WO2018095158A1 - 一种飞行器的飞行控制方法、装置和*** - Google Patents

一种飞行器的飞行控制方法、装置和*** Download PDF

Info

Publication number
WO2018095158A1
WO2018095158A1 PCT/CN2017/106196 CN2017106196W WO2018095158A1 WO 2018095158 A1 WO2018095158 A1 WO 2018095158A1 CN 2017106196 W CN2017106196 W CN 2017106196W WO 2018095158 A1 WO2018095158 A1 WO 2018095158A1
Authority
WO
WIPO (PCT)
Prior art keywords
aircraft
flight
smart terminal
instruction
module
Prior art date
Application number
PCT/CN2017/106196
Other languages
English (en)
French (fr)
Inventor
胡华智
Original Assignee
亿航智能设备(广州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 亿航智能设备(广州)有限公司 filed Critical 亿航智能设备(广州)有限公司
Publication of WO2018095158A1 publication Critical patent/WO2018095158A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0808Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft

Definitions

  • the present invention relates to the field of aircraft control technology, and in particular, to a flight control method, apparatus and system for an aircraft.
  • a flight control method for an aircraft for use in a smart terminal, the method comprising:
  • the real-time acquisition of the posture information of the intelligent terminal further includes:
  • the method further comprises:
  • the method further comprises:
  • a return flight instruction is generated and sent to the aircraft, and the return flight instruction is used to instruct the aircraft to return to the takeoff point and hover at a preset height;
  • a landing command is generated and sent to the aircraft, and the landing command is used to instruct the aircraft to land at the current position and lock the propeller.
  • the attitude information further includes an inclination angle, a flight speed, and/or a flight altitude
  • the flight instruction further carries an inclination angle, a flight speed, and/or a flight altitude, and is used to indicate that the aircraft is controlled by the inclination angle, the flight speed, and/or the flight altitude. flight.
  • the flight speed includes: a preset initialization speed and an acceleration corresponding to the tilt angle of the smart terminal.
  • a flight control method for an aircraft for use in an aircraft, the method comprising:
  • the flight state of the aircraft is controlled, and the nose direction of the aircraft is kept in line with the front end of the intelligent terminal in real time, and the flight direction of the aircraft is consistent with the tilt direction of the intelligent terminal.
  • maintaining the head direction of the aircraft in real time in conformity with the front end of the smart terminal further includes:
  • the direction of the three-axis electronic compass that controls the aircraft in real time is consistent with the direction of the three-axis electronic compass of the intelligent terminal.
  • the method further comprises:
  • the entire takeoff action is completed and hovered at a preset height.
  • the method further comprises:
  • the flight command also carries a tilt angle, a flight speed, and/or a flight altitude.
  • Controlling the flight state of the aircraft further includes controlling the aircraft to control the flight at an angle of inclination, a flight speed, and/or a flight altitude.
  • a flight control method for an aircraft comprising:
  • the smart terminal collects the posture information of the intelligent terminal in real time, and the posture information includes at least the front end direction and the tilt direction of the smart terminal;
  • the aircraft controls the flight state of the aircraft according to the flight instruction, and keeps the nose direction of the aircraft in line with the front end of the intelligent terminal in real time, and the flight direction of the aircraft is consistent with the tilt direction of the intelligent terminal.
  • a flight control device for an aircraft for use in a smart terminal, the device comprising:
  • the acquiring module is configured to collect the posture information of the intelligent terminal in real time; wherein the posture information includes at least a front end direction and an oblique direction of the smart terminal;
  • a sending module for transmitting flight instructions to the aircraft.
  • the collection module is specifically configured to:
  • the attitude information of the intelligent terminal is collected in real time through a first attitude sensor built in the smart terminal, wherein the first attitude sensor comprises: a three-axis gyroscope, a three-axis accelerometer and a three-axis electronic compass.
  • the device further comprises:
  • the takeoff indication module is configured to detect a takeoff command of the user on the graphical interface of the smart terminal user, generate a takeoff command, and send the aircraft; wherein the takeoff command is used to instruct the aircraft to complete the entire takeoff action and hover at a preset height .
  • the device further comprises a return indication module and/or a landing indication module, wherein:
  • the return indication module is configured to detect that the user clicks the “return” operation on the graphical interface of the user of the intelligent terminal, generates a return instruction and sends the return instruction to the aircraft, and the return instruction is used to instruct the aircraft to return to the takeoff point and hover over the preset height;
  • the landing indication module is configured to detect that the user clicks a “landing” operation on the graphical interface of the user of the smart terminal, generates a landing command and sends the landing command to the aircraft, and the landing command is used to instruct the aircraft to land at the current position and lock the propeller.
  • the attitude information further includes a tilt angle, a flight speed, and/or a flying height
  • the command generating module is further configured to: carry the tilt angle, the flight speed, and/or the flying height in the flight instruction, to indicate that the aircraft is tilted, and the flight is Speed and / or flight altitude control flight.
  • a flight control device for an aircraft for use in an aircraft, the device comprising:
  • a receiving module configured to receive a flight instruction sent by the smart terminal, where the flight instruction carries a front end direction and a tilt direction of the smart terminal;
  • the control module is configured to control the flight state of the aircraft according to the flight instruction, and maintain the nose direction of the aircraft in line with the front end of the intelligent terminal in real time, and the flight direction of the aircraft is consistent with the tilt direction of the intelligent terminal.
  • control module is specifically configured to:
  • the direction of the electronic compass that controls the aircraft in real time is consistent with the direction of the electronic compass of the smart terminal.
  • the device further includes a take-off module, configured to receive the takeoff command sent by the smart terminal, and then complete Take the entire takeoff action and hover at the preset height.
  • a take-off module configured to receive the takeoff command sent by the smart terminal, and then complete Take the entire takeoff action and hover at the preset height.
  • the returning module is configured to receive the returning instruction sent by the intelligent terminal, return to the takeoff point and hover at a preset height;
  • the flight command also carries a tilt angle, a flight speed and/or a flight altitude
  • the control module is further configured to: control the aircraft to control the flight according to the tilt angle, the flight speed, and/or the flying height.
  • an aircraft system comprising an intelligent terminal and an aircraft, the intelligent terminal comprising the above-described flight control device applied to the intelligent terminal; and the aircraft comprising the above-described flight control device applied to the aircraft.
  • the invention provides a flight control method, device and system for an aircraft, which acquires its own posture information in real time through an intelligent terminal, generates a flight instruction according to the posture information, and sends the flight control device to the aircraft to control the attitude of the aircraft in the air to synchronize with the posture of the intelligent terminal in real time.
  • the aircraft is operated based on the somatosensory operation of the intelligent terminal without paying attention to the orientation and position of the aircraft, so that the aircraft is simple to operate and suitable for flying over the horizon.
  • the user's graphical interface on the smart terminal can be used to implement click and slide control to further control the aircraft, achieving one-click take-off, landing and returning, which makes the flight control of the aircraft simple and easy, and the user does not need training.
  • the precise control of the drone similar to the remote control can be realized, and the safety hazard caused by human error can be reduced.
  • FIG. 1 is a system structural diagram of an application environment according to an embodiment of the present invention.
  • FIG. 2 is a flow chart of a flight control method for an aircraft applied to an intelligent terminal according to an embodiment of the present invention. Cheng Tu.
  • FIG. 3 is a schematic diagram of a user graphical interface applied to an intelligent terminal according to an embodiment of the present invention.
  • FIG. 5A is a schematic diagram of an initial state of an intelligent terminal and an aircraft according to an embodiment of the present invention.
  • FIG. 5B is a schematic diagram of a flight state in which a smart terminal is tilted backward according to an embodiment of the present invention.
  • FIG. 5C is a schematic diagram of a flight state in which a smart terminal is tilted forward according to an embodiment of the present invention.
  • FIG. 5D is a schematic diagram of a suspended flight state according to an embodiment of the present invention.
  • FIG. 5F is a schematic diagram of a flight state in which a smart terminal rotates to the right in a horizontal plane according to an embodiment of the present invention.
  • FIG. 5G is a schematic diagram of a flight state in which a smart terminal is tilted to the left according to an embodiment of the present invention.
  • FIG. 5H is a schematic diagram of a flight state in which a smart terminal is tilted to the right according to an embodiment of the present invention.
  • FIG. 6 is a flowchart of a flight control method of an aircraft according to an embodiment of the present invention.
  • FIG. 7 is a block diagram of a flight control device applied to an intelligent terminal according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a mobile phone according to an embodiment of the present invention.
  • FIG. 1 is a system structural diagram of an application environment according to an embodiment of the present invention.
  • the system includes: an intelligent terminal 10 and an aircraft 20.
  • the smart terminal 10 is provided with a first attitude sensor 101, a first memory 102, a first processor 103, and a first wireless communication unit 104.
  • the first attitude sensor 101, the first memory 102, and the first wireless communication unit 104 are both provided. It is connected to the first processor 103.
  • the APP program code is stored on the memory 102, and the first processor 1 The APP program code is executed, and the acquired attitude information is converted into a flight instruction by the real-time acquisition of the posture information of the intelligent terminal 10 by the first attitude sensor 101, and is sent to the aircraft 20 through the first wireless communication unit 104 to control the flight state.
  • the attitude information includes but is not limited to the front end direction and the tilt direction of the smart terminal
  • the flight state includes, but is not limited to, the head direction of the aircraft is consistent with the front end direction of the smart terminal, and the flight direction of the aircraft is consistent with the tilt direction of the smart terminal.
  • the first attitude sensor 101 includes a motion sensor such as a first three-axis gyroscope, a first three-axis accelerometer, and a first three-axis electronic compass.
  • the first three-axis gyroscope is used to monitor the horizontal, vertical, pitch, heading and angular velocities of the intelligent terminal.
  • the first three-axis accelerometer is used to monitor the magnitude of the acceleration in only the direction of the terminal, and the magnitude and direction of the gravity of the intelligent terminal can be detected at rest.
  • the first three-axis electronic compass is used to monitor the direction of the smart terminal.
  • the aircraft 20 is provided with a second attitude sensor 201, a second memory 202, a second processor 203, and a second wireless communication unit 204.
  • the second attitude sensor 201, the second memory 202, and the second wireless communication unit 204 are all connected to the second processor 203.
  • the second attitude sensor 201 corresponds to the second attitude sensor 101, and the second attitude sensor 201 includes motion sensors such as a second three-axis gyroscope, a second three-axis accelerometer, and a second three-axis electronic compass.
  • the second three-axis gyroscope is used to monitor the horizontal, vertical, pitch, heading and angular velocities of the aircraft.
  • the second three-axis accelerometer is used to monitor the magnitude of the acceleration in all directions of the aircraft.
  • the magnitude and direction of gravity can also be detected at rest.
  • the second three-axis electronic compass is used to monitor the direction of the aircraft.
  • a flight control method for an aircraft is applied to an intelligent terminal, and the method includes:
  • S201 Collect posture information of the intelligent terminal in real time, where the posture information includes at least a front end direction and an oblique direction of the smart terminal.
  • the posture information of the smart terminal is collected in real time through the first attitude sensor (including the first three-axis gyroscope, the first three-axis accelerometer, and the first three-axis electronic compass) built in the smart terminal.
  • the attitude information includes at least a front end direction and a tilt direction of the smart terminal.
  • the front end direction of the smart terminal means that the user is in the normal state. In the case where the smart terminal is held, the direction in which the top of the smart terminal is oriented.
  • the smart terminal generates a flight instruction according to the posture information, where the flight instruction carries at least the front end direction and the tilt direction of the smart terminal, and is used to indicate that the nose direction of the aircraft is consistent with the front end direction of the smart terminal, and the flight direction and intelligence of the aircraft
  • the tilt direction of the terminal is the same.
  • the attitude information may also include any one or two of flight speed or flight altitude
  • the flight instruction also carries either or both of flight speed and flight altitude for indicating the flight speed of the aircraft and / or flight height control flight.
  • the acceleration of the flight can be detected by a three-axis angular velocity meter, and the larger the tilt angle, the greater the acceleration.
  • the flight speed is calculated based on a preset initialization speed and an acceleration corresponding to the tilt angle of the smart terminal.
  • the flight altitude can be preset in the system in advance, or it can be changed by the user through the graphical user interface of the smart terminal during the flight.
  • the intelligent terminal transmits a flight instruction to the aircraft through the wireless communication system to control the flight state of the aircraft.
  • the smart terminal collects its own posture information in real time, generates a flight instruction according to the posture information, and sends the flight state to the aircraft to control the flight state of the aircraft, thereby realizing the somatosensory operation flight of the aircraft based on the intelligent terminal, without paying attention to the orientation and position of the aircraft, so that the aircraft Easy to handle and suitable for over-the-horizon flying.
  • the graphical user interface of the smart terminal can also be combined with the user graphical interface on the smart terminal to implement click and slide control to further control the aircraft.
  • click the shortcut icon in the left middle of the screen to complete the takeoff, return or landing operations.
  • Press the shortcut icon in the right middle of the screen to adjust the flying height of the UAV.
  • the aircraft After detecting the take-off sliding operation of the user on the graphical interface of the intelligent terminal user, generating a take-off command concurrently
  • the aircraft is sent; wherein the takeoff command is used to instruct the aircraft to complete the entire takeoff action and hover at a preset height.
  • the method further includes the step of returning the indication:
  • a return flight instruction is generated and sent to the aircraft, and the return flight instruction is used to instruct the aircraft to return to the takeoff point and hover at a preset height.
  • the method further includes the step of dropping the indication:
  • a landing command is generated and sent to the aircraft, and the landing command is used to instruct the aircraft to land at the current position and lock the propeller.
  • the click and slide controls are used to further control the aircraft, achieving one-click take-off, landing and returning, which makes the flight control of the aircraft simple and easy, and the user can control through the body without training. It can realize the precise control of the drone similar to the remote control, and reduce the safety hazard caused by human error.
  • the S401 Receive a flight instruction sent by the smart terminal.
  • the flight instruction carries a front end direction and an oblique direction of the smart terminal.
  • the aircraft receives, by its wireless communication unit, a flight instruction sent by the intelligent terminal, where the flight instruction carries a front end direction and a tilt direction of the smart terminal, and is used to indicate that the aircraft maintains the nose direction of the aircraft consistent with the front end of the intelligent terminal, and the flight of the aircraft The direction is the same as the tilt direction of the smart terminal.
  • the flight command also carries a tilt angle for indicating that the tilt angle of the aircraft is consistent with the tilt angle of the smart terminal.
  • the flight command may also carry either or both of flight speed and flight altitude to indicate that the aircraft controls flight in accordance with flight speed and/or flight altitude.
  • the acceleration of the flight can be detected by a three-axis angular velocity meter, and the larger the tilt angle, the greater the acceleration.
  • the flight speed is calculated based on a preset initialization speed and an acceleration corresponding to the tilt angle of the smart terminal.
  • the flight altitude can be preset in the system in advance, or it can be passed by the user through the user of the smart terminal during the flight. Make changes to the graphical interface.
  • S402. Control the flight state of the aircraft according to the flight instruction, and keep the nose direction of the aircraft in line with the front end of the intelligent terminal in real time, and the flight direction of the aircraft is consistent with the tilt direction of the smart terminal.
  • the direction of the electronic compass of the real-time control aircraft is consistent with the direction of the electronic compass of the intelligent terminal
  • the flight direction of the control aircraft is consistent with the tilt direction of the intelligent terminal.
  • the screen is horizontally facing upward, and the front end of the smart terminal is facing the front of the user (assuming a north direction), the head direction of the corresponding aircraft is also toward the front of the user (positive North direction).
  • the flight direction of the corresponding aircraft will coincide with the tilt direction of the smart terminal. That is, the flight direction of the corresponding aircraft is in the south direction, and the aircraft flies in the south direction.
  • the nose of the corresponding aircraft will also rotate in the horizontal plane in which it is located. Until pointing to the west direction).
  • the angle of rotation of the smart terminal in the horizontal plane For example, if the user rotates the smart terminal in a horizontal plane, the front end points to the left front of the user 45 degrees. The direction of the aircraft (ie 45 degrees northwest), then the head of the corresponding aircraft will also rotate in its plane until it points 45 degrees northwest.
  • the nose of the aircraft also rotates from the true north direction to the south direction in the horizontal plane.
  • the head direction of the aircraft also faces the east direction.
  • the user in the case that the head direction is the forward direction of the smart terminal, the user only needs to control the tilt direction of the smart terminal, and can control the aircraft to fly in the corresponding direction with the head direction as a reference, so that The handling of the aircraft has become more intuitive and simple.
  • the direction of the aircraft head is in the same direction as the intelligent terminal.
  • the intelligent terminal is tilted toward the user, and the aircraft will fly toward the user. Come back, solve the problem that the traditional remote control maneuvering the aircraft and easily lose the aircraft.
  • a flight control method for an aircraft includes:
  • the smart terminal collects posture information of the intelligent terminal in real time, wherein the posture information includes at least a front end direction and a tilt direction of the smart terminal.
  • the aircraft controls the flight state of the aircraft according to the flight instruction, and the head direction of the aircraft is kept in line with the front end of the intelligent terminal in real time, and the flight direction of the aircraft is consistent with the tilt direction of the intelligent terminal.
  • steps S601-S603 are respectively the same as S201-S203 of the above embodiment, and S604 is the same as step S502 in the above embodiment, and will not be repeated here.
  • a flight control device for an aircraft is applied to an intelligent terminal, and the device includes an acquisition module 701, an instruction generation module 702, and a transmission module 703.
  • the acquiring module 701 is configured to collect posture information of the smart terminal in real time; wherein the posture information includes at least The front end direction and the tilt direction of the smart terminal.
  • the collecting module 701 is specifically configured to: acquire, by using a first posture sensor built in the smart terminal, posture information of the smart terminal in real time, wherein the first posture sensor comprises: a first three-axis gyroscope, a first three-axis accelerometer, and a first A three-axis electronic compass.
  • the command generating module 702 is configured to generate a flight instruction according to the posture information, where the flight instruction is used to indicate that the nose direction of the aircraft is consistent with the front end direction of the smart terminal, and the flight direction of the aircraft is consistent with the tilt direction of the smart terminal.
  • the attitude information further comprises one or any combination of a tilt angle, a flight speed or a flying height
  • the command generating module is further configured to: carry the tilt angle, the flight speed and/or the flying height in the flight instruction, for indicating The aircraft controls flight at an angle of inclination, flight speed and/or flight altitude.
  • the device further includes one or any combination of a takeoff indicating module, a return indicating module, or a landing indicating module. among them:
  • the takeoff indication module is configured to detect a takeoff command of the user on the graphical interface of the smart terminal user, generate a takeoff command, and send the aircraft; wherein the takeoff command is used to instruct the aircraft to complete the entire takeoff action and hover at a preset height .
  • the return indication module is configured to detect that the user clicks the “return” operation on the graphical interface of the user of the intelligent terminal, generates a return instruction and sends the return instruction to the aircraft, and the return instruction is used to instruct the aircraft to return to the takeoff point and hover over the preset height.
  • the landing indication module is configured to detect that the user clicks a “landing” operation on the graphical interface of the user of the smart terminal, generates a landing command and sends the landing command to the aircraft, and the landing command is used to instruct the aircraft to land at the current position and lock the propeller.
  • a flight control device for an aircraft is applied to an aircraft, and the device includes a receiving module 801 and a control module 802.
  • the receiving module 801 is configured to receive a flight instruction sent by the smart terminal, where the flight instruction carries a front end direction and an oblique direction of the smart terminal.
  • the control module 802 is configured to control the flight state of the aircraft according to the flight instruction, and maintain the aircraft in real time.
  • the direction of the nose is the same as the front end of the intelligent terminal, and the flight direction of the aircraft is consistent with the tilt direction of the intelligent terminal.
  • control module 802 is configured to control the direction of the electronic compass of the aircraft in real time and the direction of the electronic compass of the smart terminal.
  • the control module 802 is further configured to: control the aircraft to control the flight according to the tilt angle, the flight speed, and/or the flying height.
  • the device further comprises one or any combination of a takeoff module, a return module or a landing module, wherein:
  • the landing module is configured to receive the landing command sent by the intelligent terminal, and then land and lock the propeller at the current position.
  • An embodiment of the present invention further provides an aircraft system, the system comprising an intelligent terminal and an aircraft, the intelligent terminal comprising the flight control device applied to the intelligent terminal of the above embodiment; the aircraft comprising the flight control device of the application aircraft of the above embodiment.
  • the smart terminal can be any smart terminal device including a mobile phone, a tablet computer, a PDA (Personal Digital Assistant), and the like.
  • FIG. 9 is a block diagram showing a part of the structure of the mobile phone related to the smart terminal provided by the embodiment of the present invention.
  • the mobile phone includes: a radio frequency (RF) circuit 910, a memory 920, an input unit 930, a display unit 940, a sensor 950, an audio circuit 960, a wireless fidelity (WiFi) module 970, a processor 980, and a power supply. 990 and other components.
  • RF radio frequency
  • the mobile phone includes: a radio frequency (RF) circuit 910, a memory 920, an input unit 930, a display unit 940, a sensor 950, an audio circuit 960, a wireless fidelity (WiFi) module 970, a processor 980, and a power supply. 990 and other components.
  • RF radio frequency
  • the RF circuit 910 can be used for transmitting and receiving information or during a call, and receiving and transmitting the signal. Specifically, after receiving the downlink information of the base station, the processor 980 processes the data. In addition, the uplink data is designed to be sent to the base station. .
  • RF circuits include, but are not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a Low Noise Amplifier (LNA), a duplexer, and the like.
  • LNA Low Noise Amplifier
  • RF circuitry 60 can also communicate with the network and other devices via wireless communication. The above wireless communication may use any communication standard or protocol, including but not limited to Global System of Mobile communication (GSM), General Packet Radio Service (GPRS), Code Division Multiple Access (Code Division). Multiple Access (CDMA), Wideband Code Division Multiple Access (WCDMA), Long Term Evolution (LTE), E-mail, Short Messaging Service (SMS), and the like.
  • GSM Global System of Mobile communication
  • the memory 920 can be used to store software programs and modules, and the processor 980 executes various functional applications and data processing of the mobile phone by running software programs and modules stored in the memory 920.
  • the memory 920 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application required for at least one function (such as a sound playing function, an image playing function, etc.), and the like; the storage data area may be stored according to Data created by the use of the mobile phone (such as audio data, phone book, etc.).
  • memory 920 can include high speed random access memory, and can also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid state storage device.
  • the input unit 930 can be configured to receive input numeric or character information and to generate key signal inputs related to user settings and function control of the handset 600.
  • the input unit 930 may include a touch panel 931 and other input devices 932.
  • the touch panel 931 also referred to as a touch screen, can collect touch operations on or near the user (such as a user using a finger, a stylus, or the like on the touch panel 931 or near the touch panel 931. Operation), and drive the corresponding connecting device according to a preset program.
  • the touch panel 931 can include two parts: a touch detection device and a touch controller.
  • touch panel 931 and the display panel 941 are used as two independent components to implement the input and input functions of the mobile phone in FIG. 9, in some embodiments, the touch panel 931 and the display panel 941 may be integrated. Realize the input and output functions of the phone.
  • the mobile phone may further include a sensor 950 including a motion sensor such as a three-axis gyroscope, a three-axis accelerometer, and a three-axis electronic compass, and other sensors for acquiring motion information and other information of the mobile phone itself.
  • the three-axis accelerometer can detect the magnitude of acceleration in all directions. When it is stationary, it can detect the magnitude and direction of gravity. It can be used to identify the gesture of the mobile phone (such as horizontal and vertical screen switching, related games, magnetometer attitude calibration), vibration recognition related functions. (such as pedometer, tapping) and so on.
  • the APP code is stored in the memory 934.
  • the processor 933 calls the APP code from the memory 934 and runs.
  • the mobile phone APP can acquire the roll angle, the pitch angle, and the yaw angle of the mobile phone through the attitude sensor 950, and acquire the position of the slider for controlling the flying height of the aircraft through the manipulation interface module 931.
  • WiFi is a short-range wireless transmission technology
  • the mobile phone can help users to send and receive emails, browse web pages, and access streaming media through the WiFi module 970, which provides users with wireless broadband Internet access.
  • FIG. 9 shows the WiFi module 970, it can be understood that it does not belong to the essential configuration of the mobile phone, and can be omitted as needed within the scope of not changing the essence of the invention.
  • the processor 980 is a control center of the mobile phone, and connects various parts of the entire mobile phone by using various interfaces and lines.
  • the mobile phone is monitored in its entirety by running or executing software programs and/or modules stored in memory 920, as well as invoking data stored in memory 920, performing various functions and processing data of the handset.
  • the processor 980 may include one or more processing units; preferably, the processor 980 may integrate an application processor and a modem processor, where the application processor mainly processes an operating system, a user interface, an application, and the like.
  • the modem processor primarily handles wireless communications. It will be appreciated that the above described modem processor may also not be integrated into the processor 980.
  • the handset also includes a power source 990 (such as a battery) that powers the various components.
  • a power source can be logically coupled to the processor 980 via a power management system to manage charging, discharging, and power management functions through the power management system.
  • the mobile phone may further include a camera, a Bluetooth module, and the like, and details are not described herein again.
  • the processor 980 included in the mobile phone further has the following functions:
  • the processor 980 is further configured to collect the posture information of the smart terminal by using the sensor 950 in real time; wherein the posture information includes at least a front end direction and an oblique direction of the smart terminal.
  • the processor 980 is further configured to generate a flight instruction according to the posture information, where the flight instruction is used to indicate that the nose direction of the aircraft is consistent with the front end direction of the smart terminal, and the flight direction of the aircraft is consistent with the tilt direction of the smart terminal.
  • the processor 980 described above is also used to fly instructions through the RF circuit 910 aircraft.
  • the user's graphical interface on the smart terminal can be used to implement click and slide control to further control the aircraft, achieving one-click take-off, landing and returning, which makes the flight control of the aircraft simple and easy, and the user does not need training.
  • the precise control of the drone similar to the remote control can be realized, and the safety hazard caused by human error can be reduced.
  • the medium can be a read only memory, a magnetic disk or an optical disk or the like.
  • the invention provides a flight control method, device and system for an aircraft, which acquires its own posture information in real time through an intelligent terminal, generates a flight instruction according to the posture information, and sends the flight control device to the aircraft to control the attitude of the aircraft in the air to synchronize with the posture of the intelligent terminal in real time.
  • the aircraft is operated based on the somatosensory operation of the intelligent terminal without paying attention to the orientation and position of the aircraft, so that the aircraft is simple to operate and suitable for flying over the horizon.
  • the user's graphical interface on the smart terminal can be used to implement click and slide control to further control the aircraft, achieving one-click take-off, landing and returning, which makes the flight control of the aircraft simple and easy, and the user does not need training.
  • the precise control of the drone similar to the remote control can be realized, and the safety hazard caused by human error can be reduced. Therefore, it has industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Toys (AREA)

Abstract

一种飞行器(20)的飞行控制方法、装置和***,属于飞行器控制技术领域。飞行器(20)的飞行控制方法包括:智能终端(10)实时采集智能终端(10)的姿态信息,其中,姿态信息至少包括智能终端(10)的前端方向和倾斜方向(S201);根据姿态信息生成飞行指令,其中,飞行指令用于指示飞行器(20)的机头方向与智能终端(10)的前端方向一致,飞行器(20)的飞行方向与智能终端(10)的倾斜方向一致(S202);将飞行指令发送给飞行器(20) (S203)。飞行器(20)的飞行控制方法、装置和***通过控制智能终端(10)的姿态来控制飞行器(20)的飞行,飞行器(20)在空中飞行的姿态与智能终端(10)的姿态实时同步,实现了飞行器(20)基于智能终端(10)的体感操作飞行,无需关注飞行器(20)的朝向和位置,使得飞行器(20)操控简单且适于超视距飞。

Description

一种飞行器的飞行控制方法、装置和*** 技术领域
本发明涉及飞行器控制技术领域,尤其涉及一种飞行器的飞行控制方法、装置和***。
背景技术
多旋翼飞行器是一种通过多个(一般至少4个)旋翼提供动力的小型飞行器。由于多旋翼飞行器具有垂直起降和悬停的能力,并且飞行平稳,成本相对较低,因此广泛应用于个人娱乐、影视航拍、国土测绘、农林业巡检、电力线路巡检和警用监控等许多行业。
目前,对于小型飞行器的控制方式主要有两种:一种方式是使用遥控器,操控手可以通过遥控器直接控制飞行器的油门、姿态角和飞行速度等。这种方式可以对飞行器进行非常精确的操控,但对操控手的技术水平要求很高,并且不适合超视距飞行,当飞机与操控手距离较远时由于观察不清容易造成误判。另一种方式是为飞行器配备功能完善的自驾仪,该方式依赖GPS(Global Positioning System,全球定位***)定位,通过地面站向飞行器发送起飞、降落、按指定航线飞行等指令,虽然易于操控,但无法在室内或不开阔的环境飞行,且无法进行实时操控。
技术问题
有鉴于此,本发明的目的在于提供一种飞行器的飞行控制方法、装置和***,以实现飞行器便于操控且适于超视距飞行。
问题的解决方案
技术解决方案
本发明解决上述技术问题所采用的技术方案如下:
根据本发明的一个方面,提供的一种飞行器的飞行控制方法,应用于智能终端,该方法包括:
实时采集智能终端的姿态信息;
根据姿态信息生成飞行指令;
将飞行指令发送给飞行器;
其中,姿态信息至少包括智能终端的前端方向和倾斜方向,飞行指令用于指示飞行器的机头方向与智能终端的前端方向保持一致,飞行器的飞行方向与智能终端的倾斜方向一致。
优选的,实时采集智能终端的姿态信息进一步包括:
通过智能终端内置或者外置的第一姿态传感器实时采集智能终端的姿态信息,其中,第一姿态传感器包括:三轴陀螺仪、三轴加速度计和三轴电子罗盘。
优选的,该方法之前还包括:
检测到用户在智能终端用户图形界面上的起飞滑动操作后,生成起飞指令并发送飞行器;其中,起飞指令用于指示飞行器完成整个起飞动作,并悬停在预设的高度。
优选的,该方法之后还包括:
检测到用户在智能终端的用户图形界面上点击“返航”操作后,生成返航指令并发送给飞行器,返航指令用于指示飞行器返回到起飞点上空并悬停在预设的高度;
和/或
检测到用户在智能终端的用户图形界面上点击“降落”操作后,生成降落指令并发送给飞行器,降落指令用于指示飞行器在当前位置降落并锁定螺旋桨。
优选的,姿态信息还包括倾斜角度、飞行速度和/或飞行高度,飞行指令中还携带倾斜角度、飞行速度和/或飞行高度,用于指示飞行器按倾斜角度、飞行速度和/或飞行高度控制飞行。
优选的,飞行速度包括:预设的初始化速度以及与智能终端的倾斜角度相对应的加速度。
根据本发明的另一个方面,提供的一种飞行器的飞行控制方法,应用于飞行器,该方法包括:
接收智能终端发送的飞行指令,飞行指令携带智能终端的前端方向和倾斜方向;
根据飞行指令控制飞行器的飞行状态,实时保持飞行器的机头方向与智能终端的前端一致,飞行器的飞行方向与智能终端的倾斜方向一致。
优选的,实时保持飞行器的机头方向与智能终端的前端一致进一步包括:
实时控制飞行器的三轴电子罗盘的方向与智能终端的三轴电子罗盘的方向保持一致。
优选的,该方法之前还包括:
接收到智能终端发送的起飞指令后,完成整个起飞动作,并悬停在预设的高度。
优选的,该方法之后还包括:
接收到智能终端发送的返航指令后,则返回到起飞点上空并悬停在预设的高度;
和/或
接收到智能终端发送的降落指令后,则在当前位置降落并锁定螺旋桨。
优选的,飞行指令中还携带倾斜角度、飞行速度和/或飞行高度,控制飞行器的飞行状态还包括控制飞行器按倾斜角度、飞行速度和/或飞行高度控制飞行。
根据本发明的又一个方面,提供的一种飞行器的飞行控制方法,该方法包括:
智能终端实时采集智能终端的姿态信息,姿态信息至少包括智能终端的前端方向和倾斜方向;
根据姿态信息生成飞行指令;
将飞行指令发送给飞行器;
飞行器根据飞行指令控制飞行器的飞行状态,实时保持飞行器的机头方向与智能终端的前端一致,飞行器的飞行方向与智能终端的倾斜方向一致。
根据本发明的再一个方面,提供的一种飞行器的飞行控制装置,应用于智能终端,该装置包括:
采集模块,用于实时采集智能终端的姿态信息;其中,姿态信息至少包括智能终端的前端方向和倾斜方向;
指令生成模块,用于根据姿态信息生成飞行指令;其中,飞行指令用于指示飞行器的机头方向与智能终端的前端方向保持一致,飞行器的飞行方向与智能终 端的倾斜方向一致;
发送模块,用于将飞行指令发送给飞行器。
优选的,采集模块具体用于:
通过智能终端内置的第一姿态传感器实时采集智能终端的姿态信息,其中,第一姿态传感器包括:三轴陀螺仪、三轴加速度计和三轴电子罗盘。
优选的,该装置还包括:
起飞指示模块,用于检测到用户在智能终端用户图形界面上的起飞滑动操作后,生成起飞指令并发送飞行器;其中,起飞指令用于指示飞行器完成整个起飞动作,并悬停在预设的高度。
优选的,该装置还包括返航指示模块和/或降落指示模块,其中:
返航指示模块,用于检测到用户在智能终端的用户图形界面上点击“返航”操作后,生成返航指令并发送给飞行器,返航指令用于指示飞行器返回到起飞点上空并悬停在预设的高度;
降落指示模块,用于检测到用户在智能终端的用户图形界面上点击“降落”操作后,生成降落指令并发送给飞行器,降落指令用于指示飞行器在当前位置降落并锁定螺旋桨。
优选的,姿态信息还包括倾斜角度、飞行速度和/或飞行高度,指令生成模块还用于:在飞行指令还携带倾斜角度、飞行速度和/或飞行高度,用于指示飞行器按倾斜角度、飞行速度和/或飞行高度控制飞行。
根据本发明的再一个方面,提供的一种飞行器的飞行控制装置,应用于飞行器,该装置包括:
接收模块,用于接收智能终端发送的飞行指令,飞行指令中携带智能终端的前端方向和倾斜方向;
控制模块,用于根据飞行指令控制飞行器的飞行状态,实时保持飞行器的机头方向与智能终端的前端一致,飞行器的飞行方向与智能终端的倾斜方向一致。
优选的,控制模块具体用于:
实时控制飞行器的电子罗盘的方向与智能终端的电子罗盘的方向保持一致。
优选的,该装置还包括起飞模块,用于接收到智能终端发送的起飞指令后,完 成整个起飞动作,并悬停在预设的高度。
优选的,该装置还包括返航模块和/或降落模块,其中:
返航模块,用于接收到智能终端发送的返航指令后,返回到起飞点上空并悬停在预设的高度;
降落模块,用于接收智能终端发送的降落指令后,在当前位置降落并锁定螺旋桨。
优选的,飞行指令中还携带倾斜角度、飞行速度和/或飞行高度,控制模块还用于:控制飞行器按倾斜角度、飞行速度和/或飞行高度控制飞行。
根据本发明的再一个方面,提供的一种飞行器***,该***包括智能终端和飞行器,该智能终端包括上述应用于智能终端的飞行控制装置;飞行器包括上述应用于飞行器的飞行控制装置。
优选的,智能终端包括手机,平板电脑,或具有体感传感器的遥控器。
本发明提供的一种飞行器的飞行控制方法、装置和***,通过智能终端实时采集自身的姿态信息,根据姿态信息生成飞行指令发送给飞行器控制飞行器在空中飞行的姿态与智能终端的姿态实时同步,实现了飞行器基于智能终端的体感操作飞行,无需关注飞行器的朝向和位置,使得飞行器操控简单且适于超视距飞。
发明的有益效果
有益效果
此外,还可以结合智能终端上的用户图形界面实现点击和滑动操控来对飞行器进行进一步的控制,达到一键实现起飞、降落和返航等,使得飞行器的飞行操控变得简单易行,用户无需培训而通过体感操控即可实现与遥控器类似的对无人机的精确操控,减少因人为失误所带来的安全性隐患。
对附图的简要说明
附图说明
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
图1为本发明实施例涉及的应用环境的***结构图。
图2为本发明实施例提供的一种应用于智能终端的飞行器的飞行控制方法的流 程图。
图3为本发明实施例提供的一种应用于智能终端的用户图形界面示意图。
图4为本发明实施例提供的一种应用于飞行器的飞行控制方法的流程图。
图5A为本发明实施例提供的一种智能终端和飞行器的初始状态示意图。
图5B为本发明实施例提供的一种智能终端向后倾斜的飞行状态示意图。
图5C为本发明实施例提供的一种智能终端向前倾斜的飞行状态示意图。
图5D为本发明实施例提供的一种悬浮飞行状态示意图。
图5E为本发明实施例提供的一种智能终端在水平面上向左旋转的飞行状态示意图。
图5F为本发明实施例提供的一种智能终端在水平面上向右旋转的飞行状态示意图。
图5G为本发明实施例提供的一种智能终端向左倾斜的飞行状态示意图。
图5H为本发明实施例提供的一种智能终端向右倾斜的飞行状态示意图。
图6为本发明实施例提供的一种飞行器的飞行控制方法的流程图。
图7为本发明实施例提供的一种应用于智能终端的飞行控制装置的模块结构图。
图8为本发明实施例提供的一种应用于飞行器的飞行控制装置的模块结构图。
图9为本发明实施例提供的一种手机的结构图示意图。
发明实施例
本发明的实施方式
为了使本发明所要解决的技术问题、技术方案及有益效果更加清楚、明白,以下结合附图和实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
图1所示,本发明实施例涉及的应用环境的***结构图,该***包括:智能终端10和飞行器20。
智能终端10,其上设有第一姿态传感器101、第一存储器102、第一处理器103和第一无线通讯单元104,第一姿态传感器101、第一存储器102和第一无线通讯单元104均与第一处理器103相连。存储器102上存储APP程序代码,第一处理器1 03运行该APP程序代码,通过第一姿态传感器101的实时采集智能终端10的姿态信息,将采集到的姿态信息转化成飞行指令,并通过第一无线通讯单元104发给飞行器20控制飞行状态。姿态信息包括但不限于智能终端的前端方向和倾斜方向,飞行状态包括但不限于飞行器的机头方向与智能终端的前端方向保持一致,飞行器的飞行方向与智能终端的倾斜方向一致。
其中,第一姿态传感器101包括第一三轴陀螺仪、第一三轴加速度计和第一三轴电子罗盘等运动传感器。第一三轴陀螺仪是用于监测智能终端的水平、垂直、俯仰、航向和角速度。第一三轴加速度计用于监测只能终端各个方向上加速度的大小,静止时还可检测出智能终端的重力的大小及方向。第一三轴电子罗盘用于监测智能终端的方向。
飞行器20,其上设有第二姿态传感器201、第二存储器202、第二处理器203和第二无线通讯单元204。第二姿态传感器201、第二存储器202和第二无线通讯单元204均与第二处理器203连接。其中,第二姿态传感器201与第二姿态传感器101相对应,第二姿态传感器201包括第二三轴陀螺仪、第二三轴加速度计和第二三轴电子罗盘等运动传感器。第二三轴陀螺仪是用于监测飞行器的水平、垂直、俯仰、航向和角速度。第二三轴加速度计用于监测飞行器各个方向上加速度的大小,静止时还可检测出重力的大小及方向。第二三轴电子罗盘用于监测飞行器的方向。飞行器20通过第二无线通讯单元204接收到智能终端10的飞行指令后,第二处理器203根据飞行指令控制飞行器的飞行状态,即控制第二姿态传感器根据第一姿态传感器的变化而变化。
基于上述飞行器和智能终端的硬件结构,提出本发明方法各个实施例。
如图2所示,本发明实施例提供的一种飞行器的飞行控制方法,应用于智能终端,该方法包括:
S201、实时采集智能终端的姿态信息,其中,姿态信息至少包括智能终端的前端方向和倾斜方向。
具体的,通过智能终端内置的第一姿态传感器(包括第一三轴陀螺仪、第一三轴加速度计和第一三轴电子罗盘)实时采集智能终端的姿态信息。姿态信息至少包括智能终端的前端方向和倾斜方向。智能终端的前端方向是指用户在正常 情况下手持智能终端时智能终端顶端所朝向的方向。
S202、根据姿态信息生成飞行指令。
具体的,智能终端根据姿态信息生成飞行指令,该飞行指令中至少携带智能终端的前端方向和倾斜方向,用于指示飞行器的机头方向与智能终端的前端方向保持一致,飞行器的飞行方向与智能终端的倾斜方向一致。
此外,为了让飞行器完全以智能终端的化身在空中飞翔,姿态信息还可以包括倾斜角度、飞行指令中还携带倾斜角度,用于指示飞行器的倾斜角度与智能终端的倾斜角度保持一致。
当然,为了更灵活,姿态信息还可以包括飞行速度或飞行高度的任意一种或两种,飞行指令中还携带飞行速度和飞行高度的任意一种或两种,用于指示飞行器按照飞行速度和/或飞行高度控制飞行。其中飞行的加速度可以有由三轴角速度计检测,倾斜角度越大,加速度越大。飞行速度根据预设的初始化速度以及与智能终端的倾斜角度相对应的加速度计算得到。飞行高度可以事先在***中预设,也可以在飞行的过程中由用户通过智能终端的用户图形界面进行更改。
S203、将飞行指令发送给飞行器。
具体的,智能终端通过无线通讯***将飞行指令发送给飞行器以控制飞行器的飞行状态。
本发明实施例通过智能终端实时采集自身的姿态信息,根据姿态信息生成飞行指令发送给飞行器控制飞行器的飞行状态,实现了飞行器基于智能终端的体感操作飞行,无需关注飞行器的朝向和位置,使得飞行器操控简单且适于超视距飞。
如图3所示的智能终端的用户图形界面示意图,还可以结合智能终端上的用户图形界面实现点击和滑动操控来对飞行器进行进一步的控制。比如在图3中点击屏幕左中部的快捷图标实现一键完成起飞、返航或降落等操作,滑动屏幕右中部的快捷图标调整无人飞行器的飞行高度,此外,还可以变更操控模式等,简单易行。
作为一种优选实施例,该方法之前还包括起飞指示的步骤:
检测到用户在智能终端用户图形界面上的起飞滑动操作后,生成起飞指令并发 送飞行器;其中,起飞指令用于指示飞行器完成整个起飞动作,并悬停在预设的高度。
作为另一种优选实施例,该方法之后还包括返航指示的步骤:
检测到用户在智能终端的用户图形界面上点击“返航”操作后,生成返航指令并发送给飞行器,返航指令用于指示飞行器返回到起飞点上空并悬停在预设的高度。
作为另一种优选实施例,该方法之后还包括降落指示的步骤:
检测到用户在智能终端的用户图形界面上点击“降落”操作后,生成降落指令并发送给飞行器,降落指令用于指示飞行器在当前位置降落并锁定螺旋桨。
通过智能终端上的用户图形界面实现点击和滑动操控来对飞行器进行进一步的控制,达到一键实现起飞、降落和返航等,使得飞行器的飞行操控变得简单易行,用户无需培训而通过体感操控即可实现与遥控器类似的对无人机的精确操控,减少因人为失误所带来的安全性隐患。
如图4所示,本发明实施例提供的一种飞行器的飞行控制方法,应用于飞行器,该方法包括:
S401、接收智能终端发送的飞行指令;其中,飞行指令携带智能终端的前端方向和倾斜方向。
具体的,飞行器通过其无线通讯单元接收智能终端发送的飞行指令,该飞行指令携带智能终端的前端方向和倾斜方向,用于指示飞行器保持飞行器的机头方向与智能终端的前端一致,飞行器的飞行方向与智能终端的倾斜方向一致。
此外,为了让飞行器完全以智能终端的化身在空中飞翔,飞行指令中还携带倾斜角度,用于指示飞行器的倾斜角度与智能终端的倾斜角度保持一致。
当然,为了更灵活,飞行指令中还可以携带飞行速度和飞行高度的任意一种或两种,用于指示飞行器按照飞行速度和/或飞行高度控制飞行。其中飞行的加速度可以有由三轴角速度计检测,倾斜角度越大,加速度越大。飞行速度根据预设的初始化速度以及与智能终端的倾斜角度相对应的加速度计算得到。飞行高度可以事先在***中预设,也可以在飞行的过程中由用户通过智能终端的用户 图形界面进行更改。
S402、根据飞行指令控制飞行器的飞行状态,实时保持飞行器的机头方向与智能终端的前端一致,飞行器的飞行方向与智能终端的倾斜方向一致。
具体的,实时控制飞行器的电子罗盘的方向与智能终端的电子罗盘的方向保持一致,控制飞行器的飞行方向与智能终端的倾斜方向一致。
作为一种优选的实施例,当飞行指令中还携带倾斜角度时,还会实时控制飞行器的倾斜角度和智能终端的倾斜角度一致,让飞行器完全以智能终端的化身在空中飞翔。当飞行指令中还携带飞行速度和/或飞行高度时,控制飞行器以携带的飞行速度和/或飞行高度飞行,从而提高灵活性。其中,飞行速度为预设的初始化速度以及与智能终端的倾斜角度相对应的加速度,倾斜角度越大,速度越大。
为了更清楚的说明,下面结合图5给出了几种具体操控过程示例如下:
初始时,如图5A所示,若用户手持智能终端,屏幕水平朝上,智能终端的前端朝向用户前方(假设为正北方向),则对应的飞行器的机头方向也朝向用户的前方(正北方向)。
接下来,如图5B所示,若用户将智能终端向自己倾斜,即是智能终端的屏幕由水平方向朝向正南方向倾斜,则对应的飞行器的飞行方向将与智能终端的倾斜方向一致。即对应的飞行器的飞行方向为正南方向,飞机向正南方向飞行。
接下来,如图5C所示,若用户将智能终端向前方倾斜,即是智能终端的屏幕由水平方向向正北方向倾斜,则对应的飞行器的飞行方向将变为正北方向,飞机向正北方向飞行。
接下来,如图5D所示,若用户将智能终端回到屏幕水平朝上的水平状态,则对应的飞行器将在当前位置悬停,机头方向仍然和智能终端的前端朝向一致(正北方向)。
接下来,如图5E所示,若用户将智能终端在水平面内转动,使其前端指向用户的左手方向(即正西方向),则对应的飞行器的机头也将在其所在的水平面内转动直到指向正西方向)。当然,智能终端在水平面的转动角度是没有限制的,比如,若用户将智能终端在水平面内转动,使其前端指向用户的左前方45度 的方向(即西北向45度),则对应的飞行器的机头也将在其所在的平面内转动直到指向西北向45度。若智能终端的前端在水平面内由正北方向一直旋转到正南方向,飞行器的机头也在水平面内由正北方向一致旋转到正南方向。如图5F所示,则是用户将智能终端在水平面内旋转到正东方向时,此时飞行器的机头方向也朝正东方向。
接下来,如图5G所示,若用户将智能终端向自己的左手方向(即正西方向)倾斜,则对应的飞行器的飞行方向将转变为正西方向。
接下来,如图5H所示,若用户将智能终端向自己的右手方向(即正东方向)倾斜,则对应的飞行器的飞行方向将转变为正东方向。
本发明实施例中,在机头方向就是智能终端的前向的方向的情况下,用户只需操控智能终端的倾斜方向,便能控制飞行器以其机头方向为参考向对应的方向飞行,使得飞行器的操控变得更为直观和简便。当飞行器飞到很远的地方,用户肉眼无法清楚的看到飞行器时,飞机机头方向与智能终端方向一致,只要操控智能终端,使得智能终端向用户的方向倾斜,飞行器就会朝着用户飞回来,解决了传统遥控器操控飞行器,容易丢失飞行器的情况。
如图6所示,本发明实施例提供的一种飞行器的飞行控制方法,该方法包括:
S601、智能终端实时采集智能终端的姿态信息,其中,姿态信息至少包括智能终端的前端方向和倾斜方向。
S602、根据姿态信息生成飞行指令。
S603、将飞行指令发送给飞行器。
S604、飞行器根据飞行指令控制飞行器的飞行状态,实时保持飞行器的机头方向与智能终端的前端一致,飞行器的飞行方向与智能终端的倾斜方向一致。
在本实施例中,步骤S601-S603分别与上述实施例的S201-S203对应相同,S604与上述实施例中的步骤S502相同,这里不再重述。
如图7所示,本发明实施例提供的一种飞行器的飞行控制装置,应用于智能终端,该装置包括采集模块701,指令生成模块702和发送模块703。
采集模块701,用于实时采集智能终端的姿态信息;其中,姿态信息至少包括 智能终端的前端方向和倾斜方向。
具体的,采集模块701具体用于:通过智能终端内置的第一姿态传感器实时采集智能终端的姿态信息,其中,第一姿态传感器包括:第一三轴陀螺仪、第一三轴加速度计和第一三轴电子罗盘。
指令生成模块702,用于根据姿态信息生成飞行指令;其中,飞行指令用于指示飞行器的机头方向与智能终端的前端方向保持一致,飞行器的飞行方向与智能终端的倾斜方向一致。
优选的,姿态信息还包括倾斜角度、飞行速度或飞行高度的一种或任意几种组合,指令生成模块还用于:在飞行指令还携带倾斜角度、飞行速度和/或飞行高度,用于指示飞行器按倾斜角度、飞行速度和/或飞行高度控制飞行。
发送模块703,用于将飞行指令发送给飞行器。
作为一种优选实施例,该装置还包括起飞指示模块、返航指示模块或降落指示模块一种或任意几种组合。其中:
起飞指示模块,用于检测到用户在智能终端用户图形界面上的起飞滑动操作后,生成起飞指令并发送飞行器;其中,起飞指令用于指示飞行器完成整个起飞动作,并悬停在预设的高度。
返航指示模块,用于检测到用户在智能终端的用户图形界面上点击“返航”操作后,生成返航指令并发送给飞行器,返航指令用于指示飞行器返回到起飞点上空并悬停在预设的高度。
降落指示模块,用于检测到用户在智能终端的用户图形界面上点击“降落”操作后,生成降落指令并发送给飞行器,降落指令用于指示飞行器在当前位置降落并锁定螺旋桨。
如图8所示,本发明实施例提供的一种飞行器的飞行控制装置,应用于飞行器,该装置包括接收模块801和控制模块802。
接收模块801,用于接收智能终端发送的飞行指令,其中,飞行指令中携带智能终端的前端方向和倾斜方向。
控制模块802,用于根据飞行指令控制飞行器的飞行状态,实时保持飞行器的 机头方向与智能终端的前端一致,飞行器的飞行方向与智能终端的倾斜方向一致。
具体的,控制模块802用于实时控制飞行器的电子罗盘的方向与智能终端的电子罗盘的方向保持一致。当飞行指令中还携带倾斜角度、飞行速度和/或飞行高度时,控制模块802还用于:控制飞行器按倾斜角度、飞行速度和/或飞行高度控制飞行。
优选的,该装置还包括起飞模块、返航模块或降落模块中的一种或任意几种组合,其中:
起飞模块,用于接收到智能终端发送的起飞指令后,完成整个起飞动作,并悬停在预设的高度。
返航模块,用于接收到智能终端发送的返航指令后,返回到起飞点上空并悬停在预设的高度;
降落模块,用于接收智能终端发送的降落指令后,在当前位置降落并锁定螺旋桨。
本发明实施例还提供了一种飞行器***,该***包括智能终端和飞行器,该智能终端包括上述实施例的应用于智能终端的飞行控制装置;飞行器包括上述实施例的应用飞行器的飞行控制装置。该智能终端可以为包括手机、平板电脑、PDA(Personal Digital Assistant,个人数字助理)等任意智能终端设备。
以智能终端为手机为例进行说明,图9示出的是与本发明实施例提供的智能终端相关的手机的部分结构的框图。该手机包括:射频(Radio Frequency,RF)电路910、存储器920、输入单元930、显示单元940、传感器950、音频电路960、无线保真(wireless fidelity,WiFi)模块970、处理器980、以及电源990等部件。本领域技术人员可以理解,图9中示出的手机结构并不构成对手机的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
下面结合图9对手机的各个构成部件进行具体的介绍:
RF电路910可用于收发信息或通话过程中,信号的接收和发送,特别地,将基站的下行信息接收后,给处理器980处理;另外,将设计上行的数据发送给基站 。通常,RF电路包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器(Low Noise Amplifier,LNA)、双工器等。此外,RF电路60还可以通过无线通信与网络和其他设备通信。上述无线通信可以使用任一通信标准或协议,包括但不限于全球移动通讯***(Global System of Mobile communication,GSM)、通用分组无线服务(General Packet Radio Service,GPRS)、码分多址(Code Division Multiple Access,CDMA)、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)、长期演进(Long Term Evolution,LTE)、电子邮件、短消息服务(Short Messaging Service,SMS)等。
存储器920可用于存储软件程序以及模块,处理器980通过运行存储在存储器920的软件程序以及模块,从而执行手机的各种功能应用以及数据处理。存储器920可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作***、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器920可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
输入单元930可用于接收输入的数字或字符信息,以及产生与手机600的用户设置以及功能控制有关的键信号输入。具体地,输入单元930可包括触控面板931以及其他输入设备932。触控面板931,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板931上或在触控面板931附近的操作),并根据预先设定的程式驱动相应的连接装置。可选的,触控面板931可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器980,并能接收处理器980发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板931。除了触控面板931,输入单元930还可以包括其他输入设备932。具体地,其他输入设备932可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆等中的一种或多种。
显示单元940可用于显示由用户输入的信息或提供给用户的信息以及手机的各种菜单。显示单元940可包括显示面板941,可选的,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板941。进一步的,触控面板931可覆盖显示面板941,当触控面板931检测到在其上或附近的触摸操作后,传送给处理器980以确定触摸事件的类型,随后处理器980根据触摸事件的类型在显示面板941上提供相应的视觉输出。虽然在图9中,触控面板931与显示面板941是作为两个独立的部件来实现手机的输入和输入功能,但是在某些实施例中,可以将触控面板931与显示面板941集成而实现手机的输入和输出功能。
手机还可包括传感器950,姿态传感器950包括三轴陀螺仪、三轴加速度计和三轴电子罗盘等运动传感器及其他传感器,用于获取手机自身的运动信息及其他信息。三轴加速度计可检测各个方向上加速度的大小,静止时可检测出重力的大小及方向,可用于识别手机姿态的应用(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等。存储器934中存储有APP代码。处理器933从存储器934中调用APP代码并运行。手机APP可以通过姿态传感器950获取手机的横滚角、俯仰角、偏航角,并通过操控接口模块931获取用于控制飞行器飞行高度的滑条位置。
音频电路960、扬声器961,传声器962可提供用户与手机之间的音频接口。音频电路960可将接收到的音频数据转换后的电信号,传输到扬声器961,由扬声器961转换为声音信号输出;另一方面,传声器962将收集的声音信号转换为电信号,由音频电路960接收后转换为音频数据,再将音频数据输出处理器980处理后,经RF电路910以发送给比如另一手机,或者将音频数据输出至存储器920以便进一步处理。
WiFi属于短距离无线传输技术,手机通过WiFi模块970可以帮助用户收发电子邮件、浏览网页和访问流式媒体等,它为用户提供了无线的宽带互联网访问。虽然图9示出了WiFi模块970,但是可以理解的是,其并不属于手机的必须构成,完全可以根据需要在不改变发明的本质的范围内而省略。
处理器980是手机的控制中心,利用各种接口和线路连接整个手机的各个部分 ,通过运行或执行存储在存储器920内的软件程序和/或模块,以及调用存储在存储器920内的数据,执行手机的各种功能和处理数据,从而对手机进行整体监控。可选的,处理器980可包括一个或多个处理单元;优选的,处理器980可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作***、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器980中。
该手机还包括给各个部件供电的电源990(比如电池),优选的,电源可以通过电源管理***与处理器980逻辑相连,从而通过电源管理***实现管理充电、放电、以及功耗管理等功能。
尽管未示出,手机还可以包括摄像头、蓝牙模块等,在此不再赘述。
在本发明实施例中,该手机所包括的处理器980还具有以下功能:
上述处理器980,还用于实时通过传感器950采集智能终端的姿态信息;其中,姿态信息至少包括智能终端的前端方向和倾斜方向。
上述处理器980,还用于根据姿态信息生成飞行指令;其中,飞行指令用于指示飞行器的机头方向与智能终端的前端方向保持一致,飞行器的飞行方向与智能终端的倾斜方向一致。
上述处理器980,还用于飞行指令通过经RF电路910飞行器。
此外,上述飞行器包括各类无人飞行器和载人飞行器,该飞行器的处理器还用于接收智能终端发送的飞行指令,根据飞行指令控制飞行器的飞行状态,实时保持飞行器的机头方向与智能终端的前端一致,飞行器的飞行方向与智能终端的倾斜方向一致。其中,飞行指令中携带智能终端的前端方向和倾斜方向。
需要说明的是,上述装置及***的实施例与方法实施例属于同一构思,其具体实现过程详见方法实施例,且方法实施例中的技术特征在装置实施例中均对应适用,在装置和***中不再赘述。此外,上述各个单元只是按照功能逻辑进行划分的,但并不局限于上述的划分,只要能够实现相应的功能即可;另外,各功能单元的具体名称也只是为了便于相互区分,并不用于限制本发明的保护范围。
本发明提供的一种飞行器的飞行控制方法、装置和***,通过智能终端实时采 集自身的姿态信息,根据姿态信息生成飞行指令发送给飞行器控制飞行器的飞行状态,飞行器在空中飞行的姿态与智能终端的姿态实时同步,实现了飞行器基于智能终端的体感操作飞行,无需关注飞行器的朝向和位置,使得飞行器操控简单且适于超视距飞。
此外,还可以结合智能终端上的用户图形界面实现点击和滑动操控来对飞行器进行进一步的控制,达到一键实现起飞、降落和返航等,使得飞行器的飞行操控变得简单易行,用户无需培训而通过体感操控即可实现与遥控器类似的对无人机的精确操控,减少因人为失误所带来的安全性隐患。
本领域普通技术人员可以理解实现上述各方法实施例中的全部或部分步骤是可以通过程序来指令相关的硬件完成,相应的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明实施例揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。
工业实用性
本发明提供的一种飞行器的飞行控制方法、装置和***,通过智能终端实时采集自身的姿态信息,根据姿态信息生成飞行指令发送给飞行器控制飞行器在空中飞行的姿态与智能终端的姿态实时同步,实现了飞行器基于智能终端的体感操作飞行,无需关注飞行器的朝向和位置,使得飞行器操控简单且适于超视距飞。此外,还可以结合智能终端上的用户图形界面实现点击和滑动操控来对飞行器进行进一步的控制,达到一键实现起飞、降落和返航等,使得飞行器的飞行操控变得简单易行,用户无需培训而通过体感操控即可实现与遥控器类似的对无人机的精确操控,减少因人为失误所带来的安全性隐患。因此,具有工业实用性。

Claims (24)

  1. 一种飞行器的飞行控制方法,应用于智能终端,该方法包括:
    实时采集所述智能终端的姿态信息;
    根据所述姿态信息生成飞行指令;
    将所述飞行指令发送给所述飞行器;
    其中,所述姿态信息至少包括智能终端的前端方向和倾斜方向,所述飞行指令用于指示所述飞行器的机头方向与所述智能终端的前端方向保持一致,所述飞行器的飞行方向与所述智能终端的倾斜方向一致。
  2. 根据权利要求1所述的飞行器的飞行控制方法,其中,所述实时采集所述智能终端的姿态信息进一步包括:
    通过智能终端内置或者外置的第一姿态传感器实时采集所述智能终端的姿态信息,其中,所述第一姿态传感器包括:三轴陀螺仪、三轴加速度计和三轴电子罗盘。
  3. 根据权利要求1所述的飞行器的飞行控制方法,其中,该方法之前还包括:
    检测到用户在所述智能终端用户图形界面上的起飞滑动操作后,生成起飞指令并发送所述飞行器;其中,所述起飞指令用于指示所述飞行器完成整个起飞动作,并悬停在预设的高度。
  4. 根据权利要求1所述的飞行器的飞行控制方法,其中,该方法之后还包括:
    检测到用户在所述智能终端的用户图形界面上点击“返航”操作后,生成返航指令并发送给所述飞行器,所述返航指令用于指示所述飞行器返回到起飞点上空并悬停在预设的高度;
    和/或
    检测到用户在所述智能终端的用户图形界面上点击“降落”操作后,生成降落指令并发送给所述飞行器,所述降落指令用于指示所述飞行器在当前位置降落并锁定螺旋桨。
  5. 根据权利要求1-4任意一项权利要求所述的飞行器的飞行控制方法,其中,所述姿态信息还包括倾斜角度、飞行速度和/或飞行高度,所述飞行指令中还携带所述倾斜角度、飞行速度和/或飞行高度,用于指示所述飞行器按所述倾斜角度、飞行速度和/或飞行高度控制飞行。
  6. 根据权利要求5所述的飞行器的飞行控制方法,其中,所述飞行速度包括:预设的初始化速度以及与智能终端的倾斜角度相对应的加速度。
  7. 一种飞行器的飞行控制方法,应用于飞行器,该方法包括:
    接收智能终端发送的飞行指令,所述飞行指令携带所述智能终端的前端方向和倾斜方向;
    根据所述飞行指令控制所述飞行器的飞行状态,实时保持飞行器的机头方向与所述智能终端的前端一致,所述飞行器的飞行方向与所述智能终端的倾斜方向一致。
  8. 根据权利要求7所述的飞行器的飞行控制方法,其中,所述实时保持飞行器的机头方向与所述智能终端的前端一致进一步包括:
    实时控制所述飞行器的三轴电子罗盘的方向与所述智能终端的三轴电子罗盘的方向保持一致。
  9. 根据权利要求7所述的飞行器的飞行控制方法,其中,该方法之前还包括:
    接收到所述智能终端发送的起飞指令后,完成整个起飞动作,并悬停在预设的高度。
  10. 根据权利要求7所述的飞行器的飞行控制方法,其中,该方法之后还包括:
    接收到所述智能终端发送的返航指令后,则返回到起飞点上空并悬停在预设的高度;
    和/或
    接收到所述智能终端发送的降落指令后,则在当前位置降落并锁 定螺旋桨。
  11. 根据权利要求7-10任意一项权利要求所述的飞行器的飞行控制方法,其中,所述飞行指令中还携带所述倾斜角度、飞行速度和/或飞行高度,所述控制所述飞行器的飞行状态还包括控制所述飞行器按所述倾斜角度、飞行速度和/或飞行高度控制飞行。
  12. 一种飞行器的飞行控制方法,该方法包括:
    智能终端实时采集所述智能终端的姿态信息,所述姿态信息至少包括智能终端的前端方向和倾斜方向;
    根据所述姿态信息生成飞行指令;
    将所述飞行指令发送给所述飞行器;
    所述飞行器根据所述飞行指令控制所述飞行器的飞行状态,实时保持所述飞行器的机头方向与所述智能终端的前端一致,所述飞行器的飞行方向与所述智能终端的倾斜方向一致。
  13. 一种飞行器的飞行控制装置,应用于智能终端,该装置包括:
    采集模块,用于实时采集所述智能终端的姿态信息;其中,所述姿态信息至少包括智能终端的前端方向和倾斜方向;
    指令生成模块,用于根据所述姿态信息生成飞行指令;其中,所述飞行指令用于指示所述飞行器的机头方向与所述智能终端的前端方向保持一致,所述飞行器的飞行方向与所述智能终端的倾斜方向一致;
    发送模块,用于将所述飞行指令发送给所述飞行器。
  14. 根据权利要求13所述的飞行器的飞行控制装置,其中,所述采集模块具体用于:
    通过智能终端内置的第一姿态传感器实时采集所述智能终端的姿态信息,其中,所述第一姿态传感器包括:三轴陀螺仪、三轴加速度计和三轴电子罗盘。
  15. 根据权利要求13所述的飞行器的飞行控制装置,其中,该装置还包括:
    起飞指示模块,用于检测到用户在所述智能终端用户图形界面上的起飞滑动操作后,生成起飞指令并发送所述飞行器;其中,所述起飞指令用于指示所述飞行器完成整个起飞动作,并悬停在预设的高度。
  16. 根据权利要求13所述的飞行器的飞行控制装置,其中,该装置还包括返航指示模块和/或降落指示模块,其中:
    所述返航指示模块,用于检测到用户在所述智能终端的用户图形界面上点击“返航”操作后,生成返航指令并发送给所述飞行器,所述返航指令用于指示所述飞行器返回到起飞点上空并悬停在预设的高度;
    所述降落指示模块,用于检测到用户在所述智能终端的用户图形界面上点击“降落”操作后,生成降落指令并发送给所述飞行器,所述降落指令用于指示所述飞行器在当前位置降落并锁定螺旋桨。
  17. 根据权利要求13-16任意一项权利要求所述的飞行器的飞行控制装置,其中,所述姿态信息还包括倾斜角度、飞行速度和/或飞行高度,所述指令生成模块还用于:在飞行指令还携带所述倾斜角度、飞行速度和/或飞行高度,用于指示所述飞行器按所述倾斜角度、飞行速度和/或飞行高度控制飞行。
  18. 一种飞行器的飞行控制装置,应用于飞行器,该装置包括:
    接收模块,用于接收智能终端发送的飞行指令,所述飞行指令中携带所述智能终端的前端方向和倾斜方向;
    控制模块,用于根据所述飞行指令控制所述飞行器的飞行状态,实时保持飞行器的机头方向与所述智能终端的前端一致,所述飞行器的飞行方向与所述智能终端的倾斜方向一致。
  19. 根据权利要求18所述的飞行器的飞行控制装置,其中,所述控制模块具体用于:
    实时控制所述飞行器的电子罗盘的方向与所述智能终端的电子罗 盘的方向保持一致。
  20. 根据权利要求18所述的飞行器的飞行控制装置,其中,该装置还包括起飞模块,用于接收到所述智能终端发送的起飞指令后,完成整个起飞动作,并悬停在预设的高度。
  21. 根据权利要求18所述的飞行器的飞行控制装置,其中,该装置还包括返航模块和/或降落模块,其中:
    所述返航模块,用于接收到所述智能终端发送的返航指令后,返回到起飞点上空并悬停在预设的高度;
    所述降落模块,用于接收所述智能终端发送的降落指令后,在当前位置降落并锁定螺旋桨。
  22. 根据权利要求18-21任意一项权利要求所述的飞行器的飞行控制装置,其特征在于,所述飞行指令中还携带所述倾斜角度、飞行速度和/或飞行高度,所述控制模块还用于:控制所述飞行器按所述倾斜角度、飞行速度和/或飞行高度控制飞行。
  23. 一种飞行器***,该***包括智能终端和飞行器,该智能终端包括如权利要求13-17任意一项权利要求所述的飞行器的飞行控制装置;所述飞行器包括权利要求18-22任意一项权利要求所述的飞行器的飞行控制装置。
  24. 根据权利要求23所述的飞行器***,其中,所述智能终端包括手机,平板电脑,或具有体感传感器的遥控器。
PCT/CN2017/106196 2016-11-25 2017-10-13 一种飞行器的飞行控制方法、装置和*** WO2018095158A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611063096.1A CN106406331A (zh) 2016-11-25 2016-11-25 一种飞行器的飞行控制方法、装置和***
CN201611063096.1 2016-11-25

Publications (1)

Publication Number Publication Date
WO2018095158A1 true WO2018095158A1 (zh) 2018-05-31

Family

ID=58082089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/106196 WO2018095158A1 (zh) 2016-11-25 2017-10-13 一种飞行器的飞行控制方法、装置和***

Country Status (2)

Country Link
CN (1) CN106406331A (zh)
WO (1) WO2018095158A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108845580A (zh) * 2018-06-05 2018-11-20 深圳大漠大智控技术有限公司 蝶形扑翼机飞行器及其控制方法
CN111580531A (zh) * 2020-04-27 2020-08-25 瑞凯星弘(武汉)科技有限公司 用于输电线路的无人机验电方法及装置
CN112771350A (zh) * 2020-04-24 2021-05-07 深圳市大疆创新科技有限公司 飞行指引方法、装置、***、遥控终端及可读存储介质

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106406331A (zh) * 2016-11-25 2017-02-15 广州亿航智能技术有限公司 一种飞行器的飞行控制方法、装置和***
CN106686258A (zh) * 2017-03-14 2017-05-17 深圳市乐升科技有限公司 一种可拆卸无人机的控制方法及***
CN107203216A (zh) * 2017-06-06 2017-09-26 广州市海葱科技有限公司 一种无人机飞行控制方法、***、电子设备及存储介质
CN107635064B (zh) * 2017-08-29 2020-07-17 哈尔滨工业大学深圳研究生院 一种支持ros的无人机手机app控制方法
CN107839418B (zh) * 2017-11-06 2020-08-04 吉林工程技术师范学院 一种飞行汽车及其自动控制飞行姿态的方法
CN108153325A (zh) * 2017-11-13 2018-06-12 上海顺砾智能科技有限公司 智能无人机的控制方法及装置
CN107831788A (zh) * 2017-12-01 2018-03-23 深圳蚁石科技有限公司 一种飞行器控制***及控制方法
US10545495B2 (en) * 2017-12-14 2020-01-28 Industry Academy Cooperation Foundation Of Sejong University Remote control device and method for UAV and motion control device attached to UAV
CN109956043A (zh) * 2017-12-26 2019-07-02 广州亿航智能技术有限公司 飞行装置
CN109976376A (zh) * 2017-12-28 2019-07-05 广州亿航智能技术有限公司 一种用于控制飞行器的***
CN109073386A (zh) * 2017-12-29 2018-12-21 深圳市大疆创新科技有限公司 一种无人飞行器方位的提示和确定方法、控制终端
CN111566006B (zh) * 2018-02-28 2024-03-12 株式会社尼罗沃克 无人机和操作器及其控制方法、计算机可读取记录介质
JP6921026B2 (ja) * 2018-03-30 2021-08-18 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd 送信機、飛行体、飛行制御指示方法、飛行制御方法、プログラム、及び記憶媒体
CN109394220B (zh) * 2018-11-28 2022-04-08 广东永衡良品科技有限公司 一种智能身高测量装置及其测量方法
CN110223565B (zh) * 2019-06-25 2022-02-22 深圳市道通智能航空技术股份有限公司 一种飞行模拟方法、装置、设备及存储介质
CN110262539A (zh) * 2019-07-05 2019-09-20 深圳市道通智能航空技术有限公司 无人机起降控制方法、飞行控制器及无人机
CN113906361A (zh) * 2020-05-07 2022-01-07 深圳市大疆创新科技有限公司 无人机的控制方法和设备
CN114830070A (zh) * 2020-12-25 2022-07-29 深圳市大疆创新科技有限公司 飞行指引方法、电机校准方法、显示设备及可读存储介质
CN112799418B (zh) * 2020-12-31 2023-06-13 广州极飞科技股份有限公司 控制方法、装置、遥控设备及可读存储介质

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102854887A (zh) * 2012-09-06 2013-01-02 北京工业大学 一种无人机航迹规划和远程同步操控方法
US20140008496A1 (en) * 2012-07-05 2014-01-09 Zhou Ye Using handheld device to control flying object
CN104808675A (zh) * 2015-03-03 2015-07-29 广州亿航智能技术有限公司 基于智能终端的体感飞行操控***及终端设备
CN104808674A (zh) * 2015-03-03 2015-07-29 广州亿航智能技术有限公司 多旋翼飞行器的控制***、终端及机载飞控***
CN105511496A (zh) * 2016-02-16 2016-04-20 谭圆圆 一种无人飞行器的控制方法及装置
CN105739514A (zh) * 2016-03-23 2016-07-06 普宙飞行器科技(深圳)有限公司 无人机的操控方法及无人机***
CN105836127A (zh) * 2016-03-18 2016-08-10 普宙飞行器科技(深圳)有限公司 无人机的操控方法和无人机***
CN105929838A (zh) * 2016-05-20 2016-09-07 腾讯科技(深圳)有限公司 一种飞行器的飞行控制方法和移动终端以及飞行控制端
CN106020219A (zh) * 2016-05-17 2016-10-12 腾讯科技(深圳)有限公司 一种飞行器的控制方法和装置
CN106054914A (zh) * 2016-08-17 2016-10-26 腾讯科技(深圳)有限公司 一种飞行器的控制方法及飞行器控制装置
CN106406331A (zh) * 2016-11-25 2017-02-15 广州亿航智能技术有限公司 一种飞行器的飞行控制方法、装置和***

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103426282A (zh) * 2013-07-31 2013-12-04 深圳市大疆创新科技有限公司 遥控方法及终端
CN103581323A (zh) * 2013-11-11 2014-02-12 惠州Tcl移动通信有限公司 一种通过手机姿势控制飞行器的方法及***
CN104020777A (zh) * 2014-06-17 2014-09-03 成都华诚智印科技有限公司 一种体感跟随式飞行控制***及其控制方法
CN105867363A (zh) * 2016-05-26 2016-08-17 北京飞旋天行科技有限公司 无人飞行器的操控方法及设备、无人飞行器的操控***
CN106094845A (zh) * 2016-05-30 2016-11-09 深圳市前海疆域智能科技股份有限公司 飞行器一键降落的方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140008496A1 (en) * 2012-07-05 2014-01-09 Zhou Ye Using handheld device to control flying object
CN102854887A (zh) * 2012-09-06 2013-01-02 北京工业大学 一种无人机航迹规划和远程同步操控方法
CN104808675A (zh) * 2015-03-03 2015-07-29 广州亿航智能技术有限公司 基于智能终端的体感飞行操控***及终端设备
CN104808674A (zh) * 2015-03-03 2015-07-29 广州亿航智能技术有限公司 多旋翼飞行器的控制***、终端及机载飞控***
CN105511496A (zh) * 2016-02-16 2016-04-20 谭圆圆 一种无人飞行器的控制方法及装置
CN105836127A (zh) * 2016-03-18 2016-08-10 普宙飞行器科技(深圳)有限公司 无人机的操控方法和无人机***
CN105739514A (zh) * 2016-03-23 2016-07-06 普宙飞行器科技(深圳)有限公司 无人机的操控方法及无人机***
CN106020219A (zh) * 2016-05-17 2016-10-12 腾讯科技(深圳)有限公司 一种飞行器的控制方法和装置
CN105929838A (zh) * 2016-05-20 2016-09-07 腾讯科技(深圳)有限公司 一种飞行器的飞行控制方法和移动终端以及飞行控制端
CN106054914A (zh) * 2016-08-17 2016-10-26 腾讯科技(深圳)有限公司 一种飞行器的控制方法及飞行器控制装置
CN106406331A (zh) * 2016-11-25 2017-02-15 广州亿航智能技术有限公司 一种飞行器的飞行控制方法、装置和***

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108845580A (zh) * 2018-06-05 2018-11-20 深圳大漠大智控技术有限公司 蝶形扑翼机飞行器及其控制方法
CN112771350A (zh) * 2020-04-24 2021-05-07 深圳市大疆创新科技有限公司 飞行指引方法、装置、***、遥控终端及可读存储介质
CN111580531A (zh) * 2020-04-27 2020-08-25 瑞凯星弘(武汉)科技有限公司 用于输电线路的无人机验电方法及装置

Also Published As

Publication number Publication date
CN106406331A (zh) 2017-02-15

Similar Documents

Publication Publication Date Title
WO2018095158A1 (zh) 一种飞行器的飞行控制方法、装置和***
US11151773B2 (en) Method and apparatus for adjusting viewing angle in virtual environment, and readable storage medium
WO2016138690A1 (zh) 基于智能终端的体感飞行操控***及终端设备
CN105892476B (zh) 一种飞行器的控制方法及控制终端
US11625034B2 (en) One-handed remote-control device for aerial system
CN108279694B (zh) 电子设备及其控制方法
EP3449328B1 (en) Method, storage medium, and electronic device for controlling unmanned aerial vehicle
CN105929838B (zh) 一种飞行器的飞行控制方法和移动终端以及飞行控制端
KR20180075191A (ko) 무인 이동체를 제어하기 위한 방법 및 전자 장치
CN106325297B (zh) 一种飞行器的控制方法及控制终端
WO2021197121A1 (zh) 图像拍摄方法及电子设备
KR102290746B1 (ko) 무인 비행 장치를 제어하는 전자 장치, 그에 의해 제어되는 무인 비행 장치 및 시스템
US20140320537A1 (en) Method, device and storage medium for controlling electronic map
WO2017113648A1 (zh) 体感遥控器、体感遥控飞行***和方法、无头控制方法
WO2020135269A1 (zh) 会话创建方法及终端设备
WO2023193604A1 (zh) 航线任务的在线规划方法及相关装置
WO2023193611A1 (zh) 无人飞行器及其控制方法、装置、***
WO2023025204A1 (zh) 远程控制方法、装置及第一、第二控制端
CN106020219B (zh) 一种飞行器的控制方法和装置
CN112734346B (zh) 航线覆盖范围的确定方法、装置、设备及可读存储介质
CN109343782A (zh) 一种显示方法及终端
CN109828703B (zh) 内容选中方法及终端设备
CN109271120A (zh) 一种显示方法及终端
CN116091943A (zh) 图像检测方法、装置、设备及计算机可读存储介质
CN113359851A (zh) 控制飞行器航行的方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17873339

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04/10/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17873339

Country of ref document: EP

Kind code of ref document: A1