WO2018096701A1 - Nanosilver-particle loading method - Google Patents

Nanosilver-particle loading method Download PDF

Info

Publication number
WO2018096701A1
WO2018096701A1 PCT/JP2017/012010 JP2017012010W WO2018096701A1 WO 2018096701 A1 WO2018096701 A1 WO 2018096701A1 JP 2017012010 W JP2017012010 W JP 2017012010W WO 2018096701 A1 WO2018096701 A1 WO 2018096701A1
Authority
WO
WIPO (PCT)
Prior art keywords
denture
induction heating
heating
box
metal container
Prior art date
Application number
PCT/JP2017/012010
Other languages
French (fr)
Japanese (ja)
Inventor
昌平 高橋
Original Assignee
株式会社キャスティングイン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社キャスティングイン filed Critical 株式会社キャスティングイン
Priority to CN201780002626.8A priority Critical patent/CN108472200A/en
Publication of WO2018096701A1 publication Critical patent/WO2018096701A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/84Preparations for artificial teeth, for filling teeth or for capping teeth comprising metals or alloys

Definitions

  • the present invention relates to a nanosilver particle carrying method for carrying nanosilver particles on a denture including a metal bed by induction heating (hereinafter referred to as IH (induction heating)).
  • IH induction heating
  • the material of the resin for floors that becomes the part of denture base is acrylic resin, and it has the property of curing when heat is applied to a mixture of powder and liquid materials measured to a specified amount. Material.
  • the nano-silver particles are carried discretely on the dentures by microwave irradiation, thereby providing an excellent antibacterial effect and maintaining the antibacterial effect even if chewing is continued. Is something that can be done. Therefore, as disclosed in Patent Document 1 already registered in the previous application, the present applicant employs a denture or a denture base resin (gingival) part resin, The denture is immersed in about 150 ml of an aqueous silver solution in a heat-resistant denture box having a relatively high magnetic permeability.
  • support method which carries out the induction heating by irradiating IH with the power supply about 10V for a fixed time from the lower part of a denture box, and carrying
  • Patent Document 1 when a denture including a metal bed is heated by IH and nano silver particles are discretely carried on the denture, the temperature rise by IH is not uniform depending on the size of the metal bed. No (see FIG. 7), there was a variation in each part of the metal floor, a constant temperature for supporting could not be maintained, and there was a possibility that uniform heating could not be performed, and it was necessary to improve it.
  • the present invention was created in view of various circumstances that existed in the past, and various kinds of dentures were formed when discretely carrying nano silver particles on dentures including a metal bed by heating with IH.
  • Nano that can maintain a constant temperature for loading without depending on the surface area of the metal bed and can perform uniform heating without depending on the volume of the metal bed of the denture within the electromagnetic wave reach of IH
  • An object is to provide a method for supporting silver particles.
  • nanosilver particles are dispersed and supported on the denture by performing induction heating (IH) in a state in which a denture including a metal bed is immersed.
  • IH induction heating
  • a particle carrying method in which a denture is housed in a metal container for induction heating diffusion formed as a stainless mesh cage or a stainless steel plate cage, the metal container for induction heating diffusion is placed in a denture box, and an aqueous silver solution is used. The denture is immersed and induction heating (IH) is performed on the denture box.
  • the constant temperature for carrying is not dependent on the surface area of the metal bed of various dentures. Can be maintained, and uniform heating can be performed without depending on the volume of the metal bed of the denture within the electromagnetic wave reachable range of IH.
  • test object for example, a metal bed large (see FIG. 1) or a denture including a metal floor small (see FIG. 2). Is adopted.
  • the denture including the large metal floor or the small metal floor is accommodated in the induction heating diffusion metal container having corrosion resistance formed as the stainless steel mesh cage shown in FIG. 3 or the stainless steel plate cage shown in FIG. .
  • this induction heating diffusion metal container is placed in a heat-resistant denture box (not shown) having a relatively large magnetic permeability, for example, and the metal floor or denture is immersed in about 150 ml of an aqueous silver solution described later.
  • a method of irradiating IH with a power source of about 10 V for a certain time from the lower part of the denture box is adopted. That is, in the heating by IH irradiation, the denture box is placed on the magnetic force generating coil and a high frequency current (power supply of about 10 V) is supplied to the magnetic force generating coil, so that the entire denture box is irradiated with IH for a predetermined time.
  • the work is taken out from the induction heating diffusion metal container in the denture box, the front and the back are reversed, dipped again in the silver aqueous solution, and again irradiated with IH under the same conditions.
  • the nano silver particles in the silver aqueous solution can be discretely supported on the front and back of the workpiece by IH irradiation.
  • IH irradiation is performed after confirming that the aqueous silver solution is at room temperature (around 20 ° C.), and the rising temperature of the aqueous solution is kept at about 75 ° C. at the maximum. Can be prevented.
  • the irradiation with IH is performed at room temperature, silver does not form a thin film on the surface of the workpiece, but is nano-silver particles that are discretely carried on the surface of the workpiece.
  • the aqueous silver solution is an aqueous solution of silver ions.
  • an alcohol preparation of 50 ml to 150 ml is desirably added to 500 ml of a highly safe silver aqueous solution containing phytic acid, sodium polyacrylate, sodium hydrogen carbonate, silver acetate and the like. May be a mixture of 100 ml.
  • a container made of a fluororesin (Teflon: registered trademark) having a permeability of minus 567 ⁇ 10 may be used to reduce the adhesion of nano silver particles.
  • thermometer Using a non-contact infrared thermometer, measure the temperature at 0 minutes of the central part of the work inside the metal container for induction heating diffusion (the central part of the denture: the measurement location does not change with time).
  • the temperature of the stainless steel plate cage rose slightly faster than that of the stainless steel mesh cage.

Abstract

[Problem] When loading dispersed nanosilver particles onto a denture containing a metallic base by heating with an IH, a constant temperature for loading can be maintained independently from the metallic base surface area of various dentures, allowing uniform heating to be performed independently from the volume of the denture metallic base within the range the IH electromagnetic waves reach. [Solution] This nanosilver-particle loading method has a step of performing induction-heating while the denture containing the metallic base is in an immersed state, causing the nanosilver-particles to be dispersed and loaded onto the denture, the method comprising a step of housing the denture in a metal container for induction-heating diffusion formed to be a stainless mesh basket or a stainless plate basket, introducing the metal container for induction-heating diffusion inside a denture box, immersing the denture in an aqueous silver solution, and induction-heating the denture box.

Description

ナノ銀粒子担持方法Nano silver particle support method
 本発明は、金属床を含む義歯に、誘導加熱(以下、IH(インダクションヒーティング)と称す)によって、ナノ銀粒子を担持させるナノ銀粒子担持方法に関する。 The present invention relates to a nanosilver particle carrying method for carrying nanosilver particles on a denture including a metal bed by induction heating (hereinafter referred to as IH (induction heating)).
 従来、義歯床(歯肉)の部分になる床用レジンの材料の素材はアクリル樹脂であり、粉材と液材を規定の分量に計量して混ぜ合わせたものに熱を加えると硬化する性質を持った材料である。 Conventionally, the material of the resin for floors that becomes the part of denture base (gingiva) is acrylic resin, and it has the property of curing when heat is applied to a mixture of powder and liquid materials measured to a specified amount. Material.
 近年、歯科技工用の義歯を作成するための床用レジンに対して、抗菌性、防汚性、防臭性が持続する技術が知られている。すなわち、抗菌コーティングのために、マイクロ波照射によってターゲット物体にナノ銀粒子を担持させる技術が知られている。 In recent years, a technique in which antibacterial properties, antifouling properties, and deodorizing properties have been sustained is known for floor resins used to create dentures for dental technicians. That is, a technique for supporting nano silver particles on a target object by microwave irradiation for antibacterial coating is known.
 すなわち、この技術によれば、マイクロ波照射によって、義歯に、ナノ銀粒子を離散して担持することにより、優れた抗菌効果を有し、また、咀嚼行為が連続しても、抗菌効果を持続することができるものである。そこで、本件出願人は、先の出願で既に登録となった特許文献1に開示されているように、義歯、あるいは義歯床(歯肉)の部分になる床用レジンを採用し、これらを、例えば透磁率の比較的大きな耐熱性のデンチャーボックス内に入れ、当該義歯を約150mlの銀水溶液で浸漬する。そして、デンチャーボックス下部より電源約10Vで一定時間IHを照射して誘導加熱を行うことにより、ナノ銀粒子を離散して義歯に担持させるナノ銀粒子担持方法を提案した。 In other words, according to this technology, the nano-silver particles are carried discretely on the dentures by microwave irradiation, thereby providing an excellent antibacterial effect and maintaining the antibacterial effect even if chewing is continued. Is something that can be done. Therefore, as disclosed in Patent Document 1 already registered in the previous application, the present applicant employs a denture or a denture base resin (gingival) part resin, The denture is immersed in about 150 ml of an aqueous silver solution in a heat-resistant denture box having a relatively high magnetic permeability. And the nano silver particle carrying | support method which carries out the induction heating by irradiating IH with the power supply about 10V for a fixed time from the lower part of a denture box, and carrying | supporting a nano silver particle on a denture was proposed.
特許第5887448号公報Japanese Patent No. 5887448
 しかしながら、上記した特許文献1において、金属床を含む義歯をIHにより加熱し、ナノ銀粒子を離散して義歯に担持させる場合、この金属床の大小によって、IHによる温度の上がり方が一様ではなく(図7参照)、金属床の各部分にバラツキが生じ、担持のための一定の温度を保持できず、均一な加熱ができなくなる虞があり、それを改善する必要があった。 However, in Patent Document 1 described above, when a denture including a metal bed is heated by IH and nano silver particles are discretely carried on the denture, the temperature rise by IH is not uniform depending on the size of the metal bed. No (see FIG. 7), there was a variation in each part of the metal floor, a constant temperature for supporting could not be maintained, and there was a possibility that uniform heating could not be performed, and it was necessary to improve it.
 そこで、本発明は叙上のような従来存した諸事情に鑑み創出されたもので、IHによる加熱により、金属床を含む義歯に、ナノ銀粒子を離散して担持する際に、各種義歯の金属床の表面積に依存せずに、担持のための一定の温度を保持可能とし、IHの電磁波到達範囲内での義歯の金属床の体積に依存せずに均一な加熱ができるものとしたナノ銀粒子担持方法を提供することを目的とする。 Therefore, the present invention was created in view of various circumstances that existed in the past, and various kinds of dentures were formed when discretely carrying nano silver particles on dentures including a metal bed by heating with IH. Nano that can maintain a constant temperature for loading without depending on the surface area of the metal bed and can perform uniform heating without depending on the volume of the metal bed of the denture within the electromagnetic wave reach of IH An object is to provide a method for supporting silver particles.
 上述した課題を解決するために、本発明にあっては、金属床を含む義歯を浸漬した状態で誘導加熱(IH)を行うことにより、ナノ銀粒子を離散して前記義歯に担持させるナノ銀粒子担持方法であって、ステンレスメッシュかご、もしくはステンレスプレートかごとなって形成された誘導加熱拡散用金属容器に義歯を収容して、誘導加熱拡散用金属容器をデンチャーボックス内に入れ、銀水溶液で義歯を浸漬して、デンチャーボックスに対し誘導加熱(IH)を行うことを特徴とする。 In order to solve the above-described problems, in the present invention, nanosilver particles are dispersed and supported on the denture by performing induction heating (IH) in a state in which a denture including a metal bed is immersed. A particle carrying method, in which a denture is housed in a metal container for induction heating diffusion formed as a stainless mesh cage or a stainless steel plate cage, the metal container for induction heating diffusion is placed in a denture box, and an aqueous silver solution is used. The denture is immersed and induction heating (IH) is performed on the denture box.
 本発明によれば、IHによる加熱により、金属床を含む義歯に、ナノ銀粒子を離散して担持する際に、各種義歯の金属床の表面積に依存せずに、担持のための一定の温度を保持可能とし、IHの電磁波到達範囲内での義歯の金属床の体積に依存せずに均一な加熱ができる。 According to the present invention, when nano silver particles are carried discretely on a denture containing a metal bed by heating with IH, the constant temperature for carrying is not dependent on the surface area of the metal bed of various dentures. Can be maintained, and uniform heating can be performed without depending on the volume of the metal bed of the denture within the electromagnetic wave reachable range of IH.
IH装置によるステンレスメッシュかご、ステンレスプレートかご、かご無しの場合の比較実験に使用される金属床大の写真である。It is the photograph of the metal floor size used for the comparison experiment in the case of a stainless mesh cage, a stainless steel plate cage, and a cage without an IH device. IH装置によるステンレスメッシュかご、ステンレスプレートかご、かご無しの場合の比較実験に使用される金属床小の写真である。It is a photograph of a small metal floor used for a comparative experiment in the case of a stainless mesh cage, a stainless steel plate cage, and no cage by an IH device. ステンレスメッシュかごによる誘導加熱拡散用金属容器の写真である。It is a photograph of the metal container for induction heating diffusion by a stainless steel mesh basket. ステンレスプレートかごによる誘導加熱拡散用金属容器の写真である。It is a photograph of the metal container for induction heating diffusion by a stainless steel plate cage. 表1(メッシュかご使用時)の折れ線グラフ(縦軸が℃、横軸が分)である。It is a line graph (when the vertical axis is ° C. and the horizontal axis is minutes) in Table 1 (when using a mesh cage). 表2(プレートかご使用時)の折れ線グラフ(縦軸が℃、横軸が分)である。It is a line graph (when the vertical axis is ° C. and the horizontal axis is minutes) in Table 2 (when using a plate cage). 表3(かご無し時)の折れ線グラフ(縦軸が℃、横軸が分)である。It is a line graph (when the vertical axis is ° C. and the horizontal axis is minutes) in Table 3 (when there is no car). 表4(義歯無し)の折れ線グラフ(縦軸が℃、横軸が分)である。It is a line graph of Table 4 (without dentures) (the vertical axis is ° C. and the horizontal axis is minutes). 表5(金属床大)の折れ線グラフ(縦軸が℃、横軸が分)である。It is a line graph (vertical axis is ° C. and horizontal axis is minutes) in Table 5 (large metal floor). 表6(金属床小)の折れ線グラフ(縦軸が℃、横軸が分)である。It is a line graph (vertical axis is ° C., horizontal axis is minutes) of Table 6 (small metal floor).
 以下、図面を参照して本発明の実施の一形態を詳細に説明する。 Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.
 本実施形態においては、IH装置によるナノ銀粒子を担持させるデータ採得用の試験対象物(ワーク)として、例えば金属床大(図1参照)、もしくは金属床小を含む義歯(図2参照)を採用している。 In the present embodiment, as a test object (work) for collecting data carrying nano silver particles by an IH device, for example, a metal bed large (see FIG. 1) or a denture including a metal floor small (see FIG. 2). Is adopted.
 そして、図3に示すステンレスメッシュかご、もしくは図4に示すステンレスプレートかごとなって各形成された耐食性を有する誘導加熱拡散用金属容器に、金属床大、もしくは金属床小を含む義歯を収容する。 Then, the denture including the large metal floor or the small metal floor is accommodated in the induction heating diffusion metal container having corrosion resistance formed as the stainless steel mesh cage shown in FIG. 3 or the stainless steel plate cage shown in FIG. .
 さらに、この誘導加熱拡散用金属容器を、例えば透磁率の比較的大きな耐熱性のデンチャーボックス(図示せず)内に入れ、金属床または義歯を後述する約150mlの銀水溶液で浸漬する。 Further, this induction heating diffusion metal container is placed in a heat-resistant denture box (not shown) having a relatively large magnetic permeability, for example, and the metal floor or denture is immersed in about 150 ml of an aqueous silver solution described later.
 そして、デンチャーボックスの例えば下部より電源約10Vで一定時間IHを照射する方法を採っている。すなわち、IH照射による加熱は、デンチャーボックスを磁力発生コイルの上に載せて当該磁力発生コイルに高周波電流(電源約10V)を供給することにより、デンチャーボックス全体に所定の時間だけIHを照射する。 And, for example, a method of irradiating IH with a power source of about 10 V for a certain time from the lower part of the denture box is adopted. That is, in the heating by IH irradiation, the denture box is placed on the magnetic force generating coil and a high frequency current (power supply of about 10 V) is supplied to the magnetic force generating coil, so that the entire denture box is irradiated with IH for a predetermined time.
 すると、当該コイル上に載せられているデンチャーボックス内の銀水溶液及び誘導加熱拡散用金属容器、さらにはワークにうず電流が流れ、当該銀水溶液及び誘導加熱拡散用金属容器、ワーク自体の電気抵抗でジュール熱が発生して自己発熱する。 Then, an eddy current flows through the silver aqueous solution and the induction heating diffusion metal container in the denture box placed on the coil, and further to the work, and the electrical resistance of the silver aqueous solution and the induction heating diffusion metal container and the work itself. Joule heat is generated and self-heating occurs.
 IH照射後、デンチャーボックス内の誘導加熱拡散用金属容器からワークを取り出し、表裏を逆にしてから銀水溶液に再び浸漬し、再度、同じ条件にてIHを照射する。こうして、IHの照射によって、銀水溶液中のナノ銀粒子をワークの表裏に離散的に担持させることができる。ここで、IHの照射は、銀水溶液が常温状態(20℃前後)であることを確認した上で、水溶液の上昇温度を最高でも75℃程度に保っている為、照射の際にワークが変形することを防ぐことができる。このように、IHの照射が常温で行われるので、ワークの表面に、銀が薄膜を形成するのではなく、ナノ銀粒子となって離散的にワークの表面に担持する。 After the IH irradiation, the work is taken out from the induction heating diffusion metal container in the denture box, the front and the back are reversed, dipped again in the silver aqueous solution, and again irradiated with IH under the same conditions. Thus, the nano silver particles in the silver aqueous solution can be discretely supported on the front and back of the workpiece by IH irradiation. Here, IH irradiation is performed after confirming that the aqueous silver solution is at room temperature (around 20 ° C.), and the rising temperature of the aqueous solution is kept at about 75 ° C. at the maximum. Can be prevented. As described above, since the irradiation with IH is performed at room temperature, silver does not form a thin film on the surface of the workpiece, but is nano-silver particles that are discretely carried on the surface of the workpiece.
 銀水溶液は、銀イオンの水溶液であって、例えば、フィチン酸、ポリアクリル酸ナトリウム、炭酸水素ナトリウム、及び、酢酸銀等を含有する安全性の高い銀水溶液500mlに、アルコール製剤50ml~150ml、望ましくは100mlを混合したものを用いてもよい。また、デンチャーボックスとして、例えば透磁率1.2567×10のマイナス6乗のフッ素樹脂(テフロン:登録商標)製の容器を用いることで、ナノ銀粒子の付着を低減するようにしてもよい。 The aqueous silver solution is an aqueous solution of silver ions. For example, an alcohol preparation of 50 ml to 150 ml is desirably added to 500 ml of a highly safe silver aqueous solution containing phytic acid, sodium polyacrylate, sodium hydrogen carbonate, silver acetate and the like. May be a mixture of 100 ml. In addition, as a denture box, for example, a container made of a fluororesin (Teflon: registered trademark) having a permeability of minus 567 × 10 may be used to reduce the adhesion of nano silver particles.
 <IH装置によるステンレスメッシュかごとステンレスプレートかごとの比較実験>
 (1)実験器具
 本実施形態におけるIH装置によるステンレスメッシュかごとステンレスプレートかごとの比較実験に使用される器具としては、IH装置と、誘導加熱拡散用金属容器であるステンレスメッシュかご及びステンレスプレートかご(t0.2)と、金属床大と、金属床小を含む義歯と、デンチャーボックスと、銀イオンを含む水溶液150ml×9と、非接触赤外線温度計(例えばTASI-8608)と、ストップウォッチとを含む。
<Comparison experiment with stainless steel mesh cage and stainless steel plate by IH device>
(1) Experimental instrument As an instrument used for the comparison experiment between the stainless steel mesh cage and the stainless steel plate cage by the IH device in this embodiment, the stainless steel mesh cage and the stainless steel plate cage which are the metal containers for induction heating diffusion. (T0.2), denture including large metal floor, denture including small metal floor, denture box, 150 ml × 9 aqueous solution containing silver ions, non-contact infrared thermometer (eg TASI-8608), stopwatch, including.
 (2)実験方法
 (イ)先ず、実験用ワークとしての金属床大(図1参照)を、図3に示すステンレスメッシュかご、もしくは図4に示すステンレスプレートかごとなって形成された誘導加熱拡散用金属容器に個別に収容する。
(2) Experimental method (a) First, induction heating diffusion formed by forming a large metal floor (see FIG. 1) as an experimental work into a stainless mesh cage shown in FIG. 3 or a stainless steel plate cage shown in FIG. Store individually in metal containers.
 (ロ)ワークを収容した誘導加熱拡散用金属容器をデンチャーボックス内に入れ、デンチャーボックスをボビン内に設置する。 (B) Place the induction heating diffusion metal container containing the workpiece in the denture box, and install the denture box in the bobbin.
 (ハ)銀イオンの水溶液150mlをデンチャーボックス内に注ぐ。 (C) Pour 150 ml of an aqueous solution of silver ions into the denture box.
 (ニ)IH装置に電源コードが接続されていることを確認し、電源スイッチをオンにする。 (D) Check that the power cord is connected to the IH device, and turn on the power switch.
 (ホ)非接触赤外線温度計によって、誘導加熱拡散用金属容器内部のワークの中心部分(義歯の中心部分:測定場所は時間によって変えない)の0分時の温度を測定する。 (E) Using a non-contact infrared thermometer, measure the temperature at 0 minutes of the central part of the work inside the metal container for induction heating diffusion (the central part of the denture: the measurement location does not change with time).
 (へ)IH装置のスタートボタンを押すと同時に、非接触赤外線温度計によって、ワークの1分毎の温度の記録を開始する。 (F) At the same time as pressing the start button of the IH device, start recording the temperature of the workpiece every minute with a non-contact infrared thermometer.
 (ト)10分経過後、IH装置の電源スイッチをオフにする。 (G) After 10 minutes, turn off the power switch of the IH device.
 (チ)デンチャーボックスを取替えて、金属床小を含む義歯であるワークを、図3に示すステンレスメッシュかご、もしくは図4に示すステンレスプレートかごとなって形成された誘導加熱拡散用金属容器に個別に収容する。 (H) Replacing the denture box, the work, which is a denture including a small metal floor, is individually placed in a metal container for induction heating diffusion formed as a stainless steel mesh cage shown in FIG. 3 or a stainless steel plate cage shown in FIG. To house.
 (リ)その後、誘導加熱拡散用金属容器をデンチャーボックス内に入れ、デンチャーボックスをボビン内に設置し、以後は、前記(ハ)から(ト)までの手順を繰り返す。 (Ii) After that, place the induction heating diffusion metal container in the denture box, install the denture box in the bobbin, and thereafter repeat the procedure from (c) to (g).
 (3)実験結果
 1分毎のワークの温度(℃)の測定データを、誘導加熱拡散用金属容器が図4に示すステンレスプレートかごの場合、誘導加熱拡散用金属容器が図3に示すステンレスメッシュかごの場合、誘導加熱拡散用金属容器が無しの場合それぞれについてグラフにプロットすると、以下の表1から表3に示した結果が得られた(図5から図10に各表に対応したグラフを示す)。
(3) Experimental results Measurement data of the temperature (° C) of the work per minute is used. When the induction heating diffusion metal container is the stainless steel plate cage shown in FIG. 4, the induction heating diffusion metal container is the stainless steel mesh shown in FIG. In the case of a cage, the results shown in Tables 1 to 3 below were obtained by plotting the graphs for each case where there was no induction heating diffusion metal container (the graphs corresponding to the tables in FIGS. 5 to 10 were obtained). Show).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 また、1分毎のワークの温度(℃)の測定データを、ワーク無しの場合、金属床大のワークの場合、金属床小を含む義歯のワークの場合のそれぞれについてグラフにプロットすると、表4から表6に示した結果が得られた。 In addition, when the measurement data of the workpiece temperature (° C) per minute is plotted on a graph for each of the case of no workpiece, the workpiece of a large metal floor, and the workpiece of a denture including a small metal floor, Table 4 The results shown in Table 6 were obtained.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 すなわち、誘導加熱拡散用金属容器として、ステンレスプレートかごの方が、ステンレスメッシュかごの場合よりもわずかに早く温度が上昇した。 That is, as a metal container for induction heating diffusion, the temperature of the stainless steel plate cage rose slightly faster than that of the stainless steel mesh cage.
 誘導加熱拡散用金属容器として、ステンレスプレートかご、ステンレスメッシュかごが共にある場合は、内部のワークの種類に関係なく安定した温度上昇が見られた。 When the stainless steel plate basket and the stainless mesh basket were both used as the induction heating diffusion metal container, a stable temperature increase was observed regardless of the type of work inside.
 かご無しの場合はワークの種類ごとの温度上昇のばらつきが大きく、ワーク無しと、金属床小を含む義歯のワークの場合は殆ど温度が上昇しなかった。 In the case of no cage, the temperature rise varied greatly depending on the type of workpiece. In the case of no workpiece and a denture workpiece including a small metal floor, the temperature hardly increased.
 (4)考察
 以上の実験結果から、ステンレスメッシュかごやステンレスプレートかご等の誘導加熱拡散用金属容器をデンチャーボックス内に入れることによってIHの出力を安定させることができる。これは、ステンレスメッシュかごよりもステンレスプレートかごの方が、磁束を受ける面積が広いため、わずかに早く温度上昇したものと考えられる。
(4) Discussion From the above experimental results, it is possible to stabilize the output of IH by placing an induction heating diffusion metal container such as a stainless mesh cage or a stainless steel plate cage in the denture box. This is probably because the stainless steel plate cage has a larger area to receive the magnetic flux than the stainless steel mesh cage, so the temperature rises slightly faster.
 以上から、金属床を含む義歯を収容した誘導加熱拡散用金属容器をデンチャーボックス内に入れ、銀水溶液で義歯を浸漬して、デンチャーボックスに対し誘導加熱(IH)を行うというプロセスを経ることで、義歯に離散して担持されたナノ銀粒子は、カンジダの義歯材料への付着を抑制することが確認できた。これにより、金属床を含む義歯へのIH照射によるナノ銀粒子の担持方法において、誘導加熱拡散用金属容器の適用が有効であることが示された。

 
 
From the above, by passing the induction heating diffusion metal container containing the denture including the metal floor in the denture box, immersing the denture in the silver aqueous solution, and performing induction heating (IH) on the denture box It was confirmed that the nano silver particles dispersedly carried on the dentures suppressed the adhesion of Candida to the denture material. Thereby, it was shown that the application of the metal container for induction heating diffusion is effective in the method for supporting nano silver particles by IH irradiation on the denture including the metal bed.


Claims (1)

  1.  金属床を含む義歯を浸漬した状態で誘導加熱を行うことにより、ナノ銀粒子を離散して前記義歯に担持させるナノ銀粒子担持方法であって、ステンレスメッシュかご、もしくはステンレスプレートかごとなって形成された誘導加熱拡散用金属容器に義歯を収容して、誘導加熱拡散用金属容器をデンチャーボックス内に入れ、銀水溶液で義歯を浸漬して、デンチャーボックスに対し誘導加熱を行うことを特徴とするナノ銀粒子担持方法。

     
     
    A nano silver particle carrying method in which nano silver particles are discretely carried on the denture by performing induction heating in a state in which a denture including a metal bed is immersed, and formed as a stainless mesh basket or a stainless plate basket The induction heating diffusion metal container is accommodated with the denture, the induction heating diffusion metal container is placed in a denture box, the denture is immersed in an aqueous silver solution, and induction heating is performed on the denture box. Nano silver particle carrying method.


PCT/JP2017/012010 2016-11-25 2017-03-24 Nanosilver-particle loading method WO2018096701A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780002626.8A CN108472200A (en) 2016-11-25 2017-03-24 Nano silver particles loading method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016228948A JP6198925B1 (en) 2016-11-25 2016-11-25 Nano silver particle support method
JP2016-228948 2016-11-25

Publications (1)

Publication Number Publication Date
WO2018096701A1 true WO2018096701A1 (en) 2018-05-31

Family

ID=59895665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/012010 WO2018096701A1 (en) 2016-11-25 2017-03-24 Nanosilver-particle loading method

Country Status (3)

Country Link
JP (1) JP6198925B1 (en)
CN (1) CN108472200A (en)
WO (1) WO2018096701A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10717299B1 (en) 2019-04-12 2020-07-21 Palo Alto Research Center Incorporated Processing of color thermochromic materials

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0852163A (en) * 1994-08-11 1996-02-27 Natl Dentaru Lab:Kk Method for making resin denture and flask for making it
JP2001108795A (en) * 1999-10-04 2001-04-20 Mitsubishi Heavy Ind Ltd Melting furnace
JP5887448B1 (en) * 2015-03-25 2016-03-16 株式会社愛歯 Nano silver particle supporting method and silicon, ceramic, aluminum and resin using the method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106028492A (en) * 2016-06-29 2016-10-12 雷中喜 High-frequency electromagnetic induction heating device submersed into liquid, gas, or solid

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0852163A (en) * 1994-08-11 1996-02-27 Natl Dentaru Lab:Kk Method for making resin denture and flask for making it
JP2001108795A (en) * 1999-10-04 2001-04-20 Mitsubishi Heavy Ind Ltd Melting furnace
JP5887448B1 (en) * 2015-03-25 2016-03-16 株式会社愛歯 Nano silver particle supporting method and silicon, ceramic, aluminum and resin using the method

Also Published As

Publication number Publication date
JP6198925B1 (en) 2017-09-20
JP2018083787A (en) 2018-05-31
CN108472200A (en) 2018-08-31

Similar Documents

Publication Publication Date Title
JP6561171B2 (en) Nano silver particle support method
Mariotti et al. Plasma–liquid interactions at atmospheric pressure for nanomaterials synthesis and surface engineering
Tan et al. Induction sintering of silver nanoparticle inks on polyimide substrates
US10124531B2 (en) Rapid non-contact energy transfer for additive manufacturing driven high intensity electromagnetic fields
RU2224808C2 (en) Metal for electronics and method of production of such metal
US20160295921A1 (en) Aerosol-forming substrate and aerosol-delivery system
EP1343355A3 (en) Smart susceptor having a geometrically complex molding surface
Tian et al. Plasmonic nanoparticles with quantitatively controlled bioconjugation for photoacoustic imaging of live cancer cells
JP2008020096A (en) Induction heating type purified water heating device and purified water heating method
Daniels et al. Gas plasma reactions for the conservation of antiquities
WO2018096701A1 (en) Nanosilver-particle loading method
GB833181A (en) Method and apparatus for coating metal articles
JP2010056064A (en) High-frequency induction heating device of ceramic material, and nonpressurized sintering method using the same
JP2018083062A (en) Silver particle supporting method and apparatus
JP2011214111A (en) Aluminum porous body and fabrication method of the same
Wan et al. Superhydrophobic ceria on aluminum and its corrosion resistance
TWI279274B (en) Electric discharge surface treating electrode, electric discharge surface treating, and electric discharge treating device
Zaka-ul-Islam et al. Active screen cage pulsed dc discharge for implanting copper in polytetrafluoroethylene (PTFE)
CN114657405A (en) Electromagnetic heating material for low-temperature cigarettes and preparation method thereof
de Camargo et al. Determination of Ni release in NiTi SMA with surface modification by nitrogen plasma immersion ion implantation
JP2006294509A (en) Induction heating element made of vitriform carbon, heating device and heater
CN111364092B (en) Preparation method of silver-porous silicon-based surface enhanced Raman scattering biological detection chip
JP2019104676A (en) Method for producing silver-supporting charcoal powder and method for producing silver-supporting charcoal powder-containing toothpaste
KR102364892B1 (en) Fine particle forming substrate
Naab et al. Conducting Well‐Controlled Ion Irradiations To Understand Neutron Irradiation Effects In Materials

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17873298

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17873298

Country of ref document: EP

Kind code of ref document: A1