WO2018094862A1 - 柔性直流配电网单极接地故障识别、故障保护方法 - Google Patents

柔性直流配电网单极接地故障识别、故障保护方法 Download PDF

Info

Publication number
WO2018094862A1
WO2018094862A1 PCT/CN2017/070494 CN2017070494W WO2018094862A1 WO 2018094862 A1 WO2018094862 A1 WO 2018094862A1 CN 2017070494 W CN2017070494 W CN 2017070494W WO 2018094862 A1 WO2018094862 A1 WO 2018094862A1
Authority
WO
WIPO (PCT)
Prior art keywords
ground fault
absolute value
negative
positive
distribution network
Prior art date
Application number
PCT/CN2017/070494
Other languages
English (en)
French (fr)
Inventor
张爱玲
彭忠
李少华
李泰�
荆雪记
周金萍
苏匀
赵静
马小婷
胡永昌
苏进国
李艳梅
Original Assignee
许继集团有限公司
许继电气股份有限公司
国家电网公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 许继集团有限公司, 许继电气股份有限公司, 国家电网公司 filed Critical 许继集团有限公司
Publication of WO2018094862A1 publication Critical patent/WO2018094862A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/16Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to fault current to earth, frame or mass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/44Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to the rate of change of electrical quantities
    • H02H3/445Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to the rate of change of electrical quantities of DC quantities
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/26Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured
    • H02H7/268Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured for dc systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/12Measuring rate of change
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/081Locating faults in cables, transmission lines, or networks according to type of conductors
    • G01R31/086Locating faults in cables, transmission lines, or networks according to type of conductors in power transmission or distribution networks, i.e. with interconnected conductors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • Y04S10/52Outage or fault management, e.g. fault detection or location

Definitions

  • the invention belongs to power electronic technology, and particularly relates to a single-pole ground fault identification and fault protection method for a flexible DC distribution network.
  • the multi-terminal flexible DC power distribution system refers to a flexible DC consisting of two or more voltage source converters (VSC, Voltage Source Converter) under the same DC grid, and the DC side of the converter port is connected in parallel or in series. Distribution System.
  • VSC voltage source converter
  • Voltage Source Converter Voltage Source Converter
  • Distribution System Compared with the traditional two-level or three-level VSC, Modular Multilevel Converter (MMC) has the advantages of easy expansion, low harmonic distortion, low switching loss and strong fault handling capability.
  • MMC Modular Multilevel Converter
  • the identification and elimination of DC single-pole ground faults is realized by differential protection.
  • the fault DC voltage becomes 0, and the non-fault pole DC voltage becomes 2 times the rated value.
  • the current at the fault is small, which affects the accuracy of fault detection.
  • the related technology starts the differential protection for a long time. If the faulty line cannot be quickly isolated, the device may be overvoltage, start overvoltage protection, the lockout converter and the converter may be out of operation, which may affect the reliability of the power supply.
  • the purpose of the embodiments of the present invention is to provide a single-pole ground fault identification and fault protection method for a flexible DC distribution network, which is used to solve the problem that the related technology cannot accurately detect a single-pole ground fault.
  • an embodiment of the present invention provides a method for identifying a single-pole ground fault of a flexible DC distribution network, including the following solutions:
  • an embodiment of the present invention provides a method for identifying a single-pole ground fault of a flexible DC distribution network, including:
  • the pulse signal is generated and the pulse signal is broadened by a predetermined value, and the positive DC line to ground voltage and the negative DC line to ground voltage
  • the absolute value of the sum is greater than the second comparison limit, and when the duration greater than the second comparison limit exceeds the time limit, it is determined that the current positive and negative DC lines have a single pole ground fault.
  • the first comparison limit is obtained by:
  • dU dcset is the first comparison limit
  • dU dc_max_o is the absolute value of the absolute value of the unipolar ground fault voltage change rate outside the zone
  • k rel1 is the first set reliability coefficient
  • the first comparison limit is subjected to sensitivity verification by:
  • dU dc_min_i is the absolute value of the absolute value of the unipolar ground fault voltage change rate in the region
  • k sen1 is the first sensitivity coefficient
  • dU dcunbalset is the second comparison limit
  • dU dcunbal_max_o is the absolute value of the absolute value of the voltage imbalance caused by the non-unipolar ground fault outside the zone
  • k rel2 is the second set reliability factor
  • the second comparison limit is subjected to sensitivity verification by:
  • dU dcunbal_min_i is the absolute minimum value of the unipolar ground fault voltage imbalance in the region
  • k sen2 is the second sensitivity coefficient
  • an embodiment of the present invention provides a unipolar ground fault protection method for a flexible DC distribution network, including:
  • the pulse signal is generated and the pulse signal is stretched by t1 millisecond, and the positive DC line to ground voltage and the negative DC line to ground voltage are The absolute value of the sum is greater than the second comparison limit, and when the duration greater than the second comparison limit exceeds the time limit, it is determined that the current positive and negative DC lines have a single pole ground fault;
  • a trip command is issued to the DC circuit breaker of the positive and negative DC lines in which a single pole ground fault occurs, and the positive and negative DC lines are disconnected.
  • the first comparison limit is obtained by:
  • dU dcset is the first comparison limit
  • dU dc_max_o is the absolute value of the absolute value of the unipolar ground fault voltage change rate outside the zone
  • k rel1 is the first set reliability coefficient
  • the first comparison limit is subjected to sensitivity verification by:
  • dU dc_min_i is the absolute value of the absolute value of the unipolar ground fault voltage change rate in the region
  • k sen1 is the first sensitivity coefficient
  • dU dcunbalset is the second comparison limit
  • dU dcunbal_max_o is the absolute value of the absolute value of the voltage imbalance caused by the non-unipolar ground fault outside the zone
  • k rel2 is the second set reliability factor
  • the second comparison limit is subjected to sensitivity verification by:
  • dU dcunbal_min_i is the absolute minimum value of the unipolar ground fault voltage imbalance in the region
  • k sen2 is the second sensitivity coefficient
  • the beneficial effects of the embodiments of the present invention are as follows:
  • the present invention provides a single-pole ground fault identification and fault protection method for a flexible DC distribution network, which can accurately detect a single-pole ground fault and quickly identify the fault line, and ground fault occurs by jumping off.
  • the DC circuit breaker where the DC line is located realizes the rapid isolation of the faulty line and improves the reliability of the power supply of the DC distribution network.
  • Figure 1 is a simplified diagram of single pole ground fault protection for line A of a flexible DC distribution network
  • FIG. 2 is a logic block diagram of the single-pole ground fault location of the flexible DC distribution network shown in FIG.
  • the pulse signal is stretched by t1 millisecond, and the absolute value of the sum of the positive DC line to ground voltage and the negative DC line to ground voltage is greater than a second comparison limit, where the duration of the greater than the second comparison limit exceeds a time limit, determining that a current single-pole ground fault occurs in the positive and negative DC lines;
  • a trip command is issued to the DC circuit breaker of the positive and negative DC lines where the single pole ground fault occurs, and the positive and negative DC lines are disconnected.
  • the four converter stations A, B, C and D shown in Fig. 1 form a DC ring network through line 1, line 2, line 3 and line 4.
  • DC reactors are installed at both ends of the DC line as the boundary of the line.
  • DC breakers are provided at both ends of the DC line. When the outlet is protected, the live line is quickly tripped to isolate the faulty line.
  • the control protection device is arranged in the converter station at both ends of the line for controlling the DC circuit breaker at both ends of the DC line.
  • station A collects the positive DC voltage and the negative DC voltage of the first end of line 1, and the sampling frequency is 10 kHz.
  • the control protection system calculates the rate of change of the DC voltage between the positive and negative poles according to the collected DC voltages of the positive and negative poles of the line.
  • the absolute value of the voltage change rate is greater than the first comparison limit, it indicates that There may be a fault in the line.
  • the A station controls the protection system to generate a pulse signal, and spreads the output pulse signal for t1 milliseconds. This signal is a transient protection signal.
  • U p is the positive DC voltage
  • U N is the negative DC voltage
  • dt is the sampling step length
  • dU dcset is the first comparison limit
  • dU dcset is the first comparison limit
  • dU dc_max_o is the absolute maximum value of the unipolar ground fault voltage change rate outside the zone
  • k rel1 is the first set reliability coefficient
  • the sensitivity check is performed by the following formula:
  • dU dc_min_i is the absolute value of the absolute value of the unipolar ground fault voltage change rate in the region
  • k sen1 is the first sensitivity coefficient, k sen1 >1.3.
  • U dcunbalset is the second comparison limit.
  • the DC voltage unbalance response caused by the non-unipolar ground fault outside the zone should be avoided, and the tuning is performed by the following formula:
  • dU dcunbalset is the second comparison limit
  • dU dcunbal_max_o is the absolute value of the absolute value of the voltage imbalance caused by the non-unipolar ground fault outside the zone
  • k rel2 is the second set reliability coefficient, k rel2 >1.
  • the sensitivity check is performed by the following formula:
  • dU dcunbal_min_i is the absolute minimum value of the unipolar ground fault voltage imbalance in the region
  • k sen2 is the second sensitivity coefficient
  • control protection system After detecting a single pole ground fault on line 1, the control protection system issues a trip signal to DC breaker K1.
  • the control protection system program execution cycle is 100 ⁇ s.
  • the unipolar ground fault protection method for the flexible DC distribution network provided by the invention can accurately detect the single pole ground fault, does not need to rely on inter-station communication, quickly locates and cuts the fault line, and ensures the power supply reliability of the DC distribution network.
  • the unipolar ground fault identification method of the present invention has been described in detail in the above embodiment of a unipolar ground fault protection method for a flexible DC distribution network, and the unipolar ground fault identification method for the flexible DC distribution network is no longer used here. The embodiment is described in detail.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

一种柔性直流配电网单极接地故障识别、故障保护方法,通过获取正、负直流线路对地电压(UP,UN),获取正、负直流线路的极间电压变化率,当正、负直流线路的极间电压变化率的绝对值大于第一比较限值(dUdcset),产生脉冲信号并将所述脉冲信号展宽预定值(t1),且正直流线路对地电压(UP)与负直流线路对地电压(UN)的和的绝对值大于第二比较限值(Udcunbalset),持续时间超过时间限值(t2)时,判定发生单极接地故障。该方法能快速识别单极接地故障线路,通过跳开发生接地故障直流线路所在的直流断路器,实现故障线路的快速隔离,提高直流配电网的供电可靠性。

Description

柔性直流配电网单极接地故障识别、故障保护方法 技术领域
本发明属于电力电子技术,具体涉及柔性直流配电网单极接地故障识别、故障保护方法。
背景技术
多端柔性直流配电***是指在同一直流网架下,含有2个以上电压源换流器(VSC,Voltage Source Converter),换流端口直流侧采用并联或串联的方式相互连接而组成的柔性直流配电***。模块化多电平换流器(MMC,Modular Multilevel Converter)相对于传统的两电平或三电平VSC,具有易于扩展、谐波畸变小、开关损耗低和故障处理能力强等优点,成为柔性直流配电网的优选换流器拓扑之一。
目前,直流单极接地故障的识别及排除是通过差动保护实现的,当线路发生单极金属性接地故障时,故障极直流电压变为0,非故障极直流电压变为2倍额定值,故障处的电流较小,影响故障检测的准确性。并且,相关技术中启动差动保护的时间较长,如果不能快速隔离故障线路,可能会造成设备过压、启动过压保护、闭锁换流器及换流器退出运行,影响供电的可靠性。
发明内容
本发明实施例的目的是提供一种柔性直流配电网单极接地故障识别、故障保护方法,用于解决相关技术无法准确检测出单极接地故障的问题。
为解决上述技术问题,本发明实施例提出一种柔性直流配电网单极接地故障识别方法,包括以下方案:
第一方面,本发明实施例提供一种柔性直流配电网单极接地故障识别方法,包括:
获取正、负直流线路对地电压,获取正、负直流线路的极间电压变化率;
当正、负直流线路的极间电压变化率的绝对值大于第一比较限值时,产生脉冲信号并将所述脉冲信号展宽预定值,且正直流线路对地电压与负直流线路对地电压的和的绝对值大于第二比较限值,所述大于第二比较限值的持续时间超过时间限值时,判定当前正、负直流线路发生单极接地故障。
上述方案中,所述第一比较限值通过下式得出:
dUdcset=krel1dUdc_max_o
式中,dUdcset为第一比较限值,dUdc_max_o为区外单极接地故障电压变化率绝对值最大值,krel1为第一设定可靠系数。
上述方案中,所述第一比较限值通过下式进行灵敏性校验:
Figure PCTCN2017070494-appb-000001
式中,dUdc_min_i为区内单极接地故障电压变化率绝对值最小值,ksen1为第一灵敏系数。
上述方案中,所述第二比较限值通过下式得出:
dUdcunbalset=krel2dUdcunbal_max_o
式中,dUdcunbalset为第二比较限值,dUdcunbal_max_o为区外非单极接地故障导致的电压不平衡绝对值最大值,krel2为第二设定可靠系数。
上述方案中,所述第二比较限值通过下式进行灵敏性校验:
Figure PCTCN2017070494-appb-000002
式中,dUdcunbal_min_i为区内单极接地故障电压不平衡绝对值最小值,ksen2为 第二灵敏系数。
第二方面,本发明实施例提供一种柔性直流配电网单极接地故障保护方法,包括:
获取正、负直流线路对地电压,获取正、负直流线路的极间电压变化率;
当正、负直流线路的极间电压变化率的绝对值大于第一比较限值,产生脉冲信号并将所述脉冲信号展宽t1毫秒,且正直流线路对地电压与负直流线路对地电压的和的绝对值大于第二比较限值,所述大于第二比较限值的持续时间超过时间限值时,判定当前正、负直流线路发生单极接地故障;
向发生单极接地故障的正、负直流线路的直流断路器发出跳闸指令,断开所述正、负直流线路。
上述方案中,所述第一比较限值通过下式得出:
dUdcset=krel1dUdc_max_o
式中,dUdcset为第一比较限值,dUdc_max_o为区外单极接地故障电压变化率绝对值最大值,krel1为第一设定可靠系数。
上述方案中,所述第一比较限值通过下式进行灵敏性校验:
Figure PCTCN2017070494-appb-000003
式中,dUdc_min_i为区内单极接地故障电压变化率绝对值最小值,ksen1为第一灵敏系数。
上述方案中,所述第二比较限值通过下式得出:
dUdcunbalset=krel2dUdcunbal_max_o
式中,dUdcunbalset为第二比较限值,dUdcunbal_max_o为区外非单极接地故障导致的电压不平衡绝对值最大值,krel2为第二设定可靠系数。
上述方案中,所述第二比较限值通过下式进行灵敏性校验:
Figure PCTCN2017070494-appb-000004
式中,dUdcunbal_min_i为区内单极接地故障电压不平衡绝对值最小值,ksen2为第二灵敏系数。
本发明实施例的有益效果是:本发明提出一种柔性直流配电网单极接地故障识别、故障保护方法,能准确检测出单极接地故障,并快速识别故障线路,通过跳开发生接地故障直流线路所在的直流断路器,实现故障线路的快速隔离,提高了直流配电网的供电可靠性。
附图说明
图1是柔性直流配电网A站线路1单极接地故障保护简图;
图2是如图1所示的A站控制保护***进行柔性直流配电网单极接地故障定位的逻辑框图。
具体实施方式
下面结合附图对本发明的具体实施方式作进一步的说明。
本发明的一种柔性直流配电网单极接地故障保护方法的实施例,包括以下步骤:
1)获取正、负直流线路对地电压,获取正、负直流线路的极间电压变化率;
2)当正、负直流线路的极间电压变化率的绝对值大于第一比较限值,脉冲信号展宽t1毫秒,且正直流线路对地电压与负直流线路对地电压的和的绝对值大于第二比较限值,所述大于第二比较限值的持续时间超过时间限值时,判定当前正、负直流线路发生单极接地故障;
3)向发生单极接地故障的正、负直流线路的直流断路器发出跳闸指令,断开所述正、负直流线路。
如图1所示的A、B、C和D四个换流站通过线路1、线路2、线路3和线路4组成一个直流环网。直流线路的两端加装直流电抗器作为线路的边界,直流线路两端设有直流断路器,能够在保护出口时,带电迅速跳开,隔离故障线路。控制保护装置设置在线路两端的换流站内,用于控制直流线路两端的直流断路器。
以A站线路1发生单极接地故障为例,A站采集线路1首端的正极直流电压和负极直流电压,采样频率为10kHz。如图2所示,控制保护***根据采集到的线路正、负极直流电压,计算正、负极的极间直流电压的变化率,当电压变化率的绝对值大于第一比较限值时,表明此线路可能存在故障,A站控制保护***产生脉冲信号,并将输出的脉冲信号展宽t1毫秒此信号为暂态量保护信号。
判定式如下:
Figure PCTCN2017070494-appb-000005
其中,Up为正极直流电压,UN为负极直流电压,dt为采样的步长,dUdcset为第一比较限值,整定第一比较限值时,应该避开区外单极接地故障导致的直流电压变化率响应,通过下式进行整定:
dUdcset=krel1dUdc_max_o
式中,dUdcset为第一比较限值,dUdc_max_o为区外单极接地故障电压变化率绝对值最大值,krel1为第一设定可靠系数,krel1>1。
上述第一比较限值整定后,通过下式进行灵敏性校验:
Figure PCTCN2017070494-appb-000006
式中,dUdc_min_i为区内单极接地故障电压变化率绝对值最小值,ksen1为第一灵敏系数,ksen1>1.3。
然后将线路正、负极直流电压求和,并求取绝对值,当绝对值大于第 二比较限值超过时间限值t2毫秒(绝对值大于第二比较限值的时间作为直流电压不平衡信号)时,表明线路1发生了单极接地故障,此路信号为电压不平衡信号。判定式如下:
|Up+UN|>Udcunbalset
式中,Udcunbalset为第二比较限值,整定第二比较限值时,应避开区外非单极接地故障导致的直流电压不平衡响应,通过下式进行整定:
dUdcunbalset=krel2dUdcunbal_max_o
式中,dUdcunbalset为第二比较限值,dUdcunbal_max_o为区外非单极接地故障导致的电压不平衡绝对值最大值,krel2为第二设定可靠系数,krel2>1。
上述第二比较限值整定后,通过下式进行灵敏性校验:
Figure PCTCN2017070494-appb-000007
式中,dUdcunbal_min_i为区内单极接地故障电压不平衡绝对值最小值,ksen2为第二灵敏系数。
检测到线路1发生单极接地故障后,控制保护***向直流断路器K1发出跳闸信号。控制保护***程序执行周期为100μs。
本发明提供的柔性直流配电网单极接地故障保护方法,能准确检测出单极接地故障,不需要依赖站间通信,快速定位并切除故障线路,保证直流配电网的供电可靠性。
本发明的一种柔性直流配电网单极接地故障识别方法的实施例,包括以下步骤:
1)获取正、负直流线路对地电压,获取正、负直流线路的极间电压变化率;
2)当正、负直流线路的极间电压变化率的绝对值大于第一比较限值时,产生脉冲信号并将所述脉冲信号展宽t1毫秒,且正直流线路对地电压与负直流线路对地电压的和的绝对值大于第二比较限值,所述大于第二比较限 值的持续时间超过时间限值时,判定当前正、负直流线路发生单极接地故障。
本发明的单极接地故障识别方法已经在上述一种柔性直流配电网单极接地故障保护方法的实施例中进行了详细的介绍,这里不再对柔性直流配电网单极接地故障识别方法的实施例进行赘述。
以上所述仅为本发明的优选实施例,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的权力要求范围之内。

Claims (10)

  1. 一种柔性直流配电网单极接地故障识别方法,包括:
    获取正、负直流线路的对地电压,获取所述正、负直流线路的极间电压变化率;
    当所述正、负直流线路的极间电压变化率的绝对值大于第一比较限值,产生脉冲信号并将所述脉冲信号展宽预定值,所述正直流线路的对地电压与所述负直流线路对地电压的和的绝对值大于第二比较限值,且所述大于第二比较限值的持续时间超过时间限值时,判定当前所述正、负直流线路发生单极接地故障。
  2. 根据权利要求1所述的柔性直流配电网单极接地故障识别方法,其中,所述第一比较限值通过下式得出:
    dUdcset=krel1dUdc_max_o
    式中,dUdcset为第一比较限值,dUdc_max_o为区外单极接地故障电压变化率绝对值最大值,krel1为第一设定可靠系数。
  3. 根据权利要求2所述的柔性直流配电网单极接地故障识别方法,其中,所述第一比较限值通过下式进行灵敏性校验:
    Figure PCTCN2017070494-appb-100001
    式中,dUdc_min_i为区内单极接地故障电压变化率绝对值最小值,ksen1为第一灵敏系数。
  4. 根据权利要求1所述的柔性直流配电网单极接地故障识别方法,其中,所述第二比较限值通过下式得出:
    dUdcunbalset=krel2dUdcunbal_max_o
    式中,dUdcunbalset为第二比较限值,dUdcunbal_max_o为区外非单极接地故障导致的电压不平衡绝对值最大值,krel2为第二设定可靠系数。
  5. 根据权利要求4所述的柔性直流配电网单极接地故障识别方法,其中,所述第二比较限值通过下式进行灵敏性校验:
    Figure PCTCN2017070494-appb-100002
    式中,dUdcunbal_min_i为区内单极接地故障电压不平衡绝对值最小值,ksen2为第二灵敏系数。
  6. 一种柔性直流配电网单极接地故障保护方法,包括:
    获取正、负直流线路对地电压,获取所述正、负直流线路的极间电压变化率;
    当所述正、负直流线路的极间电压变化率的绝对值大于第一比较限值,产生脉冲信号并将所述脉冲信号展宽预定值,所述正直流线路的对地电压与所述负直流线路对地电压的和的绝对值大于第二比较限值,且大于第二比较限值的持续时间超过时间限值时,判定当前所述正、负直流线路发生单极接地故障;
    向发生单极接地故障的所述正、负直流线路的直流断路器发出跳闸指令,断开所述正、负直流线路。
  7. 根据权利要求6所述的柔性直流配电网单极接地故障保护方法,其中,所述第一比较限值通过下式得出:
    dUdcset=krel1dUdc_max_o
    式中,dUdcset为第一比较限值,dUdc_max_o为区外单极接地故障电压变化率绝对值最大值,krel1为第一设定可靠系数。
  8. 根据权利要求7所述的柔性直流配电网单极接地故障保护方法,其中,所述第一比较限值通过下式进行灵敏性校验:
    Figure PCTCN2017070494-appb-100003
    式中,dUdc_min_i为区内单极接地故障电压变化率绝对值最小值,ksen1为 第一灵敏系数。
  9. 根据权利要求6所述的柔性直流配电网单极接地故障保护方法,其中,所述第二比较限值通过下式得出:
    dUdcunbalset=krel2dUdcunbal_max_o
    式中,dUdcunbalset为第二比较限值,dUdcunbal_max_o为区外非单极接地故障导致的电压不平衡绝对值最大值,krel2为第二设定可靠系数。
  10. 根据权利要求9所述的柔性直流配电网单极接地故障保护方法,其中,所述第二比较限值通过下式进行灵敏性校验:
    Figure PCTCN2017070494-appb-100004
    式中,dUdcunbal_min_i为区内单极接地故障电压不平衡绝对值最小值,ksen2为第二灵敏系数。
PCT/CN2017/070494 2016-11-25 2017-01-06 柔性直流配电网单极接地故障识别、故障保护方法 WO2018094862A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611059230.0 2016-11-25
CN201611059230.0A CN106707081B (zh) 2016-11-25 2016-11-25 柔性直流配电网单极接地故障识别、故障保护方法

Publications (1)

Publication Number Publication Date
WO2018094862A1 true WO2018094862A1 (zh) 2018-05-31

Family

ID=58934984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/070494 WO2018094862A1 (zh) 2016-11-25 2017-01-06 柔性直流配电网单极接地故障识别、故障保护方法

Country Status (2)

Country Link
CN (1) CN106707081B (zh)
WO (1) WO2018094862A1 (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109586254A (zh) * 2018-11-09 2019-04-05 西安交通大学 一种半周波电压暂态量的电压时间型馈线反向合闸闭锁方法
CN110535104A (zh) * 2019-07-23 2019-12-03 中国电力科学研究院有限公司 一种直流线路快速保护方法及***
CN111682515A (zh) * 2020-08-12 2020-09-18 国网江西省电力有限公司电力科学研究院 一种降低特高压直流站内接地大电流运行风险的方法
CN111953012A (zh) * 2020-06-29 2020-11-17 中国电力科学研究院有限公司 一种用于抑制交直流暂时过电压的方法及***
CN112383036A (zh) * 2020-11-25 2021-02-19 云南电网有限责任公司文山供电局 直流环网***的主动式交流窜入保护装置及其工作方法
CN112653107A (zh) * 2020-12-14 2021-04-13 国网浙江省电力有限公司嘉兴供电公司 一种多端柔性直流配电网的单端量保护方法
CN113866557A (zh) * 2021-09-25 2021-12-31 太原理工大学 一种基于零模电流相关性的单极接地选线方法
CN114512966A (zh) * 2022-01-11 2022-05-17 山东大学 基于s变换频域阻抗的直流配电网纵联保护方法及***
CN114520500A (zh) * 2022-02-15 2022-05-20 山东大学 柔性直流电网输电线路保护及雷击识别方法及***
CN114583669A (zh) * 2020-12-02 2022-06-03 上海交通大学 基于虚拟能量调节偏差的mmc-hvdc输电线路保护方法
CN114597876A (zh) * 2022-03-15 2022-06-07 西安交通大学 一种基于反行波曲率的柔性直流输电线路保护方法
CN114884038A (zh) * 2022-06-22 2022-08-09 国网安徽省电力有限公司经济技术研究院 基于时序配合的四端环状柔性直流配电网保护方法及***
CN114977137A (zh) * 2022-06-17 2022-08-30 太原理工大学 一种基于控保协同的直流配电线路保护方法
CN115036994A (zh) * 2022-08-11 2022-09-09 国网经济技术研究院有限公司 一种直流海缆快速放电方法和***
WO2023236230A1 (zh) * 2022-06-08 2023-12-14 中国石油大学(华东) 两电平vsc型含光伏双端柔直配网故障定位方法、***、应用

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110265990B (zh) * 2018-03-12 2023-11-14 丁美连 一种抽油机多井耦合共直流母线电压均衡控制及故障检测方法
CN108616113B (zh) * 2018-05-16 2019-07-30 天津大学 一种小电流接地直流配电***接地故障保护方法
CN110323726B (zh) * 2019-07-17 2021-05-14 国网江苏省电力有限公司 一种直流配电网自适应线路保护方法及装置
CN110350500B (zh) * 2019-08-13 2021-08-27 南京南瑞继保电气有限公司 伪双极直流配电网保护方法、装置、***、设备及介质
CN110661239B (zh) * 2019-09-29 2022-06-21 国网冀北电力有限公司 一种柔性直流电网单极接地故障的重合方法
CN113644635B (zh) * 2021-07-13 2024-06-18 西安理工大学 一种柔性直流输电***直流线路区内外故障判别方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102856881A (zh) * 2012-09-05 2013-01-02 华北电力大学 一种全桥mmc-hvdc直流故障分类检测与保护方法
US20130193766A1 (en) * 2012-01-31 2013-08-01 Atlantic Grid Operations A., Llc Control and protection of a dc power grid
CN104820157A (zh) * 2015-04-30 2015-08-05 国家电网公司 一种柔性直流输电***直流单极接地故障判断方法
CN105322536A (zh) * 2015-10-23 2016-02-10 深圳供电局有限公司 一种典型多端柔性直流配电***的保护配置方法
CN105552947A (zh) * 2016-01-13 2016-05-04 特变电工新疆新能源股份有限公司 一种柔性直流输电***直流单极接地故障检测方法
WO2016156435A1 (en) * 2015-03-30 2016-10-06 General Electric Technology Gmbh Converters

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7498820B2 (en) * 2006-03-21 2009-03-03 General Electric Company Method, apparatus and computer-readable code for detecting an incipient ground fault in an electrical propulsion system
CN102882193B (zh) * 2012-09-28 2015-03-11 中国南方电网有限责任公司超高压输电公司 一种高压直流输电线路行波保护整定方法与***
CN103618300B (zh) * 2013-12-09 2016-06-22 中国南方电网有限责任公司超高压输电公司检修试验中心 一种具有高灵敏度的高压直流输电线路行波保护方法
CN105375449B (zh) * 2015-11-12 2018-07-27 南方电网科学研究院有限责任公司 直流线路行波保护电压变化率判据的整定方法和***
CN105486984B (zh) * 2016-01-04 2018-03-27 中国南方电网有限责任公司超高压输电公司梧州局 一种基于动态电压源控制的直流接地查找方法及仪器
CN106058826B (zh) * 2016-06-03 2018-08-17 南京南瑞继保电气有限公司 一种混合型直流输电***受端交流侧故障处理方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130193766A1 (en) * 2012-01-31 2013-08-01 Atlantic Grid Operations A., Llc Control and protection of a dc power grid
CN102856881A (zh) * 2012-09-05 2013-01-02 华北电力大学 一种全桥mmc-hvdc直流故障分类检测与保护方法
WO2016156435A1 (en) * 2015-03-30 2016-10-06 General Electric Technology Gmbh Converters
CN104820157A (zh) * 2015-04-30 2015-08-05 国家电网公司 一种柔性直流输电***直流单极接地故障判断方法
CN105322536A (zh) * 2015-10-23 2016-02-10 深圳供电局有限公司 一种典型多端柔性直流配电***的保护配置方法
CN105552947A (zh) * 2016-01-13 2016-05-04 特变电工新疆新能源股份有限公司 一种柔性直流输电***直流单极接地故障检测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SUN, GANG ET AL.: "Research on the Fault Location Method and Protection Configuration Strategy of MMC Based DC Distribution Grid", POWER SYSTEM PROTECTION AND CONTROL, vol. 43, no. 22, 16 November 2015 (2015-11-16), pages 127 - 133, ISSN: 1674-3415 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109586254A (zh) * 2018-11-09 2019-04-05 西安交通大学 一种半周波电压暂态量的电压时间型馈线反向合闸闭锁方法
CN110535104A (zh) * 2019-07-23 2019-12-03 中国电力科学研究院有限公司 一种直流线路快速保护方法及***
CN110535104B (zh) * 2019-07-23 2022-07-01 中国电力科学研究院有限公司 一种直流线路快速保护方法及***
CN111953012A (zh) * 2020-06-29 2020-11-17 中国电力科学研究院有限公司 一种用于抑制交直流暂时过电压的方法及***
CN111953012B (zh) * 2020-06-29 2022-08-19 中国电力科学研究院有限公司 一种用于抑制交直流暂时过电压的方法及***
CN111682515A (zh) * 2020-08-12 2020-09-18 国网江西省电力有限公司电力科学研究院 一种降低特高压直流站内接地大电流运行风险的方法
CN111682515B (zh) * 2020-08-12 2021-01-05 国网江西省电力有限公司电力科学研究院 一种降低特高压直流站内接地大电流运行风险的方法
CN112383036A (zh) * 2020-11-25 2021-02-19 云南电网有限责任公司文山供电局 直流环网***的主动式交流窜入保护装置及其工作方法
CN114583669A (zh) * 2020-12-02 2022-06-03 上海交通大学 基于虚拟能量调节偏差的mmc-hvdc输电线路保护方法
CN112653107A (zh) * 2020-12-14 2021-04-13 国网浙江省电力有限公司嘉兴供电公司 一种多端柔性直流配电网的单端量保护方法
CN113866557B (zh) * 2021-09-25 2023-08-15 太原理工大学 一种基于零模电流相关性的单极接地选线方法
CN113866557A (zh) * 2021-09-25 2021-12-31 太原理工大学 一种基于零模电流相关性的单极接地选线方法
CN114512966A (zh) * 2022-01-11 2022-05-17 山东大学 基于s变换频域阻抗的直流配电网纵联保护方法及***
CN114520500B (zh) * 2022-02-15 2023-01-17 山东大学 柔性直流电网输电线路保护及雷击识别方法及***
CN114520500A (zh) * 2022-02-15 2022-05-20 山东大学 柔性直流电网输电线路保护及雷击识别方法及***
CN114597876B (zh) * 2022-03-15 2022-12-09 西安交通大学 一种基于反行波曲率的柔性直流输电线路保护方法
CN114597876A (zh) * 2022-03-15 2022-06-07 西安交通大学 一种基于反行波曲率的柔性直流输电线路保护方法
WO2023236230A1 (zh) * 2022-06-08 2023-12-14 中国石油大学(华东) 两电平vsc型含光伏双端柔直配网故障定位方法、***、应用
US11933835B2 (en) 2022-06-08 2024-03-19 China University Of Petroleum (East China) Fault location method, system and application of two-level VSC type photovoltaic connected bidirectional flexible DC distribution network
CN114977137A (zh) * 2022-06-17 2022-08-30 太原理工大学 一种基于控保协同的直流配电线路保护方法
CN114977137B (zh) * 2022-06-17 2024-04-05 太原理工大学 一种基于控保协同的直流配电线路保护方法
CN114884038A (zh) * 2022-06-22 2022-08-09 国网安徽省电力有限公司经济技术研究院 基于时序配合的四端环状柔性直流配电网保护方法及***
CN115036994A (zh) * 2022-08-11 2022-09-09 国网经济技术研究院有限公司 一种直流海缆快速放电方法和***

Also Published As

Publication number Publication date
CN106707081A (zh) 2017-05-24
CN106707081B (zh) 2019-12-06

Similar Documents

Publication Publication Date Title
WO2018094862A1 (zh) 柔性直流配电网单极接地故障识别、故障保护方法
CN106680670B (zh) 一种柔性直流配电网单极接地故障识别方法及装置
WO2017202165A1 (zh) 直流微电网母线故障识别方法、装置和直流微电网***
KR20170131705A (ko) 전압을 기초로 회로 차단기의 결상을 식별하기 위한 방법 및 장치
CN107765077B (zh) 一种励磁涌流识别方法及识别装置
CN106468752B (zh) 集成故障定位的固态断路器rcd缓冲电路及故障定位方法
CN103872667B (zh) 一种防合并单元异常大数的线路电流差动保护方法
CN107765076B (zh) 一种励磁涌流识别方法及识别装置
CN105094116A (zh) 交流固态功率控制器快速电弧故障检测数据预处理方法
US10551425B2 (en) Method for quickly identifying disconnection of CT in protection of 3/2 connection mode based bus
CN103683198A (zh) 一种基于差动电流相邻阶次差分构成的平面上相邻点距离的励磁涌流快速识别方法
Ott et al. Model-Based fault current estimation for low fault-energy 380VDC distribution systems
CN106385015A (zh) 柔性直流输电线路的保护方法和保护装置
CN104993455A (zh) 一种牵引变压器过流保护方法
CN111398851A (zh) 一种mmc-hvdc直流输电线路故障检测方法
CN104391195A (zh) 一种电磁干扰的识别及滤波方法
CN102435896A (zh) 船舶中压电力***中间歇性接地故障的快速识别方法
CN103887771A (zh) 一种基于零负序综合电流识别故障分支的方法
CN110703134B (zh) 一种基于故障序分量的小电流接地选线选相方法
CN105552835B (zh) 一种直流线路50Hz谐波保护防误动的方法
CN104052033B (zh) 一种基于零序电流相关系数识别故障分支的保护方法
CN107728002B (zh) 一种考虑分布式电源接入的配电网故障在线定位方法
CN114280421A (zh) 直流配电网故障选择性保护方法、***、装置及存储介质
Ma et al. An adaptive DC line fault recovery strategy for LCC-HVDC system based on voltage gradient
CN111044938A (zh) 一种交流断面失电检测方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17873603

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17873603

Country of ref document: EP

Kind code of ref document: A1