WO2018095213A1 - 一种基于变密度正弦条纹的转轴转速测量装置及方法 - Google Patents

一种基于变密度正弦条纹的转轴转速测量装置及方法 Download PDF

Info

Publication number
WO2018095213A1
WO2018095213A1 PCT/CN2017/109514 CN2017109514W WO2018095213A1 WO 2018095213 A1 WO2018095213 A1 WO 2018095213A1 CN 2017109514 W CN2017109514 W CN 2017109514W WO 2018095213 A1 WO2018095213 A1 WO 2018095213A1
Authority
WO
WIPO (PCT)
Prior art keywords
stripe
sensor
image
speed
rotating shaft
Prior art date
Application number
PCT/CN2017/109514
Other languages
English (en)
French (fr)
Inventor
钟舜聪
钟剑锋
张秋坤
Original Assignee
福州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福州大学 filed Critical 福州大学
Priority to US16/075,689 priority Critical patent/US11579162B2/en
Publication of WO2018095213A1 publication Critical patent/WO2018095213A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/36Devices characterised by the use of optical means, e.g. using infrared, visible, or ultraviolet light
    • G01P3/38Devices characterised by the use of optical means, e.g. using infrared, visible, or ultraviolet light using photographic means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • G06V10/22Image preprocessing by selection of a specific region containing or referencing a pattern; Locating or processing of specific regions to guide the detection or recognition
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • G06V10/24Aligning, centring, orientation detection or correction of the image
    • G06V10/245Aligning, centring, orientation detection or correction of the image by locating a pattern; Special marks for positioning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/42Global feature extraction by analysis of the whole pattern, e.g. using frequency domain transformations or autocorrelation
    • G06V10/422Global feature extraction by analysis of the whole pattern, e.g. using frequency domain transformations or autocorrelation for representing the structure of the pattern or shape of an object therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/42Global feature extraction by analysis of the whole pattern, e.g. using frequency domain transformations or autocorrelation
    • G06V10/431Frequency domain transformation; Autocorrelation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S11/00Systems for determining distance or velocity not using reflection or reradiation
    • G01S11/12Systems for determining distance or velocity not using reflection or reradiation using electromagnetic waves other than radio waves
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V2201/00Indexing scheme relating to image or video recognition or understanding
    • G06V2201/06Recognition of objects for industrial automation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the invention relates to the technical field of optical measurement rotation, in particular to a rotating shaft rotation speed measuring device and method based on variable density sinusoidal stripe.
  • the measurement of the rotation angle and the rotational speed has very important functions and significance in some engineering fields, such as the rotational speed measurement of the rotating shaft of the rotating equipment such as pumps and motors; the state information of these rotating equipment can be obtained by the measured rotational parameters and can be used for condition monitoring of the machine. And troubleshooting.
  • a bearing is a very important part of a rotating machine. Under long-term operation, it may cause local defects of the bearing, such as the wear of the inner ring, the outer ring or the roller of the bearing. These defects will cause internal shock or pulse vibration. And these defect information can be obtained by analyzing the characteristic signal of the instantaneous rotational speed of the bearing.
  • the shaft rotation speed measurement technology is mainly divided into the following three types: mechanical measurement, electrical measurement and optical measurement.
  • the mechanical tachometer in the mechanical measuring method mounts the multi-gear disk on the rotating shaft to measure the rotation angle and the rotational speed of the rotating machine.
  • This mechanical measuring method generally requires some additional structures to be mounted on the rotating device, which may cause measurement inconvenience. And increase the investment of equipment.
  • a magnetic induction sensor or an electrostatic sensor based on a magnetoresistance effect may be used to measure the position and rotational speed of the rotating shaft, but an electrical measuring method may introduce electromagnetic interference or the like.
  • vibration and rotational speed measurement techniques based on machine vision have also developed rapidly.
  • an object of the present invention is to provide a rotating shaft rotation speed measuring device and method based on variable density sinusoidal stripe, which can realize non-contact measurement of the rotating shaft speed in a certain rotating speed range, and the measuring device is simple and fast. High precision.
  • a rotating shaft speed measuring device based on variable density sinusoidal stripe comprising:
  • variable density sinusoidal stripe sensor disposed on a circumferential surface of the shaft to be tested for encoding a corner position of the shaft to be tested
  • a high-speed image acquisition and transmission module for continuously imaging and recording the variable density sinusoidal stripe sensor on the shaft to be tested, and transmitting the acquired stripe image signal to a computer;
  • a computer for controlling the high speed image acquisition and transmission module and storing and processing the stripe image signal transmitted to the computer;
  • An image processing software module is installed in the computer for processing the stripe image signal, calculating a rotation angle and a rotation speed of the rotating shaft, and further analyzing and processing the collected rotation speed signal to realize a state of the rotating machine Monitoring and troubleshooting.
  • variable density sinusoidal stripe sensor is a specially designed and printed lightweight patch
  • variable density sinusoidal stripe sensor has a stripe image on the front side and an adhesive layer on the back side, and is adhered to the Measure the circumferential surface of the shaft structure.
  • variable density sinusoidal stripe sensor has a rectangular shape, and the front surface of the variable density sinusoidal stripe sensor is a stripe image linearly varying along the longitudinal direction of the sensor, and the length of the variable density sinusoidal stripe sensor is measured.
  • the circumference of the rotating shaft is equal; before the measurement, the rectangular variable density sinusoidal stripe sensor is circumferentially attached to the circumferential surface of the rotating shaft to encode the rotation angle of the measured rotating shaft.
  • variable stripe densities of the variable density sinusoidal stripe sensor attached to the surface of the rotating shaft are in one-to-one correspondence with different angles in the 0-2 ⁇ rotation angle of the rotating shaft, and the rotation angle information can be obtained by calculating the stripe density.
  • the high speed image acquisition and transmission module includes a high speed image acquisition module and a high speed image a transmission module
  • the high speed image acquisition module includes an imaging sensor and an optical imaging lens
  • the high speed image transmission module includes a data transmission module
  • the data transmission module is a data line.
  • the acquisition frame rate of the high-speed image acquisition module and the imaging sensor acquisition pixel range are adjustable, and the high-speed image acquisition module is placed on the surface of the shaft structure to be tested and the shaft axis of the variable density sinusoidal stripe sensor. Vertically forward, so that the variable density sinusoidal stripe sensor can be clearly imaged at an intermediate position of the imaging sensor of the high speed image acquisition module.
  • the imaging sensor further includes a line array imaging sensor and an area array imaging sensor; when the imaging sensor is a line array imaging sensor, the cost of the device can be saved.
  • the imaging sensor is an area array imaging sensor
  • the area array imaging sensor is an area array imaging sensor with an adjustable imaging range
  • the area array imaging sensor sets an imaging width to be suitable for the variable density sinusoidal stripe
  • the width of the sensor is set to one or several rows of pixels in the imaging length direction to reduce the size of the imaged image, increase the transmission frame rate and reduce the storage space.
  • the invention is also implemented by the following method: a method for measuring the rotational speed of a rotating shaft based on a variable density sinusoidal stripe, comprising the following steps:
  • Step S1 arranging the variable density sinusoidal stripe sensor on the rotating shaft to be tested, and adjusting the imaging position of the high speed image capturing module, so that the stripe is imaged in the middle position of the imaging sensor in the high speed image capturing module;
  • Step S2 as the rotation axis to be tested rotates, the variable density sinusoidal stripe sensor attached to the surface thereof also rotates, and the stripe sensor is continuously imaged and recorded by the high speed image acquisition module; the position of the high speed image acquisition module is fixed The density of the image stripe in the imaging sensor also changes as the angle of rotation of the shaft changes;
  • Step S3 the high-speed image transmission module transmits the collected stripe image sequence to the computer, and then uses the image processing software module to perform stripe signal processing;
  • Step S4 the image processing software module performs Fourier transform on the stripe signal of the same position in each frame of the image and accurately corrects the peak frequency by using the peak frequency correction method to obtain accurate stripe density information of each stripe map;
  • Step S5 the image processing software module obtains a time domain curve of the rotational angular velocity of the rotating shaft with the stripe at a radial relationship between the corner and the stripe density, and calculates a rotating shaft speed signal by the rotational angular velocity and the sampling frequency of the camera;
  • Step S6 Displaying the rotation angle and the rotation speed time domain curve of the rotation measurement through the computer display screen, and further processing and analyzing the obtained time domain curve through the signal analysis program to realize the state monitoring of the machine.
  • variable density sinusoidal stripe sensor stripe density is linearly changed from d s to d e
  • mathematical relationship between the stripe density d i of the i-th frame and the rotation angle ⁇ i is:
  • ⁇ t is the time interval between two adjacent frames of the high-speed image acquisition module
  • f s is the sampling frequency corresponding to the high-speed image acquisition module
  • the stripe density of the stripe signal is obtained by dividing the obtained accurate fringe frequency and the stripe actual width W.
  • the peak frequency correcting method is an energy center of gravity correction method, and the Hanning window function is first added to the stripe signal during calculation.
  • the normalized frequency information of the fringes is obtained by obtaining the position of the center of gravity of the normalized power spectrum of the windowed stripe signal, and the final normalized fringe frequency is calculated as:
  • f i 1 is the normalized frequency of the fringe image of the ith frame
  • G k is the maximum value of the discrete spectrum
  • k is the corresponding k-th discrete power line
  • G k+j is the (k+j)th spectrum
  • the value of the line, z is the number of spectral lines used for energy center of gravity calculations.
  • the calculation formula between the stripe density d i of the i-th frame and the normalized fringe frequency f i 1 is:
  • N is the number of pixels of the stripe image in the width direction
  • W is the actual width of the stripe
  • the invention has the following beneficial effects: (1) rapid measurement of the rotation axis rotation parameter can be realized, and complicated sensor arrangement and system parameter adjustment such as mechanical measurement system are not required, and no generation is generated. Electromagnetic interference caused by electrical measurement methods. (2) Non-contact speed measurement can be realized. Compared with the existing image tracking matching algorithm based on the axis measurement method, a large number of image tracking matching operations are not required, and the calculation speed of the system measurement is improved. (3) The sampling data can be greatly reduced and the transmission frame rate can be improved. The existing method of measuring the axis of rotation based on the image tracking matching algorithm requires collecting the image information of the entire measuring axis to perform tracking matching of the local feature signals.
  • the invention utilizes the stripe density information to encode the rotation axis angle, and at least only needs to collect the stripe information of one row of pixels to realize the parameter measurement of the rotating shaft, thereby improving the image transmission rate and the system sampling frequency, and reducing the storage space of the image.
  • FIG. 1 is a schematic structural view of an apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic view showing the relationship between the density of sinusoidal fringes and the relationship between the stripe density and the rotation angle in the embodiment of the present invention.
  • FIG. 3 is a schematic diagram of an imaging geometric relationship diagram and an image processing flow of a high speed image acquisition module according to an embodiment of the present invention.
  • 1-computer 2-data transmission module
  • 3-high-speed image acquisition module 4-optical imaging lens
  • 5-density sine stripe sensor 6-to-measure shaft
  • 7-image acquisition position and stripe 8- Area array image sensor
  • 9-image sinusoidal stripe signal 9-image sinusoidal stripe signal.
  • FIG. 1 is a schematic structural view of an apparatus according to an embodiment of the present invention.
  • the embodiment provides a rotating shaft rotation speed measuring device based on variable density sinusoidal stripe, comprising a variable density sinusoidal stripe sensor 5 , a high speed image acquisition module 3 , a data transmission module 2 , a computer 1 , an image processing software module and The measured shaft 6 is measured.
  • the variable density sinusoidal stripe sensor 5 is disposed on the circumferential surface of the rotating shaft 6 to be tested for encoding the corner information of the rotating shaft 6 to be tested.
  • the high-speed image acquisition module 3 is configured for continuous imaging and recording of the variable-density sinusoidal stripe sensor 5 on the shaft 6 to be measured, and transmits the collected stripe image to the calculation through the data transmission module 2.
  • Machine 1. The image processing software module installed in the computer 1 performs Fourier transform on the stripe signal of the same row of pixels in each frame of the image and uses the peak frequency correction method to accurately correct the peak frequency to obtain accurate stripe density information of each stripe map.
  • the image processing software module obtains the time domain curve of the rotational angular velocity of the rotating shaft through the linear relationship between the corner angle and the stripe density, and then calculates the rotational speed signal of the rotating shaft by the rotational angular velocity and the sampling frequency of the camera; finally, the rotation measurement is displayed by the display screen of the calculator 1.
  • the angle and speed time domain curves are further processed and analyzed by the signal analysis program to obtain the state monitoring of the rotating machinery.
  • variable density sinusoidal stripe sensor 5 has a rectangular shape
  • the front surface of the variable density sinusoidal stripe sensor 5 is a stripe image linearly varying along the longitudinal direction of the sensor, and the length of the variable density sinusoidal stripe sensor 5 is measured and measured.
  • the circumference of 6 is equal.
  • the rectangular variable density sinusoidal stripe sensor 5 is circumferentially attached to the circumferential surface of the measured rotating shaft 6 so that the variable density sinusoidal stripe sensor 5 is completely attached to the surface of the measured rotating shaft 6.
  • the density of the sinusoidal fringe of the variable density sinusoidal stripe sensor 5 changes linearly from d s to d e , so that the different stripe density of the variable density sinusoidal stripe sensor attached to the surface of the measured rotating shaft 6 corresponds to the different angles in the 0-2 ⁇ rotation angle of the rotating shaft. .
  • FIG. 2 is a schematic diagram of a variable density sinusoidal stripe sensor for measuring rotational axis rotation parameters in an embodiment of the present invention.
  • different stripe-shaped sensors may be designed according to the characteristics of the structure, or stripes may be sprayed on the rotating shaft, etc., the patent does not list all kinds of different stripe forms or pasting forms, but based on the invention The measurements carried out by the method are all within the scope of protection of the present invention.
  • FIG. 3 is a schematic diagram of an imaging geometric relationship diagram and an image processing flow of the high speed image acquisition module 3 according to an embodiment of the present invention.
  • the high speed image acquisition module 3 is mainly composed of an optical imaging lens 4 and an area array image sensor 8.
  • the variable density sinusoidal stripe sensor 5 is disposed on the rotating shaft 6 to be tested, and the imaging position of the high speed image capturing module 3 and the focal length of the optical imaging lens 4 are adjusted so that the sinusoidal stripe stripe of the left side line mark position of the variable density sinusoidal stripe sensor 5 is obtained.
  • the signal 7 is clearly imaged in the middle of the image sensor 8.
  • the imaging width of the image sensor 8 is set to be suitable for the width of the variable density sinusoidal stripe sensor 5, and is arranged in one line or several rows of pixels in the imaging length direction to reduce the size of the imaged image stripe, increase the transmission frame rate, and reduce the data.
  • the space of storage As the rotating shaft 6 to be tested rotates, the variable density sinusoidal stripe sensor 5 attached to its surface also rotates, and the high speed image capturing module 3 continuously images and records the image forming position at the red line mark on the left side of the variable density sinusoidal stripe sensor 5. . Imaging the density of the sinusoidal fringe signal 9 It also changes with the rotation of the rotating shaft. By calculating the fringe density of the imaged sinusoidal fringe signal 9, the rotation angle information can be obtained; and the rotational speed signal of the measured rotating shaft 6 is calculated by the obtained time domain rotational angle signal and the sampling frequency of the camera.
  • the embodiment also provides a method for measuring the rotational speed of the rotating shaft using the above device, as shown in FIGS. 1, 2 and 3, comprising the following steps:
  • Step S1 arranging the variable density sinusoidal stripe sensor 5 on the rotating shaft 6 to be tested, and adjusting the imaging position of the high speed image capturing module 3, so that the stripe is imaged in the middle position of the image sensor 8 of the high speed image capturing module 3;
  • Step S2 As the rotating shaft 6 to be tested rotates, the variable density sinusoidal stripe sensor 5 attached to the surface thereof is also rotated, and the stripe sensor is continuously imaged and recorded by the high speed image capturing module 3; because the position of the image capturing module 3 is Is fixed, so the density 9 of the image stripe in the image sensor 8 also changes as the shaft rotates;
  • Step S3 the image transmission module 3 transmits the collected sequence of the stripe image to the computer 1, and then performs processing of the image stripe signal 9 by using the image processing software module;
  • Step S4 the image processing software module performs Fourier transform on the stripe signal of the same row position in each frame image and accurately corrects the peak frequency by using the frequency correction method to obtain accurate stripe density information of each stripe map;
  • Step S4 the image processing software module obtains a time domain curve of the rotational angular velocity of the rotating shaft with the stripe at a linear relationship between the corner and the stripe density, and calculates a rotational speed signal of the rotating shaft by the rotational angular velocity and the sampling frequency of the camera;
  • Step S5 Displaying the rotation angle and the rotation speed time domain curve of the rotation measurement through the display screen of the computer 1, and performing further data processing and analysis on the obtained rotation parameter time domain curve through the signal analysis program, thereby realizing the state monitoring and fault diagnosis of the machine.
  • the density of the variable density sinusoidal stripe sensor changes linearly from d s to d e
  • the relationship between the stripe density d i of the i-th frame and the rotation angle ⁇ i is:
  • the instantaneous angular velocity ⁇ i of the rotational axis at the ith frame image time is:
  • the instantaneous rotational speed n i of the rotational axis at the ith frame image time is:
  • ⁇ t is the time interval between two adjacent frames of the high-speed image acquisition module
  • f s is the sampling frequency corresponding to the high-speed image acquisition module
  • the fringe density of the fringe signal is obtained by dividing the obtained peak frequency by the actual width of the fringe.
  • the peak frequency spectrum correcting method is an energy center of gravity correction method, and the normalization of the fringe signal is first performed in the calculation.
  • the window function obtains the normalized frequency information of the fringes by obtaining the energy center of gravity of the normalized power spectrum of the windowed stripe signal, and the final normalized fringe frequency is calculated as:
  • f i 1 is the normalized frequency of the fringe image of the ith frame
  • G k is the maximum value of the discrete spectrum
  • k is the kth discrete power line
  • G k+j is the (k+j)th line
  • the value of z is the number of spectral lines used for energy center of gravity calculations.
  • the calculation formula between the stripe density d i of the i-th frame and the normalized fringe frequency f i 1 is:
  • N is the number of pixels of the stripe image in the width direction
  • W is the actual width of the stripe

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

一种基于变密度正弦条纹的转轴转速测量装置及方法,该装置包括变密度正弦条纹传感器(5)、高速图像采集模块(3)及数据传输模块(2)、图像处理软件模块和计算机(1),该方法包括以下步骤:在待测转轴(6)圆周表面粘贴好变密度正弦条纹传感器(5);高速图像采集模块(3)对变密度条纹进行连续成像和记录;数据传输模块(3)将条纹图像传输到计算机(1);图像处理软件模块对每帧图像中同一行像素位置的条纹信号进行傅立叶变换并采用峰值频率校正方法对峰值频率进行精确校正以获得精确的条纹密度信息,然后获得贴覆有条纹处转轴转动角速度的时域曲线,再通过转动角速度与相机的采样频率计算出转轴的转速信号。

Description

一种基于变密度正弦条纹的转轴转速测量装置及方法 技术领域
本发明涉及光学测量转动技术领域,特别是涉及一种基于变密度正弦条纹的转轴转速测量装置及方法。
背景技术
转角和转速的测量在一些工程领域具有非常重要的作用和意义,如泵和电机等转动设备的转轴的转速测量;这些转动设备的状态信息可以通过测量的转动参数获得并可用于机器的状态监测和故障诊断。例如,轴承是转动机械中非常重要的一种零件,在长时间的运转下可能造成轴承局部的缺陷,如轴承内圈、外圈或者滚子的磨损,这些缺陷将会造成内部冲击或者脉冲振动,而这些缺陷信息可以通过对轴承瞬时转速的特征信号分析获得。
目前,转轴转速测量技术主要分为以下三种:机械式测量、电气式测量和光学测量。机械式测量方法中的机械式转速计将多齿轮盘安装在转轴上来测量转动机械的转角和转速,这种机械式测量方法一般要求将一些附加的结构安装在转动装置上,这样会造成测量不便并且增加设备的投入。电气式测量中可采用如基于磁阻效应的磁感应传感器或者静电传感器对转轴位置和转速进行测量,但是电气式测量方法可能会引入电磁干扰等。近年来,随着图像传感器制造工艺的进步,基于机器视觉的振动和转速测量技术也快速发展。这种技术具有高效率、非接触,并且不引入附加质量的特点。许多研究者提出的基于机器视觉的转速测量方法,这些方法主要是通过不同图像帧模板图像的特征匹配和跟踪算法来获得转轴的转速信息,测量速度和精度很大程度上取决于图像匹配算法的速度和准确度。而且在进行图像采集时需要将测量对象整个测量面内的图像信息进行采集,才能进行局部特征信号的跟踪匹配。大范围的图像采集不仅会使得采集***负担加重,而且对图像信号的传输速率也提出了比较高的要求。
因此,在对现有转速测量方法进行了解和研究的基础上,设计出一种精确、简单和高效的非接触式转速测量装置和方法意义重大,该种方法可以在不增加基 于机器视觉的测量***硬件成本的情况下实现转轴转角和转速的实时测量。
发明内容
有鉴于此,本发明的目的是提供一种基于变密度正弦条纹的转轴转速测量装置及方法,该装置和方法可实现对一定转速范围内转轴转速的非接触测量,测量装置简单,速度快,精度高。
本发明采用以下方案实现:一种基于变密度正弦条纹的转轴转速测量装置,包括:
一变密度正弦条纹传感器,设置于待测转轴圆周表面,用以编码所述待测转轴的转角位置;
一高速图像采集及传输模块,用以对所述待测转轴上的变密度正弦条纹传感器进行连续成像与记录,并将采集到的条纹图像信号传输至计算机;
一计算机,用以对所述高速图像采集及传输模块进行控制,并对传输到计算机的条纹图像信号进行存储和处理;
一图像处理软件模块,安装于所述计算机中,用以对所述的条纹图像信号进行处理,计算转轴的转角和转速,并对采集的转速信号进行进一步的分析和处理以实现转动机械的状态监测和故障诊断。
进一步地,所述变密度正弦条纹传感器为专门设计并打印的轻质贴片,所述变密度正弦条纹传感器轻质贴片的正面为条纹图像,背面为粘性层,并黏贴于所述待测转轴结构圆周表面。
进一步地,所述变密度正弦条纹传感器的形状为长方形,所述变密度正弦条纹传感器的正面为沿传感器长度方向正弦条纹密度线性变化的条纹图像,所述变密度正弦条纹传感器的长度与所测转轴的周长相等;测量前,将所述长方形变密度正弦条纹传感器沿长度方向环贴于转轴圆周表面,以编码所测转轴的转动角度。
进一步地,粘贴于转轴表面的所述变密度正弦条纹传感器的不同条纹密度与转轴0-2π转角内的不同角度一一对应,通过计算条纹密度即可获得转轴转角信息。
进一步地,所述高速图像采集及传输模块包括高速图像采集模块与高速图像 传输模块,所述高速图像采集模块包括成像传感器与光学成像镜头,所述高速图像传输模块包括数据传输模块,所述数据传输模块为数据线。
进一步地,所述高速图像采集模块的采集帧率和成像传感器采集像素范围可调,所述高速图像采集模块放置于所述贴覆有变密度正弦条纹传感器的待测转轴结构表面与转轴轴心垂直的正前方,以使所述变密度正弦条纹传感器能够清晰成像于所述高速图像采集模块的成像传感器中间位置。
进一步地,所述成像传感器还包括线阵成像传感器与面阵成像传感器;当所述成像传感器为线阵成像传感器时,能够节约装置的成本。
进一步地,所述成像传感器为面阵成像传感器时,所述面阵成像传感器为成像范围可调的面阵成像传感器,所述面阵成像传感器将成像宽度设置成适合于所述变密度正弦条纹传感器的宽度大小,并在成像长度方向设置成一行或者几行像素,以减小成像条纹图像的大小,提高传输帧率和降低存储的空间。
本发明还采用以下方法实现:一种基于变密度正弦条纹的转轴转速测量方法,包括以下步骤:
步骤S1:在待测转轴上布置好变密度正弦条纹传感器,并调整好高速图像采集模块的成像位置,使条纹成像于高速图像采集模块中成像传感器的中间位置;
步骤S2:随着待测转轴的转动,贴覆其表面的变密度正弦条纹传感器也随之转动,采用高速图像采集模块对条纹传感器进行连续成像和记录;所述高速图像采集模块的位置是固定的,在成像传感器中成像条纹的密度也随着转轴转动角度的变化而变化;
步骤S3:高速图像传输模块将采集到的条纹图像序列传输到计算机,再采用图像处理软件模块进行条纹信号的处理;
步骤S4:图像处理软件模块对每帧图像中同一位置的条纹信号进行傅立叶变换并采用峰值频率校正方法对峰值频率进行精确校正以获得每帧条纹图精确的条纹密度信息;
步骤S5:图像处理软件模块通过转角与条纹密度的数学关系获得贴覆有条纹处转轴转动角速度的时域曲线,再通过转动角速度与相机的采样频率计算出转轴转速信号;
步骤S6:通过计算机显示屏显示转动测量的转角及转速时域曲线,通过信号分析程序对得到的时域曲线作进一步的数据处理和分析,实现机器的状态监测。
进一步地,所述变密度正弦条纹传感器条纹密度由ds线性变化到de,第i帧条纹密度di与转角θi之间的数学关系式为:
Figure PCTCN2017109514-appb-000001
在第i帧条纹图像时刻转轴瞬时角速度ωi的数学计算公式为:
Figure PCTCN2017109514-appb-000002
在第i帧图像时刻转轴瞬时转速ni的数学计算公式为:
Figure PCTCN2017109514-appb-000003
其中,△t为高速图像采集模块的相邻两帧图像之间的时间间隔,fs为高速图像采集模块对应的采样频率。
进一步地,所述条纹信号的条纹密度通过得到的准确条纹频率和条纹实际宽度W相除得到,所述峰值频率校正方法为能量重心校正方法,计算时先对条纹信号加归一化Hanning窗函数,再通过求取加窗后的条纹信号的归一化功率谱的能量重心位置得到条纹的归一化频率信息,最终归一化的条纹频率计算公式为:
Figure PCTCN2017109514-appb-000004
其中,fi 1为第i帧条纹图像的归一化频率,Gk为离散频谱的最大值,k表示对应第k条离散功率谱线,Gk+j为第(k+j)条谱线的值,z为用于能量重心计算所采用的谱线条数。第i帧条纹密度di与归一化条纹频率fi 1之间的计算公式为:
di=fi 1N/W
其中,N为条纹图像在宽度方向上的像素点数,W为条纹的实际宽度。
与现有技术相比,本发明具有以下有益效果:(1)可以实现对转轴转动参数进行快速测量,不需要进行如机械式测量***那种复杂的传感器布置和***参数调节,也不会产生电气式测量方法所带来的电磁干扰。(2)可实现非接触式转速测量,与现有的基于图像跟踪匹配算法的转轴测量方法相比,不需要进行大量的图像跟踪匹配运算,提高了***测量的运算速度。(3)可实现采样数据的大幅减小,传输帧率的提高。现有的基于图像跟踪匹配算法的转轴测量方法,需要对整个测量轴的图像信息进行采集,才能进行局部特征信号的跟踪匹配。大范围的图像采集不仅会使得采集***负担加重,而且对图像信号的传输也提出了比较高的要求。而本发明利用条纹密度信息进行转轴角度的编码,最少只需采集一行像素的条纹信息即可实现转轴的参数测量,可以提高图像传输速率和***采样频率,减小图像的存储空间。
附图说明
图1是本发明实施例的装置结构示意图。
图2是本发明实施例中变密度正弦条纹示意图和条纹密度与转角之间的关系示意图。
图3是本发明实施例中高速图像采集模块的成像几何关系图及图像处理流程示意图。
图中,1-计算机,2-数据传输模块,3-高速图像采集模块,4-光学成像镜头,5-变密度正弦条纹传感器,6-待测转轴,7-图像采集位置及条纹,8-面阵图像传感器,9-成像正弦条纹信号。
具体实施方式
下面结合附图及具体实施例对本发明作进一步的详细说明。
图1是本发明实施例的装置结构示意图。如图1所示,本实施例提供一种基于变密度正弦条纹的转轴转速测量装置,包括变密度正弦条纹传感器5、高速图像采集模块3、数据传输模块2、计算机1、图像处理软件模块和所测转轴6。变密度正弦条纹传感器5,设置于待测转轴6的圆周表面,用于编码待测转轴6的转角信息。高速图像采集模块3,用于对待测转轴6上的变密度正弦条纹传感器5进行连续成像和记录,并将采集到的条纹图像通过数据传输模块2传输到计算 机1。安装于计算机1的图像处理软件模块对每帧图像中同一行像素的条纹信号进行傅立叶变换并采用峰值频率校正方法对峰值频率进行精确校正以获得每帧条纹图精确的条纹密度信息。图像处理软件模块再通过转角与条纹密度的线性关系获得转轴转动角速度的时域曲线,再通过转动角速度与相机的采样频率计算出转轴的转速信号;最后通过计算器1的显示屏显示转动测量的转角及转速时域曲线,通过信号分析程序对得到的时域曲线作进一步的数据处理和分析,实现转动机械的状态监测。
图2为本发明实施例中变密度正弦条纹传感器5的示意图和条纹密度与转角之间的关系示意图。本实施例中,变密度正弦条纹传感器5的形状为长方形,变密度正弦条纹传感器5的正面为沿传感器长度方向正弦条纹密度线性变化的条纹图像,变密度正弦条纹传感器5的长度与所测转轴6的周长相等。测量前,将所述长方形变密度正弦条纹传感器5沿长度方向环贴于所测转轴6的圆周表面,刚好使变密度正弦条纹传感器5完整地环贴于所测转轴6的表面。变密度正弦条纹传感器5的正弦条纹密度从ds线性变化到de,所以,粘贴于所测转轴6表面的变密度正弦条纹传感器不同条纹密度与转轴0-2π转角内的不同角度一一对应。
图2是本发明实施例中一种用于测量转轴转动参数的变密度正弦条纹传感器的示意图。在实际的工程测量中,可以根据结构的特点设计不同的条纹形式的传感器,或者采用在转轴上喷涂条纹等,本专利未列出所有各种不同的条纹形式或者粘贴形式,但是基于本发明的方法进行的测量均属于本发明的保护范围。
图3为本发明实施例中高速图像采集模块3的成像几何关系图及图像处理流程示意图。本实施例中,高速图像采集模块3其主要由光学成像镜头4和面阵图像传感器8组成。在待测转轴6上布置好变密度正弦条纹传感器5,并调整好高速图像采集模块3的成像位置和光学成像镜头4的焦距,使变密度正弦条纹传感器5左侧线标记位置的正弦条纹条纹信号7清晰成像于图像传感器8的中间位置。将图像传感器8的成像宽度设置成适合于变密度正弦条纹传感器5的宽度,并在成像长度方向设置成一行或者几行像素,以减小成像条纹图像的大小,提高传输帧率,减小数据存储的空间。随着待测转轴6的转动,贴覆其表面的变密度正弦条纹传感器5也随之转动,高速图像采集模块3对变密度正弦条纹传感器5左侧红色线条标记处成像位置进行连续成像和记录。成像正弦条纹信号9的密度 也随着转轴转动而变化,通过计算成像正弦条纹信号9的条纹密度即可获得转轴转角信息;再通过获得的时域转角信号与相机的采样频率计算出所测转轴6的转速信号。
本实施例还提供了采用上述装置的转轴转速测量方法,如图1、2和3所示,包括以下步骤:
步骤S1:在待测转轴6上布置好变密度正弦条纹传感器5,并调整好高速图像采集模块3的成像位置,使条纹成像于高速图像采集模块3图像传感器8的中间位置;
步骤S2:随着待测转轴6的转动,贴覆其表面的变密度正弦条纹传感器5也随之转动,采用高速图像采集模块3对条纹传感器进行连续成像和记录;因为图像采集模块3的位置是固定的,所以在图像传感器8中成像条纹的密度9也随着转轴转动而变化;
步骤S3:图像传输模块3将采集到的条纹图像序列传输到计算机1,再采用图像处理软件模块进行成像条纹信号9的处理;
步骤S4:图像处理软件模块对每帧图像中同一行位置的条纹信号进行傅立叶变换并采用频率校正方法对峰值频率进行精确校正以获得每帧条纹图精确的条纹密度信息;
步骤S4:图像处理软件模块通过转角与条纹密度的线性关系获得贴覆有条纹处转轴转动角速度的时域曲线,再通过转动角速度与相机的采样频率计算出转轴的转速信号;
步骤S5:通过计算机1的显示屏显示转动测量的转角及转速时域曲线,通过信号分析程序对得到的转动参数时域曲线作进一步的数据处理和分析,实现机器的状态监测和故障诊断。
在本实施例中,如图3所述变密度正弦条纹传感器条纹密度由ds线性变化到de,第i帧条纹密度di与转角θi之间的关系为:
Figure PCTCN2017109514-appb-000005
在本实施例中,在第i帧图像时刻转轴瞬时角速度ωi为:
Figure PCTCN2017109514-appb-000006
在本实施例中,在第i帧图像时刻转轴瞬时转速ni为:
Figure PCTCN2017109514-appb-000007
其中,△t为高速图像采集模块的相邻两帧图像之间的时间间隔,fs为高速图像采集模块对应的采样频率。
在本实施例中,所述条纹信号的条纹密度通过得到的峰值频率和条纹实际宽度相除得到,所述峰值频率频谱校正方法为能量重心校正方法,计算时先对条纹信号加归一化Hanning窗函数,再通过求取加窗后的条纹信号的归一化功率谱的能量重心位置得到条纹的归一化频率信息,最终归一化的条纹频率计算公式为:
Figure PCTCN2017109514-appb-000008
其中,fi 1为第i帧条纹图像的归一化频率,Gk为离散频谱的最大值,k表示第k条离散功率谱线,Gk+j为第(k+j)条谱线的值,z为用于能量重心计算所采用的谱线条数。第i帧条纹密度di与归一化条纹频率fi 1之间的计算公式为:
di=fi 1N/W
其中,N为条纹图像在宽度方向上的像素点数,W为条纹的实际宽度。
以上是本发明的较佳实施例,凡依本发明技术方案所作的改变,所产生的功能作用未超出本发明技术方案的范围时,均属于本发明的保护范围。

Claims (10)

  1. 一种基于变密度正弦条纹的转轴转速测量装置,其特征在于:包括
    一变密度正弦条纹传感器,设置于待测转轴圆周表面,用以编码所述待测转轴的转角位置;
    一高速图像采集及传输模块,用以对所述待测转轴上的变密度正弦条纹传感器进行连续成像与记录,并将采集到的条纹图像信号传输至计算机;
    一计算机,用以对所述高速图像采集及传输模块进行控制,并对传输到计算机的条纹图像信号进行存储和处理;
    一图像处理软件模块,设置于所述计算机中,用以对所述的条纹图像信号进行处理,计算转轴的转角和转速,并对采集的转速信号进行进一步的分析和处理以进行转动机械的状态监测和故障诊断。
  2. 根据权利要求1所述的一种基于变密度正弦条纹的转轴转速测量装置,其特征在于:所述变密度正弦条纹传感器为轻质贴片,所述变密度正弦条纹传感器轻质贴片的正面为条纹图像,背面为粘性层,并黏贴于所述待测转轴结构圆周表面。
  3. 根据权利要求2所述的一种基于变密度正弦条纹的转轴转速测量装置,其特征在于:所述变密度正弦条纹传感器的形状为长方形,所述变密度正弦条纹传感器的正面为沿传感器长度方向正弦条纹密度线性变化的条纹图像,所述变密度正弦条纹传感器的长度与所测转轴的周长相等;测量前,将所述长方形变密度正弦条纹传感器沿长度方向环贴于转轴圆周表面,以编码所测转轴的转动角度。
  4. 根据权利要求3所述的一种基于变密度正弦条纹的转轴转速测量装置,其特征在于:粘贴于转轴表面的所述变密度正弦条纹传感器的不同条纹密度与转轴0-2π转角内的不同角度一一对应,通过计算条纹密度获得转轴转角信息。
  5. 根据权利要求1所述的一种基于变密度正弦条纹的转轴转速测量装置,其特征在于:所述高速图像采集及传输模块包括高速图像采集模块与高速图像传输模块,所述高速图像采集模块包括成像传感器与光学成像镜头,所述高速图像传输模块包括数据传输模块,所述数据传输模块为数据线。
  6. 根据权利要求5所述的一种基于变密度正弦条纹的转轴转速测量装置,其特征在于:所述高速图像采集模块的采集帧率和成像传感器采集像素范围可调,所述高速图像采集模块放置于所述贴覆有变密度正弦条纹传感器的待测转轴结构 表面与转轴轴心垂直的正前方,以使所述变密度正弦条纹传感器能够清晰成像于所述高速图像采集模块的成像传感器中间位置。
  7. 根据权利要求5所述的一种基于变密度正弦条纹的转轴转速测量装置,其特征在于:所述成像传感器还包括线阵成像传感器与面阵成像传感器。
  8. 根据权利要求7所述的一种基于变密度正弦条纹的转轴转速测量装置,其特征在于:所述成像传感器为面阵成像传感器时,所述面阵成像传感器为成像范围可调的面阵成像传感器,所述面阵成像传感器将成像宽度设置成适合于所述变密度正弦条纹传感器的宽度大小,并在成像长度方向设置成一行或者几行像素,以减小成像条纹图像的大小。
  9. 一种基于变密度正弦条纹的转轴转速测量方法,其特征在于:包括以下步骤:
    步骤S1:在待测转轴上布置好变密度正弦条纹传感器,并调整好高速图像采集模块的成像位置,使条纹成像于高速图像采集模块中成像传感器的中间位置;
    步骤S2:随着待测转轴的转动,贴覆其表面的变密度正弦条纹传感器也随之转动,采用高速图像采集模块对条纹传感器进行连续成像和记录;所述高速图像采集模块的位置是固定的,在成像传感器中成像条纹的密度也随着转轴转动角度的变化而变化;
    步骤S3:高速图像传输模块将采集到的条纹图像序列传输到计算机,再采用图像处理软件模块进行条纹信号的处理;
    步骤S4:图像处理软件模块对每帧图像中同一位置的条纹信号进行傅立叶变换并采用峰值频率校正方法对峰值频率进行精确校正以获得每帧条纹图精确的条纹密度信息;
    步骤S5:图像处理软件模块通过转角与条纹密度的数学关系获得贴覆有条纹处转轴转动角速度的时域曲线,再通过转动角速度与相机的采样频率计算出转轴转速信号;
    步骤S6:通过计算机显示屏显示转动测量的转角及转速时域曲线,通过信号分析程序对得到的时域曲线作进一步的数据处理和分析,实现机器的状态监测。
  10. 根据权利要求9所述的一种基于变密度正弦条纹的转轴转速测量方法,其特 征在于:所述变密度正弦条纹传感器条纹密度由ds线性变化到de,第i帧条纹密度di与转角θi之间的数学关系式为:
    Figure PCTCN2017109514-appb-100001
    在第i帧条纹图像时刻转轴瞬时角速度ωi的数学计算公式为:
    Figure PCTCN2017109514-appb-100002
    在第i帧图像时刻转轴瞬时转速ni的数学计算公式为:
    Figure PCTCN2017109514-appb-100003
    其中,△t为高速图像采集模块的相邻两帧图像之间的时间间隔,fs为高速图像采集模块对应的采样频率;条纹信号的条纹密度通过得到的准确条纹频率和条纹实际宽度W相除得到,所述峰值频率校正方法为能量重心校正方法,计算时先对条纹信号加归一化Hanning窗函数,再通过求取加窗后的条纹信号的归一化功率谱的能量重心位置得到条纹的归一化频率信息,最终归一化的条纹频率计算公式为:
    Figure PCTCN2017109514-appb-100004
    其中,fi 1为第i帧条纹图像的归一化频率,Gk为离散频谱的最大值,k表示对应第k条离散功率谱线,Gk+j为第(k+j)条谱线的值,z为用于能量重心计算所采用的谱线条数;第i帧条纹密度di与归一化条纹频率fi 1之间的计算公式为:
    di=fi 1N/W
    其中,N为条纹图像在宽度方向上的像素点数,W为条纹的实际宽度。
PCT/CN2017/109514 2016-11-23 2017-11-06 一种基于变密度正弦条纹的转轴转速测量装置及方法 WO2018095213A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/075,689 US11579162B2 (en) 2016-11-23 2017-11-06 Apparatus and method for measuring rotational speed of rotary shaft based on variable density sinusoidal fringe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611038242.5 2016-11-23
CN201611038242.5A CN106443046B (zh) 2016-11-23 2016-11-23 一种基于变密度正弦条纹的转轴转速测量装置及方法

Publications (1)

Publication Number Publication Date
WO2018095213A1 true WO2018095213A1 (zh) 2018-05-31

Family

ID=58220446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/109514 WO2018095213A1 (zh) 2016-11-23 2017-11-06 一种基于变密度正弦条纹的转轴转速测量装置及方法

Country Status (3)

Country Link
US (1) US11579162B2 (zh)
CN (1) CN106443046B (zh)
WO (1) WO2018095213A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111487433A (zh) * 2020-04-22 2020-08-04 河南科技大学 轴承保持架打滑率测量方法及转速测量方法、装置、***
EP4139693A4 (en) * 2020-04-23 2024-04-24 Camx Power LLC IMAGE-BASED SENSOR FOR MEASURING THE ROTARY POSITION OF A ROTATING SHAFT
US12034163B2 (en) 2019-04-12 2024-07-09 Camx Power Llc High power, extended temperature range-capable, highly abuse overcharge and discharge tolerant rechargeable battery cell and pack

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3057840B1 (fr) * 2016-10-21 2018-12-07 Continental Automotive France Procede de traitement de donnees de position d'un moteur par un calculateur multi-cœurs
CN106443046B (zh) 2016-11-23 2023-04-07 福州大学 一种基于变密度正弦条纹的转轴转速测量装置及方法
CN106680529B (zh) * 2017-03-09 2023-04-11 福州大学 一种基于双正弦变密度条纹的转速测量装置及方法
CN107271025B (zh) * 2017-06-20 2023-04-11 福州大学 一种转轴三维振动同步测量的装置及方法
TWI663577B (zh) * 2018-06-04 2019-06-21 宏碁股份有限公司 針對非平面螢幕之色不均瑕疵補償系統
CN109085374B (zh) * 2018-07-27 2020-06-16 江苏科技大学 基于kinect的用于低转速***的多点测速装置及其测速方法
CN111385561B (zh) * 2018-12-29 2022-09-20 中国科学院长春光学精密机械与物理研究所 转鼓角速度自动修正方法及自动修正装置
CN110174523A (zh) * 2019-05-28 2019-08-27 福建省计量科学研究院(福建省眼镜质量检验站) 一种基于光电传感器的转速测量装置
DE102019211929A1 (de) 2019-08-08 2021-02-11 Prüftechnik Dieter Busch GmbH Verfahren und System zur Drehzahlbestimmung mittels Videokamera
CN112798813A (zh) * 2021-01-25 2021-05-14 河南科技大学 对滚摩擦副中公转从动件的转速测试方法
CN113340403B (zh) * 2021-05-31 2022-08-16 福州大学 基于圆周条纹和线阵相机的转轴径向振动测量方法
CN113447670B (zh) * 2021-06-25 2022-08-16 福州大学 一种单目线阵视觉追踪条纹编码标志的转速测量方法及***
CN113758695B (zh) * 2021-08-30 2022-07-05 福州大学 采用视觉复合位感条纹实现旋转轴阶次分析的***及方法
CN114509089A (zh) * 2021-12-31 2022-05-17 成都弓网科技有限责任公司 一种非接触式轨道交通列车速度方向里程检测方法及***

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2410643Y (zh) * 2000-03-02 2000-12-13 张力 光电测速码盘
CN201489014U (zh) * 2009-10-09 2010-05-26 湖南师范大学 非接触式转速测量***
CN101986103A (zh) * 2010-10-19 2011-03-16 叶建丰 防中央干扰的旋转编码器
US20160110628A1 (en) * 2013-12-10 2016-04-21 Yi-Yuh Hwang Precision calibration method for high-precise rotary encoder
CN105841620A (zh) * 2016-03-22 2016-08-10 上海交通大学 基于投影云纹方法的离面位移测量***及方法
CN205642604U (zh) * 2016-04-12 2016-10-12 中国人民解放军军事交通学院 动力装置旋转轴扭振测量***
CN106443046A (zh) * 2016-11-23 2017-02-22 福州大学 一种基于变密度正弦条纹的转轴转速测量装置及方法
CN206583924U (zh) * 2016-11-23 2017-10-24 福州大学 一种基于变密度正弦条纹的转轴转速测量装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01178869A (ja) * 1988-01-07 1989-07-17 Sharp Corp 速度検出装置
US7322250B1 (en) * 2002-04-09 2008-01-29 Rockwell Automation Technologies, Inc. System and method for sensing torque on a rotating shaft
JP4380491B2 (ja) * 2004-09-30 2009-12-09 ブラザー工業株式会社 回転駆動機の評価装置及び方法、補正操作量設定装置及び方法、制御装置及び方法、並びにプログラム
CN101629832B (zh) * 2009-07-28 2011-06-22 上海电力学院 基于颜色识别的旋转编码器
CN105723179B (zh) * 2013-10-18 2019-05-31 上海交通大学 主动式位置编码器及其操作方法
CN103760377B (zh) * 2014-01-10 2016-10-05 东北石油大学 一种轮式机器人行走电机转速的测量装置
CN103900639A (zh) * 2014-04-09 2014-07-02 福州大学 高速多尺度振动和形变检测装置及方法
CN104279980A (zh) * 2014-10-20 2015-01-14 电子科技大学 一种基于智能拍照手机的镜面三维面形测量***
CN104614064B (zh) * 2015-02-13 2018-01-12 福州大学 一种基于条纹靶的高速多维度振动测量装置及方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2410643Y (zh) * 2000-03-02 2000-12-13 张力 光电测速码盘
CN201489014U (zh) * 2009-10-09 2010-05-26 湖南师范大学 非接触式转速测量***
CN101986103A (zh) * 2010-10-19 2011-03-16 叶建丰 防中央干扰的旋转编码器
US20160110628A1 (en) * 2013-12-10 2016-04-21 Yi-Yuh Hwang Precision calibration method for high-precise rotary encoder
CN105841620A (zh) * 2016-03-22 2016-08-10 上海交通大学 基于投影云纹方法的离面位移测量***及方法
CN205642604U (zh) * 2016-04-12 2016-10-12 中国人民解放军军事交通学院 动力装置旋转轴扭振测量***
CN106443046A (zh) * 2016-11-23 2017-02-22 福州大学 一种基于变密度正弦条纹的转轴转速测量装置及方法
CN206583924U (zh) * 2016-11-23 2017-10-24 福州大学 一种基于变密度正弦条纹的转轴转速测量装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12034163B2 (en) 2019-04-12 2024-07-09 Camx Power Llc High power, extended temperature range-capable, highly abuse overcharge and discharge tolerant rechargeable battery cell and pack
CN111487433A (zh) * 2020-04-22 2020-08-04 河南科技大学 轴承保持架打滑率测量方法及转速测量方法、装置、***
CN111487433B (zh) * 2020-04-22 2022-06-21 河南科技大学 轴承保持架打滑率测量方法及转速测量方法、装置、***
EP4139693A4 (en) * 2020-04-23 2024-04-24 Camx Power LLC IMAGE-BASED SENSOR FOR MEASURING THE ROTARY POSITION OF A ROTATING SHAFT

Also Published As

Publication number Publication date
CN106443046B (zh) 2023-04-07
US11579162B2 (en) 2023-02-14
US20190041420A1 (en) 2019-02-07
CN106443046A (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
WO2018095213A1 (zh) 一种基于变密度正弦条纹的转轴转速测量装置及方法
CN109632103B (zh) 高空建筑物温度分布与表面裂缝远程监测***及监测方法
CN109559354B (zh) 测量塔架净空的方法以及装置
CN107271025B (zh) 一种转轴三维振动同步测量的装置及方法
CN103323461B (zh) 一种非接触式的风力发电机叶片运动在线检测方法
CN106092057B (zh) 一种基于四目立体视觉的直升机旋翼桨叶动态轨迹测量方法
CN105423954B (zh) 一种基于视觉测量的柔壁喷管的测量方法
CN109489566A (zh) 锂电池隔膜材料分切宽度检测方法、检测***及装置
CN109253706B (zh) 一种基于数字图像的隧道三维形貌测量方法
US10321114B2 (en) Testing 3D imaging systems
CN104089586A (zh) 发动机曲轴轴颈形状误差的图像检测装置和图像检测方法
CN113447670B (zh) 一种单目线阵视觉追踪条纹编码标志的转速测量方法及***
Wang et al. Rotational speed measurement through image similarity evaluation and spectral analysis
CN112414324B (zh) 一种基于双目立体视觉的直升机旋翼桨叶扭转角测量方法
CN114323571A (zh) 一种光电瞄准***多光轴一致性检测方法
CN103810676B (zh) 一种钢管运行速度的监测方法
CN114862809A (zh) 一种基于移动终端与图像处理的振动监测方法和装置
CN206638694U (zh) 一种基于双正弦变密度条纹的转速测量装置
CN106680529B (zh) 一种基于双正弦变密度条纹的转速测量装置及方法
CN117928875A (zh) 一种风洞流场的时间分辨偏振成像装置及方法
CN206583924U (zh) 一种基于变密度正弦条纹的转轴转速测量装置
CN107976146A (zh) 一种线阵ccd相机的自标定方法及测量方法
CN105987670A (zh) 轮胎压痕深度数据的处理方法、***和装置
CN114543972B (zh) 一种基于面阵相机的转轴三维振动位移测量装置和方法
CN103646390B (zh) 基于多层次图像定位的图像处理***和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17874990

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17874990

Country of ref document: EP

Kind code of ref document: A1