WO2018096911A1 - Operation device - Google Patents

Operation device Download PDF

Info

Publication number
WO2018096911A1
WO2018096911A1 PCT/JP2017/039809 JP2017039809W WO2018096911A1 WO 2018096911 A1 WO2018096911 A1 WO 2018096911A1 JP 2017039809 W JP2017039809 W JP 2017039809W WO 2018096911 A1 WO2018096911 A1 WO 2018096911A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotation axis
actuator
virtual rotation
virtual
operating device
Prior art date
Application number
PCT/JP2017/039809
Other languages
French (fr)
Japanese (ja)
Inventor
慎也 浦山
上ノ町 孝志
Original Assignee
アルプス電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社 filed Critical アルプス電気株式会社
Priority to JP2018552494A priority Critical patent/JP6698173B2/en
Priority to CN201790001461.8U priority patent/CN209859033U/en
Publication of WO2018096911A1 publication Critical patent/WO2018096911A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K20/00Arrangement or mounting of change-speed gearing control devices in vehicles
    • B60K20/02Arrangement or mounting of change-speed gearing control devices in vehicles of initiating means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05GCONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
    • G05G1/00Controlling members, e.g. knobs or handles; Assemblies or arrangements thereof; Indicating position of controlling members
    • G05G1/04Controlling members for hand actuation by pivoting movement, e.g. levers
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05GCONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
    • G05G5/00Means for preventing, limiting or returning the movements of parts of a control mechanism, e.g. locking controlling member
    • G05G5/03Means for enhancing the operator's awareness of arrival of the controlling member at a command or datum position; Providing feel, e.g. means for creating a counterforce

Definitions

  • the present invention relates to an operating device, and particularly to an operating lever that generates an operational feeling during operation.
  • An operation device for switching the transmission is provided near the driver's seat of the vehicle.
  • the operating device disclosed in Patent Document 1 includes a shift lever that rotates in two directions around two rotation axes.
  • the operating device switches the transmission by sending an electric signal corresponding to the position of the shift lever to the vehicle.
  • the shift lever of Patent Document 1 has a rod-like shape extending linearly, and includes a knob fixed to one end located outside the housing.
  • the operating device includes a plunger movably attached to the other end of the shift lever in the housing.
  • the plunger is urged by the elastic member in the shift lever in the direction in which the shift lever extends, and is pressed against the uneven surface fixed in the housing.
  • the plunger moves along the uneven surface. The operator feels the operational feeling due to the resistance force between the plunger and the uneven surface. In either of the two rotation directions, one plunger is pressed against a common continuous uneven surface, and an operational feeling is generated.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide an operating device that can be thinned with high strength while maintaining a large change in resistance.
  • the present invention provides an operation member that can rotate around a first virtual rotation axis and a second virtual rotation axis in response to an operator's operation, a first cam having a first uneven surface, and the operation member having a first virtual rotation axis.
  • a first guide member that rotates together with the operation member when rotating around the rotation axis, a first actuator that is movable along a first path defined by the first guide member, and a first actuator that is attached to the first uneven surface.
  • An operating shaft extending in an axial direction substantially orthogonal to the shaft, Virtual rotational axis, rotates around the second virtual rotation axis together with the operation member, both of the first path and the second path extends in a direction substantially perpendicular to the axial direction, an operation device.
  • both the first path along which the first actuator moves and the second path along which the second actuator moves extend in a direction substantially orthogonal to the axial direction.
  • the apparatus can be made thinner in the axial direction than when at least one of the second actuators moves. Even if the distance from the first virtual rotation axis to the tip of the first actuator is increased to maintain a large change in the resistance force, the operating device does not move in the axial direction even if the first actuator is thickened and the strength is increased. Does not grow. That is, the thickness can be reduced with high strength while maintaining a large change in resistance.
  • the first virtual rotation axis and the second virtual rotation axis are substantially orthogonal.
  • the operating device that rotates in two orthogonal directions can be thinned with high strength while maintaining a large change in resistance.
  • the first path is substantially parallel to the second virtual rotation axis at one rotation position, and one The first actuator is disposed on the second virtual rotation axis at the rotational position.
  • the first path is substantially parallel to the second virtual rotation axis at one rotation position, and the one rotation position. Since the first actuator is disposed on the second virtual rotation axis in FIG. 2, the first actuator rotates on the spot when the operating member rotates around the second virtual rotation axis while maintaining its one rotation position. Only by doing this, the relative position between the first actuator and the first cam does not change significantly. For this reason, when the operating member rotates around the second virtual rotation axis, the resistance force generated by the first actuator is not greatly added to the resistance force generated by the second actuator. Therefore, it is easy to control the resistance force when the operation member rotates around the second virtual rotation axis.
  • the first actuator has a rotationally symmetric shape, and the center of symmetry of the first actuator substantially coincides with the second virtual rotational axis at one rotational position.
  • the first actuator has a rotationally symmetric shape, and the symmetry center of the first actuator substantially coincides with the second virtual rotational axis at one rotational position, so that the operation member is the second virtual rotational axis.
  • the relative position between the first actuator and the first cam can be kept constant.
  • the first uneven surface has a locally recessed first trough, and the operating member is located at a first stable position around the first virtual rotation axis.
  • the first actuator fits in the first valley.
  • the first actuator fits in the first trough, so that the operation member is around the second virtual rotation axis.
  • unintended rotation around the first virtual rotation axis of the operating member can be prevented.
  • an intermediate support that supports the operation member rotatably around the first virtual rotation axis, and a support that supports the intermediate support rotatably around the second virtual rotation axis.
  • the first guide member is fixed to the operation member, and the second guide member is configured as an integral member with the intermediate support.
  • the second guide member is configured as an integral member with the intermediate support, the number of parts can be reduced as compared with a case where the second guide member is separate.
  • the first cam is fixed to the support.
  • the region on the first uneven surface through which the first actuator passes when the operating member rotates around the first virtual rotation axis is the second It differs depending on the rotational position of the operation member around the virtual rotation axis. Therefore, various operational feelings can be given to the operator as compared with the case where the first cam is fixed to the intermediate support.
  • the second path is substantially parallel to the first virtual rotation axis
  • the second actuator is the first virtual rotation axis. Arranged on the rotation axis.
  • the second path is substantially parallel to the first virtual rotation axis, and the second actuator is on the first virtual rotation axis. Therefore, when the operating member rotates around the first virtual rotation axis, the relative position between the second actuator and the second cam does not change greatly only by the second actuator rotating on the spot. For this reason, when the operating member rotates around the first virtual rotation axis, the resistance force generated by the second actuator is not significantly added to the resistance force generated by the first actuator. Therefore, it is easy to control the resistance force when the operation member rotates around the first virtual rotation axis.
  • the second actuator has a rotationally symmetric shape, and the symmetry center of the second actuator substantially coincides with the first virtual rotation axis.
  • the operation member rotates around the first virtual rotation axis.
  • the relative position between the second actuator and the second cam can be kept constant.
  • FIG. 4 is an exploded perspective view of an operation member, an intermediate support, a first actuator, and a second actuator shown in FIG. 3. It is a top view of the operating device shown in Drawing 1 which omitted a support.
  • FIG. 6 is a cross-sectional view of the operating device in a cross section passing through line 6-6 in FIG. FIG.
  • FIG. 7 is a cross-sectional view of the operating device in a cross section passing through line 7-7 in FIG. 5;
  • FIG. 8 is a cross-sectional view of the operating device in a cross section passing through line 8-8 in FIG. 6.
  • It is a perspective view of the operating device shown in FIG. 2 when an operating member exists in a 1st rotation position. It is sectional drawing of the operating device in the same cross section as FIG. 6 when an operating member exists in a 1st rotation position. It is a perspective view of the operating device shown in FIG. 2 when an operating member exists in a 2nd rotation position. It is sectional drawing of the operating device in the same cross section as FIG. 7 when an operating member exists in a 2nd rotation position.
  • FIG. 1 is a perspective view of the operating device 100 of the present embodiment.
  • the operating device 100 includes a support body 110 that has a substantially rectangular parallelepiped shape and is hollow, and an operation member 120 that is movably supported by the support body 110.
  • the support body 110 is fixed to a vehicle (not shown).
  • the operation member 120 is supported in the support body 110 so as to be tiltable in two rotation directions.
  • the operation device 100 switches the transmission of the vehicle according to the rotation direction and the rotation amount of the operation member 120 detected by a position detection unit (not shown).
  • the x direction, the y direction, and the z direction orthogonal to each other are defined.
  • the x direction is expressed without distinguishing the x1 direction and the x2 direction that are opposite to each other.
  • the y direction represents the y1 direction and the y2 direction that are opposite to each other without distinction.
  • the z direction represents the z1 direction and the z2 direction that are opposite to each other without distinction.
  • the support 110 has a generally hollow rectangular parallelepiped shape as a whole, and includes a first support 111, a second support 112, and a third support 113.
  • FIG. 2 is a perspective view of the operating device 100 in which the second support body 112 and the third support body 113 shown in FIG. 1 are omitted.
  • the z1 side of the first support 111 is released and covered with a flat plate-like second support 112 that is substantially parallel to the xy plane, as shown in FIG.
  • the second support 112 is provided with a through hole 112-1 that penetrates in the z direction.
  • the y2 side of the first support 111 is open and covered with a flat plate-like third support 113 substantially parallel to the zx plane as shown in FIG.
  • FIG. 3 is an exploded perspective view of the operating device 100 from which the second support 112 and the third support 113 shown in FIG. 1 are omitted, as viewed from the z1 side.
  • the operating device 100 further includes a first cam 130, a second cam 135, an intermediate support 140, a first guide member 150, a second guide member 155, and a first guide inside the support 110.
  • the actuator 160, the first elastic member 169, the second actuator 170, and the second elastic member 179 are included.
  • the first support 111 includes a first bearing 114, a second bearing 115, a first cam fixing portion 116, and a second cam fixing portion 117.
  • the 1st bearing 114 is provided in the x1 side edge part in the 1st support body 111, and is a hollow open
  • the 2nd bearing 115 is provided in the x2 side edge part in the 1st support body 111, and is a hollow open
  • the first cam fixing portion 116 is provided at the x1 side end portion in the first support 111 and is a substantially rectangular parallelepiped portion released in the x2 direction and the z1 direction.
  • the second cam fixing portion 117 is provided in the vicinity of the y1 side end portion in the first support 111, and is a substantially rectangular parallelepiped portion released in the y2 direction and the z1 direction.
  • the first cam fixing portion 116 is located between the first bearing 114 and the second bearing 115.
  • FIG. 4 is an exploded perspective view of the operation member 120, the intermediate support 140, the first actuator 160, and the second actuator 170 as seen from the z2 side.
  • FIG. 5 is a plan view of the operating device 100 from which the support 110 is omitted.
  • 6 is a cross-sectional view of the operating device 100 in a cross section passing through line 6-6 in FIG. 5 and parallel to the zx plane.
  • FIG. 7 is a cross-sectional view of the operating device 100 in a cross section passing through line 7-7 in FIG. 5 and parallel to the yz plane.
  • FIG. 8 is a cross-sectional view of the operating device 100 in a cross section passing through line 8-8 in FIG. 6 and parallel to the xy plane.
  • the first cam 130 has a substantially rectangular parallelepiped shape, has a first recess 131 that is recessed in the x1 direction from the surface on the x2 side, and has a first recess 131 that faces the x2 direction in the first recess 131.
  • One uneven surface 132 is provided.
  • the first uneven surface 132 has a first valley portion 133 that is most recessed in the x1 direction at a position overlapping a later-described second virtual rotation shaft 102 that is parallel to the x direction.
  • the vicinity of the end portion on the z2 side of the first cam 130 is fixed to the first cam fixing portion 116 shown in FIG.
  • the first cam 130 is located in the vicinity of the end portion on the x1 side in the first support 111.
  • the second cam 135 has a substantially rectangular parallelepiped shape, has a second recess 136 that is recessed in the y1 direction from the surface on the y2 side, and the second cam 135 faces the y2 direction in the second recess 136. It has two uneven surfaces 137. As shown in FIG. 7, the second uneven surface 137 has a second valley portion 138 that is most recessed in the y1 direction at a position overlapping a later-described first virtual rotation shaft 101 parallel to the y direction.
  • the second cam 135 is fixed to the second cam fixing portion 117 shown in FIG. 3 and is located near the y1 side end portion in the first support 111 as shown in FIG.
  • the intermediate support 140 includes a frame 141 that looks like a hollow substantially rectangular shape when viewed from the z direction.
  • the frame body 141 includes a first plate portion 141-1 and a second plate portion 141-2 both facing substantially parallel to the yz plane, and further both facing substantially parallel to the zx plane.
  • the third plate portion 141-3 and the fourth plate portion 141-4 are included.
  • the third plate portion 141-3 connects the y1 side end portion of the first plate portion 141-1 and the y1 side end portion of the second plate portion 141-2 in the x direction.
  • the fourth plate portion 141-4 connects the y2 side end portion of the first plate portion 141-1 and the y2 side end portion of the second plate portion 141-2 in the x direction.
  • the fourth plate portion 141-4 is located on the y2 side from the third plate portion 141-3.
  • the intermediate support 140 includes a substantially cylindrical first shaft 142 (FIG. 4) projecting in the x1 direction from the x1 side surface of the first plate portion 141-1, and the second plate portion 141-. And a substantially cylindrical second shaft 143 (FIG. 3) that protrudes in the x2 direction from the surface of x2 on the x2 side.
  • a substantially cylindrical first intermediate bearing 144 recessed in the y1 direction is provided on the surface of the third plate portion 141-3 on the y2 side.
  • the fourth plate portion 141-4 is provided with a substantially cylindrical second intermediate bearing 145 penetrating in the y direction.
  • the intermediate support 140 further includes a third shaft 146 having a substantially cylindrical shape. As shown in FIG. 8, the centers of the first intermediate bearing 144, the second intermediate bearing 145, and the third shaft 146 coincide with the first virtual rotating shaft 101 parallel to the y direction.
  • the y1 side end portion of the third shaft 146 is fixed in the first intermediate bearing 144.
  • the y2 side end of the third shaft 146 is fixed in the second intermediate bearing 145.
  • the first shaft 142 is rotatably supported by the first bearing 114 of the first support 111.
  • the second shaft 143 is rotatably supported by the second bearing 115 of the first support 111.
  • the centers of the first shaft 142 and the second shaft 143 coincide with the second virtual rotation axis 102 parallel to the x direction.
  • the entire intermediate support 140 is supported by the support 110 (FIG. 2) so as to be rotatable around the second virtual rotation axis 102.
  • the operation member 120 includes a base 121 and an operation shaft 122 extending from the base 121 in the z1 direction.
  • the base 121 is sandwiched between the third plate portion 141-3 and the fourth plate portion 141-4 in the y direction, it does not move in the y direction.
  • the base 121 is provided with a substantially cylindrical through-shaft hole 123 penetrating in the y direction.
  • a part of the third shaft 146 is located in the through shaft hole 123.
  • the diameter of the through-shaft hole 123 is approximately the same as the diameter of the third shaft 146.
  • the center of the through-shaft hole 123 coincides with the first virtual rotation axis 101.
  • the intermediate support 140 supports the operation member 120 via the third shaft 146 so as to be rotatable around the first virtual rotation axis 101.
  • the extending direction of the operation shaft 122 shown in FIG. 3 is called an axial direction, and is substantially orthogonal to the first virtual rotation shaft 101 and the second virtual rotation shaft 102 shown in FIG. In the state shown in FIG. 3, the axial direction substantially coincides with the z direction. However, the axial direction rotates around the first virtual rotation axis 101.
  • the operation shaft 122 has a substantially cylindrical shape, and one end on the z2 side is fixed to the base 121. As shown in FIG. 1, a part of the operation shaft 122 extends to the outside through the through hole 112-1 of the support 110.
  • the operation member 120 further includes an attachment protrusion 124 that protrudes in the z1 direction from the z1 side end of the operation shaft 122.
  • the attachment protrusion 124 is located outside the support 110.
  • a knob (not shown) gripped by the operator is attached to the attachment protrusion 124.
  • the operation member 120 is capable of rotating around the first virtual rotation axis 101 in response to an operator's operation, and in addition, around the second virtual rotation axis 102 together with the intermediate support 140. But it can be rotated.
  • the first virtual rotation axis 101 and the second virtual rotation axis 102 are substantially orthogonal within the same plane.
  • the first virtual rotation shaft 101 rotates around the second virtual rotation shaft 102 together with the operation member 120 in a state orthogonal to the axial direction of the operation shaft 122.
  • the first guide member 150 is formed integrally with the operation member 120 and is fixed to the operation member 120.
  • the first guide member 150 protrudes in the x1 direction from the x1 side of the base 121 of the operation member 120.
  • the first guide member 150 includes a substantially cylindrical first outer hole 151 that is recessed in the x2 direction from the x1 side end portion, and further from the x2 side end portion of the first outer hole 151 in the x2 direction.
  • a substantially cylindrical first inner hole 152 that is recessed is provided.
  • Each center of the 1st outer hole 151 and the 1st inner hole 152 corresponds with the 2nd virtual rotating shaft 102 in the rotation position shown in FIG.
  • the diameter of the first inner hole 152 is smaller than the diameter of the first outer hole 151.
  • the first guide member 150 rotates together with the operation member 120 when the operation member 120 rotates around the first virtual rotation axis 101.
  • the second guide member 155 is formed as an integral member with the intermediate support 140 and is fixed to the intermediate support 140.
  • the second guide member 155 protrudes in the y1 direction from the y1 side surface of the third plate portion 141-3 of the intermediate support 140.
  • the second guide member 155 has a substantially cylindrical second outer hole 156 that is recessed in the y2 direction from the y1 side end portion, and a y2 direction further from the y2 side end portion of the second outer hole 156.
  • a substantially cylindrical second inner hole 157 that is recessed is provided.
  • the centers of the second outer hole 156 and the second inner hole 157 coincide with the first virtual rotation axis 101.
  • the diameter of the second inner hole 157 is smaller than the diameter of the second outer hole 156.
  • the second guide member 155 rotates together with the operation member 120 when the operation member 120 and the intermediate support 140 rotate around the second virtual rotation axis 102.
  • the first actuator 160 includes a first large diameter portion 161, a first small diameter portion 162, and a first head 163.
  • each of the first large diameter portion 161 and the first small diameter portion 162 has a substantially cylindrical shape having a central axis on the second virtual rotation axis 102.
  • the x1 side end portion of the first small diameter portion 162 is fixed to the x2 side surface of the first large diameter portion 161.
  • the first head 163 protrudes in the x1 direction from the x1 side surface of the first large diameter portion 161.
  • the first head 163 has a substantially conical shape having a central axis on the second virtual rotational axis 102.
  • the tip is located on the x1 side of the first head 163, and the tip is rounded.
  • the first large diameter portion 161 is located in the first outer hole 151.
  • the first small diameter portion 162 is located in the first inner hole 152.
  • the first actuator 160 is movable along a path defined by the first guide member 150 (hereinafter sometimes referred to as a first path).
  • the first path is substantially parallel to the second virtual rotation axis 102 and coincides with the second virtual rotation axis 102 in the present embodiment.
  • the first actuator 160 is disposed on the second virtual rotation shaft 102 as a whole at one rotational position when the operation member 120 rotates around the first virtual rotation shaft 101, and
  • the shape is rotationally symmetric about the second virtual rotation axis 102 at the same single rotational position.
  • the first elastic member 169 is a metal wound spring wound around the first small diameter portion 162 of the first actuator 160.
  • the first elastic member 169 is sandwiched between a part of the first guide member 150 located on the x2 side in the first large diameter portion 161 and the first large diameter portion 161 located on the x1 side in the x direction. It is.
  • the first elastic member 169 elastically biases the first actuator 160 toward the first uneven surface 132.
  • the first elastic member 169 may be another elastic member such as rubber or a leaf spring.
  • the vicinity of the end portion on the x1 side of the first guide member 150 is partially located in the first recess 131 of the first cam 130.
  • the x1 side end of the first head 163 of the first actuator 160 is in contact with the first uneven surface 132 of the first cam 130.
  • the second actuator 170 includes a second large diameter portion 171, a second small diameter portion 172, and a second head 173.
  • each of the second large diameter portion 171 and the second small diameter portion 172 has a substantially cylindrical shape having a central axis on the first virtual rotation axis 101.
  • the y1 side end of the second small diameter portion 172 is fixed to the y2 side surface of the second large diameter portion 171.
  • the second head 173 protrudes from the y1 side surface of the second large diameter portion 171 in the y1 direction.
  • the second head 173 has a substantially conical shape having a central axis on the first virtual rotation axis 101.
  • the tip is located on the y1 side of the second head 173, and the tip is rounded.
  • the second large diameter portion 171 is located in the second outer hole 156.
  • the second small diameter portion 172 is located in the second inner hole 157.
  • the second large diameter portion 171 is slidable along the first virtual rotation axis 101 within the second outer hole 156, and the second small diameter portion 172 is along the first virtual rotation axis 101 within the second inner hole 157. And can slide.
  • the second actuator 170 is movable along a path defined by the second guide member 155 (hereinafter sometimes referred to as a second path).
  • the second path is substantially parallel to the first virtual rotation axis 101 and coincides with the first virtual rotation axis 101 in the present embodiment.
  • the second actuator 170 as a whole is disposed on the first virtual rotation axis 101 and has a rotationally symmetric shape about the first virtual rotation axis 101. Both the first path and the second path extend in a direction substantially orthogonal to the axial direction.
  • the second elastic member 179 is a metal wound spring wound around the second small diameter portion 172 of the second actuator 170.
  • the second elastic member 179 is sandwiched between a part of the second guide member 155 located on the y2 side in the second large diameter portion 171 and the second large diameter portion 171 located on the y1 side in the y direction. It is.
  • the second elastic member 179 elastically biases the second actuator 170 toward the second uneven surface 137.
  • the second elastic member 179 may be another elastic member such as rubber or a leaf spring.
  • the vicinity of the end portion on the y1 side of the second guide member 155 is partially located in the second recess 136 of the second cam 135.
  • the y1 side end of the second head 173 of the second actuator 170 is in contact with the second uneven surface 137 of the second cam 135.
  • (Operation) 1 to 8 are views of the operating device 100 in an initial position where the operating member 120 is not rotated in any direction.
  • the controller device 100 In the initial position, the controller device 100 is in the first stable position in the initial state from the viewpoint of rotation around the first virtual rotation axis 101 shown in FIG.
  • the controller device 100 In the initial position, the controller device 100 is in the second stable position in the initial state from the viewpoint of rotation around the second virtual rotation axis 102 shown in FIG.
  • the operating device 100 can be rotated around the first virtual rotation axis 101 shown in FIG. 8 in the first rotation direction 181 and the second rotation direction 182 shown in FIG.
  • the first rotation direction 181 is a direction in which the z1 side end portion of the operation member 120 moves in the x1 direction.
  • the second rotation direction 182 is a direction in which the z1 side end portion of the operation member 120 moves in the x2 direction.
  • the controller device 100 can be rotated about the second virtual rotation shaft 102 shown in FIG. 8 in the third rotation direction 183 and the fourth rotation direction 184 shown in FIG.
  • the third rotation direction 183 is a direction in which the z1 side end portion of the operation member 120 moves in the y1 direction.
  • the fourth rotation direction 184 is a direction in which the z1 side end portion of the operation member 120 moves in the y2 direction.
  • the movable first path of the first actuator 160 is substantially parallel to the second virtual rotation axis 102, and the rotationally symmetric center of the first actuator 160 is the second virtual rotation axis. 102 substantially matches.
  • the operation member 120 is located at the first stable position shown in FIG. 6, the x1 side end portion of the first head 163 of the first actuator 160 fits into the first valley portion 133. Therefore, the operation member 120 does not rotate around the first virtual rotation axis 101 (FIG. 8) unless receiving a certain amount of force.
  • the movable second path of the second actuator 170 is substantially parallel to the first virtual rotation axis 101 regardless of the rotational position, and the center of rotational symmetry of the second actuator 170 is the rotational position. Regardless, it substantially coincides with the first virtual rotation axis 101.
  • the first virtual rotation axis 101 is substantially parallel to the y direction.
  • FIG. 9 is a perspective view of the operating device 100 in the first rotation position where the operation member 120 shown in FIG. 6 is rotated to some extent in the first rotation direction 181.
  • FIG. 10 is a cross-sectional view of the operating device 100 when the operating member 120 is in the first rotational position (FIG. 9).
  • FIG. 10 shows a cross section in the same plane as FIG.
  • the operation when the operation member 120 shown in FIG. 6 rotates in the second rotation direction 182 is symmetric with the operation when the operation member 120 rotates in the first rotation direction 181, and thus the description thereof is omitted.
  • FIG. 11 is a perspective view of the operating device 100 at the second rotation position where the operation member 120 shown in FIG. 7 is rotated to some extent in the third rotation direction 183.
  • FIG. 12 is a cross-sectional view of the operating device 100 when the operating member 120 is in the second rotational position (FIG. 11).
  • FIG. 12 shows a cross section in the same plane as FIG.
  • both the first path along which the first actuator 160 moves and the second path along which the second actuator 170 moves extend in a direction substantially perpendicular to the axial direction.
  • the apparatus can be made thinner in the axial direction. Even if the first actuator 160 is thickened and the strength is increased while the distance from the first virtual rotating shaft 101 to the tip of the first actuator 160 is increased to maintain a large change in the resistance force, the operating device 100 is increased. Does not increase in the axial direction. That is, the thickness can be reduced with high strength while maintaining a large change in resistance.
  • the operating device 100 that rotates in two orthogonal directions can be thinned with high strength while maintaining a large change in resistance.
  • the first path is substantially parallel to the second virtual rotation axis 102 at one rotation position, and Since the first actuator 160 is disposed on the second virtual rotation shaft 102 at one rotation position, when the operation member 120 rotates around the second virtual rotation shaft 102 while maintaining the one rotation position, The relative position between the first actuator 160 and the first cam 130 does not change greatly only by the first actuator 160 rotating on the spot. Therefore, the resistance force generated by the first actuator 160 is not greatly added to the resistance force generated by the second actuator 170 when the operation member 120 rotates around the second virtual rotation axis 102. Therefore, it is easy to control the resistance force when the operation member 120 rotates around the second virtual rotation axis 102.
  • the first actuator 160 has a rotationally symmetric shape, and the center of symmetry of the first actuator 160 substantially coincides with the second virtual rotation axis 102 at one rotational position.
  • the relative position between the first actuator 160 and the first cam 130 can be kept constant.
  • the first actuator 160 when the operation member 120 is located at the first stable position around the first virtual rotation axis 101, the first actuator 160 is fitted into the first valley portion 133, so that the operation member 120 is When rotating around the two virtual rotation axes 102, unintentional rotation of the operation member 120 around the first virtual rotation axis 101 can be prevented.
  • the second guide member 155 is configured as an integral member with the intermediate support 140, the number of parts can be reduced as compared with a case where the second guide member 155 is a separate member.
  • the first cam 130 since the first cam 130 is fixed to the support 110, the first uneven surface 132 through which the first actuator 160 passes when the operation member 120 rotates around the first virtual rotation axis 101.
  • the upper region differs depending on the rotation position of the operation member 120 around the second virtual rotation axis 102. Therefore, compared to the case where the first cam 130 is fixed to the intermediate support 140, various operational feelings can be given to the operator.
  • the second guide member 155 may be fixed to the operation member 120 without being fixed to the intermediate support 140.
  • the second path is substantially parallel to the first virtual rotation axis 101 and the second actuator 170 is the first virtual rotation axis. Since it is disposed on the rotating shaft 101, when the operation member 120 rotates around the first virtual rotating shaft 101, the second actuator 170 and the second cam 135 only rotate on the spot. The relative position of and does not change significantly. Therefore, the resistance force generated by the second actuator 170 is not significantly added to the resistance force generated by the first actuator 160 when the operation member 120 rotates around the first virtual rotation axis 101. Therefore, it is easy to control the resistance force when the operation member 120 rotates around the first virtual rotation axis 101.
  • the second actuator 170 has a rotationally symmetric shape, and the center of symmetry of the second actuator 170 substantially coincides with the first virtual rotation axis 101, so that the operation member 120 is the first virtual rotation axis 101.
  • the relative position of the second actuator 170 and the second cam 135 can be kept constant.
  • the first cam 130 may be fixed to the intermediate support 140.
  • the region on the first uneven surface 132 through which the first actuator 160 passes is constant regardless of the rotation position of the operation member 120 around the second virtual rotation axis 102. A certain operational feeling can be given to the person.
  • the region on the first uneven surface 132 through which the first actuator 160 passes is limited, the size of the first cam 130 can be reduced.
  • the present invention can be applied to an operation device used for changing a transmission in a vehicle, a train, an aircraft, a ship, a spacecraft, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Control Devices (AREA)
  • Arrangement Or Mounting Of Control Devices For Change-Speed Gearing (AREA)
  • Switches With Compound Operations (AREA)

Abstract

Provided is an operation device (100), comprising: a first guide member (150) which rotates together with an operation member (120) which rotates about a first virtual axis of rotation (101); a first actuator (160) which is capable moving upon a first path; a second guide member (155) which rotates together with the operation member (120) about a second virtual axis of rotation (102); and a second actuator (170) which is capable of moving upon a second path. The operation member (120) further comprises an operation shaft (122) which extends in a shaft direction which is approximately orthogonal to the first virtual axis of rotation (101) and the second virtual axis of rotation (102). The first virtual axis of rotation (101) rotates about the second virtual axis of rotation (102) together with the operation member (120). Both the first path and the second path extend in directions which are approximately orthogonal to the shaft direction.

Description

操作装置Operating device
 本発明は、操作装置に関し、特に、操作時に操作感を発生する操作レバーするものである。 The present invention relates to an operating device, and particularly to an operating lever that generates an operational feeling during operation.
 車両の運転席付近に、トランスミッションを切り替える操作装置が設けられる。例えば、特許文献1に開示されている操作装置は、2本の回転軸を中心として2方向に回転するシフトレバーを備える。操作装置は、シフトレバーの位置に応じた電気信号を車両に送ることにより、トランスミッションを切り替える。特許文献1のシフトレバーは、直線状に延びた棒状の形状をもち、筐体の外に位置する一端に固定されたノブを含む。 An operation device for switching the transmission is provided near the driver's seat of the vehicle. For example, the operating device disclosed in Patent Document 1 includes a shift lever that rotates in two directions around two rotation axes. The operating device switches the transmission by sending an electric signal corresponding to the position of the shift lever to the vehicle. The shift lever of Patent Document 1 has a rod-like shape extending linearly, and includes a knob fixed to one end located outside the housing.
 また、操作装置は、筐体内にあるシフトレバーの他端に可動に取り付けられたプランジャを備える。プランジャは、シフトレバーの中の弾性部材によってシフトレバーの延びる方向に付勢されて、筐体内に固定された凹凸面に押しつけられている。操作者がノブを握ってシフトレバーを回転させると、プランジャが凹凸面に沿って移動する。プランジャと凹凸面との間の抵抗力により、操作者が操作感を感じる。2つの回転方向のいずれにおいても、共通の連続した凹凸面に1つのプランジャが押しつけられて、操作感が発生する。 Also, the operating device includes a plunger movably attached to the other end of the shift lever in the housing. The plunger is urged by the elastic member in the shift lever in the direction in which the shift lever extends, and is pressed against the uneven surface fixed in the housing. When the operator holds the knob and rotates the shift lever, the plunger moves along the uneven surface. The operator feels the operational feeling due to the resistance force between the plunger and the uneven surface. In either of the two rotation directions, one plunger is pressed against a common continuous uneven surface, and an operational feeling is generated.
特開平10-287144号明細書Japanese Patent Laid-Open No. 10-287144
 しかしながら、特許文献1のシフトレバーでは、回転軸からプランジャの先端までの距離が短いと抵抗力の変化が発生しにくいので、シフトレバーの延びる方向に沿って回転軸からプランジャの先端まである程度の長さが必要である。また、回転軸からプランジャの先端までの距離が短いと、プランジャの先端の移動距離が短くなり、プランジャの大きさを小さくする必要が生じて強度が弱くなる。そのため、シフトレバーの延びる方向に装置を薄型化することが困難であるという不利益がある。 However, in the shift lever of Patent Document 1, if the distance from the rotating shaft to the tip of the plunger is short, the resistance force hardly changes. Is necessary. Moreover, if the distance from the rotating shaft to the tip of the plunger is short, the moving distance of the tip of the plunger becomes short, and it becomes necessary to reduce the size of the plunger and the strength is weakened. Therefore, there is a disadvantage that it is difficult to reduce the thickness of the device in the extending direction of the shift lever.
 本発明はかかる事情に鑑みてなされたものであり、その目的は、抵抗力の変化を大きく維持しながら高い強度で薄型化できる操作装置を提供することにある。 The present invention has been made in view of such circumstances, and an object thereof is to provide an operating device that can be thinned with high strength while maintaining a large change in resistance.
 本発明は、操作者の操作を受けて第1仮想回転軸と第2仮想回転軸との周りで回転可能な操作部材と、第1凹凸面をもつ第1カムと、操作部材が第1仮想回転軸の周りで回転するときに操作部材と共に回転する第1ガイド部材と、第1ガイド部材に規定された第1経路で移動可能な第1アクチュエータと、第1アクチュエータを第1凹凸面に付勢する第1弾性部材と、第2凹凸面をもつ第2カムと、操作部材が第2仮想回転軸の周りで回転するときに操作部材と共に回転する第2ガイド部材と、第2ガイド部材に規定された第2経路で移動可能な第2アクチュエータと、第2アクチュエータを第2凹凸面に付勢する第2弾性部材と、を備え、操作部材が、第1仮想回転軸と第2仮想回転軸とに略直交する軸方向に延びた操作軸を含み、第1仮想回転軸が、操作部材と共に第2仮想回転軸の周りで回転し、第1経路と第2経路との両方が、軸方向に略直交する方向に延びている、操作装置である。 The present invention provides an operation member that can rotate around a first virtual rotation axis and a second virtual rotation axis in response to an operator's operation, a first cam having a first uneven surface, and the operation member having a first virtual rotation axis. A first guide member that rotates together with the operation member when rotating around the rotation axis, a first actuator that is movable along a first path defined by the first guide member, and a first actuator that is attached to the first uneven surface. A second elastic member, a second cam having a second concavo-convex surface, a second guide member that rotates together with the operation member when the operation member rotates around the second virtual rotation axis, and a second guide member A second actuator that is movable along a prescribed second path; and a second elastic member that urges the second actuator against the second concavo-convex surface, wherein the operation member has a first virtual rotation axis and a second virtual rotation. An operating shaft extending in an axial direction substantially orthogonal to the shaft, Virtual rotational axis, rotates around the second virtual rotation axis together with the operation member, both of the first path and the second path extends in a direction substantially perpendicular to the axial direction, an operation device.
 この構成によれば、第1アクチュエータの移動する第1経路と第2アクチュエータの移動する第2経路との両方が、軸方向に略直交する方向に延びているので、軸方向に第1アクチュエータと第2アクチュエータとの少なくとも一方が移動する場合に比べて、装置を軸方向に薄型化することができる。また、第1仮想回転軸から第1アクチュエータの先端までの距離を長くして抵抗力の変化を大きく維持しながら、第1アクチュエータを太くして強度を高くしても、操作装置が軸方向に大きくならない。すなわち、抵抗力の変化を大きく維持しながら高い強度で薄型化することができる。 According to this configuration, both the first path along which the first actuator moves and the second path along which the second actuator moves extend in a direction substantially orthogonal to the axial direction. The apparatus can be made thinner in the axial direction than when at least one of the second actuators moves. Even if the distance from the first virtual rotation axis to the tip of the first actuator is increased to maintain a large change in the resistance force, the operating device does not move in the axial direction even if the first actuator is thickened and the strength is increased. Does not grow. That is, the thickness can be reduced with high strength while maintaining a large change in resistance.
 好適には本発明の操作装置において、第1仮想回転軸と第2仮想回転軸とが略直交している。 Preferably, in the operating device of the present invention, the first virtual rotation axis and the second virtual rotation axis are substantially orthogonal.
 この構成によれば、直交した2方向に回転する操作装置において、抵抗力の変化を大きく維持しながら高い強度で薄型化することができる。 According to this configuration, the operating device that rotates in two orthogonal directions can be thinned with high strength while maintaining a large change in resistance.
 好適には本発明の操作装置において、操作部材が第1仮想回転軸の周りで回転するときに、1つの回転位置において第1経路が第2仮想回転軸に略平行であり、かつ、1つの回転位置において第1アクチュエータが第2仮想回転軸上に配置される。 Preferably, in the operating device of the present invention, when the operating member rotates around the first virtual rotation axis, the first path is substantially parallel to the second virtual rotation axis at one rotation position, and one The first actuator is disposed on the second virtual rotation axis at the rotational position.
 この構成によれば、操作部材が第1仮想回転軸の周りで回転するときに、1つの回転位置において第1経路が、第2仮想回転軸に略平行であり、かつ、その1つの回転位置において第1アクチュエータが、第2仮想回転軸上に配置されるので、その1つの回転位置を保ちながら操作部材が第2仮想回転軸の周りで回転するときに、第1アクチュエータがその場で回転するだけで、第1アクチュエータと第1カムとの相対位置が大きく変わらない。そのため、操作部材が第2仮想回転軸の周りで回転するときに、第2アクチュエータにより発生する抵抗力に、第1アクチュエータにより発生する抵抗力が大きく加わらない。従って、操作部材が第2仮想回転軸の周りで回転するときの抵抗力を制御しやすい。 According to this configuration, when the operation member rotates around the first virtual rotation axis, the first path is substantially parallel to the second virtual rotation axis at one rotation position, and the one rotation position. Since the first actuator is disposed on the second virtual rotation axis in FIG. 2, the first actuator rotates on the spot when the operating member rotates around the second virtual rotation axis while maintaining its one rotation position. Only by doing this, the relative position between the first actuator and the first cam does not change significantly. For this reason, when the operating member rotates around the second virtual rotation axis, the resistance force generated by the first actuator is not greatly added to the resistance force generated by the second actuator. Therefore, it is easy to control the resistance force when the operation member rotates around the second virtual rotation axis.
 好適には本発明の操作装置において、第1アクチュエータが、回転対称な形状であり、第1アクチュエータの対称中心が、1つの回転位置において第2仮想回転軸に略一致する。 Preferably, in the operating device of the present invention, the first actuator has a rotationally symmetric shape, and the center of symmetry of the first actuator substantially coincides with the second virtual rotational axis at one rotational position.
 この構成によれば、第1アクチュエータが、回転対称な形状であり、第1アクチュエータの対称中心が、1つの回転位置において第2仮想回転軸に略一致するので、操作部材が第2仮想回転軸の周りで回転するときに、第1アクチュエータと第1カムとの相対位置を一定に保つことができる。 According to this configuration, the first actuator has a rotationally symmetric shape, and the symmetry center of the first actuator substantially coincides with the second virtual rotational axis at one rotational position, so that the operation member is the second virtual rotational axis. When rotating around, the relative position between the first actuator and the first cam can be kept constant.
 好適には本発明の操作装置において、第1凹凸面は、局所的に窪んだ第1谷部をもち、操作部材が第1仮想回転軸の周りの第1安定位置に位置しているときに第1アクチュエータが第1谷部にはまる。 Preferably, in the operating device according to the present invention, the first uneven surface has a locally recessed first trough, and the operating member is located at a first stable position around the first virtual rotation axis. The first actuator fits in the first valley.
 この構成によれば、操作部材が第1仮想回転軸の周りの第1安定位置に位置しているときに第1アクチュエータが第1谷部にはまるので、操作部材が第2仮想回転軸の周りで回転するとき、操作部材の第1仮想回転軸の周りにおける意図しない回転を防ぐことができる。 According to this configuration, when the operation member is located at the first stable position around the first virtual rotation axis, the first actuator fits in the first trough, so that the operation member is around the second virtual rotation axis. When rotating at the position, unintended rotation around the first virtual rotation axis of the operating member can be prevented.
 好適には本発明の操作装置において、操作部材を第1仮想回転軸の周りに回転可能に支持する中間支持体と、中間支持体を第2仮想回転軸の周りに回転可能に支持する支持体と、をさらに備え、第1ガイド部材が、操作部材に固定されており、第2ガイド部材が、中間支持体と一体的な部材として構成されている。 Preferably, in the operation device of the present invention, an intermediate support that supports the operation member rotatably around the first virtual rotation axis, and a support that supports the intermediate support rotatably around the second virtual rotation axis. The first guide member is fixed to the operation member, and the second guide member is configured as an integral member with the intermediate support.
 この構成によれば、第2ガイド部材が中間支持体と一体的な部材として構成されているので、別体である場合に比べて部品点数を減らすことができる。 According to this configuration, since the second guide member is configured as an integral member with the intermediate support, the number of parts can be reduced as compared with a case where the second guide member is separate.
 好適には本発明の操作装置において、第1カムが、支持体に固定されている。 Preferably, in the operating device of the present invention, the first cam is fixed to the support.
 この構成によれば、第1カムが支持体に固定されているので、操作部材が第1仮想回転軸の周りで回転するときに第1アクチュエータが通る第1凹凸面上の領域は、第2仮想回転軸の周りでの操作部材の回転位置に応じて異なる。従って、第1カムを中間支持体に固定する場合に比べて、多様な操作感を操作者に与えることができる。 According to this configuration, since the first cam is fixed to the support, the region on the first uneven surface through which the first actuator passes when the operating member rotates around the first virtual rotation axis is the second It differs depending on the rotational position of the operation member around the virtual rotation axis. Therefore, various operational feelings can be given to the operator as compared with the case where the first cam is fixed to the intermediate support.
 好適には本発明の操作装置において、操作部材が第2仮想回転軸の周りで回転するときに、第2経路が第1仮想回転軸に略平行であり、かつ、第2アクチュエータが第1仮想回転軸上に配置される。 Preferably, in the operating device according to the present invention, when the operating member rotates around the second virtual rotation axis, the second path is substantially parallel to the first virtual rotation axis, and the second actuator is the first virtual rotation axis. Arranged on the rotation axis.
 この構成によれば、操作部材が第2仮想回転軸の周りで回転するときに、第2経路が第1仮想回転軸に略平行であり、かつ、第2アクチュエータが第1仮想回転軸上に配置されるので、操作部材が第1仮想回転軸の周りで回転するときに、第2アクチュエータがその場で回転するだけで、第2アクチュエータと第2カムとの相対位置が大きく変わらない。そのため、操作部材が第1仮想回転軸の周りで回転するときに、第1アクチュエータにより発生する抵抗力に、第2アクチュエータにより発生する抵抗力が大きく加わらない。従って、操作部材が第1仮想回転軸の周りで回転するときの抵抗力を制御しやすい。 According to this configuration, when the operation member rotates around the second virtual rotation axis, the second path is substantially parallel to the first virtual rotation axis, and the second actuator is on the first virtual rotation axis. Therefore, when the operating member rotates around the first virtual rotation axis, the relative position between the second actuator and the second cam does not change greatly only by the second actuator rotating on the spot. For this reason, when the operating member rotates around the first virtual rotation axis, the resistance force generated by the second actuator is not significantly added to the resistance force generated by the first actuator. Therefore, it is easy to control the resistance force when the operation member rotates around the first virtual rotation axis.
 好適には本発明の操作装置において、第2アクチュエータが、回転対称な形状であり、第2アクチュエータの対称中心が、第1仮想回転軸に略一致する。 Preferably, in the operating device of the present invention, the second actuator has a rotationally symmetric shape, and the symmetry center of the second actuator substantially coincides with the first virtual rotation axis.
 この構成によれば、第2アクチュエータが、回転対称な形状であり、第2アクチュエータの対称中心が、第1仮想回転軸に略一致するので、操作部材が第1仮想回転軸の周りで回転するときに、第2アクチュエータと第2カムとの相対位置を一定に保つことができる。 According to this configuration, since the second actuator has a rotationally symmetric shape, and the center of symmetry of the second actuator substantially coincides with the first virtual rotation axis, the operation member rotates around the first virtual rotation axis. Sometimes, the relative position between the second actuator and the second cam can be kept constant.
 本発明によれば、抵抗力の変化を大きく維持しながら高い強度で薄型化できる操作装置を提供することができる。 According to the present invention, it is possible to provide an operating device that can be thinned with high strength while maintaining a large change in resistance.
本発明の実施形態に係る操作装置の斜視図である。It is a perspective view of the operating device concerning the embodiment of the present invention. 第2支持体と第3支持体とを省略した図1に示す操作装置の斜視図である。It is a perspective view of the operating device shown in Drawing 1 which omitted the 2nd support and the 3rd support. 第2支持体と第3支持体とを省略した図1に示す操作装置の分解斜視図である。It is a disassembled perspective view of the operating device shown in FIG. 1 which abbreviate | omitted the 2nd support body and the 3rd support body. 図3に示す操作部材と中間支持体と第1アクチュエータと第2アクチュエータとの分解斜視図である。FIG. 4 is an exploded perspective view of an operation member, an intermediate support, a first actuator, and a second actuator shown in FIG. 3. 支持体を省略した図1に示す操作装置の平面図である。It is a top view of the operating device shown in Drawing 1 which omitted a support. 図5の6-6線を通る断面における操作装置の断面図である。FIG. 6 is a cross-sectional view of the operating device in a cross section passing through line 6-6 in FIG. 図5の7-7線を通る断面における操作装置の断面図である。FIG. 7 is a cross-sectional view of the operating device in a cross section passing through line 7-7 in FIG. 5; 図6の8-8線を通る断面における操作装置の断面図である。FIG. 8 is a cross-sectional view of the operating device in a cross section passing through line 8-8 in FIG. 6. 操作部材が第1回転位置にあるときの、図2に示す操作装置の斜視図である。It is a perspective view of the operating device shown in FIG. 2 when an operating member exists in a 1st rotation position. 操作部材が第1回転位置にあるときの、図6と同じ断面における操作装置の断面図である。It is sectional drawing of the operating device in the same cross section as FIG. 6 when an operating member exists in a 1st rotation position. 操作部材が第2回転位置にあるときの、図2に示す操作装置の斜視図である。It is a perspective view of the operating device shown in FIG. 2 when an operating member exists in a 2nd rotation position. 操作部材が第2回転位置にあるときの、図7と同じ断面における操作装置の断面図である。It is sectional drawing of the operating device in the same cross section as FIG. 7 when an operating member exists in a 2nd rotation position.
(全体構成)
 以下、本発明の実施形態に係る操作装置について説明する。図1は、本実施形態の操作装置100の斜視図である。操作装置100は、外形が略直方体で中空の支持体110と、支持体110に可動に支持された操作部材120とを含む。支持体110は、図示しない車両に固定されている。操作部材120は、支持体110内で2つの回転方向に傾倒可能に支持されている。操作装置100は、図示しない位置検出部により検出した操作部材120の回転方向と回転量とに応じて、車両のトランスミッションを切り替える。
(overall structure)
Hereinafter, an operating device according to an embodiment of the present invention will be described. FIG. 1 is a perspective view of the operating device 100 of the present embodiment. The operating device 100 includes a support body 110 that has a substantially rectangular parallelepiped shape and is hollow, and an operation member 120 that is movably supported by the support body 110. The support body 110 is fixed to a vehicle (not shown). The operation member 120 is supported in the support body 110 so as to be tiltable in two rotation directions. The operation device 100 switches the transmission of the vehicle according to the rotation direction and the rotation amount of the operation member 120 detected by a position detection unit (not shown).
 本明細書において、互いに直交するx方向、y方向、及びz方向を規定する。x方向は、互いに逆を向くx1方向とx2方向とを区別せずに表す。y方向は互いに逆を向くy1方向とy2方向とを区別せずに表す。z方向は互いに逆を向くz1方向とz2方向とを区別せずに表す。これらの方向は、相対的な位置関係を説明するために便宜上規定するのであって、実際の使用時の方向を限定するわけではない。構成要素の形状は、「略」という記載があるかないかにかかわらず、本明細書で開示された実施形態の技術思想が実現される限り、記載された表現に基づく厳密な幾何学的な形状に限定されない。 In this specification, the x direction, the y direction, and the z direction orthogonal to each other are defined. The x direction is expressed without distinguishing the x1 direction and the x2 direction that are opposite to each other. The y direction represents the y1 direction and the y2 direction that are opposite to each other without distinction. The z direction represents the z1 direction and the z2 direction that are opposite to each other without distinction. These directions are defined for convenience in order to explain the relative positional relationship, and do not limit the directions in actual use. Regardless of whether there is a description of “substantially”, the shape of the component is a strict geometric shape based on the described expression as long as the technical idea of the embodiment disclosed in this specification is realized. It is not limited.
 図1に示すように、支持体110は、全体として中空の略直方体形状であり、第1支持体111と第2支持体112と第3支持体113とを含む。図2は、図1に示す第2支持体112と第3支持体113とを省略した操作装置100の斜視図である。図2に示すように、第1支持体111のz1側は、解放されており、図1に示すようにxy平面に略平行な平板状の第2支持体112により覆われている。第2支持体112には、z方向に貫通した貫通孔112-1が設けられている。図2に示すように、第1支持体111のy2側は、解放されており、図1に示すようにzx平面に略平行な平板状の第3支持体113により覆われている。 As shown in FIG. 1, the support 110 has a generally hollow rectangular parallelepiped shape as a whole, and includes a first support 111, a second support 112, and a third support 113. FIG. 2 is a perspective view of the operating device 100 in which the second support body 112 and the third support body 113 shown in FIG. 1 are omitted. As shown in FIG. 2, the z1 side of the first support 111 is released and covered with a flat plate-like second support 112 that is substantially parallel to the xy plane, as shown in FIG. The second support 112 is provided with a through hole 112-1 that penetrates in the z direction. As shown in FIG. 2, the y2 side of the first support 111 is open and covered with a flat plate-like third support 113 substantially parallel to the zx plane as shown in FIG.
 図3は、図1に示す第2支持体112と第3支持体113とを省略した操作装置100の、z1側から見た分解斜視図である。図3に示すように、操作装置100は、支持体110の内部に、さらに、第1カム130と第2カム135と中間支持体140と第1ガイド部材150と第2ガイド部材155と第1アクチュエータ160と第1弾性部材169と第2アクチュエータ170と第2弾性部材179とを含む。 FIG. 3 is an exploded perspective view of the operating device 100 from which the second support 112 and the third support 113 shown in FIG. 1 are omitted, as viewed from the z1 side. As shown in FIG. 3, the operating device 100 further includes a first cam 130, a second cam 135, an intermediate support 140, a first guide member 150, a second guide member 155, and a first guide inside the support 110. The actuator 160, the first elastic member 169, the second actuator 170, and the second elastic member 179 are included.
 図3に示すように、第1支持体111は、第1軸受114と第2軸受115と第1カム固定部116と第2カム固定部117とを含む。第1軸受114は、第1支持体111内のx1側端部に設けられており、x2方向とz1方向とに解放された窪みである。第2軸受115は、第1支持体111内のx2側端部に設けられており、x1方向とz1方向とに解放された窪みである。第1カム固定部116は、第1支持体111内のx1側端部に設けられており、x2方向とz1方向とに解放された略直方体の部位である。第2カム固定部117は、第1支持体111内のy1側端部付近に設けられており、y2方向とz1方向とに解放された略直方体の部位である。第1カム固定部116は、第1軸受114と第2軸受115との間に位置している。 3, the first support 111 includes a first bearing 114, a second bearing 115, a first cam fixing portion 116, and a second cam fixing portion 117. The 1st bearing 114 is provided in the x1 side edge part in the 1st support body 111, and is a hollow open | released to x2 direction and z1 direction. The 2nd bearing 115 is provided in the x2 side edge part in the 1st support body 111, and is a hollow open | released to x1 direction and z1 direction. The first cam fixing portion 116 is provided at the x1 side end portion in the first support 111 and is a substantially rectangular parallelepiped portion released in the x2 direction and the z1 direction. The second cam fixing portion 117 is provided in the vicinity of the y1 side end portion in the first support 111, and is a substantially rectangular parallelepiped portion released in the y2 direction and the z1 direction. The first cam fixing portion 116 is located between the first bearing 114 and the second bearing 115.
 図4は、操作部材120と中間支持体140と第1アクチュエータ160と第2アクチュエータ170との、z2側から見た分解斜視図である。図5は、支持体110を省略した操作装置100の平面図である。図6は、図5の6-6線を通りzx平面に平行な断面における操作装置100の断面図である。図7は、図5の7-7線を通りyz平面に平行な断面における操作装置100の断面図である。図8は、図6の8-8線を通りxy平面に平行な断面における操作装置100の断面図である。 FIG. 4 is an exploded perspective view of the operation member 120, the intermediate support 140, the first actuator 160, and the second actuator 170 as seen from the z2 side. FIG. 5 is a plan view of the operating device 100 from which the support 110 is omitted. 6 is a cross-sectional view of the operating device 100 in a cross section passing through line 6-6 in FIG. 5 and parallel to the zx plane. FIG. 7 is a cross-sectional view of the operating device 100 in a cross section passing through line 7-7 in FIG. 5 and parallel to the yz plane. FIG. 8 is a cross-sectional view of the operating device 100 in a cross section passing through line 8-8 in FIG. 6 and parallel to the xy plane.
(第1カム)
 図3に示すように、第1カム130は、略直方体の外形をもち、x2側の面からx1方向に窪んだ第1窪み131をもち、第1窪み131の中にx2方向を向いた第1凹凸面132をもつ。図6に示すように、第1凹凸面132は、x方向に平行な後述の第2仮想回転軸102に重なる位置において、x1方向に最も窪んだ第1谷部133をもつ。第1カム130のz2側端部付近が、図3に示す第1カム固定部116に固定されている。図2に示すように、第1カム130は、第1支持体111内のx1側端部付近に位置している。
(First cam)
As shown in FIG. 3, the first cam 130 has a substantially rectangular parallelepiped shape, has a first recess 131 that is recessed in the x1 direction from the surface on the x2 side, and has a first recess 131 that faces the x2 direction in the first recess 131. One uneven surface 132 is provided. As shown in FIG. 6, the first uneven surface 132 has a first valley portion 133 that is most recessed in the x1 direction at a position overlapping a later-described second virtual rotation shaft 102 that is parallel to the x direction. The vicinity of the end portion on the z2 side of the first cam 130 is fixed to the first cam fixing portion 116 shown in FIG. As shown in FIG. 2, the first cam 130 is located in the vicinity of the end portion on the x1 side in the first support 111.
(第2カム)
 図3に示すように、第2カム135は、略直方体の外形をもち、y2側の面からy1方向に窪んだ第2窪み136をもち、第2窪み136の中にy2方向を向いた第2凹凸面137をもつ。図7に示すように、第2凹凸面137は、y方向に平行な後述の第1仮想回転軸101に重なる位置において、y1方向に最も窪んだ第2谷部138をもつ。第2カム135は、図3に示す第2カム固定部117に固定されており、図2に示すように、第1支持体111内のy1側端部付近に位置している。
(Second cam)
As shown in FIG. 3, the second cam 135 has a substantially rectangular parallelepiped shape, has a second recess 136 that is recessed in the y1 direction from the surface on the y2 side, and the second cam 135 faces the y2 direction in the second recess 136. It has two uneven surfaces 137. As shown in FIG. 7, the second uneven surface 137 has a second valley portion 138 that is most recessed in the y1 direction at a position overlapping a later-described first virtual rotation shaft 101 parallel to the y direction. The second cam 135 is fixed to the second cam fixing portion 117 shown in FIG. 3 and is located near the y1 side end portion in the first support 111 as shown in FIG.
(中間支持体)
 図5に示すように、中間支持体140は、z方向から見たとき中空の略長方形に見える枠体141を含む。図3に示すように、枠体141は、共にyz平面に略平行で対向した第1板部141-1と第2板部141-2とを含み、さらに、共にzx平面に略平行で対向した第3板部141-3と第4板部141-4とを含む。第3板部141-3は、第1板部141-1のy1側端部と第2板部141-2のy1側端部とを、x方向に連結している。第4板部141-4は、第1板部141-1のy2側端部と第2板部141-2のy2側端部とを、x方向に連結している。第4板部141-4は、第3板部141-3よりy2側に位置している。
(Intermediate support)
As shown in FIG. 5, the intermediate support 140 includes a frame 141 that looks like a hollow substantially rectangular shape when viewed from the z direction. As shown in FIG. 3, the frame body 141 includes a first plate portion 141-1 and a second plate portion 141-2 both facing substantially parallel to the yz plane, and further both facing substantially parallel to the zx plane. The third plate portion 141-3 and the fourth plate portion 141-4 are included. The third plate portion 141-3 connects the y1 side end portion of the first plate portion 141-1 and the y1 side end portion of the second plate portion 141-2 in the x direction. The fourth plate portion 141-4 connects the y2 side end portion of the first plate portion 141-1 and the y2 side end portion of the second plate portion 141-2 in the x direction. The fourth plate portion 141-4 is located on the y2 side from the third plate portion 141-3.
 図5に示すように中間支持体140は、第1板部141-1のx1側の面からx1方向に突出した略円柱形の第1シャフト142(図4)と、第2板部141-2のx2側の面からx2方向に突出した略円柱形の第2シャフト143(図3)とをさらに含む。 As shown in FIG. 5, the intermediate support 140 includes a substantially cylindrical first shaft 142 (FIG. 4) projecting in the x1 direction from the x1 side surface of the first plate portion 141-1, and the second plate portion 141-. And a substantially cylindrical second shaft 143 (FIG. 3) that protrudes in the x2 direction from the surface of x2 on the x2 side.
 図3に示すように、第3板部141-3のy2側の面には、y1方向に窪んだ略円筒形状の第1中間軸受144が設けられている。第4板部141-4には、y方向に貫通した略円筒形状の第2中間軸受145が設けられている。中間支持体140は、さらに、略円柱状の第3シャフト146を含む。図8に示すように、第1中間軸受144と第2中間軸受145と第3シャフト146との各中心は、y方向に平行な第1仮想回転軸101に一致している。第3シャフト146のy1側端部は、第1中間軸受144内に固定されている。第3シャフト146のy2側端部は、第2中間軸受145内に固定されている。 As shown in FIG. 3, a substantially cylindrical first intermediate bearing 144 recessed in the y1 direction is provided on the surface of the third plate portion 141-3 on the y2 side. The fourth plate portion 141-4 is provided with a substantially cylindrical second intermediate bearing 145 penetrating in the y direction. The intermediate support 140 further includes a third shaft 146 having a substantially cylindrical shape. As shown in FIG. 8, the centers of the first intermediate bearing 144, the second intermediate bearing 145, and the third shaft 146 coincide with the first virtual rotating shaft 101 parallel to the y direction. The y1 side end portion of the third shaft 146 is fixed in the first intermediate bearing 144. The y2 side end of the third shaft 146 is fixed in the second intermediate bearing 145.
 図2に示すように、第1シャフト142は、第1支持体111の第1軸受114により回転可能に支持されている。第2シャフト143は、第1支持体111の第2軸受115により回転可能に支持されている。図8に示すように、第1シャフト142と第2シャフト143との各中心は、x方向に平行な第2仮想回転軸102に一致している。すなわち、中間支持体140の全体が、支持体110(図2)により第2仮想回転軸102の周りに回転可能に支持されている。 As shown in FIG. 2, the first shaft 142 is rotatably supported by the first bearing 114 of the first support 111. The second shaft 143 is rotatably supported by the second bearing 115 of the first support 111. As shown in FIG. 8, the centers of the first shaft 142 and the second shaft 143 coincide with the second virtual rotation axis 102 parallel to the x direction. In other words, the entire intermediate support 140 is supported by the support 110 (FIG. 2) so as to be rotatable around the second virtual rotation axis 102.
(操作部材)
 図3に示すように、操作部材120は、基部121と、基部121からz1方向に延びた操作軸122とを含む。
(Operation member)
As shown in FIG. 3, the operation member 120 includes a base 121 and an operation shaft 122 extending from the base 121 in the z1 direction.
 図5に示すように、基部121は、y方向において第3板部141-3と第4板部141-4とにより挟まれているので、y方向に移動しない。図3に示すように、基部121には、y方向に貫通した略円筒形状の貫通軸孔123が設けられている。図8に示すように、貫通軸孔123内に第3シャフト146の一部が位置している。貫通軸孔123の直径は、第3シャフト146の直径と同程度である。貫通軸孔123の中心は、第1仮想回転軸101に一致する。中間支持体140は、第3シャフト146を介して操作部材120を第1仮想回転軸101の周りに回転可能に支持している。 As shown in FIG. 5, since the base 121 is sandwiched between the third plate portion 141-3 and the fourth plate portion 141-4 in the y direction, it does not move in the y direction. As shown in FIG. 3, the base 121 is provided with a substantially cylindrical through-shaft hole 123 penetrating in the y direction. As shown in FIG. 8, a part of the third shaft 146 is located in the through shaft hole 123. The diameter of the through-shaft hole 123 is approximately the same as the diameter of the third shaft 146. The center of the through-shaft hole 123 coincides with the first virtual rotation axis 101. The intermediate support 140 supports the operation member 120 via the third shaft 146 so as to be rotatable around the first virtual rotation axis 101.
 図3に示す操作軸122の延びる方向は、軸方向と呼ばれ、図8に示す第1仮想回転軸101と第2仮想回転軸102とに略直交する。図3に示す状態において、軸方向はz方向に略一致する。ただし、軸方向は、第1仮想回転軸101の周りで回転する。操作軸122は、略円筒形状であり、z2側の一端が基部121に固定されている。図1に示すように、操作軸122の一部は、支持体110の貫通孔112-1を通って外部まで延びている。操作部材120は、操作軸122のz1側の端部からz1方向に突出した取り付け突起124をさらに含む。取り付け突起124は、支持体110の外部に位置している。取り付け突起124には、操作者が握る図示しないノブが取り付けられる。 The extending direction of the operation shaft 122 shown in FIG. 3 is called an axial direction, and is substantially orthogonal to the first virtual rotation shaft 101 and the second virtual rotation shaft 102 shown in FIG. In the state shown in FIG. 3, the axial direction substantially coincides with the z direction. However, the axial direction rotates around the first virtual rotation axis 101. The operation shaft 122 has a substantially cylindrical shape, and one end on the z2 side is fixed to the base 121. As shown in FIG. 1, a part of the operation shaft 122 extends to the outside through the through hole 112-1 of the support 110. The operation member 120 further includes an attachment protrusion 124 that protrudes in the z1 direction from the z1 side end of the operation shaft 122. The attachment protrusion 124 is located outside the support 110. A knob (not shown) gripped by the operator is attached to the attachment protrusion 124.
 図8に示すように、操作部材120は、操作者の操作を受けて第1仮想回転軸101の周りで回転可能であることに加えて、中間支持体140と共に第2仮想回転軸102の周りでも回転可能である。第1仮想回転軸101と第2仮想回転軸102とは、同一平面内で略直交している。第1仮想回転軸101は、操作軸122の軸方向と直交した状態で、操作部材120と共に第2仮想回転軸102の周りで回転する。 As shown in FIG. 8, the operation member 120 is capable of rotating around the first virtual rotation axis 101 in response to an operator's operation, and in addition, around the second virtual rotation axis 102 together with the intermediate support 140. But it can be rotated. The first virtual rotation axis 101 and the second virtual rotation axis 102 are substantially orthogonal within the same plane. The first virtual rotation shaft 101 rotates around the second virtual rotation shaft 102 together with the operation member 120 in a state orthogonal to the axial direction of the operation shaft 122.
(第1ガイド部材)
 図4に示すように、第1ガイド部材150は、操作部材120と一体的に形成されており、操作部材120に固定されている。第1ガイド部材150は、操作部材120の基部121のx1側からx1方向に突出している。
(First guide member)
As shown in FIG. 4, the first guide member 150 is formed integrally with the operation member 120 and is fixed to the operation member 120. The first guide member 150 protrudes in the x1 direction from the x1 side of the base 121 of the operation member 120.
 図8に示すように、第1ガイド部材150には、x1側端部からx2方向に窪んだ略円筒形状の第1外穴151と、第1外穴151のx2側端部からさらにx2方向に窪んだ略円筒形状の第1内穴152とが設けられている。第1外穴151と第1内穴152との各中心は、図8に示す回転位置において第2仮想回転軸102に一致する。第1内穴152の直径は、第1外穴151の直径より小さい。第1ガイド部材150は、操作部材120が第1仮想回転軸101の周りで回転するときに操作部材120と共に回転する。 As shown in FIG. 8, the first guide member 150 includes a substantially cylindrical first outer hole 151 that is recessed in the x2 direction from the x1 side end portion, and further from the x2 side end portion of the first outer hole 151 in the x2 direction. A substantially cylindrical first inner hole 152 that is recessed is provided. Each center of the 1st outer hole 151 and the 1st inner hole 152 corresponds with the 2nd virtual rotating shaft 102 in the rotation position shown in FIG. The diameter of the first inner hole 152 is smaller than the diameter of the first outer hole 151. The first guide member 150 rotates together with the operation member 120 when the operation member 120 rotates around the first virtual rotation axis 101.
(第2ガイド部材)
 図4に示すように、第2ガイド部材155は、中間支持体140と一体的な部材として形成されており、中間支持体140に固定されている。第2ガイド部材155は、中間支持体140の第3板部141-3のy1側の面からy1方向に突出している。
(Second guide member)
As shown in FIG. 4, the second guide member 155 is formed as an integral member with the intermediate support 140 and is fixed to the intermediate support 140. The second guide member 155 protrudes in the y1 direction from the y1 side surface of the third plate portion 141-3 of the intermediate support 140.
 図8に示すように、第2ガイド部材155には、y1側端部からy2方向に窪んだ略円筒形状の第2外穴156と、第2外穴156のy2側端部からさらにy2方向に窪んだ略円筒形状の第2内穴157とが設けられている。第2外穴156と第2内穴157との各中心は、第1仮想回転軸101に一致する。第2内穴157の直径は、第2外穴156の直径より小さい。第2ガイド部材155は、操作部材120と中間支持体140とが第2仮想回転軸102の周りで回転するときに操作部材120と共に回転する。 As shown in FIG. 8, the second guide member 155 has a substantially cylindrical second outer hole 156 that is recessed in the y2 direction from the y1 side end portion, and a y2 direction further from the y2 side end portion of the second outer hole 156. A substantially cylindrical second inner hole 157 that is recessed is provided. The centers of the second outer hole 156 and the second inner hole 157 coincide with the first virtual rotation axis 101. The diameter of the second inner hole 157 is smaller than the diameter of the second outer hole 156. The second guide member 155 rotates together with the operation member 120 when the operation member 120 and the intermediate support 140 rotate around the second virtual rotation axis 102.
(第1アクチュエータ)
 図3に示すように、第1アクチュエータ160は、第1大径部161と第1小径部162と第1ヘッド163とを含む。図8に示す回転位置において、第1大径部161と第1小径部162とは、いずれも、第2仮想回転軸102上に中心軸をもつ略円筒形状である。第1大径部161のx2側の面に、第1小径部162のx1側端部が固定されている。第1ヘッド163は、第1大径部161のx1側の面からx1方向に突出している。図8に示す回転位置において、第1ヘッド163は、第2仮想回転軸102上に中心軸をもつ略円錐形状である。第1ヘッド163のx1側に先端が位置しており、先端は丸みを帯びている。
(First actuator)
As shown in FIG. 3, the first actuator 160 includes a first large diameter portion 161, a first small diameter portion 162, and a first head 163. In the rotational position shown in FIG. 8, each of the first large diameter portion 161 and the first small diameter portion 162 has a substantially cylindrical shape having a central axis on the second virtual rotation axis 102. The x1 side end portion of the first small diameter portion 162 is fixed to the x2 side surface of the first large diameter portion 161. The first head 163 protrudes in the x1 direction from the x1 side surface of the first large diameter portion 161. In the rotational position shown in FIG. 8, the first head 163 has a substantially conical shape having a central axis on the second virtual rotational axis 102. The tip is located on the x1 side of the first head 163, and the tip is rounded.
 図8に示すように、第1大径部161は、第1外穴151内に位置している。第1小径部162は、第1内穴152内に位置している。図8に示す回転位置において、第1大径部161が第1外穴151内で摺動可能であり、第1小径部162が第1内穴152内で摺動可能である。第1アクチュエータ160は、第1ガイド部材150に規定された経路(以下、第1経路と呼ぶ場合がある)に沿って移動可能である。図8に示す1つの回転位置において、第1経路は、第2仮想回転軸102に略平行であり、本実施形態では第2仮想回転軸102に一致する。 As shown in FIG. 8, the first large diameter portion 161 is located in the first outer hole 151. The first small diameter portion 162 is located in the first inner hole 152. In the rotational position shown in FIG. 8, the first large diameter portion 161 can slide within the first outer hole 151, and the first small diameter portion 162 can slide within the first inner hole 152. The first actuator 160 is movable along a path defined by the first guide member 150 (hereinafter sometimes referred to as a first path). In one rotational position shown in FIG. 8, the first path is substantially parallel to the second virtual rotation axis 102 and coincides with the second virtual rotation axis 102 in the present embodiment.
 図8に示すように、操作部材120が第1仮想回転軸101の周りで回転するときの1つの回転位置において、第1アクチュエータ160が全体として第2仮想回転軸102上に配置され、かつ、同じ1つの回転位置において第2仮想回転軸102を中心として回転対称な形状である。 As shown in FIG. 8, the first actuator 160 is disposed on the second virtual rotation shaft 102 as a whole at one rotational position when the operation member 120 rotates around the first virtual rotation shaft 101, and The shape is rotationally symmetric about the second virtual rotation axis 102 at the same single rotational position.
(第1弾性部材)
 図8に示すように、第1弾性部材169は、第1アクチュエータ160の第1小径部162の周りに巻かれた金属製の巻きばねである。第1弾性部材169は、x方向において、第1大径部161内でx2側に位置する第1ガイド部材150の一部と、x1側に位置する第1大径部161との間に挟まれている。第1弾性部材169は、第1アクチュエータ160を弾性的に第1凹凸面132に付勢する。他の例において、第1弾性部材169は、ゴムや板バネなど他の弾性部材であってもよい。
(First elastic member)
As shown in FIG. 8, the first elastic member 169 is a metal wound spring wound around the first small diameter portion 162 of the first actuator 160. The first elastic member 169 is sandwiched between a part of the first guide member 150 located on the x2 side in the first large diameter portion 161 and the first large diameter portion 161 located on the x1 side in the x direction. It is. The first elastic member 169 elastically biases the first actuator 160 toward the first uneven surface 132. In another example, the first elastic member 169 may be another elastic member such as rubber or a leaf spring.
 第1ガイド部材150のx1側の端部付近は、部分的に第1カム130の第1窪み131内に位置している。第1アクチュエータ160の第1ヘッド163のx1側端部は、第1カム130の第1凹凸面132に接触している。 The vicinity of the end portion on the x1 side of the first guide member 150 is partially located in the first recess 131 of the first cam 130. The x1 side end of the first head 163 of the first actuator 160 is in contact with the first uneven surface 132 of the first cam 130.
(第2アクチュエータ)
 図3に示すように、第2アクチュエータ170は、第2大径部171と第2小径部172と第2ヘッド173とを含む。図8に示すように、第2大径部171と第2小径部172とは、いずれも、第1仮想回転軸101上に中心軸をもつ略円筒形状である。第2大径部171のy2側の面に、第2小径部172のy1側端部が固定されている。第2ヘッド173は、第2大径部171のy1側の面からy1方向に突出している。第2ヘッド173は、第1仮想回転軸101上に中心軸をもつ略円錐形状である。第2ヘッド173のy1側に先端が位置しており、先端は丸みを帯びている。
(Second actuator)
As shown in FIG. 3, the second actuator 170 includes a second large diameter portion 171, a second small diameter portion 172, and a second head 173. As shown in FIG. 8, each of the second large diameter portion 171 and the second small diameter portion 172 has a substantially cylindrical shape having a central axis on the first virtual rotation axis 101. The y1 side end of the second small diameter portion 172 is fixed to the y2 side surface of the second large diameter portion 171. The second head 173 protrudes from the y1 side surface of the second large diameter portion 171 in the y1 direction. The second head 173 has a substantially conical shape having a central axis on the first virtual rotation axis 101. The tip is located on the y1 side of the second head 173, and the tip is rounded.
 図8に示すように、第2大径部171は、第2外穴156内に位置している。第2小径部172は、第2内穴157内に位置している。第2大径部171が第2外穴156内で第1仮想回転軸101に沿って摺動可能であり、第2小径部172が第2内穴157内で第1仮想回転軸101に沿って摺動可能である。第2アクチュエータ170は、第2ガイド部材155規定された経路(以下、第2経路と呼ぶ場合がある)に沿って移動可能である。第2経路は、第1仮想回転軸101に略平行であり、本実施形態では第1仮想回転軸101に一致する。 As shown in FIG. 8, the second large diameter portion 171 is located in the second outer hole 156. The second small diameter portion 172 is located in the second inner hole 157. The second large diameter portion 171 is slidable along the first virtual rotation axis 101 within the second outer hole 156, and the second small diameter portion 172 is along the first virtual rotation axis 101 within the second inner hole 157. And can slide. The second actuator 170 is movable along a path defined by the second guide member 155 (hereinafter sometimes referred to as a second path). The second path is substantially parallel to the first virtual rotation axis 101 and coincides with the first virtual rotation axis 101 in the present embodiment.
 図8に示すように、第2アクチュエータ170は全体として、第1仮想回転軸101上に配置されており、第1仮想回転軸101を中心として回転対称な形状である。第1経路と第2経路との両方が、軸方向に略直交する方向に延びている。 As shown in FIG. 8, the second actuator 170 as a whole is disposed on the first virtual rotation axis 101 and has a rotationally symmetric shape about the first virtual rotation axis 101. Both the first path and the second path extend in a direction substantially orthogonal to the axial direction.
(第2弾性部材)
 図8に示すように、第2弾性部材179は、第2アクチュエータ170の第2小径部172の周りに巻かれた金属製の巻きばねである。第2弾性部材179は、y方向において、第2大径部171内でy2側に位置する第2ガイド部材155の一部と、y1側に位置する第2大径部171との間に挟まれている。第2弾性部材179は、第2アクチュエータ170を弾性的に第2凹凸面137に付勢する。他の例において、第2弾性部材179は、ゴムや板バネなど他の弾性部材であってもよい。
(Second elastic member)
As shown in FIG. 8, the second elastic member 179 is a metal wound spring wound around the second small diameter portion 172 of the second actuator 170. The second elastic member 179 is sandwiched between a part of the second guide member 155 located on the y2 side in the second large diameter portion 171 and the second large diameter portion 171 located on the y1 side in the y direction. It is. The second elastic member 179 elastically biases the second actuator 170 toward the second uneven surface 137. In another example, the second elastic member 179 may be another elastic member such as rubber or a leaf spring.
 第2ガイド部材155のy1側の端部付近は、部分的に第2カム135の第2窪み136内に位置している。第2アクチュエータ170の第2ヘッド173のy1側端部は、第2カム135の第2凹凸面137に接触している。 The vicinity of the end portion on the y1 side of the second guide member 155 is partially located in the second recess 136 of the second cam 135. The y1 side end of the second head 173 of the second actuator 170 is in contact with the second uneven surface 137 of the second cam 135.
(動作)
 図1から図8は、操作部材120をどの方向にも回転させていない初期位置における操作装置100の図である。初期位置において、操作装置100は、図8に示す第1仮想回転軸101の周りの回転という観点から、初期状態の第1安定位置にある。初期位置において、操作装置100は、図8に示す第2仮想回転軸102の周りの回転という観点から、初期状態の第2安定位置にある。
(Operation)
1 to 8 are views of the operating device 100 in an initial position where the operating member 120 is not rotated in any direction. In the initial position, the controller device 100 is in the first stable position in the initial state from the viewpoint of rotation around the first virtual rotation axis 101 shown in FIG. In the initial position, the controller device 100 is in the second stable position in the initial state from the viewpoint of rotation around the second virtual rotation axis 102 shown in FIG.
 操作装置100は、図8に示す第1仮想回転軸101を中心として、図6に示す第1回転方向181と第2回転方向182とに回転させることができる。第1回転方向181は、操作部材120のz1側端部がx1方向に動く方向である。第2回転方向182は、操作部材120のz1側端部がx2方向に動く方向である。さらに、操作装置100は、図8に示す第2仮想回転軸102を中心として、図7に示す第3回転方向183と第4回転方向184とに回転させることができる。第3回転方向183は、操作部材120のz1側端部がy1方向に動く方向である。第4回転方向184は、操作部材120のz1側端部がy2方向に動く方向である。 The operating device 100 can be rotated around the first virtual rotation axis 101 shown in FIG. 8 in the first rotation direction 181 and the second rotation direction 182 shown in FIG. The first rotation direction 181 is a direction in which the z1 side end portion of the operation member 120 moves in the x1 direction. The second rotation direction 182 is a direction in which the z1 side end portion of the operation member 120 moves in the x2 direction. Further, the controller device 100 can be rotated about the second virtual rotation shaft 102 shown in FIG. 8 in the third rotation direction 183 and the fourth rotation direction 184 shown in FIG. The third rotation direction 183 is a direction in which the z1 side end portion of the operation member 120 moves in the y1 direction. The fourth rotation direction 184 is a direction in which the z1 side end portion of the operation member 120 moves in the y2 direction.
 図6に示す第1安定位置において、第1アクチュエータ160の移動可能な第1経路は、第2仮想回転軸102に略平行であり、第1アクチュエータ160の回転対称の中心は第2仮想回転軸102に略一致している。操作部材120が図6に示す第1安定位置に位置しているとき、第1アクチュエータ160の第1ヘッド163のx1側端部が第1谷部133にはまる。そのため、操作部材120は、ある程度の力を受けないと第1仮想回転軸101(図8)の周りで回転しない。 In the first stable position shown in FIG. 6, the movable first path of the first actuator 160 is substantially parallel to the second virtual rotation axis 102, and the rotationally symmetric center of the first actuator 160 is the second virtual rotation axis. 102 substantially matches. When the operation member 120 is located at the first stable position shown in FIG. 6, the x1 side end portion of the first head 163 of the first actuator 160 fits into the first valley portion 133. Therefore, the operation member 120 does not rotate around the first virtual rotation axis 101 (FIG. 8) unless receiving a certain amount of force.
 図7に示すように、第2アクチュエータ170の移動可能な第2経路は、回転位置にかかわらず第1仮想回転軸101に略平行であり、第2アクチュエータ170の回転対称の中心は回転位置にかかわらず第1仮想回転軸101に略一致している。図7に示す第2安定位置において、第1仮想回転軸101は、y方向に略平行である。操作部材120が図7に示す第2安定位置に位置しているとき、第2アクチュエータ170の第2ヘッド173のy1側端部が第2谷部138にはまる。そのため、操作部材120は、ある程度の力を受けないと第2仮想回転軸102(図8)の周りで回転しない。 As shown in FIG. 7, the movable second path of the second actuator 170 is substantially parallel to the first virtual rotation axis 101 regardless of the rotational position, and the center of rotational symmetry of the second actuator 170 is the rotational position. Regardless, it substantially coincides with the first virtual rotation axis 101. In the second stable position shown in FIG. 7, the first virtual rotation axis 101 is substantially parallel to the y direction. When the operation member 120 is located at the second stable position shown in FIG. 7, the y1 side end portion of the second head 173 of the second actuator 170 fits into the second valley portion 138. Therefore, the operation member 120 does not rotate around the second virtual rotation shaft 102 (FIG. 8) unless receiving a certain amount of force.
 図9は、図6に示す操作部材120を第1回転方向181にある程度回転させた第1回転位置における、操作装置100の斜視図である。図10は、操作部材120が第1回転位置(図9)にあるときの操作装置100の断面図である。図10は、図6と同じ平面における断面を示す。 FIG. 9 is a perspective view of the operating device 100 in the first rotation position where the operation member 120 shown in FIG. 6 is rotated to some extent in the first rotation direction 181. FIG. 10 is a cross-sectional view of the operating device 100 when the operating member 120 is in the first rotational position (FIG. 9). FIG. 10 shows a cross section in the same plane as FIG.
 図9に示すように、操作部材120を第1回転方向181(図6)に回転させるとき、図7に示すように、第2アクチュエータ170は、第2谷部138内にはまったまま維持される。そのため、図9に示すように、中間支持体140は、支持体110に対して回転しない。図10に示すように、第1アクチュエータ160が第1凹凸面132に沿って移動するときに発生する抵抗力が、操作者に操作感として伝わる。図10に示す第1回転位置にあるとき、第1ガイド部材150に沿った第1アクチュエータ160の第1経路は、第2仮想回転軸102に対して傾く。 As shown in FIG. 9, when the operation member 120 is rotated in the first rotation direction 181 (FIG. 6), the second actuator 170 is maintained in the second valley 138 as shown in FIG. 7. The Therefore, as shown in FIG. 9, the intermediate support 140 does not rotate with respect to the support 110. As shown in FIG. 10, the resistance generated when the first actuator 160 moves along the first uneven surface 132 is transmitted to the operator as an operational feeling. When in the first rotation position shown in FIG. 10, the first path of the first actuator 160 along the first guide member 150 is inclined with respect to the second virtual rotation axis 102.
 図6に示す操作部材120が第2回転方向182に回転するときの動作は、第1回転方向181に回転するときの動作と対称的であるので説明を省略する。 The operation when the operation member 120 shown in FIG. 6 rotates in the second rotation direction 182 is symmetric with the operation when the operation member 120 rotates in the first rotation direction 181, and thus the description thereof is omitted.
 図11は、図7に示す操作部材120を第3回転方向183にある程度回転させた第2回転位置における、操作装置100の斜視図である。図12は、操作部材120が第2回転位置(図11)にあるときの操作装置100の断面図である。図12は、図7と同じ平面における断面を示す。 FIG. 11 is a perspective view of the operating device 100 at the second rotation position where the operation member 120 shown in FIG. 7 is rotated to some extent in the third rotation direction 183. FIG. 12 is a cross-sectional view of the operating device 100 when the operating member 120 is in the second rotational position (FIG. 11). FIG. 12 shows a cross section in the same plane as FIG.
 図11に示すように、操作部材120を第3回転方向183(図7)に回転させるとき、図6に示すように、第1アクチュエータ160が第1谷部133内にはまったまま維持される。そのため、図11に示すように、操作部材120は、中間支持体140に対して回転しない。図12に示すように、第2アクチュエータ170が第2凹凸面137に沿って移動するときに発生する抵抗力が、操作者に操作感として伝わる。図12に示す第2回転位置にあるとき、第2ガイド部材155に沿った第2アクチュエータ170の第2経路は、第1仮想回転軸101に平行である。 As shown in FIG. 11, when the operation member 120 is rotated in the third rotation direction 183 (FIG. 7), the first actuator 160 is maintained in the first valley 133 as shown in FIG. 6. . Therefore, as shown in FIG. 11, the operation member 120 does not rotate with respect to the intermediate support 140. As shown in FIG. 12, the resistance force generated when the second actuator 170 moves along the second uneven surface 137 is transmitted to the operator as an operational feeling. When in the second rotation position shown in FIG. 12, the second path of the second actuator 170 along the second guide member 155 is parallel to the first virtual rotation axis 101.
 図7に示す操作部材120が第4回転方向184に回転するときの動作は、第3回転方向183に回転するときの動作と対称的であるので説明を省略する。 Since the operation when the operation member 120 shown in FIG. 7 rotates in the fourth rotation direction 184 is symmetrical with the operation when the operation member 120 rotates in the third rotation direction 183, the description thereof is omitted.
(まとめ)
 本実施形態によれば、第1アクチュエータ160の移動する第1経路と第2アクチュエータ170の移動する第2経路との両方が、軸方向に略直交する方向に延びているので、軸方向に第1アクチュエータ160と第2アクチュエータ170との少なくとも一方が移動する場合に比べて、装置を軸方向に薄型化することができる。また、第1仮想回転軸101から第1アクチュエータ160の先端までの距離を長くして抵抗力の変化を大きく維持しながら、第1アクチュエータ160を太くして強度を高くしても、操作装置100が軸方向に大きくならない。すなわち、抵抗力の変化を大きく維持しながら高い強度で薄型化することができる。
(Summary)
According to the present embodiment, both the first path along which the first actuator 160 moves and the second path along which the second actuator 170 moves extend in a direction substantially perpendicular to the axial direction. Compared to the case where at least one of the first actuator 160 and the second actuator 170 moves, the apparatus can be made thinner in the axial direction. Even if the first actuator 160 is thickened and the strength is increased while the distance from the first virtual rotating shaft 101 to the tip of the first actuator 160 is increased to maintain a large change in the resistance force, the operating device 100 is increased. Does not increase in the axial direction. That is, the thickness can be reduced with high strength while maintaining a large change in resistance.
 本実施形態によれば、直交した2方向に回転する操作装置100において、抵抗力の変化を大きく維持しながら高い強度で薄型化することができる。 According to the present embodiment, the operating device 100 that rotates in two orthogonal directions can be thinned with high strength while maintaining a large change in resistance.
 本実施形態によれば、操作部材120が第1仮想回転軸101の周りで回転するときに、1つの回転位置において第1経路が、第2仮想回転軸102に略平行であり、かつ、その1つの回転位置において第1アクチュエータ160が、第2仮想回転軸102上に配置されるので、その1つの回転位置を保ちながら操作部材120が第2仮想回転軸102の周りで回転するときに、第1アクチュエータ160がその場で回転するだけで、第1アクチュエータ160と第1カム130との相対位置が大きく変わらない。そのため、操作部材120が第2仮想回転軸102の周りで回転するときに、第2アクチュエータ170により発生する抵抗力に、第1アクチュエータ160により発生する抵抗力が大きく加わらない。従って、操作部材120が第2仮想回転軸102の周りで回転するときの抵抗力を制御しやすい。 According to the present embodiment, when the operation member 120 rotates around the first virtual rotation axis 101, the first path is substantially parallel to the second virtual rotation axis 102 at one rotation position, and Since the first actuator 160 is disposed on the second virtual rotation shaft 102 at one rotation position, when the operation member 120 rotates around the second virtual rotation shaft 102 while maintaining the one rotation position, The relative position between the first actuator 160 and the first cam 130 does not change greatly only by the first actuator 160 rotating on the spot. Therefore, the resistance force generated by the first actuator 160 is not greatly added to the resistance force generated by the second actuator 170 when the operation member 120 rotates around the second virtual rotation axis 102. Therefore, it is easy to control the resistance force when the operation member 120 rotates around the second virtual rotation axis 102.
 本実施形態によれば、第1アクチュエータ160が、回転対称な形状であり、第1アクチュエータ160の対称中心が、1つの回転位置において第2仮想回転軸102に略一致するので、操作部材120が第2仮想回転軸102の周りで回転するときに、第1アクチュエータ160と第1カム130との相対位置を一定に保つことができる。 According to the present embodiment, the first actuator 160 has a rotationally symmetric shape, and the center of symmetry of the first actuator 160 substantially coincides with the second virtual rotation axis 102 at one rotational position. When rotating around the second virtual rotation axis 102, the relative position between the first actuator 160 and the first cam 130 can be kept constant.
 本実施形態によれば、操作部材120が第1仮想回転軸101の周りの第1安定位置に位置しているときに第1アクチュエータ160が第1谷部133にはまるので、操作部材120が第2仮想回転軸102の周りで回転するとき、操作部材120の第1仮想回転軸101の周りにおける意図しない回転を防ぐことができる。 According to the present embodiment, when the operation member 120 is located at the first stable position around the first virtual rotation axis 101, the first actuator 160 is fitted into the first valley portion 133, so that the operation member 120 is When rotating around the two virtual rotation axes 102, unintentional rotation of the operation member 120 around the first virtual rotation axis 101 can be prevented.
 本実施形態によれば、第2ガイド部材155が中間支持体140と一体的な部材として構成されているので、別体である場合に比べて部品点数を減らすことができる。 According to the present embodiment, since the second guide member 155 is configured as an integral member with the intermediate support 140, the number of parts can be reduced as compared with a case where the second guide member 155 is a separate member.
 本実施形態によれば、第1カム130が支持体110に固定されているので、操作部材120が第1仮想回転軸101の周りで回転するときに第1アクチュエータ160が通る第1凹凸面132上の領域は、第2仮想回転軸102の周りでの操作部材120の回転位置に応じて異なる。従って、第1カム130を中間支持体140に固定する場合に比べて、多様な操作感を操作者に与えることができる。 According to the present embodiment, since the first cam 130 is fixed to the support 110, the first uneven surface 132 through which the first actuator 160 passes when the operation member 120 rotates around the first virtual rotation axis 101. The upper region differs depending on the rotation position of the operation member 120 around the second virtual rotation axis 102. Therefore, compared to the case where the first cam 130 is fixed to the intermediate support 140, various operational feelings can be given to the operator.
 変形例において、第2ガイド部材155は、中間支持体140に固定されず、操作部材120に固定されてもよい。 In a modification, the second guide member 155 may be fixed to the operation member 120 without being fixed to the intermediate support 140.
 変形例によれば、操作部材120が第2仮想回転軸102の周りで回転するときに、第2経路が第1仮想回転軸101に略平行であり、かつ、第2アクチュエータ170が第1仮想回転軸101上に配置されるので、操作部材120が第1仮想回転軸101の周りで回転するときに、第2アクチュエータ170がその場で回転するだけで、第2アクチュエータ170と第2カム135との相対位置が大きく変わらない。そのため、操作部材120が第1仮想回転軸101の周りで回転するときに、第1アクチュエータ160により発生する抵抗力に、第2アクチュエータ170により発生する抵抗力が大きく加わらない。従って、操作部材120が第1仮想回転軸101の周りで回転するときの抵抗力を制御しやすい。 According to the modification, when the operation member 120 rotates around the second virtual rotation axis 102, the second path is substantially parallel to the first virtual rotation axis 101 and the second actuator 170 is the first virtual rotation axis. Since it is disposed on the rotating shaft 101, when the operation member 120 rotates around the first virtual rotating shaft 101, the second actuator 170 and the second cam 135 only rotate on the spot. The relative position of and does not change significantly. Therefore, the resistance force generated by the second actuator 170 is not significantly added to the resistance force generated by the first actuator 160 when the operation member 120 rotates around the first virtual rotation axis 101. Therefore, it is easy to control the resistance force when the operation member 120 rotates around the first virtual rotation axis 101.
 変形例によれば、第2アクチュエータ170が、回転対称な形状であり、第2アクチュエータ170の対称中心が、第1仮想回転軸101に略一致するので、操作部材120が第1仮想回転軸101の周りで回転するときに、第2アクチュエータ170と第2カム135との相対位置を一定に保つことができる。 According to the modified example, the second actuator 170 has a rotationally symmetric shape, and the center of symmetry of the second actuator 170 substantially coincides with the first virtual rotation axis 101, so that the operation member 120 is the first virtual rotation axis 101. , The relative position of the second actuator 170 and the second cam 135 can be kept constant.
 なお、第1カム130は中間支持体140に固定してもよい。この場合、上述とは逆に、第1アクチュエータ160が通る第1凹凸面132上の領域が、第2仮想回転軸102の周りでの操作部材120の回転位置によらず一定になるため、操作者に一定の操作感を与えることができる。また、第1アクチュエータ160が通る第1凹凸面132上の領域が限定されるため、第1カム130のサイズを小型にすることができる。 Note that the first cam 130 may be fixed to the intermediate support 140. In this case, contrary to the above, the region on the first uneven surface 132 through which the first actuator 160 passes is constant regardless of the rotation position of the operation member 120 around the second virtual rotation axis 102. A certain operational feeling can be given to the person. In addition, since the region on the first uneven surface 132 through which the first actuator 160 passes is limited, the size of the first cam 130 can be reduced.
 本発明は上述した実施形態には限定されない。すなわち、当業者は、本発明の技術的範囲またはその均等の範囲内において、上述した実施形態の構成要素に関し、様々な変更、コンビネーション、サブコンビネーション、並びに代替を行ってもよい。 The present invention is not limited to the embodiment described above. That is, those skilled in the art may make various modifications, combinations, subcombinations, and alternatives regarding the components of the above-described embodiments within the technical scope of the present invention or an equivalent scope thereof.
 本発明は、例えば車両、列車、航空機、船舶、宇宙船などにおいてトランスミッションの変更などに使用する操作装置に適用可能である。 The present invention can be applied to an operation device used for changing a transmission in a vehicle, a train, an aircraft, a ship, a spacecraft, or the like.
100…操作装置、101…第1仮想回転軸、102…第2仮想回転軸
110…支持体、120…操作部材、122…操作軸、
130…第1カム、132…第1凹凸面、133…第1谷部、
135…第2カム、137…第2凹凸面、138…第2谷部
140…中間支持体、150…第1ガイド部材、155…第2ガイド部材
160…第1アクチュエータ、169…第1弾性部材
170…第2アクチュエータ、179…第2弾性部材
DESCRIPTION OF SYMBOLS 100 ... Operating device, 101 ... 1st virtual rotating shaft, 102 ... 2nd virtual rotating shaft 110 ... Support body, 120 ... Operating member, 122 ... Operating shaft,
130 ... 1st cam, 132 ... 1st uneven surface, 133 ... 1st trough part,
135 ... second cam, 137 ... second uneven surface, 138 ... second valley 140 ... intermediate support, 150 ... first guide member, 155 ... second guide member 160 ... first actuator, 169 ... first elastic member 170 ... second actuator, 179 ... second elastic member

Claims (9)

  1.  操作者の操作を受けて第1仮想回転軸と第2仮想回転軸との周りで回転可能な操作部材と、
     第1凹凸面をもつ第1カムと、
     前記操作部材が前記第1仮想回転軸の周りで回転するときに前記操作部材と共に回転する第1ガイド部材と、
     前記第1ガイド部材に規定された第1経路で移動可能な第1アクチュエータと、
     前記第1アクチュエータを前記第1凹凸面に付勢する第1弾性部材と、
     第2凹凸面をもつ第2カムと、
     前記操作部材が前記第2仮想回転軸の周りで回転するときに前記操作部材と共に回転する第2ガイド部材と、
     前記第2ガイド部材に規定された第2経路で移動可能な第2アクチュエータと、
     前記第2アクチュエータを前記第2凹凸面に付勢する第2弾性部材と、
     を備え、
     前記操作部材が、前記第1仮想回転軸と前記第2仮想回転軸とに略直交する軸方向に延びた操作軸を含み、
     前記第1仮想回転軸が、前記操作部材と共に前記第2仮想回転軸の周りで回転し、
     前記第1経路と前記第2経路との両方が、前記軸方向に略直交する方向に延びている、
     操作装置。
    An operation member that can rotate around the first virtual rotation axis and the second virtual rotation axis in response to an operation by the operator;
    A first cam having a first uneven surface;
    A first guide member that rotates with the operating member when the operating member rotates about the first virtual axis of rotation;
    A first actuator movable along a first path defined by the first guide member;
    A first elastic member for urging the first actuator to the first uneven surface;
    A second cam having a second irregular surface;
    A second guide member that rotates with the operating member when the operating member rotates about the second virtual axis of rotation;
    A second actuator movable along a second path defined by the second guide member;
    A second elastic member for urging the second actuator against the second uneven surface;
    With
    The operation member includes an operation shaft extending in an axial direction substantially orthogonal to the first virtual rotation axis and the second virtual rotation axis;
    The first virtual rotation axis rotates around the second virtual rotation axis together with the operation member;
    Both the first path and the second path extend in a direction substantially orthogonal to the axial direction.
    Operating device.
  2.  前記第1仮想回転軸と前記第2仮想回転軸とが略直交している、
     請求項1に記載の操作装置。
    The first virtual rotation axis and the second virtual rotation axis are substantially orthogonal;
    The operating device according to claim 1.
  3.  前記操作部材が前記第1仮想回転軸の周りで回転するときに、1つの回転位置において前記第1経路が前記第2仮想回転軸に略平行であり、かつ、前記1つの回転位置において前記第1アクチュエータが前記第2仮想回転軸上に配置される、
     請求項1または請求項2に記載の操作装置。
    When the operating member rotates around the first virtual rotation axis, the first path is substantially parallel to the second virtual rotation axis at one rotation position, and the first path is at the first rotation position. One actuator is disposed on the second virtual rotation axis;
    The operating device according to claim 1 or 2.
  4.  前記第1アクチュエータが、回転対称な形状であり、
     前記第1アクチュエータの対称中心が、前記1つの回転位置において前記第2仮想回転軸に略一致する、
     請求項3に記載の操作装置。
    The first actuator has a rotationally symmetric shape;
    A center of symmetry of the first actuator substantially coincides with the second virtual rotation axis at the one rotational position;
    The operating device according to claim 3.
  5.  前記第1凹凸面は、局所的に窪んだ第1谷部をもち、
     前記操作部材が前記第1仮想回転軸の周りの第1安定位置に位置しているときに前記第1アクチュエータが前記第1谷部にはまる、
     請求項1乃至請求項4の何れか一項に記載の操作装置。
    The first concavo-convex surface has a first valley that is locally depressed,
    The first actuator fits into the first trough when the operating member is located at a first stable position about the first virtual axis of rotation;
    The operating device according to any one of claims 1 to 4.
  6.  前記操作部材を前記第1仮想回転軸の周りに回転可能に支持する中間支持体と、
     前記中間支持体を前記第2仮想回転軸の周りに回転可能に支持する支持体と、
     をさらに備え、
     前記第1ガイド部材が、前記操作部材に固定されており、
     前記第2ガイド部材が、前記中間支持体と一体的な部材として構成されている、
     請求項1乃至請求項5の何れか一項に記載の操作装置。
    An intermediate support that rotatably supports the operation member around the first virtual rotation axis;
    A support that rotatably supports the intermediate support around the second virtual rotation axis;
    Further comprising
    The first guide member is fixed to the operation member;
    The second guide member is configured as a member integrated with the intermediate support.
    The operating device according to any one of claims 1 to 5.
  7.  前記第1カムが、前記支持体に固定されている、
     請求項1乃至請求項6の何れか一項に記載の操作装置。
    The first cam is fixed to the support;
    The operating device according to any one of claims 1 to 6.
  8.  前記操作部材が前記第2仮想回転軸の周りで回転するときに、前記第2経路が前記第1仮想回転軸に略平行であり、かつ、前記第2アクチュエータが前記第1仮想回転軸上に配置される、
     請求項1乃至請求項7の何れか一項に記載の操作装置。
    When the operation member rotates around the second virtual rotation axis, the second path is substantially parallel to the first virtual rotation axis, and the second actuator is on the first virtual rotation axis. Arranged,
    The operating device according to any one of claims 1 to 7.
  9.  前記第2アクチュエータが、回転対称な形状であり、
     前記第2アクチュエータの対称中心が、前記第1仮想回転軸に略一致する、
     請求項8に記載の操作装置。
     
    The second actuator has a rotationally symmetric shape;
    A symmetry center of the second actuator substantially coincides with the first virtual rotation axis;
    The operating device according to claim 8.
PCT/JP2017/039809 2016-11-28 2017-11-02 Operation device WO2018096911A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018552494A JP6698173B2 (en) 2016-11-28 2017-11-02 Operating device
CN201790001461.8U CN209859033U (en) 2016-11-28 2017-11-02 Operating device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016230025 2016-11-28
JP2016-230025 2016-11-28

Publications (1)

Publication Number Publication Date
WO2018096911A1 true WO2018096911A1 (en) 2018-05-31

Family

ID=62195531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/039809 WO2018096911A1 (en) 2016-11-28 2017-11-02 Operation device

Country Status (3)

Country Link
JP (1) JP6698173B2 (en)
CN (1) CN209859033U (en)
WO (1) WO2018096911A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0712219A (en) * 1993-03-31 1995-01-17 Fuji Kiko Co Ltd Transmission for vehicle
JP2007323859A (en) * 2006-05-30 2007-12-13 Toyo Denso Co Ltd Joystick type switching device
JP2008181478A (en) * 2006-12-27 2008-08-07 Tokai Rika Co Ltd Joy stick
JP2013191140A (en) * 2012-03-15 2013-09-26 Tokai Rika Co Ltd Operation device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0712219A (en) * 1993-03-31 1995-01-17 Fuji Kiko Co Ltd Transmission for vehicle
JP2007323859A (en) * 2006-05-30 2007-12-13 Toyo Denso Co Ltd Joystick type switching device
JP2008181478A (en) * 2006-12-27 2008-08-07 Tokai Rika Co Ltd Joy stick
JP2013191140A (en) * 2012-03-15 2013-09-26 Tokai Rika Co Ltd Operation device

Also Published As

Publication number Publication date
JPWO2018096911A1 (en) 2019-07-04
JP6698173B2 (en) 2020-05-27
CN209859033U (en) 2019-12-27

Similar Documents

Publication Publication Date Title
JP6410358B2 (en) Rotating switch device
JP3212614U (en) Adjuster
US9329616B2 (en) Operating element, particularly for a motor vehicle
JP5893753B2 (en) Reset device for automobile steering column switch system and automobile
WO2018096911A1 (en) Operation device
JPWO2017094217A1 (en) Spherical bearing device and switch
US9343249B2 (en) Pressure and rotationally actuated control element for a motor vehicle
US10077836B2 (en) Selector
US9791884B2 (en) Rotary input operation device
WO2020255495A1 (en) Operation device
JP2016213120A (en) Rotary type switch device
WO2018147206A1 (en) Switch device
JP6619887B2 (en) Operating device
JP6807258B2 (en) Operating device
JP6857778B2 (en) Switch device
EP3214632B1 (en) Multidirectional input device
WO2019138645A1 (en) Operation device
JP6563605B2 (en) Operating device
JP6034242B2 (en) Operating device
JP6754441B2 (en) Multi-directional input device
WO2019087330A1 (en) Medical device retention system
US11822363B2 (en) Operation device
US20230078664A1 (en) Limit switch
JP2006294416A (en) Multidirectional input switch
JP2011175930A (en) Multidirectional input device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17873464

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018552494

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17873464

Country of ref document: EP

Kind code of ref document: A1