WO2018097047A1 - 交通制御システム、交通情報出力装置、交通制御方法、及び、記録媒体 - Google Patents

交通制御システム、交通情報出力装置、交通制御方法、及び、記録媒体 Download PDF

Info

Publication number
WO2018097047A1
WO2018097047A1 PCT/JP2017/041395 JP2017041395W WO2018097047A1 WO 2018097047 A1 WO2018097047 A1 WO 2018097047A1 JP 2017041395 W JP2017041395 W JP 2017041395W WO 2018097047 A1 WO2018097047 A1 WO 2018097047A1
Authority
WO
WIPO (PCT)
Prior art keywords
traffic
route
point
routes
service level
Prior art date
Application number
PCT/JP2017/041395
Other languages
English (en)
French (fr)
Inventor
到 西岡
優太 芦田
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2018552540A priority Critical patent/JPWO2018097047A1/ja
Priority to US16/461,925 priority patent/US10950123B2/en
Publication of WO2018097047A1 publication Critical patent/WO2018097047A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0108Measuring and analyzing of parameters relative to traffic conditions based on the source of data
    • G08G1/0116Measuring and analyzing of parameters relative to traffic conditions based on the source of data from roadside infrastructure, e.g. beacons
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • G06Q10/047Optimisation of routes or paths, e.g. travelling salesman problem
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0207Discounts or incentives, e.g. coupons or rebates
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/40Business processes related to the transportation industry
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0125Traffic data processing
    • G08G1/0129Traffic data processing for creating historical data or processing based on historical data
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0125Traffic data processing
    • G08G1/0133Traffic data processing for classifying traffic situation
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0137Measuring and analyzing of parameters relative to traffic conditions for specific applications
    • G08G1/0145Measuring and analyzing of parameters relative to traffic conditions for specific applications for active traffic flow control
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0968Systems involving transmission of navigation instructions to the vehicle
    • G08G1/096805Systems involving transmission of navigation instructions to the vehicle where the transmitted instructions are used to compute a route
    • G08G1/096811Systems involving transmission of navigation instructions to the vehicle where the transmitted instructions are used to compute a route where the route is computed offboard

Definitions

  • the present invention relates to a traffic control system, a traffic information output device, a traffic control method, and a recording medium.
  • Traffic congestion is particularly serious in urban areas where the population is increasing. In such an urban area, there are many cases where a toll road that can bypass the crowded city center is provided. However, whether or not to actually use a detour depends on the judgment of the driver, and each driver has a strong tendency to select the shortest route. For this reason, traffic distribution by detours is not performed as expected, and unnecessary traffic congestion occurs. As a technology to alleviate such unnecessary traffic congestion, the current traffic conditions (degree of congestion, required time, etc.) of the main road and the detour are displayed to guide the vehicle to the detour and pass the detour A technique for discounting charges is disclosed.
  • Patent Document 1 describes a technique for discounting a toll based on information on the presence or absence of road congestion recorded by a traveling vehicle.
  • Patent Document 2 describes a technique for comparing the degree of congestion between a main road and a bypass road and presenting a route that can be moved in the shortest time from the current position of the vehicle.
  • Patent Document 3 describes a technique for discounting the toll of a vehicle that uses a traffic jam information acquired by a traffic control system to present the situation of a main road and a detour to a driver and selects a route that avoids the traffic jam. ing.
  • Non-Patent Document 1 discloses an information providing method for suppressing hunting that occurs in two route sections of an expressway.
  • Non-Patent Document 2 and Non-Patent Document 3 disclose heterogeneous mixed learning techniques that generate a prediction model for each group having the same pattern or regularity of data. .
  • the current traffic state is presented, and the vehicle is guided to select a road with less congestion by changing the toll on the detour.
  • the driver reacts sensitively to congestion, and the traffic volume fluctuates (flapping) between selectable routes.
  • the traffic condition is not stable.
  • the vehicle continues to flow into a portion that causes a traffic jam until the traffic jam actually occurs, and the guidance as described above is performed after the traffic jam occurs.
  • An object of the present invention is to provide a traffic control system, a traffic information output device, a traffic control method, and a recording medium that can solve the above-described problems and maintain the service quality provided by the toll road.
  • the traffic control system includes a prediction unit that predicts a traffic state in one of a plurality of routes from a first point to a second point, and the predicted traffic state in the one route is a predetermined value.
  • Control means for controlling a distribution amount of vehicles between the plurality of routes at the first point so that a traffic state on the one route satisfies the predetermined service level when the service level is not satisfied.
  • the traffic information output device when the predicted traffic state in one of the plurality of routes from the first point to the second point does not satisfy a predetermined service level, the traffic between the plurality of routes Based on a susceptibility model representing a distribution ratio between the plurality of routes at the first point with respect to a difference between predicted values of a state-related index and a charge difference, a traffic state on the one route satisfies the predetermined service level
  • the control unit that determines the charge for the one route receives the charge for the one route and the predicted value of the index relating to the traffic state of each of the plurality of routes, and the received charge for the one route. And a predicted value of an index related to the traffic state of each of the plurality of routes.
  • the traffic control method predicts a traffic state in one of a plurality of routes from a first point to a second point, and the predicted traffic state in the one route has a predetermined service level. If not, the distribution amount of the vehicle between the plurality of routes at the first point is controlled so that the traffic state on the one route satisfies the predetermined service level.
  • the computer predicts a traffic state in one of a plurality of routes from the first point to the second point, and the predicted traffic in the one route. If the state does not satisfy a predetermined service level, a process of controlling a distribution amount of vehicles between the plurality of routes at the first point is executed so that a traffic state on the one route satisfies the predetermined service level. Store the program to be executed.
  • the effect of the present invention is that the service quality provided by the toll road can be maintained.
  • flow rate indicates the number of vehicles passing through the point per unit time (the number of passing vehicles).
  • the speed indicates an average of the speeds of a plurality of vehicles at the point.
  • the vehicle density indicates a ratio (space occupancy) that each vehicle spatially occupies a predetermined section including a point, or a ratio (time occupancy) that each vehicle occupies a point in time.
  • the space occupancy and the time occupancy can be converted to each other.
  • the space occupancy is used as the vehicle density.
  • the level of service provided to the user by the road administrator (hereinafter also referred to as service level or service quality) is defined.
  • the service level may be defined by an indicator relating to the traffic state at a specific point or a specific section on the road network, such as a minimum speed or a required time.
  • Service levels include road availability, time for regulations and blockages due to accidents and construction (excluding regulations and blockages due to bad weather), accuracy of required time to be notified, delay time for congestion notification, service area and parking It may be defined by the waiting time in the area.
  • levels hereinafter also referred to as target service levels or predetermined service levels
  • the target service level may be, for example, a service level specified by an SLA (Service Level Agreement) that should be guaranteed to the user by the toll road administrator.
  • SLA Service Level Agreement
  • a case where the target service level is the minimum speed at a specific point on the toll road will be described as an example.
  • the road network to be controlled in the first embodiment is a toll-way road network that collects tolls (hereinafter also simply referred to as tolls), and traffic can be distributed by multiple routes. It is.
  • tolls toll-way road network that collects tolls
  • FIG. 1 is a diagram illustrating an example of a road network to be controlled in the first embodiment.
  • the route R1 or the route R2 can be selected as a route for reaching the point X0.
  • the point X100 is also referred to as a distribution point.
  • different charges can be set for the route R1 and the route R2.
  • the traffic state for each route is also monitored.
  • the distribution rate at the distribution point is controlled so as to satisfy the target service level in both routes.
  • the distribution rate is, for example, the ratio of the number of vehicles that have selected one route to the total number of vehicles passing through the distribution point.
  • the distribution rate may be the ratio of the flow rate of one path to the total flow rate at the distribution point.
  • the distribution rate is controlled by changing the charge difference between routes.
  • FIG. 2 is a block diagram showing the configuration of the traffic control system 1 in the first embodiment.
  • the traffic control system 1 includes a learning device 100, a distribution control device 200, and an output device 300 (hereinafter also referred to as a traffic information output device).
  • the learning device 100, the distribution control device 200, and the output device 300 are connected to each other via a network or the like.
  • the output device 300 is, for example, a variable bulletin board (VMS: Variable Message Sign), and is installed in front of the distribution point or the distribution point with respect to the traveling direction.
  • VMS Variable Message Sign
  • the output device 300 may be an in-vehicle terminal device such as a car navigation device.
  • the Learning device 100 generates a traffic state prediction model and a distribution rate sensitivity model.
  • the prediction model is a model for predicting a traffic state.
  • the susceptibility model is a model that represents the sensitivity of the distribution ratio with respect to the difference in the predicted value of the index related to the traffic state of each route and the difference in toll.
  • a predicted value of a required time for each route (hereinafter also referred to as a predicted required time) is used as a predicted value of an index related to the traffic state of each route.
  • the distribution control device 200 predicts the traffic state of each route using the prediction model, determines the distribution rate so that the traffic state of each route satisfies the target service level, and achieves the distribution rate using the susceptibility model. Determine the fee for each route.
  • the output device 300 outputs (displays) traffic information to a user of the road network (for example, a vehicle driver or a passenger on the road network).
  • the traffic information includes a predicted value (predicted required time) of an index related to the traffic state of each route and a fee.
  • the learning device 100 includes a prediction target determination unit 110, a model learning unit 120, a road information storage unit 130, a traffic state storage unit 140, a distribution information storage unit 150, and a correlation storage unit 160.
  • the road information storage unit 130 stores a road map indicating the road network and road information indicating the speed limit of each point or each section on the road network.
  • the traffic state storage unit 140 stores a history of measured values of past traffic conditions at each point on the road network.
  • the measurement value of the traffic state is collected by, for example, a traffic state collection device (not shown).
  • the traffic condition collection device collects traffic state measurement values at predetermined collection intervals from sensors installed at various points on the road network.
  • FIG. 3 is a diagram illustrating an example of a traffic state in the first embodiment.
  • measured values of flow rate, speed, and vehicle density at each point Xi are collected as the traffic state.
  • the distribution information storage unit 150 stores distribution information.
  • the distribution information is a history of a relationship between a difference in estimated required time and a charge of each route output by the output device 300 in the past and a distribution rate observed at the time of output or within a predetermined time from the time of output. Indicates.
  • the distribution information is collected by, for example, a distribution information collection device (not shown).
  • the distribution information collection device collects the estimated required time and fee of each route output (displayed) from the output device 300 at a predetermined collection interval, and from each sensor installed at the distribution point to each route. Collect the flow rate of the distributed traffic flow.
  • the distribution information collection device generates the distribution information by calculating the estimated required time difference and the charge difference from the collected predicted required time and charge, and calculating the distribution rate from the collected flow rate.
  • FIG. 4 is a diagram illustrating an example of distribution information in the first embodiment.
  • the estimated required time difference ⁇ T TR1 ⁇ TR2 (TR1 and TR2 are the estimated required times of the routes R1 and R2, respectively).
  • the distribution rate is, for example, the ratio of the flow rate of the path R1 when the total flow rate is 1.
  • Correlation storage unit 160 stores a correlation between indicators (flow rate, travel speed, vehicle density) representing a traffic state.
  • FIG. 5 is a diagram illustrating an example of the correlation between the vehicle density and the flow rate in the first embodiment.
  • FIG. 6 is a diagram illustrating an example of the correlation between the vehicle density and the speed in the first embodiment.
  • the vehicle density is an area below the threshold density
  • the flow rate increases as the vehicle density increases, and the vehicle can travel smoothly. Therefore, the area below the threshold density is called a free flow area.
  • the flow rate decreases as the vehicle density increases, and the vehicle stays. For this reason, an area exceeding the threshold density is called a traffic jam area.
  • the speed is constant before and after the speed limit (free flow area). However, when the vehicle density exceeds the threshold density, the vehicle cannot travel freely as the vehicle density increases, and the speed is greatly reduced (congested flow region).
  • the correlation storage unit 160 stores the correlation as shown in FIGS. 5 and 6 for each point on the road network.
  • the prediction target determination unit 110 refers to the road map stored in the road information storage unit 130, predicts the traffic state on each route (prediction target point), and predicts the traffic state at the prediction target point.
  • the future time (predicted time) to be determined is determined.
  • the model learning unit 120 generates (learns) a prediction model for the prediction target point and the prediction target time based on the past traffic state of each point stored in the traffic state storage unit 140. In addition, the model learning unit 120 generates (learns) a sensitivity model based on the distribution information stored in the distribution information storage unit 150.
  • the distribution control device 200 includes a prediction unit 210, a determination unit 220, a control unit 230, a model storage unit 240, a service level storage unit 250, and a correlation storage unit 260.
  • the model storage unit 240 stores the prediction model and the susceptibility model generated by the learning device 100.
  • the service level storage unit 250 stores a target service level for each point on the road.
  • FIG. 7 is a diagram illustrating an example of a target service level in the first embodiment.
  • SL10 minimum speed 50 km / h
  • SL20 minimum speed 50 km / h
  • Correlation storage unit 260 stores the correlation for each point on the road network, similar to correlation storage unit 160.
  • the prediction unit 210 applies the current traffic state of each point to the prediction model stored in the model storage unit 240, and predicts the traffic state at the prediction target time at the prediction target point.
  • the determination unit 220 determines whether the predicted traffic state (hereinafter also referred to as the predicted traffic state) satisfies the target service level stored in the service level storage unit 250 at the prediction target points of both routes.
  • control unit 230 determines a distribution rate for satisfying the target service level at the prediction target point of each route. Further, the control unit 230 calculates a predicted required time for each route. Furthermore, the control unit 230 determines a fee for each route for achieving the determined distribution rate, using the sensitivity model stored in the model storage unit 240.
  • the output device 300 includes an output unit 310.
  • the output unit 310 outputs the traffic information received from the distribution control device 200.
  • each of the learning device 100, the distribution control device 200, and the output device 300 may be a computer that includes a CPU (Central Processing Unit) and a storage medium that stores a program, and operates by control based on the program. .
  • a CPU Central Processing Unit
  • storage medium that stores a program, and operates by control based on the program.
  • FIG. 8 and FIG. 9 are block diagrams showing configurations of the learning device 100 and the distribution control device 200 realized by a computer in the first embodiment, respectively.
  • the learning apparatus 100 includes a CPU 101, a storage device 102 (storage medium), an input / output device 103, and a communication device 104.
  • the CPU 101 executes a program for realizing the prediction target determining unit 110 and the model learning unit 120.
  • the storage device 102 is, for example, a hard disk or a memory, and stores data of the road information storage unit 130, the traffic state storage unit 140, the distribution information storage unit 150, and the correlation storage unit 160.
  • the input / output device 103 is, for example, a keyboard, a display, or the like, and receives a learning execution instruction from an administrator or the like.
  • the communication device 104 receives traffic state measurement values from the traffic state collection device and distribution information from the distribution information collection device. Further, the communication device 104 transmits the prediction model and the sensitivity model to the distribution control device 200.
  • the distribution control device 200 includes a CPU 201, a storage device 202 (storage medium), an input / output device 203, and a communication device 204, as with the learning device 100.
  • the CPU 201 executes a program for realizing the prediction unit 210, the determination unit 220, and the control unit 230.
  • the storage device 202 stores data of the model storage unit 240, the service level storage unit 250, and the correlation storage unit 260.
  • the input / output device 203 receives a distribution control execution instruction from an administrator or the like.
  • the communication device 204 receives the prediction model and the sensitivity model from the learning device 100. Further, the communication device 204 transmits traffic information to the output device 300.
  • the output device 300 includes a CPU, a storage device (storage medium), an input / output device, and a communication device, similarly to the learning device 100 and the distribution control device 200.
  • the CPU executes a program for realizing the output unit 310.
  • the communication device receives traffic information from the distribution control device 200.
  • the input / output device outputs (displays) traffic information to the user.
  • the constituent elements of the learning device 100, the distribution control device 200, and the output device 300 may be realized by general-purpose or dedicated circuits, processors, or combinations thereof. These circuits and processors may be constituted by a single chip or may be constituted by a plurality of chips connected via a bus. In addition, some or all of the components of the learning device 100, the distribution control device 200, and the output device 300 may be realized by a combination of the above-described circuit and the like and a program.
  • the plurality of information processing devices and circuits may be centrally arranged or distributedly arranged.
  • the information processing apparatus, the circuit, and the like may be realized as a form in which each is connected via a communication network, such as a client and server system and a cloud computing system.
  • the learning device 100 may be configured by one device.
  • the distribution control device 200 may be configured by one device.
  • FIG. 10 is a flowchart showing the learning process in the first embodiment.
  • the road information of the road network in FIG. 1 is stored in the road information storage unit 130. Further, it is assumed that the traffic state in FIG. 3 and the distribution information in FIG. 4 are stored in the traffic state storage unit 140 and the distribution information storage unit 150, respectively.
  • the prediction target determining unit 110 of the learning device 100 determines a prediction target point (step S101).
  • the prediction target determination unit 110 determines a prediction target point for each route that can be selected at the distribution point.
  • the prediction target point for example, a point where traffic congestion frequently occurred in the past traffic state or the like is used.
  • the prediction target point may be designated in advance by an administrator or the like.
  • the prediction target determination unit 110 determines the points X10 and X20 on the routes R1 and R2 in FIG. 1 as the prediction target points.
  • the prediction target determination unit 110 determines the prediction target time (step S102).
  • the prediction target determination unit 110 calculates the arrival time from the distribution point to the prediction target point based on the distance between the distribution point and the prediction target point and the speed limit, Is determined as the prediction target time.
  • the prediction target determination unit 110 calculates the arrival time T0 from the distribution point X100 to the prediction target points X10 and X20 using the distance D0 and the speed limits of the routes R1 and R2, Is determined as the prediction target time.
  • the model learning unit 120 generates a prediction model (step S103).
  • the model learning unit 120 generates a prediction model for the prediction target point and the prediction target time based on the past traffic state of each point.
  • the prediction model is generated by, for example, a machine learning technique using a past traffic state at each point.
  • the prediction model may be generated using a heterogeneous mixed learning technique disclosed in Non-Patent Documents 2 and 3.
  • the prediction model may be a general time series model such as a linear regression model, an autoregressive model, or an autoregressive moving average model.
  • a prediction model is produced
  • a linear function of Formula 1 is used for the prediction model.
  • t is the current time
  • t + T0 is the prediction target time
  • V i, t is the speed at the current time t at each point Xi.
  • a ij is a coefficient indicating the magnitude of the relationship between V ′ j, t + T0 and V i, t
  • b ij is an intercept indicating a factor unrelated to the speed.
  • the model learning unit 120 generates a prediction model such as Equation 1 for the speed of the prediction target time t + T0 at the prediction target points X10 and X20 based on the traffic state of FIG.
  • Equation 1 a model other than Equation 1 may be used as the prediction model.
  • the model learning unit 120 generates a susceptibility model (step S104).
  • the model learning unit 120 generates a sensitivity model of distribution points based on the distribution information.
  • the estimated required time difference of each route and the charge difference presented to the user depends on the estimated required time difference of each route and the charge difference presented to the user.
  • the estimated required time difference is shorter than the estimated required time for the route R1
  • the fee for the route R2 is higher than the fee for the route R1.
  • the user determines that the estimated required time difference is appropriate for the charge difference, it is considered that the user tends to select the route R2 having a short estimated required time.
  • the user determines that the estimated required time difference is not appropriate for the charge difference it is considered that the user tends to select the route R1 even if the estimated required time is long. That is, if the charge difference is small with respect to the estimated required time difference, a route with a shorter estimated time is selected, and if the charge difference is large with respect to the estimated required time difference, a route with a longer estimated required time is selected. .
  • the sensitivity model is expressed by, for example, Formula 2.
  • is a coefficient representing the magnitude of the relationship between the estimated required time difference ⁇ T and the distribution rate y.
  • is a coefficient representing the magnitude of the relationship between the charge difference ⁇ P and the distribution rate y.
  • the model learning unit 120 calculates the values of the coefficients ⁇ and ⁇ by performing regression analysis on the distribution information, for example.
  • the model learning unit 120 generates a susceptibility model such as Equation 2 for the distribution point X100 based on the distribution information in FIG.
  • the model learning unit 120 transmits the generated prediction model and susceptibility model to the distribution control device 200 (step S105).
  • the distribution control device 200 stores the prediction model and the sensitivity model in the model storage unit 240.
  • FIG. 11 is a flowchart showing the distribution control process in the first embodiment.
  • the distribution control process is periodically executed at predetermined time intervals.
  • the target service level in FIG. 7 is stored in the service level storage unit 250.
  • the prediction unit 210 predicts the traffic state at the prediction target time at the prediction target point of each route (step S201).
  • the prediction unit 210 applies the current traffic state of each point acquired from the traffic state collection device to the prediction model, and calculates the predicted traffic state.
  • the prediction unit 210 calculates prediction speeds V ′ 10, t + T0 , V ′ 20, t + T0 at the prediction target times t + T0 at the prediction target points X10, X20 using the prediction model.
  • the control unit 230 calculates the required time for each route based on the predicted traffic state (step S202).
  • control unit 230 based on the predicted velocity V '10, t + T0, V' 20, t + T0 in the prediction target point X10, X20, and calculates the predicted required time TR1, TR2 routes R1, R2.
  • the determination unit 220 determines whether the predicted traffic state satisfies the target service level at the prediction target points of both routes (step S203).
  • the determination unit 220 determines that the predicted speeds V ′ 10, t + T0 , V ′ 20, t + T0 are the minimum speeds (50 km / h) set as the target service levels SL10 and SL20 at the prediction target points X10 and X20 in FIG. ) Is satisfied.
  • control unit 230 updates the traffic information with the predicted required time calculated in step S202 (step S204).
  • the control unit 230 transmits the updated traffic information to the output device 300 for output.
  • the control unit 230 updates the traffic information with the predicted required times TR1 and TR2 of the routes R1 and R2. .
  • the control unit 230 determines a new distribution rate for satisfying the target service level at the prediction target points of both routes (step S205).
  • the control unit 230 calculates a distribution rate when the service level of the prediction target point on the route that does not satisfy the target service level is set to the target service level.
  • the control part 230 determines whether a traffic state satisfy
  • the control unit 230 sets the minimum speed set as the target service level SL10 as the speed at the point X10.
  • the control unit 230 obtains the flow rate (flow rate of the route R1) corresponding to the minimum speed using the correlation of the point X10.
  • the control part 230 calculates the ratio of the calculated
  • control unit 230 calculates the flow rate of the route R2 from the total value of the current flow rates of the routes R1 and R2 at the point X100 and the calculated new distribution rate, and uses the correlation of the point X20, Find the velocity corresponding to the flow rate. And the control part 230 determines whether the speed
  • step S206 When a new distribution rate has been determined (step S206 / Y), the process proceeds to step S208 and subsequent steps.
  • control unit 230 determines the new distribution rate to a predetermined value such as 0.5 (step S207).
  • the control unit 230 determines a charge for each route to achieve the new distribution rate determined in step S205 or S207 (step S208).
  • the control unit 230 uses the sensitivity model of Equation 2 to correspond to the difference between the new distribution ratio determined in step S205 or S207 and the estimated required time calculated in step S202. Calculate the charge difference. Then, the control unit 230 sets the charges for both routes or one route so that the charge difference between the routes becomes the calculated charge difference.
  • control unit 230 calculates the charge difference by applying the difference between the new distribution rate and the estimated required times TR1 and TR2 to the sensitivity model.
  • the control unit 230 sets the charges PR1 and PR2 for the routes R1 and R2 according to the calculated charge difference.
  • control unit 230 calculates again the estimated required time for each route corresponding to the new distribution rate determined in step S205 (step S209).
  • control unit 230 sets the estimated required times TR′1 and TR′2 of the routes R1 and R2 based on the speed of the point X10 (minimum speed) and the speed of the point X20 (speed calculated from the distribution ratio), respectively. calculate.
  • the control unit 230 updates the traffic information with the estimated required time for each route calculated in step S209 and the charge for each route determined in step S208 (step S210).
  • the control unit 230 transmits the updated traffic information to the output device 300 for output.
  • control unit 230 updates the traffic information with the estimated required times TR′1 and TR′2 of the routes R1 and R2 and the charges PR1 and PR2.
  • FIG. 12 is a diagram illustrating a specific example of the distribution control process in the first embodiment.
  • the predicted speeds of the points X10 and X20 and the traffic information of the output device 300 at the point X100 are shown for each time.
  • the control unit 230 calculates “0.6” as a new distribution rate for the speed of the point X10 to satisfy the target service level SL10. Then, the control unit 230 calculates the speed “80 km / h” at the point X20 based on the calculated distribution rate. Since the speed “80 km / h” at the point X20 satisfies the target service level SL20, the control unit 230 determines the new distribution rate to be “0.6”.
  • the control unit 230 calculates the charge difference corresponding to the new distribution rate “0.6” and the estimated required time difference “27 minutes” as “100 yen”. Based on the calculated charge difference, the control unit 230 determines the charges for the routes R1 and R2 as “500 yen” and “600 yen”, respectively. Furthermore, the control unit 230 calculates predicted required times “34 minutes” and “20 minutes” of the routes R1 and R2 based on the speeds “50 km / h” and “80 km” of the points X10 and X20. Then, the control unit 230 updates the traffic information with the estimated required times “34 minutes” and “20 minutes” and the charges “500 yen” and “600 yen” for the routes R1 and R2.
  • the charge for each route is set so that the other route is selected more. Is set.
  • the number of vehicles that select a congested route decreases (the number of vehicles that select a non-congested route increases), and the traffic state is maintained at or above the target service level.
  • the road network to be controlled has two routes of route R1 and route R2 as routes for reaching the point X0 from the point X100 has been described as an example.
  • the present invention is not limited to this, and the road network may include a plurality of three or more routes as routes for reaching the point X0 from the point X100.
  • the learning apparatus 100 generates a model representing a distribution ratio with respect to a difference in predicted values of indices related to the traffic state of each route and a charge difference as a sensitivity model.
  • the distribution control device 200 determines a distribution rate for the traffic state in each of the plurality of routes to satisfy the target service level when the predicted traffic state does not satisfy the target service level in at least one of the plurality of routes. Then, the distribution control device 200 determines a fee for each route to achieve the determined distribution rate using the sensitivity model.
  • the service quality provided by the toll road can be maintained on the toll road having a plurality of selectable routes.
  • the reason is that the traffic control system 1 predicts the traffic state in each of the plurality of routes, and when the traffic state predicted in at least one of the plurality of routes does not satisfy a predetermined service level, This is to control the distribution amount.
  • the traffic control system 1 controls the distribution amount so that the traffic state on each of the plurality of routes satisfies a predetermined service level.
  • the service quality provided by the toll road can be maintained with a simple configuration on the toll road having a plurality of selectable routes.
  • the reason is that the traffic control system 1 determines the charges for each of the plurality of routes so that the traffic state in each of the plurality of routes satisfies a predetermined service level based on the sensitivity model. This is for outputting together with the predicted value of the index.
  • the distribution amount of the vehicle between routes can be controlled with a simple configuration that displays the predicted value (predicted required time) of the indicator relating to the traffic state and the charge to the user.
  • the road network to be controlled is a road network including a toll road where tolls are collected (Toll-way) and a general road (Freeway) where no tolls are collected. Traffic can be distributed by road.
  • FIG. 13 is a diagram illustrating an example of a road network to be controlled in the second embodiment.
  • a toll road (route R1) or a general road (route R2) can be selected as a route for reaching the point X0.
  • the distribution rate at the distribution point (point X100) is controlled so that the toll revenue on the toll road (route R1) is maximized while maintaining the target service level on the toll road.
  • the distribution ratio is controlled by changing the toll road (route R1) fee (the difference in fee between routes).
  • the block diagram showing the configuration of the traffic control system 1 in the second embodiment is the same as that in the first embodiment (FIG. 2).
  • the distribution information storage unit 150 of the learning device 100 stores distribution information as in the first embodiment.
  • the toll road (route R1) is set as the charge difference in the distribution information.
  • FIG. 14 is a diagram illustrating an example of distribution information in the second embodiment.
  • the estimated required time difference ⁇ T, the charge difference ⁇ P (the charge PR1 of the toll road (route R1)), and the distribution rate y are collected as the distribution information for the distribution point X100.
  • the service level storage unit 250 of the distribution control device 200 stores a target service level for each point on the toll road (route R1).
  • FIG. 15 is a diagram illustrating an example of the target service level in the second embodiment.
  • SL10 minimum speed 80 km / h
  • X10 maximum speed 80 km / h
  • the determination unit 220 determines whether or not the predicted traffic state satisfies the target service level stored in the service level storage unit 250 at the prediction target point on the toll road (route R1).
  • the control unit 230 determines a distribution rate for satisfying the target service level at the prediction target point on the toll road (route R1). In addition, the control unit 230 determines a toll for the toll road (route R1) for achieving the determined distribution rate using the sensitivity model. In addition, when the target service level is satisfied as a result of the determination, the control unit 230 uses the susceptibility model to calculate the distribution rate and the charge so that the total toll revenue of the toll road (route R1) is maximized. decide.
  • the road information of the road network in FIG. 13 is stored in the road information storage unit 130. Further, it is assumed that the distribution information in FIG. 14 is stored in the distribution information storage unit 150.
  • the prediction target determining unit 110 determines the points X10 and X20 on the toll road (route R1) and the general road (route R2) in FIG. 13 as the prediction target points.
  • the prediction target determination unit 110 calculates the arrival time T0 from the distribution point X100 to the prediction target points X10 and X20, and determines “T0 hours after the current time” as the prediction target time.
  • the model learning unit 120 generates a prediction model such as Equation 1 for the vehicle speed at the prediction target time t + T0 at the prediction target points X10 and X20.
  • the model learning unit 120 generates a susceptibility model such as Equation 2 for the distribution point X100 based on the distribution information of FIG. ⁇ Distribution control processing> Next, distribution control processing by the distribution control apparatus 200 will be described.
  • FIG. 16 is a flowchart showing the distribution control process in the second embodiment.
  • the target service level in FIG. 15 is stored in the service level storage unit 250.
  • the prediction unit 210 predicts the traffic state at the prediction target time at the prediction target point of each route (step S301).
  • the prediction unit 210 calculates prediction speeds V ′ 10, t + T0 , V ′ 20, t + T0 at the prediction target times t + T0 at the prediction target points X10, X20 using the prediction model.
  • the control unit 230 calculates the required time for each route based on the predicted traffic state (step S302).
  • control unit 230 predicts required times TR1 and TR2 of the toll road (route R1) and the general road (route R2) based on the predicted speeds V ′ 10, t + T0 and V ′ 20, t + T0 at the prediction target points X10 and X20. Is calculated.
  • the determination unit 220 determines whether the predicted traffic state satisfies the target service level at the prediction target point on the toll road (route R1) (step S303).
  • the determination unit 220 determines whether the predicted velocity V '10, t + T0 satisfies the minimum speed (80 km / h) which is set as the target service level SL10 in the prediction target point X10 of Figure 15.
  • control unit 230 determines a new distribution rate and a fee for maximizing the total fee income on the toll road (route R1) while satisfying the target service level (step S304).
  • control unit 230 calculates a new distribution rate and a charge difference using, for example, the sensibility model of Formula 2, Formula 3 and Formula 4.
  • Rtotal is the total value of toll revenue from the toll road (route R1)
  • N1 is the flow rate of the toll road (route R1) at the distribution point
  • Ntotal is the flow rate of the toll road (route R1) at the distribution point and the general road It is the total value of the flow rate of (route R2).
  • the difference in the estimated required time calculated in step S302 is set as the difference in the estimated required time of the sensitivity model of Formula 2.
  • the upper limit value of the flow rate N1 of the toll road (route R1) a value is provided so that the traffic state of the prediction target point on the toll road (route R1) satisfies the target service level.
  • the flow rate indicated by the current traffic state at the distribution point is used as the total value Ntotal of the flow rates in Equation (4).
  • an upper limit value and a lower limit value of a toll road (route R1) fee (fee difference) may be given.
  • the control unit 230 sets the calculated fee difference as a toll road fee.
  • the control unit 230 uses the correlation of the point X10, and the flow rate (toll road) corresponding to the minimum speed set as the target service level SL10. (The upper limit value of the flow rate of (route R1)).
  • the control unit 230 determines the difference between the estimated required times TR1 and TR2 of the toll road (route R1) and the general road (route R2), the total value of the current flow rate at the point X100, and the flow rate of the toll road (route R1). A new distribution rate and a charge difference are calculated using the upper limit value.
  • the control unit 230 updates the toll PR1 for the toll road (route R1) with the calculated toll difference.
  • control unit 230 calculates again the estimated required time for each route corresponding to the new distribution rate determined in step S304 (step S305).
  • the control unit 230 calculates the flow rates of the toll road (route R1) and the general road (route R2) from the current flow rate of the point X100 and the calculated new distribution rate, and these are calculated as points X10 and X20. Set the flow rate to.
  • the control unit 230 obtains a speed corresponding to the flow rate of the points X10 and X20 using the correlation between the points X10 and X20, and based on the obtained speed, the toll road (route R1) and the general road (route R2). Estimated required times TR′1 and TR′2 are respectively calculated.
  • the control unit 230 updates the traffic information with the estimated required time of each route calculated in step S305 and the toll road (route R1) determined in step S304 (step S306).
  • the control unit 230 transmits the updated traffic information to the output device 300 for output.
  • control unit 230 updates the traffic information with the estimated required times TR'1 and TR'2 and the charge PR1 of the toll road (route R1) and the general road (route R2).
  • the control unit 230 determines a new distribution rate for satisfying the target service level at the prediction target point of the toll road (route R1) (step S307). .
  • the control unit 230 determines the distribution rate when the service level of the prediction target point of the toll road (route R1) is set to the target service level as a new distribution rate.
  • the control unit 230 sets the minimum speed set as the target service level SL10 as the speed at the point X10.
  • the control unit 230 obtains the flow rate (flow rate of the toll road (route R1)) corresponding to the minimum speed using the correlation of the point X10.
  • the control unit 230 calculates the ratio of the calculated flow rate of the toll road (route R1) to the total value of the current flow rates of the toll road (route R1) and the general road (route R2) at the point X100. Is calculated as a new distribution rate.
  • the control unit 230 determines the toll road (route R1) to achieve the new distribution rate determined in step S307 (step S308).
  • the control unit 230 calculates a charge difference corresponding to the difference between the new distribution rate determined in step S307 and the estimated required time calculated in step S302, using, for example, the sensitivity model of Formula 2. To do.
  • the control part 230 sets the calculated charge difference to the charge of a toll road (route
  • control unit 230 calculates a toll difference by applying a difference between the new distribution rate and the estimated required times TR1 and TR2 to the sensitivity model, and sets the toll PR1 for the toll road (route R1).
  • control unit 230 calculates again the estimated required time for each route corresponding to the new distribution rate determined in step S307 (step S309).
  • the control unit 230 calculates the flow rate of the route R2 from the total value of the current flow rates of the toll road (route R1) and the general road (route R2) at the point X100 and the calculated new distribution rate.
  • the velocity corresponding to the flow rate is obtained using the correlation of X20.
  • the control unit 230 predicts the estimated required time TR ′ of the toll road (route R1) and the general road (route R2). 1 and TR′2 are calculated.
  • the control unit 230 updates the traffic information with the estimated required time of each route calculated in step S309 and the toll road fee determined in step S308 (step S310).
  • the control unit 230 transmits the updated traffic information to the output device 300 for output.
  • control unit 230 updates the traffic information with the estimated required times TR'1 and TR'2 and the charge PR1 of the toll road (route R1) and the general road (route R2).
  • FIG. 17 is a diagram illustrating a specific example of distribution control processing in the second embodiment.
  • the normal charge for the toll road route R1
  • the normal charge for the toll road route R1
  • the control unit 230 calculates “0.3” as a new distribution rate for the speed of the point X10 to satisfy the target service level SL10.
  • the control unit 230 sets the fee corresponding to the new distribution rate “0.3” and the required time difference “39 minutes” to “1000 yen”, which is higher than the normal fee.
  • the control unit 230 calculates the speeds “80 km / h” and “30 km / h” of the points X10 and X20 based on the new distribution ratio, and the estimated required time of the toll road (route R1) and the general road (route R2) “45 minutes” and “120 minutes” are calculated. Then, the control unit 230 updates the traffic information with the estimated required times “45 minutes”, “120 minutes”, and “1000 yen” for the toll road (route R1) and the general road (route R2).
  • the predicted speed at point X10 at time t20 + T0 has increased due to a decrease in the number of vehicles.
  • the predicted speed “80 km / h” at the point X10 satisfies the target service level SL10.
  • the controller 230 sets the new distribution rate corresponding to the required time difference “45 minutes” to maximize the fee income while the speed of the point X10 satisfies the target service level SL10, “0.5”, and the normal charge
  • the price is set at “500 yen”.
  • the control unit 230 calculates the speeds “90 km / h” and “35 km / h” of the points X10 and X20, and the estimated required time of the toll road (route R1) and the general road (route R2) “40 minutes” and “100 minutes” are calculated. Then, the control unit 230 updates the traffic information with the estimated required times “40 minutes”, “100 minutes”, and “500 yen” for the toll road (route R1) and the general road (route R2).
  • the predicted speeds of points X10 and X20 at time t30 + T0 have increased due to a further decrease in the number of vehicles.
  • the predicted speed “100 km / h” at the point X10 satisfies the target service level SL10.
  • the control unit 230 sets the new distribution rate corresponding to the required time difference “24 minutes” to be “0.8” and maximizes the charge to maximize the charge revenue while the speed of the point X10 satisfies the target service level SL10. It is decided to be “300 yen”, which is cheaper than the price.
  • the control unit 230 calculates the speeds “100 km / h” and “60 km / h” of the points X10 and X20 based on the new distribution rate, and the estimated required time of the toll road (route R1) and the general road (route R2) “36 minutes” and “60 minutes” are calculated. Then, the control unit 230 updates the traffic information with the estimated required times “36 minutes”, “60 minutes”, and the charge “300 yen” for the toll road (route R1) and the general road (route R2).
  • FIG. 18 is a diagram showing characteristics of toll road charge setting by the distribution control process in the second embodiment.
  • the toll road charge is The price will be raised from the normal price.
  • the number of vehicles that select a toll road that is congested decreases, and the target service level of the toll road is maintained.
  • a charge near the normal charge is set as the charge of the toll road.
  • the toll road charge is raised or lowered with reference to the normal toll, but in general, it is highly likely that the toll road charge will not be accepted by the user. Therefore, the upper limit of the charge may be set to the normal charge, and the charge may be changed by discounting from the normal charge.
  • the road network to be controlled has two routes, a toll road (route R1) and a general road (route R2), as routes for reaching the point X0 from the point X100.
  • a toll road route R1
  • a general road route R2
  • the road network may include a plurality of three or more routes including a toll road and a general road as routes for reaching the point X0 from the point X100.
  • the learning apparatus 100 generates a model representing a distribution ratio with respect to a difference in predicted values of indices related to the traffic state of each route and a charge difference as a sensitivity model.
  • the distribution control device 200 determines a distribution rate for the traffic state in each of the toll road routes to satisfy the target service level when the predicted traffic state does not satisfy the target service level in at least one of the toll road routes. To do. Then, the distribution control device 200 determines a toll for each route on the toll road to achieve the determined distribution rate using the sensitivity model. In addition, the distribution control device 200 uses a sensitivity model to maximize the total toll revenue from the toll road when the predicted traffic state satisfies the target service level in each of the toll road routes, and Determine the charge for each route.
  • the service quality provided by the toll road can be maintained in the road network in which the toll road and the general road can be selected.
  • the reason is that, when the traffic control system 1 predicts the traffic state on one route among a plurality of routes and the traffic state does not satisfy the predetermined service level, the traffic state on the one route satisfies the predetermined service level.
  • it is for controlling the distribution amount of the vehicle between several paths.
  • the service quality provided by the toll road can be maintained with a simple configuration in the road network in which the toll road and the general road can be selected.
  • the reason is that the traffic control system 1 determines the charge for one route for the traffic state on one route to satisfy the predetermined service level based on the sensitivity model, and relates to the traffic state of each of the plurality of routes. This is because it is output together with the predicted value of the index.
  • the distribution amount of the vehicle between routes can be controlled with a simple configuration that displays the predicted value (predicted required time) of the indicator relating to the traffic state and the charge to the user.
  • the traffic control system 1 is based on the sensitivity model, the traffic condition on one route satisfies a predetermined service level, and the charge for one route is multiplied by the number of vehicles distributed to one route. This is because the charge for one route is determined so that the sum of the values is maximized.
  • the output device 300 outputs the predicted required time to the user as the predicted value of the index related to the traffic state of each route.
  • the present invention is not limited to this, and if the index is an index used by the user to select a route, the output device 300 may output a predicted value of another index such as a predicted speed as a predicted value of the index related to the traffic state. Good.
  • the prediction unit 210 predicts the traffic state for one prediction target point on the route.
  • the present invention is not limited to this, and the prediction unit 210 may predict a traffic state for a plurality of prediction target points on the route.
  • the control unit 230 calculates a distribution rate for satisfying the target service level at all the prediction target points on the route. You may decide.
  • FIG. 19 is a block diagram showing a characteristic configuration of the above-described embodiment.
  • the traffic control system 1 includes a prediction unit 210 and a control unit 230.
  • the prediction unit 210 predicts a traffic state on one route among a plurality of routes from the first point to the second point.
  • the control unit 230 distributes the vehicles among the plurality of routes at the first point so that the traffic state on the one route satisfies the predetermined service level when the predicted traffic state on the one route does not satisfy the predetermined service level. Control the amount.
  • Such a characteristic configuration provides an effect that the service quality provided by the toll road can be maintained.
  • 1 traffic control system 100 learning device 101 CPU DESCRIPTION OF SYMBOLS 102 Storage device 103 Input / output device 104 Communication device 110 Prediction object determination part 120 Model learning part 130 Road information storage part 140 Traffic state storage part 150 Distribution information storage part 160 Correlation storage part 200 Distribution control apparatus 201 CPU 202 Storage Device 203 Input / Output Device 204 Communication Device 210 Prediction Unit 220 Determination Unit 230 Control Unit 240 Model Storage Unit 250 Service Level Storage Unit 260 Correlation Storage Unit 300 Output Device 310 Output Unit

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • Theoretical Computer Science (AREA)
  • Marketing (AREA)
  • Development Economics (AREA)
  • General Business, Economics & Management (AREA)
  • Game Theory and Decision Science (AREA)
  • Finance (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Accounting & Taxation (AREA)
  • Tourism & Hospitality (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Traffic Control Systems (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

有料道路が提供するサービス品質を維持する。 交通制御システム1は、予測部210、及び、制御部230を含む。予測部210は、第1地点から第2地点への複数経路の内の一の経路における交通状態を予測する。制御部230は、一の経路における予測した交通状態が所定のサービスレベルを満たさない場合、一の経路における交通状態が所定のサービスレベルを満たすように、第1地点における複数経路間の車両の分配量を制御する。

Description

交通制御システム、交通情報出力装置、交通制御方法、及び、記録媒体
 本発明は、交通制御システム、交通情報出力装置、交通制御方法、及び、記録媒体に関する。
 人口増加が進む都市部では、交通渋滞が特に深刻になっている。このような都市部では、混雑する都市中心部を避けて迂回できる有料道路が設けられている場合が多い。しかしながら、実際に迂回路を利用するかどうかは運転者の判断に依存する上に、各運転者は最短経路を選択する傾向が強い。このため、迂回路による交通分散が期待通りに行われず、不要な渋滞が発生している。このような不要な渋滞を緩和するための技術として、本線道路と迂回道の現在の交通状態(混雑度合や所要時間等)を表示することにより、迂回路に車両を誘導し、迂回路の通行料金を割り引く技術が開示されている。例えば、特許文献1では、走行中の車両により記録された道路渋滞の有無の情報に基づき、渋滞時間に応じて通行料金を割り引く技術が記載されている。特許文献2では、本線道路とバイパス道路の混雑度を比較し、現在の車両の位置から最短時間で移動できる経路を提示する技術が記載されている。また、特許文献3では、交通管制システムが取得した渋滞情報を使って、運転者に本線道路と迂回路の状況を提示し、渋滞を避ける経路を選択した車両の通行料金を割り引く技術が記載されている。
 なお、関連技術として、非特許文献1には、高速道路の2ルート区間に生じるハンチングを抑制するための情報提供方法が開示されている。また、他の関連技術として、非特許文献2、及び、非特許文献3には、データの同一のパターンや規則性を持つグループごとに予測モデルを生成する、異種混合学習技術が開示されている。
特開2003-99832号公報 特開2009-244031号公報 特開2013-196441号公報
大口敬、他「渋滞時の代替経路選択行動に与える交通情報提供効果」、土木計画学研究・論文集 22, 2005年, p.799-804 藤巻遼平、森永聡、「ビッグデータ時代の最先端データマイニング」、NEC技報、Vol.65、No.2、2012年、p.81-85 Riki Eto, et al.、「Fully-Automatic Bayesian Piecewise Sparse Linear Models」、Proceedings of the 17th International Conference on Artificial Intelligence and Statistics (AISTATS)、2014年、p.238-246
 上記の特許文献1から3に開示された技術では、現在の交通状態を提示し、迂回路の通行料金の変更により、混雑の少ない道路を選択するように車両を誘導する。しかしながら、現在の交通状態を通知するだけでは、非特許文献1に記載されているように、運転者が混雑に敏感に反応し、選択可能な経路間で交通量が振動(フラッピング)し、交通状態が安定しない。また、渋滞の要因となる箇所には、実際に渋滞が発生するまで車両が流入し続け、渋滞が発生してから、上述のような誘導が行われる。
 このため、道路が提供すべきサービス品質(最低速度等)は著しく劣化する。この場合、例えば、米国のHOV(High-Occupancy Vehicle)レーンやHOT(High-Occupancy Toll)レーンのように、特定の車両に対する優先サービスを提供する道路では、サービス品質が維持できず、これらのサービスによる道路施策に影響する。
 本発明の課題は、上述の課題を解決し、有料道路が提供するサービス品質を維持できる、交通制御システム、交通情報出力装置、交通制御方法、及び、記録媒体を提供することである。
 本発明の一態様における交通制御システムは、第1地点から第2地点への複数経路の内の一の経路における交通状態を予測する予測手段と、前記一の経路における予測した交通状態が所定のサービスレベルを満たさない場合、前記一の経路における交通状態が前記所定のサービスレベルを満たすように、前記第1地点における前記複数経路間の車両の分配量を制御する、制御手段と、を備える。
 本発明の一態様における交通情報出力装置は、第1地点から第2地点への複数経路の内の一の経路における予測した交通状態が所定のサービスレベルを満たさない場合、前記複数経路間の交通状態に係る指標の予測値の差および料金差に対する前記第1地点における前記複数経路間の分配率を表す感受度モデルに基づき、前記一の経路における交通状態が前記所定のサービスレベルを満たすための前記一の経路の料金を決定する制御装置から、前記一の経路の料金、および、前記複数経路の各々の交通状態に係る指標の予測値を受信し、当該受信した、前記一の経路の料金、および、前記複数経路の各々の交通状態に係る指標の予測値を出力する。
 本発明の一態様における交通制御方法は、第1地点から第2地点への複数経路の内の一の経路における交通状態を予測し、前記一の経路における予測した交通状態が所定のサービスレベルを満たさない場合、前記一の経路における交通状態が前記所定のサービスレベルを満たすように、前記第1地点における前記複数経路間の車両の分配量を制御する。
 本発明の一態様におけるコンピュータが読み取り可能な記録媒体は、コンピュータに、第1地点から第2地点への複数経路の内の一の経路における交通状態を予測し、前記一の経路における予測した交通状態が所定のサービスレベルを満たさない場合、前記一の経路における交通状態が前記所定のサービスレベルを満たすように、前記第1地点における前記複数経路間の車両の分配量を制御する、処理を実行させるプログラムを格納する。
 本発明の効果は、有料道路が提供するサービス品質を維持できることである。
第1の実施形態における制御対象の道路網の例を示す図である。 第1の実施形態における交通制御システム1の構成を示すブロック図である。 第1の実施形態における交通状態の例を示す図である。 第1の実施形態における分配情報の例を示す図である。 第1の実施形態における、車両密度と流度の間の相関関係の例を示す図である。 第1の実施形態における、車両密度と速度の間の相関関係の例を示す図である。 第1の実施形態における目標サービスレベルの例を示す図である。 第1の実施形態における、コンピュータにより実現された学習装置100の構成を示すブロック図である。 第1の実施形態における、コンピュータにより実現された分配制御装置200の構成を示すブロック図である。 第1の実施形態における学習処理を示すフローチャートである。 第1の実施形態における分配制御処理を示すフローチャートである。 第1の実施形態における分配制御処理の具体例を示す図である。 第2の実施形態における制御対象の道路網の例を示す図である。 第2の実施形態における分配情報の例を示す図である。 第2の実施形態における目標サービスレベルの例を示す図である。 第2の実施形態における分配制御処理を示すフローチャートである。 第2の実施形態における分配制御処理の具体例を示す図である。 第2の実施形態における分配制御処理による、有料道路の料金設定の特徴を示す図である。 実施形態の特徴的な構成を示すブロック図である。
 発明を実施するための形態について図面を参照して詳細に説明する。なお、各図面、及び、明細書記載の各実施形態において、同様の構成要素には同一の符号を付与し、説明を適宜省略する。
 はじめに、実施形態における交通状態、及び、サービスレベルについて説明する。
 実施形態では、道路網上の各地点の交通状態を表す指標として、流度、走行速度(以下、単に速度とも記載)、及び、車両密度を用いる。流度は、単位時間あたりに地点を通過する車両数(通過台数)を示す。速度は、地点における複数の車両の速度の平均を示す。車両密度は、各車両が地点を含む所定区間を空間的に占有している割合(空間占有度)、または、各車両が地点を時間的に占有している割合(時間占有度)を示す。空間占有度と時間占有度は、互いに変換可能である。実施形態では、車両密度として、空間占有度を用いる。
 また、道路網では、道路の管理者が利用者に対して提供するサービスのレベル(以下、サービスレベル、または、サービス品質とも記載)が定義される。サービスレベルは、例えば、最低速度や所要時間等、道路網上の特定の地点や特定の区間における、交通状態に係る指標で定義されてもよい。また、サービスレベルは、道路の稼働率、事故や工事による規制や封鎖(ただし、悪天候による規制や封鎖を除く)の時間、通知される所要時間の精度、混雑通知の遅延時間、サービスエリアやパーキングエリアでの待ち時間で定義されてもよい。これらのサービスレベルについて、道路の管理者が利用者に対して提供すべきレベル(以下、目標サービスレベル、または、所定のサービスレベルとも記載)が定義される。なお、目標サービスレベルは、例えば、SLA(Service Level Agreement)により規定された、有料道路の管理者が利用者に対して保証すべきサービスレベルでもよい。以下、実施形態では、目標サービスレベルが有料道路の特定の地点における最低速度の場合を例に説明する。
 (第1の実施形態)
 次に、第1の実施形態について説明する。
 はじめに、第1の実施形態における制御対象の道路網について説明する。第1の実施形態では、制御対象の道路網は、通行料金(以下、単に料金とも記載する)が徴収される有料道路(Toll-way)の道路網であり、複数の経路により交通分散が可能である。
 図1は、第1の実施形態における制御対象の道路網の例を示す図である。図1に示すように、道路上では、交通状態の監視対象の地点Xi(i=0、1、…、Nx-1;Nxは監視対象の地点の数)が定義される。地点X100では、地点X0に到達するための経路として、経路R1、または、経路R2が選択可能である。以下、地点X100を分配地点とも呼ぶ。また、経路R1と経路R2には、異なる料金が設定可能である。また、地点X100では、経路毎の交通状態も監視される。
 第1の実施形態では、両方の経路で目標サービスレベルを満たすように、分配地点(地点X100)における分配率が制御される。分配率は、例えば、分配地点の全通過台数に対する、一方の経路を選択した車両数の割合である。分配率は、分配地点における全流度に対する、一方の経路の流度の割合でもよい。第1の実施形態では、分配率は、経路間の料金差を変更することにより制御される。
 次に、第1の実施形態の構成を説明する。図2は、第1の実施形態における交通制御システム1の構成を示すブロック図である。
 交通制御システム1は、学習装置100、分配制御装置200、及び、出力装置300(以下、交通情報出力装置とも記載)を含む。学習装置100、分配制御装置200、及び、出力装置300は、ネットワーク等により相互に接続される。出力装置300は、例えば、可変掲示板(VMS:Variable Message Sign)であり、分配地点、あるいは、進行方向に対して分配地点よりも手前に設置される。また、出力装置300は、カーナビゲーション装置のような、車載端末装置でもよい。
 学習装置100は、交通状態の予測モデル、及び、分配率の感受度モデルを生成する。予測モデルは、交通状態を予測するためのモデルである。感受度モデルは、各経路の交通状態に係る指標の予測値の差、及び、料金差に対する、分配率の感受度を表すモデルである。実施形態では、各経路の交通状態に係る指標の予測値として、各経路の所要時間の予測値(以下、予測所要時間とも記載)が用いられる。
 分配制御装置200は、予測モデルを用いて各経路の交通状態を予測し、各経路の交通状態が目標サービスレベルを満たすように分配率を決定し、感受度モデルを用いて分配率を達成するための各経路の料金を決定する。
 出力装置300は、道路網の利用者(例えば、道路網における車両の運転者や同乗者)に対して、交通情報を出力(表示)する。交通情報は、各経路の交通状態に係る指標の予測値(予測所要時間)及び、料金を含む。
 学習装置100は、予測対象決定部110、モデル学習部120、道路情報記憶部130、交通状態記憶部140、分配情報記憶部150、及び、相関関係記憶部160を含む。
 道路情報記憶部130は、道路網を示す道路地図、及び、道路網上の各地点や各区間の制限速度を示す道路情報を記憶する。
 交通状態記憶部140は、道路網上の各地点における、過去の交通状態の測定値の履歴を記憶する。交通状態の測定値は、例えば、交通状態収集装置(図示せず)により収集される。交通状態収集装置は、道路網上の各地点に設置されたセンサから、所定の収集間隔で交通状態の測定値を収集する。
 図3は、第1の実施形態における交通状態の例を示す図である。図3の例では、交通状態として、各地点Xiの流度、速度、及び、車両密度の測定値が収集されている。
 分配情報記憶部150は、分配情報を記憶する。分配情報は、出力装置300により過去に出力された各経路の予測所要時間の差および料金の差と、その出力時、あるいは、出力時から所定時間内に観測された分配率との関係の履歴を示す。分配情報は、例えば、分配情報収集装置(図示せず)により収集される。分配情報収集装置は、所定の収集間隔で、出力装置300から、出力(表示)された各経路の予測所要時間、及び、料金を収集するとともに、分配地点に設置されたセンサから、各経路に分配された交通流の流度を収集する。分配情報収集装置は、収集した予測所要時間、及び、料金から、予測所要時間差、及び、料金差をそれぞれ算出し、収集した流度から分配率を算出することにより、分配情報を生成する。
 図4は、第1の実施形態における分配情報の例を示す図である。図4の例では、分配情報として、分配地点X100について、予測所要時間差ΔT、料金差ΔP、及び、分配率yが収集されている。ここで、予測所要時間差ΔTは、例えば、ΔT=TR1-TR2(TR1、TR2は、それぞれ、経路R1、R2の予測所要時間)で表される。料金差ΔPは、例えば、ΔP=PR1-PR2(PR1、PR2は、それぞれ、経路R1、R2の料金)で表される。また、分配率は、例えば、全流度を1としたときの経路R1の流度の割合である。
 相関関係記憶部160は、交通状態を表す指標(流度、走行速度、車両密度)間の相関関係を記憶する。
 図5は、第1の実施形態における、車両密度と流度の間の相関関係の例を示す図である。図6は、第1の実施形態における、車両密度と速度の間の相関関係の例を示す図である。
 一般に、図5に示すように、車両密度が閾値密度以下の領域であれば、車両密度の増加に伴い流度も増加し、車両は円滑に走行できる。したがって、閾値密度以下の領域は自由流領域と呼ばれる。一方、車両密度が閾値密度を超えると、車両密度の増加に伴い流度は低下し、車両が滞留する。このため、閾値密度を超えた領域は渋滞流領域と呼ばれる。同様に、図6に示すように、車両密度が閾値密度以下の領域であれば、速度は、制限速度前後で一定である(自由流領域)。しかしながら、車両密度が閾値密度を超えると、車両密度の増加に伴い、車両は自由に走行できなくなるため、速度は大きく低下する(渋滞流領域)。
 このように、流度、速度、及び、車両密度の間には相関関係があり、道路上の各地点において、これらの指標のいずれかが測定、または、推定できれば、他の指標を推定できる。また、相関関係から得られる閾値密度を用いて、渋滞の発生有無を推定できる。
 相関関係記憶部160は、道路網上の各地点について、図5、図6のような相関関係を記憶する。
 予測対象決定部110は、道路情報記憶部130に記憶された道路地図を参照し、各経路上で交通状態を予測すべき地点(予測対象地点)、及び、当該予測対象地点において交通状態を予測すべき将来の時間(予測対象時刻)を決定する。
 モデル学習部120は、交通状態記憶部140に記憶された、各地点の過去の交通状態に基づき、予測対象地点、及び、予測対象時刻について、予測モデルを生成(学習)する。また、モデル学習部120は、分配情報記憶部150に記憶された分配情報に基づき、感受度モデルを生成(学習)する。
 分配制御装置200は、予測部210、判定部220、制御部230、モデル記憶部240、サービスレベル記憶部250、及び、相関関係記憶部260を含む。
 モデル記憶部240は、学習装置100により生成された予測モデル、及び、感受度モデルを記憶する。
 サービスレベル記憶部250は、道路上の各地点について、目標サービスレベルを記憶する。
 図7は、第1の実施形態における目標サービスレベルの例を示す図である。図7の例では、地点X10、X20における目標サービスレベルとして、SL10(最低速度50km/h)、SL20(最低速度50km/h)が設定されている。
 相関関係記憶部260は、相関関係記憶部160と同様に、道路網上の各地点について、相関関係を記憶する。
 予測部210は、モデル記憶部240に記憶された予測モデルに、各地点の現在の交通状態を適用し、予測対象地点における予測対象時刻の交通状態を予測する。
 判定部220は、両経路の予測対象地点で、予測した交通状態(以下、予測交通状態とも記載する)がサービスレベル記憶部250に記憶されている目標サービスレベルを満たすかどうかを判定する。
 制御部230は、判定の結果、目標サービスレベルを満たさない場合、各経路の予測対象地点で目標サービスレベルを満たすための分配率を決定する。また、制御部230は、各経路の予測所要時間を算出する。さらに、制御部230は、モデル記憶部240に記憶された感受度モデルを用いて、決定した分配率を達成するための各経路の料金を決定する。
 出力装置300は、出力部310を含む。
 出力部310は、分配制御装置200から受信した交通情報を出力する。
 なお、学習装置100、分配制御装置200、及び、出力装置300は、それぞれ、CPU(Central Processing Unit)とプログラムを記憶した記憶媒体とを含み、プログラムに基づく制御によって動作するコンピュータであってもよい。
 図8、及び、図9は、それぞれ、第1の実施形態における、コンピュータにより実現された学習装置100、及び、分配制御装置200の構成を示すブロック図である。
 図8を参照すると、学習装置100は、CPU101、記憶デバイス102(記憶媒体)、入出力デバイス103、及び、通信デバイス104を含む。CPU101は、予測対象決定部110、及び、モデル学習部120を実現するためのプログラムを実行する。記憶デバイス102は、例えば、ハードディスクやメモリ等であり、道路情報記憶部130、交通状態記憶部140、分配情報記憶部150、及び、相関関係記憶部160のデータを記憶する。入出力デバイス103は、例えば、キーボード、ディスプレイ等であり、管理者等から学習の実行指示を受け付ける。通信デバイス104は、交通状態収集装置から交通状態の測定値を、分配情報収集装置から分配情報を、それぞれ受信する。また、通信デバイス104は、予測モデル、及び、感受度モデルを分配制御装置200へ送信する。
 図9を参照すると、分配制御装置200も、学習装置100と同様に、CPU201、記憶デバイス202(記憶媒体)、入出力デバイス203、及び、通信デバイス204を含む。CPU201は、予測部210、判定部220、制御部230を実現するためのプログラムを実行する。記憶デバイス202は、モデル記憶部240、サービスレベル記憶部250、及び、相関関係記憶部260のデータを記憶する。入出力デバイス203は、管理者等から分配制御の実行指示を受け付ける。通信デバイス204は、学習装置100から予測モデル、及び、感受度モデルを受信する。また、通信デバイス204は、出力装置300へ交通情報を送信する。
 出力装置300も、学習装置100や分配制御装置200と同様に、CPU、記憶デバイス(記憶媒体)、入出力デバイス、及び、通信デバイスを含む。CPUは、出力部310を実現するためのプログラムを実行する。通信デバイスは、分配制御装置200から交通情報を受信する。入出力デバイスは、利用者に対して交通情報を出力(表示)する。
 また、学習装置100、分配制御装置200、及び、出力装置300の各構成要素の一部、または、全部は、汎用または専用の回路(circuitry)やプロセッサ、これらの組み合わせによって実現されてもよい。これらの回路やプロセッサは、単一のチップによって構成されてもよいし、バスを介して接続される複数のチップによって構成されてもよい。また、学習装置100、分配制御装置200、及び、出力装置300の各構成要素の一部、または、全部は、上述した回路等とプログラムとの組み合わせによって実現されてもよい。
 学習装置100、分配制御装置200、及び、出力装置300の各構成要素の一部、または、全部が、複数の情報処理装置や回路等により実現される場合、複数の情報処理装置や回路等は、集中配置されてもよいし、分散配置されてもよい。例えば、情報処理装置や回路等は、クライアントアンドサーバシステム、クラウドコンピューティングシステム等、各々が通信ネットワークを介して接続される形態として実現されてもよい。
 また、学習装置100、分配制御装置200、及び、出力装置300の内の一部、または、全部が、一つの装置により構成されていてもよい。
 次に、第1の実施形態の動作について説明する。
<学習処理>
 はじめに、学習装置100による学習処理について説明する。
 図10は、第1の実施形態における学習処理を示すフローチャートである。
 ここでは、図1の道路網の道路情報が、道路情報記憶部130に保存されていると仮定する。また、図3の交通状態、及び、図4の分配情報が、それぞれ、交通状態記憶部140、及び、分配情報記憶部150に保存されていると仮定する。
 はじめに、学習装置100の予測対象決定部110は、予測対象地点を決定する(ステップS101)。ここで、予測対象決定部110は、分配地点で選択可能な各経路について、予測対象地点を決定する。予測対象地点には、例えば、過去の交通状態等において渋滞が頻発した地点が用いられる。予測対象地点は、管理者等により、予め指定されてもよい。
 例えば、予測対象決定部110は、図1の経路R1、R2における、地点X10、X20を、予測対象地点に決定する。
 予測対象決定部110は、予測対象時刻を決定する(ステップS102)。ここで、予測対象決定部110は、分配地点と予測対象地点との間の距離、及び、制限速度に基づき、分配地点から予測対象地点までの到達時間を算出し、「現在時刻から到達時間後」を、予測対象時刻に決定する。
 例えば、簡単化のため、図1において、分配地点X100から予測対象地点X10までの距離D1と予測対象地点X20までの距離D2が等しく(D1=D2=D0)、経路R1とR2の制限速度も等しいと仮定する。この場合、予測対象決定部110は、距離D0と経路R1、R2の制限速度を用いて、分配地点X100から予測対象地点X10、X20までの到達時間T0を算出し、「現在時刻からT0時間後」を予測対象時刻に決定する。
 モデル学習部120は、予測モデルを生成する(ステップS103)。ここで、モデル学習部120は、各地点の過去の交通状態に基づき、予測対象地点、及び、予測対象時刻について、予測モデルを生成する。予測モデルは、例えば、各地点の過去の交通状態を用いた機械学習技術により生成される。この場合、予測モデルは、非特許文献2、3に開示されている異種混合学習技術を用いて生成されてもよい。また、予測モデルは、線形回帰モデルや、自己回帰モデル、自己回帰移動平均モデル等、一般的な時系列モデルでもよい。また、予測モデルは、上述の交通状態を表す指標(流度、速度、車両密度)の内の1以上について、生成される。
 予測モデルには、例えば、数1式の線形関数が用いられる。
Figure JPOXMLDOC01-appb-M000001
 ここで、tは現在時刻、t+T0は予測対象時刻、V’j,t+T0は予測対象地点Xj(j=0、1、…、Nx-1)における予測対象時刻t+T0の速度の予測値(以下、予測速度とも記載)、Vi,tは各地点Xiにおける現在時刻tの速度である。また、aijはV’j,t+T0とVi,tとの関係性の大きさを示す係数、bijは速度とは関係無い要因を示す切片である。
 例えば、モデル学習部120は、図3の交通状態に基づき、予測対象地点X10、X20における予測対象時刻t+T0の速度について、数1式のような予測モデルを生成する。
 なお、各地点の現在の交通状態と予測対象地点における予測対象時刻の交通状態との関係性を表すことができれば、予測モデルとして、数1式以外の形式のモデルが用いられてもよい。
 モデル学習部120は、感受度モデルを生成する(ステップS104)。ここで、モデル学習部120は、分配情報に基づき、分配地点の感受度モデルを生成する。
 一般に、分配地点において選択可能な経路の内、利用者がどちらの経路を選択するかは、利用者に対して提示された、各経路の予測所要時間差、及び、料金差に依存すると考えられる。例えば、図1において、経路R2の予測所要時間が経路R1の予測所要時間より短く、経路R2の料金が経路R1の料金より高いと仮定する。この場合、利用者は、予測所要時間差が料金差に対して妥当であると判断した場合、予測所要時間の短い経路R2を選択する傾向があると考えられる。一方、利用者は、予測所要時間差が料金差に対して妥当でないと判断した場合、予測所要時間は長くても経路R1を選択する傾向があると考えられる。すなわち、予測所要時間差に対して料金差が小さければ、予測所要時間がより短い経路が選ばれ、予測所要時間差に対して料金差が大きければ、予測所要時間がより長い経路が選ばれると考えられる。
 この場合、感受度モデルは、例えば、数2式で表される。
Figure JPOXMLDOC01-appb-M000002
 ここで、αは、予測所要時間差ΔTと分配率yとの関係性の大きさを表す係数である。また、βは、料金差ΔPと分配率yとの関係性の大きさを表す係数である。モデル学習部120は、分配情報に対して、例えば、回帰分析を行うことにより、係数α、βの値を算出する。
 例えば、モデル学習部120は、図4の分配情報に基づき、分配地点X100について、数2式のような感受度モデルを生成する。
 モデル学習部120は、生成した予測モデル、及び、感受度モデルを、分配制御装置200へ送信する(ステップS105)。分配制御装置200は、予測モデル、及び、感受度モデルをモデル記憶部240に保存する。
 なお、ここでは、簡単化のため、予測モデル、及び、感受度モデルとして、それぞれ、単一種類のモデルを用いたが、天候、曜日等のパターン毎に、異なる予測モデルや感受度モデルを用いてもよい。
<分配制御処理>
 次に、分配制御装置200による分配制御処理について説明する。
 図11は、第1の実施形態における分配制御処理を示すフローチャートである。分配制御処理は、所定の時間間隔で、定期的に実行される。
 ここでは、図7の目標サービスレベルがサービスレベル記憶部250に保存されていると仮定する。
 はじめに、予測部210は、各経路の予測対象地点における予測対象時刻の交通状態を予測する(ステップS201)。ここで、予測部210は、予測モデルに、交通状態収集装置から取得した各地点の現在の交通状態を適用し、予測交通状態を算出する。
 例えば、予測部210は、予測モデルを用いて、予測対象地点X10、X20における予測対象時刻t+T0の予測速度V’10,t+T0、V’20,t+T0を算出する。
 制御部230は、予測交通状態に基づき、各経路の予測所要時間を算出する(ステップS202)。
 例えば、制御部230は、予測対象地点X10、X20における予測速度V’10,t+T0、V’20,t+T0に基づき、経路R1、R2の予測所要時間TR1、TR2を算出する。
 判定部220は、両経路の予測対象地点で、予測交通状態が目標サービスレベルを満たすかどうかを判定する(ステップS203)。
 例えば、判定部220は、予測速度V’10,t+T0、V’20,t+T0が、それぞれ、図7の予測対象地点X10、X20における目標サービスレベルSL10、SL20として設定された最低速度(50km/h)を満たすかどうかを判定する。
 両経路の予測対象地点で目標サービスレベルを満たす場合(ステップS203/Y)、制御部230は、ステップS202で算出した予測所要時間で交通情報を更新する(ステップS204)。制御部230は、更新した交通情報を出力装置300に送信し、出力させる。
 例えば、予測速度V’10,t+T0、V’20,t+T0が、それぞれ、目標サービスレベルSL10、SL20を満たす場合、制御部230は経路R1、R2の予測所要時間TR1、TR2で交通情報を更新する。
 一方、目標サービスレベルを満たさない経路がある場合(ステップS203/N)、制御部230は、両経路の予測対象地点で目標サービスレベルを満たすための新たな分配率を決定する(ステップS205)。ここで、制御部230は、目標サービスレベルを満たさない経路の予測対象地点のサービスレベルを目標サービスレベルに設定した場合の分配率を算出する。そして、制御部230は、算出した分配率により、他の経路の予測対象地点でも、交通状態が目標サービスレベルを満たすかどうかを判定する。目標サービスレベルを満たす場合、制御部230は、算出した分配率を、新たな分配率に決定する。
 例えば、予測速度V’10,t+T0が目標サービスレベルSL10を満たさない場合、制御部230は、地点X10の速度に目標サービスレベルSL10として設定された最低速度を設定する。制御部230は、地点X10の相関関係を用いて、当該最低速度に対応する流度(経路R1の流度)を求める。そして、制御部230は、地点X100における経路R1、R2の現在の流度の合計値に対する、求めた経路R1の流度の割合を、地点X100の新たな分配率として算出する。さらに、制御部230は、地点X100における経路R1、R2の現在の流度の合計値と算出した新たな分配率から、経路R2の流度を算出し、地点X20の相関関係を用いて、当該流度に対応する速度を求める。そして、制御部230は、求めた地点X20の速度が目標サービスレベルSL20として設定された最低速度を満たすかどうかを判定する。
 新たな分配率を決定できた場合(ステップS206/Y)、ステップS208以降の処理に進む。
 一方、新たな分配率を決定できない場合(ステップS206/N)、制御部230は、新たな分配率を、例えば0.5等の所定値に決定する(ステップS207)。
 制御部230は、ステップS205、または、S207で決定した新たな分配率を達成するための、各経路の料金を決定する(ステップS208)。ここで、制御部230は、例えば、数2式の感受度モデルを用いて、ステップS205、または、S207で決定した新たな分配率、及び、ステップS202で算出した予測所要時間の差に対応する料金差を算出する。そして、制御部230は、経路間の料金差が算出された料金差になるように、両経路、または、一方の経路の料金を設定する。
 例えば、制御部230は、新たな分配率と予測所要時間TR1、TR2の差を感受度モデルに適用することにより、料金差を算出する。制御部230は、算出した料金差に従って、経路R1、R2の料金PR1、PR2を設定する。
 さらに、制御部230は、ステップS205で決定した新たな分配率に対応する、各経路の予測所要時間を再度算出する(ステップS209)。
 例えば、制御部230は、地点X10の速度(最低速度)、及び、地点X20の速度(分配率から算出した速度)に基づき、経路R1、R2の予測所要時間TR’1、TR’2をそれぞれ算出する。
 制御部230は、ステップS209で算出した各経路の予測所要時間、及び、ステップS208で決定した各経路の料金で交通情報を更新する(ステップS210)。制御部230は、更新した交通情報を出力装置300に送信し、出力させる。
 例えば、制御部230は、経路R1、R2の予測所要時間TR’1、TR’2、及び、料金PR1、PR2で交通情報を更新する。
 図12は、第1の実施形態における分配制御処理の具体例を示す図である。図12では、各時刻について、地点X10、X20の予測速度、及び、地点X100の出力装置300の交通情報(各経路の予測所要時間、及び、料金)が示されている。
 例えば、時刻t0において、時刻t0+T0の地点X10、X20の予測速度「100km/h」、「100km/h」が算出される。この場合、両地点の予測速度が目標サービスレベルSL10、SL20(最低速度:50km/h)を満たす。したがって、交通情報における予測所要時間は更新されるが、経路R1、R2の料金「400円」、「600円」は変更されない。
 同様に、時刻t1、t2においては、予測速度が目標サービスレベルを満たしているため、予測所要時間のみが更新される。
 時刻t3において、車両数の増加により、時刻t3+T0の地点X10の予測速度が低下したと仮定する。この場合、地点X10の予測速度「40km/h」が目標サービスレベルSL10を満たさない。制御部230は、地点X10の速度が目標サービスレベルSL10を満たすための新たな分配率を「0.6」と算出する。そして、制御部230は、算出した分配率に基づき、地点X20の速度「80km/h」を算出する。地点X20の速度「80km/h」は目標サービスレベルSL20を満たしているため、制御部230は新たな分配率を「0.6」に決定する。制御部230は、新たな分配率「0.6」、予測所要時間差「27分」に対応する料金差を「100円」と算出する。制御部230は、算出した料金差に基づき、経路R1、R2の料金を、それぞれ、「500円」、「600円」と決定する。さらに、制御部230は、地点X10、X20の速度「50km/h」、「80km」に基づき、経路R1、R2の予測所要時間「34分」、「20分」を算出する。そして、制御部230は、経路R1、R2の予測所要時間「34分」、「20分」、料金「500円」、「600円」で交通情報を更新する。
 このように、有料道路の選択可能な経路の内の一方の経路で、混雑により、予測交通状態が目標サービスレベルを満たさない場合、他方の経路がより選択されるように、各経路の料金が設定される。これにより、混雑する経路を選択する車両が減少(混雑しない経路を選択する車両が増加)し、交通状態が目標サービスレベル以上に維持される。
 以上により、第1の実施形態の動作が完了する。
 なお、第1の実施の形態では、制御対象の道路網が、地点X100から地点X0に到達するための経路として、経路R1と経路R2の二つの経路を有する場合を例に説明した。しかしながら、これに限らず、道路網が、地点X100から地点X0に到達するための経路として、三つ以上の複数の経路を含んでいてもよい。この場合、学習装置100は、感受度モデルとして、各経路の交通状態に係る指標の予測値の差、及び、料金差に対する、分配率を表すモデルを生成する。分配制御装置200は、複数経路の内の少なくとも一つで予測交通状態が目標サービスレベルを満たさない場合、複数経路の各々における交通状態が目標サービスレベルを満たすための分配率を決定する。そして、分配制御装置200は、感受度モデルを用いて、決定した分配率を達成するための各経路の料金を決定する。
 次に、第1の実施形態の効果を説明する。
 第1の実施形態によれば、複数の選択可能な経路を有する有料道路において、有料道路が提供するサービス品質を維持できる。その理由は、交通制御システム1が、複数経路の各々における交通状態を予測し、複数経路の内の少なくとも一つで予測した交通状態が所定のサービスレベルを満たさない場合、複数経路間の車両の分配量を制御するためである。ここで、交通制御システム1は、複数経路の各々における交通状態が所定のサービスレベルを満たすように、分配量を制御する。
 また、第1の実施形態によれば、複数の選択可能な経路を有する有料道路において、簡易な構成で、有料道路が提供するサービス品質を維持できる。その理由は、交通制御システム1が、感受度モデルに基づき、複数経路の各々における交通状態が所定のサービスレベルを満たすための複数経路の各々の料金を決定し、複数経路の各々の交通状態に係る指標の予測値とともに出力するためである。これにより、利用者に対して交通状態に係る指標の予測値(予測所要時間)と料金を表示する簡易な構成で、経路間の車両の分配量を制御できる。
 (第2の実施形態)
 次に、第2の実施形態について説明する。
 はじめに、第2の実施形態における制御対象の道路網について説明する。
 第2の実施形態では、制御対象の道路網は、通行料金が徴収される有料道路(Toll-way)と通行料金が徴収されない一般道路(Freeway)とを含む道路網であり、有料道路と一般道路により交通分散が可能である。
 図13は、第2の実施形態における制御対象の道路網の例を示す図である。地点X100では、地点X0に到達するための経路として、有料道路(経路R1)、または、一般道路(経路R2)が選択可能である。
 第2の実施形態では、有料道路で目標サービスレベルを維持しながら、有料道路(経路R1)の料金収入が最大化されるように、分配地点(地点X100)における分配率が制御される。第2の実施形態では、分配率は、有料道路(経路R1)の料金(経路間の料金差)を変更することにより制御される。
 次に、第2の実施形態の構成を説明する。第2の実施形態における交通制御システム1の構成を示すブロック図は、第1の実施形態(図2)と同様となる。
 学習装置100の分配情報記憶部150は、第1の実施形態と同様に分配情報を記憶する。第2の実施形態では、分配情報の料金差として、有料道路(経路R1)の料金が設定される。
 図14は、第2の実施形態における分配情報の例を示す図である。図14の例では、分配情報として、分配地点X100について、予測所要時間差ΔT、料金差ΔP(有料道路(経路R1)の料金PR1)、及び、分配率yが収集されている。
 分配制御装置200のサービスレベル記憶部250は、有料道路(経路R1)上の各地点について、目標サービスレベルを記憶する。
 図15は、第2の実施形態における目標サービスレベルの例を示す図である。図15の例では、地点X10における目標サービスレベルとして、SL10(最低速度80km/h)が設定されている。
 判定部220は、有料道路(経路R1)上の予測対象地点で、予測した交通状態がサービスレベル記憶部250に記憶されている目標サービスレベルを満たすかどうかを判定する。
 制御部230は、判定の結果、目標サービスレベルを満たさない場合、有料道路(経路R1)上の予測対象地点で目標サービスレベルを満たすための分配率を決定する。また、制御部230は、感受度モデルを用いて、決定した分配率を達成するための有料道路(経路R1)の料金を決定する。また、制御部230は、判定の結果、目標サービスレベルを満たす場合、感受度モデルを用いて、有料道路(経路R1)の料金収入の合計が最大化されるように分配率、及び、料金を決定する。
 次に、第2の実施形態の動作について説明する。
<学習処理>
 はじめに、学習装置100による学習処理について説明する。
 第2の実施形態における学習処理を示すフローチャートは、第1の実施形態(図10)と同様となる。
 ここでは、図13の道路網の道路情報が、道路情報記憶部130に保存されていると仮定する。また、図14の分配情報が、分配情報記憶部150に保存されていると仮定する。
 例えば、予測対象決定部110は、図13の有料道路(経路R1)、一般道路(経路R2)における、地点X10、X20を、予測対象地点に決定する。予測対象決定部110は、分配地点X100から予測対象地点X10、X20までの到達時間T0を算出し、「現在時刻からT0時間後」を予測対象時刻に決定する。モデル学習部120は、予測対象地点X10、X20における予測対象時刻t+T0の車両速度について、数1式のような予測モデルを生成する。モデル学習部120は、図14の分配情報に基づき、分配地点X100について、数2式のような感受度モデルを生成する。
<分配制御処理>
 次に、分配制御装置200による分配制御処理について説明する。
 図16は、第2の実施形態における分配制御処理を示すフローチャートである。
 ここでは、図15の目標サービスレベルがサービスレベル記憶部250に保存されていると仮定する。
 はじめに、予測部210は、各経路の予測対象地点における予測対象時刻の交通状態を予測する(ステップS301)。
 例えば、予測部210は、予測モデルを用いて、予測対象地点X10、X20における予測対象時刻t+T0の予測速度V’10,t+T0、V’20,t+T0を算出する。
 制御部230は、予測交通状態に基づき、各経路の予測所要時間を算出する(ステップS302)。
 例えば、制御部230は、予測対象地点X10、X20における予測速度V’10,t+T0、V’20,t+T0に基づき、有料道路(経路R1)、一般道路(経路R2)の予測所要時間TR1、TR2を算出する。
 判定部220は、有料道路(経路R1)上の予測対象地点で、予測交通状態が目標サービスレベルを満たすかどうかを判定する(ステップS303)。
 例えば、判定部220は、予測速度V’10,t+T0が、図15の予測対象地点X10における目標サービスレベルSL10として設定された最低速度(80km/h)を満たすかどうかを判定する。
 目標サービスレベルを満たす場合(ステップS303/Y)、制御部230は、次の処理を行う。制御部230は、目標サービスレベルを満たしながら有料道路(経路R1)による料金収入の合計を最大化するための新たな分配率、及び、料金を決定する(ステップS304)。ここで、制御部230は、例えば、数2式の感受度モデル、数3式、及び、数4式を用いて、新たな分配率、及び、料金差を算出する。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 ここで、Rtotalは有料道路(経路R1)による料金収入の合計値、N1は分配地点における有料道路(経路R1)の流度、Ntotalは分配地点における有料道路(経路R1)の流度と一般道路(経路R2)の流度の合計値である。数2式の感受度モデルの予測所要時間の差には、ステップS302で算出した予測所要時間の差が設定される。また、有料道路(経路R1)の流度N1の上限値として、有料道路(経路R1)上の予測対象地点の交通状態が目標サービスレベルを満たすような値が与えられる。また、数4式の流度の合計値Ntotalには、分配地点の現在の交通状態で示される流度が用いられる。さらに、有料道路(経路R1)の料金(料金差)の上限値、及び、下限値が与えられてもよい。制御部230は、算出した料金差を有料道路の料金に設定する。
 例えば、予測速度V’10,t+T0が目標サービスレベルSL10を満たす場合、制御部230は、地点X10の相関関係を用いて、目標サービスレベルSL10として設定された最低速度に対応する流度(有料道路(経路R1)の流度の上限値)を求める。制御部230は、有料道路(経路R1)、一般道路(経路R2)の予測所要時間TR1、TR2の差、地点X100における現在の流度の合計値、及び、有料道路(経路R1)の流度の上限値を用いて、新たな分配率、及び、料金差を算出する。制御部230は、算出した料金差で有料道路(経路R1)の料金PR1を更新する。
 さらに、制御部230は、ステップS304で決定した新たな分配率に対応する、各経路の予測所要時間を再度算出する(ステップS305)。
 例えば、制御部230は、地点X100の現在の流度と算出した新たな分配率から、有料道路(経路R1)、一般道路(経路R2)の流度を算出し、これらを、地点X10、X20の流度に設定する。制御部230は、地点X10、X20の相関関係を用いて、地点X10、X20の流度に対応する速度を求め、求めた速度に基づき、有料道路(経路R1)、一般道路(経路R2)の予測所要時間TR’1、TR’2をそれぞれ算出する。
 制御部230は、ステップS305で算出した各経路の予測所要時間、及び、ステップS304で決定した有料道路(経路R1)の料金で交通情報を更新する(ステップS306)。制御部230は、更新した交通情報を出力装置300に送信し、出力させる。
 例えば、制御部230は、有料道路(経路R1)、一般道路(経路R2)の予測所要時間TR’1、TR’2、及び、料金PR1で交通情報を更新する。
 一方、目標サービスレベルを満たさない場合(ステップS303/N)、制御部230は、有料道路(経路R1)の予測対象地点で目標サービスレベルを満たすための新たな分配率を決定する(ステップS307)。ここで、制御部230は、有料道路(経路R1)の予測対象地点のサービスレベルを目標サービスレベルに設定した場合の分配率を、新たな分配率に決定する。
 例えば、予測速度V’10,t+T0が目標サービスレベルSL10を満たさない場合、制御部230は、地点X10の速度に目標サービスレベルSL10として設定された最低速度を設定する。制御部230は、地点X10の相関関係を用いて、当該最低速度に対応する流度(有料道路(経路R1)の流度)を求める。そして、制御部230は、地点X100における有料道路(経路R1)、一般道路(経路R2)の現在の流度の合計値に対する、求めた有料道路(経路R1)の流度の割合を、地点X100の新たな分配率として算出する。
 制御部230は、ステップS307で決定した新たな分配率を達成するための、有料道路(経路R1)の料金を決定する(ステップS308)。ここで、制御部230は、例えば、数2式の感受度モデルを用いて、ステップS307で決定した新たな分配率、及び、ステップS302で算出した予測所要時間の差に対応する料金差を算出する。そして、制御部230は、算出された料金差を有料道路(経路R1)の料金に設定する。
 例えば、制御部230は、新たな分配率と予測所要時間TR1、TR2の差を感受度モデルに適用することにより料金差を算出し、有料道路(経路R1)の料金PR1に設定する。
 さらに、制御部230は、ステップS307で決定した新たな分配率に対応する、各経路の予測所要時間を再度算出する(ステップS309)。
 例えば、制御部230は、地点X100における有料道路(経路R1)、一般道路(経路R2)の現在の流度の合計値と算出した新たな分配率から、経路R2の流度を算出し、地点X20の相関関係を用いて、当該流度に対応する速度を求める。制御部230は、地点X10の速度(最低速度)、及び、地点X20の速度(分配率から算出した速度)に基づき、有料道路(経路R1)、一般道路(経路R2)の予測所要時間TR’1、TR’2をそれぞれ算出する。
 制御部230は、ステップS309で算出した各経路の予測所要時間、及び、ステップS308で決定した有料道路の料金で交通情報を更新する(ステップS310)。制御部230は、更新した交通情報を出力装置300に送信し、出力させる。
 例えば、制御部230は、有料道路(経路R1)、一般道路(経路R2)の予測所要時間TR’1、TR’2、及び、料金PR1で交通情報を更新する。
 図17は、第2の実施形態における分配制御処理の具体例を示す図である。ここでは、有料道路(経路R1)の通常料金が「500円」であると仮定する。
 例えば、時刻t10において、車両数の増加により、時刻t10+T0の地点X10、X20の予測速度が低下したと仮定する。この場合、地点X10の予測速度「70km/h」が目標サービスレベルSL10(最低速度:80km/h)を満たさない。制御部230は、地点X10の速度が目標サービスレベルSL10を満たすための新たな分配率を「0.3」と算出する。制御部230は、新たな分配率「0.3」、所要時間差「39分」に対応する料金を、通常料金より高い「1000円」に設定する。制御部230は、新たな分配率に基づき、地点X10、X20の速度「80km/h」、「30km/h」を算出し、有料道路(経路R1)、一般道路(経路R2)の予測所要時間「45分」、「120分」を算出する。そして、制御部230は、有料道路(経路R1)、一般道路(経路R2)の予測所要時間「45分」、「120分」、料金「1000円」で交通情報を更新する。
 また、時刻t20において、車両数の低下により、時刻t20+T0の地点X10の予測速度が増加したと仮定する。この場合、地点X10の予測速度「80km/h」が目標サービスレベルSL10を満たす。制御部230は、地点X10の速度が目標サービスレベルSL10を満たしつつ、料金収入を最大化するための、所要時間差「45分」に対応する新たな分配率を「0.5」、料金を通常料金「500円」に決定する。制御部230は、新たな分配率に基づき、地点X10、X20の速度「90km/h」、「35km/h」を算出し、有料道路(経路R1)、一般道路(経路R2)の予測所要時間「40分」、「100分」を算出する。そして、制御部230は、有料道路(経路R1)、一般道路(経路R2)の予測所要時間「40分」、「100分」、料金「500円」で交通情報を更新する。
 さらに、時刻t30において、車両数の更なる低下により、時刻t30+T0の地点X10、X20の予測速度が増加したと仮定する。この場合、地点X10の予測速度「100km/h」が目標サービスレベルSL10を満たす。制御部230は、地点X10の速度が目標サービスレベルSL10を満たしつつ、料金収入を最大化するための、所要時間差「24分」に対応する新たな分配率を「0.8」、料金を通常料金より安い「300円」に決定する。制御部230は、新たな分配率に基づき、地点X10、X20の速度「100km/h」、「60km/h」を算出し、有料道路(経路R1)、一般道路(経路R2)の予測所要時間「36分」、「60分」を算出する。そして、制御部230は、有料道路(経路R1)、一般道路(経路R2)の予測所要時間「36分」、「60分」、料金「300円」で交通情報を更新する。
 図18は、第2の実施形態における分配制御処理による、有料道路の料金設定の特徴を示す図である。
 例えば、図17の具体例の時刻t10のケースのように、有料道路の混雑により、有料道路の予測交通状態が目標サービスレベルを満たさない場合、一般道路の状況にかかわらず、有料道路の料金は通常料金より値上げされる。これにより、混雑する有料道路を選択する車両が減少し、有料道路の目標サービスレベルが維持される。
 また、時刻t20のケースのように、一般道路は混雑しているものの有料道路の混雑が解消した場合、有料道路の料金に通常料金付近の料金が設定される。これにより、有料道路を選択する車両数は、目標サービスレベルを維持し、料金収入が最大化できるように制御される。
 さらに、時刻t30のケースのように、有料道路と一般道路の両方で混雑が解消した場合、有料道路の料金は通常料金より値下げされる。これにより、有料道路を選択する車両が増加し、有料道路の目標サービスレベル、及び、料金収入の最大化が維持される。
 なお、上述の例では、有料道路の料金を、通常料金を基準として値上げ、または、値下げしたが、一般的に、有料道路の料金の値上げは利用者に受け入れられない可能性が高い。従って、料金の上限を通常料金に設定し、通常料金からの値引きにより料金を変更してもよい。
 以上により、第2の実施形態の動作が完了する。
 なお、第2の実施の形態では、制御対象の道路網が、地点X100から地点X0に到達するための経路として、有料道路(経路R1)と一般道路(経路R2)の二つの経路を有する場合を例に説明した。しかしながら、これに限らず、道路網が、地点X100から地点X0に到達するための経路として、有料道路と一般道路を含む、三つ以上の複数の経路を含んでいてもよい。この場合、学習装置100は、感受度モデルとして、各経路の交通状態に係る指標の予測値の差、及び、料金差に対する、分配率を表すモデルを生成する。分配制御装置200は、有料道路の経路の内の少なくとも一つで予測交通状態が目標サービスレベルを満たさない場合、有料道路の経路の各々における交通状態が目標サービスレベルを満たすための分配率を決定する。そして、分配制御装置200は、感受度モデルを用いて、決定した分配率を達成するための有料道路の各経路の料金を決定する。また、分配制御装置200は、有料道路の経路の各々で予測交通状態が目標サービスレベルを満たす場合、感受度モデルを用いて、有料道路による料金収入の合計を最大化するための分配率、及び、各経路の料金を決定する。
 次に、第2の実施形態の効果を説明する。
 第2の実施形態によれば、有料道路と一般道路が選択可能な道路網において、有料道路が提供するサービス品質を維持できる。その理由は、交通制御システム1が、複数経路の内の一の経路における交通状態を予測し、交通状態が所定のサービスレベルを満たさない場合、一の経路における交通状態が所定のサービスレベルを満たすように、複数経路間の車両の分配量を制御するためである。
 また、第2の実施形態によれば、有料道路と一般道路が選択可能な道路網において、簡易な構成で、有料道路が提供するサービス品質を維持できる。その理由は、交通制御システム1が、感受度モデルに基づき、一の経路における交通状態が前記所定のサービスレベルを満たすための一の経路の料金を決定し、複数経路の各々の交通状態に係る指標の予測値とともに出力するためである。これにより、利用者に対して交通状態に係る指標の予測値(予測所要時間)と料金を表示する簡易な構成で、経路間の車両の分配量を制御できる。
 また、第2の実施形態によれば、有料道路と一般道路が選択可能な道路網において、有料道路が提供するサービス品質を維持しながら、有料道路による料金収入を最大化できる。その理由は、交通制御システム1が、感受度モデルに基づき、一の経路における交通状態が所定のサービスレベルを満たし、かつ、一の経路の料金に一の経路に分配された車両数を乗じた値の合計が最大化されるように、一の経路の料金を決定するためである。
 なお、上述の各実施形態では、出力装置300が、各経路の交通状態に係る指標の予測値として、予測所要時間を利用者に出力した。しかしながら、これに限らず、利用者が経路の選択に用いる指標であれば、出力装置300は、交通状態に係る指標の予測値として、予測速度等、他の指標の予測値を出力してもよい。
 また、上述の各実施形態では、予測部210が、経路上の1つの予測対象地点について、交通状態を予測した。しかしながら、これに限らず、予測部210は、経路上の複数の予測対象地点について、交通状態を予測してもよい。この場合、制御部230は、経路上の複数の予測対象地点のいずれかで交通状態が目標サービスレベルを満たさない場合、経路上の全ての予測対象地点で目標サービスレベルを満たすための分配率を決定してもよい。
 (実施形態の特徴的な構成)
 次に、上述の実施形態の特徴的な構成を説明する。
 図19は、上述の実施形態の特徴的な構成を示すブロック図である。
 図19を参照すると、交通制御システム1は、予測部210、及び、制御部230を含む。予測部210は、第1地点から第2地点への複数経路の内の一の経路における交通状態を予測する。制御部230は、一の経路における予測した交通状態が所定のサービスレベルを満たさない場合、一の経路における交通状態が所定のサービスレベルを満たすように、第1地点における複数経路間の車両の分配量を制御する。
 このような特徴的な構成により、有料道路が提供するサービス品質を維持できるという効果が得られる。
 以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2016年11月25日に出願された日本出願特願2016-229056を基礎とする優先権を主張し、その開示のすべてをここに取り込む。
 1  交通制御システム
 100  学習装置
 101  CPU
 102  記憶デバイス
 103  入出力デバイス
 104  通信デバイス
 110  予測対象決定部
 120  モデル学習部
 130  道路情報記憶部
 140  交通状態記憶部
 150  分配情報記憶部
 160  相関関係記憶部
 200  分配制御装置
 201  CPU
 202  記憶デバイス
 203  入出力デバイス
 204  通信デバイス
 210  予測部
 220  判定部
 230  制御部
 240  モデル記憶部
 250  サービスレベル記憶部
 260  相関関係記憶部
 300  出力装置
 310  出力部

Claims (10)

  1.  第1地点から第2地点への複数経路の内の一の経路における交通状態を予測する予測手段と、
     前記一の経路における予測した交通状態が所定のサービスレベルを満たさない場合、前記一の経路における交通状態が前記所定のサービスレベルを満たすように、前記第1地点における前記複数経路間の車両の分配量を制御する、制御手段と、
     を備えた交通制御システム。
  2.  前記制御手段は、前記複数経路間の交通状態に係る指標の予測値の差および料金差に対する前記第1地点における前記複数経路間の分配率を表す感受度モデルに基づき、前記一の経路における交通状態が前記所定のサービスレベルを満たすための前記一の経路の料金を決定し、前記複数経路の各々の交通状態に係る指標の予測値とともに出力することにより、前記分配量を制御する、
     請求項1に記載の交通制御システム。
  3.  前記制御手段は、前記第1地点における交通状態および前記感受度モデルに基づき、前記一の経路における交通状態が前記所定のサービスレベルを満たし、かつ、前記一の経路の料金に前記一の経路に分配された車両数を乗じた値の合計が最大化されるように、前記一の経路の料金を決定する、
     請求項2に記載の交通制御システム。
  4.  前記予測手段は、前記複数経路の各々における交通状態を予測し、
     前記制御手段は、前記複数経路の内の少なくとも一つで予測した交通状態が前記所定のサービスレベルを満たさない場合、前記複数経路の各々における交通状態が前記所定のサービスレベルを満たすように、前記第1地点における前記複数経路間の車両の分配量を制御する、
     請求項1に記載の交通制御システム。
  5.  前記制御手段は、前記複数経路間の交通状態に係る指標の予測値の差および料金差に対する前記第1地点における前記複数経路間の分配率を表す感受度モデルに基づき、前記複数経路の各々における交通状態が前記所定のサービスレベルを満たすための前記複数経路の各々の料金を決定し、前記複数経路の各々の交通状態に係る指標の予測値とともに出力することにより、前記分配量を制御する、
     請求項4に記載の交通制御システム。
  6.  さらに、前記第1地点の分配率と、前記複数経路間の交通状態に係る指標差および料金差と、の履歴に基づき、前記感受度モデルを生成する、学習手段を備える、
     請求項2、3、または、5に記載の交通制御システム。
  7.  前記交通状態は速度であり、前記サービスレベルは最低速度であり、前記交通状態に係る指標は所要時間である、
     請求項1乃至6のいずれか1項に記載の交通制御システム。
  8.  第1地点から第2地点への複数経路の内の一の経路における予測した交通状態が所定のサービスレベルを満たさない場合、前記複数経路間の交通状態に係る指標の予測値の差および料金差に対する前記第1地点における前記複数経路間の分配率を表す感受度モデルに基づき、前記一の経路における交通状態が前記所定のサービスレベルを満たすための前記一の経路の料金を決定する制御装置から、前記一の経路の料金、および、前記複数経路の各々の交通状態に係る指標の予測値を受信し、当該受信した、前記一の経路の料金、および、前記複数経路の各々の交通状態に係る指標の予測値を出力する出力手段、
     を備えた交通情報出力装置。
  9.  第1地点から第2地点への複数経路の内の一の経路における交通状態を予測し、
     前記一の経路における予測した交通状態が所定のサービスレベルを満たさない場合、前記一の経路における交通状態が前記所定のサービスレベルを満たすように、前記第1地点における前記複数経路間の車両の分配量を制御する、
     交通制御方法。
  10.  コンピュータに、
     第1地点から第2地点への複数経路の内の一の経路における交通状態を予測し、
     前記一の経路における予測した交通状態が所定のサービスレベルを満たさない場合、前記一の経路における交通状態が前記所定のサービスレベルを満たすように、前記第1地点における前記複数経路間の車両の分配量を制御する、
     処理を実行させるプログラムを格納する、コンピュータが読み取り可能な記録媒体。
PCT/JP2017/041395 2016-11-25 2017-11-17 交通制御システム、交通情報出力装置、交通制御方法、及び、記録媒体 WO2018097047A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018552540A JPWO2018097047A1 (ja) 2016-11-25 2017-11-17 交通制御システム、交通情報出力装置、交通制御方法、及び、記録媒体
US16/461,925 US10950123B2 (en) 2016-11-25 2017-11-17 Traffic control system, traffic information output device, traffic control method, and recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-229056 2016-11-25
JP2016229056 2016-11-25

Publications (1)

Publication Number Publication Date
WO2018097047A1 true WO2018097047A1 (ja) 2018-05-31

Family

ID=62195840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041395 WO2018097047A1 (ja) 2016-11-25 2017-11-17 交通制御システム、交通情報出力装置、交通制御方法、及び、記録媒体

Country Status (3)

Country Link
US (1) US10950123B2 (ja)
JP (1) JPWO2018097047A1 (ja)
WO (1) WO2018097047A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112216132A (zh) * 2019-07-10 2021-01-12 大众汽车股份公司 用于进行驾驶激励的设备、***和方法
JPWO2020065890A1 (ja) * 2018-09-27 2021-09-24 日本電気株式会社 情報処理装置、情報処理方法、およびプログラム
WO2023119965A1 (ja) * 2021-12-20 2023-06-29 株式会社日立製作所 需給マッチング装置及び方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11125570B2 (en) * 2018-10-09 2021-09-21 Ford Global Technologies, Llc Method and apparatus for improved toll-booth vehicle handling

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005078116A (ja) * 2003-08-29 2005-03-24 Toshiba Corp 料金割付配分システムおよび料金割付配分方法
JP2008009639A (ja) * 2006-06-28 2008-01-17 Toshiba Corp 道路料金設定装置および道路料金設定プログラム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3883098B2 (ja) * 2001-03-30 2007-02-21 株式会社東芝 走行所要時間予測装置
JP2003099832A (ja) 2001-09-20 2003-04-04 Nissan Motor Co Ltd 自動料金収受システム
JP2004110185A (ja) * 2002-09-13 2004-04-08 Sumitomo Electric Ind Ltd 交通状況解析装置
JP4930431B2 (ja) 2008-03-31 2012-05-16 アイシン・エィ・ダブリュ株式会社 バイパス道路案内装置
JP2010203975A (ja) * 2009-03-04 2010-09-16 Alpine Electronics Inc 車載用ナビゲーション装置及び経路表示方法
JP5325241B2 (ja) * 2011-01-14 2013-10-23 三菱重工業株式会社 交通流シミュレーション装置、交通流シミュレーションプログラム、及び交通流シミュレーション方法
JP5722262B2 (ja) 2012-03-21 2015-05-20 株式会社東芝 料金収受システム、中央システム、料金収受方法
SG11201706602RA (en) * 2015-02-13 2017-09-28 Beijing Didi Infinity Tech And Dev Co Ltd Methods and systems for transport capacity scheduling
US11087291B2 (en) * 2015-11-24 2021-08-10 Honda Motor Co., Ltd.. Action planning and execution support device
CN108883765B (zh) * 2016-04-08 2021-11-16 本田技研工业株式会社 车辆控制***、车辆控制方法以及存储介质
US10042055B2 (en) * 2016-04-20 2018-08-07 Here Global B.V. Traffic volume estimation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005078116A (ja) * 2003-08-29 2005-03-24 Toshiba Corp 料金割付配分システムおよび料金割付配分方法
JP2008009639A (ja) * 2006-06-28 2008-01-17 Toshiba Corp 道路料金設定装置および道路料金設定プログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MATSUI, HIROSHI ET AL.: "A Study on Determining the Optimal Toll for Toll Road", BULLETIN OF THE NAGOYA INSTITUTE OF TECHNOLOGY, vol. 25, 31 March 1974 (1974-03-31), pages 335 - 340 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020065890A1 (ja) * 2018-09-27 2021-09-24 日本電気株式会社 情報処理装置、情報処理方法、およびプログラム
JP7143895B2 (ja) 2018-09-27 2022-09-29 日本電気株式会社 情報処理装置、情報処理方法、およびプログラム
CN112216132A (zh) * 2019-07-10 2021-01-12 大众汽车股份公司 用于进行驾驶激励的设备、***和方法
US11600173B2 (en) 2019-07-10 2023-03-07 Volkswagen Ag Devices, systems, and methods for driving incentivization
WO2023119965A1 (ja) * 2021-12-20 2023-06-29 株式会社日立製作所 需給マッチング装置及び方法

Also Published As

Publication number Publication date
JPWO2018097047A1 (ja) 2019-10-17
US10950123B2 (en) 2021-03-16
US20190325743A1 (en) 2019-10-24

Similar Documents

Publication Publication Date Title
WO2018097047A1 (ja) 交通制御システム、交通情報出力装置、交通制御方法、及び、記録媒体
JP6610669B2 (ja) 渋滞予防システム、渋滞予防方法、及び、プログラム
He et al. Adaptive control algorithm to provide bus priority with a pre-signal
US11222532B2 (en) Traffic control support system, traffic control support method, and program recording medium
Yang et al. Heterogeneity aware urban traffic control in a connected vehicle environment: A joint framework for congestion pricing and perimeter control
JP5374067B2 (ja) 交通状態シミュレーション装置及びプログラム
Marczak et al. Merging behaviour: Empirical comparison between two sites and new theory development
Van Aerde et al. INTEGRATION: An overview of traffic simulation features
JP5941987B2 (ja) 交通量予測装置および方法
Marczak et al. Key variables of merging behaviour: empirical comparison between two sites and assessment of gap acceptance theory
US20180276988A1 (en) Automated traffic data validation
Laval et al. Impacts of lane changes at merge bottlenecks: a theory and strategies to maximize capacity
CN104781863A (zh) 预测链路上的未来的移动时间的方法
Gonzales Coordinated pricing for cars and transit in cities with hypercongestion
JP6816591B2 (ja) 情報提供システム、情報提供方法、及び、プログラム
JP6135448B2 (ja) 情報提供システム、情報提供方法、及び情報提供プログラム
Catbagan et al. Evaluation of performance measures for two-lane expressways in Japan
Aycin Simple methodology for evaluating toll plaza operations
JP4098526B2 (ja) 交通情報提供システム及びその方法、交通情報提供プログラム
Knoop Road Incidents and Network Dynamics: Effects on driving behaviour and traffic congestion
Li et al. A geometric design method for intersections with pre-signal systems using a phase swap sorting strategy
CN113643535B (zh) 基于智慧城市的道路交通预测方法、装置、设备及介质
Luk et al. Comparing driver information systems in a dynamic modeling framework
Chrobok et al. Olsim: A new generation of traffic information systems
JP2017073027A (ja) 運用支援システム、運用支援方法、及び、プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17873732

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018552540

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17873732

Country of ref document: EP

Kind code of ref document: A1