では、第一電極シート111と第二電極シート121の一方のみが存在している。 Specifically, in the composite laminated sheet 130, the first dielectric sheets 112 and 113 and the second dielectric sheets 122 and 123 are coincident at both ends in the width direction. On the other hand, in the composite laminated sheet 130, the first electrode sheet 111 and the second electrode sheet 121 are offset in the width direction. That is, the first electrode sheet 111 and the second electrode sheet 121 exist at the center in the width direction, and only one of the first electrode sheet 111 and the second electrode sheet 121 exists at the end in the width direction. Yes.
 そして、複合積層シート130を図8に示すボビン270に巻き取ることで、図10に示す複合積層ロール体140が形成される(S4:ロール工程)。複合積層ロール体140は、図10に示すように形成される。複合積層ロール体140における最内層の少なくとも一周は、第一積層シート110のみ、または、第二積層シート120のみで構成されている。本実施形態においては、最内層の少なくとも一周は、グランド電位に接続されている第二積層シート120のみで構成されている。なお、本実施形態においては、最内層の1周半よりも長く2周よりも短い範囲が、第二積層シート120のみで構成されている。さらに、複合積層ロール体140における最外層の少なくとも一周は、グランド電位に接続されている第二積層シート120のみで構成されている。なお、本実施形態においては、最外層の1周より長く1周半よりも短い範囲が、第二積層シート120のみで構成されている。 And the composite lamination roll body 140 shown in FIG. 10 is formed by winding the composite lamination sheet 130 around the bobbin 270 shown in FIG. 8 (S4: roll process). The composite laminated roll body 140 is formed as shown in FIG. At least one round of the innermost layer in the composite laminated roll body 140 is composed of only the first laminated sheet 110 or only the second laminated sheet 120. In the present embodiment, at least one round of the innermost layer is composed of only the second laminated sheet 120 connected to the ground potential. In the present embodiment, a range that is longer than one and a half of the innermost layer and shorter than two is constituted only by the second laminated sheet 120. Furthermore, at least one round of the outermost layer in the composite laminated roll body 140 is composed of only the second laminated sheet 120 connected to the ground potential. In the present embodiment, the range that is longer than one turn of the outermost layer and shorter than one and a half turns is composed of only the second laminated sheet 120.
 次に、図5および図11に示すように、複合積層ロール体140を扁平化することにより、扁平ロール体150を形成する(S5:扁平工程)。扁平ロール体150において、最内周の少なくとも一周は、グランド電位に接続されている第二積層シート120のみで構成されている。さらに、扁平ロール体150における最外層の少なくとも一周は、グランド電位に接続されている第二積層シート120のみで構成されている。 Next, as shown in FIG. 5 and FIG. 11, the flat roll body 150 is formed by flattening the composite laminated roll body 140 (S5: flattening step). In the flat roll body 150, at least one round of the innermost circumference is constituted only by the second laminated sheet 120 connected to the ground potential. Furthermore, at least one round of the outermost layer in the flat roll body 150 is configured only by the second laminated sheet 120 connected to the ground potential.
 続いて、図5に示すように、扁平ロール体150におけるロール状の軸方向の両端を僅かに切断することにより、静電型ユニット10が形成される。詳細には、扁平ロール体150における軸方向の第一端を切断することで、第一電極シート111の端を露出させる(S6:切断工程)。さらに、扁平ロール体150における軸方向第二端を切断することで、第二電極シート121の端を露出させる(S6:切断工程)。第一積層シート110、第二積層シート120および複合積層シート130の製造の際の位置決め精度によっては、扁平ロール体150において第一電極シート111および第二電極シート121が露出していない場合が存在する。このような場合であっても、切断によって、確実に、第一電極シート111および第二電極シート121が露出する。 Subsequently, as shown in FIG. 5, the electrostatic unit 10 is formed by slightly cutting both ends of the flat roll 150 in the axial direction. Specifically, the end of the first electrode sheet 111 is exposed by cutting the axial first end of the flat roll body 150 (S6: cutting step). Furthermore, the edge of the 2nd electrode sheet 121 is exposed by cut | disconnecting the axial direction 2nd end in the flat roll body 150 (S6: cutting process). Depending on the positioning accuracy in manufacturing the first laminated sheet 110, the second laminated sheet 120, and the composite laminated sheet 130, the first electrode sheet 111 and the second electrode sheet 121 may not be exposed in the flat roll body 150. To do. Even in such a case, the first electrode sheet 111 and the second electrode sheet 121 are reliably exposed by cutting.
 製造された静電型ユニット10において、最内周の少なくとも一周は、グランド電位に接続されている第二積層シート120のみで構成されている。これにより、第一電極シート111と第二電極シート121との離間距離を、所定距離以上とすることができる。さらに、静電型ユニット10において、最外層の少なくとも一周は、グランド電位に接続されている第二積層シート120のみで構成されている。これにより、高い安全性を有する静電型トランスデューサ1が形成される。 In the manufactured electrostatic unit 10, at least one of the innermost circumferences is composed only of the second laminated sheet 120 connected to the ground potential. Thereby, the separation distance of the 1st electrode sheet 111 and the 2nd electrode sheet 121 can be made more than predetermined distance. Furthermore, in the electrostatic unit 10, at least one round of the outermost layer is configured only by the second laminated sheet 120 connected to the ground potential. Thereby, the electrostatic transducer 1 having high safety is formed.
 なお、図5において、S4のロール工程、S5の扁平工程およびS6の切断工程は、静電型ユニット製造工程と称する。また、図5において、S4のロール工程およびS5の扁平工程は、扁平ロール工程と称する。 In addition, in FIG. 5, the roll process of S4, the flat process of S5, and the cutting process of S6 are called an electrostatic type unit manufacturing process. Moreover, in FIG. 5, the roll process of S4 and the flat process of S5 are called flat roll processes.
 (1-6.効果)
 上述したように、静電型トランスデューサ1は、静電型ユニット10を備える。静電型ユニット10は、第一積層シート110と第二積層シート120とを備える。
(1-6. Effect)
As described above, the electrostatic transducer 1 includes the electrostatic unit 10. The electrostatic type unit 10 includes a first laminated sheet 110 and a second laminated sheet 120.
 そして、第一積層シート110は、帯状に形成された第一電極シート111と、帯状に形成され、第一電極シート111の幅より大きな幅を有し、幅方向の第一端を第一電極シート111の幅方向の第一端に合わせた状態で第一電極シート111の両面に積層される2枚の第一誘電体シート112,113とを備える。第二積層シート120は、帯状に形成された第二電極シート121と、帯状に形成され、第二電極シート121の幅より大きな幅を有し、幅方向の第一端を第二電極シート121の幅方向の第一端に合わせた状態で第二電極シート121の両面に積層される2枚の第二誘電体シート122,123とを備える。 And the 1st lamination sheet 110 is formed in strip | belt-shaped 1st electrode sheet | seat 111, is formed in strip | belt shape, has a width | variety larger than the width | variety of 1st electrode sheet | seat 111, and the 1st end of the width direction is made into 1st electrode. Two first dielectric sheets 112 and 113 are provided on both surfaces of the first electrode sheet 111 in a state of being aligned with the first end in the width direction of the sheet 111. The second laminated sheet 120 and the second electrode sheet 121 formed in a strip shape are formed in a strip shape and have a width larger than the width of the second electrode sheet 121, and the first end in the width direction is the second electrode sheet 121. And two second dielectric sheets 122 and 123 stacked on both surfaces of the second electrode sheet 121 in a state of being aligned with the first end in the width direction.
 さらに、静電型ユニット10は、第一積層シート110および第二積層シート120によりロール状に巻き回された状態かつ扁平状に形成されている。第一積層シート110は、ロール状に巻き回された状態、かつ、扁平状に形成されている。第二積層シート120は、第一積層シート110に積層された状態で、第一積層シート110と共にロール状に巻き回された状態かつ扁平状に形成されている。第一電極シート111と第二電極シート121とは、幅方向にオフセットされている。第一電極シート111は、ロール状の軸方向の第一端面に露出し、第二電極シート121は、ロール状の軸方向の第二端面に露出する。 Furthermore, the electrostatic unit 10 is formed in a flat state in a state of being wound in a roll shape by the first laminated sheet 110 and the second laminated sheet 120. The 1st lamination sheet 110 is formed in the state wound by roll shape, and flat. The second laminated sheet 120 is formed in a flat shape with the first laminated sheet 110 wound in a roll shape while being laminated on the first laminated sheet 110. The first electrode sheet 111 and the second electrode sheet 121 are offset in the width direction. The first electrode sheet 111 is exposed on the first end surface in the roll-shaped axial direction, and the second electrode sheet 121 is exposed on the second end surface in the roll-shaped axial direction.
 静電型トランスデューサ1によれば、静電型ユニット10は、第一積層シート110および第二積層シート120によりロール状に巻き回された状態かつ扁平状に形成されている。従って、容易に、多数の電極シート111,121および多数の誘電体シート112,113,122,123を積層することができる。さらに、静電型ユニット10を構成する第一積層シート110は、2枚の第一誘電体シート112,113により第一電極シート111を挟んでいる。従って、第一積層シート110において、第一電極シート111の面状の部分が、2枚の第一誘電体シート112,113により被覆されている。すなわち、第一積層シート110において、第一電極シート111は、面状の部分が全面に亘って露出していない。第二積層シート120も同様である。そのため、第一積層シート110および第二積層シート120の取り扱い性が良好であり、第一電極シート111および第二電極シート121に対する欠陥の発生を抑制できる。 According to the electrostatic transducer 1, the electrostatic unit 10 is formed into a flat shape in a state of being wound in a roll shape by the first laminated sheet 110 and the second laminated sheet 120. Therefore, a large number of electrode sheets 111 and 121 and a large number of dielectric sheets 112, 113, 122, and 123 can be easily laminated. Further, the first laminated sheet 110 constituting the electrostatic unit 10 has the first electrode sheet 111 sandwiched between two first dielectric sheets 112 and 113. Accordingly, in the first laminated sheet 110, the planar portion of the first electrode sheet 111 is covered with the two first dielectric sheets 112 and 113. That is, in the first laminated sheet 110, the planar portion of the first electrode sheet 111 is not exposed over the entire surface. The same applies to the second laminated sheet 120. Therefore, the handleability of the 1st lamination sheet 110 and the 2nd lamination sheet 120 is favorable, and generation | occurrence | production of the defect with respect to the 1st electrode sheet 111 and the 2nd electrode sheet 121 can be suppressed.
 また、静電型ユニット10におけるロール状の最内層の少なくとも一周は、第一積層シート110のみ、または、第二積層シート120のみで構成されている。これにより、第一電極シート111と第二電極シート121との離間距離を、所定距離以上とすることができる。つまり、静電型トランスデューサ1としての性能を良好にすることができる。 Further, at least one round of the innermost layer of the roll shape in the electrostatic unit 10 is configured by only the first laminated sheet 110 or only the second laminated sheet 120. Thereby, the separation distance of the 1st electrode sheet 111 and the 2nd electrode sheet 121 can be made more than predetermined distance. That is, the performance as the electrostatic transducer 1 can be improved.
 また、静電型ユニット10において、第二電極シート121は、グランド電位に接続され、静電型ユニット10におけるロール状の最外層の少なくとも一周は、グランド電位に接続されている第二積層シート120のみで構成されている。これにより、高い安全性を有する静電型トランスデューサ1が形成される。 In the electrostatic unit 10, the second electrode sheet 121 is connected to the ground potential, and at least one round of the roll-shaped outermost layer in the electrostatic unit 10 is connected to the ground potential. It consists only of. Thereby, the electrostatic transducer 1 having high safety is formed.
 また、静電型トランスデューサ1は、第一積層シート製造工程(S1)と、第二積層シート製造工程(S2)、複合積層シート製造工程(S3)および扁平ロール工程(S4,S5)とにより製造される。 The electrostatic transducer 1 is manufactured by the first laminated sheet manufacturing process (S1), the second laminated sheet manufacturing process (S2), the composite laminated sheet manufacturing process (S3), and the flat roll process (S4, S5). Is done.
 第一積層シート製造工程は、第一積層シート110を製造する。第二積層シート製造工程は、第二積層シート120を製造する。複合積層シート製造工程は、第一積層シート110と第二積層シート120とが積層された複合積層シート130を製造する。扁平ロール工程は、複合積層シート130をロール状に巻き回しかつ扁平状に形成することで扁平ロール体150を製造する。 In the first laminated sheet manufacturing process, the first laminated sheet 110 is manufactured. In the second laminated sheet manufacturing process, the second laminated sheet 120 is manufactured. In the composite laminate sheet manufacturing process, a composite laminate sheet 130 in which the first laminate sheet 110 and the second laminate sheet 120 are laminated is produced. A flat roll process manufactures the flat roll body 150 by winding the composite lamination sheet 130 in roll shape, and forming in flat shape.
 当該製造方法によれば、上述した静電型ユニット10を製造することができる。すなわち、第一積層シート製造工程にて製造される第一積層シート110は、2枚の第一誘電体シート112,113により第一電極シート111を挟んで構成されている。従って、第一積層シート110において、第一電極シート111の面状の部分が、2枚の第一誘電体シート112,113により被覆されている。すなわち、第一積層シート110において、第一電極シート111は、面状の部分が全面に亘って露出していない。第二積層シート120も同様である。そのため、第一積層シート110および第二積層シート120の取り扱い性が良好であり、第一電極シート111および第二電極シート121に対する欠陥の発生を抑制できる。そして、扁平ロール工程にて、第一積層シート110と第二積層シート120が積層された複合積層シート130が、ロール状に巻き回しかつ扁平状に形成されている。従って、容易に、多数の電極シート111,121および多数の誘電体シート112,113,122,123を積層することができる。 According to the manufacturing method, the electrostatic unit 10 described above can be manufactured. That is, the first laminated sheet 110 manufactured in the first laminated sheet manufacturing process is configured by sandwiching the first electrode sheet 111 between the two first dielectric sheets 112 and 113. Accordingly, in the first laminated sheet 110, the planar portion of the first electrode sheet 111 is covered with the two first dielectric sheets 112 and 113. That is, in the first laminated sheet 110, the planar portion of the first electrode sheet 111 is not exposed over the entire surface. The same applies to the second laminated sheet 120. Therefore, the handleability of the 1st lamination sheet 110 and the 2nd lamination sheet 120 is favorable, and generation | occurrence | production of the defect with respect to the 1st electrode sheet 111 and the 2nd electrode sheet 121 can be suppressed. In the flat roll process, the composite laminated sheet 130 in which the first laminated sheet 110 and the second laminated sheet 120 are laminated is wound into a roll shape and formed into a flat shape. Therefore, a large number of electrode sheets 111 and 121 and a large number of dielectric sheets 112, 113, 122, and 123 can be easily laminated.
 また、静電型トランスデューサ1は、扁平ロール体150におけるロール状の軸方向の第一端および第二端を切断することで、第一電極シート111および第二電極シート121を露出させる切断工程(S6)により製造される。これにより、確実に、第一電極シート111および第二電極シート121が露出するため、静電型トランスデューサ1において、導電性が良好となる。 Moreover, the electrostatic transducer 1 cuts the roll-shaped axial first end and the second end of the flat roll body 150 to expose the first electrode sheet 111 and the second electrode sheet 121 ( Manufactured by S6). Thereby, since the 1st electrode sheet 111 and the 2nd electrode sheet 121 are exposed reliably, in the electrostatic transducer 1, electroconductivity becomes favorable.
 また、静電型トランスデューサ1は、静電型ユニット10におけるロール状の外周面のうち、少なくとも扁平面を被覆する第一弾性体41をさらに備える。さらに、静電型トランスデューサ1は、静電型ユニット10を少なくとも積層方向(図1の上下方向)に押圧し、積層方向において第一弾性体41を静電型ユニット10より大きく圧縮させた状態で保持するカバー60を備える。これにより、静電型ユニット10の積層方向において、静電型ユニット10単体としては小さな振動であっても、カバー60に大きな振動を付与することができる。 The electrostatic transducer 1 further includes a first elastic body 41 that covers at least a flat surface of the roll-shaped outer peripheral surface of the electrostatic unit 10. Further, the electrostatic transducer 1 presses the electrostatic unit 10 at least in the laminating direction (vertical direction in FIG. 1), and the first elastic body 41 is compressed more greatly than the electrostatic unit 10 in the laminating direction. A holding cover 60 is provided. Thereby, in the stacking direction of the electrostatic unit 10, even if the electrostatic unit 10 alone is a small vibration, a large vibration can be applied to the cover 60.
 特に、第一弾性体41は、静電型ユニット10におけるロール状の外周面を全周に亘って被覆するようにしてもよい。このとき、カバー60は、静電型ユニット10を積層方向に加えて面方向(図1の左右方向)にも押圧する。そして、カバー60は、面方向において、第一弾性体41を静電型ユニット10より大きく圧縮させた状態で保持する。これにより、静電型ユニット10の面方向における静電型ユニット10の小さな振動を、カバー60に確実に伝達することができる。 In particular, the first elastic body 41 may cover the roll-shaped outer peripheral surface of the electrostatic unit 10 over the entire circumference. At this time, the cover 60 presses the electrostatic unit 10 in the surface direction (left-right direction in FIG. 1) in addition to the stacking direction. Then, the cover 60 holds the first elastic body 41 in a state of being compressed more than the electrostatic unit 10 in the surface direction. Thereby, small vibrations of the electrostatic unit 10 in the surface direction of the electrostatic unit 10 can be reliably transmitted to the cover 60.
 また、第一弾性体41の弾性率E(41)は、静電型ユニット10の中央積層部16の弾性率E1(16)より小さい。つまり、初期状態において、カバー60により中央積層部16および第一弾性体41を押圧した状態において、中央積層部16の圧縮量は小さい。そのため、カバー60により中央積層部16を押圧したとしても、中央積層部16の伸縮動作にそれほど影響を与えることはない。 Further, the elastic modulus E (41) of the first elastic body 41 is smaller than the elastic modulus E1 (16) of the central laminated portion 16 of the electrostatic unit 10. That is, in the initial state, in the state where the central laminated portion 16 and the first elastic body 41 are pressed by the cover 60, the amount of compression of the central laminated portion 16 is small. Therefore, even if the central laminated portion 16 is pressed by the cover 60, the expansion / contraction operation of the central laminated portion 16 is not significantly affected.
 そして、中央積層部16の第一電極シート111および第二電極シート121に電圧を印加すると、中央積層部16は、積層方向および面方向に伸縮する。中央積層部16の伸縮動作によって生じる中央積層部16の面の変位が、第一弾性体41を介してカバー60に伝達される。加えて、中央積層部16の伸縮動作によって第一弾性体41の弾性変形力が変化して、第一弾性体41の弾性変形力の変化がカバー60に伝達される。従って、初期状態として、第一弾性体41が圧縮されていることにより、カバー60に効率的に振動を付与することができる。つまり、静電型ユニット10の中央積層部16単体としては小さな振動であっても、カバー60に触覚振動を付与することができる。 Then, when a voltage is applied to the first electrode sheet 111 and the second electrode sheet 121 of the central laminated portion 16, the central laminated portion 16 expands and contracts in the laminating direction and the plane direction. The displacement of the surface of the central laminated part 16 caused by the expansion / contraction operation of the central laminated part 16 is transmitted to the cover 60 via the first elastic body 41. In addition, the elastic deformation force of the first elastic body 41 is changed by the expansion / contraction operation of the central laminated portion 16, and the change in the elastic deformation force of the first elastic body 41 is transmitted to the cover 60. Therefore, as the initial state, the first elastic body 41 is compressed, so that the cover 60 can be efficiently vibrated. That is, tactile vibration can be imparted to the cover 60 even if the center laminated portion 16 alone of the electrostatic unit 10 is a small vibration.
 また、第一弾性体41には、損失係数tanδ(41)の小さな材料が用いられる。これにより、第一弾性体41は、中央積層部16の伸縮動作による振動を吸収することなく、カバー60に伝達できる。特に、第一弾性体41にシリコーンゴムが適用されることで、上記動作を確実に実現できる。 The first elastic body 41 is made of a material having a small loss coefficient tan δ (41) . Thereby, the first elastic body 41 can be transmitted to the cover 60 without absorbing vibration due to the expansion and contraction operation of the central laminated portion 16. In particular, when the silicone rubber is applied to the first elastic body 41, the above operation can be realized with certainty.
 さらに、第一弾性体41の損失係数tanδ(41)は、所定条件下において、静電型ユニット10の中央積層部16の損失係数tanδ(16)と同等以下としている。所定条件とは、上述したように、温度を-10~50℃、振動周波数を300Hz以下とする使用環境下である。これにより、第一弾性体41は、確実に、中央積層部16の伸縮動作による振動を吸収することなく、カバー60に伝達できる。 Further, the loss coefficient tan δ (41) of the first elastic body 41 is equal to or less than the loss coefficient tan δ (16) of the central laminated portion 16 of the electrostatic unit 10 under a predetermined condition. As described above, the predetermined condition is a use environment in which the temperature is −10 to 50 ° C. and the vibration frequency is 300 Hz or less. Thereby, the 1st elastic body 41 can transmit to the cover 60 reliably, without absorbing the vibration by the expansion-contraction operation | movement of the center laminated part 16. FIG.
 (2.第二実施形態)
 第二実施形態において、静電型ユニット10におけるロール状の最外層が、静電型ユニット10におけるロール状の内部よりも弾性率が大きくなるように形成されている。例えば、図5のS1-S6により製造された静電型ユニット10の最外層に、UV照射による表面改質を施すことにより、ナノオーダーの硬化層を形成する。UV照射に代えて、所望の弾性率を有するシートを配置してもよい。これにより、静電型ユニット10の振動がカバー60へ伝達される際に、当該振動の伝達感度が向上する。これにより、静電型ユニット10の中央積層部16の伸縮動作による振動がカバー60へより効率的に伝達される。
(2. Second embodiment)
In the second embodiment, the roll-shaped outermost layer in the electrostatic unit 10 is formed so that the elastic modulus is larger than that of the roll-shaped inside in the electrostatic unit 10. For example, a nano-order cured layer is formed by performing surface modification by UV irradiation on the outermost layer of the electrostatic unit 10 manufactured in S1-S6 of FIG. Instead of UV irradiation, a sheet having a desired elastic modulus may be disposed. Thereby, when the vibration of the electrostatic unit 10 is transmitted to the cover 60, the transmission sensitivity of the vibration is improved. Thereby, the vibration by the expansion / contraction operation of the central laminated portion 16 of the electrostatic unit 10 is more efficiently transmitted to the cover 60.
 特に、中央積層部16の最外層は、UV照射により表面改質された層とするとよい。これにより、当該最外層は、ナノオーダーの非常に薄い厚みとすることができる。これにより、中央積層部16の伸縮動作自身を阻害することなく、伸縮動作による振動の伝達効率を向上できる。 In particular, the outermost layer of the central laminated portion 16 is preferably a layer whose surface has been modified by UV irradiation. Thereby, the outermost layer can have a very thin thickness on the nano order. Thereby, the transmission efficiency of the vibration by the expansion / contraction operation can be improved without hindering the expansion / contraction operation itself of the central laminated portion 16.
 (3.第三実施形態)
 第三実施形態の静電型ユニット310について図12を参照して説明する。静電型ユニット310において、図12に示すように、ロール状の内層側の端は、ロール状より小さな曲率半径にカールされている。つまり、第二積層シート120の内層側の端がカールされて、第一カール部311が形成されている。つまり、第二積層シート120の内層側の端における第二電極シート121は、第二誘電体シート122,123に接触している。従って、第一電極シート111と第二電極シート121の内層側の端との離間距離を、確実に所定距離以上とすることができる。その結果、第一電極シート111と第二電極シート121の内層側の端との間における絶縁状態が確保される。
(3. Third embodiment)
An electrostatic unit 310 according to a third embodiment will be described with reference to FIG. In the electrostatic unit 310, as shown in FIG. 12, the end of the roll-shaped inner layer side is curled to a radius of curvature smaller than that of the roll. That is, the end on the inner layer side of the second laminated sheet 120 is curled to form the first curled portion 311. That is, the second electrode sheet 121 at the inner layer end of the second laminated sheet 120 is in contact with the second dielectric sheets 122 and 123. Therefore, the separation distance between the first electrode sheet 111 and the end on the inner layer side of the second electrode sheet 121 can be surely set to a predetermined distance or more. As a result, the insulation state between the first electrode sheet 111 and the inner layer side end of the second electrode sheet 121 is ensured.
 さらに、第一積層シート110の内層側の端および外層側の端がカールされて、第二カール部312および第三カール部313が形成されている。つまり、第一積層シート110の内層側の端および外層側の端における第一電極シート111は、第一誘電体シート112,113に接触している。従って、第一電極シート111の内層側の端と第二電極シート121との離間距離を、確実に所定距離以上とすることができる。同様に、第一電極シート111の外層側の端と第二電極シート121との離間距離を、確実に所定距離以上とすることができる。その結果、第一電極シート111の両端と第二電極シート121との間における絶縁状態が確保される。 Furthermore, the end on the inner layer side and the end on the outer layer side of the first laminated sheet 110 are curled to form a second curl portion 312 and a third curl portion 313. That is, the first electrode sheet 111 at the inner layer end and the outer layer end of the first laminated sheet 110 is in contact with the first dielectric sheets 112 and 113. Therefore, the distance between the end on the inner layer side of the first electrode sheet 111 and the second electrode sheet 121 can be surely set to a predetermined distance or more. Similarly, the separation distance between the end on the outer layer side of the first electrode sheet 111 and the second electrode sheet 121 can be reliably set to a predetermined distance or more. As a result, an insulation state between both ends of the first electrode sheet 111 and the second electrode sheet 121 is ensured.
 なお、カール部311,312,313は、図8に示すボビン270に設けたフック(不図示)などに第一積層シート110および第二積層シート120の各端を引っ掛けるなどして形成するとよい。つまり、カール部311,312,313は、第一積層シート110と第二積層シート120が積層された複合積層シート130がロール状に巻き回される過程にて形成される。 The curled portions 311, 312, and 313 may be formed by hooking each end of the first laminated sheet 110 and the second laminated sheet 120 to a hook (not shown) provided on the bobbin 270 shown in FIG. That is, the curled portions 311, 312, and 313 are formed in a process in which the composite laminated sheet 130 in which the first laminated sheet 110 and the second laminated sheet 120 are laminated is wound in a roll shape.
 以上のように、静電型ユニット310において、第一積層シート110および第二積層シート120の少なくとも一方において、帯状の長手方向の第一端および第二端の少なくとも一方は、静電型ユニット310におけるロール状より小さな曲率半径にカールされている。カールされた部位において、第一電極シート111と第二電極シート121との離間距離を確実に所定距離以上とすることができる。 As described above, in the electrostatic unit 310, in at least one of the first laminated sheet 110 and the second laminated sheet 120, at least one of the first end and the second end in the belt-like longitudinal direction is the electrostatic unit 310. Is curled to a smaller radius of curvature than the roll shape. In the curled part, the separation distance between the first electrode sheet 111 and the second electrode sheet 121 can be surely set to a predetermined distance or more.
 特に、第一積層シート110においてロール状の内層側の端がカールされ、かつ、第二積層シート120においてロール状の内層側の端がカールされている。これにより、絶縁状態を確実に確保する必要がある内層側の2か所の先端において、第一電極シート111と第二電極シート121との離間距離を確実に所定距離以上とすることができる。 In particular, the end of the roll-shaped inner layer side is curled in the first laminated sheet 110, and the end of the roll-shaped inner layer side is curled in the second laminated sheet 120. Thereby, the separation distance of the 1st electrode sheet 111 and the 2nd electrode sheet 121 can be reliably made into predetermined distance or more in two front-end | tips of the inner layer side which needs to ensure an insulation state reliably.
 さらには、第一積層シート110および第二積層シート120において、ロール状の最外層以外に位置する端は、カールされている。つまり、静電型ユニット310の内部に位置する端は、全てカールされている。従って、これにより、静電型ユニット310の内部において、第一電極シート111と第二電極シート121との離間距離を確実に所定距離以上とすることができる。 Furthermore, in the 1st lamination sheet 110 and the 2nd lamination sheet 120, the edge located other than a roll-shaped outermost layer is curled. That is, the ends located inside the electrostatic unit 310 are all curled. Accordingly, in this way, the separation distance between the first electrode sheet 111 and the second electrode sheet 121 can be reliably set to a predetermined distance or more inside the electrostatic unit 310.
 なお、静電型ユニット310の最外層に位置する第二積層シート120の外層側の端は、カールされていない。しかし、静電型ユニット310の最外層の少なくとも一周は、グランド電位に接続されている第二積層シート120により形成されているため、第二積層シート120の外層側の端は、第一電極シート111との離間距離を十分に確保されている。ただし、全ての端部(4か所の端部)をカールするようにしてもよい。 Note that the end on the outer layer side of the second laminated sheet 120 located in the outermost layer of the electrostatic unit 310 is not curled. However, since at least one round of the outermost layer of the electrostatic unit 310 is formed by the second laminated sheet 120 connected to the ground potential, the end on the outer layer side of the second laminated sheet 120 is the first electrode sheet. A sufficient distance from 111 is secured. However, all of the end portions (four end portions) may be curled.
 (4.第四実施形態)
 (4-1.静電型ユニットの構成)
 第四実施形態の静電型ユニット450について図13を参照して説明する。静電型ユニット450は、第一積層シート410および第二積層シート420を備える。ここで、第一積層シート410および第二積層シート420は、第一実施形態の第一積層シート110および第二積層シート120に対応する。ただし、第一積層シート410および第二積層シート420は、第一実施形態の第一積層シート110および第二積層シート120に対して、以下の点を異にする。
(4. Fourth embodiment)
(4-1. Configuration of electrostatic unit)
An electrostatic unit 450 according to a fourth embodiment will be described with reference to FIG. The electrostatic unit 450 includes a first laminated sheet 410 and a second laminated sheet 420. Here, the first laminated sheet 410 and the second laminated sheet 420 correspond to the first laminated sheet 110 and the second laminated sheet 120 of the first embodiment. However, the first laminated sheet 410 and the second laminated sheet 420 differ from the first laminated sheet 110 and the second laminated sheet 120 of the first embodiment in the following points.
 第一積層シート410は、第一電極シート111、2枚の第一誘電体シート112,113により構成されている。ただし、第一積層シート410において、2枚の第一誘電体シート112,113の帯状の長手方向の両端は、第一電極シート111の帯状の長手方向の両端に対して、長手方向の外側に位置する。つまり、第一電極シート111の帯状の長手方向の両端は、2枚の第一誘電体シート112,113により塞がれている。 The first laminated sheet 410 is composed of a first electrode sheet 111 and two first dielectric sheets 112 and 113. However, in the first laminated sheet 410, both ends in the longitudinal direction of the strips of the two first dielectric sheets 112 and 113 are outside in the longitudinal direction with respect to both ends in the longitudinal direction of the strips of the first electrode sheet 111. To position. That is, both ends of the first electrode sheet 111 in the longitudinal direction of the belt are closed by the two first dielectric sheets 112 and 113.
 つまり、第一積層シート410がロール状に巻き回された状態において、第一積層シート410における内層側の端および外層側の端が、2枚の第一誘電体シート112,113のみにより形成されている。従って、第一電極シート111が露出している部位は、幅方向の第一端(図2の左側)のみとなる。そして、第一電極シート111において、幅方向の第二端(図2の右側)および長手方向の両端は、2枚の第一誘電体シート112,113により塞がれており、露出していない。 That is, in the state where the first laminated sheet 410 is wound in a roll shape, the inner layer side end and the outer layer side end of the first laminated sheet 410 are formed by only the two first dielectric sheets 112 and 113. ing. Accordingly, the portion where the first electrode sheet 111 is exposed is only the first end in the width direction (left side in FIG. 2). In the first electrode sheet 111, the second end in the width direction (the right side in FIG. 2) and both ends in the longitudinal direction are closed by the two first dielectric sheets 112 and 113 and are not exposed. .
 従って、静電型ユニット450において、第一電極シート111の内層側の端と第二電極シート121との離間距離、および、第一電極シート111の外層側の端と第二電極シート121との離間距離を、確実に所定距離以上とすることができる。その結果、第一電極シート111の内層側の端と第二電極シート121との間における絶縁状態が確保されると共に、第一電極シート111の外層側の端と第二電極シート121との間における絶縁状態が確保される。 Therefore, in the electrostatic unit 450, the separation distance between the inner layer side end of the first electrode sheet 111 and the second electrode sheet 121, and the outer layer side end of the first electrode sheet 111 and the second electrode sheet 121. The separation distance can be surely set to a predetermined distance or more. As a result, an insulation state is ensured between the inner layer side end of the first electrode sheet 111 and the second electrode sheet 121, and between the outer layer side end of the first electrode sheet 111 and the second electrode sheet 121. The insulation state at is ensured.
 また、第二積層シート420は、第二電極シート121、2枚の第二誘電体シート122,123により構成されている。ただし、第二積層シート420において、2枚の第二誘電体シート122,123の帯状の長手方向の両端は、第二電極シート121の帯状の長手方向の両端に対して、長手方向の外側に位置する。つまり、第二電極シート121の帯状の長手方向の両端は、2枚の第二誘電体シート122,123により塞がれている。 The second laminated sheet 420 includes a second electrode sheet 121 and two second dielectric sheets 122 and 123. However, in the second laminated sheet 420, both ends of the strip-like longitudinal direction of the two second dielectric sheets 122 and 123 are outside the longitudinal direction with respect to both ends of the strip-like longitudinal direction of the second electrode sheet 121. To position. That is, both ends of the strip-like longitudinal direction of the second electrode sheet 121 are closed by the two second dielectric sheets 122 and 123.
 つまり、第二積層シート420がロール状に巻き回された状態において、第二積層シート420における内層側の端および外層側の端が、2枚の第二誘電体シート122,123のみにより形成されている。従って、第二電極シート121が露出している部位は、幅方向の第一端(図2の右側)のみとなる。そして、第二電極シート121において、幅方向の第二端(図2の左側)および長手方向の両端は、2枚の第二誘電体シート122,123により塞がれており、露出していない。 That is, in the state where the second laminated sheet 420 is wound in a roll shape, the inner layer side end and the outer layer side end of the second laminated sheet 420 are formed only by the two second dielectric sheets 122 and 123. ing. Accordingly, the portion where the second electrode sheet 121 is exposed is only the first end in the width direction (the right side in FIG. 2). In the second electrode sheet 121, the second end in the width direction (left side in FIG. 2) and both ends in the longitudinal direction are closed by the two second dielectric sheets 122 and 123 and are not exposed. .
 従って、静電型ユニット450において、第一電極シート111と第二電極シート121の内層側の端との離間距離、および、第一電極シート111と第二電極シート121の外層側の端との離間距離を、確実に所定距離以上とすることができる。その結果、第一電極シート111と第二電極シート121の内層側の端との間における絶縁状態が確保されると共に、第一電極シート111と第二電極シート121の外層側の端との間における絶縁状態が確保される。 Therefore, in the electrostatic unit 450, the separation distance between the first electrode sheet 111 and the inner layer side end of the second electrode sheet 121, and the outer layer side end of the first electrode sheet 111 and the second electrode sheet 121. The separation distance can be surely set to a predetermined distance or more. As a result, an insulation state between the first electrode sheet 111 and the inner layer side end of the second electrode sheet 121 is ensured, and between the first electrode sheet 111 and the outer layer side end of the second electrode sheet 121. The insulation state at is ensured.
 ここで、上記においては、第一電極シート111の帯状の長手方向の両端が、2枚の第一誘電体シート112,113に塞がれ、かつ、第二電極シート121の帯状の長手方向の両端が、2枚の第二誘電体シート122,123に塞がれるようにした。この他に、正極電位に接続される第一電極シート111の帯状の長手方向の両端が、2枚の第一誘電体シート112,113により塞がれ、かつ、グランド電位に接続される第二電極シート121の内層側の端が、2枚の第二誘電体シート122,123により塞がれるようにしてもよい。この場合、グランド電位に接続される第二電極シート121の外層側の端が、2枚の第二誘電体シート122,123によって塞がれることなく、露出している。つまり、静電型ユニット450の内部に位置する端は、全て電極が露出していない。従って、これにより、静電型ユニット450の内部において、第一電極シート111と第二電極シート121との離間距離を確実に所定距離以上とすることができる。 Here, in the above, both ends of the first electrode sheet 111 in the longitudinal direction of the belt are closed by the two first dielectric sheets 112 and 113 and the longitudinal direction of the second electrode sheet 121 in the longitudinal direction of the belt. Both ends are closed by the two second dielectric sheets 122 and 123. In addition, both ends of the first electrode sheet 111 connected to the positive electrode potential in the longitudinal direction are closed by the two first dielectric sheets 112 and 113 and connected to the ground potential. The end on the inner layer side of the electrode sheet 121 may be blocked by the two second dielectric sheets 122 and 123. In this case, the outer layer side end of the second electrode sheet 121 connected to the ground potential is exposed without being blocked by the two second dielectric sheets 122 and 123. That is, the electrodes are not exposed at all ends located inside the electrostatic unit 450. Accordingly, in this way, the separation distance between the first electrode sheet 111 and the second electrode sheet 121 can be reliably set to a predetermined distance or more inside the electrostatic unit 450.
 さらに、正極電位に接続される第一電極シート111のみの帯状の長手方向の両端が、2枚の第一誘電体シート112,113により塞がれるようにしてもよい。この場合、グランド電位に接続される第二電極シート121の帯状の長手方向の両端が、2枚の第二誘電体シート122,123によって塞がれることなく、露出している。 Furthermore, both ends of the belt-like longitudinal direction of only the first electrode sheet 111 connected to the positive electrode potential may be blocked by the two first dielectric sheets 112 and 113. In this case, both ends of the strip-like longitudinal direction of the second electrode sheet 121 connected to the ground potential are exposed without being blocked by the two second dielectric sheets 122 and 123.
 (4-2.静電型ユニット450の製造方法)
 静電型ユニット450の製造方法について、図14-図19を参照して説明する。静電型ユニット450の製造方法は、図5に示す第一実施形態の静電型ユニット10の製造方法と同一手順である。ただし、静電型ユニット450の製造方法においては、第一積層シート410を製造する工程(図5のS1)および第二積層シート420を製造する工程(図5のS2)が相違する。
(4-2. Manufacturing Method of Electrostatic Unit 450)
A method for manufacturing the electrostatic unit 450 will be described with reference to FIGS. The manufacturing method of the electrostatic unit 450 is the same as the manufacturing method of the electrostatic unit 10 of the first embodiment shown in FIG. However, in the method for manufacturing the electrostatic unit 450, the process of manufacturing the first laminated sheet 410 (S1 in FIG. 5) and the process of manufacturing the second laminated sheet 420 (S2 in FIG. 5) are different.
 第一積層シート410の製造工程においては、図14に示すように、第一電極シート111、2枚の第一誘電体シート112,113および2枚のセパレータ114,115は、帯状、すなわち所定幅の長尺状に形成されている。第一電極シート111および2枚の第一誘電体シート112,113は、それぞれシート状の基材(図示せず)の表面に材料を印刷することによってシート状に成形してもよいし、材料のみにより単体として存在可能なシート状に成形されるようにしてもよい。 In the manufacturing process of the first laminated sheet 410, as shown in FIG. 14, the first electrode sheet 111, the two first dielectric sheets 112 and 113, and the two separators 114 and 115 have a strip shape, that is, a predetermined width. It is formed in a long shape. The first electrode sheet 111 and the two first dielectric sheets 112 and 113 may be formed into sheets by printing materials on the surface of a sheet-like base material (not shown), respectively. Alternatively, it may be formed into a sheet that can exist as a single body.
 ここで、2枚の第一誘電体シート112,113の長手方向の長さおよび2枚のセパレータ114,115の長手方向の長さは、第一電極シート111の長手方向の長さより長い。また、2枚の第一誘電体シート112,113の幅および2枚のセパレータ114,115の幅は、第一電極シート111の幅より大きな幅を有する。 Here, the length in the longitudinal direction of the two first dielectric sheets 112 and 113 and the length in the longitudinal direction of the two separators 114 and 115 are longer than the length in the longitudinal direction of the first electrode sheet 111. Further, the width of the two first dielectric sheets 112 and 113 and the width of the two separators 114 and 115 are larger than the width of the first electrode sheet 111.
 続いて、セパレータ114、第一誘電体シート112、第一電極シート111、第一誘電体シート113およびセパレータ115の順に積層されることによって、第一積層シート410が製造される。ここで、図15に示すように、第一電極シート111の帯状の長手方向の長さL(111)は、2枚の第一誘電体シート112,113の帯状の長手方向の長さL(112)より、ΔL(111)の2倍の長さ分だけ短い。 Subsequently, the first laminated sheet 410 is manufactured by laminating the separator 114, the first dielectric sheet 112, the first electrode sheet 111, the first dielectric sheet 113, and the separator 115 in this order. Here, as shown in FIG. 15, the length of the strip in the longitudinal direction of the first electrode sheet 111 L (111), the strip-shaped longitudinal two first dielectric sheets 112 and 113 length L ( 112) is shorter by twice the length of ΔL (111) .
 そして、図15に示すように、第一積層シート410の長手方向に平行な断面において、2枚の第一誘電体シート112,113の帯状の長手方向の両端は、第一電極シート111の帯状の長手方向の両端に対して、長手方向の外側に位置する。詳細には、2枚の第一誘電体シート112,113の帯状の長手方向の第一端(図15の右端)から第一電極シート111の帯状の長手方向の第一端までの長さは、ΔL(111)である。同様に、2枚の第一誘電体シート112,113の帯状の長手方向の第二端(図15の左端)から第一電極シート111の帯状の長手方向の第二端までの長さも、ΔL(111)である。ここで、第一誘電体シート112の厚みは、H(112)である。また、もう1つの第一誘電体シート113の厚みも、第一誘電体シート112の厚みと同様である。そして、長さΔL(111)は、厚みH(112)以上に設定されている。 And in the cross section parallel to the longitudinal direction of the 1st lamination sheet 410, as shown in FIG. 15, the both ends of the strip | belt-shaped longitudinal direction of the two 1st dielectric sheets 112 and 113 are strip | belt-shaped of the 1st electrode sheet 111 It is located outside the longitudinal direction with respect to both ends in the longitudinal direction. Specifically, the length from the first end in the strip-like longitudinal direction of the two first dielectric sheets 112 and 113 (the right end in FIG. 15) to the first end in the strip-like longitudinal direction of the first electrode sheet 111 is , ΔL (111) . Similarly, the length from the second end in the strip-like longitudinal direction of the first dielectric sheets 112 and 113 (the left end in FIG. 15) to the second end in the strip-like longitudinal direction of the first electrode sheet 111 is also ΔL. (111) . Here, the thickness of the first dielectric sheet 112 is H (112) . The thickness of the other first dielectric sheet 113 is the same as the thickness of the first dielectric sheet 112. The length ΔL (111) is set to be equal to or greater than the thickness H (112) .
 従って、第一積層シート410の長手方向に平行な断面において、第一電極シート111と2枚の第一誘電体シート112,113の表面との距離は、全ての位置において、第一誘電体シート112,113の各厚みH(112)以上となる。その結果、第一電極シート111の絶縁状態が確実に確保できる。 Therefore, in the cross section parallel to the longitudinal direction of the first laminated sheet 410, the distance between the first electrode sheet 111 and the surfaces of the two first dielectric sheets 112 and 113 is the first dielectric sheet at all positions. It becomes more than each thickness H (112) of 112,113. As a result, the insulation state of the first electrode sheet 111 can be reliably ensured.
 また、図16に示すように、第一積層シート410の幅方向に平行な断面においては、第一電極シート111の幅W(111)は、第一誘電体シート112,113の幅W(112)より、幅ΔW(111)だけ短い。そして、第一電極シート111の幅方向の第一端(図16の左端)が、2枚の第一誘電体シート112,113の幅方向の第一端に一致する。そして、第一積層シート410をロール状に巻き回すことにより第一積層ロール体410aが形成される。 Further, as shown in FIG. 16, in a section parallel to the width direction of the first laminate sheet 410, the width W of the first electrode sheet 111 (111), the width W of the first dielectric sheet 112 (112 ) Is shorter by a width ΔW (111) . The first end in the width direction of the first electrode sheet 111 (the left end in FIG. 16) coincides with the first end in the width direction of the two first dielectric sheets 112 and 113. And the 1st lamination | stacking roll body 410a is formed by winding the 1st lamination sheet 410 in roll shape.
 第二積層シート420の製造工程においては、図17に示すように、第二電極シート121、2枚の第二誘電体シート122,123および2枚のセパレータ124,125は、帯状、すなわち所定幅の長尺状に形成されている。第二電極シート121および2枚の第二誘電体シート122,123は、それぞれシート状の基材(図示せず)の表面に材料を印刷することによってシート状に成形してもよいし、材料のみにより単体として存在可能なシート状に成形されるようにしてもよい。 In the manufacturing process of the second laminated sheet 420, as shown in FIG. 17, the second electrode sheet 121, the two second dielectric sheets 122 and 123, and the two separators 124 and 125 are strip-shaped, that is, have a predetermined width. It is formed in a long shape. The second electrode sheet 121 and the two second dielectric sheets 122 and 123 may be formed into a sheet shape by printing a material on the surface of a sheet-like base material (not shown). Alternatively, it may be formed into a sheet that can exist as a single body.
 ここで、2枚の第二誘電体シート122,123の長手方向の長さおよび2枚のセパレータ124,125の長手方向の長さは、第二電極シート121の長手方向の長さより長い。また、2枚の第二誘電体シート122,123の幅および2枚のセパレータ124,125の幅は、第二電極シート121の幅より大きな幅を有する。 Here, the length in the longitudinal direction of the two second dielectric sheets 122 and 123 and the length in the longitudinal direction of the two separators 124 and 125 are longer than the length in the longitudinal direction of the second electrode sheet 121. The widths of the two second dielectric sheets 122 and 123 and the widths of the two separators 124 and 125 are larger than the width of the second electrode sheet 121.
 続いて、セパレータ124、第二誘電体シート122、第二電極シート121、第二誘電体シート123およびセパレータ125の順に積層されることによって、第二積層シート420が製造される。ここで、図18に示すように、第二電極シート121の帯状の長手方向の長さL(121)は、2枚の第二誘電体シート122,123の帯状の長手方向の長さL(122)より、ΔL(121)の2倍の長さ分だけ短い。 Subsequently, the second laminated sheet 420 is manufactured by laminating the separator 124, the second dielectric sheet 122, the second electrode sheet 121, the second dielectric sheet 123, and the separator 125 in this order. Here, as shown in FIG. 18, the length of the strip in the longitudinal direction of the second electrode sheet 121 L (121), the strip-shaped longitudinal two second dielectric sheets 122, 123 length L ( 122) shorter by twice the length of ΔL (121) .
 そして、図18に示すように、第二積層シート420の長手方向に平行な断面において、2枚の第二誘電体シート122,123の帯状の長手方向の両端は、第二電極シート121の帯状の長手方向の両端に対して、長手方向の外側に位置する。詳細には、2枚の第二誘電体シート122,123の帯状の長手方向の第一端(図18の右端)から第二電極シート121の帯状の長手方向の第一端までの長さは、ΔL(121)である。同様に、2枚の第二誘電体シート122,123の帯状の長手方向の第二端(図18の左端)から第二電極シート121の帯状の長手方向の第二端までの長さも、ΔL(121)である。ここで、第二誘電体シート122の厚みは、H(122)である。また、もう1つの第二誘電体シート123の厚みも、第二誘電体シート122の厚みと同様である。そして、長さΔL(121)は、厚みH(122)以上に設定されている。 As shown in FIG. 18, in the cross section parallel to the longitudinal direction of the second laminated sheet 420, both ends of the strip-like longitudinal directions of the two second dielectric sheets 122 and 123 are strip-like of the second electrode sheet 121. It is located outside the longitudinal direction with respect to both ends in the longitudinal direction. Specifically, the length from the first end in the strip-like longitudinal direction of the two second dielectric sheets 122 and 123 (the right end in FIG. 18) to the first end in the strip-like longitudinal direction of the second electrode sheet 121 is , ΔL (121) . Similarly, the length from the second end in the strip-like longitudinal direction (left end in FIG. 18) of the two second dielectric sheets 122 and 123 to the second end in the strip-like longitudinal direction of the second electrode sheet 121 is also ΔL. (121) . Here, the thickness of the second dielectric sheet 122 is H (122) . The thickness of the other second dielectric sheet 123 is the same as the thickness of the second dielectric sheet 122. And length (DELTA) L (121) is set more than thickness H (122) .
 従って、第二積層シート420の長手方向に平行な断面において、第二電極シート121と2枚の第二誘電体シート122,123の表面との距離は、全ての位置において、第二誘電体シート122,123の各厚みH(122)以上となる。その結果、第二電極シート121の絶縁状態が確実に確保できる。 Therefore, in the cross section parallel to the longitudinal direction of the second laminated sheet 420, the distance between the second electrode sheet 121 and the surfaces of the two second dielectric sheets 122 and 123 is the second dielectric sheet at all positions. It becomes more than each thickness H (122) of 122,123. As a result, the insulation state of the second electrode sheet 121 can be reliably ensured.
 また、図19に示すように、第二積層シート420の幅方向に平行な断面においては、第二電極シート121の幅W(121)は、第二誘電体シート122,123の幅W(122)より、幅ΔW(121)だけ短い。そして、第二電極シート121の幅方向の第一端(図19の右端)が、2枚の第二誘電体シート122,123の幅方向の第一端に一致する。そして、第二積層シート420をロール状に巻き回すことにより第二積層ロール体420aが形成される。 Further, as shown in FIG. 19, in a cross section parallel to the width direction of the second laminate sheet 420, the width W of the second electrode sheet 121 (121), the width W of the second dielectric sheet 122 (122 ) Is shorter by the width ΔW (121) . The first end in the width direction of the second electrode sheet 121 (the right end in FIG. 19) coincides with the first end in the width direction of the two second dielectric sheets 122 and 123. And the 2nd lamination roll body 420a is formed by winding the 2nd lamination sheet 420 in roll shape.
 第一積層シート製造工程(S1)および第二積層シート製造工程(S2)の後には、第一実施形態と同様に、図5における複合積層シート製造工程(S3)および扁平ロール工程(S4,S5)を実行することにより、図13に示す静電型ユニット450が製造される。 After the first laminated sheet production step (S1) and the second laminated sheet production step (S2), the composite laminated sheet production step (S3) and the flat roll step (S4, S5) in FIG. ) Is manufactured, the electrostatic unit 450 shown in FIG. 13 is manufactured.
 (5.その他)
 上記実施形態においては、図1に示すように、第一弾性体41が、静電型ユニット10におけるロール状の外周面を全周に亘って被覆することとした。これに限られず、第一弾性体41は、静電型ユニット10の外周面のうち、扁平面のみを被覆するようにしてもよい。この場合、第二カバー62は、静電型ユニット10におけるロール状の外周面のうち扁平面に隣り合う面(図1の左右面)を、静電型ユニット10の面方向に圧縮しない状態となる。
(5. Other)
In the said embodiment, as shown in FIG. 1, the 1st elastic body 41 decided to coat | cover the roll-shaped outer peripheral surface in the electrostatic type unit 10 over a perimeter. The first elastic body 41 is not limited to this, and may cover only the flat surface of the outer peripheral surface of the electrostatic unit 10. In this case, the second cover 62 does not compress the surfaces (left and right surfaces in FIG. 1) adjacent to the flat surface in the roll-shaped outer peripheral surface of the electrostatic unit 10 in the surface direction of the electrostatic unit 10. Become.
 また、上記実施形態においては、図1に示すように、第一弾性体41が、静電型ユニット10におけるロール状の外周面を全周に亘って被覆した状態として、カバー60により、積層方向および面方向に圧縮されることとした。これに限られず、第一弾性体41は、カバー60により静電型ユニット10の積層方向のみに圧縮されることとし、カバー60により静電型ユニット10の面方向には圧縮されないようにしてもよい。また、第二弾性体42および第三弾性体43も、カバー60により圧縮されないようにしてもよい。 Moreover, in the said embodiment, as shown in FIG. 1, the 1st elastic body 41 is the state which coat | covered the roll-shaped outer peripheral surface in the electrostatic type unit 10 over the perimeter, and the lamination direction is carried out by the cover 60. It was decided to be compressed in the surface direction. The first elastic body 41 is not limited to this, and the first elastic body 41 is compressed only in the stacking direction of the electrostatic unit 10 by the cover 60 and is not compressed in the surface direction of the electrostatic unit 10 by the cover 60. Good. Further, the second elastic body 42 and the third elastic body 43 may not be compressed by the cover 60.
1:静電型トランスデューサ、 10,310,450:静電型ユニット、 16:中央積層部、 17:第一端積層部、 18:第二端積層部、 20:第一導通部、 30:第二導通部、 41:第一弾性体、 42:第二弾性体、 43:第三弾性体、 50:制御基板、 60:カバー、 110,410:第一積層シート、 110a,410a:第一積層ロール体、 111:第一電極シート、 112,113:第一誘電体シート、 114,115:セパレータ、 120,420:第二積層シート、 120a,420a:第二積層ロール体、 121:第二電極シート、 122,123:第二誘電体シート、 124,125:セパレータ、 130:複合積層シート、 140:複合積層ロール体、 150:扁平ロール体、 311:第一カール部、 312:第二カール部、 313:第三カール部 1: electrostatic transducer, 10, 310, 450: electrostatic unit, 16: central laminated part, 17: first end laminated part, 18: second end laminated part, 20: first conduction part, 30: first Two conduction parts, 41: first elastic body, 42: second elastic body, 43: third elastic body, 50: control board, 60: cover, 110, 410: first laminated sheet, 110a, 410a: first laminated body Roll body, 111: First electrode sheet, 112, 113: First dielectric sheet, 114, 115: Separator, 120, 420: Second laminated sheet, 120a, 420a: Second laminated roll body, 121: Second electrode Sheet, 122, 123: second dielectric sheet, 124, 125: separator, 130: composite laminate sheet, 140: composite laminate roll, 150: flat Lumpur body, 311: first curl portion, 312: second curl portion, 313: third curl portion

Claims (20)

  1.  静電型ユニットを備える静電型トランスデューサであって、
     前記静電型ユニットは、
     帯状に形成された第一電極シートと、帯状に形成され、前記第一電極シートの幅より大きな幅を有し、幅方向の第一端を前記第一電極シートの幅方向の第一端に合わせた状態で前記第一電極シートの両面に積層される2枚の第一誘電体シートとを備える第一積層シートと、
     帯状に形成された第二電極シートと、帯状に形成され、前記第二電極シートの幅より大きな幅を有し、幅方向の第一端を前記第二電極シートの幅方向の第一端に合わせた状態で前記第二電極シートの両面に積層される2枚の第二誘電体シートとを備える第二積層シートと、
     を備え、
     前記静電型ユニットは、前記第一積層シートおよび前記第二積層シートによりロール状に巻き回された状態かつ扁平状に形成されており、
     前記第一積層シートは、ロール状に巻き回された状態かつ扁平状に形成され、
     前記第二積層シートは、前記第一積層シートに積層された状態で、前記第一積層シートと共にロール状に巻き回された状態かつ扁平状に形成され、
     前記第一電極シートと前記第二電極シートとは、幅方向にオフセットされており、
     前記第一電極シートは、前記ロール状の軸方向の第一端面に露出し、
     前記第二電極シートは、前記ロール状の軸方向の第二端面に露出する、静電型トランスデューサ。
    An electrostatic transducer comprising an electrostatic unit,
    The electrostatic unit is
    A first electrode sheet formed in a strip shape, and formed in a strip shape, having a width larger than the width of the first electrode sheet, and a first end in the width direction as a first end in the width direction of the first electrode sheet A first laminated sheet comprising two first dielectric sheets laminated on both sides of the first electrode sheet in a combined state;
    A second electrode sheet formed in a strip shape, and formed in a strip shape, having a width larger than the width of the second electrode sheet, and having a first end in the width direction as a first end in the width direction of the second electrode sheet A second laminated sheet comprising two second dielectric sheets laminated on both sides of the second electrode sheet in a combined state;
    With
    The electrostatic unit is formed in a flat shape with the first laminated sheet and the second laminated sheet wound in a roll shape,
    The first laminated sheet is formed in a flat and rolled state in a roll shape,
    The second laminated sheet is formed in a flat state with the first laminated sheet wound in a roll with the first laminated sheet,
    The first electrode sheet and the second electrode sheet are offset in the width direction,
    The first electrode sheet is exposed on the roll-shaped first end surface in the axial direction;
    Said 2nd electrode sheet | seat is an electrostatic transducer exposed to the said 2nd end surface of the roll-shaped axial direction.
  2.  前記第一積層シートおよび前記第二積層シートの少なくとも一方において、前記帯状の長手方向の第一端および第二端の少なくとも一方は、前記ロール状より小さな曲率半径にカールされている、請求項1に記載の静電型トランスデューサ。 2. At least one of the first laminated sheet and the second laminated sheet, at least one of the first end and the second end in the longitudinal direction of the belt is curled to a radius of curvature smaller than that of the roll. The electrostatic transducer according to 1.
  3.  前記第一積層シートおよび前記第二積層シートの少なくとも一方において、前記静電型ユニットにおける前記ロール状の内層側の端は、前記ロール状より小さな曲率半径にカールされている、請求項2に記載の静電型トランスデューサ。 The at least one of said 1st lamination sheet and said 2nd lamination sheet WHEREIN: The end of the said roll-shaped inner layer side in the said electrostatic type unit is curled by the curvature radius smaller than the said roll shape. Electrostatic transducer.
  4.  前記第一積層シートにおいて、前記静電型ユニットにおける前記ロール状の内層側の端は、前記ロール状より小さな曲率半径にカールされ、
     前記第二積層シートにおいて、前記静電型ユニットにおける前記ロール状の内層側の端は、前記ロール状より小さな曲率半径にカールされている、請求項3に記載の静電型トランスデューサ。
    In the first laminated sheet, the end of the roll-shaped inner layer side in the electrostatic unit is curled to a smaller radius of curvature than the roll shape,
    4. The electrostatic transducer according to claim 3, wherein in the second laminated sheet, an end of the roll-shaped inner layer side of the electrostatic-type unit is curled to have a smaller radius of curvature than the roll shape.
  5.  前記第一積層シートにおいて、前記2枚の第一誘電体シートの前記帯状の長手方向の両端は、前記第一電極シートの前記帯状の長手方向の両端に対して、長手方向の外側に位置し、
     前記第一電極シートの前記帯状の長手方向の両端は、前記2枚の第一誘電体シートにより塞がれている、請求項1に記載の静電型トランスデューサ。
    In the first laminated sheet, both ends of the two strips of the first dielectric sheet in the longitudinal direction of the belt are positioned on the outside in the longitudinal direction with respect to both ends of the strip of the first electrode sheet in the longitudinal direction. ,
    2. The electrostatic transducer according to claim 1, wherein both ends of the belt-like longitudinal direction of the first electrode sheet are closed by the two first dielectric sheets.
  6.  前記第一電極シートは、正極電位に接続され、
     前記第二電極シートは、グランド電位に接続される、請求項5に記載の静電型トランスデューサ。
    The first electrode sheet is connected to a positive electrode potential;
    The electrostatic transducer according to claim 5, wherein the second electrode sheet is connected to a ground potential.
  7.  前記2枚の第一誘電体シートの前記帯状の長手方向の第一端から前記第一電極シートの前記帯状の長手方向の第一端までの長さは、前記2枚の第一誘電体シートの一方の厚み以上に設定され、
     前記2枚の第一誘電体シートの前記帯状の長手方向の第二端から前記第一電極シートの前記帯状の長手方向の第二端までの長さは、前記2枚の第一誘電体シートの一方の厚み以上に設定されている、請求項5または6に記載の静電型トランスデューサ。
    The length from the first longitudinal end of the two first dielectric sheets to the first longitudinal end of the first electrode sheet is the first first dielectric sheet. Is set to be more than one thickness of
    The length from the second end in the strip-like longitudinal direction of the two first dielectric sheets to the second end in the strip-like longitudinal direction of the first electrode sheet is the two first dielectric sheets The electrostatic transducer according to claim 5 or 6, wherein the electrostatic transducer is set to be equal to or greater than one of the thicknesses.
  8.  前記第二積層シートにおいて、前記2枚の第二誘電体シートの前記帯状の長手方向の両端は、前記第二電極シートの前記帯状の長手方向の両端に対して、長手方向の外側に位置し、
     前記第二電極シートの前記帯状の長手方向の両端は、前記2枚の第二誘電体シートにより塞がれている、請求項1、5、6または7に記載の静電型トランスデューサ。
    In the second laminated sheet, both ends of the strip-like longitudinal direction of the two second dielectric sheets are positioned outside the longitudinal direction with respect to both ends of the strip-like longitudinal direction of the second electrode sheet. ,
    The electrostatic transducer according to claim 1, 5, 6, or 7, wherein both ends of the belt-like longitudinal direction of the second electrode sheet are closed by the two second dielectric sheets.
  9.  前記2枚の第二誘電体シートの前記帯状の長手方向の第一端から前記第二電極シートの前記帯状の長手方向の第一端までの長さは、前記2枚の第二誘電体シートの一方の厚み以上に設定され、
     前記2枚の第二誘電体シートの前記帯状の長手方向の第二端から前記第二電極シートの前記帯状の長手方向の第二端までの長さは、前記2枚の第二誘電体シートの一方の厚み以上に設定されている、請求項8に記載の静電型トランスデューサ。
    The length from the first end in the strip-like longitudinal direction of the two second dielectric sheets to the first end in the strip-like longitudinal direction of the second electrode sheet is the two second dielectric sheets Is set to be more than one thickness of
    The length from the second end in the strip-like longitudinal direction of the two second dielectric sheets to the second end in the strip-like longitudinal direction of the second electrode sheet is the two second dielectric sheets The electrostatic transducer according to claim 8, wherein the electrostatic transducer is set to be equal to or greater than one of the thicknesses.
  10.  前記静電型ユニットにおける前記ロール状の最内層の少なくとも一周は、前記第一積層シートのみ、または、前記第二積層シートのみで構成されている、請求項1-9の何れか一項に記載の静電型トランスデューサ。 The at least one round of the roll-shaped innermost layer in the electrostatic unit is configured by only the first laminated sheet or only the second laminated sheet, according to any one of claims 1-9. Electrostatic transducer.
  11.  前記第二電極シートは、グランド電位に接続され、
     前記静電型ユニットにおける前記ロール状の最外層の少なくとも一周は、前記グランド電位に接続されている前記第二積層シートのみで構成されている、請求項1-10の何れか一項に記載の静電型トランスデューサ。
    The second electrode sheet is connected to a ground potential;
    The at least one round of the roll-shaped outermost layer in the electrostatic unit is configured by only the second laminated sheet connected to the ground potential. Electrostatic transducer.
  12.  前記静電型トランスデューサは、前記静電型ユニットにおける前記ロール状の外周面のうち、少なくとも扁平面を被覆する弾性体をさらに備える、請求項1-11の何れか一項に記載の静電型トランスデューサ。 The electrostatic transducer according to any one of claims 1 to 11, wherein the electrostatic transducer further includes an elastic body that covers at least a flat surface of the roll-shaped outer peripheral surface of the electrostatic unit. Transducer.
  13.  前記弾性体は、前記静電型ユニットにおける前記ロール状の外周面を全周に亘って被覆する、請求項12に記載の静電型トランスデューサ。 13. The electrostatic transducer according to claim 12, wherein the elastic body covers the roll-shaped outer peripheral surface of the electrostatic unit over the entire circumference.
  14.  前記弾性体の弾性率は、前記静電型ユニットの弾性率より小さい、請求項12または13に記載の静電型トランスデューサ。 14. The electrostatic transducer according to claim 12, wherein an elastic modulus of the elastic body is smaller than an elastic modulus of the electrostatic unit.
  15.  前記弾性体の損失係数tanδは、所定条件下において、前記静電型ユニットの損失係数tanδと同等以下である、請求項12-14の何れか一項に記載の静電型トランスデューサ。 15. The electrostatic transducer according to claim 12, wherein a loss coefficient tan δ of the elastic body is equal to or less than a loss coefficient tan δ of the electrostatic unit under a predetermined condition.
  16.  前記静電型ユニットにおける前記ロール状の最外層は、前記静電型ユニットにおける前記ロール状の内部よりも弾性率が大きい、請求項1-15の何れか一項に記載の静電型トランスデューサ。 16. The electrostatic transducer according to claim 1, wherein the roll-shaped outermost layer of the electrostatic unit has a larger elastic modulus than the roll-shaped interior of the electrostatic unit.
  17.  帯状に形成された第一電極シートと、帯状に形成され、前記第一電極シートの幅より大きな幅を有し、幅方向の第一端を前記第一電極シートの幅方向の第一端に合わせた状態で前記第一電極シートの両面に積層される2枚の第一誘電体シートとを備える第一積層シートを製造する第一積層シート製造工程と、
     帯状に形成された第二電極シートと、帯状に形成され、前記第二電極シートの幅より大きな幅を有し、幅方向の第一端を前記第二電極シートの幅方向の第一端に合わせた状態で前記第二電極シートの両面に積層される2枚の第二誘電体シートとを備える第二積層シートを製造する第二積層シート製造工程と、
     前記第一積層シートと前記第二積層シートとが積層された複合積層シートを製造する複合積層シート製造工程と、
     前記複合積層シートをロール状に巻き回しかつ扁平状に形成することで扁平ロール体を製造する扁平ロール工程と、
     を備え、
     前記複合積層シートにおいて前記第一電極シートと前記第二電極シートとは、幅方向にオフセットされており、
     前記複合積層シートにおいて前記第一電極シートは、前記ロール状の軸方向の第一端面に露出し、
     前記複合積層シートにおいて前記第二電極シートは、前記ロール状の軸方向の第二端面に露出する、静電型トランスデューサの製造方法。
    A first electrode sheet formed in a strip shape, and formed in a strip shape, having a width larger than the width of the first electrode sheet, and a first end in the width direction as a first end in the width direction of the first electrode sheet A first laminated sheet production step of producing a first laminated sheet comprising two first dielectric sheets laminated on both sides of the first electrode sheet in a combined state;
    A second electrode sheet formed in a strip shape, and formed in a strip shape, having a width larger than the width of the second electrode sheet, and having a first end in the width direction as a first end in the width direction of the second electrode sheet A second laminated sheet producing step for producing a second laminated sheet comprising two second dielectric sheets laminated on both sides of the second electrode sheet in a combined state;
    A composite laminate sheet manufacturing process for producing a composite laminate sheet in which the first laminate sheet and the second laminate sheet are laminated;
    A flat roll process for producing a flat roll body by winding the composite laminate sheet into a roll shape and forming a flat shape,
    With
    In the composite laminate sheet, the first electrode sheet and the second electrode sheet are offset in the width direction,
    In the composite laminate sheet, the first electrode sheet is exposed at the first end surface in the roll-shaped axial direction,
    In the composite laminated sheet, the second electrode sheet is exposed to the roll-shaped second end surface in the axial direction.
  18.  前記静電型トランスデューサの製造方法は、前記扁平ロール体における前記ロール状の軸方向の第一端および第二端を切断することで、前記第一電極シートおよび前記第二電極シートを露出させる切断工程をさらに備える、請求項17に記載の静電型トランスデューサの製造方法。 The method of manufacturing the electrostatic transducer includes cutting the first electrode sheet and the second electrode sheet by cutting the roll-shaped axial first end and second end of the flat roll body. The method of manufacturing an electrostatic transducer according to claim 17, further comprising a step.
  19.  前記複合積層シート製造工程は、前記第一積層シートと前記第二積層シートとを積層する際に、前記第一積層シートおよび前記第二積層シートの少なくとも一方において、前記帯状の長手方向の第一端および第二端の少なくとも一方を、前記ロール状より小さな曲率半径にカールする、請求項17または18に記載の静電型トランスデューサの製造方法。 In the composite laminated sheet manufacturing step, when the first laminated sheet and the second laminated sheet are laminated, at least one of the first laminated sheet and the second laminated sheet, The method of manufacturing an electrostatic transducer according to claim 17 or 18, wherein at least one of the end and the second end is curled to a radius of curvature smaller than that of the roll.
  20.  前記第一積層シート製造工程は、前記2枚の第一誘電体シートの前記帯状の長手方向の両端が、前記第一電極シートの前記帯状の長手方向の両端に対して、長手方向の外側に位置するように、かつ、前記第一電極シートの前記帯状の長手方向の両端が、前記2枚の第一誘電体シートにより塞がれるように、前記第一積層シートを製造する、請求項17または18に記載の静電型トランスデューサの製造方法。 In the first laminated sheet manufacturing step, both ends of the two strips of the first dielectric sheets in the longitudinal direction of the belt are on the outside in the longitudinal direction with respect to both ends of the strip of the first electrode sheet in the longitudinal direction of the strip. The first laminated sheet is manufactured so as to be positioned and so that both ends of the strip-like longitudinal direction of the first electrode sheet are closed by the two first dielectric sheets. Or a method of producing an electrostatic transducer according to 18.
PCT/JP2017/041614 2016-11-25 2017-11-20 Electrostatic type transducer and method for manufacturing same WO2018097086A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112017004134.1T DE112017004134T5 (en) 2016-11-25 2017-11-20 Electrostatic transducer type and its manufacturing method
CN201780072412.8A CN109983783B (en) 2016-11-25 2017-11-20 Electrostatic transducer and method of manufacturing the same
US16/281,123 US10792704B2 (en) 2016-11-25 2019-02-21 Electrostatic transducer and method for manufacturing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016228720 2016-11-25
JP2016-228720 2016-11-25
JP2017125881A JP6873843B2 (en) 2016-11-25 2017-06-28 Electrostatic transducer and its manufacturing method
JP2017-125881 2017-06-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/281,123 Continuation US10792704B2 (en) 2016-11-25 2019-02-21 Electrostatic transducer and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2018097086A1 true WO2018097086A1 (en) 2018-05-31

Family

ID=62194942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041614 WO2018097086A1 (en) 2016-11-25 2017-11-20 Electrostatic type transducer and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2018097086A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008277729A (en) * 2007-03-30 2008-11-13 Tokai Rubber Ind Ltd Actuator
JP2012065426A (en) * 2010-09-15 2012-03-29 Toyoda Gosei Co Ltd Manufacturing method of actuator
JP2014239647A (en) * 2012-07-25 2014-12-18 株式会社ビスキャス Vibration power generation body and power generation method using the same
US20150221852A1 (en) * 2012-08-16 2015-08-06 Parker-Hannifin Corporation Rolled and compliant dielectric elastomer actuators

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008277729A (en) * 2007-03-30 2008-11-13 Tokai Rubber Ind Ltd Actuator
JP2012065426A (en) * 2010-09-15 2012-03-29 Toyoda Gosei Co Ltd Manufacturing method of actuator
JP2014239647A (en) * 2012-07-25 2014-12-18 株式会社ビスキャス Vibration power generation body and power generation method using the same
US20150221852A1 (en) * 2012-08-16 2015-08-06 Parker-Hannifin Corporation Rolled and compliant dielectric elastomer actuators

Similar Documents

Publication Publication Date Title
US8458889B2 (en) Actuator manufacturing method
JP4069160B2 (en) Ultrasonic actuator
US8391520B2 (en) Flat speaker unit and speaker device therewith
TW201222907A (en) A transducer
US20160027995A1 (en) Method for producing a multilayer electromechanical transducer
JP6303076B2 (en) Tactile vibration presentation device
JP6731268B2 (en) Electrostatic transducer
JP7205467B2 (en) Actuator, drive member, tactile presentation device and drive device
CN109983783B (en) Electrostatic transducer and method of manufacturing the same
WO2017168793A1 (en) Vibration presentation device
WO2011089803A1 (en) Piezoelectric electricity generating element, piezoelectric electricity generating device and production method for piezoelectric electricity generating element
CN109863762B (en) Electrostatic transducer
JP2008211922A (en) Polymer electrostatic actuator
WO2018097086A1 (en) Electrostatic type transducer and method for manufacturing same
JP5134431B2 (en) Pronunciation
JP6293447B2 (en) Electrostatic transducer for sound, method for manufacturing fixed electrode thereof, condenser microphone, condenser headphone
JP4063301B2 (en) Method for manufacturing electrostrictive polymer actuator
WO2021010072A1 (en) Sound pressure-electrical signal conversion device and conversion method for same
JP2019136630A (en) Haptics apparatus
KR101632052B1 (en) Method for manufacturing piezoelectric element
JP5943506B2 (en) Vibration power generator
WO2023160974A1 (en) Loudspeaker and method
JP5943532B2 (en) Vibration power generator
WO2014025061A1 (en) Sound generator, sound generation device, and electronic device
JP5933392B2 (en) SOUND GENERATOR, SOUND GENERATOR, AND ELECTRONIC DEVICE

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17873865

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17873865

Country of ref document: EP

Kind code of ref document: A1