WO2018093015A1 - Organic light-emitting device - Google Patents

Organic light-emitting device Download PDF

Info

Publication number
WO2018093015A1
WO2018093015A1 PCT/KR2017/008641 KR2017008641W WO2018093015A1 WO 2018093015 A1 WO2018093015 A1 WO 2018093015A1 KR 2017008641 W KR2017008641 W KR 2017008641W WO 2018093015 A1 WO2018093015 A1 WO 2018093015A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
unsubstituted
compound
light emitting
group
Prior art date
Application number
PCT/KR2017/008641
Other languages
French (fr)
Korean (ko)
Inventor
조성미
정민우
이동훈
박태윤
문정욱
이정하
이주영
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170094877A external-priority patent/KR101885898B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US15/747,038 priority Critical patent/US11800730B2/en
Priority to CN201780002810.2A priority patent/CN108323172B/en
Priority to JP2018502092A priority patent/JP6575673B2/en
Priority to EP17832177.4A priority patent/EP3348625B1/en
Priority to EP21192347.9A priority patent/EP3929266A1/en
Publication of WO2018093015A1 publication Critical patent/WO2018093015A1/en
Priority to US18/369,681 priority patent/US20240023355A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/008Triarylamine dyes containing no other chromophores
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/90Multiple hosts in the emissive layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium

Definitions

  • the present invention relates to an organic light emitting device having improved driving voltage, efficiency and lifetime.
  • organic light emitting phenomenon refers to a phenomenon of converting electrical energy into light energy using an organic material.
  • the organic light emitting device using the organic light emitting phenomenon has a wide viewing angle, excellent contrast, fast response time, excellent luminance, driving voltage and response speed characteristics, many studies have been conducted.
  • the organic light emitting device generally has a structure including an anode and a cathode and an organic layer between the anode and the cathode.
  • the organic layer is often formed of a multilayer structure composed of different materials, and may be formed of, for example, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer.
  • Patent Document 0001 Korean Patent Publication No. 10-2000-0051826
  • the present invention relates to an organic light emitting device having improved driving voltage, efficiency and lifetime.
  • the present invention provides the following organic light emitting device:
  • cathode anode; And at least one light emitting layer between the cathode and the anode,
  • the luminous insect includes a first host and a crab 2 host,
  • the HOMO of the first host is 5.6 eV to 6.4 eV
  • the HOMO of the second host is 5.4 eV to 5.8 eV
  • the difference between the H0M0 of the first host and H0M0 of the second host is 0.2 eV or more
  • the maximum emission wavelength of the mixture of the first host and the second host is 20 nm or more higher than the maximum emission wavelength of the first host
  • the organic light emitting device described above is excellent in driving voltage, efficiency and lifespan.
  • FIG. 1 shows an example of an organic light emitting element composed of a substrate 1, an anode 2, a light emitting layer 3, and a cathode 4. As shown in FIG.
  • FIG. 2 shows an example of an organic light emitting element consisting of a substrate 1, an anode 2, a hole injection layer 5, a hole transport layer 6, a light emitting layer 7, an electron transport layer 8, and a cathode 4 It is.
  • 3 and 4 show the results of the PL max measurement for the first host, the second host, and a mixture thereof according to the present invention.
  • substituted or unsubstituted is deuterium; halogen; nitrile; nitro, hydroxy, carbonyl; ester, imide; amino; phosphine oxide; alkoxy; aryloxy; Alkylthioxy group; Arylthioxy group; Alkyl sulfoxy group; Aryl sulfoxy group; Silyl group; Boron group alkyl group; Cycloalkyl group; Alkenyl group; Aryl group; Aralkyl group; Aralkenyl group; Alkylaryl group; Alkylamine group; Aralkylamine Substituted or unsubstituted with one or more substituents selected from the group consisting of a heteroarylamine group, an arylamine group, an arylphosphine group, or a heterocyclic group containing
  • the oxygen of the ester group may be substituted with a linear, branched or cyclic alkyl group having 1 to 25 carbon atoms or an aryl group having 6 to 25 carbon atoms. Specifically, it may be a compound of the following structural formula, but is not limited thereto.
  • carbon number of an imide group is not specifically limited, It is preferable that it is C1-C25. Specifically, it may be a compound having the following structure, but is not limited thereto.
  • the silyl group includes trimethylsilyl group, triethylsilyl group, t-butyldimethylsilyl group, vinyldimethylsilyl group, propyldimethylsilyl group, triphenylsilyl group, diphenylsilyl group, phenylsilyl group, and the like.
  • the present invention is not limited thereto, and the boron group may include, but is not limited to, trimethylboron group, triethylboron group, t-butyldimethylboron group, triphenylboron group, and phenylboron group.
  • examples of the halogen group include fluorine, chlorine, bromide or iodine.
  • the alkyl group may be linear or branched chain, carbon number is not particularly limited, but is preferably 1 to 40. Work According to the exemplary embodiment, the alkyl group has 1 to 20 carbon atoms. According to yet an embodiment, the carbon number of the alkyl group is 1 . To 10. According to another exemplary embodiment, the alkyl group has 1 to 6 carbon atoms.
  • alkyl group examples include methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl, isobutyl, tert-butyl, sec-butyl, 1-methyl-butyl, 1-ethyl-butyl, pentyl, n -Pentyl, isopentyl, neopentyl, tert-pentyl, nuclear chamber, n-nuclear chamber, 1-methylpentyl, 2-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, heptyl , n-heptyl, 1-methylnucleus, cyclopentylmethyl, cyclonuxylmethyl, octyl, n-octyl, tert-octyl, 1_methylheptyl, 2-ethylnuclear
  • the alkenyl group may be linear or branched chain, carbon number is not particularly limited, but is preferably 2 to 40. According to an exemplary embodiment, the alkenyl group has 2 to 20 carbon atoms. According to another exemplary embodiment, the alkenyl group has 2 to 10 carbon atoms. According to another exemplary embodiment, the alkenyl group has 2 to 6 carbon atoms.
  • Specific examples include vinyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl ⁇ 1-pentenyl, 2-pentenyl, 3-pentenyl, 3-methyl-1- Butenyl, 1,3-butadienyl, allyl, 1-phenylvinyl-1-yl, 2-phenylvinyl-1-yl, 2,2-diphenylvinyl-1-yl, 2-phenyl-2- ( Naphthyl-1-yl) vinyl-1-yl, 2, 2-bis (diphenyl-1-yl) vinyl-1-yl, stilbenyl group, styrenyl group, and the like, but are not limited to these.
  • the cycloalkyl group is not particularly limited, but preferably has 3 to 60 carbon atoms, and according to one embodiment, the cycloalkyl group has 3 to 30 carbon atoms. According to another exemplary embodiment, the cycloalkyl group has 3 to 20 carbon atoms. According to another exemplary embodiment, the cycloalkyl group has 3 to 6 carbon atoms.
  • aryl group is not particularly limited, but preferably has 6 to 60 carbon atoms, and may be a monocyclic aryl group or a polycyclic aryl group.
  • the aryl group has 6 to 30 carbon atoms. According to an exemplary embodiment, the aryl group has 6 to 20 carbon atoms.
  • the aryl group may be a phenyl group, a biphenyl group, a terphenyl group, etc. as the monocyclic aryl group, but is not limited thereto.
  • the polycyclic aryl group may be naphthyl group, anthracenyl group, phenanthryl group, pyrenyl group, peryleneyl group, chrysenyl group, fluorenyl group, and the like, but is not limited thereto.
  • the fluorenyl group may be substituted, and two substituents may be bonded to each other to form a spiro structure.
  • the fluorenyl group may be substituted, and two substituents may be bonded to each other to form a spiro structure.
  • the present invention is not limited thereto.
  • the heterocyclic group is a heterogeneous element of 0, N, Si and S
  • heterocyclic group carbon number containing 1 or more is not specifically limited, It is preferable that it is C2-C60.
  • the heterocyclic group include thiophene furan group, pyrrole group, imidazole group, thiazole group, oxazole group, oxadiazole group triazole group, pyridyl group, bipyridyl group, pyrimidyl group, triazine group, triazole group acridil group , Pyridazine group, pyrazinyl group, quinolinyl group, quinazoline group quinoxalinyl group, phthalazinyl group, pyrido pyrimidinyl group, pyrido pyrazinyl group pyrazino pyrazinyl group, isoquinoline group, indole group , carba Drowsiness, benzoxazole group Benzoimidazole group, benzothiazole group, benzocarbazole group
  • a thiadiazolyl group there may be a thiadiazolyl group, a benzothiazolyl group, a phenothiazinyl group, a dibenzofuranyl group, and the like, but is not limited thereto.
  • the aryl group in the aralkyl group, aralkenyl group, alkylaryl group, and arylamine group is the same as the example of the aryl group described above.
  • the alkyl group among the aralkyl group, the alkylaryl group, and the alkylamine group is the same as the example of the alkyl group described above.
  • the heteroaryl of the heteroarylamine may be applied to the description of the aforementioned heterocyclic group.
  • the alkenyl group in the aralkenyl group is the same as the example of the alkenyl group described above.
  • the arylene is a divalent group
  • the description of the aryl group described above may be applied.
  • the heteroarylene is a divalent group
  • the description of the aforementioned heterocyclic group may be applied.
  • the hydrocarbon ring is not a monovalent group, and the description of the aforementioned aryl group or cycloalkyl group may be applied except that two substituents are formed by bonding.
  • the heterocyclic group is not a monovalent group, and the description of the aforementioned heterocyclic group may be applied except that two substituents are formed by bonding.
  • the present invention provides the following organic light emitting device:
  • the cathode anode; And at least one light emitting layer between the cathode and the anode, wherein the light emitting layer includes a crab 1 host and a crab 2 host, wherein the HOMO of the first host is 5.6 eV to 6.4 eV, and the HOMO of the second host is 5.4 eV to 5.8 eV, the difference between the H0M0 of the first host and the H0M0 of the giant 12 host is 0.2 eV or more, and the maximum emission wavelength of the mixture of the first host and the giant 12 host is the maximum emission of the first host 20 nm or more higher than a wavelength.
  • the present invention will be described in detail for each configuration.
  • the anode and cathode used in the present invention means an electrode used in the organic light emitting device.
  • the anode material a material having a large work function is generally preferred to facilitate hole injection into the organic material layer.
  • the positive electrode material include metals such as vanadium, chromium, copper, zinc and gold or alloys thereof; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (IT0), indium zinc oxide (IZ0); ⁇ : ⁇ 1 or SN0 2 : A combination of a metal and an oxide such as Sb; Conductive polymers such as poly (3-methylthiophene), poly [3,4- (ethylene-1,2-dioxy) thiophene] (PED0T), polypyri and polyaniline, and the like, but are not limited thereto.
  • the cathode material is a material having a small work function to facilitate electron injection into the organic material layer.
  • the negative electrode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin, and lead or alloys thereof; Multilayer structure materials such as LiF / Al or Li0 2 / Al, and the like, but are not limited thereto.
  • a hole injection layer may be further included on the anode.
  • the hole injection layer is made of a hole injection material, has a capability of transporting holes as a hole injection material has a hole injection effect at the anode, an excellent hole injection effect to the light emitting layer or the light emitting material,
  • the compound which prevents the movement to an electron injection layer or an electron injection material, and is excellent in thin film formation ability is preferable.
  • HO X highest occupi ed molecular orbi tal) of the hole injection material It is preferably between the work function of the material and the HOMO of the surrounding organic layer.
  • hole injection materials include metal porphyr, oligothiophene, arylamine-based organic matter, nucleonitrile-nuclear azatriphenylene-based organic material, quinacridone-based organic material, and perylene ( perylene) organic materials, anthraquinone and polyaniline and polythiophene-based conductive polymers, but are not limited thereto.
  • Light emitting layer includes metal porphyr, oligothiophene, arylamine-based organic matter, nucleonitrile-nuclear azatriphenylene-based organic material, quinacridone-based organic material, and perylene ( perylene) organic materials, anthraquinone and polyaniline and polythiophene-based conductive polymers, but are not limited thereto.
  • the light emitting layer according to the present invention includes a crab 1 host and a crab 2 host, the HOMO of the first host is 5.6 eV to 6.4 eV, the HOMO of the second host is 5.4 eV to 5.8 eV, The difference between the HOMO and the HOMO of the second host is 0.2 eV or more, and the maximum emission wavelength of the mixture of the first host and the second host is 20 nm or more higher than the maximum emission wavelength of the first host.
  • the host compound described above is used as a single host in the light emitting layer, the H0M0 difference between adjacent hole transport layers is large, resulting in a barrier to holes, and hole transport to the light emitting layer is not easy, thereby adjoining the hole transport layer.
  • the light emitting zone is formed. For this reason, the balance between holes and electrons is not balanced, resulting in reduced efficiency and lifetime. Accordingly, by using the second host of the hole transport type together, the efficiency and lifespan of the organic light emitting device can be improved.
  • the light emitting layer includes a first host compound represented by Formula 1-1 or Formula 1-2 and a second host compound represented by Formula 2 below:
  • Y is 0, S, or SiRiRs
  • Xi to 3 ⁇ 4 are each independently N, or CR 3 , provided that at least one of 3 ⁇ 4 to 3 ⁇ 4 is N,
  • Li and L 2 are each independently a single bond; A substituted or unsubstituted C 6 - 60 arylene; Or a C 2 -6o heteroarylene containing a substituted or unsubstituted 0, N, Si and S 1 out of the above,
  • An and Ar 2 are each independently substituted or unsubstituted C 6 -60 aryl; Or substituted or unsubstituted C 2 -60 heteroaryl including one or more of 0, N, Si, and S,
  • Ar 3 is substituted or unsubstituted C 6 -60 aryl
  • Ri, R 2 and 3 ⁇ 4 are each independently hydrogen; heavy hydrogen; halogen; Cyano; Nitro; Amino; Substituted or unsubstituted d-60 alkyl; Substituted or unsubstituted d-60 haloalkyl; Substituted or unsubstituted 60 haloalkoxy; Substituted or unsubstituted C 3 -60 cycloalkyl; Substituted or unsubstituted C 2 -60 alkenyl; Substituted or unsubstituted C 6 -60 aryl; Or substituted or unsubstituted C 2 -60 heteroaryl including one or more of 0, N, Si, and S,
  • R 1 and R ′′ are each independently hydrogen; deuterium; halogen; cyano; nitro; amino; substituted or unsubstituted d-60 alkyl; substituted or unsubstituted d-60 haloalkyl; substituted or unsubstituted d- 60 haloalkoxy; substituted or unsubstituted C 3 -60 cycloalkyl; substituted or unsubstituted C 2 -60 alkenyl; substituted or unsubstituted C 6 -60 aryl; or substituted or unsubstituted 0, N , C 2 -60 heteroaryl comprising at least one of Si and S, or R 'and R''together form a substituted or unsubstituted C 6 -60 aromatic ring,
  • L 'and L are each independently a single bond; substituted or unsubstituted C 6 — 60 arylene; or substituted or unsubstituted 0, N, Si and S containing at least one
  • R ' 2 and R' 3 are each independently hydrogen; heavy hydrogen; halogen; Cyano; Substituted or unsubstituted d-60 alkyl; Substituted or unsubstituted C 3 -60 cycloalkyl; Substituted or unsubstituted C 6 -60 aryl; Or C 2 -60 heteroaryl including one or more of 0, N, Si, and substituted or unsubstituted,
  • n and m are each independently an integer of 0-4.
  • 3 ⁇ 4 to 3 ⁇ 4 are each independently N or CH, provided that at least one of 3 ⁇ 4 to 3 ⁇ 4 is N.
  • silver is a single bond, phenylene, phenylene substituted with cyano, or pyridinylene substituted with phenyl.
  • L 2 is a single bond, phenylene, naphthylene, phenanthrenylene, or pyridinylene.
  • a and Ar 2 are each independently phenyl, phenyl substituted with cyano, 1 to. Phenyl, biphenylyl, or dibenzofuranyl substituted with 5 deuterium.
  • Ar 3 is any one selected from the group consisting of:
  • Ar 3 is phenyl, phenyl substituted by 1 to 5 deuterium, biphenylyl, terphenylyl, quarterphenylyl, naphthyl, triphenylenyl, phenanthrenyl, or Representative of the compound represented by Formula 1-1 or 1-2
  • reaction formulas 1-1 and 1-2 are prepared by the Suzuki coupling reaction to prepare the compounds represented by Formulas 1-1 and 1-2, It is also possible to change the type of counterunggi for Suzuki coupling.
  • the manufacturing method may be more specific in the embodiments to be described later.
  • Y 1 is 0, S, NR 1 , C (CH 3 ) 2 , or
  • R 1 is phenyl, cyano-substituted phenyl biphenylyl, triphenylenyl ⁇ cyclonuclear chamber, dimethylfluorenyl, or dibenzofuranyl.
  • L 1 and L 1 ′ are each independently a single bond or phenylene.
  • R ' 2 and R' 3 are each independently hydrogen; Tert-butyl; Cyano; Phenyl; Phenyl substituted with cyano; Or pyridinyl.
  • Representative examples of the compound represented by Formula 2 are as follows:
  • the compound represented by Formula 2 may be prepared by a manufacturing method represented by the following reaction formula 2, for example.
  • the light emitting layer may include a dopant material in addition to the host compound.
  • the dopant material is not particularly limited as long as it is used in an organic light emitting device. Examples of the dopant material include aromatic amine derivatives, styrylamine compounds, boron complexes, fluoranthene compounds, and metal complexes.
  • the aromatic amine derivatives are condensed aromatic ring derivatives having a substituted or unsubstituted arylamino group, and include pyrene, anthracene, chrysene and periplanthene having an arylamino group, and the styrylamine compound may be substituted or not At least one arylvinyl group is substituted with the substituted arylamine, and a substituent selected from the group consisting of aryl group, silyl group, alkyl group, cycloalkyl group and arylamino group is substituted or unsubstituted.
  • styryl amine styryl diamine, styryl triamine, styryl tetraamine and the like, but is not limited thereto.
  • the metal complex includes an iridium complex, a platinum complex, and the like, but is not limited thereto.
  • the organic light emitting device a hole injection layer, And a hole transport layer, an electron transport layer, and / or an electron transport layer.
  • the hole injection layer is a layer for injecting holes from the electrode, the hole injection material has the ability to transport holes to have a hole injection effect at the anode, has an excellent hole injection effect to the light emitting layer or the light emitting material, The compound which prevents the excitons from moving to the electron injection layer or the electron injection material, and is excellent in thin film formation ability is preferable.
  • the highest occupied molecular orbital (H0M0) of the hole injection material is determined by the work function of the anode material and the surrounding organic layer.
  • hole injecting materials include metal porphyr, oligothiophene, arylamine-based organic matter, nucleonitrile-nucleated azatriphenylene-based organic material, quinacridone-based organic material, and perylene ) Organic materials, anthraquinone and polyaniline and polythiophene-based conductive polymers, but are not limited thereto.
  • the hole transport layer is a layer that receives holes from an anode or a hole injection layer and transports holes to a light emitting layer.
  • the hole transport layer is a material that can transport holes from an anode or a hole injection layer to a light emitting layer and transfers holes to a light emitting layer. Large materials are suitable.
  • the electron transport layer is a layer that receives electrons from the electron injection layer or the cathode and transports the electrons to the light emitting layer
  • the electron transport material is a material that can inject electrons well from the cathode to the light emitting layer and has high mobility to the electrons.
  • the material is suitable.
  • Specific examples include Al complexes of 8-hydroxyquinoline; Complexes including Alq 3 ; Organic radical compounds; Hydroxyflavone-metal complexes and the like, but are not limited thereto.
  • the electron transport layer can be used with any desired cathode material as used in accordance with the prior art.
  • suitable cathode materials have a low work function, It is a common material followed by a silver layer. Specifically, cesium, barium, kale, ytterbium and samarium, each followed by an aluminum or silver layer.
  • the electron injection layer is a layer for injecting electrons from an electrode, has a capability of transporting electrons, has an electron injection effect from the cathode, has an excellent electron injection effect for the light emitting layer or the light emitting material, hole injection of excitons generated in the light emitting layer
  • the compound which prevents the movement to a layer and is excellent in thin film formation ability is preferable.
  • fluorenone anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, preorenylidene methane, anthrone and the derivatives thereof, metal
  • the complex compound and a nitrogen-containing five-membered ring, derivatives, etc., and the like.
  • Examples of the metal complex compound include 8-hydroxyquinolinato lithium, bis (8-hydroxyquinolinato) zinc, bis (8-hydroxyquinolinato) copper, bis (8-hydroxyquinolinato) manganese, Tris (8-hydroxyjunolinato) aluminum, Tris (2-methyl-8-hydroxyquinolinato) aluminum, Tris (8-hydroxyquinolinato) gallium, bis (10-hydroxybenzo [h] Junolinato) beryllium, bis (10-hydroxybenzo [h] quinolinato) zinc, bis (2-methyl-8-quinolinato) chlorogallium, bis (2-methyl-8-quinolinato) ( 0-cresolato) gallium, bis (2-methyl-8-quinolinato) (1-naphlato) aluminum, bis (2-methyl-8-quinolinato) (2-naphlato) gallium, etc.
  • the present invention is not limited thereto.
  • Organic light emitting device is not limited thereto.
  • the organic light emitting device according to the present invention may be manufactured by materials and methods known in the art, except that the light emitting layer includes a first host and a second host.
  • the organic light emitting device according to the present invention may be manufactured by sequentially stacking an anode, an organic material layer, and a cathode on a substrate.
  • an organic layer including a hole injection layer, a hole transporting layer, a light emitting layer and / or an electron transporting layer is formed thereon, and then can be prepared by depositing a material that can be used as a cathode thereon.
  • an organic light emitting device may be manufactured by sequentially depositing a cathode material, an organic material layer, and an anode material on a substrate.
  • the crab 1 host compound and the crab 2 host compound may be formed as a light emitting layer by a solution coating method as well as a vacuum deposition method in the manufacture of the organic light emitting device.
  • the solution coating method means spin coating, dip coating, doctor blading, inkjet printing, screen printing, spraying, coating, etc., but is not limited thereto.
  • an organic light emitting device may be manufactured by sequentially depositing an organic material layer and an anode material on a substrate (W0 2003/012890). However, the manufacturing method is not limited thereto.
  • the organic light emitting device according to the present invention may be a top emission type, a bottom emission type or a double-sided emission type depending on the material used.
  • 6-phenyl-1,3,5-triazine (14.4 g, 40 ⁇ l) was dispersed in tetrahydrofuran (180 mL), followed by 2M aqueous potassium carbonate solution (aq. K 2 C0 3 ) (60 mL, 121 ⁇ ol) was added and tetrakistriphenylphosphinopalladium [Pd (PPh 3 ) 4 ] (0.47 g, 1 mol%) was added thereto, followed by stirring under reflux for 6 hours. The temperature was lowered to room temperature and the resulting solid was filtered. The filtered solid was recrystallized with chloroform and ethyl acetate, filtered and dried to prepare compound 1-2 (19.5 g, yield 70%).
  • Step 1 A mixture of 2 -5-A, Ltd.
  • Compound 2-5 Compound 2- in the same manner as in the preparation of Compound 2-3 using A (15 g, 31-ol) and 3-bromo- ⁇ , ⁇ -biphenyl (7.2 g, 31 mmol) 5 (15 g yield 76%) was prepared.
  • a glass substrate coated with a thin film having an indium t in oxide (IT0) of 1,300 A was placed in distilled water in which a detergent was dissolved and ultrasonically cleaned.
  • a detergent was used as a detergent
  • distilled water was filtered secondly as a filter of a Millipore Co. product.
  • the ultrasonic cleaning was performed twice with distilled water for 10 minutes.
  • ultrasonic cleaning with a solvent of isopropyl alcohol, acetone, methanol, dried and transported to a plasma cleaner.
  • the substrate was cleaned for 5 minutes using an oxygen plasma, and then the substrate was transferred to a vacuum evaporator.
  • the following HI-1 compound was thermally vacuum deposited to a thickness of 50 A on the prepared IT0 transparent electrode to form a hole injection layer.
  • the following HT-1 compound was thermally vacuum deposited to a thickness of 250 A on the hole injection layer to form a hole transport layer, and the following HT-2 compound was vacuum deposited to a thickness of 50 A on the HT-1 deposited film to form an electron blocking layer.
  • the compound 1-1 prepared above and the compound 2-4 prepared above were deposited by co-evaporation at a weight ratio (200: 200) of the following Table 1, wherein the weight ratio (12) %; Compound 1-1, Compound 2-4, and GD-1) based on the total weight of the phosphorescent dopant.
  • ET-1 compound was vacuum deposited to a thickness of 250 A on the light emitting layer, and the following ET-2 compound was co-deposited with Li in a 2% weight ratio to a thickness of 100 A to form an electron transport layer and an electron injection layer.
  • Aluminum was deposited to a thickness of 1000 A on the electron injection layer to form a cathode.
  • the organic light emitting device was manufactured by the same method as Experimental Example 1, except that the phosphorescent host material and the dopant content were changed as in Table 1 when forming the emission layer. Each was produced. Comparative Experimental Examples 1 to 11
  • the organic light emitting device was manufactured by the same method as Experimental Example 1, except that the phosphorescent host material and the dopant content were changed as in Table 1 when forming the emission layer.
  • the host materials A to E, PH-1, and PH-2 used at this time are as follows.
  • T95 means the time required to reduce the luminance to 95% when the initial luminance at the light density of 20 mA / cm 2 is 100%.
  • a glass substrate coated with a thin film of I0 (indium tin oxide) having a thickness of 1,300 A was put in distilled water in which detergent was dissolved and ultrasonically cleaned.
  • Fischer Co. product was used as the detergent
  • distilled water filtered secondly as a filter of Millipore Co. product was used as the distilled water.
  • the ultrasonic cleaning was repeated twice with distilled water for 10 minutes.
  • ultrasonic cleaning with a solvent of isopropyl alcohol, acetone, methanol, dried and transported to a plasma cleaner.
  • the substrate was cleaned for 5 minutes using an oxygen plasma, and then the substrate was transferred to a vacuum evaporator.
  • the following HI-1 compound was thermally vacuum deposited to a thickness of 500 A on the prepared ITO transparent electrode to form a hole injection layer.
  • the following HT-3 compound was thermally vacuum deposited to a thickness of 800 A on the hole injection layer, and the following HT-4 compound was sequentially vacuum deposited to a thickness of 500 A to form a hole transport layer.
  • the compound 1-1 prepared above and the compound 2-1 prepared above are deposited by co-evaporation at the weight ratio (175: 175) of Table 1 below, wherein the weight ratio (53 ⁇ 4) of the following Table 2 >
  • the following GD-2 compound which is a phosphorescent dopant, was co-deposited to form a light emitting layer having a thickness (350A) of Table 2 below.
  • Lithium fluoride (LiF) having a thickness of 10 A was sequentially deposited on the electron transport layer, followed by aluminum having a thickness of 1000 A.
  • the organic light emitting device was manufactured by the same method as Experimental Example 10, except that the phosphorescent host material and the dopant content were changed as shown in Table 2 when forming the emission layer, respectively. Produced. Comparative Experimental Examples 12 to 16
  • the organic light emitting device was manufactured by the same method as Experimental Example 10, except that the phosphorescent host material and the dopant content were changed as shown in Table 2 when forming the emission layer, respectively. Produced.
  • the host materials A, D and E used at this time are the same as those used in Comparative Experiments 1 to 11, respectively.
  • HOMO and PL max maximum emission wavelength of the compound prepared in Example were measured by the following method.
  • H0M0 levels were measured using an AC-3 instrument (Model AC-3 from Rinken Keiki). Specifically, using the film vapor-deposited to 1000 A thickness of the compound to be measured on the IT0 substrate used in manufacturing the organic light emitting device as in Experimental Example 1, and irradiated to the film with 10 nW UV intensi ty of Photon Quantum yield was measured and the results are shown in Table 3 below.
  • Measurement was performed using a spectrof luorometer FP-8600 model manufactured by JASC0. Specifically, the compound to be measured was vacuum deposited to a thickness of 1000 A on bare glass to prepare a film, and the wavelength emitted by irradiating UV of a specific wavelength on the film was scanned. In this case, the position of the highest intensi ty in the obtained spectrum was determined as PL max and the results are shown in Table 3 below.
  • Substrate 2 Anode
  • Light emitting layer 4 cathode
  • Hole injection layer 6 Hole transport layer

Abstract

The present invention provides an organic light-emitting device having an improved driving voltage, efficiency, and lifespan.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
유기 발광소자  Organic light emitting device
【기술분야】  Technical Field
관련출원 (들)과의 상호 인용  Cross Citation with Related Application (s)
본 출원은 2016년 11월 16일자 한국 특허 출원 제 10-2016-0152691호 및 2017년 7월 26일자 한국 특허 출원 제 10-2017-0094877호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.  This application claims the benefit of priority based on Korean Patent Application No. 10-2016-0152691 filed on November 16, 2016 and Korean Patent Application No. 10-2017-0094877 filed on July 26, 2017. All content disclosed in the literature is included as part of this specification.
본 발명은 구동 전압, 효율 및 수명이 개선된 유기 발광 소자에 관한 것이다.  The present invention relates to an organic light emitting device having improved driving voltage, efficiency and lifetime.
일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기 에너지를 빛 에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기 발광 소자는 넓은 시야각, 우수한 콘트라스트, 빠른 웅답 시간을 가지며, 휘도, 구동 전압 및 웅답 속도 특성이 우수하여 많은 연구가 진행되고 있다. 유기 발광 소자는 일반적으로 양극과 음극 및 상기 양극과 음극 사이에 유기물 층을 포함하는 구조를 가진다. 상기 유기물 층은 유기 발광 소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등으로 이루어질 수 있다. 이러한 유기 발광 소자의 구조에서 두 전극 사이에 전압을 걸어주게 되면 양극에서는 정공이, 음극에서는 전자가 유기물층에 주입되게 되고, 주입된 정공과 전자가 만났을 때 액시톤 (exci ton)이 형성되며, 이 엑시톤이 다시 바닥상태로 떨어질 때 빛이 나게 된다. 상기와 같은 유기 발광 소자에서, 구동 전압, 효율 및 수명이 개선된 유기 발광 소자의 개발이 지속적으로 요구되고 있다.  In general, organic light emitting phenomenon refers to a phenomenon of converting electrical energy into light energy using an organic material. The organic light emitting device using the organic light emitting phenomenon has a wide viewing angle, excellent contrast, fast response time, excellent luminance, driving voltage and response speed characteristics, many studies have been conducted. The organic light emitting device generally has a structure including an anode and a cathode and an organic layer between the anode and the cathode. In order to increase the efficiency and stability of the organic light emitting device, the organic layer is often formed of a multilayer structure composed of different materials, and may be formed of, for example, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer. When the voltage is applied between the two electrodes in the structure of the organic light emitting device, holes are injected into the organic material layer at the anode, and electrons are injected into the organic material layer, and excitons are formed when the injected holes and the electrons meet each other. It will glow when the excitons fall back to the ground. In the organic light emitting device as described above, there is a continuous demand for the development of an organic light emitting device having improved driving voltage, efficiency, and lifespan.
【선행기술문헌】  Prior Art Documents
【특허문헌】 (특허문헌 0001) 한국특허 공개번호 제 10-2000-0051826호 [Patent literature] (Patent Document 0001) Korean Patent Publication No. 10-2000-0051826
【발명의 내용】  [Content of invention]
【해결하려는 과제】  [Problem to solve]
본 발명은 구동 전압, 효율 및 수명이 개선된 유기 발광 소자에 관한 것이다.  The present invention relates to an organic light emitting device having improved driving voltage, efficiency and lifetime.
【과제의 해결 수단】  [Measures of problem]
본 발명은 하기의 유기 발광 소자를 제공한다:  The present invention provides the following organic light emitting device:
음극; 양극; 및 상기 음극과 양극 사이에 적어도 하나 이상의 발광층을 포함하고,  cathode; anode; And at least one light emitting layer between the cathode and the anode,
상기 발광충은 제 1 호스트 및 게 2호스트를 포함하고,  The luminous insect includes a first host and a crab 2 host,
상기 게 1 호스트의 HOMO는 5.6 eV 내지 6.4 eV이고, 상기 제 2 호스트의 HOMO는 5.4 eV 내지 5.8 eV이고, 상기 제 1 호스트의 H0M0와 상기 제 2 호스트의 H0M0의 차이는 0.2 eV 이상이고,  The HOMO of the first host is 5.6 eV to 6.4 eV, the HOMO of the second host is 5.4 eV to 5.8 eV, the difference between the H0M0 of the first host and H0M0 of the second host is 0.2 eV or more,
상기 게 1 호스트 및 제 2 호스트의 흔합물의 최대 발광 파장이 상기 게 1 호스트의 최대 발광 파장보다 20 nm 이상높은,  The maximum emission wavelength of the mixture of the first host and the second host is 20 nm or more higher than the maximum emission wavelength of the first host,
유기 발광 소자.  Organic light emitting device.
[발명의 효과]  [Effects of the Invention]
상술한유기 발광 소자는, 구동 전압, 효율 및 수명이 우수하다.  The organic light emitting device described above is excellent in driving voltage, efficiency and lifespan.
【도면의 간단한 설명】  [Brief Description of Drawings]
도 1은 기판 (1), 양극 (2), 발광층 (3), 음극 (4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.  FIG. 1 shows an example of an organic light emitting element composed of a substrate 1, an anode 2, a light emitting layer 3, and a cathode 4. As shown in FIG.
도 2는 기판 ( 1), 양극 (2) , 정공주입층 (5), 정공수송층 (6), 발광층 (7), 전자수송층 (8) 및 음극 (4)로 이루어진 유기 발광 소자의 예를 도시한 것이다.  FIG. 2 shows an example of an organic light emitting element consisting of a substrate 1, an anode 2, a hole injection layer 5, a hole transport layer 6, a light emitting layer 7, an electron transport layer 8, and a cathode 4 It is.
도 3 및 도 4는, 본 발명에 따른 게 1 호스트, 제 2 호스트, 및 이들의 흔합물에 대한 PLmax측정 결과를 나타낸 것이다. 3 and 4 show the results of the PL max measurement for the first host, the second host, and a mixture thereof according to the present invention.
【발명을 실시하기 위한 구체적인 내용】  [Specific contents to carry out invention]
이하, 본 발명의 이해를 돕기 위하여 보다 상세히 설명한다. 본 명세서에서
Figure imgf000004_0001
다른 치환기에 연결되는 결합을 의미한다 . 본 명세서에서 "치환 또는 비치환된'' 이라는 용어는 중수소; 할로겐기; 니트릴기; 니트로기; 히드록시기; 카보닐기; 에스테르기; 이미드기; 아미노기; 포스핀옥사이드기; 알콕시기; 아릴옥시기; 알킬티옥시기; 아릴티옥시기; 알킬술폭시기; 아릴술폭시기; 실릴기; 붕소기 알킬기; 사이클로알킬기; 알케닐기; 아릴기; 아르알킬기; 아르알케닐기; 알킬아릴기; 알킬아민기; 아랄킬아민기; 헤테로아릴아민기; 아릴아민기; 아릴포스핀기; 또는 N, 0 및 S 원자 중 1개 이상을 포함하는 헤테로고리기로 이루어진 군에서 선택된 1개 이상의 치환기로 치환 또는 비치환되거나, 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환 또는 비치환된 것을 의미한다. 예컨대, "2 이상의 치환기가 연결된 치환기 "는 비페닐기일 수 있다. 즉, 비페닐기는 아릴기일 수도 있고, 2개의 페닐기가 연결된 치환기로 해석될 수 있다. 본 명세서에서 카보닐기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 40인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있
Hereinafter, in order to help the understanding of the present invention will be described in more detail. In this specification
Figure imgf000004_0001
It means the bond connected to another substituent. As used herein, the term "substituted or unsubstituted" is deuterium; halogen; nitrile; nitro, hydroxy, carbonyl; ester, imide; amino; phosphine oxide; alkoxy; aryloxy; Alkylthioxy group; Arylthioxy group; Alkyl sulfoxy group; Aryl sulfoxy group; Silyl group; Boron group alkyl group; Cycloalkyl group; Alkenyl group; Aryl group; Aralkyl group; Aralkenyl group; Alkylaryl group; Alkylamine group; Aralkylamine Substituted or unsubstituted with one or more substituents selected from the group consisting of a heteroarylamine group, an arylamine group, an arylphosphine group, or a heterocyclic group containing one or more of N, 0 and S atoms, It means that the substituent is unsubstituted or substituted two or more of the substituents, for example, "substituents in which two or more substituents are connected" may be a biphenyl group. May be interpreted as a substituent two phenyl groups connected to. The number of carbon atoms of the carbonyl group herein is not specifically limited, but is preferably a carbon number of 1 to 40 may be a compound having a structure as follows in detail
Figure imgf000004_0002
본 명세서에 있어서, 에스테르기는 에스테르기의 산소가 탄소수 1 내지 25의 직쇄, 분지쇄 또는 고리쇄 알킬기 또는 탄소수 6 내지 25의 아릴기로 치환될 수 있다. 구체적으로, 하기 구조식의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure imgf000004_0002
In the present specification, the oxygen of the ester group may be substituted with a linear, branched or cyclic alkyl group having 1 to 25 carbon atoms or an aryl group having 6 to 25 carbon atoms. Specifically, it may be a compound of the following structural formula, but is not limited thereto.
Figure imgf000005_0001
본 명세서에 있어서, 이미드기의 탄소수는 특별히 한정되지 않으나 , 탄소수 1 내지 25인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물 될 수 있으나, 이에 한정되는 것은 아니다.
Figure imgf000005_0001
In this specification, although carbon number of an imide group is not specifically limited, It is preferable that it is C1-C25. Specifically, it may be a compound having the following structure, but is not limited thereto.
Figure imgf000005_0002
본 명세서에 있어서, 실릴기는 구체적으로 트리메틸실릴기, 트리에틸실릴기, t-부틸디메틸실릴기, 비닐디메틸실릴기, 프로필디메틸실릴기, 트리페닐실릴기, 디페닐실릴기, 페닐실릴기 등이 있으나 이에 한정되지 않 본 명세서에 있어서, 붕소기는 구체적으로 트리메틸붕소기, 트리에틸붕소기, t-부틸디메틸붕소기, 트리페닐붕소기, 페닐붕소기 등이 있으나 이에 한정되지 않는다. 본 명세서에 있어서, 할로겐기의 예로는 불소, 염소, 브름 또는 요오드가 있다. 본 명세서에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 .내지 10이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 6이다. 알킬기의 구체적인 예로는 메틸, 에틸, 프로필, n-프로필, 이소프로필, 부틸, n-부틸, 이소부틸, tert-부틸, sec—부틸, 1-메틸-부틸, 1-에틸-부틸, 펜틸, n-펜틸, 이소펜틸, 네오펜틸, tert-펜틸, 핵실, n-핵실, 1—메틸펜틸, 2-메틸펜틸, 4-메틸 -2-펜틸, 3 ,3-디메틸부틸, 2-에틸부틸, 헵틸, n-헵틸, 1-메틸핵실, 사이클로펜틸메틸,사이클로핵틸메틸, 옥틸, n-옥틸, tert-옥틸, 1_메틸헵틸, 2-에틸핵실, 2-프로필펜틸, n-노닐, 2 , 2-디메틸헵틸, 1-에틸-프로필, 1 , 1- 디메틸-프로필, 이소핵실, 2-메틸펜틸, 4-메틸핵실, 5-메틸핵실 등이 있으나, 이들에 한정되지 않는다. 본 명세서에 있어서, 상기 알케닐기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나, 2 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 6이다. 구체적인 예로는 비닐, 1—프로페닐, 이소프로페닐, 1-부테닐, 2-부테닐, 3-부테닐ᅳ 1-펜테닐 , 2-펜테닐, 3-펜테닐, 3-메틸 -1-부테닐, 1,3-부타디에닐, 알릴, 1-페닐비닐 -1-일, 2-페닐비닐 -1-일, 2,2-디페닐비닐 -1-일, 2-페닐 -2- (나프틸 -1-일)비닐 -1-일, 2 , 2-비스 (디페닐 -1-일)비닐 -1—일, 스틸베닐기, 스티레닐기 등이 있으나 이들에 한정되지 않는다. 본 명세서에 있어서, 사이클로알킬기는 특별히 한정되지 않으나, 탄소수 3 내지 60인 것이 바람직하며, 일 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 30이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 20이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 6이다. 구체적으로 사이클로프로필, 사이클로부틸, 사이클로펜틸, 3-메틸사이클로펜틸, 2,3- 디메틸사이클로펜틸, 사이클로핵실, 3-메틸사이클로핵실, 4- 메틸사이클로핵실, 2,3-디메틸사이클로핵실, 3,4,5-트리메틸사이클로핵실, 4-tert-부틸사이클로핵실, 사이클로헵틸, 사이클로옥틸 등이 있으나, 이쎄 한정되지 않는다. 본 명세서에 있어서, 아릴기는 특별히 한정되지 않으나 탄소수 6 내지 60인 것이 바람직하며, 단환식 아릴기 또는 다환식 아릴기일 수 있다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 30이다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 20이다. 상기 아릴기가 단환식 아릴기로는 페닐기, 바이페닐기, 터페닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 상기 다환식 아릴기로는 나프틸기, 안트라세닐기, 페난트릴기, 파이레닐기, 페릴레닐기, 크라이세닐기, 플루오레닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 본 명세서에 있어서, 플루오레닐기는 치환될 수 있고, 치환기 2개가 서로 결합하여 스피로 구조를 형성할 수 있다. 상기 플루오레닐기가
Figure imgf000005_0002
In the present specification, specifically, the silyl group includes trimethylsilyl group, triethylsilyl group, t-butyldimethylsilyl group, vinyldimethylsilyl group, propyldimethylsilyl group, triphenylsilyl group, diphenylsilyl group, phenylsilyl group, and the like. However, the present invention is not limited thereto, and the boron group may include, but is not limited to, trimethylboron group, triethylboron group, t-butyldimethylboron group, triphenylboron group, and phenylboron group. In the present specification, examples of the halogen group include fluorine, chlorine, bromide or iodine. In the present specification, the alkyl group may be linear or branched chain, carbon number is not particularly limited, but is preferably 1 to 40. Work According to the exemplary embodiment, the alkyl group has 1 to 20 carbon atoms. According to yet an embodiment, the carbon number of the alkyl group is 1 . To 10. According to another exemplary embodiment, the alkyl group has 1 to 6 carbon atoms. Specific examples of the alkyl group include methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl, isobutyl, tert-butyl, sec-butyl, 1-methyl-butyl, 1-ethyl-butyl, pentyl, n -Pentyl, isopentyl, neopentyl, tert-pentyl, nuclear chamber, n-nuclear chamber, 1-methylpentyl, 2-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, heptyl , n-heptyl, 1-methylnucleus, cyclopentylmethyl, cyclonuxylmethyl, octyl, n-octyl, tert-octyl, 1_methylheptyl, 2-ethylnuclear, 2-propylpentyl, n-nonyl, 2, 2 -Dimethylheptyl, 1-ethyl-propyl, 1, 1-dimethyl-propyl, isonuclear chamber, 2-methylpentyl, 4-methylnuclear chamber, 5-methylnuclear chamber, and the like, but is not limited thereto. In the present specification, the alkenyl group may be linear or branched chain, carbon number is not particularly limited, but is preferably 2 to 40. According to an exemplary embodiment, the alkenyl group has 2 to 20 carbon atoms. According to another exemplary embodiment, the alkenyl group has 2 to 10 carbon atoms. According to another exemplary embodiment, the alkenyl group has 2 to 6 carbon atoms. Specific examples include vinyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl ᅳ 1-pentenyl, 2-pentenyl, 3-pentenyl, 3-methyl-1- Butenyl, 1,3-butadienyl, allyl, 1-phenylvinyl-1-yl, 2-phenylvinyl-1-yl, 2,2-diphenylvinyl-1-yl, 2-phenyl-2- ( Naphthyl-1-yl) vinyl-1-yl, 2, 2-bis (diphenyl-1-yl) vinyl-1-yl, stilbenyl group, styrenyl group, and the like, but are not limited to these. In the present specification, the cycloalkyl group is not particularly limited, but preferably has 3 to 60 carbon atoms, and according to one embodiment, the cycloalkyl group has 3 to 30 carbon atoms. According to another exemplary embodiment, the cycloalkyl group has 3 to 20 carbon atoms. According to another exemplary embodiment, the cycloalkyl group has 3 to 6 carbon atoms. Specifically cyclopropyl, cyclobutyl, cyclopentyl, 3-methylcyclopentyl, 2,3-dimethylcyclopentyl, cyclonuclear chamber, 3-methylcyclonuclear chamber, 4- Methylcyclonuclear chamber, 2,3-dimethylcyclonuclear chamber, 3,4,5-trimethylcyclonuclear chamber, 4-tert-butylcyclonuclear chamber, cycloheptyl, cyclooctyl, and the like, but are not limited to these. In the present specification, the aryl group is not particularly limited, but preferably has 6 to 60 carbon atoms, and may be a monocyclic aryl group or a polycyclic aryl group. According to an exemplary embodiment, the aryl group has 6 to 30 carbon atoms. According to an exemplary embodiment, the aryl group has 6 to 20 carbon atoms. The aryl group may be a phenyl group, a biphenyl group, a terphenyl group, etc. as the monocyclic aryl group, but is not limited thereto. The polycyclic aryl group may be naphthyl group, anthracenyl group, phenanthryl group, pyrenyl group, peryleneyl group, chrysenyl group, fluorenyl group, and the like, but is not limited thereto. In the present specification, the fluorenyl group may be substituted, and two substituents may be bonded to each other to form a spiro structure. The fluorenyl group
Figure imgf000007_0001
Figure imgf000007_0001
등이 될 수 있다. 다만, 이에 한정되는 것은 아니다. 본 명세서에 있어서, 헤테로고리기는 이종 원소로 0, N, Si 및 S 중And so on. However, the present invention is not limited thereto. In the present specification, the heterocyclic group is a heterogeneous element of 0, N, Si and S
1개 이상을 포함하는 헤테로고리기로세 탄소수는 특별히 한정되지 않으나 탄소수 2 내지 60인 것이 바람직하다. 헤테로고리기의 예로는 티오펜기 퓨란기 , 피롤기 , 이미다졸기, 티아졸기, 옥사졸기, 옥사디아졸기 트리아졸기, 피리딜기, 비피리딜기, 피리미딜기, 트리아진기, 트리아졸기 아크리딜기, 피리다진기, 피라지닐기, 퀴놀리닐기, 퀴나졸린기 퀴녹살리닐기, 프탈라지닐기, 피리도 피리미디닐기, 피리도 피라지닐기 피라지노 피라지닐기, 이소퀴놀린기, 인돌기, 카바졸기, 벤조옥사졸기 벤조이미다졸기, 벤조티아졸기, 벤조카바졸기, 벤조티오펜기, 디벤조티오펜기, 벤조퓨라닐기, 페난쓰를린기 ( henanthrol ine) , 티아졸릴기, 이소옥사졸릴기, 옥사디아졸릴기,. 티아디아졸릴기, 벤조티아졸릴기, 페노티아지닐기 및 디벤조퓨라닐기 등이 있으나, 이들에만 한정되는 것은 아니다. 본 명세서에 있어서, 아르알킬기, 아르알케닐기, 알킬아릴기, 아릴아민기 중의 아릴기는 전술한 아릴기의 예시와 같다. 본 명세서에 있어서, 아르알킬기, 알킬아릴기, 알킬아민기 중 알킬기는 전술한 알킬기의 예시와 같다. 본 명세서에 있어서, 헤테로아릴아민 중 헤테로아릴은 전술한 헤테로고리기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 아르알케닐기 중 알케닐기는 전술한 알케닐기의 예시와 같다. 본 명세서에 있어서, 아릴렌은 2가기인 것을 제외하고는 전술한 아릴기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로아릴렌은 2가기인 것을 제외하고는 전술한 헤테로고리기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 탄화수소 고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 아릴기 또는 사이클로알킬기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 헤테로고리기에 관한 설명이 적용될 수 있다. 본 발명은 하기의 유기 발광 소자를 제공한다: Although heterocyclic group carbon number containing 1 or more is not specifically limited, It is preferable that it is C2-C60. Examples of the heterocyclic group include thiophene furan group, pyrrole group, imidazole group, thiazole group, oxazole group, oxadiazole group triazole group, pyridyl group, bipyridyl group, pyrimidyl group, triazine group, triazole group acridil group , Pyridazine group, pyrazinyl group, quinolinyl group, quinazoline group quinoxalinyl group, phthalazinyl group, pyrido pyrimidinyl group, pyrido pyrazinyl group pyrazino pyrazinyl group, isoquinoline group, indole group , carba Drowsiness, benzoxazole group Benzoimidazole group, benzothiazole group, benzocarbazole group, benzothiophene group, dibenzothiophene group, benzofuranyl group, henanthrol ine, thiazolyl group, isoxazolyl group, oxadiazolyl group ,. There may be a thiadiazolyl group, a benzothiazolyl group, a phenothiazinyl group, a dibenzofuranyl group, and the like, but is not limited thereto. In the present specification, the aryl group in the aralkyl group, aralkenyl group, alkylaryl group, and arylamine group is the same as the example of the aryl group described above. In the present specification, the alkyl group among the aralkyl group, the alkylaryl group, and the alkylamine group is the same as the example of the alkyl group described above. In the present specification, the heteroaryl of the heteroarylamine may be applied to the description of the aforementioned heterocyclic group. In the present specification, the alkenyl group in the aralkenyl group is the same as the example of the alkenyl group described above. In the present specification, except that the arylene is a divalent group, the description of the aryl group described above may be applied. In the present specification, except that the heteroarylene is a divalent group, the description of the aforementioned heterocyclic group may be applied. In the present specification, the hydrocarbon ring is not a monovalent group, and the description of the aforementioned aryl group or cycloalkyl group may be applied except that two substituents are formed by bonding. In the present specification, the heterocyclic group is not a monovalent group, and the description of the aforementioned heterocyclic group may be applied except that two substituents are formed by bonding. The present invention provides the following organic light emitting device:
음극; 양극; 및 상기 음극과 양극 사이에 적어도 하나 이상의 발광층을 포함하고, 상기 발광층은 게 1 호스트 및 게 2 호스트를 포함하고, 상기 제 1 호스트의 HOMO는 5.6 eV 내지 6.4 eV이고, 상기 제 2 호스트의 HOMO는 5.4 eV 내지 5.8 eV이고, 상기 제 1 호스트의 H0M0와 상기 거 12 호스트의 H0M0의 차이는 0.2 eV 이상이고, 상기 제 1 호스트 및 거 12 호스트의 흔합물의 최대 발광 파장이 상기 게 1 호스트의 최대 발광 파장보다 20 nm 이상 높은, 유기 발광 소자. 이하, 각 구성 별로 본 발명을 상세히 설명한다. 음극및 양극 cathode; anode; And at least one light emitting layer between the cathode and the anode, wherein the light emitting layer includes a crab 1 host and a crab 2 host, wherein the HOMO of the first host is 5.6 eV to 6.4 eV, and the HOMO of the second host is 5.4 eV to 5.8 eV, the difference between the H0M0 of the first host and the H0M0 of the giant 12 host is 0.2 eV or more, and the maximum emission wavelength of the mixture of the first host and the giant 12 host is the maximum emission of the first host 20 nm or more higher than a wavelength. Hereinafter, the present invention will be described in detail for each configuration. Cathode and anode
본 발명에서 사용되는 양극 및 음극은, 유기 발광 소자에서 사용되는 전극을 의미한다. 상기 양극 물질로는 통상 유기물 층으로 정공 주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 상기 양극 물질의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듐주석 산화물 ( IT0) , 인듐아연 산화물 ( IZ0)과 같은 금속 산화물; ΖηΟ:Α1 또는 SN02 : Sb와 같은 금속과 산화물의 조합; 폴리 (3- 메틸티오펜) , 폴리 [3 , 4- (에틸렌 -1 , 2-디옥시)티오펜] (PED0T) , 폴리피를 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다. 상기 음극 물질로는 통상 유기물층으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 상기 음극 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 Li02/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다. 또한, 상기 양극 상에는 정공 주입층이 추가로 포함될 수 있다. 상기 정공 주입층은 정공 주입 물질로 이루어져 있으며, 정공 주입 물질로는 정공을 수송하는 능력을 가져 양극에서의 정공 주입효과, 발광층 또는 발광재료에 대하여 우수한 정공 주입 효과를 갖고, 발광층에서 생성된 여기자의 전자주입층 또는 전자주입재료에의 이동을 방지하며, 또한, 박막 형성 능력이 우수한 화합물이 바람직하다. 정공 주입 물질의 HO Xhighest occupi ed molecular orbi tal )가 양극 물질의 일함수와 주변 유기물 층의 HOMO 사이인 것이 바람직하다. 정공 주입 물질의 구체적인 예로는, 금속 포피린 (porphyr in) , 올리고티오펜, 아릴아민 계열의 유기물, 핵사니트릴핵사아자트리페닐렌 계열의 유기물, 퀴나크리돈 (quinacr idone)계열의 유기물, 페릴렌 (perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이들에만 한정 되는 것은 아니다. 발광층 The anode and cathode used in the present invention means an electrode used in the organic light emitting device. As the anode material, a material having a large work function is generally preferred to facilitate hole injection into the organic material layer. Specific examples of the positive electrode material include metals such as vanadium, chromium, copper, zinc and gold or alloys thereof; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (IT0), indium zinc oxide (IZ0); ΖηΟ: Α1 or SN0 2 : A combination of a metal and an oxide such as Sb; Conductive polymers such as poly (3-methylthiophene), poly [3,4- (ethylene-1,2-dioxy) thiophene] (PED0T), polypyri and polyaniline, and the like, but are not limited thereto. no. It is preferable that the cathode material is a material having a small work function to facilitate electron injection into the organic material layer. Specific examples of the negative electrode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin, and lead or alloys thereof; Multilayer structure materials such as LiF / Al or Li0 2 / Al, and the like, but are not limited thereto. In addition, a hole injection layer may be further included on the anode. The hole injection layer is made of a hole injection material, has a capability of transporting holes as a hole injection material has a hole injection effect at the anode, an excellent hole injection effect to the light emitting layer or the light emitting material, The compound which prevents the movement to an electron injection layer or an electron injection material, and is excellent in thin film formation ability is preferable. HO X highest occupi ed molecular orbi tal) of the hole injection material It is preferably between the work function of the material and the HOMO of the surrounding organic layer. Specific examples of hole injection materials include metal porphyr, oligothiophene, arylamine-based organic matter, nucleonitrile-nuclear azatriphenylene-based organic material, quinacridone-based organic material, and perylene ( perylene) organic materials, anthraquinone and polyaniline and polythiophene-based conductive polymers, but are not limited thereto. Light emitting layer
본 발명에 따른 발광층은 게 1 호스트 및 게 2 호스트를 포함하고, 상기 제 1 호스트의 HOMO는 5.6 eV 내지 6.4 eV이고, 상기 제 2 호스트의 HOMO는 5.4 eV 내지 5.8 eV이고, 상기 게 1 호스트의 HOMO와 상기 제 2 호스트의 HOMO의 차이는 0.2 eV 이상이고, 상기 제 1 호스트 및 제 2 호스트의 흔합물의 최대 발광 파장이 상기 게 1 호스트의 최대 발광 파장보다 20 nm 이상 높다는 특징이 있다. 상술한 게 1 호스트 화합물을 단일 호스트로 발광층에 사용할 경우, 인접한 정공수송층과의 H0M0 차이가 커서 정공에 대한 배리어 (barr ier )가 생기고, 발광층으로의 정공전달이 용이하지 않게 되어 정공수송층에 인접하여 발광존이 형성되게 된다. 이러한 이유로 정공과 전자의 balance가 맞지 않아 효율 및 수명이 감소하게 된다. 이에, 정공수송형의 상기 제 2 호스트를 함께 사용함으로써, 유기 발광 소자의 효율 및 수명을 개선할 수 있다. 바람직하게는, 상기 발광층은 하기 화학식 1-1 또는 화학식 1-2로 표시되는 제 1 호스트 화합물 및 하기 화학식 2로 표시되는 제 2 호스트 화합물을 포함한다:  The light emitting layer according to the present invention includes a crab 1 host and a crab 2 host, the HOMO of the first host is 5.6 eV to 6.4 eV, the HOMO of the second host is 5.4 eV to 5.8 eV, The difference between the HOMO and the HOMO of the second host is 0.2 eV or more, and the maximum emission wavelength of the mixture of the first host and the second host is 20 nm or more higher than the maximum emission wavelength of the first host. When the host compound described above is used as a single host in the light emitting layer, the H0M0 difference between adjacent hole transport layers is large, resulting in a barrier to holes, and hole transport to the light emitting layer is not easy, thereby adjoining the hole transport layer. The light emitting zone is formed. For this reason, the balance between holes and electrons is not balanced, resulting in reduced efficiency and lifetime. Accordingly, by using the second host of the hole transport type together, the efficiency and lifespan of the organic light emitting device can be improved. Preferably, the light emitting layer includes a first host compound represented by Formula 1-1 or Formula 1-2 and a second host compound represented by Formula 2 below:
[화학식 1-1] [Formula 1-1]
Figure imgf000011_0001
Figure imgf000011_0001
상기 화학식 1-1 및 1-2에서,  In Chemical Formulas 1-1 and 1-2,
Y는 0, S, 또는 SiRiRs이고,  Y is 0, S, or SiRiRs,
Xi 내지 ¾은 각각 독립적으로 N, 또는 CR3이고, 단 ¾ 내지 ¾ 중 적어도 하나는 N이고, Xi to ¾ are each independently N, or CR 3 , provided that at least one of ¾ to ¾ is N,
Li 및 L2는 각각 독립적으로, 단일 결합; 치환 또는 비치환된 C6-60 아릴렌; 또는 치환 또는 비치환된 0, N, Si 및 S 중 1개 이상을 포함하는 C2-6o 헤테로아릴렌이고, Li and L 2 are each independently a single bond; A substituted or unsubstituted C 6 - 60 arylene; Or a C 2 -6o heteroarylene containing a substituted or unsubstituted 0, N, Si and S 1 out of the above,
An 및 Ar2는 각각 독립적으로 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 0, N, Si 및 S 중 1개 이상을 포함하는 C2-60 헤테로아릴이고, An and Ar 2 are each independently substituted or unsubstituted C 6 -60 aryl; Or substituted or unsubstituted C 2 -60 heteroaryl including one or more of 0, N, Si, and S,
Ar3는 치환 또는 비치환된 C6-60 아릴이고, Ar 3 is substituted or unsubstituted C 6 -60 aryl,
Ri, R2 및 ¾는 각각 독립적으로 수소; 중수소; 할로겐; 시아노; 니트로 ; 아미노; 치환 또는 비치환된 d-60 알킬 ; 치환 또는 비치환된 d-60 할로알킬 ; 치환 또는 비치환된 60 할로알콕시 ; 치환 또는 비치환된 C3-60 사이클로알킬 ; 치환 또는 비치환된 C2-60 알케닐; 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 0, N, Si 및 S 중 1개 이상을 포함하는 C2-60 헤테로아릴이고, Ri, R 2 and ¾ are each independently hydrogen; heavy hydrogen; halogen; Cyano; Nitro; Amino; Substituted or unsubstituted d-60 alkyl; Substituted or unsubstituted d-60 haloalkyl; Substituted or unsubstituted 60 haloalkoxy; Substituted or unsubstituted C 3 -60 cycloalkyl; Substituted or unsubstituted C 2 -60 alkenyl; Substituted or unsubstituted C 6 -60 aryl; Or substituted or unsubstituted C 2 -60 heteroaryl including one or more of 0, N, Si, and S,
[화학식 2] [Formula 2]
Figure imgf000012_0001
Figure imgf000012_0001
상기 화학식 2에서,  In Chemical Formula 2,
Y '는 0, S , NR', 또는 CR' R"이고,  Y 'is 0, S, NR', or CR 'R ",
여기서, R 1 및 R"는 각각 독립적으로 수소; 중수소; 할로겐; 시아노; 니트로; 아미노; 치환 또는 비치환된 d-60 알킬 ; 치환 또는 비치환된 d-60 할로알킬; 치환 또는 비치환된 d-60 할로알콕시 ; 치환 또는 비치환된 C3-60 사이클로알킬 ; 치환 또는 비치환된 C2-60 알케닐; 치환 또는 비치환된 C6-60 아릴; 또는 치환또는 비치환된 0, N, Si 및 S 중 1개 이상을 포함하는 C2-60 헤테로아릴이고, 또는 R' 및 R"가 함께 치환 또는 비치환된 C6-60 방향족 고리를 형성하고, Wherein R 1 and R ″ are each independently hydrogen; deuterium; halogen; cyano; nitro; amino; substituted or unsubstituted d-60 alkyl; substituted or unsubstituted d-60 haloalkyl; substituted or unsubstituted d- 60 haloalkoxy; substituted or unsubstituted C 3 -60 cycloalkyl; substituted or unsubstituted C 2 -60 alkenyl; substituted or unsubstituted C 6 -60 aryl; or substituted or unsubstituted 0, N , C 2 -60 heteroaryl comprising at least one of Si and S, or R 'and R''together form a substituted or unsubstituted C 6 -60 aromatic ring,
L ' 및 L"는 각각 독립적으로 단일 결합; 치환 또는 비치환된 C660 아릴렌; 또는 치환 또는 비치환된 0, N, Si 및 S 중 1개 이상을 포함하는L 'and L "are each independently a single bond; substituted or unsubstituted C 660 arylene; or substituted or unsubstituted 0, N, Si and S containing at least one
C2-60 헤테로아릴렌이고,C 2 -60 heteroarylene,
^은 치환 또는 비치환된 d-60 알킬; 치환 또는 비치환된 C3-60 사이클로알킬 ; 치환 또는 비치환된 C6-60 아릴 ; 또는 치환 또는 비치환된 0, N, Si 및 S 중 1개 이상을 포함하는 C2-60 헤테로아릴이고, ^ Is substituted or unsubstituted d- 60 alkyl; Substituted or unsubstituted C 3 -60 cycloalkyl; Substituted or unsubstituted C 6 -60 aryl; Or substituted or unsubstituted C 2 -60 heteroaryl including one or more of 0, N, Si, and S,
R' 2 및 R' 3은 각각 독립적으로, 수소; 중수소; 할로겐; 시아노; 치환 또는 비치환된 d-60 알킬 ; 치환 또는 비치환된 C3-60 사이클로알킬 ; 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 0, N, Si 및 S 중 1개 이상을 포함하는 C2-60 헤테로아릴이고, R ' 2 and R' 3 are each independently hydrogen; heavy hydrogen; halogen; Cyano; Substituted or unsubstituted d-60 alkyl; Substituted or unsubstituted C 3 -60 cycloalkyl; Substituted or unsubstituted C 6 -60 aryl; Or C 2 -60 heteroaryl including one or more of 0, N, Si, and substituted or unsubstituted,
n 및 m은 각각 독립적으로 0 내지 4의 정수이다. 상기 화학식 1에서, 바람직하게는, ¾ 내지 ¾은 각각 독립적으로 N, 또는 CH이고, 단 ¾ 내지 ¾ 중 적어도 하나는 N이다. 바람직하게는, 은, 단일 결합, 페닐렌, 시아노로 치환된 페닐렌, 또는 페닐로 치환된 피리디닐렌이다. 바람직하게는, L2는 단일 결합, 페닐렌, 나프틸렌, 페난쓰레닐렌, 또는 피리디닐렌이다. 바람직하게는, A 및 Ar2는 각각 독립적으로 페닐, 시아노로 치환된 페닐, 1 내지 . 5개의 중수소로 치환된 페닐, 비페닐릴, 또는 디벤조퓨라닐이다. 바람직하게는, Ar3는 하기로 구성되는 군으로부터 선택되는 어느 하나이다: n and m are each independently an integer of 0-4. In Formula 1, preferably, ¾ to ¾ are each independently N or CH, provided that at least one of ¾ to ¾ is N. Preferably, silver is a single bond, phenylene, phenylene substituted with cyano, or pyridinylene substituted with phenyl. Preferably, L 2 is a single bond, phenylene, naphthylene, phenanthrenylene, or pyridinylene. Preferably, A and Ar 2 are each independently phenyl, phenyl substituted with cyano, 1 to. Phenyl, biphenylyl, or dibenzofuranyl substituted with 5 deuterium. Preferably, Ar 3 is any one selected from the group consisting of:
/ O SSS08SZAV//:>d ls800ZJ0SMl / O S SS 08 S Z AV // : > d ls800 Z J 0 SMl
Figure imgf000014_0001
Figure imgf000014_0001
Figure imgf000015_0001
보다 바람직하게는, Ar3은 페닐, 1 내지 5개의 중수소로 치환된 페닐, 비페닐릴, 터페닐릴, 쿼터페닐릴, 나프틸, 트리페닐레닐, 페난쓰레닐, 또는 화학식 1-1 또는 1-2로 표시되는 화합물의 대표적인
Figure imgf000015_0001
More preferably, Ar 3 is phenyl, phenyl substituted by 1 to 5 deuterium, biphenylyl, terphenylyl, quarterphenylyl, naphthyl, triphenylenyl, phenanthrenyl, or Representative of the compound represented by Formula 1-1 or 1-2
Figure imgf000016_0001
91
Figure imgf000016_0001
91
Figure imgf000017_0001
Figure imgf000017_0001
Ι 9800/ίΙΟΖ^Ά/13ά ST0C60/810Z OAV Ι 9800 / ίΙΟΖ ^ Ά / 13ά ST0C60 / 810Z OAV
Figure imgf000018_0001
Figure imgf000018_0001

Figure imgf000019_0001
하기 반웅식 1-1 및 1-2로 표시되는 제조방법으로 제조할 수 있다.

Figure imgf000019_0001
It can be prepared by the production method represented by the following reactions 1-1 and 1-2.
[  [
Figure imgf000020_0001
Figure imgf000020_0001
Figure imgf000020_0002
상기 반웅식 1-1 및 1-2는 스즈키 커플링 반응을 이용하여 상기 화학식 1-1 및 1-2로 표시되는 화합물을 제조하는 것으로, 반웅의 순서 및 스즈키 커플링을 위한 반웅기의 종류의 변경도 가능하다. 상기 제조 방법은 후술할 실시예에서 보다구체화될 수 있다. , 바람직하게는 Y1는 0, S, NR1 , C(CH3)2, 또는
Figure imgf000020_0002
The reaction formulas 1-1 and 1-2 are prepared by the Suzuki coupling reaction to prepare the compounds represented by Formulas 1-1 and 1-2, It is also possible to change the type of counterunggi for Suzuki coupling. The manufacturing method may be more specific in the embodiments to be described later. , Preferably Y 1 is 0, S, NR 1 , C (CH 3 ) 2 , or
Figure imgf000021_0001
여기서 R1는 페닐, 시아노로 치환된 페닐 비페닐릴, 트리페닐레닐ᅳ 사이클로핵실, 디메틸플루오레닐, 또는 디벤조퓨라닐이다. 바람직하게는, L1 및 L1'는 각각 독립적으로, 단일 결합, 또는 페닐렌이다. 바람직하게는, R'r 페닐, 터트-부틸로 치환된 페닐, 비페닐린, 트리페닐레닐, 페난트레닐, 터페닐릴, 피리디닐, 페닐로 치환된 카바졸릴, 디메틸플루오레닐, 또는 디벤조티오페닐이다. 바람직하게는, R'2 및 R'3은 각각 독립적으로, 수소; 터트-부틸; 시아노; 페닐; 시아노로 치환된 페닐; 또는 피리디닐이다. 상기 화학식 2로 표시되는 화합물의 대표적인 예는 다음과 같다:
Figure imgf000021_0001
Wherein R 1 is phenyl, cyano-substituted phenyl biphenylyl, triphenylenyl ᅳ cyclonuclear chamber, dimethylfluorenyl, or dibenzofuranyl. Preferably, L 1 and L 1 ′ are each independently a single bond or phenylene. Preferably, R'r phenyl, phenyl substituted by tert-butyl, biphenylrin, triphenylenyl, phenanthrenyl, terphenylyl, pyridinyl, phenyl substituted carbazolyl, dimethylfluorenyl, or di Benzothiophenyl. Preferably, R ' 2 and R' 3 are each independently hydrogen; Tert-butyl; Cyano; Phenyl; Phenyl substituted with cyano; Or pyridinyl. Representative examples of the compound represented by Formula 2 are as follows:
IS IS
Figure imgf000022_0001
Figure imgf000022_0001
Ι 9800/ίΙΟΖ^Ά/13ά ST0C60/810Z OAV Ι 9800 / ίΙΟΖ ^ Ά / 13ά ST0C60 / 810Z OAV
Figure imgf000023_0001
또한, 상기 화학식 2로 표시되는 화합물은 일례로 하기 반웅식 2로 표시되는 제조방법으로 제조할 수 있다.
Figure imgf000023_0001
In addition, the compound represented by Formula 2 may be prepared by a manufacturing method represented by the following reaction formula 2, for example.
[반웅식 2] [Bungungsik 2]
Figure imgf000024_0001
상기 반응식 2는 스즈키 커플링 반웅을 이용하여 상기 화학식 2로 표시되는 화합물을 제조하는 것으로, 스즈키 커플링을 위한 반웅기의 종류의 변경도 가능하다. 상기 제조 방법은 후술할 실시예에서 보다 구체화될 수 있다. 바람직하게는, 상기 게 1 호스트 화합물과 제 2 호스트 화합물의 중량비는 1 : 99 내지 99 : 1로사용한다. 또한, 상기 발광층은 상기 호스트 화합물 이외에 도펀트 재료를 포함할 수 있다. 상기 도편트 재료로는 유기 발광 소자에 사용되는 것이면 특별히 제한되지 않으며, 일례로 방향족 아민 유도체, 스트릴아민 화합물, 붕소 착체, 플루오란텐 화합물, 금속 착체 등이 있다. 구체적으로, 방향족 아민 유도체로는 치환 또는 비치환된 아릴아미노기를 갖는 축합 방향족환 유도체로서, 아릴아미노기를 갖는 피렌, 안트라센, 크리센, 페리플란텐 등이 있으며, 스티릴아민 화합물로는 치환 또는 비치환된 아릴아민에 적어도 1개의 아릴비닐기가 치환되어 있는 화합물로, 아릴기, 실릴기, 알킬기, 사이클로알킬기 및 아릴아미노기로 이루어진 군에서 1 또는 2 이상 선택되는 치환기가 치환 또는 비치환된다. 구체적으로 스티릴아민, 스티릴디아민, 스티릴트리아민, 스티릴테트라아민 등이 있으나, 이에 한정되지 않는다. 또한, 금속 착체로는 이리듐 착체, 백금 착체 등이 있으나, 이에 한정되지 않는다. 기타층
Figure imgf000024_0001
Scheme 2 is to prepare a compound represented by the formula (2) using Suzuki coupling reaction, it is also possible to change the type of the reaction for Suzuki coupling. The manufacturing method may be more specific in the embodiments to be described later. Preferably, the weight ratio of the first host compound and the second host compound is 1:99 to 99: 1. In addition, the light emitting layer may include a dopant material in addition to the host compound. The dopant material is not particularly limited as long as it is used in an organic light emitting device. Examples of the dopant material include aromatic amine derivatives, styrylamine compounds, boron complexes, fluoranthene compounds, and metal complexes. Specifically, the aromatic amine derivatives are condensed aromatic ring derivatives having a substituted or unsubstituted arylamino group, and include pyrene, anthracene, chrysene and periplanthene having an arylamino group, and the styrylamine compound may be substituted or not At least one arylvinyl group is substituted with the substituted arylamine, and a substituent selected from the group consisting of aryl group, silyl group, alkyl group, cycloalkyl group and arylamino group is substituted or unsubstituted. Specifically, styryl amine, styryl diamine, styryl triamine, styryl tetraamine and the like, but is not limited thereto. In addition, the metal complex includes an iridium complex, a platinum complex, and the like, but is not limited thereto. Other floor
또한, 본 발명에 따른 유기 발광 소자는, 필요에 따라 정공주입층, 정공수송충, 전자수송층, 및 /또는 전자전달층을 포함할 수 있다. 상기 정공주입층은 전극으로부터 정공을 주입하는 층으로, 정공 주입 물질로는 정공을 수송하는 능력을 가져 양극에서의 정공 주입효과, 발광층 또는 발광재료에 대하여 우수한 정공 주입 효과를 갖고, 발광층에서 생성된 여기자의 전자주입층 또는 전자주입재료에의 이동을 방지하며, 또한, 박막 형성 능력이 우수한 화합물이 바람직하다. 정공 주입 물질의 H0M0(highest occupied molecular orbi tal )가 양극 물질의 일함수와 주변 유기물 층의In addition, the organic light emitting device according to the present invention, a hole injection layer, And a hole transport layer, an electron transport layer, and / or an electron transport layer. The hole injection layer is a layer for injecting holes from the electrode, the hole injection material has the ability to transport holes to have a hole injection effect at the anode, has an excellent hole injection effect to the light emitting layer or the light emitting material, The compound which prevents the excitons from moving to the electron injection layer or the electron injection material, and is excellent in thin film formation ability is preferable. The highest occupied molecular orbital (H0M0) of the hole injection material is determined by the work function of the anode material and the surrounding organic layer.
HOMO 사이인 것이 바람직하다. 정공 주입 물질의 구체적인 예로는 금속 포피린 (porphyr in) , 올리고티오펜, 아릴아민 계열의 유기물, 핵사니트릴핵사아자트리페닐렌 계열의 유기물, 퀴나크리돈 (quinacr idone)계열의 유기물, 페릴렌 (perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이들에만 한정 되는 것은 아니다. 상기 정공수송층은 양극 또는 정공주입층으로부터 정공을 수취하여 발광층까지 정공을 수송하는 층으로, 정공 수송 물질로 양극이나 정공 주입층으로부터 정공을 수송받아 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 아릴아민 계열의 유기물, 전도성 고분자, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등이 있으나, 이들에만 한정되는 것은 아니다. 상기 전자수송층은 전자주입층 또는 음극으로부터 전자를 수취하여 발광층까지 전자를 수송하는 층으로, 전자 수송 물질로는 음극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 8-히드록시퀴놀린의 A1 착물; Alq3를 포함한 착물; 유기 라디칼 화합물; 히드록시플라본 -금속 착물 등이 있으나, 이들에만 한정되는 것은 아니다. 전자 수송층은 종래기술에 따라 사용된 바와 같이 임의의 원하는 캐소드 물질과 함께 사용할 수 있다. 특히, 적절한 캐소드 물질의 예는 낮은 일함수를 가지고 알루미늄층 또는 실버층이 뒤따르는 통상적인 물질이다. 구체적으로 세슘, 바륨, 칼슴 , 이테르븀 및 사마륨이고, 각 경우 알루미늄 층 또는 실버층이 뒤따른다. 상기 전자주입층은 전극으로부터 전자를 주입하는 층으로, 전자를 수송하는 능력을 갖고, 음극으로부터의 전자 주입 효과, 발광층 또는 발광 재료에 대하여 우수한 전자주입 효과를 가지며, 발광층에서 생성된 여기자의 정공주입층에의 이동을 방지하고, 또한, 박막형성능력이 우수한 화합물이 바람직하다. 구체적으로는 플루오레논, 안트라퀴노다이메탄, 다이페노퀴논, 티오피란 다이옥사이드, 옥사졸, 옥사다이아졸, 트리아졸, 이미다졸, 페릴렌테트라카복실산, 프레오레닐리덴 메탄, 안트론 등과 그들의 유도체, 금속 착체 화합물 및 질소 함유 5원환 '유도체 등이 있으나, 이에 한정되지 않는다. 상기 금속 착체 화합물로서는 8-하이드록시퀴놀리나토 리튬, 비스 (8- 하이드록시퀴놀리나토)아연, 비스 (8—하이드록시퀴놀리나토)구리, 비스 (8- 하이드록시퀴놀리나토)망간, 트리스 (8-하이드록시쥐놀리나토)알루미늄, 트리스 (2-메틸 -8-하이드록시퀴놀리나토)알루미늄, 트리스 (8- 하이드록시퀴놀리나토)갈륨, 비스 ( 10-하이드록시벤조 [h]쥐놀리나토)베릴륨, 비스 ( 10-하이드록시벤조 [h]퀴놀리나토)아연, 비스 (2-메틸 -8- 퀴놀리나토)클로로갈륨, 비스 (2-메틸 -8-퀴놀리나토) (0-크레졸라토)갈륨, 비스 (2-메틸 -8-퀴놀리나토) (1-나프를라토)알루미늄, 비스 (2—메틸 -8- 퀴놀리나토) (2-나프를라토)갈륨 등이 있으나, 이에 한정되지 않는다. 유기 발광소자 It is preferred to be between HOMO. Specific examples of hole injecting materials include metal porphyr, oligothiophene, arylamine-based organic matter, nucleonitrile-nucleated azatriphenylene-based organic material, quinacridone-based organic material, and perylene ) Organic materials, anthraquinone and polyaniline and polythiophene-based conductive polymers, but are not limited thereto. The hole transport layer is a layer that receives holes from an anode or a hole injection layer and transports holes to a light emitting layer. The hole transport layer is a material that can transport holes from an anode or a hole injection layer to a light emitting layer and transfers holes to a light emitting layer. Large materials are suitable. Specific examples include an arylamine-based organic material, a conductive polymer, and a block copolymer having a conjugated portion and a non-conjugated portion, but are not limited thereto. The electron transport layer is a layer that receives electrons from the electron injection layer or the cathode and transports the electrons to the light emitting layer, and the electron transport material is a material that can inject electrons well from the cathode to the light emitting layer and has high mobility to the electrons. The material is suitable. Specific examples include Al complexes of 8-hydroxyquinoline; Complexes including Alq 3 ; Organic radical compounds; Hydroxyflavone-metal complexes and the like, but are not limited thereto. The electron transport layer can be used with any desired cathode material as used in accordance with the prior art. In particular, examples of suitable cathode materials have a low work function, It is a common material followed by a silver layer. Specifically, cesium, barium, kale, ytterbium and samarium, each followed by an aluminum or silver layer. The electron injection layer is a layer for injecting electrons from an electrode, has a capability of transporting electrons, has an electron injection effect from the cathode, has an excellent electron injection effect for the light emitting layer or the light emitting material, hole injection of excitons generated in the light emitting layer The compound which prevents the movement to a layer and is excellent in thin film formation ability is preferable. Specifically, fluorenone, anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, preorenylidene methane, anthrone and the derivatives thereof, metal Although the complex compound and a nitrogen-containing five-membered ring, derivatives, etc., and the like. Examples of the metal complex compound include 8-hydroxyquinolinato lithium, bis (8-hydroxyquinolinato) zinc, bis (8-hydroxyquinolinato) copper, bis (8-hydroxyquinolinato) manganese, Tris (8-hydroxyjunolinato) aluminum, Tris (2-methyl-8-hydroxyquinolinato) aluminum, Tris (8-hydroxyquinolinato) gallium, bis (10-hydroxybenzo [h] Junolinato) beryllium, bis (10-hydroxybenzo [h] quinolinato) zinc, bis (2-methyl-8-quinolinato) chlorogallium, bis (2-methyl-8-quinolinato) ( 0-cresolato) gallium, bis (2-methyl-8-quinolinato) (1-naphlato) aluminum, bis (2-methyl-8-quinolinato) (2-naphlato) gallium, etc. However, the present invention is not limited thereto. Organic light emitting device
본 발명에 따른 유기 발광 소자는, 상기 발광층에 게 1 호스트와 제 2 호스트를 포함하는 것을 제외하고는 당 기술분야에 알려져 있는 재료와 방법으로 제조될 수 있다. 예컨대, 본 발명에 따른 유기 발광 소자는 기판 상에 양극, 유기물층 및 음극을 순차적으로 적층시켜 제조할 수 있다. 이때, 스퍼터링법 (sputter ing)이나 전자범 증발법 (e-beam evaporat ion)과 같은 PVD(physi cal Vapor Deposi t ion)방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극올 형성하고, 그 위에 정공 주입층, 정공 수송층, 발광층 및 /또는 전자 수송층을 포함하는 유기물 층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시켜 제조할 수 있다. 이와 같은 방법 외에도, 기판 상에 음극 물질부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 만들수 있다. 또한, 상기 게 1 호스트 화합물 및 게 2 호스트 화합물은 유기 발광 소자의 제조시 진공 증착법 뿐만 아니라 용액 도포법에 의하여 발광층으로 형성될 수 있다. 여기서, 용액 도포법이라 함은 스핀 코팅, 딥코팅, 닥터 블레이딩, 잉크젯 프린팅, 스크린 프린팅, 스프레이법, 를 코팅 등을 의미하지만, 이들만으로 한정되는 것은 아니다. 이와 같은 방법 외에도, 기판 상에 음극 물질로부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 제조할 수 있다 (W0 2003/012890) . 다만, 제조 방법이 이에 한정되는 것은 아니다. 본 발명에 따른 유기 발광 소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다. 이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 이에 의해 본 발명의 내용이 한정되는 것은 아니다. 제조예: 중간체 P-4화합물 제조 The organic light emitting device according to the present invention may be manufactured by materials and methods known in the art, except that the light emitting layer includes a first host and a second host. For example, the organic light emitting device according to the present invention may be manufactured by sequentially stacking an anode, an organic material layer, and a cathode on a substrate. At this time, Deposition of metals or conductive metal oxides or alloys thereof on a substrate by using physical vapor deposition (PVD) methods such as sputtering or e-beam evaporat ion After forming an anode, an organic layer including a hole injection layer, a hole transporting layer, a light emitting layer and / or an electron transporting layer is formed thereon, and then can be prepared by depositing a material that can be used as a cathode thereon. In addition to the above method, an organic light emitting device may be manufactured by sequentially depositing a cathode material, an organic material layer, and an anode material on a substrate. In addition, the crab 1 host compound and the crab 2 host compound may be formed as a light emitting layer by a solution coating method as well as a vacuum deposition method in the manufacture of the organic light emitting device. Here, the solution coating method means spin coating, dip coating, doctor blading, inkjet printing, screen printing, spraying, coating, etc., but is not limited thereto. In addition to the above method, an organic light emitting device may be manufactured by sequentially depositing an organic material layer and an anode material on a substrate (W0 2003/012890). However, the manufacturing method is not limited thereto. The organic light emitting device according to the present invention may be a top emission type, a bottom emission type or a double-sided emission type depending on the material used. Hereinafter, preferred embodiments of the present invention are provided to aid in understanding the present invention. However, the following examples are merely provided to more easily understand the present invention, and the contents of the present invention are not limited thereto. Preparation Example: Preparation of Intermediate P-4 Compound
Figure imgf000028_0001
Figure imgf000028_0001
Figure imgf000028_0002
Figure imgf000028_0002
P-3 P-4  P-3 P-4
(단계 1: 화합물 p-i의 제조)  (Step 1: Preparation of Compound p-i)
브로모 -3-플루오로 -2-요오드벤젠 ( l-bromo-3-f luoro-2- iodobenzene)(100 g, 333.5 誦 ol), 2-메특시페닐보론산 ((2- methoxyphenyl )boroni c acid) (50.6 g, 333.5 .mmol)를 테트라하이드로퓨란 (THF) 800 mL에 녹였다. 여기에 탄산나트륨 (Na2C03) 2 M 용액 (500 mL), 테트라키스 (트리페닐포스핀)팔라듐 (0)[Pd(PPh3)4](7.7 gᅳ 6.7 匪 ol)을 넣고 12시간 동안 환류시켰다. 반웅이 끝난 후 상온으로 넁각시키고, 생성된 흔합물을 물과 를루엔으로 3회 추출하였다. 를루엔 층을 분리한 뒤 황산마그네슘 (magnesium sulfate)으로 건조하여 여과한 여액을 감압 증류하여 얻은 흔합물을 클로로포름 및 에탄올로 3회 재결정하여 화합물 P-K49.7 g, 수율 53 %)을 얻었다. L-bromo-3-f luoro-2- iodobenzene (100 g, 333.5 誦 ol), 2-methoxyphenylboronic acid ((2-methoxyphenyl) boroni c acid) (50.6 g, 333.5 .mmol) was dissolved in 800 mL of tetrahydrofuran (THF). To this was added sodium carbonate (Na 2 CO 3 ) 2 M solution (500 mL), tetrakis (triphenylphosphine) palladium (0) [Pd (PPh 3 ) 4 ] (7.7 g ᅳ 6.7 匪 ol) and for 12 hours It was refluxed. After the reaction was finished, the mixture was cooled to room temperature, and the resultant mixture was extracted three times with water and luluene. The toluene layer was separated, dried over magnesium sulfate, and the filtrate was filtered and distilled under reduced pressure. The mixture was recrystallized three times with chloroform and ethanol to obtain compound P-K49.7 g, yield 53%).
MS:[M+H]+=281 (단계 2: 화합물 P-2의 제조) MS: [M + H] + = 281 (step 2: preparation of compound P-2)
화합물 P-K45 g, 158 醒 ol)을 디클로로메탄 (Dichlorometahne)(600 mL)에 녹인 뒤 0°C로 넁각시켰다. 보론트리브로마이드 (boron tribromide)(15.8 mL, 166.4 mmol)를 천천히 적가한 뒤 12시간 동안 교반하였다. 반웅이 종료된 후 물로 3회 세척하고, 황산마그네슘 (magnesium sulfate)으로 건조하여 여과한 여액을 감압 증류하고 컬럼크로마토크래피로 정제하여 화합물 p-2(40 g, 수율 85 ¾>)을 얻었다. Compound P-K45 g, 158 μl) was dissolved in Dichlorometahne (600 mL) and cooled to 0 ° C. Boron tribromide (15.8 mL, 166.4 mmol) was slowly added dropwise and stirred for 12 hours. After the reaction was completed, washed three times with water, dried over magnesium sulfate (magnesium sulfate) and the filtrate was filtered under reduced pressure and purified by column chromatography to give a compound p-2 (40 g, yield 85 ¾>).
MS:[M+H]+=298 (단계 3: 화합물 P-3의 제조) MS: [M + H] + = 298 (Step 3: Preparation of Compound P-3)
질소 분위기에서 화합물 P-2(33 g, 110 誦 ol)을 다이메틸로픔아마이드 200 mL에 넣고 교반하였다. 이후 포타슘 카보네이트 (30.4 g, 220 隱 ol)를 투입한 후 환류하였다. 2시간 후 상온으로 온도를 낮추고 여과하였다. 여과물을 클로로포름과 물로 추출한 후 유기층을 황산마그네슘을 이용해 건조하였다. 위 흔합물을 감압 증류하여 얻은 흔합물을 클로로포름 및 에틸아세테이트로 재결정하여 화합물 P- 3(20.3 g, 수율 75 %)을 얻었다.  Compound P-2 (33 g, 110 Pa) was added to 200 mL of dimethylofamide in a nitrogen atmosphere, followed by stirring. Then potassium carbonate (30.4 g, 220 隱 ol) was added to reflux. After 2 hours, the temperature was lowered to room temperature and filtered. The filtrate was extracted with chloroform and water, and the organic layer was dried over magnesium sulfate. The mixture obtained by distillation under reduced pressure was recrystallized with chloroform and ethyl acetate to give the compound P-3 (20.3 g, yield 75%).
MS:[M+H]+-247 MS: [M + H] + -247
'  '
(단계 4: 화합물 P-4의 제조)  (Step 4: Preparation of Compound P-4)
질소 분위기에서 화합물 P-3(20 g, 80 瞧 ol)에 요오드 (2.06 g, 40 隱 ol), 요오드산 (3.13 g, 17.8 mmol)을 투입하고, 80 mL의 아세트산과 20 mL의 황산 흔합물을 용매로 하여 투입하고, 10 mL의 물 및 4 mL의 클로로포름을 추가로 투입하여 65°C에서 3시간 동안 교반하였다. 넁각후에 물을 흔합물에 첨가하고, 침전된 고체를 여과하여 물로 3회 세정하였다. 걸러진 여과물을 를루엔과 핵산으로 재결정하여 P-4(20.0g, 수율 67 %)을 얻었다. Iodine (2.06 g, 40 μl) and iodic acid (3.13 g, 17.8 mmol) were added to compound P-3 (20 g, 80 μl ol) in a nitrogen atmosphere, followed by 80 mL of acetic acid and 20 mL of sulfuric acid mixture. Was added as a solvent, 10 mL of water and 4 mL of chloroform were further added, and the mixture was stirred at 65 ° C. for 3 hours. After cooling, water was added to the mixture, and the precipitated solid was filtered and washed three times with water. The filtered filtrate was recrystallized from toluene and nucleic acid to give P-4 (20.0g, yield 67%).
MS:[M+H]+=374 실시예 1-1: 화합물 1-1의 제조 MS: [M + H] < + > = 374 Example 1-1: Preparation of Compound 1-1
Figure imgf000030_0001
Figure imgf000030_0001
(단계 1: 화합물 1-1-A의 제조)  (Step 1: Preparation of Compound 1-1-A)
화합물 P-4(20 g, 54 隱 ol)과 트리페닐렌 -2-일보론산 (15 g, 54 議 ol)을 테트라하이드로퓨란 (200 mL)에 분산시킨 후, 2M 탄산칼륨수용액 (aq. K2C03)(80 mL, 162 匪 ol)을 첨가하고 테트라키스트리페닐포스피노팔라듐 [Pd(PPh3)4](0.6 g, 1 mol%)을 넣은 후Compound P-4 (20 g, 54 g ol) and triphenylene-2-ylboronic acid (15 g, 54 議 ol) were dispersed in tetrahydrofuran (200 mL), followed by 2M aqueous potassium carbonate solution (aq.K 2 C0 3 ) (80 mL, 162 匪 ol) was added and tetrakistriphenylphosphinopalladium [Pd (PPh 3 ) 4 ] (0.6 g, 1 mol%) was added.
5시간 동안 교반 환류하였다. .상온으로 온도를 낮추고 생성된 고체를 여과하였다. 여과된 고체를 클로로포름과 에틸아세테이트로 재결정하고 여과한 뒤, 건조하여 화합물 1-1— A(20.7 g, 수율 81 %)을 제조하였다. Stirring to reflux for 5 hours. Lower the temperature to room temperature and filter the resulting solid. The filtered solid was recrystallized with chloroform and ethyl acetate, filtered and dried to give compound 1-1—A (20.7 g, yield 81%).
(단계 2: 화합물 1-1-B의 제조) (Step 2: Preparation of Compound 1-1-B)
화합물 1-1-A(20 g, 42.2 隱 ol), 비스 (피나콜라토)디보론 (Bis(pinacolato)diborone)(14.5 g, 50.6 隱 ol), 포타슘아세테이트 (potassium acetate)(8.5 g, 85 醒 ol)를 1,4-다이옥산 lOOiiiL에 투입하고, 환류 교반 상태에서 디벤질리덴아세톤팔라듐 0.73 g( 1.3 匪 ol)과 트리시클로핵실포스핀 0.71 g(1.3 謹 ol)을 첨가하고 12시간 환류 교반시켰다. 반응이 종결되면 흔합물을 실온으로 냉각하고, 샐라이트를 통해 여과하였다. 여액올 감압 하에 농축한 후 잔류물에 클로로포름을 넣고 녹인 후 물로 세척하여 유기층을 분리한 후 무수황산 마그네슴 (Magnesium sulfate)으로 건조하였다. 이를 감압 증류하고, 에틸아세테이트와 에탄올로 교반하여 화합물 i-i-B(19.3 g, 수율 88 %)를 제조하였다. (단계 3: 화합물 1-1의 제조) Compound 1-1-A (20 g, 42.2 隱 ol), bis (pinacolato) diborone (14.5 g, 50.6 隱 ol), potassium acetate (8.5 g, 85醒 ol) was added to lOiiiL of 1,4-dioxane, 0.73 g of dibenzylideneacetone palladium and 0.71 g of tricyclonucleosilphosphine were added under reflux stirring, followed by stirring under reflux for 12 hours. I was. At the end of the reaction, the mixture was cooled to room temperature and filtered through celite. The filtrate was concentrated under reduced pressure, chloroform was added to the residue, dissolved, washed with water, the organic layer was separated, and dried over anhydrous magnesium sulfate. This was distilled under reduced pressure, and stirred with ethyl acetate and ethanol to prepare compound iiB (19.3 g, yield 88%). (Step 3: Preparation of Compound 1-1)
화합물 1-1-B(20 g, 38 瞧 ol)와 2-클로로 -4 ,6-디페닐 -1,3,5- 트리아진 (10.3 g, 38 mmol)을 테트라하이드로퓨란 (150 mL)에 분산시킨 후, 2M 탄산칼륨수용액 (aq. K2C03)(58 mL, 115 國 ol)을 첨가하고 테트라키스트리페닐포스피노팔라듐 [Pd(PPh3)4](0.45 g, 1 mol%)을 넣은 후 6시간 동안 교반 환류하였다. 상온으로 온도를 낮추고 생성된 고체를 여과하였다. 여과된 고체를 클로로포름과 에틸아세테이트로 재결정하고 여과한 뒤, 건조하여 화합물 1-1(17.5 g, 수율 73 을 제조하였다. Compound 1-1-B (20 g, 38 μl ol) and 2-chloro-4,6-diphenyl-1,3,5-triazine (10.3 g, 38 mmol) were added to tetrahydrofuran (150 mL). After dispersion, 2M aqueous potassium carbonate solution (aq. K 2 C0 3 ) (58 mL, 115 countries ol) was added and tetrakistriphenylphosphinopalladium [Pd (PPh 3 ) 4 ] (0.45 g, 1 mol%) After stirring, the mixture was refluxed for 6 hours. The temperature was lowered to room temperature and the resulting solid was filtered. The filtered solid was recrystallized with chloroform and ethyl acetate, filtered and dried to give compound 1-1 (17.5 g, yield 73).
MS:[M+H]+=626 MS: [M + H] + = 626
Figure imgf000031_0001
Figure imgf000031_0001
(단계 1: 화합물 1-2— A의 제조)  (Step 1: Preparation of Compound 1-2—A)
화합물 P-4(20 g, 54隱 ol)과 (4- (나프탈렌 -1-일)페닐)보론산 (13.3g, Compound P-4 (20 g, 54 'ol) and (4- (naphthalen-1-yl) phenyl) boronic acid (13.3 g,
54 匪 ol)을 테트라하이드로퓨란 (200 mL)에 분산시킨 후, 2M 탄산칼륨수용액 (aq. K2C03)(80 mL, 160 隱 ol)을 첨가하고 테트라키스트리페닐포스피노팔라듐 [Pd(PPh3)4](0.6 g, 1 mol%)을 넣은 후 5시간 동안 교반 환류하였다. 상온으로 온도를 낮추고 생성된 고체를 여과하였다. 여과된 고체를 클로로포름과 에틸아세테이트로 재결정하고 여과한 뒤, 건조하여 화합물 1-2-AU7.0 g, 수율 82 %)을 제조하였다. (단계 2: 화합물 1-2_B의 제조) 54 μl ol) was dispersed in tetrahydrofuran (200 mL), and then 2M aqueous potassium carbonate solution (aq. K 2 CO 3 ) (80 mL, 160 μl ol) was added and tetrakistriphenylphosphinopalladium [Pd ( PPh 3 ) 4 ] (0.6 g, 1 mol%) was added thereto, followed by stirring under reflux for 5 hours. The temperature was lowered to room temperature and the resulting solid was filtered. The filtered solid was recrystallized with chloroform and ethyl acetate, filtered and dried to prepare compound 1-2-AU7.0 g, yield 82%). (Step 2: Preparation of Compound 1-2 _B)
화합물 l-2-A(20 g, 44.5 瞧 ol), 비스 (피나콜라토)디보론 (Bis(pinacolato)diborone)(15.3 g, 53.4 醒 ol), 포타슘아세테이트 (potassium acetate)(8.7 g, 89 隱 ol)를 1,4—다이옥산 200mL에 투입하고, 환류 교반 상태에서 디벤질리덴아세톤팔라듐 0.8 g(1.3 I OI)과 트리시클로핵실포스핀 0.8 g(1.3 匪 ol)을 첨가하고 12시간 환류 교반시켰다. 반웅이 종결되면 흔합물을 실온으로 넁각하고, 셀라이트를 통해 여과하였다. 여액을 감압 하에 농축한 후 잔류물에 클로로포름을 넣고 녹인 후 물로 세척하여 유기층을 분리한 후 무수황산 마그네슘 (Magnesium sulfate)으로 건조하였다. 이를 감압 증류하고, 에틸아세테이트와 에탄올로 교반하여 화합물 l-2-B(19 g, 수율 86 %)를 제조하였다.  Compound l-2-A (20 g, 44.5 瞧 ol), bis (pinacolato) diborone (15.3 g, 53.4 醒 ol), potassium acetate (8.7 g, 89隱 ol) was added to 200 mL of 1,4-dioxane, and 0.8 g (1.3 I OI) of dibenzylideneacetone palladium and 0.8 g (1.3 匪 ol) of tricyclonuclear phosphine were added under reflux stirring, followed by stirring under reflux for 12 hours. I was. At the end of the reaction, the mixture was cooled to room temperature and filtered through celite. The filtrate was concentrated under reduced pressure, chloroform was added to the residue, dissolved, washed with water, the organic layer was separated, and dried over anhydrous magnesium sulfate. This was distilled under reduced pressure, and the mixture was stirred with ethyl acetate and ethanol to prepare compound l-2-B (19 g, yield 86%).
(단계 3: 화합물 1-2의 제조) (Step 3: Preparation of Compound 1-2)
화합물 l-2-B(20 g, 40瞧 ol)와 2-클로로 -4- (디벤조 [b,d]퓨란 -4-일) - Compound l-2-B (20 g, 40 'ol) with 2-chloro-4- (dibenzo [b, d] furan-4-yl)-
6-페닐 -1,3,5-트리아진 (14.4 g, 40 隱 ol)을 테트라하이드로퓨란 (180 mL)에 분산시킨 후, 2M 탄산칼륨수용액 (aq. K2C03)(60 mL, 121 隱 ol)을 첨가하고 테트라키스트리페닐포스피노팔라듐 [Pd(PPh3)4](0.47 g, 1 mol%)을 넣은 후 6시간 동안 교반 환류하였다. 상온으로 온도를 낮추고 생성된 고체를 여과하였다. 여과된 고체를 클로로포름과 에틸아세테이트로 재결정하고 여과한 뒤, 건조하여 화합물 1—2(19.5 g, 수율 70 %)을 제조하였다. 6-phenyl-1,3,5-triazine (14.4 g, 40 μl) was dispersed in tetrahydrofuran (180 mL), followed by 2M aqueous potassium carbonate solution (aq. K 2 C0 3 ) (60 mL, 121隱 ol) was added and tetrakistriphenylphosphinopalladium [Pd (PPh 3 ) 4 ] (0.47 g, 1 mol%) was added thereto, followed by stirring under reflux for 6 hours. The temperature was lowered to room temperature and the resulting solid was filtered. The filtered solid was recrystallized with chloroform and ethyl acetate, filtered and dried to prepare compound 1-2 (19.5 g, yield 70%).
MS:[M+Hj+=692 실시예 1-3: 화합물 1-3의 제조 MS: [M + Hj + = 692 Example 1-3: Preparation of Compound 1-3
Figure imgf000033_0001
Figure imgf000033_0001
(단계 1: 화합물 1-3-A의 제조)  (Step 1: Preparation of Compound 1-3-A)
화합물 P-4(20 g, 54匪 ol)와 [1,1'-비페닐 ]— 4-일보론산을 사용하여 화합물 1-A-1 제조예와 동일한 방법으로 화합물 l-3-A(18.4 g, 수율 86 %)를 제조하였다.  Compound l-3-A (18.4) using compound P-4 (20 g, 54 'ol) and [1,1'-biphenyl] —4-ylboronic acid in the same manner as in Preparation Example 1-A-1 g, yield 86%).
(단계 2: 화합물 1-3-B의 제조) (Step 2: Preparation of Compound 1-3-B)
2—클로로 -4,6-디페닐 -1,3,5-트리아진 (30 g, 112 mmol)과 (3-클로로- 5-시아노페닐)보론산 (20 g, 112 醒 ol)을 테트라하이드로퓨란 (480 mL)에 분산시킨 후, 2M 탄산칼륨수용액 (aq. 2C03)(160 mL, 336隱 ol)을 첨가하고 테트라키스트리페닐포스피노팔라듐 [Pd(PPh3)4](l,2 g, 1 mol«을 넣은 후 5시간 동안 교반 환류하였다. 상온으로 온도를 낮추고 물층을 제거하고 감압 농축하여, 에탄올과 에틸아세테이트를 투입하여 교반 후 여과하였다. 얻어진 고체를 물과 에탄올로 세척한 후 건조하여 l-3-B(32.0 g, 수율 91 %)을 제조하였다. 2—Chloro-4,6-diphenyl-1,3,5-triazine (30 g, 112 mmol) and (3-chloro-5-cyanophenyl) boronic acid (20 g, 112 醒 ol) After dispersing in hydrofuran (480 mL), 2M aqueous potassium carbonate solution (aq. 2 C0 3 ) (160 mL, 336 隱 ol) is added and tetrakistriphenylphosphinopalladium [Pd (PPh 3 ) 4 ] (l , 2 g, 1 mol «, and refluxed under stirring for 5 hours, the temperature was lowered to room temperature, the water layer was removed, concentrated under reduced pressure, ethanol and ethyl acetate were added thereto, the mixture was stirred, and filtered. After drying to prepare l-3-B (32.0 g, 91% yield).
(단계 3: 화합물 1-3-C의 제조) (Step 3: Preparation of Compound 1-3-C)
화합물 l-3-B(20 g, 54 隱 ol)를 사용하여 화합물 1—A-2 제조예와 동일한 방법으로 화합물 1-3— B(19 g, 수율 76 를 제조하였다.  Compound 1-3-3-B (19 g, yield 76) was prepared by the same method as the compound 1-A-2 preparation example, using compound l-3-B (20 g, 54 μL).
(단계 4: 화합물 1—3의 제조) (Step 4: Preparation of Compound 1-3)
화합물 l-3-A(17.3 g, 43 mmol)와 화합물 1_3-C(20 g,43 醒 ol)를 사용하여 화합물 1-1 제조예와 동일한 방법으로 화합물 1-3(20.7 g, 수율 73 %)을 제조하였다. Compound l-3-A (17.3 g, 43 mmol) and compound 1_3-C (20 g, 43 mmol) Compound 1-3 (20.7 g, yield 73%) was prepared in the same manner as the compound 1-1 preparation.
MS:[M+H]+=653 MS: [M + H] + = 653
Figure imgf000034_0001
Figure imgf000034_0001
(단계 1: 중간체 S— 4의 제조)  (Step 1: Preparation of Intermediate S-4)
1-브로모-디벤조티오펜 (20 g, 76 隱 ol)을 사용하여 중간체 P-4 제조예와동일한 방법으로 화합물 S-4(16.5g, 수율 65 ¾>)를 얻었다.  Compound S-4 (16.5 g, yield 65 ¾>) was obtained in the same manner as the preparation of intermediate P-4 using 1-bromo-dibenzothiophene (20 g, 76 隱 ol).
MS:[M+H]+=390 MS: [M + H] + = 390
(단계 2: 화합물 1-4-A의 제조) (Step 2: Preparation of Compound 1-4-A)
화합물 S— 4(20 g, 51 瞧 ol)와 (4'-클로로 -[1,1'-비페닐 ]-4一 일)보론산 (13.2 g, 57 隱 ol)을 사용하여 화합물 1— 1-A 제조예와 동일한 방법으로 화합물 l-4-A(20 g, 수율 83 ¾>)를 제조하였다.  Compound S— 4 (20 g, 51 μl ol) and (4′-chloro- [1,1′-biphenyl] -4 one day) boronic acid (13.2 g, 57 μl ol) Compound l-4-A (20 g, yield 83 ¾>) was prepared in the same manner as the preparation example.
(단계 3: 화합물 1-4-B의 제조) (Step 3: Preparation of Compound 1-4-B)
화합물 l-4-A(20 g, 44.5 隱 ol)을 사용하여 화합물 1-1-B 제조예와 동일한 방법으로 화합물 1-4-BCL9 g, 수율 86 %)를 제조하였다.  Using compound l-4-A (20 g, 44.5 隱 ol) to prepare compound 1-4-BCL9 g, yield 86%) in the same manner as in compound 1-1-B.
(단계 4: 화합물 1— 4-C의 제조) (Step 4: Preparation of Compound 1— 4-C)
화합물 l-4-B(20 g, 40.3 瞧 ol)와 2— ([1, 1'-비페닐 -3-일] -4-클로로- 6-페닐-1,3,5-트리아진(13.8 g, 40.3 醒 ol)을 사용하여 화합물 1-1-C 제조예와 동일한 방법으로 화합물 1-4-C 19 g, 수율 86 «를 제조하였다. Compound l-4-B (20 g, 40.3 瞧 ol) and 2— ([1, 1'-biphenyl-3-yl] -4-chloro- Using 6-phenyl-1,3,5-triazine (13.8 g, 40.3 醒 ol), 19 g of compound 1-4-C was obtained in the same manner as in the compound 1-1-C preparation, yield 86 «. .
(단계 5: 화합물 1-4-D의 제조) (Step 5: Preparation of Compound 1-4-D)
화합물 l-4-C(20 g, 30 隱 ol)를 사용하여 화합물 1— 3-C 제조예와 동일하게 실험을 수행하여 화합물 l-4-D(16 g, 수율 82 %)를 제조하였다.  Compound l-4-D (16 g, yield 82%) was prepared in the same manner as in the preparation of Compound 1—3-C using Compound l-4-C (20 g, 30 μl ol).
(단계 6: 화합물 1-4의 제조) ' (Step 6: Preparation of Compound 1-4) ''
화합물 1— 4-D(20 g, 26 隱 ol)와 브로모벤젠 _d5(5 g, 31 隱 ol)를 사용하여 1— 1-A 제조예와 동일하게 실험을 수행하여 화합물 1-4(13 g, 수율 70 %)를 제조하였다.  Compound 1-4 (13 g) was prepared in the same manner as in the Preparation Example 1-1 A using 4-D (20 g, 26 μl ol) and bromobenzene _d5 (5 g, 31 μl ol). g, yield 70%) was prepared.
MS:[M+H]+=726 실시예 1-5: MS: [M + H] + = 726 Examples 1-5:
Figure imgf000035_0001
Figure imgf000035_0001
(단계 1: 화합물 1-5-A의 제조)  (Step 1: Preparation of Compound 1-5-A)
5'-브로모ᅳ 1,1' :3',1"-터페닐 (20 g, 65 mmol)과 클로로페닐)보론산 (12.1 g, 78 腿 ol)을 사용하여 화합물 1-1-A 동일한 방법으로 화합물 1-5-AU9 g, 수율 86 %)를 제조하였다. (단계 2: 화합물 1-5-B의 제조) 5'-Bromoq 1,1 ': 3', 1'-terphenyl (20 g, 65 mmol) and chlorophenyl) boronic acid (12.1 g, 78 腿 ol) are the same as compounds 1-1-A Compound 1-5-AU9 g, yield 86%) was prepared by the method. (Step 2: Preparation of Compound 1-5-B)
화합물 l-5-A(20 g, 59 隱 ol )을 사용하여 화합물 1-1— B 제조예와 동일한 방법으로 화합물 l-5-B(21 g, 수율 81 %)를 제조하였다.  Compound l-5-B (21 g, yield 81%) was prepared by the same method as the compound 1-1—B preparation, using compound l-5-A (20 g, 59 μl ol).
(단계 3 : 화합물 1-5-C의 제조) (Step 3: Preparation of Compound 1-5-C)
화합물 l-5-B(20 g, 46 隱 ol )과 중간체 P_4(17 g, 46 隱 ol )를 사용하여 화합물 1-1-A 제조예와 동일한 방법으로 화합물 l-5-C(19.3 g, 수율 76 %)를 제조하였다.  Using compound l-5-B (20 g, 46 μl ol) and intermediate P_4 (17 g, 46 μl ol), compound l-5-C (19.3 g, Yield 76%) was prepared.
(단계 4: 화합물 1-5-D의 제조) (Step 4: Preparation of Compound 1-5-D)
화합물 1-5-COL5 g, 27 腿 ol )를 사용하여 화합물 1-1-B 제조예와 동일한 방법으로 화합물 l-5-D(11.5 g, 수율 80 %)를 제조하였다.  Compound l-5-D (11.5 g, yield 80%) was prepared in the same manner as the compound 1-1-B preparation example using compound 1-5-COL5 g, 27 μl).
(단계 5: 화합물 1-5의 제조) (Step 5: Preparation of Compound 1-5)
화합물 1— 5-DCL2 g, 20 mmol )와 2-클로로-4,6_디페닐피리미딘(5.7 g, 20 醒 ol )을 사용하여 화합물 1-1 제조예와 동일한 방법으로 화합물 1—5(8.2 g, 수율 77 %)를 제조하였다.  Compound 1— 5-DCL2 g, 20 mmol) and 2-chloro-4,6_diphenylpyrimidine (5.7 g, 20 醒 ol) were used to prepare Compound 1—5 ( 8.2 g, yield 77%) was prepared.
MS: [M+H]+=703 실시예 1-6: 화합물 1-6의 제조 MS: [M + H] + = 703 Example 1-6: Preparation of Compound 1-6
Figure imgf000037_0001
Figure imgf000037_0001
(단계 1: 화합물 1— 6-A의 제조)  (Step 1: Preparation of Compound 1-6-A)
중간체 P— 4(25 g, 67隱 ol)과 2,4-디페닐 -6-(3-(4,4,5,5—테트라페닐- 1,3,2-디옥사보란 -2-일)페닐 -1,3,5-트리아진 (29.2 g, 67 mmol)을 사용하여 화합물 1-1-A 제조예와 동일한 방법으로 화합물 l-6-A(26.2 g, 수율 82 ¾)를 제조하였다.  Intermediate P— 4 (25 g, 67 ′ ol) and 2,4-diphenyl-6- (3- (4,4,5,5—tetraphenyl-1,3,2-dioxaboran-2-yl ) L-l, 3,5-triazine (29.2 g, 67 mmol) was used to prepare compound l-6-A (26.2 g, yield 82 ¾) in the same manner as in compound 1-1-A. .
(단계 2: 화합물 1-6-B의 제조) (Step 2: Preparation of Compound 1-6-B)
화합물 1-6-A 17 g, 31 匪 ol)을 사용하여 화합물 1— 1-B 제조예와 동일하게 실험을 수행하여 화합물 l-6-B(13.0 g, 수율 80 %)를 제조하였다.  Compound l-6-B (13.0 g, yield 80%) was prepared in the same manner as in the preparation of compound 1-1-B using 17 g of Compound 1-6-A and 31 μL).
(단계 3: 화합물 1-6-C의 제조) (Step 3: Preparation of Compound 1-6-C)
화합물 4-아이오도— 1,1'-비페닐 (20 g, 71 隱 ol)과 (5-클로로피리딘- Compound 4-iodo— 1,1'-biphenyl (20 g, 71 隱 ol) and (5-chloropyridine-
2-일)보론산을 사용하여 화합물 1-1-A 제조예와 동일하게 실험을 수행하여 화합물 1-6— C( 13.2 g, 수율 70 %)를、제조하였다. Experiment was carried out in the same manner as in Preparation Example 1-1-A using 2-yl) boronic acid, to prepare Compound 1-6-C (13.2 g, yield 70%).
(단계 4: 화합물 1—6의 제조) (Step 4: Preparation of Compound 1-6)
화합물 1-6ᅳ B(23 g, 38 隱 ol)과 화합물 1— 6-C(10.2 g, 38 瞧 ol)를 1,4ᅳ다이옥산 (150 mL)에 투압하고 포타슘포스페이트 (24 g, 115 隱 ol)와 물 (40 mL)을 추가로 투입하였다. 환류 교반 상태에서 디벤질리덴아세톤팔라듐 0.7 g(1.2 睡 ol)과 트리시클로핵실포스핀 0.7 g(1.2 mmol)을 첨가하고 12시간 환류 교반시켰다. 반웅이 종결되면 흔합물을 실온으로 넁각하여 물층을 분리하고, 감압 하에 농축한 후 잔류물에 클로로포름을 넣고 녹인 후 물로 세척하여 유기층을 분리하였다. 분리한 유기층에 무수황산 마그네슘 (Magnesium sulfate)으로 건조하여 여과하였다. 환류하에 농축하면서 에틸아세테이트를 투입하는 방법으로 재결정하여 화합물 1-6(18.3 g, 수율 68 %)을 제조하였다. Compound 1-6'B (23 g, 38'ol) and Compound 1-6-C (10.2 g, 38'ol) were pressurized with 1,4'dioxane (150 mL) and potassium phosphate (24 g, 115 隱) ol) and water (40 mL) were further added. With reflux stirring Dibenzylidene acetone palladium 0.7 g (1.2 μl) and tricyclonucleosilphosphine 0.7 g (1.2 mmol) were added and stirred under reflux for 12 hours. When the reaction was terminated, the mixture was cooled to room temperature to separate the water layer, concentrated under reduced pressure, chloroform was added to the residue, dissolved, washed with water, and the organic layer was separated. The organic layer was dried over anhydrous magnesium sulfate and filtered. Compound 1-6 (18.3 g, yield 68%) was prepared by recrystallization by adding ethyl acetate with concentration under reflux.
MS:[M+H]+=705 MS: [M + H] + = 705
Figure imgf000038_0001
Figure imgf000038_0001
(단계 1: 화합물 1-그 A의 제조)  (Step 1: Preparation of Compound 1-A)
화합물 P-4(15 g, 40 匪 ol)을 사용하여 화합물 1-1-B 제조예와 동일하게 실험을 수행하여 화합물 1-7-AU1.6 g, 수율 77 «를 제조하였다.  The experiment was carried out in the same manner as in the Example of Compound 1-1-B using Compound P-4 (15 g, 40 μl ol) to prepare 1.6 g of Compound 1-7-AU, yield 77 «.
(단계 2: 화합물 1-그 B의 제조) (Step 2: Preparation of Compound 1-B)
화합물 l-7-A(ll g, 23 隱 ol)와 2-클로로 -4, 6-디페닐 -1, 3,5- 트리아진 (6.2 g, 23 隱 ol)을 사용하여 화합물 1-1 제조예와 동일한 방법으로 화합물 l-7-B(9.0 g, 수율 82 %)를 제조하였다.  Preparation of Compound 1-1 using compound l-7-A (ll g, 23 隱 ol) and 2-chloro-4, 6-diphenyl-1,3,5-triazine (6.2 g, 23 隱 ol) Compound l-7-B (9.0 g, yield 82%) was prepared in the same manner as the example.
(단계 3: 화합물 1-7의 제조) (Step 3: Preparation of Compound 1-7)
화합물 l-7-B(9.0 g, 18.8 醒 ol)와 페난스렌 -3-일보론산 (4.2 g, 19 mmol)을 사용하여 화합물 1-1 제조예와 동일한 방법으로 화합물 1—7(8.4 g, 수율 77 %)를 제조하였다.  Using compound l-7-B (9.0 g, 18.8 μl) and phenanthsene-3-ylboronic acid (4.2 g, 19 mmol), compounds 1-7 (8.4 g, Yield 77%) was prepared.
MS:[M+H]+=576 실시예 2-1: 화합물 2-1의 제조 MS: [M + H] + = 576 Example 2-1: Preparation of Compound 2-1
Figure imgf000039_0001
화합물 9-(1,1'-비페닐 )-4-일) -3-브로모 -9H-카바졸 (15 g, 27隱 ol)과 화합물 디벤조 [b,d]퓨란ᅳ 2일보론산 (5.7 g, 27 mmol)을 테트라하이드로퓨란 (80 mL)에 분산시킨 후, 2M 탄산칼륨수용액 (aq. K2C03)(40 mL, . 81 隱 ol)을 첨가하고 테트라키스트리페닐포스피노팔라듐 [Pd(PPh3)4](0.3 g, 1 mol¾>)을 넣은 후 6시간 동안 교반 환류하였다. 상온으로 온도를 낮추고 물층을 제거하여 감압 농축하고, 에틸아세테이트를 투입하여 1시간 동안 환류 하에 교반하여 실온으로 식힌 후 고체를 여과하였다. 얻어진 고체에 클로로포름을 넣고 환류하에 녹이고, 에틸아세테이트를 추가하여 재결정으로 화합물 2-1(11.5 g, 수율 7 )을 제조하였다.
Figure imgf000039_0001
Compound 9- (1,1'-biphenyl) -4-yl) -3-bromo-9H-carbazole (15 g, 27 'ol) and compound dibenzo [b, d] furan pent diylboronic acid ( 5.7 g, 27 mmol) was dispersed in tetrahydrofuran (80 mL), and then 2M aqueous potassium carbonate solution (aq. K 2 C0 3 ) (40 mL, .81 隱 ol) was added and tetrakistriphenylphosphinopalladium was added. [Pd (PPh 3 ) 4 ] (0.3 g, 1 mol¾>) was added thereto, followed by stirring under reflux for 6 hours. The temperature was lowered to room temperature, the water layer was removed, concentrated under reduced pressure, ethyl acetate was added thereto, the mixture was stirred under reflux for 1 hour, cooled to room temperature, and the solid was filtered. Chloroform was added to the obtained solid, and the mixture was dissolved under reflux. Compound 2-1 (11.5 g, yield 7 ) was prepared by recrystallization by adding ethyl acetate.
MS:[M+H]+=486 . MS: [M + H] + = 486 .
Figure imgf000039_0002
Figure imgf000039_0002
(단계 1: 화합물 2-2- 제조)  (Step 1: Preparation of Compound 2-2-)
2-클로로디벤조 [b,d]티오펜 (22 g, 101 隱 ol)을 클로로포름 50 mL에 녹이고, 넁각하여 0°C로 온도를 낮추고, Br2 용액 (5.5 mL, 108 瞧 ol)을 천천히 적가하였다. 3시간 동안 교반하여 반응이 종결되면 소듐바이카보네이트 수용액을 투입하여 교반하였다. 물층을 분리하고 유기층을 모아서 무수황산마그네슘으로 건조하고 여과하여 감압 농축하였다. 농축한 화합물을 컬럼 정제를 통해 분리하여 화합물 2— 2-AOL0 g, 수율 49 ¾>)을 얻었다. Dissolve 2-chlorodibenzo [b, d] thiophene (22 g, 101 隱 ol) in 50 mL of chloroform, lower the temperature to 0 ° C, and slowly bring the Br 2 solution (5.5 mL, 108 瞧 ol) slowly. Added dropwise. After stirring for 3 hours to complete the reaction An aqueous sodium bicarbonate solution was added and stirred. The water layer was separated, the organic layers were collected, dried over anhydrous magnesium sulfate, filtered and concentrated under reduced pressure. The concentrated compound was separated through column purification to obtain compound 2— 2-AOL0 g, yield 49 ¾>).
(단계 2: 화합물 2-2-B 제조) (Step 2: Preparation of Compound 2-2-B)
화합물 2-2-A 15 g, 50隱 ol)와 (9-페닐 -9H-카바졸 -3-일)보론산 (15.2 g, 53 隱 ol)을 테트라하이드로퓨란 (200 mL)에 분산시킨 후, 2M 탄산칼륨수용액 (aq. K2C03)(75 mL, 151 隱 ol)을 첨가하고 테트라키스트리페닐포스피노팔라듐 [Pd(PPh3)4](0.6 g, 1 mol%)을 넣은 후 6시간 동안 교반 환류하였다. 상온으로 온도를 낮추고 물층을 제거하여 감압 농축하고, 에틸아세테이트를 투입하여 3시간 동안 교반하여 석출된 고체를 여과하였다. 얻어진 고체를 클로로포름과 에탄올 흔합액으로 추가로 교반후 여과하여 화합물 2-2-B(18.8 g, 수율 81 %)를 제조하였다. 15 g, 50 g ol) of compound 2-2-A and (9-phenyl-9H-carbazol-3-yl) boronic acid (15.2 g, 53 g ol) were dispersed in tetrahydrofuran (200 mL) , Add 2M aqueous potassium carbonate solution (aq. K 2 C0 3 ) (75 mL, 151 μl) and add tetrakistriphenylphosphinopalladium [Pd (PPh 3 ) 4 ] (0.6 g, 1 mol%) Stirring reflux for 6 hours. The temperature was lowered to room temperature, the water layer was removed, concentrated under reduced pressure, ethyl acetate was added thereto, the mixture was stirred for 3 hours, and the precipitated solid was filtered. The obtained solid was further stirred with a mixture of chloroform and ethanol and filtered to prepare compound 2-2-B (18.8 g, yield 81%).
(단계 3: 화합물 2-2 제조) (Step 3: Prepare Compound 2-2)
화합물 2-2-B(17 g, 37 mmol)와 (4-시아노페닐)보론산 (5.7 g, 38.8 隱 ol)을 테트라하이드로퓨란 (160 mL)에 분산시킨 후, 2M 탄산칼륨수용액 (aq. K2C03)(65 mL, 111 隱 ol)을 첨가하고 테트라키스트리페닐포스피노팔라듐 [Pd(PPh3)4](0.4 g, 1 mol%)을 넣은 후 6시간 동안 교반 환류하였다. 상온으로 온도를 낮추고 물층을 제거하여 감압 농축하고, 농축된 화합물을 클로로포름 300 mL에 녹여 물로 세척하여 분리하고, 유기층을 무수황산마그네슘으로 처리하여 여과였다. 여액을 가온하여 환류하에 반정도 제거하고, 에틸아세테이트 100 mL를 추가하여 재결정을 통해 화합물 2-2(14.2 g, 수율 73%)를 제조하였다. Compound 2-2-B (17 g, 37 mmol) and (4-cyanophenyl) boronic acid (5.7 g, 38.8 μl) were dispersed in tetrahydrofuran (160 mL), followed by 2M aqueous potassium carbonate solution (aq K 2 CO 3 ) (65 mL, 111 μl) was added and tetrakistriphenylphosphinopalladium [Pd (PPh 3 ) 4 ] (0.4 g, 1 mol%) was added and stirred under reflux for 6 hours. The temperature was lowered to room temperature, the water layer was removed, concentrated under reduced pressure, the concentrated compound was dissolved in 300 mL of chloroform, washed with water and separated, and the organic layer was filtered with anhydrous magnesium sulfate. The filtrate was warmed to remove half at reflux, and 100 mL of ethyl acetate was added to recrystallize to prepare compound 2-2 (14.2 g, yield 73%).
MS:[M+H]+=527 실시예 2-3: 화합물 2-3의 제조
Figure imgf000041_0001
MS: [M + H] + = 527 Example 2-3: Preparation of Compound 2-3
Figure imgf000041_0001
(단계 1: 화합물 2-3-A 제조)  (Step 1: Prepare Compound 2-3-A)
3-브로모 -9H-카바졸 (15 g, 61 瞧 ol)과 (9-페닐 -9H-카바졸ᅳ3- 일)보론산 (18.4 g, 64 隱 ol)을 사용하여 화합물 2-1의 제조예와 동일하게 화합물 2-3-A(20.2 g, 수율 81%)를 제조하였다  Of compound 2-1 using 3-bromo-9H-carbazole (15 g, 61 瞧 ol) and (9-phenyl-9H-carbazol -3-yl) boronic acid (18.4 g, 64 隱 ol) Compound 2-3-A (20.2 g, yield 81%) was prepared in the same manner as in the preparation example.
(단계 2: 화합물 2-3 제조) (Step 2: Prepare Compound 2-3)
화합물 2-3-A(12 g, 30 mmol)와 2-브로모 -9-페닐 -9H-카바졸 (9.5 g, 30隱 ol)을 를루엔 150 mL에 투입하여 녹이고, 나트륨 터셔리- 부특사이드 (5.6 g, 59 誦 ol)를 첨가하여 가온하였다. 비스 (트리 터셔리- 부틸포스핀)팔라듐 (0.15 g, ImolW을 투입하여 12시간 환류 교반하였다. 반웅이 완결되면 상온으로 온도를 낮춘 후 생성된 고체를 여과하였다. 엷은 노란색의 고체를 클로로포름으로 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘과 산성백토를 넣고 교반한 후 여과하여 감압 증류하였다. 클로로포름과 에틸아세테이트를 이용하여 재결정하여 흰색의 고체 화합물인 화합물 2-3(14.5 g, 수율 76%)을 얻었다.  Compound 2-3-A (12 g, 30 mmol) and 2-bromo-9-phenyl-9H-carbazole (9.5 g, 30, ol) were dissolved in 150 mL of toluene, followed by sodium tertiary. Side (5.6 g, 59 Pa ol) was added to warm. Bis (tri-butyl phosphine) palladium (0.15 g, ImolW was added and stirred under reflux for 12 hours. When reaction was completed, the reaction mixture was cooled to room temperature and the resulting solid was filtered. The pale yellow solid was dissolved in chloroform. After washing twice with water, the organic layer was separated, anhydrous magnesium sulfate and acidic clay were added, stirred, filtered and distilled under reduced pressure, and recrystallized with chloroform and ethyl acetate to give a solid compound 2-3 (14.5 g, Yield 76%).
MS:[M+H]+=650 MS: [M + H] + = 650
Figure imgf000041_0002
Figure imgf000041_0002
9-([1,1'-비페닐 ]-3-일) -3-브로모 -9H-카바졸 (16 g, 40 mmol)과 9- ([1,1'ᅳ비페닐]-3-일)-911-카바졸-3-일)보론산(14.6 g, 40 隱 ol)을 사용하여 화합물 2—1의 제조예와 동일한 방법으로 화합물 2-4(19.7 g, 수율 77%)를 제조하였다. 9-([1,1'-biphenyl] -3-yl) -3-bromo-9H-carbazole (16 g, 40 mmol) and 9-([1,1'bisbiphenyl] -3-yl Compound 2-4 (19.7 g, yield 77%) was prepared in the same manner as in the preparation of compound 2-1 using) -911-carbazol-3-yl) boronic acid (14.6 g, 40 μl ol). Prepared.
MS:[M+H]  MS: [M + H]
Figure imgf000042_0001
Figure imgf000042_0001
2-5-A 2-5-A
Figure imgf000042_0002
Figure imgf000042_0002
2-5  2-5
(단계 1: 화합물 2-5-A 제조) (Step 1: A mixture of 2 -5-A, Ltd.)
(9H-카바졸 -2-일)보론산 (20 g, 95 mmol)과 3-(4-클로로페닐) -9-페닐- -카바졸(33.5 g, 95隱 ol)을 사용하여 화합물 1-6의 제조예와 동일한 방법으로 화합물 2-5-A(38 g, 수율 83%)를 제조하였다.  Compound 1- using (9H-carbazol-2-yl) boronic acid (20 g, 95 mmol) and 3- (4-chlorophenyl) -9-phenyl-carbazole (33.5 g, 95 'ol) Compound 2-5-A (38 g, yield 83%) was prepared in the same manner as in Preparation Example 6.
(단계 2: 화합물 2-5 제조) (Step 2: Preparation of Compound 2-5)
화합물 2-5— A(15 g, 31 画 ol)와 3-브로모 -Ι,Γ-비페닐 (7.2 g, 31 mmol)을 사용하여 화합물 2-3의 제조예와 동일한 방법으로 화합물 2-5(15 g 수율 76%)를 제조하였다.  Compound 2-5— Compound 2- in the same manner as in the preparation of Compound 2-3 using A (15 g, 31-ol) and 3-bromo-Ι, Γ-biphenyl (7.2 g, 31 mmol) 5 (15 g yield 76%) was prepared.
MS:[M+H]+=637 실시예 2-6: 화합물 2-6의 제조 MS: [M + H] + = 637 Example 2-6: Preparation of Compound 2-6
Figure imgf000043_0001
Figure imgf000043_0001
2-브로모 -9,9'-스피로비 [플루오렌] (11 g,' 29 瞧 ol)과 9_([1,1'- 비페닐 ]-3-일) -9H-카바졸 -3-일)보론산 (10.4 g, 29 mmol)을 사용하여 화합물 2-bromo-9,9'-spirobibi [fluorene] (11 g, '29 mu ol) and 9 _ ([1,1'-biphenyl] -3-yl) -9H-carbazole-3- I) Compound using boronic acid (10.4 g, 29 mmol)
2-1의 제조예와 동일한 방법으로 화합물 2-6(13.5 g, 수율 75%)을 제조하였다. Compound 2-6 (13.5 g, yield 75%) was prepared in the same manner as in the preparation example 2-1.
MS:[M+H]+=634 MS: [M + H] + = 634
Figure imgf000043_0002
Figure imgf000043_0002
(단계 1: 화합물 2-7— A 제조)  (Step 1: Prepare Compound 2-7—A)
3-브로모 -9H-카바졸 (15 g, 61 隱 ol)과 9_([1,1'-비페닐]-4-일)-9^ 카바졸 -3-일)보론산 (22 g, 61 隱 ol)을 사용하여 화합물 2-1의 제조예와 동일한 방법으로 화합물 2-7-A(24 g, 수율 81%)를 제조하였다. (단계 2: 화합물 2-7 제조)  3-bromo-9H-carbazole (15 g, 61 μl ol) and 9 _ ([1,1'-biphenyl] -4-yl) -9 ^ carbazole-3-yl) boronic acid (22 g, 61 x ol) to prepare Compound 2-7-A (24 g, 81% yield) in the same manner as in the preparation of Compound 2-1. (Step 2: Prepare Compound 2-7)
화합물 2-그 A(13 g, 27 隱 ol)와 2-브로모피리딘 (4.3 g, 27 匪 ol)을 사용하여 화합물 2— 3의 제조예와 동일한 방법으로 화합물 2-7(8.5 g, 수율 65%)을 제조하였다.  Compound 2-7 (8.5 g, yield) in the same manner as in the preparation of compound 2-3 using compound 2-g A (13 g, 27 μl ol) and 2-bromopyridine (4.3 g, 27 μl ol) 65%) was prepared.
MS:[M+H]+=562 실험예 1 MS: [M + H] + = 562 Experimental Example 1
IT0( indium t in oxide)가 1 ,300A의 두께로 박막 코팅된 유리 기판을 세제를 녹인 증류수에 넣고 초음파로 세척하였다. 이때, 세제로는 피셔사 (Fischer Co . ) 제품을 사 하였으며, 증류수로는 밀리포어사 (Mi l l ipore Co . ) 제품의 필터 (Fi lter)로 2차로 걸러진 증류수를 사용하였다. IT0를 30분간 세척한 후 증류수로 2회 반복하여 초음파 세척을 10분간 진행하였다. 증류수 세척이 끝난 후, 이소프로필알콜, 아세톤, 메탄올의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 수송시켰다. 또한, 산소 플라즈마를 이용하여 상기 기판을 5분간 세정한 후 진공 증착기로 기판을 수송시켰다. 상기와 같이 준비된 IT0 투명 전극 위에 하기 HI-1 화합물을 50 A의 두께로 열 진공 증착하여 정공 주입층을 형성하였다. 상기 정공 주입층 위에 하기 HT-1 화합물을 250A의 두께로 열 진공 증착하여 정공 수송층을 형성하고, HT-1 증착막 위에 하기 HT-2 화합물을 50 A 두께로 진공 증착하여 전자 저지층을 형성하였다. 이어서, 상기 HT-2 증착막 위에 앞서 제조한 화합물 1-1과 앞서 제조한 화합물 2-4를 하기 표 1의 중량비 (200 :200)로 동시 증발에 의해 증착하고, 이때 하기 표 1의 중량비 (12%; 화합물 1-1, 화합물 2-4, 및 GD-1 총 중량 대비)로 인광 도펀트인 하기 GD-1 화합물을 공증착하여 하기 표 1의 두께 (400 A )로 발광층을 형성하였다. 상기 발광층 위에 하기 ET-1 화합물을 250A의 두께로 진공 증착하고, 추가로 하기 ET-2 화합물을 100 A 두께로 2% 중량비의 Li과 공증착하여 전자 수송층 및 전자 주입층을 형성하였다. 상기 전자주입층 위에 1000A 두께로 알루미늄을 증착하여 음극을 형성하였다. A glass substrate coated with a thin film having an indium t in oxide (IT0) of 1,300 A was placed in distilled water in which a detergent was dissolved and ultrasonically cleaned. At this time, Fischer Co. product was used as a detergent, and distilled water was filtered secondly as a filter of a Millipore Co. product. After washing IT0 for 30 minutes, the ultrasonic cleaning was performed twice with distilled water for 10 minutes. After the distilled water wash, ultrasonic cleaning with a solvent of isopropyl alcohol, acetone, methanol, dried and transported to a plasma cleaner. In addition, the substrate was cleaned for 5 minutes using an oxygen plasma, and then the substrate was transferred to a vacuum evaporator. The following HI-1 compound was thermally vacuum deposited to a thickness of 50 A on the prepared IT0 transparent electrode to form a hole injection layer. The following HT-1 compound was thermally vacuum deposited to a thickness of 250 A on the hole injection layer to form a hole transport layer, and the following HT-2 compound was vacuum deposited to a thickness of 50 A on the HT-1 deposited film to form an electron blocking layer. Subsequently, on the HT-2 deposited film, the compound 1-1 prepared above and the compound 2-4 prepared above were deposited by co-evaporation at a weight ratio (200: 200) of the following Table 1, wherein the weight ratio (12) %; Compound 1-1, Compound 2-4, and GD-1) based on the total weight of the phosphorescent dopant. The following ET-1 compound was vacuum deposited to a thickness of 250 A on the light emitting layer, and the following ET-2 compound was co-deposited with Li in a 2% weight ratio to a thickness of 100 A to form an electron transport layer and an electron injection layer. Aluminum was deposited to a thickness of 1000 A on the electron injection layer to form a cathode.
Figure imgf000045_0001
Figure imgf000045_0001
Figure imgf000045_0002
Figure imgf000045_0002
상기의 과정에서 유기물의 증착속도는 0.4 ~ 0.7 A /sec를 유지하였고, 알루미늄은 2 A/sec의 증착 속도를 유지하였으며, 증착시 진공도는 1 X 10—7 ~ 5X 10"8 torr를 유지하였다. 실험예 2내지 9 In the above process, the deposition rate of the organic material was maintained at 0.4 ~ 0.7 A / sec, the aluminum was maintained at the deposition rate of 2 A / sec, the vacuum during deposition was maintained at 1 X 10— 7 ~ 5X 10 "8 torr. Experimental Examples 2 to 9
상기 실험예 1과 동일한 방법으로 제조하되, 발광층 형성시 인광 호스트 물질 및 도편트 함량을 하기 표 1과 같이 변경하였다는 점을 제외하고는, 상기 실험예 1과 동일한 방법을 이용하여 유기 발광 소자를 각각 제작하였다. 비교실험예 1 내지 11  The organic light emitting device was manufactured by the same method as Experimental Example 1, except that the phosphorescent host material and the dopant content were changed as in Table 1 when forming the emission layer. Each was produced. Comparative Experimental Examples 1 to 11
상기 실험예 1과 동일한 방법으로 제조하되, 발광층 형성시 인광 호스트 물질 및 도편트 함량을 하기 표 1과 같이 변경하였다는 점을 제외하고는, 상기 실험예 1과 동일한 방법을 이용하여 유기 발광 소자를 각각 제작하였다ᅳ 이때 사용된 호스트 물질 A 내지 E , PH-1 , 및 PH-2는 하기와 같다. The organic light emitting device was manufactured by the same method as Experimental Example 1, except that the phosphorescent host material and the dopant content were changed as in Table 1 when forming the emission layer. The host materials A to E, PH-1, and PH-2 used at this time are as follows.
Figure imgf000046_0001
상기 실험예 및 비교실험예에서 제조한 유기 발광 소자에 전류를 인가하여, 전압, 효율, 휘도, 색좌표 및 수명을 측정하고 그 결과를 하기 표 1에 나타내었다. 이때, T95은 광밀도 20 mA/cm2에서의 초기 휘도를 100%로 하였을 때 휘도가 95%로 감소되는데 소요되는 시간을 의미한다.
Figure imgf000046_0001
The current was applied to the organic light emitting diodes manufactured in the Experimental and Comparative Experimental examples, and the voltage, efficiency, brightness, color coordinate, and lifetime were measured, and the results are shown in Table 1 below. In this case, T95 means the time required to reduce the luminance to 95% when the initial luminance at the light density of 20 mA / cm 2 is 100%.
【표 1】 Table 1
Figure imgf000046_0002
6 (200:200)/6%
Figure imgf000046_0002
6 (200: 200) / 6%
실험예 (화합물 1— 5:화합물 2-4)/GD—l  Experimental Example (Compound 1-5: Compound 2-4) / GD-l
400 3.41 19.5 (0.34,0.62) 64.0 7 (200:200)/6%  400 3.41 19.5 (0.34,0.62) 64.0 7 (200 : 200) / 6%
실험예 (화합물 1—6:화합물 2-4) /GD-1  Experimental Example (Compound 1-6: Compound 2-4) / GD-1
400 3.08 21.1 (0.33,0.63) 67.2 8' (120: 280)/ 10% 400 3.08 21.1 (0.33,0.63) 67.2 8 ' (120: 280) / 10%
실험예 (화합물 1-7:화합물 2-3) /GD-1  Experimental Example (Compound 1-7: Compound 2-3) / GD-1
400 3.22 19.7 (0.32,0.63) 66.1 9 (200:200)/ 10%  400 3.22 19.7 (0.32,0.63) 66.1 9 (200 : 200) / 10%
비교실 (화합물 1-D/GD-1  Comparative Room (Compound 1-D / GD-1
400 3.19 17.3 (0.31,0.63) 37.5 험예 1 (400)/ 10%  400 3.19 17.3 (0.31,0.63) 37.5 Test example 1 (400) / 10%
비교실 (화합물1-1:ᅡ¾-1)/ )一1  Comparative Room (Compound 1-1: ᅡ ¾-1) /)
300 3.33 19.1 (0.32,0.63) 55.1 험예 2 (150: 150)/ 15%  300 3.33 19.1 (0.32,0.63) 55.1 Test example 2 (150 : 150) / 15%
비교실 (화합물 l-l:PH-2)/GD-l  Comparative Room (Compound l-l: PH-2) / GD-l
400 3.25 20.7 (0.34,0.62) 45.3 험예 3 (200: 200)/ 12%  400 3.25 20.7 (0.34,0.62) 45.3 Test example 3 (200: 200) / 12%
비교실 (화합물 A) /GD-1  Comparative Room (Compound A) / GD-1
300 3.61 13.1 (0.38,0.59) 12.1 험예 4 (300)/ 10%  300 3.61 13.1 (0.38,0.59) 12.1 Experimental example 4 (300) / 10%
비교실 (화합물 B:PH-1)/GD-1  Comparative Room (Compound B: PH-1) / GD-1
300 3.43 19.0 (0.32,0.63) 32.8 험예 5 (150:150)/15%  300 3.43 19.0 (0.32,0.63) 32.8 Test example 5 (150 : 150) / 15%
비교실 (화합물 C:화합물 2-4)/GD-l  Comparative Room (Compound C: Compound 2-4) / GD-l
300 3.33 18.5 (0.32,0.63) 41.6 험예 6 (150: 150)/ 10%  300 3.33 18.5 (0.32,0.63) 41.6 Experimental example 6 (150 : 150) / 10%
비교실 (화합물 D)/D-l  Comparative Room (Compound D) / D-l
400 3.66 16.4 (0.33,0.63) 30.2 험예 7 (400)/ 12%  400 3.66 16.4 (0.33,0.63) 30.2 Experimental example 7 (400) / 12%
비교실 (화합물 D:화합물 2-4)/GD-l  Comparative Room (Compound D: Compound 2-4) / GD-l
400 3.80 14.4 (0.32,0.63) 43.1 험예 8 (120:280)/12  400 3.80 14.4 (0.32,0.63) 43.1 Example 8 (120: 280) / 12
비교실 (화합물 E)/GD-1  Comparative Room (Compound E) / GD-1
400 4.08 19.3 (0.33,0.63) 14.9 험예 9 (400)/ 12%  400 4.08 19.3 (0.33,0.63) 14.9 Ramp 9 (400) / 12%
비교실 (화합물 E:PH— 2)/GD-l  Comparative Room (Compound E: PH —) / GD-l
400 4.23 20.3 (0.35,0.62) 21.5 험예 10 (200:200)/12%  400 4.23 20.3 (0.35,0.62) 21.5 Sample 10 (200 : 200) / 12%
비교실 (화합물 E:화합물 2-5)/GD-l  Comparative Room (Compound E: Compound 2-5) / GD-l
400 3.54 20.0 (0.34,0.62) 25.0 험예 11 (200: 200)/ 12% 실험예 10  400 3.54 20.0 (0.34,0.62) 25.0 Test example 11 (200: 200) / 12% Experimental example 10
IT0( indium tin oxide)가 1,300A의 두께로 박막 코팅된 유리 기판을 세제를 녹인 증류수에 넣고 초음파로 세척하였다. 이때, 세제로는 피셔사 (Fischer Co.) 제품을 사용하였으며, 증류수로는 밀리포어사 (Millipore Co.) 제품의 필터 (Filter)로 2차로 걸러진 증류수를 사용하였다. ΠΌ를 30분간 세척한 후 증류수로 2회 반복하여 초음파 세척을 10분간 진행하였다. 증류수 세척이 끝난 후, 이소프로필알콜, 아세톤, 메탄올의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 수송시켰다. 또한, 산소 플라즈마를 이용하여 상기 기판을 5분간 세정한 후 진공 증착기로 기판을 수송시켰다. 상기와 같이 준비된 ITO투명 전극 위에 하기 HI-1 화합물을 500A의 두께로 열 진공 증착하여 정공 주입층을 형성하였다. 상기 정공 주입층 위에 하기 HT-3 화합물을 800 A의 두께로 열 진공증착하고, 순차적으로 하기 HT-4 화합물을 500A 두께로 진공 증착하여 정공 수송층을 형성하였다. 이어서, 상기 HT-3 증착막 위에 앞서 제조한 화합물 1-1과 앞서 제조한 화합물 2-1을 하기 표 1의 중량비 ( 175 : 175)로 동시 증발에 의해 증착하고, 이때 하기 표 2의 중량비 (5¾>; 화합물 1-1, 화합물 2-1, 및 GD-2 총 증량 대비)로 인광 도펀트인 하기 GD-2 화합물을 공증착하여 하기 표 2의 두께 (350A )로 발광층을 형성하였다. 상기 발광층 위에 하기 ET-3 화합물을 50A의 두께로 진공 증착하여 정공저지층을 형성하고, 상기 정공저지층 위에 하기 ET-4 화합물 및 LiQ를 1 : 1의 충량비로 진공증착하여 250 A의 전자수송층을 형성하였다. 상기 전자수송층 위에 순차적으로 10A 두께의 리튬 프루라이드 (LiF)를 증착하고, 이어 1000A 두께로 알루미늄을 A glass substrate coated with a thin film of I0 (indium tin oxide) having a thickness of 1,300 A was put in distilled water in which detergent was dissolved and ultrasonically cleaned. At this time, Fischer Co. product was used as the detergent, and distilled water filtered secondly as a filter of Millipore Co. product was used as the distilled water. After washing ΠΌ for 30 minutes, the ultrasonic cleaning was repeated twice with distilled water for 10 minutes. After the distilled water wash, ultrasonic cleaning with a solvent of isopropyl alcohol, acetone, methanol, dried and transported to a plasma cleaner. In addition, the substrate was cleaned for 5 minutes using an oxygen plasma, and then the substrate was transferred to a vacuum evaporator. The following HI-1 compound was thermally vacuum deposited to a thickness of 500 A on the prepared ITO transparent electrode to form a hole injection layer. The following HT-3 compound was thermally vacuum deposited to a thickness of 800 A on the hole injection layer, and the following HT-4 compound was sequentially vacuum deposited to a thickness of 500 A to form a hole transport layer. Subsequently, the compound 1-1 prepared above and the compound 2-1 prepared above are deposited by co-evaporation at the weight ratio (175: 175) of Table 1 below, wherein the weight ratio (5¾) of the following Table 2 > To Compound 1-1, Compound 2-1, and GD-2 total increase), the following GD-2 compound, which is a phosphorescent dopant, was co-deposited to form a light emitting layer having a thickness (350A) of Table 2 below. Vacuum depositing the following ET-3 compound to a thickness of 50 A on the light emitting layer to form a hole blocking layer, and vacuum deposition of the following ET-4 compound and LiQ at a filling ratio of 1: 1 on the hole blocking layer to an electron transport layer of 250 A. Formed. Lithium fluoride (LiF) having a thickness of 10 A was sequentially deposited on the electron transport layer, followed by aluminum having a thickness of 1000 A.
Figure imgf000048_0001
상기의 과정에서 유기물의 증착속도는 0.4 ~ 0.7 A/sec를 지하였고, 음극의 리튬플루오라이드는 0.3 A/sec , 알루미늄은 2 A/sec의 증착 속도를 유지하였으며, 증착시 진공도는 1 X 10— 7 ~ 5 X 10"8 torr를 유지하였다. 실험예 11 내지 18
Figure imgf000048_0001
In the above process, the deposition rate of the organic material was 0.4 to 0.7 A / sec, the lithium fluoride of the cathode was 0.3 A / sec, and the aluminum was 2 Was deposited at a rate of A / sec, the deposition, a vacuum was maintained to 1 X 10- 7 ~ 5 X 10 "8 torr. Experimental Examples 11 to 18
상기 실험예 10과 동일한 방법으로 제조하되, 발광층 형성시 인광 호스트 물질 및 도펀트 함량을 하기 표 2와 같이 변경하였다는 점을 제외하고는, 상기 실험예 10과 동일한 방법을 이용하여 유기 발광 소자를 각각 제작하였다. 비교실험예 12 내지 16  The organic light emitting device was manufactured by the same method as Experimental Example 10, except that the phosphorescent host material and the dopant content were changed as shown in Table 2 when forming the emission layer, respectively. Produced. Comparative Experimental Examples 12 to 16
상기 실험예 10과 동일한 방법으로 제조하되, 발광층 형성시 인광 호스트 물질 및 도펀트 함량을 하기 표 2와 같이 변경하였다는 점을 제외하고는, 상기 실험예 10과 동일한 방법을 이용하여 유기 발광 소자를 각각 제작하였다. 이때 사용된 호스트 물질 A, D 및 E는 앞서 비교실험예 1 내지 11에서 사용한 것과 각각 동일하다.  The organic light emitting device was manufactured by the same method as Experimental Example 10, except that the phosphorescent host material and the dopant content were changed as shown in Table 2 when forming the emission layer, respectively. Produced. The host materials A, D and E used at this time are the same as those used in Comparative Experiments 1 to 11, respectively.
【표 2]  [Table 2]
Figure imgf000049_0001
비교실 (화합물 D:화합물 2-D/GD-2
Figure imgf000049_0001
Comparative Room (Compound D: Compound 2-D / GD-2
400 4.35 16.6 (0.35 , 0.61) 65.0 험예 13 (200:200)/5  400 4.35 16.6 (0.35, 0.61) 65.0 Test example 13 (200 : 200) / 5
비교실 (화합물 1- /GD-2  Comparative room (Compound 1- / GD-2
350 3.78 15.5 (0.35 , 0.61) 34.9 험예 14 (350)/5%  350 3.78 15.5 (0.35, 0.61) 34.9 Ramp 14 (350) / 5%
비교실 (화합물 A)/GD一 2  Comparative Room (Compound A) / GD 一 2
350 3.97 14. 1 (0.35 , 0.61) 22.3 험예 15 (350)/6%  350 3.97 14. 1 (0.35, 0.61) 22.3 Example 15 (350) / 6%
비교실 (화합물 A:화합물 2-2) /GD— 2  Comparative Room (Compound A: Compound 2-2) / GD— 2
350 4.51 18.2 (0.34 , 0.62) 47.2 험예 16 ( 140:210)/6 실험예 19  350 4.51 18.2 (0.34, 0.62) 47.2 Experimental example 16 (140: 210) / 6 Experimental example 19
앞서 실시예에서 제조한 화합물의 HOMO 및 PLmax (최대 발광 파장)를 하기의 방법으로 측정하였다. HOMO and PL max (maximum emission wavelength) of the compound prepared in Example were measured by the following method.
1) HOMO 레벨 측정  1) HOMO level measurement
H0M0 레벨은 AC-3 장비 (Rinken Keiki사의 Model AC-3)를 통해 측정하였다. 구체적으로, 실험예 1과 같이 유기 발광 소자 제작시 사용하는 IT0 기판 위에 측정하고자 하는 화합물을 1000 A 두께로 진공 증착한 필름을 사용하고, 10 nW의 UV intensi ty로 필름에 조사하여 발생하는 Photon의 Quantum yield를 측정하여, 그 결과를 하기 표 3에 나타내었다.  H0M0 levels were measured using an AC-3 instrument (Model AC-3 from Rinken Keiki). Specifically, using the film vapor-deposited to 1000 A thickness of the compound to be measured on the IT0 substrate used in manufacturing the organic light emitting device as in Experimental Example 1, and irradiated to the film with 10 nW UV intensi ty of Photon Quantum yield was measured and the results are shown in Table 3 below.
2) PLfflax 값의 측정 2) Measurement of PL fflax value
JASC0 사의 spectrof luorometer FP-8600 model을 사용하여 측정하였다. 구체적으로, 측정하고자 하는 화합물을 bare Glass 위에 1000 A 두께로 진공 증착하여 필름을 준비하고, 이 필름 위에 특정 파장의 UV를 조사하여 방출되는 파장을 스캔하였다. 이때 얻어진 스펙트럼에서 가장 intensi ty가 높은 위치를 PLmax로 결정하여 그 결과를 하기 표 3에 나타내었다. Measurement was performed using a spectrof luorometer FP-8600 model manufactured by JASC0. Specifically, the compound to be measured was vacuum deposited to a thickness of 1000 A on bare glass to prepare a film, and the wavelength emitted by irradiating UV of a specific wavelength on the film was scanned. In this case, the position of the highest intensi ty in the obtained spectrum was determined as PL max and the results are shown in Table 3 below.
【표 3]  [Table 3]
Figure imgf000050_0001
또한, 상기 계 1 호스트와 게 2 호스트」 중량비로 흔합한 흔합물에 대해서 상기와 동일한 방법으로 PLma) 측정하였으며, 그 결과를 도 3 및 도 4에 나타내었다.
Figure imgf000050_0001
In addition, PL ma) was measured in the same manner as described above with respect to the mixed compound in the "weight ratio of 1 host to 2 hosts", and the results are shown in FIGS. 3 and 4.
【부호의 설명】  [Explanation of code]
기판 2: 양극  Substrate 2: Anode
발광층 4: 음극  Light emitting layer 4: cathode
정공주입층 6: 정공수송층  Hole injection layer 6: Hole transport layer
발광충 8: 잔자수송층  Luminous Charm 8: Residual Transport Layer

Claims

【특허청구범위】 [Patent Claims]
【청구항 1】  [Claim 1]
음극; 양극; 및 상기 음극과 양극 사이에 적어도 하나 이상의 발광층을 포함하고,  cathode; anode; And at least one light emitting layer between the cathode and the anode,
상기 발광층은 제 1 호스트 및 게 2 호스트를 포함하고,  The light emitting layer includes a first host and a crab 2 host,
상기 제 1 호스트의 HOMO는 5.6 eV 내지 6.4 eV이고, 상기 게 2 호스트의 HOMO는 5.4 eV 내지 5.8 eV이고, 상기 게 1 호스트의 HOMO와 상기 제 2호스트의 HOMO의 차이는 0.2 eV 이상이고,  The HOMO of the first host is 5.6 eV to 6.4 eV, the HOMO of the second host is 5.4 eV to 5.8 eV, the difference between the HOMO of the first host and the HOMO of the second host is 0.2 eV or more,
상기 제 1 호스트 및 제 2 호스트의 흔합물의 최대 발광 파장이 상기 제 1 호스트의 최대 발광 파장보다 20 nm 이상 높은,  The maximum emission wavelength of the mixture of the first host and the second host is 20 nm or more higher than the maximum emission wavelength of the first host,
유기 발광 소자.  Organic light emitting device.
【청구항 2] [Claim 2]
제 1항에 있어서,  The method of claim 1,
상기 발광층은 하기 화학식 1-1 또는 화학식 1-2로 표시되는 제 1 호스트 화합물 및 하기 화학식 2로 표시되는 게 2 호스트 화합물을 포함하는 유기 발광 소자:  The light emitting layer is an organic light emitting device comprising a first host compound represented by Formula 1-1 or Formula 1-2 and a second host compound represented by Formula 2:
Figure imgf000052_0001
상기 화학식 1-1 및 1-2에서,
Figure imgf000052_0001
In Chemical Formulas 1-1 and 1-2,
Y는 0, S, 또는 SiRiR2이고, Y is 0, S, or SiRiR 2 ,
Xi 내지 ¾은 각각 독립적으로 N , 또는 CR3이고, 단 내지 ¾ 중 적어도 하나는 N이고, Xi to ¾ are each independently N, or CR 3 , provided that at least one of ¾ is N,
L 및 L2는 각각 독립적으로, 단일 결합; 치환 또는 비치환된 C6-60 아릴렌; 또는 치환 또는 비치환된 0, N, Si 및 S 중 1개 이상을 포함하는L and L 2 are each independently a single bond; A substituted or unsubstituted C 6 - 60 arylene; Or substituted or unsubstituted 0, N, Si and S
C2-60 헤테로아릴렌이고, C 2 -60 heteroarylene,
An 및 Ar2는 각각 독립적으로 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 0, N, Si 및 S 중 1개 이상을 포함하는 C2-60 헤테로아릴이고, An and Ar 2 are each independently substituted or unsubstituted C 6 -60 aryl; Or substituted or unsubstituted C 2 -60 heteroaryl including one or more of 0, N, Si, and S,
Ar3는 치환 또는 비치환된 C6-60 아릴이고, Ar 3 is substituted or unsubstituted C 6 -60 aryl,
R1 ; R2 및 ¾는 각각 독립적으로 수소; 중수소; 할로겐; 시아노; 니트로; 아미노; 치환 또는 비치환된 d-60 알킬 ; 치환 또는 비치환된 d-60 할로알킬; 치환 또는 비치환된 d-60 할로알콕시 ; 치환 또는 비치환된 C3-60 사이클로알킬 ; 치환 또는 비치환된 C2-60 알케닐; 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 0, N, Si 및 S 중 1개 이상을 포함하는 C2-60 헤테로아릴이고, R 1; R 2 and ¾ are each independently hydrogen; heavy hydrogen; halogen; Cyano; Nitro; Amino; Substituted or unsubstituted d- 60 alkyl; Substituted or unsubstituted d-60 haloalkyl; Substituted or unsubstituted d-60 haloalkoxy; Substituted or unsubstituted C 3 -60 cycloalkyl; Substituted or unsubstituted C 2 -60 alkenyl; Substituted or unsubstituted C 6 -60 aryl; Or substituted or unsubstituted C 2 -60 heteroaryl including one or more of 0, N, Si, and S,
[화학식 2]  [Formula 2]
Figure imgf000053_0001
Figure imgf000053_0001
상기 화학식 2에서,  In Chemical Formula 2,
Y'는 0, S, N ', 또는 CR'R"이고,  Y 'is 0, S, N', or CR'R ",
여기서. , R' 및 R"는 각각 독립적으로 수소; 중수소; 할로겐; 시아노; 니트로; 아미노; 치환 또는 비치환된 d-60 알킬 ; 치환 또는 비치환된 d-60 할로알킬; 치환 또는 비치환된 할로알콕시 ; 치환 또는 비치환된 C3-60 사이클로알킬; 치환 또는 비치환된 C2-60 알케닐; 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 0, N , Si 및 S 중 1개 이상을 포함하는 C2-60 헤테로아릴이고, 또는 R ' 및 R"가 함께 치환 또는 비치환된 C6-60 방향족 고리를 형성하고, here. Are each independently hydrogen; deuterium; halogen; cyano; nitro; amino; substituted or unsubstituted d-60 alkyl; substituted or unsubstituted d- 60 haloalkyl; substituted or unsubstituted halo alkoxy, substituted or unsubstituted C 3 - 60 Cycloalkyl; Substituted or unsubstituted C 2 -60 alkenyl; Substituted or unsubstituted C 6 -60 aryl; Or substituted or unsubstituted C 2 -60 heteroaryl including one or more of 0, N, Si, and S, or R 'and R "together form a substituted or unsubstituted C 6 -60 aromatic ring; ,
L ' 및 L"는 각각 독립적으로 단일 결합; 치환 또는 비치환된 C6-60 아릴렌; 또는 치환 또는 비치환된 0, N , Si 및 S 중 1개 이상을 포함하는 C2-60 헤테로아릴렌이고, L ′ and L ″ are each independently a single bond; substituted or unsubstituted C 6 -60 arylene; or substituted or unsubstituted C 2 -60 heteroaryl including one or more of 0, N, Si, and S Ren,
R ' r 치환 또는 비치환된 d-so 알킬; 치환 또는 비치환된 C3-60 사이클로알킬 ; 치환 또는 비치환된 C6-60 아릴 ; 또는 치환 또는 비치환된 0, N , Si 및 S 중 1개 이상을 포함하는 C2-60 헤테로아릴이고, . R'r substituted or unsubstituted d-so alkyl; Substituted or unsubstituted C 3 -60 cycloalkyl; Substituted or unsubstituted C 6 -60 aryl; Or substituted or unsubstituted C 2 -60 heteroaryl including one or more of 0, N, Si, and S;
R ' 2 및 R ' 3은 각각 독립적으로, 수소; 중수소; 할로겐; 시아노; 치환 또는 비치환된 C O 알킬; 치환 또는 비치환된 C3-60 사이클로알킬; 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 0, N , Si 및' S 중 1개 이상을 포함하는 C2-60 헤테로아릴이고, R '2 and R' 3 are each independently hydrogen; heavy hydrogen; halogen; Cyano; Substituted or unsubstituted CO alkyl; Substituted or unsubstituted C 3 -60 cycloalkyl; Substituted or unsubstituted C 6 -60 aryl; Or substituted or unsubstituted C 2 -60 heteroaryl containing one or more of 0, N, Si and 'S,
n 및 m은 각각 독립적으로 0 내지 4의 정수이다.  n and m are each independently an integer of 0-4.
【청구항 3】 [Claim 3]
거 12항에 있어서,  According to claim 12,
Xi 내지 ¾은 각각 독립적으로 N , 또는 CH이고, 단 ¾ 내지 ¾ 중 적어도 하나는 N인,  Xi to ¾ are each independently N, or CH, provided that at least one of ¾ to ¾ is N,
유기 발광 소자.  Organic light emitting device.
【청구항 4】 [Claim 4]
거 12항에 있어서,  According to claim 12,
은, 단일 결합, 페닐렌, 시아노로 치환된 페닐렌, 또는 페닐로 치환된 피리디닐렌인,  Silver, a single bond, phenylene, cyano-substituted phenylene, or phenyl-substituted pyridinylene,
유기 발광 소자.  Organic light emitting device.
【청구항 5] [Claim 5]
거 12항에 있어서 L2는 단일 결합, 페닐렌, 나프틸렌, 페난쓰레닐렌, 또는 피리디닐렌인, According to claim 12 L 2 is a single bond, phenylene, naphthylene, phenanthrenylene, or pyridinylene,
유기 발광 소자.  Organic light emitting device.
【청구항 6】 [Claim 6]
제 2항에 있어서,  The method of claim 2,
An 및 Ar2는 각각 독립적으로 페닐, 시아노로 치환된 페닐, 1 내지 5개의 증수소로 치환된 페닐, 비페닐릴, 또는 디벤조퓨라닐인, An and Ar 2 are each independently phenyl, phenyl substituted with cyano, phenyl substituted with 1 to 5 dihydrogen, biphenylyl, or dibenzofuranyl,
유기 발광 소자.  Organic light emitting device.
【청구항 7】 [Claim 7]
거 12항에 있어서,  According to claim 12,
Ar3는 하기로 구성되는 군으로부터 선택되는 어느 하나인, 유기 발광 소자: Ar 3 is any one selected from the group consisting of:
Ϊ380002/:Ή12 OAV Ϊ 3800 , Ι 02 / : Ή12 OAV
Figure imgf000056_0001
Figure imgf000056_0001
Figure imgf000057_0001
거 12항에 있어서,
Figure imgf000057_0001
According to claim 12,
상기 화학식 1-1 또는 1—2로 표시되는 화합물은 하기로 구성되는 군으로부터 선택되는 어느 하나인,  The compound represented by Formula 1-1 or 1-2 is any one selected from the group consisting of
유기 발광 소자: Organic light emitting device:
89 89
Figure imgf000059_0001
Figure imgf000059_0001
Ι 9800/ίΙΟΖ^Ά/13ά ST0C60/810Z OAV 69 Ι 9800 / ίΙΟΖ ^ Ά / 13ά ST0C60 / 810Z OAV 69
Figure imgf000060_0001
Figure imgf000060_0001
Ι 9800/ίΙΟΖ^Ά/13ά ST0C60/810Z OAV 09 Ι 9800 / ίΙΟΖ ^ Ά / 13ά ST0C60 / 810Z OAV 09
Figure imgf000061_0001
Figure imgf000061_0001
Ι 9800/ίΙΟΖ^Ά/13ά ST0C60/810Z OAV Ι 9800 / ίΙΟΖ ^ Ά / 13ά ST0C60 / 810Z OAV
Figure imgf000062_0001
Figure imgf000062_0001
【청구항 91 [Claim 91]
겨 12항에 있어서 Y '는 0, S, NR1, C(CH3)2 , 또는 치 이고, According to claim 12 Y 'is 0, S, NR 1 , C (CH 3 ) 2 , or
여기서, R'는 페닐, 시아노로 치환된 페닐, 비페닐릴, 트리페닐레닐, 사이클로핵실, 디메틸플루오레닐, 또는 디벤조퓨라닐인,  Wherein R 'is phenyl, phenyl substituted by cyano, biphenylyl, triphenylenyl, cyclonuclear chamber, dimethylfluorenyl, or dibenzofuranyl,
유기 발광 소자.  Organic light emitting device.
【청구항 10] [Claim 10]
게 2항에 있어서,  According to claim 2,
L ' 및 L"는 각각 독립적으로, 단일 결합, 또는 페닐렌인,  L 'and L "are each independently a single bond or phenylene,
유기 발광 소자.  Organic light emitting device.
【청구항 11】 [Claim 11]
거 U항에 있어서,  In U,
!?^은 페닐, 터트-부틸로 치환된 페닐, 비페닐린, 트리페닐레닐, 페난트레닐, 터페닐릴, 피리디닐, 페닐로 치환된 카바졸릴, 디메틸플루오레닐, 또는 디벤조티오페닐인,  !? ^ Is phenyl, tert-butyl substituted phenyl, biphenylin, triphenylenyl, phenanthrenyl, terphenylyl, pyridinyl, phenyl substituted carbazolyl, dimethylfluorenyl, or dibenzothiophenyl sign,
유기 발광 소자.  Organic light emitting device.
【청구항 12】 [Claim 12]
게 1항에 있어서, ' Crab according to claim 1, wherein,
R' 2 및 R ' 3은 각각 독립적으로, 수소; 터트-부틸; 시아노; 페닐; 시아노로 치환된 페닐; 또는 피리디닐인, R ' 2 and R' 3 are each independently hydrogen; Tert-butyl; Cyano; Phenyl; Phenyl substituted with cyano; Or pyridinyl,
유기 발광 소자.  Organic light emitting device.
[청구항 13】 [Claim 13]
제 1항에 있어서,  The method of claim 1,
상기 화학식 2로 표시되는 화합물은 하기로 구성되는 군으로부터 선택되는 어느 하나인,  The compound represented by Formula 2 is any one selected from the group consisting of
유기 발광 소자: £9 Organic light emitting device: £ 9
Figure imgf000064_0001
Figure imgf000064_0001
Figure imgf000065_0001
Figure imgf000065_0001
Ι 9800/ίΙΟΖ^Ά/13ά ST0C60/810Z OAV Ι 9800 / ίΙΟΖ ^ Ά / 13ά ST0C60 / 810Z OAV
PCT/KR2017/008641 2016-11-16 2017-08-09 Organic light-emitting device WO2018093015A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US15/747,038 US11800730B2 (en) 2016-11-16 2017-08-09 Organic light emitting device
CN201780002810.2A CN108323172B (en) 2016-11-16 2017-08-09 Organic light emitting device
JP2018502092A JP6575673B2 (en) 2016-11-16 2017-08-09 Organic light emitting device
EP17832177.4A EP3348625B1 (en) 2016-11-16 2017-08-09 Organic light-emitting device
EP21192347.9A EP3929266A1 (en) 2016-11-16 2017-08-09 Organic light emitting device
US18/369,681 US20240023355A1 (en) 2016-11-16 2023-09-18 Organic light emitting device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2016-0152691 2016-11-16
KR20160152691 2016-11-16
KR10-2017-0094877 2017-07-26
KR1020170094877A KR101885898B1 (en) 2016-11-16 2017-07-26 Organic light emitting device

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/747,038 A-371-Of-International US11800730B2 (en) 2016-11-16 2017-08-09 Organic light emitting device
US18/369,681 Continuation US20240023355A1 (en) 2016-11-16 2023-09-18 Organic light emitting device

Publications (1)

Publication Number Publication Date
WO2018093015A1 true WO2018093015A1 (en) 2018-05-24

Family

ID=62146564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/008641 WO2018093015A1 (en) 2016-11-16 2017-08-09 Organic light-emitting device

Country Status (1)

Country Link
WO (1) WO2018093015A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210009894A1 (en) * 2017-12-12 2021-01-14 Lg Chem, Ltd. Organic light emitting device
JP2021521254A (en) * 2018-08-22 2021-08-26 エルジー・ケム・リミテッド New compounds and organic light emitting devices using them
WO2023099430A1 (en) 2021-12-02 2023-06-08 Merck Patent Gmbh Triphenylene-triazine-dibenzofuran/dibenzothiophene derivatives for organic electroluminescent devices

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000051826A (en) 1999-01-27 2000-08-16 성재갑 New organomattalic complex molecule for the fabrication of organic light emitting diodes
WO2003012890A2 (en) 2001-07-20 2003-02-13 Novaled Gmbh Light emitting component with organic layers
KR20060059321A (en) * 2004-11-27 2006-06-01 삼성에스디아이 주식회사 Organic electroluminescence display
KR20080028212A (en) * 2006-09-26 2008-03-31 삼성에스디아이 주식회사 Organic light emitting display and method of manufacturing the same
KR20150077587A (en) * 2013-12-27 2015-07-08 주식회사 두산 Organic electro luminescence device
KR20150126525A (en) * 2014-05-02 2015-11-12 삼성디스플레이 주식회사 Organic light emitting device
KR20160063753A (en) * 2014-11-27 2016-06-07 엘지디스플레이 주식회사 Organic light emitting device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000051826A (en) 1999-01-27 2000-08-16 성재갑 New organomattalic complex molecule for the fabrication of organic light emitting diodes
WO2003012890A2 (en) 2001-07-20 2003-02-13 Novaled Gmbh Light emitting component with organic layers
KR20060059321A (en) * 2004-11-27 2006-06-01 삼성에스디아이 주식회사 Organic electroluminescence display
KR20080028212A (en) * 2006-09-26 2008-03-31 삼성에스디아이 주식회사 Organic light emitting display and method of manufacturing the same
KR20150077587A (en) * 2013-12-27 2015-07-08 주식회사 두산 Organic electro luminescence device
KR20150126525A (en) * 2014-05-02 2015-11-12 삼성디스플레이 주식회사 Organic light emitting device
KR20160063753A (en) * 2014-11-27 2016-06-07 엘지디스플레이 주식회사 Organic light emitting device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3348625A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210009894A1 (en) * 2017-12-12 2021-01-14 Lg Chem, Ltd. Organic light emitting device
US11685859B2 (en) * 2017-12-12 2023-06-27 Lg Chem, Ltd. Organic light emitting device
JP2021521254A (en) * 2018-08-22 2021-08-26 エルジー・ケム・リミテッド New compounds and organic light emitting devices using them
JP7230307B2 (en) 2018-08-22 2023-03-01 エルジー・ケム・リミテッド Novel compound and organic light-emitting device using the same
WO2023099430A1 (en) 2021-12-02 2023-06-08 Merck Patent Gmbh Triphenylene-triazine-dibenzofuran/dibenzothiophene derivatives for organic electroluminescent devices

Similar Documents

Publication Publication Date Title
US20240023355A1 (en) Organic light emitting device
KR101856728B1 (en) Organic light emitting device
TWI682934B (en) Novel heterocyclic compounds and organic light emitting device using the same
KR102134383B1 (en) Organic light emitting device
KR102107087B1 (en) Organic light emitting device
KR102040226B1 (en) Organic light emitting device
KR102086763B1 (en) Organic light emitting device
WO2018182259A1 (en) Organic light emitting element
CN107810182B (en) Composition for organic photoelectric element, and display element
KR102123015B1 (en) Novel compound and organic light emitting device comprising the same
US11851423B2 (en) Heterocyclic compound and organic light emitting device comprising the same
KR20180061074A (en) Novel hetero-cyclic compound and organic light emitting device comprising the same
KR20210098937A (en) Organic light emitting device
KR102461122B1 (en) Organic light emitting device
CN110944991B (en) Heterocyclic compound and organic light emitting device including the same
WO2018093080A1 (en) Novel heterocyclic compound and organic light-emitting device using same
EP3730488A1 (en) Novel heterocyclic compound and organic light emitting device using same
KR20200035905A (en) Novel compound and organic light emitting device comprising the same
KR20210034528A (en) Novel compound and organic light emitting device comprising the same
KR20180010144A (en) Hetero-cyclic compound and organic light emitting device comprising the same
WO2018093015A1 (en) Organic light-emitting device
KR102430077B1 (en) Novel compound and organic light emitting device comprising the same
WO2019017731A1 (en) Novel heterocyclic compound and organic light-emitting device using same
KR20200105388A (en) Novel compound and organic light emitting device comprising the same
KR20190113664A (en) Hetorocyclic compound and organic light emitting device comprising same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018502092

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017832177

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE