WO2018092785A1 - Active energy ray-curable composition - Google Patents

Active energy ray-curable composition Download PDF

Info

Publication number
WO2018092785A1
WO2018092785A1 PCT/JP2017/040993 JP2017040993W WO2018092785A1 WO 2018092785 A1 WO2018092785 A1 WO 2018092785A1 JP 2017040993 W JP2017040993 W JP 2017040993W WO 2018092785 A1 WO2018092785 A1 WO 2018092785A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
meth
acrylate
active energy
energy ray
Prior art date
Application number
PCT/JP2017/040993
Other languages
French (fr)
Japanese (ja)
Inventor
一樹 大房
和正 稲田
谷内 健太郎
Original Assignee
東亞合成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東亞合成株式会社 filed Critical 東亞合成株式会社
Priority to JP2018551651A priority Critical patent/JP6927233B2/en
Publication of WO2018092785A1 publication Critical patent/WO2018092785A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16

Definitions

  • the present invention relates to an active energy ray-curable composition, preferably a solventless active energy ray-curable composition, and particularly preferably an active energy ray-curable composition for a moldable material and an active energy ray-curable composition for a hard coat. Belonging to these technical fields.
  • acryloyl group and / or methacryloyl group is “(meth) acryloyl group”
  • acrylate and / or methacrylate is “(meth) acrylate”
  • acrylic acid and / or methacrylic “Acid” is represented as "(meth) acrylic acid”.
  • Lens sheet such as prism sheet, antireflection film (so-called moth-eye film) having anti-glare structure on the surface with a period of less than the wavelength of visible light, antiglare film, light extraction film for organic EL / LED, light for solar cell
  • Shaped films such as confinement films and heat ray retroreflective films are usually produced by the following method. That is, an active energy ray-curable composition is filled between a stamper having a reverse structure of a fine concavo-convex structure on the surface and a transparent substrate, cured by irradiation with active energy rays, and then the stamper is released.
  • a method of transferring a fine concavo-convex structure and then curing the active energy ray-curable composition by irradiation with an active energy ray is used.
  • TMPTA active energy ray curable composition containing trimethylolpropane triacrylate
  • Patent Document 2 a solvent-based active energy ray-curable composition containing inorganic fine particles is known (Patent Document 2).
  • the composition contains a solvent and has a low viscosity and is excellent in transferability of a fine concavo-convex structure, there is a problem in that productivity is lowered because solvent drying is required after application to a substrate.
  • the solvent-free UV curable composition can simplify the equipment because it does not require ancillary equipment such as a drying furnace and solvent recovery equipment, and is preferable as a plastic hard coat material in addition to the shaping material.
  • Patent Document 3 the conventional active energy ray-curable composition for solvent-free hard coat tends to have a trade-off relationship between low viscosity and high hardness, and further improvement has been demanded.
  • the present inventors have a low-viscosity composition without using a solvent, and a solvent-free active energy ray-curable composition that is excellent in the hardness, scratch resistance, and substrate adhesion of a cured product of the composition,
  • a solvent-free active energy ray-curable composition that is excellent in the hardness, scratch resistance, and substrate adhesion of a cured product of the composition
  • a composition having two or more (meth) acryloyl groups having a high (meth) acryloyl group concentration and a small molecular weight (hereinafter referred to as “polyfunctional”) is a solvent-free and low-viscosity composition capable of achieving high hardness.
  • Meth) acrylate is considered effective, and glycerin tri (meth) acrylate (hereinafter referred to as“ GLY-TA ”) is considered effective as one of the candidates.
  • GLY-TA glycerin tri (meth) acrylate
  • the inventors of the present invention have an active energy ray-curable composition containing a specific GLY-TA and inorganic fine particles, which has no solvent and low viscosity, and the hardness and scratch resistance of the cured product.
  • the present invention was completed by finding that the substrate adhesion was excellent.
  • the present invention will be described in detail.
  • composition of the present invention it is solventless and has a low viscosity, and the cured product can be excellent in hardness, scratch resistance and substrate adhesion.
  • the present invention is a composition comprising the following components (A), (B) and (C), In a total of 100% by weight of the components (A), (B) and (C), the component (A) is 40 to 95% by weight, the component (B) is 5 to 60% by weight and the component (C) is 0 to 55%.
  • the present invention relates to an active energy ray-curable composition containing% by weight.
  • GPC Chromatography
  • component (A)-I area of detection peaks including GLY-TA-L: total area of detection peaks having a weight average molecular weight smaller than that of detection peaks including GLY-TA
  • B Component: Filler
  • C Component: Compound having an ethylenically unsaturated group other than the (A) component
  • Component (A) which is an essential component of the present invention, is a (meth) acrylate mixture containing GLY-TA as a main component.
  • the area% of the high molecular weight substance defined by the following formula (1) is less than 30%, preferably 25%. Less than, more preferably less than 20%.
  • High molecular weight area% [(R ⁇ IL) / R] ⁇ 100 (1)
  • R total area of detection peaks in component (A)
  • I area of detection peaks including GLY-TA
  • L weight average molecular weight (hereinafter referred to as “Mw”) more than detection peaks including GLY-TA Total area of small detection peak
  • Mw means a value obtained by converting the molecular weight measured by GPC based on the molecular weight of polystyrene using tetrahydrofuran (hereinafter referred to as “THF”) as a solvent.
  • the composition can have a low viscosity and excellent cured product properties.
  • the area% of the high molecular weight is 30% or more, the viscosity of the composition increases. Therefore, when used as a shaping material, the shape reproducibility deteriorates, and when used as a hard coat agent, the coatability is increased. Gets worse.
  • the molecular weight measured by GPC in the present invention means a value measured under the following conditions.
  • ⁇ Detector Differential refractometer (RI detector) -Column type: Cross-linked polystyrene column-Column temperature: within 25-50 ° C-Eluent: THF
  • the component (A) is mainly composed of GLY-TA and preferably has a low hydroxyl value.
  • the hydroxyl value is preferably 60 mgKOH / g or less, more preferably 45 mgKOH / g or less.
  • the hydroxyl value means the number of mg of potassium hydroxide equivalent to the hydroxyl group in 1 g of a sample.
  • the component (A) those obtained by transesterification of a compound having glycerin and one (meth) acryloyl group [hereinafter referred to as monofunctional (meth) acrylate] are preferable.
  • monofunctional (meth) acrylate a compound having glycerin and one (meth) acryloyl group
  • the secondary hydroxyl group has low reactivity, so a large amount of high molecular weight is produced, and GLY-TA is produced industrially. Is difficult.
  • a (meth) acrylate mixture containing GLY-TA as a main component can be produced.
  • a mixture of (meth) acrylate is obtained.
  • glycerin di (meth) acrylate and high molecular weight are obtained, and a small amount of glycerin mono (meth) acrylate is obtained depending on the production conditions.
  • the high molecular weight substance include, for example, a polyfunctional (meth) acrylate having a Michael addition type structure such as a compound in which the hydroxyl group of glycerin di (meth) acrylate is added to the (meth) acryloyl group of GLY-TA. Is mentioned.
  • the production method by transesterification which is a preferred production method of the component (A)
  • the production method of the polyhydric alcohol, the monofunctional (meth) acrylate, the catalyst, and the component (A) will be described.
  • the polyhydric alcohol used as a raw material for the polyhydric alcohol (A) component is glycerin.
  • the raw material glycerin may contain a small amount of water and a glycerin condensate such as diglycerin.
  • a glycerin condensate such as diglycerin.
  • it is 90 weight% or more, More preferably, it is 95 weight% or more.
  • Glycerin may contain a small amount of peroxide derived from the production process.
  • concentration of the peroxide contained in the glycerol used as a raw material of a component it is preferable that it is 5 wtppm or less, More preferably, it is 2 wtppm or less. If the concentration of the peroxide exceeds 5 wtppm, the (meth) acryloyl group may be polymerized during the production or the color tone of the reaction solution may be deteriorated.
  • glycerin and a polyhydric alcohol other than glycerin hereinafter referred to as “other polyhydric alcohol” may be used in any combination as long as the effects of the present invention are not impaired. .
  • 50 weight part or less is preferable with respect to 100 weight part of glycerol.
  • polyhydric alcohols include aliphatic alcohols having at least two alcoholic hydroxyl groups in the molecule, alicyclic alcohols, aromatic alcohols, polyhydric alcohol ethers, and other functional groups and bonds in the molecule.
  • dihydric alcohol having two alcoholic hydroxyl groups include ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, trimethylene glycol, dipropylene glycol, tripropylene glycol, polypropylene glycol, butanediol, Examples include pentanediol, hexanediol, heptanediol, nonanediol, neopentylglycol, cyclohexanediol, cyclohexanedimethanol, and dioxaneglycol.
  • trihydric alcohol having three alcoholic hydroxyl groups include trihydric alcohols such as trimethylolethane, trimethylolpropane, tris (2-hydroxyethyl) isocyanurate, hexanetriol, octanetriol, and decanetriol;
  • trihydric alcohols such as trimethylolethane, trimethylolpropane, tris (2-hydroxyethyl) isocyanurate, hexanetriol, octanetriol, and decanetriol
  • Examples include an alkylene oxide adduct of a trivalent alcohol.
  • tetrahydric alcohol having four alcoholic hydroxyl groups include tetrahydric alcohols such as ditrimethylolethane, ditrimethylolpropane, diglycerin, and pentaerythritol, and alkylene oxide adducts of tetrahydric alcohol. .
  • pentahydric alcohol having 5 alcoholic hydroxyl groups include pentahydric alcohols such as tritrimethylolethane, tritrimethylolpropane, and triglycerin, and alkylene oxide adducts of pentahydric alcohol.
  • polyhydric alcohol having 6 or more alcoholic hydroxyl groups include polytrimethylolethane, polytrimethylolpropane, polyglycerin, dipentaerythritol, tripentaerythritol, and polypentaerythritol. And alkylene oxide adducts of alcohols having 6 or more valences.
  • polyhydric alcohols include the compounds mentioned in JP 2017-39916 A, JP 2017-39917 A, and International Publication No. 2017/033732.
  • the monofunctional (meth) acrylate used as a raw material for the monofunctional (meth) acrylate (A) component is a compound having one (meth) acryloyl group in the molecule.
  • it is represented by the following general formula (1).
  • R 1 represents a hydrogen atom or a methyl group.
  • R 2 represents an organic group having 1 to 50 carbon atoms.
  • R 2 in the general formula (1) include 1 carbon atom such as methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group and 2-ethylhexyl group.
  • R 2 in the general formula (1) include the functional groups described in JP 2017-39916 A, JP 2017-39917 A, and International Publication No. 2017/033732. .
  • these monofunctional (meth) acrylates can be used alone or in combination of two or more.
  • carbon such as methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) acrylate and 2-ethylhexyl (meth) acrylate
  • Alkyl (meth) acrylates having an alkyl group of 1 to 8 and alkoxyalkyl (meth) acrylates such as 2-methoxyethyl acrylate and N, N-dimethylaminoethyl (meth) acrylate are preferable, and most polyhydric alcohols are particularly preferable.
  • (Meth) acrylates having an alkyl group having 1 to 4 carbon atoms and alkoxyalkyl (meth) acrylates having an alkyl group having 1 to 2 carbon atoms, which are easily available and easily available, are preferred. Furthermore, alkoxyalkyl (meth) acrylates having an alkyl group having 1 to 2 carbon atoms that promote dissolution of polyhydric alcohol and exhibit very good reactivity are more preferable, and 2-methoxyethyl (meth) acrylate is particularly preferable. Furthermore, as monofunctional (meth) acrylate, acrylate is particularly preferable because of its excellent reactivity.
  • the transesterification catalyst in the method for producing the catalyst (A) component conventionally known ones such as a tin-based catalyst, a titanium-based catalyst, and sulfuric acid can be used.
  • a tin-based catalyst a titanium-based catalyst
  • sulfuric acid a sulfuric acid
  • Catalyst X a cyclic tertiary amine having an azabicyclo structure or a salt or complex thereof (hereinafter referred to as “azabicyclo compound”), an amidine or a salt or complex thereof (hereinafter referred to as “amidine compound”), a compound having a pyridine ring, or
  • azabicyclo compound an amidine or a salt or complex thereof
  • amidine compound a compound having a pyridine ring
  • One or more compound catalysts selected from the group consisting of salts or complexes thereof hereinafter referred to as “pyridine compounds”
  • phosphine compounds phosphine compounds
  • the catalyst X is one or more compounds selected from the group consisting of azabicyclo compounds, amidine compounds, pyridine compounds, and phosphine compounds.
  • the catalyst X is preferably at least one compound selected from the group consisting of azabicyclo compounds, amidine compounds and pyridine compounds among the compound groups described above. These compounds are excellent in catalytic activity and can preferably produce component (A), and form a complex with catalyst Y described later after completion of the reaction. Therefore, these compounds can be easily obtained from the reaction solution after completion of the reaction by a simple method such as filtration and adsorption. Can be removed.
  • the complex with the catalyst Y becomes hardly soluble in the reaction solution, the azacyclo compound can be more easily removed by filtration and adsorption.
  • the phosphine compound is excellent in catalytic activity, it is difficult to form a complex with the catalyst Y, and most of the phosphine compound remains dissolved in the reaction solution after completion of the reaction. Therefore, the phosphine compound is reacted by a simple method such as filtration and adsorption. It is difficult to remove from the liquid. For this reason, the phosphine-based catalyst remains in the final product, thereby causing turbidity and catalyst precipitation during storage of the product, and increasing the viscosity or gelation over time. Problems may arise, and similar problems may occur when used as a component of a composition.
  • the azabicyclo compound include various compounds as long as the compound satisfies the cyclic tertiary amine having an azabicyclo structure, a salt of the amine, or a complex of the amine.
  • Preferred compounds include quinuclidine, 3 -Hydroxyquinuclidine, 3-quinuclidinone, 1-azabicyclo [2.2.2] octane-3-carboxylic acid, and triethylenediamine (also known as 1,4-diazabicyclo [2.2.2] octane. DABCO ”).
  • Specific examples of the azabicyclo compounds include the functional groups described in JP 2017-39916 A, JP 2017-39917 A, and International Publication No. 2017/033732.
  • amidine compounds include imidazole, N-methylimidazole, N-ethylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 1-vinylimidazole, 1-allylimidazole, 1 , 8-diazabicyclo [5.4.0] undec-7-ene (hereinafter referred to as “DBU”), 1,5-diazabicyclo [4.3.0] non-5-ene (hereinafter referred to as “DBN”) N-methylimidazole hydrochloride, DBU hydrochloride, DBN hydrochloride, N-methylimidazole acetate, DBU acetate, DBN acetate, N-methylimidazole acrylate, DBU acrylate, DBN acrylate, and Examples include phthalimide DBU.
  • pyridine compounds include pyridine, 2-methylpyridine, 3-methylpyridine, 4-methylpyridine, 2-ethylpyridine, 3-ethylpyridine, 4-ethylpyridine, and N, N-dimethyl- 4-aminopyridine (hereinafter referred to as “DMAP”) and the like.
  • DMAP N-dimethyl- 4-aminopyridine
  • Specific examples of the pyridine-based compound include the functional groups described in JP-A-2017-39916, JP-A-2017-39917 and International Publication No. 2017/033732.
  • Examples of phosphine or a salt or complex thereof include compounds containing a structure represented by the following general formula (2).
  • R 3 , R 4 and R 5 are each a linear or branched alkyl group having 1 to 20 carbon atoms, a linear or branched alkenyl group having 1 to 20 carbon atoms, a carbon number of 6 Means an aryl group having ⁇ 24 or a cycloalkyl group having 5 to 20 carbon atoms.
  • R 3 , R 4 and R 5 may be the same or different. To express. )
  • phosphine compound examples include triphenylphosphine, tris (4-methoxyphenyl) phosphine, tri (p-tolyl) phosphine, tri (m-tolyl) phosphine, And tris (4-methoxy-3,5-dimethylphenyl) phosphine and tricyclohexylphosphine.
  • specific examples of the phosphine compounds include the functional groups described in JP-A-2017-39916, JP-A-2017-39917, and International Publication No. 2017/033732.
  • these catalysts X can be used alone or in any combination of two or more.
  • quinuclidine, 3-quinuclidinone, 3-hydroxyquinuclidine, DABCO, N-methylimidazole, DBU, DBN and DMAP are preferable, and particularly have good reactivity with most polyhydric alcohols. More preferred are 3-hydroxyquinuclidine, DABCO, N-methylimidazole, DBU and DMAP, as shown and readily available.
  • the ratio of the catalyst X used in the method for producing the component (A) is not particularly limited, but 0.0001 to 0.5 mol of the catalyst X is preferably used with respect to 1 mol of the total hydroxyl groups in the polyhydric alcohol. More preferably, it is 0.0005 to 0.2 mol.
  • 0.0001 to 0.5 mol of the catalyst X is preferably used with respect to 1 mol of the total hydroxyl groups in the polyhydric alcohol. More preferably, it is 0.0005 to 0.2 mol.
  • the catalyst Y is a compound containing zinc.
  • various compounds can be used as long as they contain zinc, but organic acids zinc and zinc diketone enolate are preferable because of excellent reactivity.
  • organic acid zinc include dibasic acid zinc such as zinc oxalate and a compound represented by the following general formula (3).
  • R 6 and R 7 are each a linear or branched alkyl group having 1 to 20 carbon atoms, a linear or branched alkenyl group having 1 to 20 carbon atoms, or a 6 to 24 carbon atoms.
  • An aryl group or a cycloalkyl group having 5 to 20 carbon atoms is meant.
  • R 6 and R 7 may be the same or different.
  • the compound of the formula (3) is preferably a compound in which R 6 and R 7 are linear or branched alkyl groups having 1 to 20 carbon atoms.
  • the linear or branched alkyl group having 1 to 20 carbon atoms is a functional group having no halogen atom such as fluorine and chlorine, and the catalyst Y having the functional group has a high yield. Is preferable because GLY-TA can be produced.
  • Examples of zinc diketone enolate include compounds represented by the following general formula (4).
  • R 8 , R 9 , R 10 , R 11 , R 12 and R 13 are each a hydrogen atom, a linear or branched alkyl group having 1 to 20 carbon atoms, or a group having 1 to 20 carbon atoms.
  • a linear or branched alkenyl group, an aryl group having 6 to 24 carbon atoms, or a cycloalkyl group having 5 to 20 carbon atoms is meant.
  • R 8 , R 9 , R 10 , R 11 , R 12 and R 13 may be the same or different.
  • the compound containing zinc represented by the general formula (3) include zinc acetate, zinc acetate dihydrate, zinc propionate, zinc octylate, zinc neodecanoate, zinc laurate, zinc myristate, Examples include zinc stearate, zinc cyclohexanebutyrate, zinc 2-ethylhexanoate, zinc benzoate, zinc t-butylbenzoate, zinc salicylate, zinc naphthenate, zinc acrylate, and zinc methacrylate.
  • this complex with the hydrate, solvate, and catalyst X is also component (A). It can be used as the catalyst Y in the production method.
  • the compound containing zinc represented by the general formula (4) include zinc acetylacetonate, zinc acetylacetonate hydrate, bis (2,6-dimethyl-3,5-heptanedionate) zinc, bis (2,2,6,6-tetramethyl-3,5-heptanedionato) zinc, bis (5,5-dimethyl-2,4-hexanedionato) zinc and the like.
  • these compounds containing zinc when the complex with the hydrate, solvate, or catalyst X exists, this complex with the hydrate, solvate, and catalyst X is also component (A). It can be used as the catalyst Y in the production method.
  • the organic acid zinc and zinc diketone enolate in the catalyst Y can be used directly, but these compounds can also be generated and used in the reaction system.
  • zinc compounds such as metal zinc, zinc oxide, zinc hydroxide, zinc chloride and zinc nitrate (hereinafter referred to as “raw zinc compounds”) are used as raw materials.
  • raw zinc compounds raw zinc compounds and organic acids are used.
  • zinc diketone enolate a method of reacting a raw material zinc compound and 1,3-diketone can be used.
  • these catalysts Y can be used alone or in any combination of two or more.
  • zinc acetate, zinc propionate, zinc acrylate, zinc methacrylate, and zinc acetylacetonate are preferable, and particularly shows good reactivity with most polyhydric alcohols and is easily available.
  • Zinc acetate, zinc acrylate and zinc acetylacetonate are preferred.
  • the ratio of the catalyst Y used in the method for producing the component (A) is not particularly limited, but 0.0001 to 0.5 mol of the catalyst Y is preferably used with respect to 1 mol of hydroxyl groups in the polyhydric alcohol. More preferably, it is 0.0005 to 0.2 mol.
  • 0.0001 to 0.5 mol of the catalyst Y is preferably used with respect to 1 mol of hydroxyl groups in the polyhydric alcohol. More preferably, it is 0.0005 to 0.2 mol.
  • Component Production Method Component (A) is produced by subjecting glycerol and a monofunctional (meth) acrylate to an ester exchange reaction in the presence of a transesterification catalyst.
  • the production method of the component (A) is preferably a production method using the catalysts X and Y in combination as a catalyst. The production method will be described below.
  • the ratio of the catalyst X and the catalyst Y in the method for producing the component (A) is not particularly limited, but it is preferable to use 0.005 to 10.0 moles of the catalyst X with respect to 1 mole of the catalyst Y.
  • the amount is preferably 0.05 to 5.0 mol.
  • the combination of the catalyst X and the catalyst Y used in the present invention is preferably a combination of the catalyst X being an azabicyclo compound, the catalyst Y being a compound represented by the general formula (3), and the azabicyclo compound being DABCO. And a combination in which the compound represented by the general formula (3) is zinc acetate and / or zinc acrylate is most preferable. In addition to obtaining GLY-TA in good yield, this combination is excellent in color tone after completion of the reaction, and therefore can be suitably used for various industrial applications in which color tone is regarded as important. Furthermore, since the catalyst is available at a relatively low cost, it is an economically advantageous production method.
  • the catalyst X and catalyst Y used in the present invention may be added from the beginning of the above reaction or may be added in the middle. Moreover, a desired use amount may be added all at once, or may be added in divided portions.
  • the reaction temperature in the method for producing the component (A) is preferably 40 to 180 ° C, more preferably 60 to 160 ° C.
  • the reaction rate can be increased, and by setting it to 180 ° C. or lower, thermal polymerization of (meth) acryloyl groups in raw materials and products is suppressed, and coloring of the reaction liquid is performed. And the purification process after completion of the reaction can be simplified.
  • the reaction pressure in the method for producing the component (A) is not particularly limited as long as the predetermined reaction temperature can be maintained, and may be performed in a reduced pressure state or in a pressurized state.
  • the reaction pressure is preferably 0.000001 to 10 MPa (absolute pressure).
  • monohydric alcohol derived from monofunctional (meth) acrylate is by-produced as the transesterification proceeds.
  • the monohydric alcohol may be allowed to coexist in the reaction system, the transesterification reaction can be further promoted by discharging the monohydric alcohol out of the reaction system.
  • the reaction can be carried out without using a solvent, but a solvent may be used as necessary.
  • a solvent include n-hexane, cyclohexane, methylcyclohexane, n-heptane, n-octane, n-nonane, n-decane, benzene, toluene, xylene, ethylbenzene, diethylbenzene, isopropylbenzene, amylbenzene, diamyl.
  • Hydrocarbons such as benzene, triamylbenzene, dodecylbenzene, didodecylbenzene, amyltoluene, isopropyltoluene, decalin and tetralin; diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, diamyl ether, diethyl acetal, dihexyl acetal , T-butyl methyl ether, cyclopentyl methyl ether, tetrahydrofuran, tetrahydropyran, trioxane, dioxane, anisole, diphenyl ether Ethers such as tellurium, dimethylcellosolve, diglyme, triglyme and tetraglyme; crown ethers such as 18-crown-6; esters such as methyl benzoate and ⁇ -butyrolactone; acetone, methyl e
  • an inert gas such as argon, helium, nitrogen and carbon dioxide may be introduced into the system for the purpose of maintaining a good color tone of the reaction solution.
  • an oxygen-containing gas may be introduced into the system.
  • the oxygen-containing gas include air, a mixed gas of oxygen and nitrogen, a mixed gas of oxygen and helium, and the like.
  • a method for introducing the oxygen-containing gas there is a method in which the oxygen-containing gas is dissolved in the reaction solution or blown into the reaction solution (so-called bubbling).
  • a polymerization inhibitor in the reaction liquid for the purpose of preventing the polymerization of the (meth) acryloyl group.
  • the polymerization inhibitor include hydroquinone, tert-butylhydroquinone, hydroquinone monomethyl ether, 2,6-di-tert-butyl-4-methylphenol, 2,4,6-tri-tert-butylphenol, 4-tert -Butylcatechol, benzoquinone, phenothiazine, N-nitroso-N-phenylhydroxylamine ammonium, 2,2,6,6-tetramethylpiperidine-1-oxyl, 4-hydroxy-2,2,6,6-tetramethylpiperidine
  • Organic polymerization inhibitors such as -1-oxyl
  • inorganic polymerization inhibitors such as copper chloride, copper sulfate and iron sulfate
  • organic salt systems such as copper dibutyldithiocarbamate and N-nitro
  • a polymerization inhibitor may be added individually by 1 type, or may be added in combination of 2 or more types, may be added from the beginning of this invention, and may be added from the middle. Moreover, a desired use amount may be added all at once, or may be added in divided portions. Moreover, you may add continuously via a rectification column.
  • the addition ratio of the polymerization inhibitor is preferably 5 to 30,000 wtppm in the reaction solution, more preferably 25 to 10,000 wtppm. By setting this ratio to 5 wtppm or more, the polymerization inhibition effect can be exerted, and by setting it to 30,000 wtppm or less, coloring of the reaction solution can be suppressed, and the purification step after completion of the reaction can be simplified. Moreover, the fall of the cure rate of the (A) component obtained can be prevented.
  • reaction time in the production method of component (A) varies depending on the type and amount of catalyst used, reaction temperature, reaction pressure, etc., but is preferably 0.1 to 150 hours, more preferably 0.5 to 80 hours.
  • the manufacturing method of a component can be implemented by any method of a batch type, a semibatch type, and a continuous type.
  • a batch system a polyhydric alcohol, a monofunctional (meth) acrylate, a catalyst, and a polymerization inhibitor are charged into a reactor, and stirred at a predetermined temperature while bubbling oxygen-containing gas into the reaction solution. Then, it can implement by the method of producing
  • the separation / purification operation include a crystallization operation, a filtration operation, a distillation operation, and an extraction operation, and these are preferably combined.
  • the crystallization operation include cooling crystallization and concentration crystallization.
  • the filtration operation include pressure filtration, suction filtration, and centrifugal filtration.
  • the distillation operation include single distillation, fractional distillation, and molecular distillation.
  • steam distillation, and the extraction operation includes solid-liquid extraction and liquid-liquid extraction.
  • a solvent may be used in the separation and purification operation.
  • a neutralizing agent for neutralizing the catalyst and / or polymerization inhibitor used in the present invention an adsorbing agent for adsorbing and removing, an acid and / or alkali for decomposing or removing by-products, a color tone Activated carbon for improving diatomaceous earth, diatomaceous earth for improving filtration efficiency and filtration speed, and the like may be used.
  • the content of component (A) is 40 to 95% by weight, preferably 30 to 90% by weight, based on a total of 100% by weight of components (A), (B) and (C).
  • the content ratio of the component (A) is less than 40% by weight, the surface hardness is lowered, and when it exceeds 95% by weight, the adhesion is deteriorated.
  • the composition of this invention makes the filler which is (B) component an essential component for high hardness.
  • the component (B) include inorganic fillers and organic fillers.
  • the inorganic filler include silica, hollow silica, alumina, zirconia, titania, zinc oxide, germanium oxide, indium oxide, tin oxide, indium tin oxide (ITO), antimony oxide, antimony tin oxide (ATO). , Cerium oxide, potassium oxide, and composite oxides in which two or more of these compounds are combined.
  • Specific examples of the organic filler include polymers such as polyurethane, poly (meth) acrylate, polyamide, polyurea, nylon, polystyrene, polyethylene and polypropylene, carbon nanotubes, and cellulose nanofibers.
  • the component (B) is in a state free from aggregates. Therefore, as the component (B), it is preferable to use an organic solvent-dispersed sol dispersed in an organic solvent, an organic filler-dispersed sol of an inorganic filler is preferable, and an organic solvent-dispersed sol of inorganic oxide fine particles is more preferable.
  • the composition of the present invention as a solvent-free composition, after the (B) component is blended with the (A) component or the (A) and (C) components, the solvent removal treatment is performed. Preferably it is done.
  • the organic solvent used as the dispersion medium is not particularly limited, and examples thereof include alcohols such as methanol, ethanol, isopropanol, butanol and octanol; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; ethyl acetate, butyl acetate, ethyl lactate and ⁇ -Esters such as butyrolactone, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate; ethers such as ethylene glycol monomethyl ether and diethylene glycol monobutyl ether; aromatic hydrocarbons such as benzene, toluene and xylene; and dimethylformamide, dimethylacetamide And amides such as N-methylpyrrolidone.
  • alcohols such as methanol, ethanol, isopropanol, butanol and
  • methanol, isopropanol, methyl ethyl ketone, and ethyl acetate are preferred because the dispersion stability of the inorganic oxide fine particles is good, the boiling point is low, and solvent replacement is easy.
  • the average primary particle diameter of the component (B) is preferably 1 nm or more and 200 nm or less, and particularly preferably 5 nm or more and 100 nm or less from the viewpoint of handling and transparency. If the average primary particle diameter is 1 nm or more, the particle surface has low activity, and thus it is easy to maintain a dispersed state, and aggregation and gelation are unlikely to occur. On the other hand, if the average primary particle diameter is 200 nm or less, haze due to Rayleigh scattering is difficult to observe.
  • the particles having an average primary particle diameter equal to or less than 1 ⁇ 4 of the wavelength of visible light have a small scattering and are suitable for a transparent material.
  • the average primary particle size is determined by, for example, observing inorganic oxide fine particles with a high-resolution transmission electron microscope, selecting 100 inorganic oxide particle images arbitrarily from the observed fine particle images, and using a known image data statistical processing technique. The number average particle diameter can be obtained.
  • Examples of products that are commercially available as organic solvent-dispersed sols of silica fine particles include colloidal silica such as OSCAL-1132, OSCAL-1432M, OSCAL-1432, OSCAL-1632 manufactured by JGC Catalysts & Chemicals, Nissan Chemical Industries ( Methanol silica sol, MA-ST-L, IPA-ST, IPA-ST-L, IPA-ST-ZL, IPA-ST-UP, PGM-ST, MEK-ST, MEK-ST-L, MEK- ST-ZL, MIBK-ST, PMA-ST, EAC-ST, and PL-1-IPA, PL-2L-PGME, PL-2L-MEK manufactured by Fuso Chemical Co., Ltd. can be exemplified.
  • colloidal silica such as OSCAL-1132, OSCAL-1432M, OSCAL-1432, OSCAL-1632 manufactured by JGC Catalysts & Chemicals, Nissan Chemical Industries ( Methanol silica sol, MA-ST-L,
  • fine particles having a modified surface in that the hardness of the cured product is high and the dispersibility of the fine particles is excellent.
  • the surface modification include organosilane treatment, silazane treatment, and silicone treatment, but organosilane treatment is preferred in that the hardness of the cured product is high.
  • Commercially available products as organic solvent-dispersed sols of surface-modified fine particles include MEK-EC-2130Y, MEK-AC-2140Z, MEK-AC-4130Y MEK-AC-5140Z, PGM- manufactured by Nissan Chemical Industries, Ltd. And AC-2140Y, PGM-AC-4130Y, MIBK-AC-2140Z, and the like.
  • examples of products that are commercially available as organic solvent-dispersed sols of zirconia fine particles include Nanouse OZ-30M and Nanouse OZS30K manufactured by Nissan Chemical Industries, Ltd.
  • examples of products that are commercially available as organic solvent-dispersed sols of zirconia fine particles include Nanouse OZ-30M and Nanouse OZS30K manufactured by Nissan Chemical Industries, Ltd.
  • examples of a commercial item marketed as an organic solvent dispersion sol of titania fine particles for example, OPTOLAKE 1130Z, OPTPLAKE 6320Z manufactured by JGC Catalysts & Chemicals Co., Ltd. can be exemplified.
  • the shape of the component (B) includes a spherical shape, a hollow spherical shape, a bead shape, a flat plate shape, a fiber shape, and the like, but a spherical shape, a hollow shape, and a bead shape are preferable and a spherical shape is preferable in terms of good handling properties and dispersibility. Particularly preferred.
  • beaded silica include IPA-ST-UP (trade name) manufactured by Nissan Chemical Industries, Ltd.
  • examples of hollow silica include Zuria (trade name) manufactured by JGC Catalysts & Chemicals, Inc. Etc.
  • the fine particles inorganic oxide fine particles having an average particle diameter equal to or smaller than the wavelength of visible light are preferable from the viewpoint of excellent optical characteristics and high hardness of the cured product.
  • a dispersion sol dispersed in the component (A) in advance and when the component (C) is used, it is used as a dispersion sol dispersed in the component (A) and / or the component (C). It is preferable.
  • the component (A) or / and the component (C) serving as a dispersion medium preferably has a low viscosity.
  • the homopolymer has a glass transition temperature of 70 ° C. or more, one in the molecule.
  • a compound having an ethylenically unsaturated group [component (C-1)] is preferred.
  • the method for producing a sol in which the component (B) dispersed in the component (A) or / and the component (C) is dispersed is prepared in advance by preparing an organic solvent-dispersed sol in which the component (B) is dispersed in an organic solvent.
  • a method of replacing the organic solvent with the component (A) or / and the component (C) is preferable. Specifically, an organic solvent-dispersed sol in which the component (B) is dispersed in an organic solvent is added to and mixed with the component (A) or / and the component (C) in an inert gas atmosphere, and the pressure is reduced under heating. And a method of completely removing the organic solvent. By doing in this way, aggregation of (B) component can be prevented, making the composition of this invention solvent-free.
  • the content of component (B) is 5 to 60% by weight, preferably 10 to 40% by weight, in 100% by weight of the total amount of components (A), (B) and (C). If the content ratio of the component (B) is less than 5% by weight, the hardness of the cured product is lowered, and if it exceeds 60% by weight, the viscosity of the composition becomes too high, and the coating property without a solvent is obtained. It will decline.
  • the component (C) is a compound having an ethylenically unsaturated group other than the component (A).
  • the ethylenically unsaturated group in component (C) include a (meth) acryloyl group, a (meth) acrylamide group, a vinyl group, and a (meth) allyl group, with a (meth) acryloyl group being preferred.
  • “monofunctional” means a compound having one ethylenically unsaturated group
  • ⁇ functional means a compound having ⁇ ethylenically unsaturated groups
  • polyfunctional Means a compound having two or more ethylenically unsaturated groups.
  • the content ratio of the component (C) must be 0 to 55% by weight, preferably 5 to 40% by weight, in 100% by weight of the total amount of the components (A), (B) and (C). When the content ratio of the component (C) exceeds 55% by weight, the cured product becomes brittle.
  • Examples of the component (C) include a compound having one ethylenically unsaturated group (hereinafter referred to as “monofunctional unsaturated compound”) and a compound having two or more ethylenically unsaturated groups (hereinafter referred to as “polyfunctional”). An unsaturated compound).
  • Monofunctional unsaturated compound examples include the same compounds as the monofunctional (meth) acrylate described above, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, tert-butylcyclohexyl (meth) acrylate, and 2-methoxyethyl (meth) acrylate are preferred.
  • Examples of compounds other than the above-mentioned monofunctional (meth) acrylate include (meth) acrylic acid, Michael addition dimer of acrylic acid, ⁇ -carboxy-polycaprolactone mono (meth) acrylate, monohydroxyethyl (meth) acrylate phthalate , Ethyl carbitol (meth) acrylate, butyl carbitol (meth) acrylate, 2-ethylhexyl carbitol (meth) acrylate, benzyl (meth) acrylate, phenyl (meth) acrylate, (meth) acrylate of an alkylene oxide adduct of phenol , (Meth) acrylate, cyclohexyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate of alkylene oxide adduct of alkylphenol , 4-hydroxybutyl acrylate, paramethylphenol alky
  • monofunctional unsaturated compounds compounds having one ethylenically unsaturated group in the molecule, wherein the homopolymer has a glass transition temperature (hereinafter referred to as “Tg”) of 70 ° C. or higher [hereinafter referred to as “(C— 1) “component”] is preferable in terms of achieving both low viscosity and high hardness.
  • Tg glass transition temperature
  • component (C-1) a compound having one ethylenically unsaturated group in the molecule, containing nitrogen in the molecule and having a Tg of the homopolymer of 70 ° C. or higher in terms of adhesion to the substrate [Hereinafter referred to as “component (C-1-N))” is particularly preferred.
  • Tg means a value measured at a rate of temperature increase of 10 ° C./min using a differential scanning calorimeter (DSC), and at the glass transition temperature intermediate point (Tmg) in the ⁇ T-temperature curve. Mean value.
  • Examples of the component (C-1-N) include N-hydroxyethyl
  • the polyfunctional unsaturated compound is preferably a polyfunctional (meth) acrylate.
  • the bifunctional (meth) acrylate include ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, tetramethylene glycol di (meth) acrylate, hexanediol di (meth) acrylate, and nonanediol di (Meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, polytetramethylene glycol di (meth) acrylate, di (meth) acrylate of bisphenol A alkylene oxide adduct, and alkylene of bisphenol F Examples thereof include di (meth) acrylates of oxide adducts.
  • trifunctional or higher functional (meth) acrylate examples include various compounds as long as the compound has three or more (meth) acryloyl groups.
  • Poly (poly) acrylates such as meth) acrylate, tritrimethylolpropane tri- or tetra (meth) acrylate, diglycerin tri- or tetra (meth) acrylate and dipentaerythritol tri-, tetra-, penta- or hexa (meth) acrylate
  • tri (meth) acrylate of glycerol alkylene oxide adduct tri- or tetra (meth) acrylate of pentaerythritol alkylene oxide adduct, ditrimethylolpropane alkylene oxide adduct Li or tetra (meth) acryl
  • urethane (meth) acrylate in addition to the aforementioned compounds, urethane (meth) acrylate, epoxy (meth) acrylate, polyester (meth) acrylate, and the like can also be used.
  • component (C-2) urethane (meth) acrylate
  • a cured product of the resulting composition has high hardness and excellent substrate adhesion, and will be described in detail below.
  • Component (C-2) includes a reaction product of polyhydric alcohol, polyisocyanate and hydroxyl group-containing (meth) acrylate, and a reaction product of organic polyisocyanate and hydroxyl group-containing (meth) acrylate compound (hereinafter referred to as “urethane adduct”). ").
  • the component (C-2) is preferably a urethane adduct in terms of excellent curability of the composition, hardness of the cured product, and scratch resistance.
  • polyhydric alcohol examples include polyether polyols such as polypropylene glycol and polytetramethylene glycol, polyester polyols obtained by the reaction of the polyhydric alcohol and the polybasic acid, the polyhydric alcohol, the polybasic acid, and ⁇ -caprolactone.
  • Caprolactone polyol obtained by the reaction with polycarbonate, polycarbonate polyol (for example, polycarbonate polyol obtained by reaction of 1,6-hexanediol and diphenyl carbonate, etc.) and the like.
  • organic polyvalent isocyanate examples include diisocyanates such as isophorone diisocyanate, hexamethylene diisocyanate, tolylene diisocyanate, xylylene diisocyanate, diphenylmethane-4,4′-diisocyanate and dicyclopentanyl diisocyanate; And organic polyisocyanates having three or more isocyanate groups such as hexamethylene diisocyanate trimer and isophorone diisocyanate trimer.
  • diisocyanates such as isophorone diisocyanate, hexamethylene diisocyanate, tolylene diisocyanate, xylylene diisocyanate, diphenylmethane-4,4′-diisocyanate and dicyclopentanyl diisocyanate
  • organic polyisocyanates having three or more isocyanate groups such as hexamethylene diisocyanate trimer and isophorone diisocyanate trimer
  • Hydroxyl group-containing (meth) acrylates include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, hydroxypentyl (meth) acrylate, hydroxyhexyl (meth) acrylate and hydroxyoctyl Hydroxyl group-containing mono (meth) acrylates such as (meth) acrylate, trimethylolpropane mono (meth) acrylate and pentaerythritol mono (meth) acrylate; And hydroxyl groups such as trimethylolpropane di (meth) acrylate, pentaerythritol di or tri (meth) acrylate, ditrimethylolpropane di or tri (meth) acrylate and dipentaerythritol di, tri, tetra or penta (meth) acrylate Examples thereof include polyfunctional (meth) acrylates.
  • examples of the organic polyvalent isocyanate and the hydroxyl group-containing (meth) acrylate compound include the above compounds.
  • a hydroxyl-containing polyfunctional (meth) acrylate as a hydroxyl-containing (meth) acrylate is preferable.
  • a compound having three or more (meth) acryloyl groups and one hydroxyl group is preferable in that the cured product is superior in hardness and scratch resistance.
  • pentaerythritol tri (meth) is preferable. Examples include acrylate, ditrimethylolpropane tri (meth) acrylate, and dipentaerythritol penta (meth) acrylate.
  • Another preferred compound of the urethane adduct is a reaction product of an organic polyisocyanate having three or more isocyanate groups and a hydroxyl group-containing mono (meth) acrylate.
  • Examples of the hydroxyl group-containing mono (meth) acrylate include the same compounds as those described above.
  • Examples of the organic polyisocyanate having three or more isocyanate groups include the aforementioned hexamethylene diisocyanate trimer and isophorone diisocyanate trimer.
  • the component (C-2) those produced by a conventional method can be used.
  • an addition catalyst such as dibutyltin dilaurate
  • an organic polyvalent isocyanate and a polyvalent ol are heated and stirred to cause an addition reaction to produce an isocyanate group-containing compound, and a hydroxyl group-containing (meth) acrylate is added to the compound, followed by heating.
  • an addition catalyst such as dibutyltin dilaurate
  • an organic polyvalent isocyanate and a polyvalent ol are heated and stirred to cause an addition reaction to produce an isocyanate group-containing compound, and a hydroxyl group-containing (meth) acrylate is added to the compound, followed by heating.
  • a hydroxyl group-containing (meth) acrylate is added to the compound, followed by heating.
  • a urethane adduct there may be mentioned a method in which an organic polyisocyanate and a hydroxyl group-containing (meth)
  • urethane poly (meth) acrylates other than these include compounds as described on pages 70 to 74 of the document “UV / EB curable material” [CMC, 1992]. .
  • the content ratio of the component (C-2) is preferably 0 to 40% by weight, more preferably 0 to 20% by weight in 100% by weight of the total amount of the components (A), (B) and (C). is there.
  • the content of the component (C-2) is preferably 0 to 40% by weight, more preferably 0 to 20% by weight in 100% by weight of the total amount of the components (A), (B) and (C). is there.
  • Active energy ray-curable composition is a composition comprising the components (A), (B) and (C), wherein the total amount of the components (A), (B) and (C) is 100% by weight. And an active energy ray-curable composition containing 40 to 95% by weight of component (A), 5 to 60% by weight of component (B) and 0 to 55% by weight of component (C).
  • composition of the present invention As a method for producing the composition of the present invention, components (A) to (C), a method of stirring and mixing other components described later (if necessary) (hereinafter referred to as “Production Method 1”), component (A) or / And (C) and other components to be described later as necessary are mixed, and then the component (B) is added to the mixture and then stirred and mixed (hereinafter referred to as “Production Method 2”). Production method 2 is preferable because component (B) can be dispersed throughout the composition.
  • the manufacturing method 2 when using the organic solvent dispersion
  • the degree of pressure reduction and heating temperature in this case may be appropriately set according to the organic solvent used in the organic solvent-dispersed sol of component (B), but the degree of pressure reduction is preferably 500 mmHg or less, and the heating temperature is 30-60 ° C is preferred.
  • the manufacturing method of the composition including the process of manufacturing (A) is preferable.
  • the component (A) can be produced in a high yield, and since the high molecular weight product in the obtained component (A) is small, the viscosity is low and there are few impurities. This is preferable in that it can be excellent in physical properties. What is necessary is just to follow the manufacturing method of above-described (A) component as the said process.
  • the method for producing the composition in the case of blending other components described later may be in accordance with a conventional method, and the component (A) and other components described later may be stirred and mixed as necessary.
  • the viscosity of the composition may be appropriately set according to the purpose, and is preferably 20 to 3,000 mPa ⁇ s, more preferably 20 to 1,500 mPa ⁇ s. By setting it as the said viscosity range, when used as a shaping material, it can be excellent in shape reproducibility, and when used as a hard-coat material, it is excellent in coating property.
  • the viscosity in the present invention means a value measured at 25 ° C. using an E type viscometer (cone plate type viscometer).
  • the composition of the present invention comprises the components (A) to (C) as essential components, but various components can be blended depending on the purpose.
  • a photopolymerization initiator and / or a sensitizer hereinafter referred to as “component (D)”
  • component (D) a photopolymerization initiator and / or a sensitizer
  • thermal polymerization initiator an organic solvent, an antioxidant, an ultraviolet absorber, a leveling agent
  • examples include silane coupling agents, surface modifiers, and polymerization inhibitors.
  • the other component mentioned later may use only 1 type of the illustrated compound, and may use 2 or more types together.
  • composition of the present invention When the composition of the present invention is used as an active energy ray curable composition and further used as an electron beam curable composition, it may be cured with an electron beam without containing the component (D). Is possible.
  • the component (D) When the composition of the present invention is used as an active energy ray-curable composition, particularly when ultraviolet rays and visible rays are used as active energy rays, the component (D) is further added from the viewpoint of ease of curing and cost. It is preferable to contain.
  • an electron beam is used as the active energy ray, it is not always necessary to add it, but a small amount can be added as necessary in order to improve curability.
  • component (C) examples include benzyldimethyl ketal, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1- [4- (2-hydroxyethoxy) phenyl ] -2-Hydroxy-2-methyl-1-propan-1-one, oligo [2-hydroxy-2-methyl-1- [4-1- (methylvinyl) phenyl] propanone, 2-hydroxy-1- [ 4- [4- (2-hydroxy-2-methyl-propionyl) benzyl] phenyl] -2-methylpropan-1-one, 2-methyl-1- [4- (methylthio)] phenyl] -2-morpholinopro Pan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) butan-1-one, 2-dimethylamino-2- 4-methylbenzyl) -1- (4-morpholin-4-yl-phenyl) butan-1-one and
  • Acetophenone compounds of Benzoin compounds such as benzoin, benzoin ethyl ether, benzoin isopropyl ether and benzoin isobutyl ether; Benzophenone, 2-methylbenzophenone, 3-methylbenzophenone, 4-methylbenzophenone, 2,4,6-trimethylbenzophenone, 4-phenylbenzophenone, methyl-2-benzophenone, 1- [4- (4-benzoylphenylsulfanyl) phenyl ] -2-Methyl-2- (4-methylphenylsulfonyl) propan-1-one, 4,4′-bis (dimethylamino) benzophenone, 4,4′-bis (diethylamino) benzophenone and 4-methoxy-4 ′ -Benzophenone compounds such as dimethylaminobenzophenone; Such as bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide, 2,4,6-trimethylbenzo
  • Examples of compounds other than the above include benzyl, methyl phenylglyoxylate, ethyl (2,4,6-trimethylbenzoyl) phenyl phosphinate, ethyl anthraquinone, phenanthrenequinone and camphorquinone.
  • ⁇ -hydroxyphenyl ketones are preferable because they have good surface curability even in the case of thin film coating in the atmosphere.
  • 1-hydroxycyclohexyl phenyl ketone and 2-hydroxy-2 -Methyl-1-phenyl-propan-1-one is more preferred.
  • the content ratio of the component (D) is preferably 0.1 to 25 parts by weight, more preferably 100 parts by weight of the total amount of the components (A) and (C) (hereinafter collectively referred to as “curable components”). Is 0.1 to 20 parts by weight. (D) By making the ratio of a component into 0.1 weight part or more, the photocurability of a composition can be made favorable and it can be excellent in adhesiveness, and hardened
  • thermosetting composition When the composition of this patent is used as a thermosetting composition, a thermal polymerization initiator can be blended. Various compounds can be used as the thermal polymerization initiator, and organic peroxides and azo initiators are preferred.
  • organic peroxide examples include 1,1-bis (t-butylperoxy) 2-methylcyclohexane, 1,1-bis (t-hexylperoxy) -3,3,5-trimethylcyclohexane, , 1-bis (t-hexylperoxy) cyclohexane, 1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane, 1,1-bis (t-butylperoxy) cyclohexane, , 2-bis (4,4-di-butylperoxycyclohexyl) propane, 1,1-bis (t-butylperoxy) cyclododecane, t-hexylperoxyisopropyl monocarbonate, t-butylperoxymaleic acid, t-butylperoxy-3,5,5-trimethylhexanoate, t-butylperoxylaurate, 2,5-dimethyl- , 5-di (m
  • azo compound examples include 1,1′-azobis (cyclohexane-1-carbonitrile), 2- (carbamoylazo) isobutyronitrile, 2-phenylazo-4-methoxy-2,4-dimethylvaleronitrile. Azodi-t-octane, azodi-t-butane, and the like. These may be used alone or in combination of two or more. Moreover, an organic peroxide can also be made into a redox reaction by combining with a reducing agent.
  • thermal polymerization initiators used is preferably 10 parts by weight or less with respect to 100 parts by weight of the total amount of curable components.
  • thermal polymerization initiator may be carried out in accordance with conventional means for radical thermal polymerization.
  • the thermal polymerization initiator is used in combination with the component (D), and for the purpose of further improving the reaction rate after photocuring. Curing can also be performed.
  • the composition of the present invention does not substantially require a solvent, but may contain an organic solvent as needed for the purpose of viscosity adjustment or the like.
  • the organic solvent include the same compounds as the organic solvent used as the dispersion medium for the component (B).
  • the dispersion medium of the component (B) described above can be used as it is, or can be further blended separately.
  • the content of the organic solvent is preferably 0.1 to 1000 parts by weight, more preferably 5 to 500 parts by weight with respect to 100 parts by weight of the total amount of the components (A) and (C).
  • the composition can have a viscosity suitable for coating, and the composition can be easily applied by a known application method described later.
  • Antioxidant Antioxidant is mix
  • the antioxidant include phenol-based antioxidants, phosphorus-based antioxidants, and sulfur-based antioxidants.
  • phenolic antioxidants include hindered phenols such as di-t-butylhydroxytoluene.
  • commercially available products include AO-20, AO-30, AO-40, AO-50, AO-60, AO-70, and AO-80 manufactured by Adeka Corporation.
  • Examples of the phosphorus-based antioxidant include phosphines such as trialkylphosphine and triarylphosphine, and trialkyl phosphites and triaryl phosphites.
  • Examples of commercially available products of these derivatives include Adeka Co., Ltd., ADK STAB PEP-4C, PEP-8, PEP-24G, PEP-36, HP-10, 260, 522A, 329K, 1178, 1500, 135A, 3010. Etc.
  • Examples of the sulfur-based antioxidant include thioether compounds, and examples of commercially available products include AO-23, AO-412S, and AO-503A manufactured by Adeka Corporation. These may be used alone or in combination of two or more. Preferred combinations of these antioxidants include the combined use of phenolic antioxidants and phosphorus antioxidants, and the combined use of phenolic antioxidants and sulfurous antioxidants.
  • the content ratio of the antioxidant may be appropriately set according to the purpose, and is preferably 0.01 to 5 parts by weight, more preferably 0.1 to 1 part by weight with respect to 100 parts by weight of the total amount of the curable components. It is. When the content ratio is 0.1 parts by weight or more, the durability of the composition can be improved. On the other hand, when the content ratio is 5 parts by weight or less, curability and adhesion can be improved.
  • Ultraviolet absorber An ultraviolet absorber is mix
  • the ultraviolet absorber include triazine ultraviolet absorbers such as TINUVIN400, TINUVIN405, TINUVIN460, and TINUVIN479 manufactured by BASF, and benzotriazole ultraviolet absorbers such as TINUVIN900, TINUVIN928, and TINUVIN1130.
  • the content ratio of the ultraviolet absorber may be appropriately set according to the purpose, and is preferably 0.01 to 5 parts by weight, more preferably 0.1 to 1 part by weight with respect to 100 parts by weight of the total amount of the curable components. It is. When the content ratio is 0.01% by weight or more, the light resistance of the cured product can be improved, and when it is 5% by weight or less, the curability of the composition is excellent. be able to.
  • Silane coupling agent A silane coupling agent is mix
  • the silane coupling agent is not particularly limited as long as it can contribute to improvement in adhesion to the substrate.
  • silane coupling agent examples include 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3- Glycidoxypropyltriethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, N-phenyl-3 -Aminopropyltrimethoxysilane, N
  • the mixing ratio of the silane coupling agent may be appropriately set according to the purpose, and is preferably 0.1 to 10 parts by weight, more preferably 1 to 5 parts by weight with respect to 100 parts by weight of the total amount of the curable components. .
  • the blending ratio is 0.1 parts by weight or more, the adhesive strength of the composition can be improved.
  • the blending ratio is 10 parts by weight or less, it is possible to prevent the adhesive force from changing over time.
  • a surface modifier may be added to the composition of the present invention for the purpose of enhancing the leveling property at the time of application, the purpose of enhancing the slipping property of the cured product and enhancing the scratch resistance, and the like.
  • the surface modifier include a surface modifier, a surfactant, a leveling agent, an antifoaming agent, a slipperiness imparting agent, and an antifouling imparting agent, and these known surface modifiers can be used. . Of these, silicone-based surface modifiers and fluorine-based surface modifiers are preferred.
  • silicone polymers and oligomers having a silicone chain and a polyalkylene oxide chain silicone polymers and oligomers having a silicone chain and a polyester chain
  • fluorine polymers having a perfluoroalkyl group and a polyalkylene oxide chain a fluorine-based polymer and an oligomer having a perfluoroalkyl ether chain and a polyalkylene oxide chain.
  • a surface modifier having an ethylenically unsaturated group, preferably a (meth) acryloyl group, in the molecule may be used.
  • the content ratio of the surface modifier is preferably 0.01 to 1.0 part by weight with respect to 100 parts by weight of the total amount of the curable components. It is excellent in the surface smoothness of hardened
  • the present invention relates to an active energy ray curable composition, preferably a solventless active energy ray curable composition, and particularly preferably an active energy ray curable composition for a molding material and an active energy ray curable type for a hard coat.
  • the shaping material include a lens sheet, a moth-eye film, an antiglare film, a light extraction film for organic EL / LED, a light confinement film for solar cells, a heat ray retroreflective film, etc. It can be used for manufacturing and can be used for hard coats to improve the surface hardness and scratch resistance of various plastics.
  • Method of Use As a method of using the composition of the present invention as a shaping material or a hard coat, a conventional method may be followed. Specifically, if it is a shaping material, the composition is applied or injected into a mold (stamper) having a desired shape, and laminated with a film or sheet substrate (hereinafter collectively referred to as “film substrate”). To do. Thereafter, in the case of an active energy ray-curable composition, a method of using a transparent film as a film substrate and irradiating and curing the active energy ray from the film substrate side can be used. Moreover, in the case of a thermosetting composition, the method of heating and hardening etc. is mentioned.
  • the composition is applied to a film substrate, and in the case of an active energy ray curable composition, a method of irradiating and curing an active energy ray may be used. Moreover, in the case of a thermosetting composition, the method of heating and hardening etc. is mentioned.
  • plastic examples include plastic and glass, and plastic is preferable.
  • Plastics include polymethyl methacrylate, polymethyl methacrylate-styrene copolymer film, polyethylene terephthalate, polyethylene naphthalate, polyarylate, polyacrylonitrile, polycarbonate, polysulfone, polyethersulfone, polyetherimide, polyetherketone, polyimide, Examples include cycloolefin polymer, vinyl chloride, diallyl carbonate, allyl diglycol carbonate, polymethylpentene, and the like.
  • the film substrate is preferably transparent or translucent (for example, milky white).
  • the thickness of the film substrate is preferably 20 to 10 mm.
  • Examples of the active energy ray for curing the composition of the present invention include ultraviolet rays, visible rays, and electron beams, and ultraviolet rays are preferred.
  • Examples of the ultraviolet irradiation device include a high pressure mercury lamp, a metal halide lamp, an ultraviolet (UV) electrodeless lamp, and a light emitting diode (LED).
  • the irradiation energy may be appropriately set according to the type and composition of the active energy ray. As an example, when a high pressure mercury lamp is used, the irradiation energy is preferably 50 to 5,000 mJ / cm 2 , 200 to 1,000 mJ / cm 2 is more preferable.
  • the example which manufactures a lens sheet using the composition of this invention is demonstrated.
  • a mold having a target lens shape is adhered.
  • active energy rays are irradiated from the transparent substrate side to cure the composition, and then peel from the mold.
  • the composition of the present invention is poured between a mold having a target lens shape and a transparent substrate.
  • active energy rays are irradiated from the transparent substrate side to cure the composition, and then the mold is removed.
  • the material of the mold is not particularly limited, and examples thereof include metals such as brass and nickel, and plastics such as epoxy resin and polymethyl methacrylate.
  • the lens is preferably made of metal in terms of long life in lens sheet manufacturing applications, and plastic having transparency is preferable in nanoimprint applications described later.
  • the composition of the present invention When the composition of the present invention is used for nanoimprint applications, it may be in accordance with a conventional method. For example, after applying the composition to the base material, a mold having a microfabricated pattern and having transparency is pressed. Next, a method of curing the composition by irradiating active energy rays from a transparent mold, and then demolding the mold can be used.
  • parts means parts by weight.
  • Production Example 1 Production of GLY-TA1 by transesterification method
  • a 1 liter flask equipped with a stirrer, thermometer, gas introduction tube, rectifying column and cooling tube 63.60 parts (0.69 mol) of glycerin and 700.99 parts of 5-methoxyethyl acrylate (5 .39 mol)
  • 5.47 parts (0.05 mol) of DABCO as catalyst X 5.47 parts (0.05 mol) of DABCO as catalyst X
  • 8.94 parts 0.05 mol) of zinc acetate as catalyst Y
  • 1.56 parts of hydroquinone monomethyl ether raw materials charged
  • the oxygen-containing gas (5% by volume of oxygen and 95% by volume of nitrogen) was bubbled into the liquid.
  • the pressure in the reaction system is adjusted within the range of 110 to 760 mmHg, and 2-methoxyethanol and 2-methoxyethyl acrylate by-produced as the transesterification proceeds.
  • 2-methoxyethyl acrylate in the same weight part as the extracted liquid was added to the reaction system as needed. 30 hours after the start of heating and stirring, the pressure in the reaction system was returned to normal pressure, and the extraction was completed.
  • Viscosity The viscosity of the purified product obtained was measured with an E-type viscometer (25 ° C.).
  • the reaction system was stirred while being heated to reflux at a pressure of 370 mmHg, and water produced as a by-product with the progress of the dehydration esterification reaction was withdrawn from the reaction system via a rectification column and a cooling tube. During this time, the temperature of the reaction liquid changed in the range of 80 to 90 ° C. After 6 hours from the start of heating and stirring, the heating of the reaction solution was completed, and the pressure in the reaction system was returned to normal pressure to complete the extraction. After cooling the reaction solution to room temperature, 133 parts of toluene and 55 parts of water were added and stirred, and then allowed to stand to separate the lower layer (aqueous layer).
  • MEK methyl ethyl ketone
  • Table 3 shows the viscosity, fine particle content, and residual MEK content of the silica preparation solutions obtained in Production Examples 5 to 8 and Comparative Production Example 2.
  • the silica preparation solution contains the components (A) and (B) in Examples 1 to 9, and the components (B) and (C) in Comparative Examples 2 and 3.
  • the numbers in parentheses of the components (A), (B), and (C) are the amounts brought into the composition from the silica preparation solution, that is, the components (A), (B), and (C) contained in the composition. Mean percentage.
  • ACMO acryloylmorpholine
  • ACMO acryloylmorpholine
  • NVP N-vinylpyrrolidone, manufactured by Nippon Shokubai Co., Ltd.
  • UA306H Polyfunctional urethane acrylate (urethane adduct which is a reaction product of pentaerythritol triacrylate and hexamethylene diisocyanate), “UA306H” manufactured by Kyoeisha Chemical Co., Ltd.
  • TMPTA trimethylolpropane triacrylate, “Aronix M-309” manufactured by Toagosei Co., Ltd., 25 ° C. viscosity 90 mPa ⁇ s
  • IRG907 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one, “IRGACURE907” manufactured by BASF Japan DETX: 2,4-diethylthioxanthone, “Kayacure DETX-S” manufactured by Nippon Kayaku Co., Ltd.
  • TPO 2,4,6-trimethylbenzoyldiphenylphosphine oxide, “Lucirin TPO” manufactured by BASF Japan Ltd.
  • the ultraviolet irradiation apparatus used was a metal halide lamp manufactured by Eye Graphics Co., Ltd., and the intensity in the ultraviolet region (UV-V) centered at 405 nm was 500 mW / cm 2 and 500 mJ / cm 2 through the PET film. After the ultraviolet irradiation, the triacetylcellulose film was released from the mold to obtain an optical film. The obtained transferred fine concavo-convex structure was observed with an electron microscope at a magnification of 10000 times, and it was confirmed that there was no chip at the tip of the protrusion and that the stamper shape was transferred. ⁇ : No chipping ⁇ : Chipping
  • PET easily-adhesive polyethylene terephthalate
  • Lumirror untreated polyethylene terephthalate film
  • the ultraviolet irradiation apparatus used was a metal halide lamp manufactured by Eye Graphics Co., Ltd., and the intensity in the ultraviolet region (UV-V) centered at 405 nm was 500 mW / cm 2 and 500 mJ / cm 2 through the PET film. After the ultraviolet irradiation, the lumirror was peeled off to obtain an optical film. The scratch resistance of the obtained optical film was evaluated with the following five levels after 100 reciprocations with a load of 500 g using steel wool # 0000. ⁇ : No scratch ⁇ : 1 or more and less than 10 scratches ⁇ : 10 or more scratches and less than 50 ⁇ : Scratches 50 or more and less than 100 ⁇ : 100 or more scratches
  • Plastic deformation hardness (3) The maximum load of the Vickers indenter at room temperature using the ultra-hardness meter (H-100C manufactured by Fisher Instruments Co., Ltd.) for the cured product obtained in the scratch resistance test. The surface hardness was measured under the condition of 10 mN, and the plastic deformation hardness was evaluated.
  • Adhesion (3) The optical film obtained by scratch resistance was cut with a cutter knife in a 5 ⁇ 5 25-mass shape, and then a Nichiban cellophane tape was applied, and the peeling speed was about 1 cm / sec. The tape was peeled off at a high speed. The same test was also conducted with the following film instead of the easy-adhesion PET.
  • the abbreviations in Table 5 mean the following.
  • Acrylic Kuraray acrylic resin film “Clarity HI50-75” (film thickness 75 ⁇ m)
  • TAC Triacetylcellulose film “TD80UL” (film thickness: 80 ⁇ m) manufactured by FUJIFILM Corporation
  • Substrate adhesion was evaluated in three stages according to the following criteria by confirming the number of squares in which the cured product remained after the above operation. ⁇ : 25 to 21 squares ⁇ : 20 to 10 squares ⁇ : 10 squares or less
  • Comparative Example 1 was a composition not containing the component (B), both the plastic deformation hardness and the adhesion to acrylic were inferior.
  • Comparative Examples 2 to 3 were compositions using different polyfunctional acrylates instead of the component (A), so that they were inferior in transferability, inferior in scratch resistance and adhesion to acrylic and TAC.
  • the composition of the present invention can be used for various applications, and can be preferably used for a shaping material and a hard coat agent.
  • the molding material include a lens sheet, a moth-eye film, an antiglare film, a light extraction film for organic EL / LED, a light confinement film for solar cells, and a heat ray retroreflective film on the surface.
  • the hard coat agent can be used to improve the surface hardness and scratch resistance of various plastics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Polymerisation Methods In General (AREA)
  • Paints Or Removers (AREA)

Abstract

The present invention addresses the problem of providing: a solvent-free active energy ray-curable composition which has a low viscosity without using a solvent for the composition, while enabling a cured product thereof to have excellent hardness, scratch resistance and adhesion to a substrate; and preferably, an active energy ray-curable composition for shaping materials and for hard coatings. The present invention is an active energy ray-curable composition which contains the components (A), (B) and (C) described below, and wherein 40-95% by weight of the component (A), 5-60% by weight of the component (B) and 0-55% by weight of the component (C) are contained in 100% by weight of the total of the components (A), (B) and (C). Component (A): A (meth)acrylate mixture which is mainly composed of glycerol tri(meth)acrylate, and wherein the amount of high molecular weight substances in the component (A) as determined by gel permeation chromatography is less than 30% in terms of an area ratio defined by a specific formula Component (B): A filler Component (C): An ethylenically unsaturated compound other than the component (A)

Description

活性エネルギー線硬化型組成物Active energy ray-curable composition
 本発明は、活性エネルギー線硬化型組成物、好ましくは無溶剤型活性エネルギー線硬化型組成物に関し、特に好ましくは賦型材料用活性エネルギー線硬化型組成物及びハードコート用活性エネルギー線硬化型組成物に関し、これら技術分野に属する。
 尚、本明細書においては、「アクリロイル基及び/又はメタクリロイル基」を「(メタ)アクリロイル基」と、「アクリレート及び/又はメタクリレート」を「(メタ)アクリレート」と、「アクリル酸及び/又はメタクリル酸」を「(メタ)アクリル酸」と表す。
The present invention relates to an active energy ray-curable composition, preferably a solventless active energy ray-curable composition, and particularly preferably an active energy ray-curable composition for a moldable material and an active energy ray-curable composition for a hard coat. Belonging to these technical fields.
In the present specification, “acryloyl group and / or methacryloyl group” is “(meth) acryloyl group”, “acrylate and / or methacrylate” is “(meth) acrylate”, “acrylic acid and / or methacrylic”. "Acid" is represented as "(meth) acrylic acid".
 プリズムシート等のレンズシート、可視光の波長以下の周期の微細凹凸構造を表面に有した反射防止フィルム(いわゆる、モスアイフィルム)、防眩フィルム、有機EL・LED用光取出しフィルム、太陽電池用光閉じ込めフィルム及び熱線再帰性反射フィルム等の賦型フィルムは、通常以下の方法で製造されている。
 即ち、微細凹凸構造の反転構造を表面に有するスタンパと透明基材との間に、活性エネルギー線硬化型組成物を充填し、活性エネルギー線の照射によって硬化させた後、スタンパを離型して硬化物に微細凹凸構造を転写する方法、又は、前記スタンパと透明基材との間に、活性エネルギー線硬化型組成物を充填した後、スタンパを離型して活性エネルギー線硬化型組成物に微細凹凸構造を転写し、その後、活性エネルギー線の照射によって活性エネルギー線硬化型組成物を硬化させる方法が用いられている。
Lens sheet such as prism sheet, antireflection film (so-called moth-eye film) having anti-glare structure on the surface with a period of less than the wavelength of visible light, antiglare film, light extraction film for organic EL / LED, light for solar cell Shaped films such as confinement films and heat ray retroreflective films are usually produced by the following method.
That is, an active energy ray-curable composition is filled between a stamper having a reverse structure of a fine concavo-convex structure on the surface and a transparent substrate, cured by irradiation with active energy rays, and then the stamper is released. A method of transferring a fine concavo-convex structure to a cured product, or after filling an active energy ray-curable composition between the stamper and the transparent substrate, the stamper is released to obtain an active energy ray-curable composition. A method of transferring a fine concavo-convex structure and then curing the active energy ray-curable composition by irradiation with an active energy ray is used.
 この様な賦型材料用硬化型組成物としては、従来、トリメチロールプロパントリアクリレート(以下、「TMPTA」という)を含む活性エネルギー線硬化型組成物が知られている(特許文献1)。
 しかしながら、当該組成物は、粘度が低いため、微細凹凸構造の転写性に優れるものの、硬化物の耐擦傷性が悪いという問題があった。
As such a curable composition for a moldable material, an active energy ray curable composition containing trimethylolpropane triacrylate (hereinafter referred to as “TMPTA”) has been known (Patent Document 1).
However, since the composition has a low viscosity, the composition has excellent transferability of the fine concavo-convex structure, but has a problem that the cured product has poor scratch resistance.
 そこで、耐擦傷性を改善するために、無機微粒子を含む溶剤系活性エネルギー線硬化型組成物が知られている(特許文献2)。
 しかしながら、当該組成物は、溶剤を含むため低粘度であり、微細凹凸構造の転写性に優れるものの、基材への塗布後に溶剤乾燥が必要となるため生産性が低下する問題があった。
Then, in order to improve scratch resistance, a solvent-based active energy ray-curable composition containing inorganic fine particles is known (Patent Document 2).
However, although the composition contains a solvent and has a low viscosity and is excellent in transferability of a fine concavo-convex structure, there is a problem in that productivity is lowered because solvent drying is required after application to a substrate.
 上述の通り、低粘度かつ高硬度で基材密着性に優れ、かつ溶剤乾燥が不要な無溶剤型活性エネルギー線硬化型組成物が熱望されている。又、無溶剤型の紫外線硬化性組成物は、乾燥炉・溶剤回収設備等の付帯設備が不要のため設備の簡略化が可能であり、賦形材料以外にもプラスチックのハードコート材料として好ましいとされる(特許文献3)。しかしながら、従来の無溶剤型ハードコート用活性エネルギー線硬化型組成物は、低粘度化と高硬度化がトレードオフの関係になりやすく、さらなる改善が求められていた。 As described above, a solventless active energy ray-curable composition that has low viscosity, high hardness, excellent substrate adhesion, and does not require solvent drying is eagerly desired. In addition, the solvent-free UV curable composition can simplify the equipment because it does not require ancillary equipment such as a drying furnace and solvent recovery equipment, and is preferable as a plastic hard coat material in addition to the shaping material. (Patent Document 3). However, the conventional active energy ray-curable composition for solvent-free hard coat tends to have a trade-off relationship between low viscosity and high hardness, and further improvement has been demanded.
特開2000-071290号公報JP 2000-071290 A 特開2014-126761号公報JP 2014-126761 A 特開2008-049623号公報JP 2008-049623 A
 本発明者らは、組成物に溶剤を用いなくても低粘度であり、かつ組成物の硬化物の硬度、耐擦傷性及び基材密着性に優れる無溶剤型活性エネルギー線硬化型組成物、好ましくは賦型材料用活性エネルギー線硬化型組成物及びハードコート用活性エネルギー線硬化型組成物を見出すため鋭意検討を行ったのである。 The present inventors have a low-viscosity composition without using a solvent, and a solvent-free active energy ray-curable composition that is excellent in the hardness, scratch resistance, and substrate adhesion of a cured product of the composition, Preferably, in order to find out the active energy ray curable composition for a moldable material and the active energy ray curable composition for a hard coat, intensive studies were conducted.
 無溶剤かつ低粘度であって、高硬度化を実現できる組成物として、(メタ)アクリロイル基濃度が高くかつ分子量の小さな2個以上の(メタ)アクリロイル基を有する化合物(以下、「多官能(メタ)アクリレート」という)が有効であると考えられ、その候補の一つとして、グリセリントリ(メタ)アクリレート(以下、「GLY-TA」という)が有効であると考えられる。
 GLY-TAを工業的に得るためには、グリセリンと(メタ)アクリル酸の脱水エステル化による製造方法が考えられる。しかしながら、エステル化反応では、特に、2級水酸基の反応性が低いため高分子量体が多く生成してしまい工業的に得ることが困難であった。このため、従来、GLY-TAを含む前記硬化型組成物は知られていない。
A composition having two or more (meth) acryloyl groups having a high (meth) acryloyl group concentration and a small molecular weight (hereinafter referred to as “polyfunctional”) is a solvent-free and low-viscosity composition capable of achieving high hardness. Meth) acrylate ”) is considered effective, and glycerin tri (meth) acrylate (hereinafter referred to as“ GLY-TA ”) is considered effective as one of the candidates.
In order to industrially obtain GLY-TA, a production method by dehydration esterification of glycerin and (meth) acrylic acid is conceivable. However, in the esterification reaction, since the reactivity of the secondary hydroxyl group is particularly low, a large amount of a high molecular weight product is produced and it is difficult to obtain industrially. For this reason, conventionally, the said curable composition containing GLY-TA is not known.
 本発明者らは、前記課題を解決するためには、特定のGLY-TAと無機微粒子を含む活性エネルギー線硬化型組成物が、無溶剤かつ低粘度であり、硬化物の硬度、耐擦傷性、基材密着性に優れることを見出し、本発明を完成した。
 以下、本発明を詳細に説明する。
In order to solve the above-mentioned problems, the inventors of the present invention have an active energy ray-curable composition containing a specific GLY-TA and inorganic fine particles, which has no solvent and low viscosity, and the hardness and scratch resistance of the cured product. The present invention was completed by finding that the substrate adhesion was excellent.
Hereinafter, the present invention will be described in detail.
 本発明の組成物によれば、無溶剤かつ低粘度であり、硬化物の硬度、耐擦傷性、基材密着性に優れたものとすることができる。 According to the composition of the present invention, it is solventless and has a low viscosity, and the cured product can be excellent in hardness, scratch resistance and substrate adhesion.
 本発明は、下記(A)、(B)及び(C)成分を含む組成物であって、
(A)、(B)及び(C)成分の合計100重量%中に、(A)成分を40~95重量%、(B)成分を5~60重量%及び(C)成分を0~55重量%含む活性エネルギー線硬化型組成物に関する。
(A)成分:GLY-TA〔グリセリントリ(メタ)アクリレート〕を主成分とする(メタ)アクリレート混合物であって、(A)成分中の高分子量体が、式(1)に基づくゲルパーミエーションクロマトグラフィー(以下、GPC」という)による面積%で30%未満である混合物
 高分子量体の面積%=〔(R-I-L)/R〕×100 ・・・(1)
 式(1)における記号及び用語は、以下を意味する。
 ・R:(A)成分中の検出ピークの総面積
 ・I:GLY-TAを含む検出ピークの面積
 ・L:GLY-TAを含む検出ピークよりも重量平均分子量が小さい検出ピークの総面積
(B)成分:フィラー
(C)成分:(A)成分以外のエチレン性不飽和基を有する化合物
 以下、(A)成分、(B)成分、(C)成分、その他の成分及び使用方法について説明する。
The present invention is a composition comprising the following components (A), (B) and (C),
In a total of 100% by weight of the components (A), (B) and (C), the component (A) is 40 to 95% by weight, the component (B) is 5 to 60% by weight and the component (C) is 0 to 55%. The present invention relates to an active energy ray-curable composition containing% by weight.
(A) component: a (meth) acrylate mixture mainly composed of GLY-TA [glycerin tri (meth) acrylate], wherein the high molecular weight component in component (A) is a gel permeation based on the formula (1) Chromatography (hereinafter referred to as “GPC”) mixture whose area% is less than 30% High molecular weight area% = [(R−IL) / R] × 100 (1)
The symbols and terms in formula (1) mean the following.
-R: total area of detection peaks in component (A)-I: area of detection peaks including GLY-TA-L: total area of detection peaks having a weight average molecular weight smaller than that of detection peaks including GLY-TA (B ) Component: Filler (C) Component: Compound having an ethylenically unsaturated group other than the (A) component Hereinafter, the (A) component, the (B) component, the (C) component, other components, and the usage method will be described.
1.(A)成分
 本発明の必須成分である(A)成分は、GLY-TAを主成分とする(メタ)アクリレート混合物である。
 本発明においては、(A)成分としてGLY-TAを主成分とするものを目的とするため、下記式(1)で定義される高分子量体の面積%として30%未満とし、好ましくは25%未満とし、より好ましくは20%未満とする。
1. Component (A) Component (A), which is an essential component of the present invention, is a (meth) acrylate mixture containing GLY-TA as a main component.
In the present invention, since the component (A) is mainly composed of GLY-TA, the area% of the high molecular weight substance defined by the following formula (1) is less than 30%, preferably 25%. Less than, more preferably less than 20%.
 高分子量体の面積%=〔(R-I-L)/R〕×100 ・・・(1)
 式(1)における記号及び用語は、以下を意味する。
・R:(A)成分中の検出ピークの総面積
・I:GLY-TAを含む検出ピークの面積
・L:GLY-TAを含む検出ピークよりも重量平均分子量(以下、「Mw」という)が小さい検出ピークの総面積
 尚、本発明において、Mwとは、溶媒としてテトラヒドロフラン(以下、「THF」という)を使用し、GPCにより測定した分子量をポリスチレンの分子量を基準にして換算した値を意味する。
High molecular weight area% = [(R−IL) / R] × 100 (1)
The symbols and terms in formula (1) mean the following.
R: total area of detection peaks in component (A) I: area of detection peaks including GLY-TA L: weight average molecular weight (hereinafter referred to as “Mw”) more than detection peaks including GLY-TA Total area of small detection peak In the present invention, Mw means a value obtained by converting the molecular weight measured by GPC based on the molecular weight of polystyrene using tetrahydrofuran (hereinafter referred to as “THF”) as a solvent. .
 (A)成分中の高分子量体の面積%を30%未満とすることで、組成物を低粘度で、硬化物物性に優れるものとすることができる。高分子量体の面積%が30%以上となると、組成物の粘度が上昇してしまうため、賦形材料として用いた場合は形状再現性が悪化し、ハードコート剤として用いた場合は塗工性が悪化する。
 尚、本発明におけるGPCにより測定した分子量は、以下の条件で測定した値を意味する。
・検出器:示差屈折計(RI検出器)
・カラムの種類:架橋ポリスチレン系カラム
・カラムの温度:25~50℃の範囲内
・溶離液:THF
By setting the area% of the high molecular weight substance in the component (A) to less than 30%, the composition can have a low viscosity and excellent cured product properties. When the area% of the high molecular weight is 30% or more, the viscosity of the composition increases. Therefore, when used as a shaping material, the shape reproducibility deteriorates, and when used as a hard coat agent, the coatability is increased. Gets worse.
In addition, the molecular weight measured by GPC in the present invention means a value measured under the following conditions.
・ Detector: Differential refractometer (RI detector)
-Column type: Cross-linked polystyrene column-Column temperature: within 25-50 ° C-Eluent: THF
 (A)成分は、GLY-TAを主成分とするものであり、水酸基価が低いものが好ましい。具体的には水酸基価が、60mgKOH/g以下のものが好ましく、より好ましくは45mgKOH/g以下である。
 (A)成分の水酸基価をこの範囲とすることで、組成物を低粘度にすることができ、硬化物の硬度に優れた組成物を得ることができる。
 尚、本発明において水酸基価とは、試料1g中の水酸基と当量の水酸化カリウムのmg数を意味する。
The component (A) is mainly composed of GLY-TA and preferably has a low hydroxyl value. Specifically, the hydroxyl value is preferably 60 mgKOH / g or less, more preferably 45 mgKOH / g or less.
By setting the hydroxyl value of the component (A) within this range, the composition can have a low viscosity, and a composition excellent in the hardness of the cured product can be obtained.
In the present invention, the hydroxyl value means the number of mg of potassium hydroxide equivalent to the hydroxyl group in 1 g of a sample.
 (A)成分としては、グリセリンと1個の(メタ)アクリロイル基をする化合物〔以下、単官能(メタ)アクリレート」という〕をエステル交換反応させて得られるものが好ましい。
 前記した通り、グリセリンと(メタ)アクリル酸を脱水エステル化反応させる製造方法では、2級水酸基の反応性が低いため高分子量体が多く生成してしまい、工業的にGLY-TAを製造することが困難である。これに対して、グリセリンと単官能(メタ)アクリレートのエステル交換反応によれば、GLY-TAを主成分とする(メタ)アクリレート混合物を製造することが可能となる。
As the component (A), those obtained by transesterification of a compound having glycerin and one (meth) acryloyl group [hereinafter referred to as monofunctional (meth) acrylate] are preferable.
As described above, in the production method in which glycerin and (meth) acrylic acid are subjected to a dehydration esterification reaction, the secondary hydroxyl group has low reactivity, so a large amount of high molecular weight is produced, and GLY-TA is produced industrially. Is difficult. In contrast, according to the transesterification reaction between glycerin and a monofunctional (meth) acrylate, a (meth) acrylate mixture containing GLY-TA as a main component can be produced.
 グリセリンと単官能(メタ)アクリレートのエステル交換反応の場合、(メタ)アクリレートの混合物が得られる。具体的には、GLY-TAの他、グリセリンジ(メタ)アクリレート及び高分子量体が得られ、製造条件によっては少量のグリセリンモノ(メタ)アクリレートが得られる。
 高分子量体の例としては、例えば、GLY-TAの(メタ)アクリロイル基に、グリセリンジ(メタ)アクリレートの水酸基がマイケル付加した化合物等といったマイケル付加型の構造を有する多官能(メタ)アクリレート等が挙げられる。
In the case of a transesterification reaction between glycerin and a monofunctional (meth) acrylate, a mixture of (meth) acrylate is obtained. Specifically, in addition to GLY-TA, glycerin di (meth) acrylate and high molecular weight are obtained, and a small amount of glycerin mono (meth) acrylate is obtained depending on the production conditions.
Examples of the high molecular weight substance include, for example, a polyfunctional (meth) acrylate having a Michael addition type structure such as a compound in which the hydroxyl group of glycerin di (meth) acrylate is added to the (meth) acryloyl group of GLY-TA. Is mentioned.
 以下、(A)成分の好ましい製造方法であるエステル交換反応による製造方法に関して、多価アルコール、単官能(メタ)アクリレート、触媒及び(A)成分の製造方法について説明する。 Hereinafter, regarding the production method by transesterification which is a preferred production method of the component (A), the production method of the polyhydric alcohol, the monofunctional (meth) acrylate, the catalyst, and the component (A) will be described.
1-1.多価アルコール
 (A)成分の原料として使用する多価アルコールは、グリセリンである。
 原料のグリセリンは、少量の水、ジグリセリン等のグリセリン縮合物を含んでいてもよい。グリセリンの純度に特に制限はないが、好ましくは90重量%以上であり、より好ましくは95重量%以上である。グリセリンの純度が90重量%より小さいと、(A)成分の粘度が増加するため、取扱いが困難となることがある。
 又、グリセリンには、製造工程に由来する微量の過酸化物を含むことがある。(A)成分の原料として使用するグリセリンに含まれる過酸化物の濃度としては、5wtppm以下であることが好ましく、より好ましくは2wtppm以下である。過酸化物の濃度が5wtppmを超えると、製造時に(メタ)アクリロイル基が重合したり、反応液の色調が悪化することがある。
 本発明においては、本発明の効果を損なわない範囲であれば、グリセリンと、グリセリン以外の多価アルコール(以下、「その他多価アルコール」という)の一種以上を任意に組み合わせて使用してもよい。
 その他多価アルコールを併用する場合の割合としては、グリセリン100重量部に対して、50重量部以下が好ましい。
1-1. The polyhydric alcohol used as a raw material for the polyhydric alcohol (A) component is glycerin.
The raw material glycerin may contain a small amount of water and a glycerin condensate such as diglycerin. Although there is no restriction | limiting in particular in the purity of glycerol, Preferably it is 90 weight% or more, More preferably, it is 95 weight% or more. When the purity of glycerin is less than 90% by weight, the viscosity of the component (A) increases, which may make handling difficult.
Glycerin may contain a small amount of peroxide derived from the production process. (A) As a density | concentration of the peroxide contained in the glycerol used as a raw material of a component, it is preferable that it is 5 wtppm or less, More preferably, it is 2 wtppm or less. If the concentration of the peroxide exceeds 5 wtppm, the (meth) acryloyl group may be polymerized during the production or the color tone of the reaction solution may be deteriorated.
In the present invention, glycerin and a polyhydric alcohol other than glycerin (hereinafter referred to as “other polyhydric alcohol”) may be used in any combination as long as the effects of the present invention are not impaired. .
In addition, as a ratio when using a polyhydric alcohol together, 50 weight part or less is preferable with respect to 100 weight part of glycerol.
 その他多価アルコールとしては、分子中に少なくとも2個以上のアルコール性水酸基を有する脂肪族アルコール、脂環式アルコール、芳香族アルコール、多価アルコールエーテル等であり、分子内にその他の官能基や結合、例えばフェノール性水酸基、ケトン基、アシル基、アルデヒド基、チオール基、アミノ基、イミノ基、シアノ基、ニトロ基、ビニル基、エーテル結合、エステル結合、カーボネート基、アミド結合、イミド結合、ペプチド結合、ウレタン結合、アセタール結合、ヘミアセタール結合及びヘミケタール結合等を有してもよい。 Other polyhydric alcohols include aliphatic alcohols having at least two alcoholic hydroxyl groups in the molecule, alicyclic alcohols, aromatic alcohols, polyhydric alcohol ethers, and other functional groups and bonds in the molecule. For example, phenolic hydroxyl group, ketone group, acyl group, aldehyde group, thiol group, amino group, imino group, cyano group, nitro group, vinyl group, ether bond, ester bond, carbonate group, amide bond, imide bond, peptide bond , A urethane bond, an acetal bond, a hemiacetal bond, a hemiketal bond, and the like.
 2個のアルコール性水酸基を有する2価アルコールの具体例としては、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、トリメチレングリコール、ジプロピレングリコール、トリプロピレングリコール、ポリプロピレングリコール、ブタンジオール、ペンタンジオール、ヘキサンジオール、ヘプタンジオール、ノナンジオール、ネオペンチルグリコール、シクロヘキサンジオール、シクロヘキサンジメタノール、及びジオキサングリコール等が挙げられる。 Specific examples of the dihydric alcohol having two alcoholic hydroxyl groups include ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, trimethylene glycol, dipropylene glycol, tripropylene glycol, polypropylene glycol, butanediol, Examples include pentanediol, hexanediol, heptanediol, nonanediol, neopentylglycol, cyclohexanediol, cyclohexanedimethanol, and dioxaneglycol.
 3個のアルコール性水酸基を有する3価アルコールの具体例としては、トリメチロールエタン、トリメチロールプロパン、トリス(2-ヒロドキシエチル)イソシアヌレート、ヘキサントリオール、オクタントリオール、及びデカントリオール等の3価アルコール、並びに3価のアルコールのアルキレンオキサイド付加物等が挙げられる。 Specific examples of the trihydric alcohol having three alcoholic hydroxyl groups include trihydric alcohols such as trimethylolethane, trimethylolpropane, tris (2-hydroxyethyl) isocyanurate, hexanetriol, octanetriol, and decanetriol; Examples include an alkylene oxide adduct of a trivalent alcohol.
 4個のアルコール性水酸基を有する4価アルコールの具体例としては、ジトリメチロールエタン、ジトリメチロールプロパン、ジグリセリン、及びペンタエリスリトール等の4価アルコール、並びに4価アルコールのアルキレンオキサイド付加物等が挙げられる。 Specific examples of the tetrahydric alcohol having four alcoholic hydroxyl groups include tetrahydric alcohols such as ditrimethylolethane, ditrimethylolpropane, diglycerin, and pentaerythritol, and alkylene oxide adducts of tetrahydric alcohol. .
 5個のアルコール性水酸基を有する5価アルコールの具体例としては、トリトリメチロールエタン、トリトリメチロールプロパン、及びトリグリセリン等の5価アルコール、並びに5価アルコールのアルキレンオキサイド付加物等が挙げられる。 Specific examples of the pentahydric alcohol having 5 alcoholic hydroxyl groups include pentahydric alcohols such as tritrimethylolethane, tritrimethylolpropane, and triglycerin, and alkylene oxide adducts of pentahydric alcohol.
 6個以上のアルコール性水酸基を有する多価アルコールの具体例としては、ポリトリメチロールエタン、ポリトリメチロールプロパン、ポリグリセリン、ジペンタエリスリトール、トリペンタエリスリトール、及びポリペンタエリスリトール等の6価以上のアルコール、並びに6価以上のアルコールのアルキレンオキサイド付加物等が挙げられる。 Specific examples of the polyhydric alcohol having 6 or more alcoholic hydroxyl groups include polytrimethylolethane, polytrimethylolpropane, polyglycerin, dipentaerythritol, tripentaerythritol, and polypentaerythritol. And alkylene oxide adducts of alcohols having 6 or more valences.
 その他多価アルコールの具体例としては、前記以外にも特開2017-39916号公報、特開2017-39917号公報及び国際公開第2017/033732号で挙げた化合物等が挙げられる。 Other specific examples of polyhydric alcohols include the compounds mentioned in JP 2017-39916 A, JP 2017-39917 A, and International Publication No. 2017/033732.
1-2.単官能(メタ)アクリレート
 (A)成分の原料として使用する単官能(メタ)アクリレートは、分子中に1個の(メタ)アクリロイル基を有する化合物であり、例えば、下記一般式(1)で示される化合物が挙げられる。
1-2. The monofunctional (meth) acrylate used as a raw material for the monofunctional (meth) acrylate (A) component is a compound having one (meth) acryloyl group in the molecule. For example, it is represented by the following general formula (1). Compounds.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式(1)において、R1は水素原子又はメチル基を表す。R2は炭素数1~50の有機基を表す。 In Formula (1), R 1 represents a hydrogen atom or a methyl group. R 2 represents an organic group having 1 to 50 carbon atoms.
 上記一般式(1)におけるR2の好ましい具体例としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、へプチル基、オクチル基及び2-エチルヘキシル基等の炭素数1~8のアルキル基、2-メトキシエチル基、2-エトキシエチル基及び2-メトキシブチル基等のアルコキシアルキル基、並びにN,N-ジメチルアミノエチル基、N,N-ジエチルアミノエチル基、N,N-ジメチルアミノプロピル基及びN,N-ジエチルアミノプロピル基等のジアルキルアミノ基等が挙げられる。
 上記一般式(1)におけるR2の具体例としては、前記以外にも特開2017-39916号公報、特開2017-39917号公報及び国際公開第2017/033732号で挙げた官能基が挙げられる。
Preferable specific examples of R 2 in the general formula (1) include 1 carbon atom such as methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group and 2-ethylhexyl group. Alkyl groups of 8 to 8, alkoxyalkyl groups such as 2-methoxyethyl group, 2-ethoxyethyl group and 2-methoxybutyl group, N, N-dimethylaminoethyl group, N, N-diethylaminoethyl group, N, N And dialkylamino groups such as dimethylaminopropyl group and N, N-diethylaminopropyl group.
Specific examples of R 2 in the general formula (1) include the functional groups described in JP 2017-39916 A, JP 2017-39917 A, and International Publication No. 2017/033732. .
 本発明ではこれらの単官能(メタ)アクリレートを単独で又は二種以上を任意に組み合わせて使用できる。
 これらの単官能(メタ)アクリレートの中では、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、i-ブチル(メタ)アクリレート及び2-エチルヘキシル(メタ)アクリレート等の炭素数1~8のアルキル基を有するアルキル(メタ)アクリレート、2-メトキシエチルアクリレート等のアルコキシアルキル(メタ)アクリレート、並びにN,N-ジメチルアミノエチル(メタ)アクリレートが好ましく、特に殆どの多価アルコールに対して良好な反応性を示し、入手が容易な炭素数1~4のアルキル基を有する(メタ)アクリレート、及び炭素数1~2のアルキル基を有するアルコキシアルキル(メタ)アクリレートが好ましい。
 さらに、多価アルコールの溶解を促進し、極めて良好な反応性を示す炭素数1~2のアルキル基を有するアルコキシアルキル(メタ)アクリレートがより好ましく、2-メトキシエチル(メタ)アクリレートが特に好ましい。
 さらに又、単官能(メタ)アクリレートとしては、アクリレートが反応性に優れるため特に好ましい。
In the present invention, these monofunctional (meth) acrylates can be used alone or in combination of two or more.
Among these monofunctional (meth) acrylates, carbon such as methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) acrylate and 2-ethylhexyl (meth) acrylate Alkyl (meth) acrylates having an alkyl group of 1 to 8 and alkoxyalkyl (meth) acrylates such as 2-methoxyethyl acrylate and N, N-dimethylaminoethyl (meth) acrylate are preferable, and most polyhydric alcohols are particularly preferable. (Meth) acrylates having an alkyl group having 1 to 4 carbon atoms, and alkoxyalkyl (meth) acrylates having an alkyl group having 1 to 2 carbon atoms, which are easily available and easily available, are preferred.
Furthermore, alkoxyalkyl (meth) acrylates having an alkyl group having 1 to 2 carbon atoms that promote dissolution of polyhydric alcohol and exhibit very good reactivity are more preferable, and 2-methoxyethyl (meth) acrylate is particularly preferable.
Furthermore, as monofunctional (meth) acrylate, acrylate is particularly preferable because of its excellent reactivity.
 (A)成分の製造方法における多価アルコールと単官能(メタ)アクリレートの使用割合は特に制限はないが、多価アルコール中の水酸基合計1モルに対して単官能(メタ)アクリレートを0.4~10.0モルが好ましく、より好ましくは0.6~5.0モルである。単官能(メタ)アクリレートを0.4モル以上にすることにより副反応を抑制することができる。又、10.0モル以下とすることで、GLY-TAの生成量を多くすることができ、生産性を向上させることができる。 (A) Although there is no restriction | limiting in particular in the usage rate of the polyhydric alcohol and monofunctional (meth) acrylate in the manufacturing method of component, 0.4% of monofunctional (meth) acrylate is used with respect to 1 mol of hydroxyl groups in polyhydric alcohol. The amount is preferably ˜10.0 mol, more preferably 0.6 to 5.0 mol. By making the monofunctional (meth) acrylate 0.4 mol or more, side reactions can be suppressed. When the amount is 10.0 mol or less, the amount of GLY-TA produced can be increased, and productivity can be improved.
1-3.触媒
 (A)成分の製造方法におけるエステル交換反応触媒としては、例えば、スズ系触媒、チタン系触媒及び硫酸等の従来公知のものを使用することができる。
 本発明では、GLY-TAを効率的に高収率で製造できる点で、触媒として下記触媒X及びYを併用することが好ましい。
触媒X:アザビシクロ構造を有する環状3級アミン又はその塩若しくは錯体(以下、「アザビシクロ系化合物」という)、アミジン又はその塩若しくは錯体(以下、「アミジン系化合物」という)、ピリジン環を有する化合物又はその塩若しくは錯体(以下、「ピリジン系化合物」という)、及びホスフィン又はその塩若しくは錯体(以下、「ホスフィン系化合物」という)からなる群から選ばれる一種以上の化合物
触媒Y:亜鉛を含む化合物。
 以下、触媒X及び触媒Yについて説明する。
1-3. As the transesterification catalyst in the method for producing the catalyst (A) component, conventionally known ones such as a tin-based catalyst, a titanium-based catalyst, and sulfuric acid can be used.
In the present invention, it is preferable to use the following catalysts X and Y as the catalyst in that GLY-TA can be efficiently produced in high yield.
Catalyst X: a cyclic tertiary amine having an azabicyclo structure or a salt or complex thereof (hereinafter referred to as “azabicyclo compound”), an amidine or a salt or complex thereof (hereinafter referred to as “amidine compound”), a compound having a pyridine ring, or One or more compound catalysts selected from the group consisting of salts or complexes thereof (hereinafter referred to as “pyridine compounds”) and phosphines or salts or complexes thereof (hereinafter referred to as “phosphine compounds”): a compound containing zinc.
Hereinafter, the catalyst X and the catalyst Y will be described.
1-3-1.触媒X
 触媒Xは、アザビシクロ系化合物、アミジン系化合物、ピリジン系化合物及びホスフィン系化合物からなる群から選ばれる一種以上の化合物である。
 触媒Xとしては、前記した化合物群の中でも、アザビシクロ系化合物、アミジン系化合物及びピリジン系化合物からなる群から選ばれる一種以上の化合物が好ましい。これら化合物は、触媒活性に優れ(A)成分を好ましく製造できる他、反応終了後に後記する触媒Yと錯体を形成するため、ろ過及び吸着等による簡便な方法により反応終了後の反応液から容易に除去できる。特に、アザシクロ系化合物は、その触媒Yとの錯体が反応液に難溶解性となるため、ろ過及び吸着等によりさらに容易に除去することができる。
 一方、ホスフィン系化合物は、触媒活性に優れるものの、触媒Yと錯体を形成し難く、反応終了後の反応液中に大部分が溶解したままとなるため、ろ過及び吸着等による簡便な方法により反応液から除去し難い。このため、最終製品中にもホスフィン系触媒が残存してしまい、これにより製品の保存中に、濁りや触媒の析出が発生したり、経時的に増粘又はゲル化してしまうという保存安定性の問題を生じることがあり、組成物の成分として使用する場合も同様の問題を有することがあった。
1-3-1. Catalyst X
The catalyst X is one or more compounds selected from the group consisting of azabicyclo compounds, amidine compounds, pyridine compounds, and phosphine compounds.
The catalyst X is preferably at least one compound selected from the group consisting of azabicyclo compounds, amidine compounds and pyridine compounds among the compound groups described above. These compounds are excellent in catalytic activity and can preferably produce component (A), and form a complex with catalyst Y described later after completion of the reaction. Therefore, these compounds can be easily obtained from the reaction solution after completion of the reaction by a simple method such as filtration and adsorption. Can be removed. In particular, since the complex with the catalyst Y becomes hardly soluble in the reaction solution, the azacyclo compound can be more easily removed by filtration and adsorption.
On the other hand, although the phosphine compound is excellent in catalytic activity, it is difficult to form a complex with the catalyst Y, and most of the phosphine compound remains dissolved in the reaction solution after completion of the reaction. Therefore, the phosphine compound is reacted by a simple method such as filtration and adsorption. It is difficult to remove from the liquid. For this reason, the phosphine-based catalyst remains in the final product, thereby causing turbidity and catalyst precipitation during storage of the product, and increasing the viscosity or gelation over time. Problems may arise, and similar problems may occur when used as a component of a composition.
 アザビシクロ系化合物の具体例としては、アザビシクロ構造を有する環状3級アミン、当該アミンの塩、又は当該アミンの錯体を満足する化合物であれば種々の化合物が挙げられ、好ましい化合物としては、キヌクリジン、3-ヒドロキシキヌクリジン、3-キヌクリジノン、1-アザビシクロ[2.2.2]オクタン-3-カルボン酸、及びトリエチレンジアミン(別名:1,4-ジアザビシクロ[2.2.2]オクタン。以下、「DABCO」という)等が挙げられる。
 アザビシクロ系化合物の具体例としては、前記以外にも特開2017-39916号公報、特開2017-39917号公報及び国際公開第2017/033732号で挙げた官能基が挙げられる。
Specific examples of the azabicyclo compound include various compounds as long as the compound satisfies the cyclic tertiary amine having an azabicyclo structure, a salt of the amine, or a complex of the amine. Preferred compounds include quinuclidine, 3 -Hydroxyquinuclidine, 3-quinuclidinone, 1-azabicyclo [2.2.2] octane-3-carboxylic acid, and triethylenediamine (also known as 1,4-diazabicyclo [2.2.2] octane. DABCO ”).
Specific examples of the azabicyclo compounds include the functional groups described in JP 2017-39916 A, JP 2017-39917 A, and International Publication No. 2017/033732.
 アミジン系化合物の具体例としては、イミダゾール、N-メチルイミダゾール、N-エチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-ビニルイミダゾール、1-アリルイミダゾール、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン(以下、「DBU」という)、1,5-ジアザビシクロ[4.3.0]ノナ-5-エン(以下、「DBN」という)、N-メチルイミダゾール塩酸塩、DBU塩酸塩、DBN塩酸塩、N-メチルイミダゾール酢酸塩、DBU酢酸塩、DBN酢酸塩、N-メチルイミダゾールアクリル酸塩、DBUアクリル酸塩、DBNアクリル酸塩、及びフタルイミドDBU等が挙げられる。 Specific examples of amidine compounds include imidazole, N-methylimidazole, N-ethylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 1-vinylimidazole, 1-allylimidazole, 1 , 8-diazabicyclo [5.4.0] undec-7-ene (hereinafter referred to as “DBU”), 1,5-diazabicyclo [4.3.0] non-5-ene (hereinafter referred to as “DBN”) N-methylimidazole hydrochloride, DBU hydrochloride, DBN hydrochloride, N-methylimidazole acetate, DBU acetate, DBN acetate, N-methylimidazole acrylate, DBU acrylate, DBN acrylate, and Examples include phthalimide DBU.
 ピリジン系化合物の主な具体例としては、ピリジン、2-メチルピリジン、3-メチルピリジン、4-メチルピリジン、2-エチルピリジン、3-エチルピリジン、4-エチルピリジン、及びN,N-ジメチル-4-アミノピリジン(以下、「DMAP」という)等が挙げられる。
 ピリジン系化合物の具体例としては、前記以外にも特開2017-39916号公報、特開2017-39917号公報及び国際公開第2017/033732号で挙げた官能基が挙げられる。
Principal examples of pyridine compounds include pyridine, 2-methylpyridine, 3-methylpyridine, 4-methylpyridine, 2-ethylpyridine, 3-ethylpyridine, 4-ethylpyridine, and N, N-dimethyl- 4-aminopyridine (hereinafter referred to as “DMAP”) and the like.
Specific examples of the pyridine-based compound include the functional groups described in JP-A-2017-39916, JP-A-2017-39917 and International Publication No. 2017/033732.
 ホスフィン又はその塩若しくは錯体は、下記一般式(2)で示される構造を含む化合物等が挙げられる。 Examples of phosphine or a salt or complex thereof include compounds containing a structure represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
〔式(2)において、R3、R4及びR5は、炭素数1~20の直鎖状又は分岐状アルキル基、炭素数1~20の直鎖状又は分岐状アルケニル基、炭素数6~24のアリール基、若しくは、炭素数5~20のシクロアルキル基を意味する。R3、R4及びR5としては、同一であっても異なっていても良い〕
表す。)
[In the formula (2), R 3 , R 4 and R 5 are each a linear or branched alkyl group having 1 to 20 carbon atoms, a linear or branched alkenyl group having 1 to 20 carbon atoms, a carbon number of 6 Means an aryl group having ˜24 or a cycloalkyl group having 5 to 20 carbon atoms. R 3 , R 4 and R 5 may be the same or different.
To express. )
 ホスフィン系化合物の具体例としては、トリフェニルホスフィン、トリス(4-メトキシフェニル)ホスフィン、トリ(p-トリル)ホスフィン、トリ(m-トリル)ホスフィン、
トリス(4-メトキシ-3,5-ジメチルフェニル)ホスフィン、及びトリシクロヘキシルホスフィン等が挙げられる。
 ホスフィン系化合物の具体例としては、前記以外にも前記以外にも特開2017-39916号公報、特開2017-39917号公報及び国際公開第2017/033732号で挙げた官能基が挙げられる。
Specific examples of the phosphine compound include triphenylphosphine, tris (4-methoxyphenyl) phosphine, tri (p-tolyl) phosphine, tri (m-tolyl) phosphine,
And tris (4-methoxy-3,5-dimethylphenyl) phosphine and tricyclohexylphosphine.
In addition to the above, specific examples of the phosphine compounds include the functional groups described in JP-A-2017-39916, JP-A-2017-39917, and International Publication No. 2017/033732.
 本発明ではこれらの触媒Xを単独で又は二種以上を任意に組み合わせて使用できる。これらの触媒Xの中では、キヌクリジン、3-キヌクリジノン、3-ヒドロキシキヌクリジン、DABCO、N-メチルイミダゾール、DBU、DBN及びDMAPが好ましく、特に殆どの多価アルコールに対して良好な反応性を示し、入手が容易な3-ヒドロキシキヌクリジン、DABCO、N-メチルイミダゾール、DBU及びDMAPがより好ましい。 In the present invention, these catalysts X can be used alone or in any combination of two or more. Among these catalysts X, quinuclidine, 3-quinuclidinone, 3-hydroxyquinuclidine, DABCO, N-methylimidazole, DBU, DBN and DMAP are preferable, and particularly have good reactivity with most polyhydric alcohols. More preferred are 3-hydroxyquinuclidine, DABCO, N-methylimidazole, DBU and DMAP, as shown and readily available.
 (A)成分の製造方法における触媒Xの使用割合は特に制限はないが、多価アルコール中の水酸基合計1モルに対して、触媒Xを0.0001~0.5モル使用することが好ましく、より好ましくは0.0005~0.2モルである。触媒Xを0.0001モル以上使用することで、目的のGLY-TAの生成量を多くすることができ、0.5モル以下とすることで、副生成物の生成や反応液の着色を抑制し、反応終了後の精製工程を簡便にすることができる。 The ratio of the catalyst X used in the method for producing the component (A) is not particularly limited, but 0.0001 to 0.5 mol of the catalyst X is preferably used with respect to 1 mol of the total hydroxyl groups in the polyhydric alcohol. More preferably, it is 0.0005 to 0.2 mol. By using 0.0001 mol or more of catalyst X, the amount of target GLY-TA produced can be increased, and by making it 0.5 mol or less, by-product formation and reaction coloration are suppressed. In addition, the purification process after completion of the reaction can be simplified.
1-3-2.触媒Y
 触媒Yは、亜鉛を含む化合物である。
 触媒Yとしては、亜鉛を含む化合物であれば種々の化合物を使用することができるが、反応性に優れることから有機酸亜鉛及び亜鉛ジケトンエノラートが好ましい。
 有機酸亜鉛としては、蓚酸亜鉛等の二塩基酸亜鉛及び下記一般式(3)で表される化合物を挙げることができる。
1-3-2. Catalyst Y
The catalyst Y is a compound containing zinc.
As the catalyst Y, various compounds can be used as long as they contain zinc, but organic acids zinc and zinc diketone enolate are preferable because of excellent reactivity.
Examples of the organic acid zinc include dibasic acid zinc such as zinc oxalate and a compound represented by the following general formula (3).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
〔式(3)において、R6及びR7は、炭素数1~20の直鎖状又は分岐状アルキル基、炭素数1~20の直鎖状又は分岐状アルケニル基、炭素数6~24のアリール基、若しくは、炭素数5~20のシクロアルキル基を意味する。R6及びR7としては、同一であっても異なっていても良い〕
 前記式(3)の化合物としては、R6及びR7が、炭素数1~20の直鎖状又は分岐状アルキル基である化合物が好ましい。R6及びR7において、炭素数1~20の直鎖状又は分岐状アルキル基は、フッ素及び塩素等のハロゲン原子を有しない官能基であり、当該官能基を有する触媒Yは、高収率でGLY-TAを製造できるため好ましい。
[In the formula (3), R 6 and R 7 are each a linear or branched alkyl group having 1 to 20 carbon atoms, a linear or branched alkenyl group having 1 to 20 carbon atoms, or a 6 to 24 carbon atoms. An aryl group or a cycloalkyl group having 5 to 20 carbon atoms is meant. R 6 and R 7 may be the same or different.
The compound of the formula (3) is preferably a compound in which R 6 and R 7 are linear or branched alkyl groups having 1 to 20 carbon atoms. In R 6 and R 7 , the linear or branched alkyl group having 1 to 20 carbon atoms is a functional group having no halogen atom such as fluorine and chlorine, and the catalyst Y having the functional group has a high yield. Is preferable because GLY-TA can be produced.
 亜鉛ジケトンエノラートとしては、下記一般式(4)で表される化合物を挙げることができる。 Examples of zinc diketone enolate include compounds represented by the following general formula (4).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
〔式(4)において、R8、R9、R10、R11、R12及びR13は、水素原子、炭素数1~20の直鎖状又は分岐状アルキル基、炭素数1~20の直鎖状又は分岐状アルケニル基、炭素数6~24のアリール基、若しくは炭素数5~20のシクロアルキル基を意味する。R8、R9、R10、R11、R12及びR13としては、同一であっても異なっていても良い〕 [In the formula (4), R 8 , R 9 , R 10 , R 11 , R 12 and R 13 are each a hydrogen atom, a linear or branched alkyl group having 1 to 20 carbon atoms, or a group having 1 to 20 carbon atoms. A linear or branched alkenyl group, an aryl group having 6 to 24 carbon atoms, or a cycloalkyl group having 5 to 20 carbon atoms is meant. R 8 , R 9 , R 10 , R 11 , R 12 and R 13 may be the same or different.
 上記一般式(3)で表される亜鉛を含む化合物の具体例としては、酢酸亜鉛、酢酸亜鉛二水和物、プロピオン酸亜鉛、オクチル酸亜鉛、ネオデカン酸亜鉛、ラウリン酸亜鉛、ミリスチン酸亜鉛、ステアリン酸亜鉛、シクロヘキサン酪酸亜鉛、2-エチルヘキサン酸亜鉛、安息香酸亜鉛、t-ブチル安息香酸亜鉛、サリチル酸亜鉛、ナフテン酸亜鉛、アクリル酸亜鉛、及びメタクリル酸亜鉛等が挙げられる。
 尚、これらの亜鉛を含む化合物について、その水和物又は溶媒和物又は触媒Xとの錯体が存在する場合には、該水和物及び溶媒和物及び触媒Xとの錯体も(A)成分の製造方法における触媒Yとして使用できる。
Specific examples of the compound containing zinc represented by the general formula (3) include zinc acetate, zinc acetate dihydrate, zinc propionate, zinc octylate, zinc neodecanoate, zinc laurate, zinc myristate, Examples include zinc stearate, zinc cyclohexanebutyrate, zinc 2-ethylhexanoate, zinc benzoate, zinc t-butylbenzoate, zinc salicylate, zinc naphthenate, zinc acrylate, and zinc methacrylate.
In addition, about these compounds containing zinc, when the complex with the hydrate, solvate, or catalyst X exists, this complex with the hydrate, solvate, and catalyst X is also component (A). It can be used as the catalyst Y in the production method.
 上記一般式(4)で表される亜鉛を含む化合物の具体例としては、亜鉛アセチルアセトナート、亜鉛アセチルアセトナート水和物、ビス(2,6-ジメチル-3,5-ヘプタンジオナト)亜鉛、ビス(2,2,6,6-テトラメチル-3,5-ヘプタンジオナト)亜鉛、及びビス(5,5-ジメチル-2,4-ヘキサンジオナト)亜鉛等が挙げられる。尚、これらの亜鉛を含む化合物について、その水和物又は溶媒和物又は触媒Xとの錯体が存在する場合には、該水和物及び溶媒和物及び触媒Xとの錯体も(A)成分の製造方法における触媒Yとして使用できる。 Specific examples of the compound containing zinc represented by the general formula (4) include zinc acetylacetonate, zinc acetylacetonate hydrate, bis (2,6-dimethyl-3,5-heptanedionate) zinc, bis (2,2,6,6-tetramethyl-3,5-heptanedionato) zinc, bis (5,5-dimethyl-2,4-hexanedionato) zinc and the like. In addition, about these compounds containing zinc, when the complex with the hydrate, solvate, or catalyst X exists, this complex with the hydrate, solvate, and catalyst X is also component (A). It can be used as the catalyst Y in the production method.
 触媒Yにおける、有機酸亜鉛及び亜鉛ジケトンエノラートとしては、前記した化合物を直接使用することができるが、反応系内でこれら化合物を発生させ使用することもできる。例えば、金属亜鉛、酸化亜鉛、水酸化亜鉛、塩化亜鉛及び硝酸亜鉛等の亜鉛化合物(以下、「原料亜鉛化合物」という)を原料として使用し、有機酸亜鉛の場合は、原料亜鉛化合物と有機酸を反応させる方法、亜鉛ジケトンエノラートの場合は、原料亜鉛化合物と1,3-ジケトンを反応させる方法等が挙げられる。 As the organic acid zinc and zinc diketone enolate in the catalyst Y, the aforementioned compounds can be used directly, but these compounds can also be generated and used in the reaction system. For example, zinc compounds such as metal zinc, zinc oxide, zinc hydroxide, zinc chloride and zinc nitrate (hereinafter referred to as “raw zinc compounds”) are used as raw materials. In the case of organic acid zinc, raw zinc compounds and organic acids are used. In the case of zinc diketone enolate, a method of reacting a raw material zinc compound and 1,3-diketone can be used.
 本発明ではこれらの触媒Yを単独で又は二種以上を任意に組み合わせて使用できる。これらの触媒Yの中では、酢酸亜鉛、プロピオン酸亜鉛、アクリル酸亜鉛、メタクリル酸亜鉛、亜鉛アセチルアセトナートが好ましく、特に殆どの多価アルコールに対して良好な反応性を示し、入手が容易な酢酸亜鉛、アクリル酸亜鉛、亜鉛アセチルアセトナートが好ましい。 In the present invention, these catalysts Y can be used alone or in any combination of two or more. Among these catalysts Y, zinc acetate, zinc propionate, zinc acrylate, zinc methacrylate, and zinc acetylacetonate are preferable, and particularly shows good reactivity with most polyhydric alcohols and is easily available. Zinc acetate, zinc acrylate and zinc acetylacetonate are preferred.
 (A)成分の製造方法における触媒Yの使用割合は特に制限はないが、多価アルコール中の水酸基合計1モルに対して、触媒Yを0.0001~0.5モル使用することが好ましく、より好ましくは0.0005~0.2モルである。触媒Yを0.0001モル以上使用することで、目的のGLY-TAの生成量を多くすることができ、0.5モル以下とすることで、副生成物の生成や反応液の着色を抑制し、反応終了後の精製工程を簡便にすることができる。 The ratio of the catalyst Y used in the method for producing the component (A) is not particularly limited, but 0.0001 to 0.5 mol of the catalyst Y is preferably used with respect to 1 mol of hydroxyl groups in the polyhydric alcohol. More preferably, it is 0.0005 to 0.2 mol. By using 0.0001 mol or more of catalyst Y, the amount of target GLY-TA generated can be increased, and by setting it to 0.5 mol or less, by-product generation and reaction coloration are suppressed. In addition, the purification process after completion of the reaction can be simplified.
1-4.(A)成分の製造方法
 (A)成分は、エステル交換触媒の存在下に、グリセリンと単官能(メタ)アクリレートをエステル交換反応させて製造される。
 前記した通り、(A)成分の製造方法としては、触媒として前記触媒X及びYを併用する製造方法が好ましく、以下、当該製造方法について説明する。
1-4. (A) Component Production Method Component (A) is produced by subjecting glycerol and a monofunctional (meth) acrylate to an ester exchange reaction in the presence of a transesterification catalyst.
As described above, the production method of the component (A) is preferably a production method using the catalysts X and Y in combination as a catalyst. The production method will be described below.
 (A)成分の製造方法における触媒Xと触媒Yの使用割合は特に制限はないが、触媒Yの1モルに対して、触媒Xを0.005~10.0モル使用することが好ましく、より好ましくは0.05~5.0モルである。0.005モル以上使用することで、目的のGLY-TAの生成量を多くすることができ、10.0モル以下とすることで、副生成物の生成や反応液の着色を抑制し、反応終了後の精製工程を簡便にすることができる。 The ratio of the catalyst X and the catalyst Y in the method for producing the component (A) is not particularly limited, but it is preferable to use 0.005 to 10.0 moles of the catalyst X with respect to 1 mole of the catalyst Y. The amount is preferably 0.05 to 5.0 mol. By using 0.005 mol or more, the production amount of the target GLY-TA can be increased, and by making it 10.0 mol or less, the production of by-products and coloring of the reaction solution are suppressed, and the reaction The purification step after completion can be simplified.
 本発明で併用する触媒Xと触媒Yの組合せとしては、触媒Xがアザビシクロ系化合物で、触媒Yが前記一般式(3)で表される化合物の組み合わせが好ましく、さらに、アザビシクロ系化合物がDABCOであり、前記一般式(3)で表される化合物が酢酸亜鉛及び/又はアクリル酸亜鉛である組み合わせが最も好ましい。
 この組合せが、GLY-TAを収率よく得られることに加え、反応終了後の色調に優れることから、色調が重要視される各種工業用途に好適に使用できる。さらには比較的安価に入手可能な触媒であることから、経済的に有利な製造方法となる。
The combination of the catalyst X and the catalyst Y used in the present invention is preferably a combination of the catalyst X being an azabicyclo compound, the catalyst Y being a compound represented by the general formula (3), and the azabicyclo compound being DABCO. And a combination in which the compound represented by the general formula (3) is zinc acetate and / or zinc acrylate is most preferable.
In addition to obtaining GLY-TA in good yield, this combination is excellent in color tone after completion of the reaction, and therefore can be suitably used for various industrial applications in which color tone is regarded as important. Furthermore, since the catalyst is available at a relatively low cost, it is an economically advantageous production method.
 本発明で使用する触媒X及び触媒Yは、上記反応の最初から添加してもよいし、途中から添加してもよい。又、所望の使用量を一括で添加してもよいし、分割して添加してもよい。 The catalyst X and catalyst Y used in the present invention may be added from the beginning of the above reaction or may be added in the middle. Moreover, a desired use amount may be added all at once, or may be added in divided portions.
 (A)成分の製造方法における反応温度は40~180℃であることが好ましく、より好ましくは60~160℃である。反応温度を40℃以上にすることで、反応速度を速くすることができ、180℃以下とすることで、原料や生成物中の(メタ)アクリロイル基の熱重合を抑制し、反応液の着色を抑制でき、反応終了後の精製工程を簡便にすることができる。 The reaction temperature in the method for producing the component (A) is preferably 40 to 180 ° C, more preferably 60 to 160 ° C. By setting the reaction temperature to 40 ° C. or higher, the reaction rate can be increased, and by setting it to 180 ° C. or lower, thermal polymerization of (meth) acryloyl groups in raw materials and products is suppressed, and coloring of the reaction liquid is performed. And the purification process after completion of the reaction can be simplified.
 (A)成分の製造方法における反応圧力は、所定の反応温度を維持できれば特に制限はなく、減圧状態で実施してもよく、又加圧状態で実施してもよい。反応圧力としては、0.000001~10MPa(絶対圧力)が好ましい。 The reaction pressure in the method for producing the component (A) is not particularly limited as long as the predetermined reaction temperature can be maintained, and may be performed in a reduced pressure state or in a pressurized state. The reaction pressure is preferably 0.000001 to 10 MPa (absolute pressure).
 (A)成分の製造方法においては、エステル交換反応の進行に伴い単官能(メタ)アクリレートに由来する1価アルコールが副生する。該1価アルコールを反応系内に共存させたままでもよいが、該1価アルコールを反応系外に排出することにより、エステル交換反応の進行をより促進することができる。 In the method for producing the component (A), monohydric alcohol derived from monofunctional (meth) acrylate is by-produced as the transesterification proceeds. Although the monohydric alcohol may be allowed to coexist in the reaction system, the transesterification reaction can be further promoted by discharging the monohydric alcohol out of the reaction system.
 (A)成分の製造方法では溶媒を使用せずに反応させることもできるが、必要に応じて溶媒を使用してもよい。
 溶媒の具体例としては、n-ヘキサン、シクロヘキサン、メチルシクロヘキサン、n-ヘプタン、n-オクタン、n-ノナン、n-デカン、ベンゼン、トルエン、キシレン、エチルベンゼン、ジエチルベンゼン、イソプロピルベンゼン、アミルベンゼン、ジアミルベンゼン、トリアミルベンゼン、ドデシルベンゼン、ジドデシルベンゼン、アミルトルエン、イソプロピルトルエン、デカリン及びテトラリン等の炭化水素類;ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、ジアミルエーテル、ジエチルアセタール、ジヘキシルアセタール、t-ブチルメチルエーテル、シクロペンチルメチルエーテル、テトラヒドロフラン、テトラヒドロピラン、トリオキサン、ジオキサン、アニソール、ジフェニルエーテル、ジメチルセロソルブ、ジグライム、トリグライム及びテトラグライム等のエーテル類;18-クラウン-6等のクラウンエーテル類;安息香酸メチル及びγ-ブチロラクトン等のエステル類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、アセトフェノン及びベンゾフェノン等のケトン類;炭酸ジメチル、炭酸ジエチル、エチレンカーボネート、プロピレンカーボネート、1,2-ブチレンカーボネート等のカーボネート化合物;スルホラン等のスルホン類;ジメチルスルホキサイド等のスルホキサイド類;尿素類又はその誘導体;トリブチルホスフィンオキサイド等のホスフィンオキサイド類、イミダゾリウム塩、ピペリジニウム塩及びピリジニウム塩等のイオン液体;シリコンオイル並びに;水等が挙げられる。
 これらの溶媒の中では、炭化水素類、エーテル類、カーボネート化合物及びイオン液体が好ましい。
 これらの溶媒は単独で使用してもよく、二種以上を任意に組み合わせて混合溶媒として使用してもよい。
In the method for producing the component (A), the reaction can be carried out without using a solvent, but a solvent may be used as necessary.
Specific examples of the solvent include n-hexane, cyclohexane, methylcyclohexane, n-heptane, n-octane, n-nonane, n-decane, benzene, toluene, xylene, ethylbenzene, diethylbenzene, isopropylbenzene, amylbenzene, diamyl. Hydrocarbons such as benzene, triamylbenzene, dodecylbenzene, didodecylbenzene, amyltoluene, isopropyltoluene, decalin and tetralin; diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, diamyl ether, diethyl acetal, dihexyl acetal , T-butyl methyl ether, cyclopentyl methyl ether, tetrahydrofuran, tetrahydropyran, trioxane, dioxane, anisole, diphenyl ether Ethers such as tellurium, dimethylcellosolve, diglyme, triglyme and tetraglyme; crown ethers such as 18-crown-6; esters such as methyl benzoate and γ-butyrolactone; acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, acetophenone And ketones such as benzophenone; carbonate compounds such as dimethyl carbonate, diethyl carbonate, ethylene carbonate, propylene carbonate, and 1,2-butylene carbonate; sulfones such as sulfolane; sulfoxides such as dimethyl sulfoxide; ureas or derivatives thereof Ionic liquids such as phosphine oxides such as tributylphosphine oxide, imidazolium salts, piperidinium salts and pyridinium salts; silicon oil; and water Is mentioned.
Of these solvents, hydrocarbons, ethers, carbonate compounds and ionic liquids are preferred.
These solvents may be used alone, or two or more kinds may be arbitrarily combined and used as a mixed solvent.
 (A)成分の製造方法においては、反応液の色調を良好に維持する目的で系内にアルゴン、ヘリウム、窒素及び炭酸ガス等の不活性ガスを導入してもよいが、(メタ)アクリロイル基の重合を防止する目的で系内に含酸素ガスを導入してもよい。含酸素ガスの具体例としては、空気、酸素と窒素の混合ガス、酸素とヘリウムの混合ガス等が挙げられる。含酸素ガスの導入方法としては、反応液中に溶存させたり、又は反応液中に吹込む(いわゆるバブリング)方法がある。 In the method for producing the component (A), an inert gas such as argon, helium, nitrogen and carbon dioxide may be introduced into the system for the purpose of maintaining a good color tone of the reaction solution. For the purpose of preventing polymerization of oxygen, an oxygen-containing gas may be introduced into the system. Specific examples of the oxygen-containing gas include air, a mixed gas of oxygen and nitrogen, a mixed gas of oxygen and helium, and the like. As a method for introducing the oxygen-containing gas, there is a method in which the oxygen-containing gas is dissolved in the reaction solution or blown into the reaction solution (so-called bubbling).
 (A)成分の製造方法においては、(メタ)アクリロイル基の重合を防止する目的で反応液中に重合禁止剤を添加することが好ましい。
 重合禁止剤の具体例としては、ハイドロキノン、tert-ブチルハイドロキノン、ハイドロキノンモノメチルエーテル、2,6-ジ-tert-ブチル-4-メチルフェノール、2,4,6-トリ-tert-ブチルフェノール、4-tert-ブチルカテコール、ベンゾキノン、フェノチアジン、N-ニトロソ-N-フェニルヒドロキシルアミンアンモニウム、2,2,6,6-テトラメチルピペリジン-1-オキシル、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-1-オキシル等の有機系重合禁止剤、塩化銅、硫酸銅及び硫酸鉄等の無機系重合禁止剤、並びにジブチルジチオカルバミン酸銅、N-ニトロソ-N-フェニルヒドロキシルアミンアルミニウム塩等の有機塩系重合禁止剤が挙げられる。
 重合禁止剤は、一種を単独で添加しても又は二種以上を任意に組み合わせて添加してもよく、本発明の最初から添加してもよいし、途中から添加してもよい。又、所望の使用量を一括で添加してもよいし、分割して添加してもよい。又、精留塔を経由して連続的に添加してもよい。
 重合禁止剤の添加割合としては、反応液中に5~30,000wtppmが好ましく、より好ましくは25~10,000wtppmである。この割合を5wtppm以上とすることで、重合禁止効果を発揮することができ、30,000wtppm以下にすることで、反応液の着色を抑制でき、反応終了後の精製工程を簡便にすることができ、又、得られる(A)成分の硬化速度の低下を防止することができる。
In the manufacturing method of (A) component, it is preferable to add a polymerization inhibitor in the reaction liquid for the purpose of preventing the polymerization of the (meth) acryloyl group.
Specific examples of the polymerization inhibitor include hydroquinone, tert-butylhydroquinone, hydroquinone monomethyl ether, 2,6-di-tert-butyl-4-methylphenol, 2,4,6-tri-tert-butylphenol, 4-tert -Butylcatechol, benzoquinone, phenothiazine, N-nitroso-N-phenylhydroxylamine ammonium, 2,2,6,6-tetramethylpiperidine-1-oxyl, 4-hydroxy-2,2,6,6-tetramethylpiperidine Organic polymerization inhibitors such as -1-oxyl, inorganic polymerization inhibitors such as copper chloride, copper sulfate and iron sulfate, and organic salt systems such as copper dibutyldithiocarbamate and N-nitroso-N-phenylhydroxylamine aluminum salt A polymerization inhibitor is mentioned.
A polymerization inhibitor may be added individually by 1 type, or may be added in combination of 2 or more types, may be added from the beginning of this invention, and may be added from the middle. Moreover, a desired use amount may be added all at once, or may be added in divided portions. Moreover, you may add continuously via a rectification column.
The addition ratio of the polymerization inhibitor is preferably 5 to 30,000 wtppm in the reaction solution, more preferably 25 to 10,000 wtppm. By setting this ratio to 5 wtppm or more, the polymerization inhibition effect can be exerted, and by setting it to 30,000 wtppm or less, coloring of the reaction solution can be suppressed, and the purification step after completion of the reaction can be simplified. Moreover, the fall of the cure rate of the (A) component obtained can be prevented.
 (A)成分の製造方法における反応時間は、触媒の種類と使用量、反応温度、反応圧力等により異なるが、0.1~150時間が好ましく、より好ましくは0.5~80時間である。 The reaction time in the production method of component (A) varies depending on the type and amount of catalyst used, reaction temperature, reaction pressure, etc., but is preferably 0.1 to 150 hours, more preferably 0.5 to 80 hours.
 (A)成分の製造方法は、回分式、半回分式及び連続式のいずれの方法によっても実施できる。回分式の一例としては、反応器に多価アルコール、単官能(メタ)アクリレート、触媒及び重合禁止剤を仕込み、含酸素ガスを反応液中にバブリングさせながら所定の温度で撹拌する。その後、エステル交換反応の進行に伴い副生した1価アルコールを所定の圧力にて反応器から抜出すことで目的の(A)成分を生成させる等の方法で実施できる。 (A) The manufacturing method of a component can be implemented by any method of a batch type, a semibatch type, and a continuous type. As an example of a batch system, a polyhydric alcohol, a monofunctional (meth) acrylate, a catalyst, and a polymerization inhibitor are charged into a reactor, and stirred at a predetermined temperature while bubbling oxygen-containing gas into the reaction solution. Then, it can implement by the method of producing | generating the target (A) component by extracting the monohydric alcohol byproduced with progress of transesterification from a reactor by predetermined | prescribed pressure.
 (A)成分の製造方法で得られた反応生成物に対しては、分離・精製操作を実施することが目的のGLY-TAを純度よく得ることができるため好ましい。
 分離・精製操作としては、晶析操作、ろ過操作、蒸留操作及び抽出操作等が挙げられ、これらを組合わせることが好ましい。晶析操作としては、冷却晶析及び濃縮晶析等が挙げられ、ろ過操作としては、加圧ろ過、吸引ろ過及び遠心ろ過等が挙げられ、蒸留操作としては、単式蒸留、分別蒸留、分子蒸留及び水蒸気蒸留等が挙げられ、抽出操作としては、固液抽出、液液抽出等が挙げられる。
 該分離精製操作においては溶媒を使用してもよい。
 又、本発明で使用した触媒及び/又は重合禁止剤を中和するための中和剤や、吸着除去するための吸着剤、副生成物を分解又は除去するための酸及び/又はアルカリ、色調を改善するための活性炭、ろ過効率及びろ過速度を向上するためのケイソウ土等を使用してもよい。
For the reaction product obtained by the production method of component (A), it is preferable to carry out a separation / purification operation because the desired GLY-TA can be obtained with high purity.
Examples of the separation / purification operation include a crystallization operation, a filtration operation, a distillation operation, and an extraction operation, and these are preferably combined. Examples of the crystallization operation include cooling crystallization and concentration crystallization. Examples of the filtration operation include pressure filtration, suction filtration, and centrifugal filtration. Examples of the distillation operation include single distillation, fractional distillation, and molecular distillation. And steam distillation, and the extraction operation includes solid-liquid extraction and liquid-liquid extraction.
A solvent may be used in the separation and purification operation.
Further, a neutralizing agent for neutralizing the catalyst and / or polymerization inhibitor used in the present invention, an adsorbing agent for adsorbing and removing, an acid and / or alkali for decomposing or removing by-products, a color tone Activated carbon for improving diatomaceous earth, diatomaceous earth for improving filtration efficiency and filtration speed, and the like may be used.
 (A)成分の含有割合は、(A)、(B)及び(C)成分の合計100重量%中に40~95重量%であり、好ましくは30~90重量%である。
 (A)成分の含有割合が40重量%に満たないと、表面硬度が低くなってしまい、一方、95重量%を超えると、密着性が低下してしまう。
The content of component (A) is 40 to 95% by weight, preferably 30 to 90% by weight, based on a total of 100% by weight of components (A), (B) and (C).
When the content ratio of the component (A) is less than 40% by weight, the surface hardness is lowered, and when it exceeds 95% by weight, the adhesion is deteriorated.
2.(B)成分
 本発明の組成物は、高硬度化のため(B)成分であるフィラーを必須成分とする。
 (B)成分としては、無機系フィラー及び有機系フィラーを挙げることができる。
 無機系フィラーの具体例としては、シリカ、中空シリカ、アルミナ、ジルコニア、チタニア、酸化亜鉛、酸化ゲルマニウム、酸化インジウム、酸化スズ、インジウムスズ酸化物(ITO)、酸化アンチモン、アンチモンスズ酸化物(ATO)、酸化セリウム、酸化カリウム、及びこれらの化合物の2種以上を複合化した複合酸化物等が挙げられる。
 有機系フィラーの具体例としては、ポリウレタン、ポリ(メタ)アクリレート、ポリアミド、ポリウレア、ナイロン、ポリスチレン、ポリエチレン及びポリプロピレン等のポリマー、カーボンナノチューブ、並びにセルロースナノファイバー等を挙げることができる。
2. (B) component The composition of this invention makes the filler which is (B) component an essential component for high hardness.
Examples of the component (B) include inorganic fillers and organic fillers.
Specific examples of the inorganic filler include silica, hollow silica, alumina, zirconia, titania, zinc oxide, germanium oxide, indium oxide, tin oxide, indium tin oxide (ITO), antimony oxide, antimony tin oxide (ATO). , Cerium oxide, potassium oxide, and composite oxides in which two or more of these compounds are combined.
Specific examples of the organic filler include polymers such as polyurethane, poly (meth) acrylate, polyamide, polyurea, nylon, polystyrene, polyethylene and polypropylene, carbon nanotubes, and cellulose nanofibers.
 光学特性に優れ、硬化物の硬度を向上させるため、(B)成分は凝集物が極力ない状態であることが好ましい。
 このため(B)成分としては、有機溶剤に分散させた有機溶剤分散ゾルを使用することが好ましく、無機系フィラーの有機溶剤分散ゾルが好ましく、無機酸化物微粒子の有機溶剤分散ゾルがより好ましい。
 但し、本発明の組成物は、無溶剤型組成物として使用することが好ましいため、(A)成分又は(A)及び(C)成分に(B)成分を配合した後は、脱溶剤処理を行うことが好ましい。
In order to improve the optical properties and improve the hardness of the cured product, it is preferable that the component (B) is in a state free from aggregates.
Therefore, as the component (B), it is preferable to use an organic solvent-dispersed sol dispersed in an organic solvent, an organic filler-dispersed sol of an inorganic filler is preferable, and an organic solvent-dispersed sol of inorganic oxide fine particles is more preferable.
However, since it is preferable to use the composition of the present invention as a solvent-free composition, after the (B) component is blended with the (A) component or the (A) and (C) components, the solvent removal treatment is performed. Preferably it is done.
 分散媒として用いる有機溶剤は特に限定されないが、例えば、メタノール、エタノール、イソプロパノール、ブタノール及びオクタノール等のアルコール;アセトン、メチルエチルケトン、メチルイソブチルケトン及シクロヘキサノン等のケトン;酢酸エチル、酢酸ブチル、乳酸エチル及びγ-ブチロラクトン、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート等のエステル;エチレングリコールモノメチルエーテル及ジエチレングリコールモノブチルエーテル等のエーテル;、ベンゼン、トルエン及キシレン等の芳香族炭化水素;並びにジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等のアミドを挙げることができる。
 そして、これらの中でも、無機酸化物微粒子の分散安定性が良好で、かつ沸点が低く溶媒置換が容易であるため、メタノール、イソプロパノール、メチルエチルケトン及び酢酸エチルが好ましい。
The organic solvent used as the dispersion medium is not particularly limited, and examples thereof include alcohols such as methanol, ethanol, isopropanol, butanol and octanol; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; ethyl acetate, butyl acetate, ethyl lactate and γ -Esters such as butyrolactone, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate; ethers such as ethylene glycol monomethyl ether and diethylene glycol monobutyl ether; aromatic hydrocarbons such as benzene, toluene and xylene; and dimethylformamide, dimethylacetamide And amides such as N-methylpyrrolidone.
Of these, methanol, isopropanol, methyl ethyl ketone, and ethyl acetate are preferred because the dispersion stability of the inorganic oxide fine particles is good, the boiling point is low, and solvent replacement is easy.
 さらに、(B)成分の平均1次粒子径としては、ハンドリング、透明性の観点から、1nm以上200nm以下が好ましく、5nm以上100nm以下が特に好ましい。平均1次粒子径が1nm以上であれば、粒子表面が低活性であるため分散状態を保持することが容易であり、凝集、ゲル化が生じにくい。一方、平均1次粒子径が200nm以下であれば、レイリー散乱によるヘイズが観測されにくい。レイリー散乱は粒子体積の2乗、すなわち粒子径の6乗に比例するので、可視光の波長の1/4以下の平均1次粒子径を有する粒子においては散乱が小さく、透明材料に対して好適に用いることができる。
 平均1次粒子径は、例えば高分解能透過型電子顕微鏡で無機酸化物微粒子を観察し、観察される微粒子像から任意に100個の無機酸化物粒子像を選び、公知の画像データ統計処理手法により数平均粒子径として求めることができる。
Furthermore, the average primary particle diameter of the component (B) is preferably 1 nm or more and 200 nm or less, and particularly preferably 5 nm or more and 100 nm or less from the viewpoint of handling and transparency. If the average primary particle diameter is 1 nm or more, the particle surface has low activity, and thus it is easy to maintain a dispersed state, and aggregation and gelation are unlikely to occur. On the other hand, if the average primary particle diameter is 200 nm or less, haze due to Rayleigh scattering is difficult to observe. Since Rayleigh scattering is proportional to the square of the particle volume, that is, the sixth power of the particle diameter, the particles having an average primary particle diameter equal to or less than ¼ of the wavelength of visible light have a small scattering and are suitable for a transparent material. Can be used.
The average primary particle size is determined by, for example, observing inorganic oxide fine particles with a high-resolution transmission electron microscope, selecting 100 inorganic oxide particle images arbitrarily from the observed fine particle images, and using a known image data statistical processing technique. The number average particle diameter can be obtained.
 シリカ微粒子の有機溶剤分散ゾルとして市販されている商品としては、例えばコロイダルシリカとしては、日揮触媒化成(株)製OSCAL-1132、OSCAL-1432M、OSCAL-1432、OSCAL-1632や、日産化学工業(株)製メタノールシリカゾル、MA-ST-L、IPA-ST、IPA-ST-L、IPA-ST-ZL、IPA-ST-UP、PGM-ST、MEK-ST、MEK-ST-L、MEK-ST-ZL、MIBK-ST、PMA-ST、EAC-STや、扶桑化学(株)製PL-1-IPA、PL-2L-PGME、PL-2L-MEK等を挙げることができる。 Examples of products that are commercially available as organic solvent-dispersed sols of silica fine particles include colloidal silica such as OSCAL-1132, OSCAL-1432M, OSCAL-1432, OSCAL-1632 manufactured by JGC Catalysts & Chemicals, Nissan Chemical Industries ( Methanol silica sol, MA-ST-L, IPA-ST, IPA-ST-L, IPA-ST-ZL, IPA-ST-UP, PGM-ST, MEK-ST, MEK-ST-L, MEK- ST-ZL, MIBK-ST, PMA-ST, EAC-ST, and PL-1-IPA, PL-2L-PGME, PL-2L-MEK manufactured by Fuso Chemical Co., Ltd. can be exemplified.
 本発明では、硬化物の硬度が高いものとなり、微粒子の分散性に優れる点で、表面が改質された微粒子を用いることが好ましい。表面改質の種類としてはオルガノシラン処理、シラザン処理、シリコーン処理等が挙げられるが、オルガノシラン処理が硬化物の硬度が高いものとなる点で好ましい。
 表面改質微粒子の有機溶剤分散ゾルとして市販されている商品としては、日産化学工業(株)製MEK-EC-2130Y、MEK-AC-2140Z、MEK-AC-4130Y MEK-AC-5140Z、PGM-AC-2140Y、PGM-AC-4130Y、MIBK-AC-2140Z等を挙げることができる。
In the present invention, it is preferable to use fine particles having a modified surface in that the hardness of the cured product is high and the dispersibility of the fine particles is excellent. Examples of the surface modification include organosilane treatment, silazane treatment, and silicone treatment, but organosilane treatment is preferred in that the hardness of the cured product is high.
Commercially available products as organic solvent-dispersed sols of surface-modified fine particles include MEK-EC-2130Y, MEK-AC-2140Z, MEK-AC-4130Y MEK-AC-5140Z, PGM- manufactured by Nissan Chemical Industries, Ltd. And AC-2140Y, PGM-AC-4130Y, MIBK-AC-2140Z, and the like.
 又、ジルコニア微粒子の有機溶媒分散ゾルとして市販されている商品としては、例えば日産化学工業(株)製ナノユースOZ-30M、ナノユースOZS30Kを挙げることができる。さらに、チタニア微粒子の有機溶媒分散ゾルとして市販されている商品としては、例えば日揮触媒化成工業(株)製OPTOLAKE1130Z、OPTPLAKE6320Z等を挙げることができる。 In addition, examples of products that are commercially available as organic solvent-dispersed sols of zirconia fine particles include Nanouse OZ-30M and Nanouse OZS30K manufactured by Nissan Chemical Industries, Ltd. Furthermore, as a commercial item marketed as an organic solvent dispersion sol of titania fine particles, for example, OPTOLAKE 1130Z, OPTPLAKE 6320Z manufactured by JGC Catalysts & Chemicals Co., Ltd. can be exemplified.
 (B)成分の形状は球状、中空球状、数珠状、平板状、繊維状等が挙げられるが、ハンドリング性、分散性が良好である点で、球状、中空状、数珠状が好ましく、球状が特に好ましい。
 数珠状シリカの例としては、日産化学工業(株)製のIPA-ST-UP(商品名)等が挙げられ、中空状シリカの例としては日揮触媒化成(株)製のスルーリア(商品名)等が挙げられる。
 さらに、微粒子としては、光学特性に優れ、硬化物の硬度が高いものとなる点から、平均粒子径が可視光の波長以下である無機酸化物微粒子が好ましい。
The shape of the component (B) includes a spherical shape, a hollow spherical shape, a bead shape, a flat plate shape, a fiber shape, and the like, but a spherical shape, a hollow shape, and a bead shape are preferable and a spherical shape is preferable in terms of good handling properties and dispersibility. Particularly preferred.
Examples of beaded silica include IPA-ST-UP (trade name) manufactured by Nissan Chemical Industries, Ltd., and examples of hollow silica include Zuria (trade name) manufactured by JGC Catalysts & Chemicals, Inc. Etc.
Furthermore, as the fine particles, inorganic oxide fine particles having an average particle diameter equal to or smaller than the wavelength of visible light are preferable from the viewpoint of excellent optical characteristics and high hardness of the cured product.
 さらに、(B)成分としては、あらかじめ(A)成分に分散させた分散ゾル、(C)成分を使用する場合は、(A)成分及び/又は(C)成分に分散させた分散ゾルとして用いることが好ましい。
 分散媒となる(A)成分又は/及び(C)成分は、粘度の低いものが好ましく、(C)成分としては、ホモポリマーのガラス転移温度が70℃以上である、分子内に1個のエチレン性不飽和基を有する化合物〔(C-1)成分〕が好ましい。
Further, as the component (B), a dispersion sol dispersed in the component (A) in advance, and when the component (C) is used, it is used as a dispersion sol dispersed in the component (A) and / or the component (C). It is preferable.
The component (A) or / and the component (C) serving as a dispersion medium preferably has a low viscosity. As the component (C), the homopolymer has a glass transition temperature of 70 ° C. or more, one in the molecule. A compound having an ethylenically unsaturated group [component (C-1)] is preferred.
 (A)成分又は/及び(C)成分に分散させた(B)成分を分散したゾルの製造方法は、あらかじめ(B)成分を有機溶剤に分散させた有機溶剤分散ゾルを調製し、その後、有機溶剤を(A)成分又は/及び(C)成分に溶媒置換する方法が好ましい。
 具体的には、(B)成分を有機溶剤に分散させた有機溶剤分散ゾルを、不活性ガス雰囲気下で(A)成分又は/及び(C)成分に添加・混合し、さらに加熱下に減圧して完全に有機溶剤を除去する方法等が挙げられる。
 このようにすることで、本発明の組成物を無溶剤化しつつ、(B)成分の凝集を防止することができる。
The method for producing a sol in which the component (B) dispersed in the component (A) or / and the component (C) is dispersed is prepared in advance by preparing an organic solvent-dispersed sol in which the component (B) is dispersed in an organic solvent. A method of replacing the organic solvent with the component (A) or / and the component (C) is preferable.
Specifically, an organic solvent-dispersed sol in which the component (B) is dispersed in an organic solvent is added to and mixed with the component (A) or / and the component (C) in an inert gas atmosphere, and the pressure is reduced under heating. And a method of completely removing the organic solvent.
By doing in this way, aggregation of (B) component can be prevented, making the composition of this invention solvent-free.
 (B)成分の含有割合は、(A)、(B)及び(C)成分の合計量100重量%中に5~60重量%であり、好ましくは10~40重量%である。
 (B)成分の含有割合を5重量%に満たないと、硬化物の硬度が低下してしまい、60重量%超過とすると、組成物の粘度を高くなりすぎ、無溶剤での塗工性が低下してしまう。
The content of component (B) is 5 to 60% by weight, preferably 10 to 40% by weight, in 100% by weight of the total amount of components (A), (B) and (C).
If the content ratio of the component (B) is less than 5% by weight, the hardness of the cured product is lowered, and if it exceeds 60% by weight, the viscosity of the composition becomes too high, and the coating property without a solvent is obtained. It will decline.
3.(C)成分
 (C)成分は、(A)成分以外のエチレン性不飽和基を有する化合物である。
 (C)成分におけるエチレン性不飽和基としては、(メタ)アクリロイル基、(メタ)アクリルアミド基、ビニル基及び(メタ)アリル基等が挙げられ、(メタ)アクリロイル基が好ましい。
 尚、下記において、「単官能」とは、エチレン性不飽和基を1個有する化合物を意味し、「○官能」とはエチレン性不飽和基を○個有する化合物を意味し、「多官能」とはエチレン性不飽和基を2個以上有する化合物を意味する。
3. Component (C) The component (C) is a compound having an ethylenically unsaturated group other than the component (A).
Examples of the ethylenically unsaturated group in component (C) include a (meth) acryloyl group, a (meth) acrylamide group, a vinyl group, and a (meth) allyl group, with a (meth) acryloyl group being preferred.
In the following, “monofunctional” means a compound having one ethylenically unsaturated group, “◯ functional” means a compound having ○ ethylenically unsaturated groups, and “polyfunctional”. Means a compound having two or more ethylenically unsaturated groups.
 (C)成分の含有割合は、(A)、(B)及び(C)成分の合計量100重量%中に0~55重量%含む必要があり、好ましくは5~40重量%である。
 (C)成分の含有割合を55重量%を超過すると、硬化物が脆くなってしまう。
The content ratio of the component (C) must be 0 to 55% by weight, preferably 5 to 40% by weight, in 100% by weight of the total amount of the components (A), (B) and (C).
When the content ratio of the component (C) exceeds 55% by weight, the cured product becomes brittle.
 (C)成分の例として、1個のエチレン性不飽和基を有する化合物(以下、「単官能不飽和化合物」という)及び2個以上のエチレン性不飽和基を有する化合物(以下、「多官能不飽和化合物」という)を挙げことができる。 Examples of the component (C) include a compound having one ethylenically unsaturated group (hereinafter referred to as “monofunctional unsaturated compound”) and a compound having two or more ethylenically unsaturated groups (hereinafter referred to as “polyfunctional”). An unsaturated compound).
3-1.単官能不飽和化合物
 単官能不飽和化合物の具体例としては、前記した単官能(メタ)アクリレートと同様の化合物が挙げられ、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、tert-ブチルシクロヘキシル(メタ)アクリレート、及び2-メトキシエチル(メタ)アクリレートが好ましい。
 前記した単官能(メタ)アクリレート以外の化合物としては、(メタ)アクリル酸、アクリル酸のマイケル付加型のダイマー、ω-カルボキシ-ポリカプロラクトンモノ(メタ)アクリレート、フタル酸モノヒドロキシエチル(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、ブチルカルビトール(メタ)アクリレート、2-エチルヘキシルカルビトール(メタ)アクリレート、ベンジル(メタ)アクリレート、フェニル(メタ)アクリレート、フェノールのアルキレンオキサイド付加物の(メタ)アクリレート、アルキルフェノールのアルキレンオキサイド付加物の(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチルアクリレート、パラクミルフェノールのアルキレンオキサイド付加物の(メタ)アクリレート、オルトフェニルフェノール(メタ)アクリレート、オルトフェニルフェノールのアルキレンオキサイド付加物の(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、N-(2-(メタ)アクリロキシエチル)ヘキサヒドロフタルイミド、N-(2-(メタ)アクリロキシエチル)テトラヒドロフタルイミド、N,N-ジメチルアクリルアミド、アクリロイルモルホリン、N-ビニルピロリドン、及びN-ビニルカプロラクタム等が挙げられる。
3-1. Monofunctional unsaturated compound Specific examples of the monofunctional unsaturated compound include the same compounds as the monofunctional (meth) acrylate described above, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, tert-butylcyclohexyl (meth) acrylate, and 2-methoxyethyl (meth) acrylate are preferred.
Examples of compounds other than the above-mentioned monofunctional (meth) acrylate include (meth) acrylic acid, Michael addition dimer of acrylic acid, ω-carboxy-polycaprolactone mono (meth) acrylate, monohydroxyethyl (meth) acrylate phthalate , Ethyl carbitol (meth) acrylate, butyl carbitol (meth) acrylate, 2-ethylhexyl carbitol (meth) acrylate, benzyl (meth) acrylate, phenyl (meth) acrylate, (meth) acrylate of an alkylene oxide adduct of phenol , (Meth) acrylate, cyclohexyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate of alkylene oxide adduct of alkylphenol , 4-hydroxybutyl acrylate, paramethylphenol alkylene oxide adduct (meth) acrylate, orthophenylphenol (meth) acrylate, orthophenylphenol alkylene oxide adduct (meth) acrylate, tetrahydrofurfuryl (meth) acrylate , Isobornyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, dicyclopentanyl (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, N- ( 2- (meth) acryloxyethyl) hexahydrophthalimide, N- (2- (meth) acryloxyethyl) tetrahydrophthalimide, N, N-dimethylacrylamide, acrylic Roylmorpholine, N-vinylpyrrolidone, N-vinylcaprolactam and the like can be mentioned.
 単官能不飽和化合物の中でも、ホモポリマーのガラス転移温度(以下、「Tg」という)が70℃以上である、分子内に1個のエチレン性不飽和基を有する化合物〔以下、「(C-1)成分」という〕が、低粘度化と高硬度化の両立という点で好ましい。(C-1)成分としては、さらに基材密着性という点で、分子内に窒素を含み、ホモポリマーのTgが70℃以上である、分子内に1個のエチレン性不飽和基を有する化合物〔以下、「(C-1-N))成分」という〕が特に好ましい。
 尚、本発明においてTgとは、示差走査熱量計(DSC)を用いて10℃/分の昇温速度で測定した値を意味し、△T-温度曲線においてガラス転移温度中間点(Tmg)における値を意味する。
Among monofunctional unsaturated compounds, compounds having one ethylenically unsaturated group in the molecule, wherein the homopolymer has a glass transition temperature (hereinafter referred to as “Tg”) of 70 ° C. or higher [hereinafter referred to as “(C— 1) “component”] is preferable in terms of achieving both low viscosity and high hardness. As the component (C-1), a compound having one ethylenically unsaturated group in the molecule, containing nitrogen in the molecule and having a Tg of the homopolymer of 70 ° C. or higher in terms of adhesion to the substrate [Hereinafter referred to as “component (C-1-N))” is particularly preferred.
In the present invention, Tg means a value measured at a rate of temperature increase of 10 ° C./min using a differential scanning calorimeter (DSC), and at the glass transition temperature intermediate point (Tmg) in the ΔT-temperature curve. Mean value.
 (C-1)成分としては、アクリル酸(Tg=103℃)、メタクリル酸(Tg=130℃)、イソボルニルアクリレート(Tg=94℃)、イソボルニルメタクリレート(Tg=180℃)、ジシクロペンテニルアクリレート(Tg=120℃)、ジシクロペンタニルアクリレート(Tg=120℃)、ジシクロペンタニルメタクリレート(Tg=175℃)、N-ヒドロキシエチルアクリルアミド(Tg=98℃)、N,N-ジメチルアクリルアミド(Tg=119℃)、アクリロイルモルホリン(Tg=145℃)、N-ビニルピロリドン(Tg=80℃)、N-ビニルカプロラクタム(Tg=90℃)等が挙げられる。
 又、(C-1-N)成分としては、N-ヒドロキシエチルアクリルアミド、N,N-ジメチルアクリルアミド、アクリロイルモルホリン、N-ビニルピロリドン、N-ビニルカプロラクタム等が挙げられる。
As the component (C-1), acrylic acid (Tg = 103 ° C.), methacrylic acid (Tg = 130 ° C.), isobornyl acrylate (Tg = 94 ° C.), isobornyl methacrylate (Tg = 180 ° C.), diester Cyclopentenyl acrylate (Tg = 120 ° C.), dicyclopentanyl acrylate (Tg = 120 ° C.), dicyclopentanyl methacrylate (Tg = 175 ° C.), N-hydroxyethylacrylamide (Tg = 98 ° C.), N, N— Examples thereof include dimethylacrylamide (Tg = 119 ° C.), acryloylmorpholine (Tg = 145 ° C.), N-vinyl pyrrolidone (Tg = 80 ° C.), N-vinyl caprolactam (Tg = 90 ° C.) and the like.
Examples of the component (C-1-N) include N-hydroxyethylacrylamide, N, N-dimethylacrylamide, acryloylmorpholine, N-vinylpyrrolidone, and N-vinylcaprolactam.
3-2.多官能不飽和化合物
 多官能不飽和化合物としては、多官能(メタ)アクリレートが好ましい。
 2官能(メタ)アクリレートとしては、具体的には、エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、テトラメチレングリコールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、ノナンジオールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレート、ビスフェノールAのアルキレンオキサイド付加物のジ(メタ)アクリレート、及びビスフェノールFのアルキレンオキサイド付加物のジ(メタ)アクリレート等が挙げられる。
3-2. Polyfunctional unsaturated compound The polyfunctional unsaturated compound is preferably a polyfunctional (meth) acrylate.
Specific examples of the bifunctional (meth) acrylate include ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, tetramethylene glycol di (meth) acrylate, hexanediol di (meth) acrylate, and nonanediol di (Meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, polytetramethylene glycol di (meth) acrylate, di (meth) acrylate of bisphenol A alkylene oxide adduct, and alkylene of bisphenol F Examples thereof include di (meth) acrylates of oxide adducts.
 3官能以上(メタ)アクリレートとしては、3個以上の(メタ)アクリロイル基を有する化合物であれば種々の化合物が挙げられ、例えば、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールのトリ又はテトラ(メタ)アクリレート、ジトリメチロールプロパンのトリ又はテトラ(メタ)アクリレート、ジグリセリンのトリ又はテトラ(メタ)アクリレート及びジペンタエリスリトールのトリ、テトラ、ペンタ又はヘキサ(メタ)アクリレート等のポリオールポリ(メタ)アクリレート;並びに
グリセリンアルキレンオキサイド付加物のトリ(メタ)アクリレート、ペンタエリスリトールアルキレンオキサイド付加物のトリ又はテトラ(メタ)アクリレート、ジトリメチロールプロパンアルキレンオキサイド付加物のトリ又はテトラ(メタ)アクリレート、ジグリセリンアルキレンオキサイド付加物のトリ又はテトラ(メタ)アクリレート、ジペンタエリスリトールアルキレンオキサイド付加物のトリ、テトラ、ペンタ又はヘキサ(メタ)アクリレート等のポリオールアルキレンオキサイド付加物のポリ(メタ)アクリレート;並びにイソシアヌル酸アルキレンオキサイド付加物のトリ(メタ)アクリレート等を挙げることができる。
 前記したアルキレンオキサイド付加物の例としては、エチレンオキサイド付加物、プロピレンオキサイド付加物、並びに、エチレンオキサイド及びプロピレンオキサイド付加物等が挙げられる。
Examples of the trifunctional or higher functional (meth) acrylate include various compounds as long as the compound has three or more (meth) acryloyl groups. For example, trimethylolpropane tri (meth) acrylate, pentaerythritol tri- or tetra- ( Poly (poly) acrylates such as meth) acrylate, tritrimethylolpropane tri- or tetra (meth) acrylate, diglycerin tri- or tetra (meth) acrylate and dipentaerythritol tri-, tetra-, penta- or hexa (meth) acrylate As well as tri (meth) acrylate of glycerol alkylene oxide adduct, tri- or tetra (meth) acrylate of pentaerythritol alkylene oxide adduct, ditrimethylolpropane alkylene oxide adduct Li or tetra (meth) acrylate, diglycerin alkylene oxide adduct tri or tetra (meth) acrylate, dipentaerythritol alkylene oxide adduct tri, tetra, penta or hexa (meth) acrylate polyol alkylene oxide adduct Poly (meth) acrylates; and tri (meth) acrylates of isocyanuric acid alkylene oxide adducts.
Examples of the alkylene oxide adduct include ethylene oxide adduct, propylene oxide adduct, ethylene oxide and propylene oxide adduct, and the like.
 多官能(メタ)アクリレートとしては、前記した化合物以外にも、ウレタン(メタ)アクリレート、及びエポキシ(メタ)アクリレート及びポリエステル(メタ)アクリレート等も用いることができる。
 これら化合物の中でも、ウレタン(メタ)アクリレート〔以下、「(C-2)成分」という〕は、得られる組成物の硬化物が高硬度かつ基材密着性に優れるため好ましく、以下に詳述する。
As the polyfunctional (meth) acrylate, in addition to the aforementioned compounds, urethane (meth) acrylate, epoxy (meth) acrylate, polyester (meth) acrylate, and the like can also be used.
Among these compounds, urethane (meth) acrylate [hereinafter referred to as “component (C-2)”] is preferable because a cured product of the resulting composition has high hardness and excellent substrate adhesion, and will be described in detail below. .
 (C-2)成分としては、多価アルコール、多価イソシアネート及び水酸基含有(メタ)アクリレートの反応物、並びに有機多価イソシアネートと水酸基含有(メタ)アクリレート化合物との反応物(以下、「ウレタンアダクト」という)が挙げられる。 Component (C-2) includes a reaction product of polyhydric alcohol, polyisocyanate and hydroxyl group-containing (meth) acrylate, and a reaction product of organic polyisocyanate and hydroxyl group-containing (meth) acrylate compound (hereinafter referred to as “urethane adduct”). ").
 (C-2)成分は、組成物の硬化性と硬化物の硬度及び耐擦傷性が優れるという点で、ウレタンアダクトが好ましい。 The component (C-2) is preferably a urethane adduct in terms of excellent curability of the composition, hardness of the cured product, and scratch resistance.
 多価アルコールとしては、ポリプロピレングリコール、ポリテトラメチレングリコール等のポリエーテルポリオール、前記多価アルコールと前記多塩基酸との反応によって得られるポリエステルポリオール、前記多価アルコールと前記多塩基酸とε-カプロラクトンとの反応によって得られるカプロラクトンポリオール、及びポリカーボネートポリオール(例えば、1,6-ヘキサンジオールとジフェニルカーボネートとの反応によって得られるポリカーボネートポリオール等)等が挙げられる。 Examples of the polyhydric alcohol include polyether polyols such as polypropylene glycol and polytetramethylene glycol, polyester polyols obtained by the reaction of the polyhydric alcohol and the polybasic acid, the polyhydric alcohol, the polybasic acid, and ε-caprolactone. Caprolactone polyol obtained by the reaction with polycarbonate, polycarbonate polyol (for example, polycarbonate polyol obtained by reaction of 1,6-hexanediol and diphenyl carbonate, etc.) and the like.
 有機多価イソシアネートとしては、例えば、イソホロンジイソシネート、ヘキサメチレンジイソシアネート、トリレンジイソシアネート、キシリレンジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート及びジシクロペンタニルジイソシアネート等のジイソシアネート;
並びにヘキサメチレンジイソシアネート3量体及びイソホロンジイソシアネート3量体等の3個以上のイソシアネート基を有する有機ポリイソシアネートが挙げられる。
Examples of the organic polyvalent isocyanate include diisocyanates such as isophorone diisocyanate, hexamethylene diisocyanate, tolylene diisocyanate, xylylene diisocyanate, diphenylmethane-4,4′-diisocyanate and dicyclopentanyl diisocyanate;
And organic polyisocyanates having three or more isocyanate groups such as hexamethylene diisocyanate trimer and isophorone diisocyanate trimer.
 水酸基含有(メタ)アクリレートとしては、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、ヒドロキシペンチル(メタ)アクリレート、ヒドロキシヘキシル(メタ)アクリレート及びヒドロキシオクチル(メタ)アクリレート、トリメチロールプロパンモノ(メタ)アクリレート及びペンタエリスリトールモノ(メタ)アクリレート等の水酸基含有モノ(メタ)アクリレート;
並びにトリメチロールプロパンジ(メタ)アクリレート、ペンタエリスリトールジ又はトリ(メタ)アクリレート、ジトリメチロールプロパンのジ又はトリ(メタ)アクリレート及びジペンタエリスリトールのジ、トリ、テトラ又はペンタ(メタ)アクリレート等の水酸基含有多官能(メタ)アクリレート等が挙げられる。
Hydroxyl group-containing (meth) acrylates include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, hydroxypentyl (meth) acrylate, hydroxyhexyl (meth) acrylate and hydroxyoctyl Hydroxyl group-containing mono (meth) acrylates such as (meth) acrylate, trimethylolpropane mono (meth) acrylate and pentaerythritol mono (meth) acrylate;
And hydroxyl groups such as trimethylolpropane di (meth) acrylate, pentaerythritol di or tri (meth) acrylate, ditrimethylolpropane di or tri (meth) acrylate and dipentaerythritol di, tri, tetra or penta (meth) acrylate Examples thereof include polyfunctional (meth) acrylates.
 ウレタンアダクトにおいて、有機多価イソシアネート及び水酸基含有(メタ)アクリレート化合物としては、前記化合物を挙げることができる。
 ウレタンアダクトにおいては、水酸基含有(メタ)アクリレートとして、水酸基含有多官能(メタ)アクリレートを使用したものが好ましい。
 これらの中でも、硬化物が硬度及び耐擦傷性により優れる点で、3個以上の(メタ)アクリロイル基を有し、水酸基を1個有する化合物が好ましく、具体的には、ペンタエリスリトールトリ(メタ)アクリレート、ジトリメチロールプロパントリ(メタ)アクリレート及びジペンタエリスリトールペンタ(メタ)アクリレート等が挙げられる。
In the urethane adduct, examples of the organic polyvalent isocyanate and the hydroxyl group-containing (meth) acrylate compound include the above compounds.
In a urethane adduct, what uses a hydroxyl-containing polyfunctional (meth) acrylate as a hydroxyl-containing (meth) acrylate is preferable.
Among these, a compound having three or more (meth) acryloyl groups and one hydroxyl group is preferable in that the cured product is superior in hardness and scratch resistance. Specifically, pentaerythritol tri (meth) is preferable. Examples include acrylate, ditrimethylolpropane tri (meth) acrylate, and dipentaerythritol penta (meth) acrylate.
 ウレタンアダクトの別の好ましい化合物としては、3個以上のイソシアネート基を有する有機ポリイソシアネートと水酸基含有モノ(メタ)アクリレートの反応物が挙げられる。
 水酸基含有モノ(メタ)アクリレートとしては、前記した化合物と同様の化合物が挙げられる。
 3個以上のイソシアネート基を有する有機ポリイソシアネートの例としては、前記したヘキサメチレンジイソシアネート3量体及びイソホロンジイソシアネート3量体等を挙げることができる。
Another preferred compound of the urethane adduct is a reaction product of an organic polyisocyanate having three or more isocyanate groups and a hydroxyl group-containing mono (meth) acrylate.
Examples of the hydroxyl group-containing mono (meth) acrylate include the same compounds as those described above.
Examples of the organic polyisocyanate having three or more isocyanate groups include the aforementioned hexamethylene diisocyanate trimer and isophorone diisocyanate trimer.
 (C-2)成分は、常法により製造されたものを使用することができる。
 例えば、ジブチルスズジラウレート等の付加触媒存在下、有機多価イソシアネートと多価オールを加熱撹拌し付加反応させてイソシアネート基含有化合物を製造し、当該化合物にさらに水酸基含有(メタ)アクリレートを添加し、加熱・撹拌して付加反応させる方法等が挙げられる。
 ウレタンアダクトの場合は、付加触媒存在下、有機多価イソシアネートと水酸基含有(メタ)アクリレートを加熱・撹拌し、付加反応させる方法等が挙げられる。
As the component (C-2), those produced by a conventional method can be used.
For example, in the presence of an addition catalyst such as dibutyltin dilaurate, an organic polyvalent isocyanate and a polyvalent ol are heated and stirred to cause an addition reaction to produce an isocyanate group-containing compound, and a hydroxyl group-containing (meth) acrylate is added to the compound, followed by heating. -The method of stirring and carrying out addition reaction etc. are mentioned.
In the case of a urethane adduct, there may be mentioned a method in which an organic polyisocyanate and a hydroxyl group-containing (meth) acrylate are heated and stirred in the presence of an addition catalyst to cause an addition reaction.
 これら以外のウレタンポリ(メタ)アクリレートの例としては、文献「UV・EB硬化材料」[(株)シーエムシー、1992年発行]の70~74頁に記載されているような化合物等が挙げられる。 Examples of urethane poly (meth) acrylates other than these include compounds as described on pages 70 to 74 of the document “UV / EB curable material” [CMC, 1992]. .
 (C-2)成分の含有割合は、(A)、(B)及び(C)成分の合計量100重量%中に0~40重量%含むことが好ましく、より好ましくは0~20重量%である。
 (C-2)成分の含有割合を40重量%以下とすることで、組成物の硬化物に靱性を付与することができると共に、組成物の粘度が高くなりすぎ、無溶剤での塗工性が低下してしまうことを防止することができる。
The content ratio of the component (C-2) is preferably 0 to 40% by weight, more preferably 0 to 20% by weight in 100% by weight of the total amount of the components (A), (B) and (C). is there.
By setting the content of the component (C-2) to 40% by weight or less, it is possible to impart toughness to the cured product of the composition, and the viscosity of the composition becomes too high, so that the coating property without a solvent is obtained. Can be prevented from decreasing.
4.活性エネルギー線硬化型組成物
 本発明は、前記(A)、(B)及び(C)成分を含む組成物であって、(A)、(B)及び(C)成分の合計100重量%中に、(A)成分を40~95重量%、(B)成分を5~60重量%及び(C)成分を0~55重量%含む活性エネルギー線硬化型組成物である。
 本発明の組成物の製造方法としては、(A)~(C)成分、必要に応じて後記するその他の成分を撹拌・混合する方法(以下、「製法1」という)、(A)成分又は/及び(C)と必要に応じて後記するその他の成分を混合した後、当該混合物に(B)成分を添加した後、撹拌・混合する方法(以下、「製法2」という)等が挙げられ、製法2が(B)成分を組成物全体に分散できるため好ましい。
 さらに、製法2において、(B)成分の有機溶剤分散ゾルを使用し、本発明の組成物を無溶剤型の組成物とする場合には、(A)成分又は/及び(C)と、(B)成分の有機溶剤分散ゾルとを撹拌・混合し、その後、減圧下に加熱して有機溶剤を蒸発させる製造方法がより好ましい。
 この場合の減圧度及び加熱温度としては、(B)成分の有機溶剤分散ゾルで使用される有機溶剤等の応じて適宜設定すれば良いが、減圧度としては500mmHg以下が好ましく、加熱温度としては30~60℃が好ましい。
4). Active energy ray-curable composition The present invention is a composition comprising the components (A), (B) and (C), wherein the total amount of the components (A), (B) and (C) is 100% by weight. And an active energy ray-curable composition containing 40 to 95% by weight of component (A), 5 to 60% by weight of component (B) and 0 to 55% by weight of component (C).
As a method for producing the composition of the present invention, components (A) to (C), a method of stirring and mixing other components described later (if necessary) (hereinafter referred to as “Production Method 1”), component (A) or / And (C) and other components to be described later as necessary are mixed, and then the component (B) is added to the mixture and then stirred and mixed (hereinafter referred to as “Production Method 2”). Production method 2 is preferable because component (B) can be dispersed throughout the composition.
Furthermore, in the manufacturing method 2, when using the organic solvent dispersion | distribution sol of (B) component and making the composition of this invention a solventless type composition, (A) component or / and (C), A production method in which the organic solvent-dispersed sol of component B) is stirred and mixed and then heated under reduced pressure to evaporate the organic solvent is more preferred.
The degree of pressure reduction and heating temperature in this case may be appropriately set according to the organic solvent used in the organic solvent-dispersed sol of component (B), but the degree of pressure reduction is preferably 500 mmHg or less, and the heating temperature is 30-60 ° C is preferred.
 さらに、組成物の製造方法としては、前記触媒X及びYの存在下に、グリセリンと単官能(メタ)アクリレートをエステル交換反応させて得られる、GLY-TAを主成分とする(メタ)アクリレート混合物(A)を製造する工程を含む組成物の製造方法が好ましい。
 当該製造方法によれば、(A)成分を高収率で製造でき、しかも得られる(A)成分中の高分子量体が少ないために低粘度で不純物が少なく、このため得られる組成物を各種物性に優れるものとすることができる点で好ましい。
 当該工程としては、前記した(A)成分の製造方法に従えば良い。
 後記するその他の成分を配合する場合の組成物の製造方法は常法に従えば良く、(A)成分及び要に応じて後記するその他の成分を撹拌・混合して製造することができる。
Furthermore, as a method for producing the composition, a (meth) acrylate mixture containing GLY-TA as a main component, obtained by subjecting glycerol and a monofunctional (meth) acrylate to an ester exchange reaction in the presence of the catalysts X and Y. The manufacturing method of the composition including the process of manufacturing (A) is preferable.
According to the production method, the component (A) can be produced in a high yield, and since the high molecular weight product in the obtained component (A) is small, the viscosity is low and there are few impurities. This is preferable in that it can be excellent in physical properties.
What is necessary is just to follow the manufacturing method of above-described (A) component as the said process.
The method for producing the composition in the case of blending other components described later may be in accordance with a conventional method, and the component (A) and other components described later may be stirred and mixed as necessary.
 組成物の粘度としては目的に応じて適宜設定すれば良く、20~3,000mPa・sが好ましく、より好ましくは20~1,500mPa・sである。当該粘度範囲とすることで、賦形材料として用いた場合は形状再現性、ハードコート材料として用いた場合は塗工性に優れるものとすることができる。
 尚、本発明における粘度とは、E型粘度計(コーンプレート型粘度計)を使用して25℃で測定した値を意味する。
The viscosity of the composition may be appropriately set according to the purpose, and is preferably 20 to 3,000 mPa · s, more preferably 20 to 1,500 mPa · s. By setting it as the said viscosity range, when used as a shaping material, it can be excellent in shape reproducibility, and when used as a hard-coat material, it is excellent in coating property.
The viscosity in the present invention means a value measured at 25 ° C. using an E type viscometer (cone plate type viscometer).
 本発明の組成物は、前記(A)~(C)成分を必須成分とするものであるが、目的に応じて種々の成分を配合することができる。
 その他成分としては、具体的には光重合開始剤及び/又は増感剤〔以下、「(D)成分」という〕、熱重合開始剤、有機溶剤、酸化防止剤、紫外線吸収剤、レベリング剤、シランカップリング剤、表面改質剤及び重合禁止剤等が挙げられる。
 以下、これらの成分について説明する。
 尚、後記するその他の成分は、例示した化合物の1種のみを使用しても良く、2種以上を併用しても良い。
The composition of the present invention comprises the components (A) to (C) as essential components, but various components can be blended depending on the purpose.
As other components, specifically, a photopolymerization initiator and / or a sensitizer (hereinafter referred to as “component (D)”), a thermal polymerization initiator, an organic solvent, an antioxidant, an ultraviolet absorber, a leveling agent, Examples include silane coupling agents, surface modifiers, and polymerization inhibitors.
Hereinafter, these components will be described.
In addition, the other component mentioned later may use only 1 type of the illustrated compound, and may use 2 or more types together.
4-1.(D)成分
 本発明の組成物を活性エネルギー線硬化型組成物として使用し、さらに電子線硬化型組成物として使用する場合は、(D)成分を含有させず、電子線により硬化させることも可能である。
 本発明の組成物を活性エネルギー線硬化型組成物として使用する場合において、特に、活性エネルギー線として紫外線及び可視光線を用いたときには、硬化の容易性やコストの観点から、(D)成分を更に含有することが好ましい。
 活性エネルギー線として電子線を使用する場合には、必ずしも配合する必要はないが、硬化性を改善させるため必要に応じて少量配合することもできる。
4-1. (D) Component When the composition of the present invention is used as an active energy ray curable composition and further used as an electron beam curable composition, it may be cured with an electron beam without containing the component (D). Is possible.
When the composition of the present invention is used as an active energy ray-curable composition, particularly when ultraviolet rays and visible rays are used as active energy rays, the component (D) is further added from the viewpoint of ease of curing and cost. It is preferable to contain.
When an electron beam is used as the active energy ray, it is not always necessary to add it, but a small amount can be added as necessary in order to improve curability.
 (C)成分の具体例としては、ベンジルジメチルケタール、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、オリゴ[2-ヒドロキシ-2-メチル-1-[4-1-(メチルビニル)フェニル]プロパノン、2-ヒドロキシ-1-[4-[4-(2-ヒドロキシ-2-メチループロピオニル)ベンジル]フェニル]-2-メチルプロパン-1-オン、2-メチル-1-[4-(メチルチオ)]フェニル]-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)ブタン-1-オン、2-ジメチルアミノ-2-(4-メチルベンジル)-1-(4-モルフォリン-4-イル-フェニル)ブタン-1-オン及び3,6-ビス(2-メチル-2-モルフォリノプロピオニル)-9-n-オクチルカルバゾール等のアセトフェノン系化合物;
ベンゾイン、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル及びベンゾインイソブチルエーテル等のベンゾイン化合物;
ベンゾフェノン、2-メチルベンゾフェノン、3-メチルベンゾフェノン、4-メチルベンゾフェノン、2,4,6-トリメチルベンゾフェノン、4-フェニルベンゾフェノン、メチル-2-ベンゾフェノン、1-[4-(4-ベンゾイルフェニルスルファニル)フェニル]-2-メチル-2-(4-メチルフェニルスルフォニル)プロパン-1-オン、4,4’-ビス(ジメチルアミノ)ベンゾフェノン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン及び4-メトキシ-4’-ジメチルアミノベンゾフェノン等のベンゾフェノン系化合物;
ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキサイド、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、及びビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルホスフィンオキサイド等のアシルホスフィンオキサイド化合物;並びに
チオキサントン、2-クロロチオキサントン、2,4-ジエチルチオキサントン、イソプロピルチオキサントン、1-クロロ-4-プロピルチオキサントン、3-[3,4-ジメチル-9-オキソ-9H-チオキサントン-2-イル-オキシ]-2-ヒドロキシプロピル-N,N,N―トリメチルアンモニウムクロライド及びフルオロチオキサントン等のチオキサントン系化合物等が挙げられる。
 前記以外の化合物としては、ベンジル、フェニルグリオキシ酸メチル、エチル(2,4,6-トリメチルベンゾイル)フェニルフォスフィネート、エチルアントラキノン及びフェナントレンキノン及びカンファーキノン等が挙げられる。
Specific examples of the component (C) include benzyldimethyl ketal, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1- [4- (2-hydroxyethoxy) phenyl ] -2-Hydroxy-2-methyl-1-propan-1-one, oligo [2-hydroxy-2-methyl-1- [4-1- (methylvinyl) phenyl] propanone, 2-hydroxy-1- [ 4- [4- (2-hydroxy-2-methyl-propionyl) benzyl] phenyl] -2-methylpropan-1-one, 2-methyl-1- [4- (methylthio)] phenyl] -2-morpholinopro Pan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) butan-1-one, 2-dimethylamino-2- 4-methylbenzyl) -1- (4-morpholin-4-yl-phenyl) butan-1-one and 3,6-bis (2-methyl-2-morpholinopropionyl) -9-n-octylcarbazole, etc. Acetophenone compounds of
Benzoin compounds such as benzoin, benzoin ethyl ether, benzoin isopropyl ether and benzoin isobutyl ether;
Benzophenone, 2-methylbenzophenone, 3-methylbenzophenone, 4-methylbenzophenone, 2,4,6-trimethylbenzophenone, 4-phenylbenzophenone, methyl-2-benzophenone, 1- [4- (4-benzoylphenylsulfanyl) phenyl ] -2-Methyl-2- (4-methylphenylsulfonyl) propan-1-one, 4,4′-bis (dimethylamino) benzophenone, 4,4′-bis (diethylamino) benzophenone and 4-methoxy-4 ′ -Benzophenone compounds such as dimethylaminobenzophenone;
Such as bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, and bis (2,6-dimethoxybenzoyl) -2,4,4-trimethylpentylphosphine oxide. Acylphosphine oxide compounds; and thioxanthone, 2-chlorothioxanthone, 2,4-diethylthioxanthone, isopropylthioxanthone, 1-chloro-4-propylthioxanthone, 3- [3,4-dimethyl-9-oxo-9H-thioxanthone-2 And thioxanthone compounds such as -yl-oxy] -2-hydroxypropyl-N, N, N-trimethylammonium chloride and fluorothioxanthone.
Examples of compounds other than the above include benzyl, methyl phenylglyoxylate, ethyl (2,4,6-trimethylbenzoyl) phenyl phosphinate, ethyl anthraquinone, phenanthrenequinone and camphorquinone.
 これら化合物の中でも、α-ヒドロキシフェニルケトン類が、大気下において、薄膜のコーティングであっても表面硬化性が良好で好ましく、具体的には、1-ヒドロキシシクロヘキシルフェニルケトン、及び2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オンがより好ましい。
 又、硬化物の膜厚を厚くする必要がある場合、例えば50μm以上とする必要がある場合は、硬化物内部の硬化性を向上させる目的や、紫外線吸収剤や顔料を併用する場合は、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、エチル-(2,4,6-トリメチルベンゾイル)フェニルホスフィネート及びビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルホスフィンオキサイド等のアシルホスフィンオキサイド化合物や、2-メチル-1-[4-(メチルチオ)]フェニル]-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)ブタンー1-オン、2-ジメチルアミノ-2-(4-メチルベンジル)-1-(4-モルフォリン-4-イル-フェニル)-ブタン-1-オン等を併用することが好ましい。
Among these compounds, α-hydroxyphenyl ketones are preferable because they have good surface curability even in the case of thin film coating in the atmosphere. Specifically, 1-hydroxycyclohexyl phenyl ketone and 2-hydroxy-2 -Methyl-1-phenyl-propan-1-one is more preferred.
In addition, when it is necessary to increase the film thickness of the cured product, for example, when it is necessary to make it 50 μm or more, the purpose of improving the curability inside the cured product, or when using an ultraviolet absorber or a pigment together, (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, ethyl- (2,4,6-trimethylbenzoyl) phenylphosphinate and bis (2,6-dimethoxy) Acylphosphine oxide compounds such as benzoyl) -2,4,4-trimethylpentylphosphine oxide, 2-methyl-1- [4- (methylthio)] phenyl] -2-morpholinopropan-1-one, 2-benzyl -2-dimethylamino-1- (4-morpholinophenyl) butan-1-one, 2- Methylamino-2- (4-methylbenzyl) -1- (4-morpholin-4-yl-phenyl) - - is preferably used in combination with butan-1-one and the like.
 (D)成分の含有割合は、(A)及び(C)成分〔以下、これらをまとめて「硬化性成分」という〕合計量100重量部に対し0.1~25重量部が好ましく、より好ましくは0.1~20重量部である。(D)成分の割合を0.1重量部以上にすることで、組成物の光硬化性を良好にし、密着性に優れるものとすることができ、25重量部以下とすることで、硬化物の内部硬化性が良好にすることができ、基材との密着性を良好にすることができる。 The content ratio of the component (D) is preferably 0.1 to 25 parts by weight, more preferably 100 parts by weight of the total amount of the components (A) and (C) (hereinafter collectively referred to as “curable components”). Is 0.1 to 20 parts by weight. (D) By making the ratio of a component into 0.1 weight part or more, the photocurability of a composition can be made favorable and it can be excellent in adhesiveness, and hardened | cured material can be made into 25 weight part or less. The internal curability can be improved, and the adhesion to the substrate can be improved.
4-2.熱重合開始剤
 本特許の組成物を熱硬化型組成物として使用する場合には、熱重合開始剤を配合することができる。
 熱重合開始剤としては、種々の化合物を使用することができ、有機過酸化物及びアゾ系開始剤が好ましい。
 有機過酸化物の具体例としては、1,1-ビス(t-ブチルパーオキシ)2-メチルシクロヘキサン、1,1-ビス(t-ヘキシルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ヘキシルパーオキシ)シクロヘキサン、1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ブチルパーオキシ)シクロヘキサン、2,2-ビス(4,4-ジ-ブチルパーオキシシクロヘキシル)プロパン、1,1-ビス(t-ブチルパーオキシ)シクロドデカン、t-ヘキシルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシマレイン酸、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、t-ブチルパーオキシラウレート、2,5-ジメチル-2,5-ジ(m-トルオイルパーオキシ)ヘキサン、t-ブチルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ2-エチルヘキシルモノカーボネート、t-ヘキシルパーオキシベンゾエート、2,5-ジーメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、t-ブチルパーオキシアセテート、2,2-ビス(t-ブチルパーオキシ)ブタン、t-ブチルパーオキシベンゾエート、n-ブチル-4,4-ビス(t-ブチルパーオキシ)バレレート、ジ-t-ブチルパーオキシイソフタレート、α、α‘-ビス(t-ブチルパーオキシ)ジイソプロピルベンゼン、ジクミルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、t-ブチルクミルパーオキサイド、ジ-t-ブチルパーオキサイド、p-メンタンハイドロパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキシン-3、ジイソプロピルベンゼンハイドロパーオキサイド、t-ブチルトリメチルシリルパーオキサイド、1,1,3,3-テトラメチルブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、t-ヘキシルハイドロパーオキサイド、t-ブチルハイドロパーオキサイド等が挙げられる。
 アゾ系化合物の具体例としては、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、2-(カルバモイルアゾ)イソブチロニトリル、2-フェニルアゾ-4-メトキシ-2,4-ジメチルバレロニトリル、アゾジ-t-オクタン、アゾジ-t-ブタン等が挙げられる。
 これらは単独で用いても良いし、2種以上を併用しても良い。又、有機過酸化物は還元剤と組み合わせることによりレドックス反応とすることも可能である。
4-2. Thermal polymerization initiator When the composition of this patent is used as a thermosetting composition, a thermal polymerization initiator can be blended.
Various compounds can be used as the thermal polymerization initiator, and organic peroxides and azo initiators are preferred.
Specific examples of the organic peroxide include 1,1-bis (t-butylperoxy) 2-methylcyclohexane, 1,1-bis (t-hexylperoxy) -3,3,5-trimethylcyclohexane, , 1-bis (t-hexylperoxy) cyclohexane, 1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane, 1,1-bis (t-butylperoxy) cyclohexane, , 2-bis (4,4-di-butylperoxycyclohexyl) propane, 1,1-bis (t-butylperoxy) cyclododecane, t-hexylperoxyisopropyl monocarbonate, t-butylperoxymaleic acid, t-butylperoxy-3,5,5-trimethylhexanoate, t-butylperoxylaurate, 2,5-dimethyl- , 5-di (m-toluoylperoxy) hexane, t-butylperoxyisopropyl monocarbonate, t-butylperoxy 2-ethylhexyl monocarbonate, t-hexylperoxybenzoate, 2,5-dimethyl-2,5 -Di (benzoylperoxy) hexane, t-butylperoxyacetate, 2,2-bis (t-butylperoxy) butane, t-butylperoxybenzoate, n-butyl-4,4-bis (t-butyl) Peroxy) valerate, di-t-butylperoxyisophthalate, α, α'-bis (t-butylperoxy) diisopropylbenzene, dicumyl peroxide, 2,5-dimethyl-2,5-di (t- Butylperoxy) hexane, t-butylcumyl peroxide, di-t-butylperoxide P-menthane hydroperoxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexyne-3, diisopropylbenzene hydroperoxide, t-butyltrimethylsilyl peroxide, 1,1,3 Examples thereof include 3-tetramethylbutyl hydroperoxide, cumene hydroperoxide, t-hexyl hydroperoxide, and t-butyl hydroperoxide.
Specific examples of the azo compound include 1,1′-azobis (cyclohexane-1-carbonitrile), 2- (carbamoylazo) isobutyronitrile, 2-phenylazo-4-methoxy-2,4-dimethylvaleronitrile. Azodi-t-octane, azodi-t-butane, and the like.
These may be used alone or in combination of two or more. Moreover, an organic peroxide can also be made into a redox reaction by combining with a reducing agent.
 これら熱重合開始剤の使用量としては、硬化性成分合計量100重量部に対して、10重量部以下が好ましい。
 熱重合開始剤を単独で用いる場合は、通常のラジカル熱重合の常套手段にしたがって行えばよく、場合によっては(D)成分と併用し、光硬化させた後にさらに反応率を向上させる目的で熱硬化を行うこともできる。
The amount of these thermal polymerization initiators used is preferably 10 parts by weight or less with respect to 100 parts by weight of the total amount of curable components.
When the thermal polymerization initiator is used alone, it may be carried out in accordance with conventional means for radical thermal polymerization. In some cases, the thermal polymerization initiator is used in combination with the component (D), and for the purpose of further improving the reaction rate after photocuring. Curing can also be performed.
4-3.溶剤
 本発明の組成物は、実質的に溶剤を必要としないが、粘度調整等の目的で必要に応じて有機溶剤を含んでいても良い。
 有機溶剤としては、前記した(B)成分の分散媒として用いる有機溶剤と同じ化合物を挙げることができる。
 有機溶剤としては、前記した(B)成分の分散媒をそのまま使用することも、さらに別途配合することもできる。
 有機溶剤の含有割合としては、(A)及び(C)成分の合計量100重量部に対して0.1~1000重量部が好ましく、より好ましくは5~500重量部である。上記範囲であると、組成物を塗工に適当な粘度とすることができ、後記する公知の塗布方法で組成物を容易に塗布することができる
4-3. Solvent The composition of the present invention does not substantially require a solvent, but may contain an organic solvent as needed for the purpose of viscosity adjustment or the like.
Examples of the organic solvent include the same compounds as the organic solvent used as the dispersion medium for the component (B).
As the organic solvent, the dispersion medium of the component (B) described above can be used as it is, or can be further blended separately.
The content of the organic solvent is preferably 0.1 to 1000 parts by weight, more preferably 5 to 500 parts by weight with respect to 100 parts by weight of the total amount of the components (A) and (C). Within the above range, the composition can have a viscosity suitable for coating, and the composition can be easily applied by a known application method described later.
4-4.酸化防止剤
 酸化防止剤は、硬化物の耐熱性、耐候性等の耐久性を向上させる目的で配合する。
 酸化防止剤としては、たとえばフェノール系酸化防止剤やリン系酸化防止剤、硫黄系酸化防止剤等が挙げられる。
 フェノール系酸化防止剤としては、たとえば、ジt-ブチルヒドロキシトルエン等のヒンダードフェノール類を挙げることができる。市販されているものとしては、(株)アデカ製のAO-20、AO-30、AO-40、AO-50、AO-60、AO-70、AO-80等が挙げられる。
 リン系酸化防止剤としては、トリアルキルホスフィン、トリアリールホスフィン等のホスフィン類や、亜リン酸トリアルキルや亜リン酸トリアリール等が挙げられる。これらの誘導体で市販品としては、たとえば(株)アデカ製、アデカスタブPEP-4C、PEP-8、PEP-24G、PEP-36、HP-10、260、522A、329K、1178、1500、135A、3010等が挙げられる。
 硫黄系酸化防止剤としては、チオエーテル系化合物が挙げられ、市販品としては(株)アデカ製AO-23、AO-412S、AO-503A等が挙げられる。
 これらは1種を用いても2種類以上を用いてもよい。これら酸化防止剤の好ましい組合せとしては、フェノール系酸化防止剤とリン系酸化防止剤との併用、及びフェノール系酸化防止剤と硫黄系酸化防止剤の併用が挙げられる。
 酸化防止剤の含有割合としては、目的に応じて適宜設定すれば良く、硬化性成分合計量100重量部に対して0.01~5重量部が好ましく、より好ましくは0.1~1重量部である。
 含有割合を0.1重量部以上とすることで、組成物の耐久性を向上させることができ、一方、5重量部以下とすることで、硬化性や密着性を良好にすることができる。
4-4. Antioxidant Antioxidant is mix | blended in order to improve durability, such as heat resistance of a hardened | cured material, a weather resistance.
Examples of the antioxidant include phenol-based antioxidants, phosphorus-based antioxidants, and sulfur-based antioxidants.
Examples of phenolic antioxidants include hindered phenols such as di-t-butylhydroxytoluene. Examples of commercially available products include AO-20, AO-30, AO-40, AO-50, AO-60, AO-70, and AO-80 manufactured by Adeka Corporation.
Examples of the phosphorus-based antioxidant include phosphines such as trialkylphosphine and triarylphosphine, and trialkyl phosphites and triaryl phosphites. Examples of commercially available products of these derivatives include Adeka Co., Ltd., ADK STAB PEP-4C, PEP-8, PEP-24G, PEP-36, HP-10, 260, 522A, 329K, 1178, 1500, 135A, 3010. Etc.
Examples of the sulfur-based antioxidant include thioether compounds, and examples of commercially available products include AO-23, AO-412S, and AO-503A manufactured by Adeka Corporation.
These may be used alone or in combination of two or more. Preferred combinations of these antioxidants include the combined use of phenolic antioxidants and phosphorus antioxidants, and the combined use of phenolic antioxidants and sulfurous antioxidants.
The content ratio of the antioxidant may be appropriately set according to the purpose, and is preferably 0.01 to 5 parts by weight, more preferably 0.1 to 1 part by weight with respect to 100 parts by weight of the total amount of the curable components. It is.
When the content ratio is 0.1 parts by weight or more, the durability of the composition can be improved. On the other hand, when the content ratio is 5 parts by weight or less, curability and adhesion can be improved.
4-5.紫外線吸収剤
 紫外線吸収剤は、硬化物の耐光性を向上させる目的で配合する。
 紫外線吸収剤としては、BASF社製TINUVIN400、TINUVIN405、TINUVIN460、TINUVIN479等のトリアジン系紫外線吸収剤や、TINUVIN900、TINUVIN928、TINUVIN1130等のベンゾトリアゾール系紫外線吸収剤を挙げることができる。
 紫外線吸収剤の含有割合としては、目的に応じて適宜設定すれば良く、硬化性成分合計量100重量部に対して0.01~5重量部が好ましく、より好ましくは0.1~1重量部である。含有割合を0.01重量%以上とすることで、硬化物の耐光性を良好なものとすることができ、一方、5重量%以下とすることで、組成物の硬化性に優れるものとすることができる。
4-5. Ultraviolet absorber An ultraviolet absorber is mix | blended in order to improve the light resistance of hardened | cured material.
Examples of the ultraviolet absorber include triazine ultraviolet absorbers such as TINUVIN400, TINUVIN405, TINUVIN460, and TINUVIN479 manufactured by BASF, and benzotriazole ultraviolet absorbers such as TINUVIN900, TINUVIN928, and TINUVIN1130.
The content ratio of the ultraviolet absorber may be appropriately set according to the purpose, and is preferably 0.01 to 5 parts by weight, more preferably 0.1 to 1 part by weight with respect to 100 parts by weight of the total amount of the curable components. It is. When the content ratio is 0.01% by weight or more, the light resistance of the cured product can be improved, and when it is 5% by weight or less, the curability of the composition is excellent. be able to.
4-6.シランカップリング剤
 シランカップリング剤は、硬化物と基材との界面接着強度を改善する目的で配合する。
 シランカップリング剤としては、基材との接着性向上に寄与できるものであれば特に特に限定されるものではない。
4-6. Silane coupling agent A silane coupling agent is mix | blended in order to improve the interface adhesive strength of hardened | cured material and a base material.
The silane coupling agent is not particularly limited as long as it can contribute to improvement in adhesion to the substrate.
 シランカップリング剤としては、具体的には、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン等が挙げられる。 Specific examples of the silane coupling agent include 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3- Glycidoxypropyltriethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, N-phenyl-3 -Aminopropyltrimethoxysilane, 3-mercaptopropylmethyl Silane, 3-mercaptopropyl trimethoxy silane and the like.
 シランカップリング剤の配合割合は、目的に応じて適宜設定すれば良く、硬化性成分合計量100重量部に対して0.1~10重量部が好ましく、より好ましくは1~5重量部である。
 配合割合を0.1重量部以上にすることで、組成物の接着力を向上させることができ、一方、10重量部以下とすることで、接着力の経時変化を防止することができる。
The mixing ratio of the silane coupling agent may be appropriately set according to the purpose, and is preferably 0.1 to 10 parts by weight, more preferably 1 to 5 parts by weight with respect to 100 parts by weight of the total amount of the curable components. .
When the blending ratio is 0.1 parts by weight or more, the adhesive strength of the composition can be improved. On the other hand, when the blending ratio is 10 parts by weight or less, it is possible to prevent the adhesive force from changing over time.
4-7.表面改質剤
 本発明の組成物は、塗布時のレベリング性を高める目的や、硬化物の滑り性を高めて耐擦傷性を高める目的等のため、表面改質剤を添加してもよい。
 表面改質剤としては、表面調整剤、界面活性剤、レベリング剤、消泡剤、スベリ性付与剤及び防汚性付与剤等が挙げられ、これら公知の表面改質剤を使用することができる。
 それらのうち、シリコーン系表面改質剤及びフッ素系表面改質剤が好適に挙げられる。具体例としては、シリコーン鎖とポリアルキレンオキサイド鎖とを有するシリコーン系ポリマー及びオリゴマー、シリコーン鎖とポリエステル鎖とを有するシリコーン系ポリマー及びオリゴマー、パーフルオロアルキル基とポリアルキレンオキサイド鎖とを有するフッ素系ポリマー及びオリゴマー、並びに、パーフルオロアルキルエーテル鎖とポリアルキレンオキサイド鎖とを有するフッ素系ポリマー及びオリゴマー等が挙げられる。
 又、滑り性の持続力を高める等の目的で、分子中にエチレン性不飽和基、好ましくは(メタ)アクリロイル基を有する表面改質剤を使用してもよい。
4-7. Surface modifier A surface modifier may be added to the composition of the present invention for the purpose of enhancing the leveling property at the time of application, the purpose of enhancing the slipping property of the cured product and enhancing the scratch resistance, and the like.
Examples of the surface modifier include a surface modifier, a surfactant, a leveling agent, an antifoaming agent, a slipperiness imparting agent, and an antifouling imparting agent, and these known surface modifiers can be used. .
Of these, silicone-based surface modifiers and fluorine-based surface modifiers are preferred. Specific examples include silicone polymers and oligomers having a silicone chain and a polyalkylene oxide chain, silicone polymers and oligomers having a silicone chain and a polyester chain, and fluorine polymers having a perfluoroalkyl group and a polyalkylene oxide chain. And a fluorine-based polymer and an oligomer having a perfluoroalkyl ether chain and a polyalkylene oxide chain.
Further, for the purpose of increasing the slidability, a surface modifier having an ethylenically unsaturated group, preferably a (meth) acryloyl group, in the molecule may be used.
 表面改質剤の含有割合は、硬化性成分の合計量100重量部に対して、0.01~1.0重量部であることが好ましい。上記範囲であると、硬化物の表面平滑性に優れる。 The content ratio of the surface modifier is preferably 0.01 to 1.0 part by weight with respect to 100 parts by weight of the total amount of the curable components. It is excellent in the surface smoothness of hardened | cured material as it is the said range.
5.用途
 本発明は、活性エネルギー線硬化型組成物、好ましくは無溶剤型活性エネルギー線硬化型組成物に関し、特に好ましくは賦型材料用活性エネルギー線硬化型組成物及びハードコート用活性エネルギー線硬化型組成物に関する。賦型材料としては、レンズシート、モスアイフィルム、防眩フィルム、有機EL・LED用光取出しフィルム、太陽電池用光閉じ込めフィルム及び熱線再帰性反射フィルム等の微細凹凸構造を表面に有する賦型フィルムの製造に使用可能であり、ハードコート用としては、各種プラスチックの表面硬度や耐擦傷性向上に使用可能である。
5). Use The present invention relates to an active energy ray curable composition, preferably a solventless active energy ray curable composition, and particularly preferably an active energy ray curable composition for a molding material and an active energy ray curable type for a hard coat. Relates to the composition. Examples of the shaping material include a lens sheet, a moth-eye film, an antiglare film, a light extraction film for organic EL / LED, a light confinement film for solar cells, a heat ray retroreflective film, etc. It can be used for manufacturing and can be used for hard coats to improve the surface hardness and scratch resistance of various plastics.
6.使用方法
 本発明の組成物を賦型材料やハードコートとして使用する方法としては、常法に従えば良い。
 具体的には、賦形材料であれば目的の形状を有するモールド(スタンパ)に組成物を塗布又は注入し、フィルム又はシート基材(以下これらをまとめて「フィルム基材」という。)でラミネートする。
 この後に、活性エネルギー線硬化型組成物の場合には、フィルム基材として透明性を有するものを使用して、フィルム基材側から活性エネルギー線を照射し硬化させ方法等が挙げられる。又、熱硬化型組成物の場合は、加熱して硬化させる方法等が挙げられる。
 ハードコートであれば、フィルム基材に組成物を塗布し、活性エネルギー線硬化型組成物の場合には、活性エネルギー線を照射し硬化させ方法等が挙げられる。又、熱硬化型組成物の場合は、加熱して硬化させる方法等が挙げられる。
6). Method of Use As a method of using the composition of the present invention as a shaping material or a hard coat, a conventional method may be followed.
Specifically, if it is a shaping material, the composition is applied or injected into a mold (stamper) having a desired shape, and laminated with a film or sheet substrate (hereinafter collectively referred to as “film substrate”). To do.
Thereafter, in the case of an active energy ray-curable composition, a method of using a transparent film as a film substrate and irradiating and curing the active energy ray from the film substrate side can be used. Moreover, in the case of a thermosetting composition, the method of heating and hardening etc. is mentioned.
In the case of a hard coat, the composition is applied to a film substrate, and in the case of an active energy ray curable composition, a method of irradiating and curing an active energy ray may be used. Moreover, in the case of a thermosetting composition, the method of heating and hardening etc. is mentioned.
 フィルム基材としては、プラスチック及びガラス等が挙げられ、プラスチックが好ましい。
 プラスチックとしては、ポリメチルメタクリレート、ポリメチルメタクリレート-スチレン共重合体フィルム、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリアリレート、ポリアクリルニトリル、ポリカーボネート、ポリスルホン、ポリエーテルスルホン、ポリエーテルイミド、ポリエーテルケトン、ポリイミド、シクロオレフィンポリマー、塩化ビニール、ジアリルカーボネート、アリルジグリコールカーボネート、ポリメチルペンテン等が挙げられる。
Examples of the film substrate include plastic and glass, and plastic is preferable.
Plastics include polymethyl methacrylate, polymethyl methacrylate-styrene copolymer film, polyethylene terephthalate, polyethylene naphthalate, polyarylate, polyacrylonitrile, polycarbonate, polysulfone, polyethersulfone, polyetherimide, polyetherketone, polyimide, Examples include cycloolefin polymer, vinyl chloride, diallyl carbonate, allyl diglycol carbonate, polymethylpentene, and the like.
 フィルム基材は透明又は半透明(例えば、乳白色)のものが好ましい。フィルム基材の厚さとしては20~10mmが好ましい。 The film substrate is preferably transparent or translucent (for example, milky white). The thickness of the film substrate is preferably 20 to 10 mm.
 本発明の組成物を硬化させるための活性エネルギー線としては、紫外線、可視光線及び電子線等が挙げられるが、紫外線が好ましい。
 紫外線照射装置としては、高圧水銀ランプ、メタルハライドランプ、紫外線(UV)無電極ランプ、発光ダイオード(LED)等が挙げられる。
 照射エネルギーは、活性エネルギー線の種類や配合組成に応じて適宜設定すれば良く、一例として高圧水銀ランプを使用する場合を挙げると、照射エネルギーで50~5,000mJ/cm2が好ましく、200~1,000mJ/cm2がより好ましい。
Examples of the active energy ray for curing the composition of the present invention include ultraviolet rays, visible rays, and electron beams, and ultraviolet rays are preferred.
Examples of the ultraviolet irradiation device include a high pressure mercury lamp, a metal halide lamp, an ultraviolet (UV) electrodeless lamp, and a light emitting diode (LED).
The irradiation energy may be appropriately set according to the type and composition of the active energy ray. As an example, when a high pressure mercury lamp is used, the irradiation energy is preferably 50 to 5,000 mJ / cm 2 , 200 to 1,000 mJ / cm 2 is more preferable.
 本発明の組成物を使用してレンズシートを製造する例について説明する。
 比較的膜厚の薄いレンズシートを製造する場合は、本発明の組成物を透明基板に塗布した後、目的のレンズの形状を有するモールドを密着させる。
 次いで、透明基板側から活性エネルギー線を照射して、組成物を硬化させ、この後、モールドから剥離させる。
The example which manufactures a lens sheet using the composition of this invention is demonstrated.
In the case of producing a lens sheet having a relatively thin film thickness, after applying the composition of the present invention to a transparent substrate, a mold having a target lens shape is adhered.
Next, active energy rays are irradiated from the transparent substrate side to cure the composition, and then peel from the mold.
 一方、比較的膜厚の厚いレンズシートを製造する場合は、目的のレンズの形状を有する金型と透明基板の間に、本発明の組成物を流し込む。
 次いで、透明基板側から活性エネルギー線を照射して組成物を硬化させ、この後金型を脱型させる。
On the other hand, when producing a lens sheet having a relatively thick film thickness, the composition of the present invention is poured between a mold having a target lens shape and a transparent substrate.
Next, active energy rays are irradiated from the transparent substrate side to cure the composition, and then the mold is removed.
 モールドとしては、その材質は特に限定されないが、例えば真鍮及びニッケル等の金属、並びにエポキシ樹脂及びポリメチルメタクリレート等のプラスチックが挙げられる。
 モールドとしては、レンズシート製造用途では、寿命が長い点で金属製であることが好ましく、後記するナノインプリント用途では、透明性を有するプラスチックが好ましい。
The material of the mold is not particularly limited, and examples thereof include metals such as brass and nickel, and plastics such as epoxy resin and polymethyl methacrylate.
The lens is preferably made of metal in terms of long life in lens sheet manufacturing applications, and plastic having transparency is preferable in nanoimprint applications described later.
 本発明の組成物をナノインプリント用途で使用する場合は、常法に従えば良い。
 例えば、基材に組成物を塗布した後、微細加工パターンを有し透明性を有するモールドをプレスする。
 次いで、透明のモールド上から活性エネルギー線を照射して組成物を硬化させ、この後モールドを脱型させる方法等を使用することができる。
When the composition of the present invention is used for nanoimprint applications, it may be in accordance with a conventional method.
For example, after applying the composition to the base material, a mold having a microfabricated pattern and having transparency is pressed.
Next, a method of curing the composition by irradiating active energy rays from a transparent mold, and then demolding the mold can be used.
 以下に、実施例及び比較例を示し、本発明をより具体的に説明する。
 尚、以下において「部」とは重量部を意味する。
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.
In the following, “parts” means parts by weight.
1.製造例
1)製造例1(エステル交換法によるGLY-TA1の製造)
 撹拌機、温度計、ガス導入管、精留塔及び冷却管を取付けた1リットルのフラスコに、グリセリンを63.60部(0.69モル)、2-メトキシエチルアクリレートを700.99部(5.39モル)、触媒XとしてDABCOを5.47部(0.05モル)、触媒Yとして酢酸亜鉛を8.94部(0.05モル)、ハイドロキノンモノメチルエーテルを1.56部(仕込んだ原料の総重量に対して2000wtppm)仕込み、含酸素ガス(酸素を5容量%、窒素を95容量%)を液中にバブリングさせた。
 反応液温度105~130℃の範囲で加熱撹拌させながら、反応系内の圧力を110~760mmHgの範囲で調整し、エステル交換反応の進行に伴い副生した2-メトキシエタノールと2-メトキシエチルアクリレートの混合液を精留塔及び冷却管を介して反応系から抜出した。又、該抜出液と同重量部の2-メトキシエチルアクリレートを反応系に随時追加した。加熱撹拌開始から30時間後に反応系内の圧力を常圧に戻して抜出を終了した。
 反応液を室温まで冷却して沈殿物をろ過分離した後、ろ液に珪酸アルミニウム〔協和化学工業(株)製キョーワード700(商品名)〕を1.0部、活性炭〔フタムラ化学(株)製太閤S(商品名)〕を1.0部投入し、乾燥空気をバブリングさせながら、温度70~95℃、圧力0.001~100mmHgの範囲で8時間の減圧蒸留を行い、未反応の2-メトキシエチルアクリレートを含む留出液を分離した。釜液に珪藻土〔昭和化学工業(株)製ラヂオライト(商品名)〕を2.0部添加して加圧ろ過を行い、得られたろ液を精製処理物とした。
 UV検出器を備えた高速液体クロマトグラフを用いて該精製処理物の組成分析を行った結果、グリセリントリアクリレートを主要成分として含むことを確認した(以下、「GLY-TA1」という)。精製処理物の収率は90%であった。得られた精製処理物の水酸基価を下記方法に従い測定した結果、17mgKOH/gであった。その結果を表1に示す。
1. Production example
1) Production Example 1 ( Production of GLY-TA1 by transesterification method)
In a 1 liter flask equipped with a stirrer, thermometer, gas introduction tube, rectifying column and cooling tube, 63.60 parts (0.69 mol) of glycerin and 700.99 parts of 5-methoxyethyl acrylate (5 .39 mol), 5.47 parts (0.05 mol) of DABCO as catalyst X, 8.94 parts (0.05 mol) of zinc acetate as catalyst Y, 1.56 parts of hydroquinone monomethyl ether (raw materials charged) The oxygen-containing gas (5% by volume of oxygen and 95% by volume of nitrogen) was bubbled into the liquid.
While stirring the reaction liquid at a temperature of 105 to 130 ° C., the pressure in the reaction system is adjusted within the range of 110 to 760 mmHg, and 2-methoxyethanol and 2-methoxyethyl acrylate by-produced as the transesterification proceeds. Was extracted from the reaction system via a rectification column and a cooling tube. Further, 2-methoxyethyl acrylate in the same weight part as the extracted liquid was added to the reaction system as needed. 30 hours after the start of heating and stirring, the pressure in the reaction system was returned to normal pressure, and the extraction was completed.
After cooling the reaction solution to room temperature and separating the precipitate by filtration, 1.0 part of aluminum silicate [KYOWARD 700 (trade name) manufactured by Kyowa Chemical Industry Co., Ltd.] and activated carbon [Futamura Chemical Co., Ltd.] 1.0 parts of Taisho S (trade name)] was added and vacuum distillation was performed for 8 hours at a temperature of 70 to 95 ° C. and a pressure of 0.001 to 100 mmHg while bubbling dry air. -The distillate containing methoxyethyl acrylate was separated. 2.0 parts of diatomaceous earth [Radiolite (trade name) manufactured by Showa Chemical Industry Co., Ltd.] was added to the kettle and subjected to pressure filtration, and the obtained filtrate was used as a purified product.
As a result of analyzing the composition of the purified product using a high performance liquid chromatograph equipped with a UV detector, it was confirmed that glycerin triacrylate was contained as a main component (hereinafter referred to as “GLY-TA1”). The yield of the purified product was 90%. As a result of measuring the hydroxyl value of the purified product obtained according to the following method, it was 17 mgKOH / g. The results are shown in Table 1.
2)製造例2~同4(エステル交換法によるGLY-TA2~4の製造)
 触媒X及びYとして、下記表1に示す化合物を使用する以外は製造例1と同様の方法に従い、GLY-TA2~4を製造した。それらの結果を表1に示す。
2) Production Examples 2 to 4 ( Production of GLY-TA2 to 4 by transesterification method)
GLY-TA2 to 4 were produced in the same manner as in Production Example 1 except that the compounds shown in Table 1 below were used as catalysts X and Y. The results are shown in Table 1.
3)精製処理物の評価方法
 得られた精製処理物について、下記に示す方法に従い、高分子量体GPC面積、粘度及び水酸基価を測定した。それらの結果を表1に示す。
3) Method for evaluating purified product The high-molecular weight GPC area, the viscosity, and the hydroxyl value of the obtained purified product were measured according to the methods described below. The results are shown in Table 1.
(1)高分子量体GPC面積%
 前記製造例で得られた精製処理物について、下記条件のGPC測定により、高分子量体の面積%を算出した。
◆GPC測定条件
・装置:Waters(株)製 GPC システム名 1515 2414 717P RI
・検出器:示差屈折率(RI)検出器
・カラム:ガードカラム 昭和電工(株)製 Shodex KFG(8μm 4.6×10mm)、本カラム2種類 Waters(株)製 styragel HR 4E THF(7.8×300mm)+styragel HR 1THF(7.8×300mm)
・カラムの温度:40℃
・溶離液組成:THF(内部標準として硫黄を0.03%含むもの)、流量0.75mL/分
・高分子量体の面積(%)の算出方法
 GPC測定結果より、下記式(1)に基づき算出した。
 高分子量体の面積%=〔(R-I-L)/R〕×100 ・・・(1)
 式(1)における記号及び用語は、前記した通りである。
(1) High molecular weight GPC area%
About the refinement | purification processed material obtained by the said manufacture example, area% of the high molecular weight body was computed by GPC measurement of the following conditions.
◆ GPC measurement conditions and equipment: GPC system name manufactured by Waters Co., Ltd. 1515 2414 717P RI
-Detector: Differential refractive index (RI) detector-Column: Guard column Shodex KFG (8 μm 4.6 × 10 mm) manufactured by Showa Denko K.K., two types of this column Watergel HR 4E THF (7. 8 x 300 mm) + styragel HR 1THF (7.8 x 300 mm)
Column temperature: 40 ° C
-Eluent composition: THF (containing 0.03% sulfur as internal standard), flow rate 0.75 mL / min-Calculation method of high molecular weight area (%) From GPC measurement results, based on the following formula (1) Calculated.
High molecular weight area% = [(R−IL) / R] × 100 (1)
The symbols and terms in formula (1) are as described above.
(2)粘度
 得られた精製処理物の粘度をE型粘度計(25℃)で測定した。
(2) Viscosity The viscosity of the purified product obtained was measured with an E-type viscometer (25 ° C.).
(3)水酸基価
 得られた精製処理物にアセチル化試薬を加えて92℃の温浴槽中で1時間加熱処理する。放冷後、少量の水を添加して92℃の温浴槽中で10分間加熱処理する。放冷後、フェノールフタレイン溶液を指示薬として水酸化カリウムエタノール溶液で酸を滴定して、水酸基価を求めた。
(3) Hydroxyl value An acetylating reagent is added to the purified product obtained and heat-treated in a 92 ° C. hot bath for 1 hour. After standing to cool, a small amount of water is added and heat-treated in a warm bath at 92 ° C. for 10 minutes. After allowing to cool, the acid was titrated with a potassium hydroxide ethanol solution using a phenolphthalein solution as an indicator to determine the hydroxyl value.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
4)比較製造例1(脱水エステル法によるGLY-TA5の製造)
 撹拌機、温度計、ガス導入管、精留塔、冷却管及び水分離器を取付けたフラスコに、グリセリンを61.17部(0.66モル)、アクリル酸を172.18部(2.39モル)、トルエンを129.50部、78重量%硫酸水溶液を6.40部、硫酸銅を0.37部(仕込んだ原料の総重量に対して1000wtppm)仕込み、含酸素ガス(酸素を5容量%、窒素を95容量%)を液中にバブリングさせた。反応系内の圧力370mmHgにて加熱還流させながら撹拌して、脱水エステル化反応の進行に伴い副生した水を精留塔及び冷却管を介して反応系から抜出した。この間、反応液の温度は80~90℃の範囲で推移した。加熱撹拌開始から6時間後に反応液の加熱を終了するとともに、反応系内の圧力を常圧に戻して抜出を終了した。
 反応液を室温まで冷却した後、トルエンを133部、水を55部加えて撹拌した後静置し、下層(水層)を分離した。その後、上層(有機層)に20%水酸化ナトリウム水溶液52部加えて撹拌した後静置し、下層(水層)を分離した。その後、上層(有機層)に水を38部加えて撹拌した後静置し、下層(水層)を分離した。上層(有機層)にハイドロキノンモノメチルエーテルを0.018部添加し、乾燥空気をバブリングさせながら、温度60~90℃、圧力0.001~100mmHgの範囲で8時間の減圧蒸留を行い、トルエンを含む留出液を分離した。釜液に珪藻土〔昭和化学工業(株)製ラヂオライト(商品名)〕を2.0部添加して加圧ろ過を行い、得られたろ液を精製処理物とした。
 UV検出器を備えた高速液体クロマトグラフを用いて該精製処理物の組成分析を行った結果、グリセリントリアクリレートを含むことを確認した(以下、「GLYTA5」という)。精製処理物の収率は8%であった。得られた反応物について前記と同様に水酸基価を測定した結果、52mgKOH/gであった。
4) Comparative Production Example 1 ( Production of GLY-TA5 by dehydrated ester method)
In a flask equipped with a stirrer, a thermometer, a gas introduction tube, a rectifying column, a cooling tube and a water separator, 61.17 parts (0.66 mol) of glycerin and 172.18 parts (2.39 of acrylic acid) were obtained. Mol), 129.50 parts of toluene, 6.40 parts of 78% by weight sulfuric acid aqueous solution, 0.37 parts of copper sulfate (1000 wtppm with respect to the total weight of the charged raw materials), oxygen-containing gas (5 volumes of oxygen) %, Nitrogen 95% by volume) was bubbled into the liquid. The reaction system was stirred while being heated to reflux at a pressure of 370 mmHg, and water produced as a by-product with the progress of the dehydration esterification reaction was withdrawn from the reaction system via a rectification column and a cooling tube. During this time, the temperature of the reaction liquid changed in the range of 80 to 90 ° C. After 6 hours from the start of heating and stirring, the heating of the reaction solution was completed, and the pressure in the reaction system was returned to normal pressure to complete the extraction.
After cooling the reaction solution to room temperature, 133 parts of toluene and 55 parts of water were added and stirred, and then allowed to stand to separate the lower layer (aqueous layer). Thereafter, 52 parts of a 20% aqueous sodium hydroxide solution was added to the upper layer (organic layer), stirred and allowed to stand, and the lower layer (aqueous layer) was separated. Thereafter, 38 parts of water was added to the upper layer (organic layer), stirred and allowed to stand, and the lower layer (aqueous layer) was separated. Add 0.018 part of hydroquinone monomethyl ether to the upper layer (organic layer) and perform distillation under reduced pressure for 8 hours at a temperature of 60 to 90 ° C. and a pressure of 0.001 to 100 mmHg while bubbling dry air to contain toluene. The distillate was separated. 2.0 parts of diatomaceous earth [Radiolite (trade name) manufactured by Showa Chemical Industry Co., Ltd.] was added to the kettle and subjected to pressure filtration, and the obtained filtrate was used as a purified product.
As a result of analyzing the composition of the purified product using a high performance liquid chromatograph equipped with a UV detector, it was confirmed that glycerin triacrylate was contained (hereinafter referred to as “GLYTA5”). The yield of the purified product was 8%. As a result of measuring the hydroxyl value of the obtained reaction product in the same manner as described above, it was 52 mgKOH / g.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
5)製造例5(GLY-TA1に分散させた(B)成分の調製)
 撹拌機、温度計、ガス導入管、冷却管及びナス型フラスコを取付けたフラスコに、GLY-TA1を200部、MEK-AC-2140Z〔表面処理シリカ微粒子のメチルエチルケトン(以下、「MEK」という)分散ゾル、粒子分=46重量%、粒径=10~15nm、日産化学工業(株)製〕を500g仕込み、含酸素ガス(酸素を5容量%、窒素を95容量%)を液中にバブリングさせた。温調付オイルバスにフラスコを浸漬し、内温50℃まで昇温した後、系内の圧力5mmHgにてMEKを脱溶剤した。30分加熱後、一旦圧力を常圧に戻してナスフラスコに留出したMEKを取出し、再び内温50℃、系内圧力5mmHgにて脱溶剤を行い、1時間加熱して留出物がなくなったことを確認し、系内の圧力を常圧に戻してフラスコ内のシリカ調製液を抜出した。
 得られたシリカ調製液に残留したMEKをガスクロマトグラフィーによって定量したところ、0.1重量%であった。又、(B)成分である微粒子分は53重量%(留出した揮発分の測定値から計算)、粘度は1,254mPa・sであった(以下、「Si-1)」という)。
5) Production Example 5 (Preparation of component (B) dispersed in GLY-TA1)
200 parts of GLY-TA1, MEK-AC-2140Z (methyl ethyl ketone (hereinafter referred to as “MEK”) dispersed in surface-treated silica fine particles, in a flask equipped with a stirrer, thermometer, gas introduction tube, cooling tube and eggplant type flask Sol, particle content = 46% by weight, particle size = 10 to 15 nm, manufactured by Nissan Chemical Industries, Ltd.] and bubbling oxygen-containing gas (5% oxygen and 95% nitrogen) into the liquid. It was. After immersing the flask in a temperature-controlled oil bath and raising the temperature to an internal temperature of 50 ° C., MEK was removed with a pressure of 5 mmHg in the system. After heating for 30 minutes, the pressure is returned to normal pressure and the MEK distilled into the eggplant flask is taken out. The solvent is removed again at an internal temperature of 50 ° C. and the internal pressure of the system is 5 mmHg. After confirming this, the pressure in the system was returned to normal pressure, and the silica preparation solution in the flask was extracted.
The amount of MEK remaining in the obtained silica preparation solution was quantified by gas chromatography and found to be 0.1% by weight. Further, the fine particle component (B) was 53% by weight (calculated from the measured value of the distilled volatile component), and the viscosity was 1,254 mPa · s (hereinafter referred to as “Si-1”).
6)製造例6~同8(GLY-TA2~4に分散させた(B)成分の調製)
 (A)成分として、GLY-TA1の代わりにGLY-TA2~4を使用する以外は製造例1と同様の方法に従い、シリカ調製液を製造した(以下、「Si-2~4」という)。
6) Production Examples 6 to 8 (Preparation of component (B) dispersed in GLY-TA 2 to 4)
A silica preparation solution was produced in the same manner as in Production Example 1 except that GLY-TA2 to 4 were used in place of GLY-TA1 as component (A) (hereinafter referred to as “Si-2 to 4”).
7)比較製造例2(GLY-TA5に分散させた(B)成分の調製)
 製造例5と同様の装置付きフラスコに、GLY-TA5を140部、MEK-AC-2140Z〔表面処理シリカ微粒子のMEK分散ゾル、粒子分=46重量%、粒径=10~15nm、日産化学工業(株)製〕を150g仕込み、製造例5と同様にシリカ調製液を製造し、抜出した。
 得られたシリカ調製液に残留したMEKをガスクロマトグラフィーによって定量したところ、0.2重量%であった。又、(B)成分である微粒子分は33重量%(留出した揮発分の測定値から計算)、粘度は4,650mPa・sであった(以下、「Si-5」という)。
7) Comparative Production Example 2 (Preparation of component (B) dispersed in GLY-TA5)
In a flask equipped with the same apparatus as in Production Example 5, 140 parts of GLY-TA5, MEK-AC-2140Z [MEK dispersion sol of surface-treated silica fine particles, particle content = 46 wt%, particle size = 10-15 nm, Nissan Chemical Industries, Ltd. 150 g] was prepared, and a silica preparation solution was produced in the same manner as in Production Example 5 and extracted.
The amount of MEK remaining in the obtained silica preparation solution was quantified by gas chromatography and found to be 0.2% by weight. Further, the fine particle component (B) was 33% by weight (calculated from the measured value of the distilled volatile component), and the viscosity was 4,650 mPa · s (hereinafter referred to as “Si-5”).
8)比較製造例3(TMPTAに分散させた(B)成分の調製)
 製造例5と同様の装置付きフラスコに、TMPTA(東亞合成製「アロニックスM-309」)を200部、MEK-AC-2140Z〔表面処理シリカ微粒子のMEK分散ゾル、粒子分=46重量%、粒径=10~15nm、日産化学工業(株)製〕を500g仕込み、製造例5と同様にシリカ調製液を製造し、抜出した。
 得られたシリカ調製液に残留したMEKをガスクロマトグラフィーによって定量したところ、0.1重量%であった。又、(B)成分である微粒子分は53重量%(留出した揮発分の測定値から計算)、粘度は3,821mPa・sであった(以下、「Si-6)」という)。
8) Comparative Production Example 3 (Preparation of component (B) dispersed in TMPTA)
In a flask equipped with the same apparatus as in Production Example 5, 200 parts of TMPTA (“Aronix M-309” manufactured by Toagosei Co., Ltd.), MEK-AC-2140Z [MEK-dispersed sol of surface-treated silica fine particles, particle content = 46 wt%, granules 500 g of diameter = 10 to 15 nm, manufactured by Nissan Chemical Industries, Ltd.] was prepared, and a silica preparation solution was produced and extracted in the same manner as in Production Example 5.
The amount of MEK remaining in the obtained silica preparation solution was quantified by gas chromatography and found to be 0.1% by weight. The fine particle component (B) was 53% by weight (calculated from the measured value of the distilled volatile component), and the viscosity was 3,821 mPa · s (hereinafter referred to as “Si-6”).
 製造例5~8、比較製造例2で得られたシリカ調製液について、粘度及び微粒子分、残MEK分の結果を表3に示す。
Figure JPOXMLDOC01-appb-T000007
Table 3 shows the viscosity, fine particle content, and residual MEK content of the silica preparation solutions obtained in Production Examples 5 to 8 and Comparative Production Example 2.
Figure JPOXMLDOC01-appb-T000007
2.実施例及び比較例
1)活性エネルギー線硬化型組成物の製造
 Si-1の100部と2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン、BASFジャパン(株)製「IRGACURE907」の5部及び2,4-ジエチルチオキサントン、日本化薬(株)製「カヤキュアDETX-S」の0.2部を撹拌・混合して、活性エネルギー線硬化型組成物を製造した。
 同様の方法で、下記表4に示す化合物を表4に示す割合で撹拌・混合し、活性エネルギー線硬化型組成物を製造した。
 尚、表4において、シリカ調製液は、実施例1~同9においては(A)及び(B)成分を含み、比較例2及び同3においては(B)成分及び(C)成分を含む。(A)、(B)及び(C)成分の括弧内の部数は、シリカ調製液から組成物への持ち込み分、即ち、組成物に含まれる(A)、(B)及び(C)成分の割合を意味する。
2. Examples and Comparative Examples
1) Production of active energy ray-curable composition 100 parts of Si-1 and 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one, “IRGACURE907” manufactured by BASF Japan Ltd. 2 parts of 2, 4-diethylthioxanthone and 0.2 part of “Kayacure DETX-S” manufactured by Nippon Kayaku Co., Ltd. were stirred and mixed to prepare an active energy ray-curable composition.
In the same manner, the compounds shown in Table 4 below were stirred and mixed at the ratio shown in Table 4 to produce an active energy ray-curable composition.
In Table 4, the silica preparation solution contains the components (A) and (B) in Examples 1 to 9, and the components (B) and (C) in Comparative Examples 2 and 3. The numbers in parentheses of the components (A), (B), and (C) are the amounts brought into the composition from the silica preparation solution, that is, the components (A), (B), and (C) contained in the composition. Mean percentage.
 尚、表4における数字は部数を意味し、略号は下記を意味する。
・ACMO:アクリロイルモルホリン、KJケミカルズ(株)製「ACMO」、25℃粘度12mPa・s
・NVP:N-ビニルピロリドン、(株)日本触媒製
・UA306H:多官能ウレタンアクリレート(ペンタエリスリトールトリアクリレートとヘキサメチレンジイソシアネートの反応物であるウレタンアダクト)、共栄社化学(株)製「UA306H」
・TMPTA:トリメチロールプロパントリアクリレート、東亞合成(株)製「アロニックスM-309」、25℃粘度90mPa・s
・IRG907:2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン、BASFジャパン製「IRGACURE907」
・DETX:2,4-ジエチルチオキサントン、日本化薬(株)製「カヤキュアDETX-S」
・TPO:2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、BASFジャパン(株)製「ルシリンTPO」
The numbers in Table 4 indicate the number of copies, and the abbreviations indicate the following.
ACMO: acryloylmorpholine, “ACMO” manufactured by KJ Chemicals, 25 ° C. viscosity 12 mPa · s
・ NVP: N-vinylpyrrolidone, manufactured by Nippon Shokubai Co., Ltd. ・ UA306H: Polyfunctional urethane acrylate (urethane adduct which is a reaction product of pentaerythritol triacrylate and hexamethylene diisocyanate), “UA306H” manufactured by Kyoeisha Chemical Co., Ltd.
TMPTA: trimethylolpropane triacrylate, “Aronix M-309” manufactured by Toagosei Co., Ltd., 25 ° C. viscosity 90 mPa · s
IRG907: 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one, “IRGACURE907” manufactured by BASF Japan
DETX: 2,4-diethylthioxanthone, “Kayacure DETX-S” manufactured by Nippon Kayaku Co., Ltd.
TPO: 2,4,6-trimethylbenzoyldiphenylphosphine oxide, “Lucirin TPO” manufactured by BASF Japan Ltd.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
2)評価方法
 得られた組成物を使用し、下記評価を行った。それらの結果を表5に示す。
(1)粘度
 得られた組成物の粘度をE型粘度計(25℃)で測定した。
(2)転写性
 80μm厚の富士フイルム(株)製トリアセチルセルロースフィルム「TD80UL」に、前記で得られた組成物をバーコータで10μm厚に塗布した後、高さ10μmの半球状の凹凸形状を有するニッケル金型にラミネートし、トリアセチルセルロースフィルム越しに紫外線照射して組成物を硬化させた。
 紫外線照射装置は、アイグラフィックス(株)製メタルハライドランプを用い、405nmを中心とする紫外線領域(UV-V)の強度をPETフィルム越しで500mW/cm2、500mJ/cm2とした。紫外線照射後、トリアセチルセルロースフィルムを金型から離型し、光学フィルムを得た。
 得られた転写された微細凹凸構造を電子顕微鏡で10000倍に拡大して観察し、突起の先端に欠けがなく、スタンパ形状を転写できているか確認し、下記の基準で2段階評価した。
 〇:欠けがない
 ×:欠けがある
2) Evaluation method The following evaluation was performed using the obtained composition. The results are shown in Table 5.
(1) Viscosity The viscosity of the obtained composition was measured with an E-type viscometer (25 ° C.).
(2) After applying the composition obtained above to a triacetylcellulose film “TD80UL” manufactured by Fuji Film Co., Ltd. having a transferability of 80 μm to a thickness of 10 μm with a bar coater, a hemispherical uneven shape having a height of 10 μm is formed. The composition was laminated by being laminated on a nickel mold having an ultraviolet ray through a triacetyl cellulose film.
The ultraviolet irradiation apparatus used was a metal halide lamp manufactured by Eye Graphics Co., Ltd., and the intensity in the ultraviolet region (UV-V) centered at 405 nm was 500 mW / cm 2 and 500 mJ / cm 2 through the PET film. After the ultraviolet irradiation, the triacetylcellulose film was released from the mold to obtain an optical film.
The obtained transferred fine concavo-convex structure was observed with an electron microscope at a magnification of 10000 times, and it was confirmed that there was no chip at the tip of the protrusion and that the stamper shape was transferred.
○: No chipping ×: Chipping
(3)耐擦傷性
 100μm厚の易接着ポリエチレンテレフタレート(以下、「PET」という)フィルム〔東洋紡(株)製コスモシャインA4300〕に、前記で得られた組成物をバーコータで10μm厚に塗布した後、100μm厚の未処理ポリエチレンテレフタレートフィルム〔東レ(株)製ルミラーT50。以下、ルミラーという。〕をラミネートし、ルミラー越しに紫外線照射して組成物を硬化させた。
 紫外線照射装置は、アイグラフィックス(株)製メタルハライドランプを用い、405nmを中心とする紫外線領域(UV-V)の強度をPETフィルム越しで500mW/cm2、500mJ/cm2とした。
 紫外線照射後、ルミラーを剥離し、光学フィルムを得た。得られた光学フィルムの耐擦傷性を、スチールウール#0000を用いて荷重500gで100往復後、以下の5水準で評価を行った。
 ◎:傷なし
 〇:傷1本以上10本未満
 △:傷10本以上50本未満
 ×:傷50本以上100本未満
 ××:傷100本以上
(3) After coating the composition obtained above to a thickness of 10 μm with a bar coater on an easily-adhesive polyethylene terephthalate (hereinafter referred to as “PET”) film [Cosmo Shine A4300 manufactured by Toyobo Co., Ltd.] having a thickness of 100 μm. 100 μm-thick untreated polyethylene terephthalate film [Lumilar T50 manufactured by Toray Industries, Inc. Hereinafter referred to as Lumirror. ] Was irradiated with ultraviolet rays through a Lumirror and the composition was cured.
The ultraviolet irradiation apparatus used was a metal halide lamp manufactured by Eye Graphics Co., Ltd., and the intensity in the ultraviolet region (UV-V) centered at 405 nm was 500 mW / cm 2 and 500 mJ / cm 2 through the PET film.
After the ultraviolet irradiation, the lumirror was peeled off to obtain an optical film. The scratch resistance of the obtained optical film was evaluated with the following five levels after 100 reciprocations with a load of 500 g using steel wool # 0000.
◎: No scratch ○: 1 or more and less than 10 scratches △: 10 or more scratches and less than 50 ×: Scratches 50 or more and less than 100 ××: 100 or more scratches
(4)塑性変形硬さ
 (3)耐擦傷性試験で得られた硬化物を、超微小硬度計((株)フィッシャーインストルメンツ製、H-100C)を用い、室温においてビッカース圧子の最大荷重が10mNとなる条件で表面硬度を測定し、塑性変形硬さで評価した。
(4) Plastic deformation hardness (3) The maximum load of the Vickers indenter at room temperature using the ultra-hardness meter (H-100C manufactured by Fisher Instruments Co., Ltd.) for the cured product obtained in the scratch resistance test. The surface hardness was measured under the condition of 10 mN, and the plastic deformation hardness was evaluated.
(5)密着性
 (3)耐擦傷性で得られた光学フィルムを、5×5の25マス様にカッターナイフで切り込みを入れた後、ニチバン製セロハンテープを貼り付け、剥離速度約1cm/secの速度にて勢い良くテープを剥がした。
 同様の試験を、易接着PETに代えて以下フィルムでも実施した。表5における略号は、下記を意味する。
 ・アクリル:(株)クラレ製アクリル樹脂フィルム「クラリティHI50-75」(膜厚75μm)
 ・TAC:富士フイルム(株)製トリアセチルセルロースフィルム「TD80UL」(膜厚80μm)
 基材密着性は、上記操作の後に硬化物の残ったマス目の数を確認し、下記の基準で3段階評価した。
 〇:25~21マス
 △:20~10マス
 ×:10マス以下
(5) Adhesion (3) The optical film obtained by scratch resistance was cut with a cutter knife in a 5 × 5 25-mass shape, and then a Nichiban cellophane tape was applied, and the peeling speed was about 1 cm / sec. The tape was peeled off at a high speed.
The same test was also conducted with the following film instead of the easy-adhesion PET. The abbreviations in Table 5 mean the following.
Acrylic: Kuraray acrylic resin film “Clarity HI50-75” (film thickness 75 μm)
・ TAC: Triacetylcellulose film “TD80UL” (film thickness: 80 μm) manufactured by FUJIFILM Corporation
Substrate adhesion was evaluated in three stages according to the following criteria by confirming the number of squares in which the cured product remained after the above operation.
○: 25 to 21 squares △: 20 to 10 squares ×: 10 squares or less
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
3)考察
 実施例1~同9の結果から明らかなように、本発明の組成物は、転写性に優れ、硬化物の硬度、耐擦傷性及び基材密着性に優れるものであった。
 これに対して、比較例1は(B)成分を含まない組成物であるため、塑性変形硬さと対アクリル密着性のいずれも劣った。又、比較例2~3は、(A)成分の代わりに異なる多官能アクリレートを用いた組成物であるため、転写性に劣ったり、耐擦傷性及び対アクリル、TAC密着性に劣った。
3) Discussion As is apparent from the results of Examples 1 to 9, the composition of the present invention was excellent in transferability, cured product hardness, scratch resistance and substrate adhesion.
On the other hand, since Comparative Example 1 was a composition not containing the component (B), both the plastic deformation hardness and the adhesion to acrylic were inferior. Further, Comparative Examples 2 to 3 were compositions using different polyfunctional acrylates instead of the component (A), so that they were inferior in transferability, inferior in scratch resistance and adhesion to acrylic and TAC.
 本発明の組成物は種々の用途に使用可能であり、賦型材料及びハードコート剤に好ましく使用することができる。賦型材料としては、具体的には、レンズシート、モスアイフィルム、防眩フィルム、有機EL・LED用光取出しフィルム、太陽電池用光閉じ込めフィルム及び熱線再帰性反射フィルム等の微細凹凸構造を表面に有する賦型フィルムの製造に利用可能であり、ハードコート剤としては、各種プラスチックの表面硬度や耐擦傷性向上に使用可能である。 The composition of the present invention can be used for various applications, and can be preferably used for a shaping material and a hard coat agent. Specific examples of the molding material include a lens sheet, a moth-eye film, an antiglare film, a light extraction film for organic EL / LED, a light confinement film for solar cells, and a heat ray retroreflective film on the surface. The hard coat agent can be used to improve the surface hardness and scratch resistance of various plastics.

Claims (21)

  1. 下記(A)、(B)及び(C)成分を含む組成物であって、
    (A)、(B)及び(C)成分の合計100重量%中に、(A)成分を40~95重量%、(B)成分を5~60重量%、及び(C)成分を0~55重量%含む活性エネルギー線硬化型組成物。
    (A)成分:グリセリントリ(メタ)アクリレートを主成分とする(メタ)アクリレート混合物であって、(A)成分中の高分子量体が、式(1)に基づくゲルパーミエーションクロマトグラフィーによる面積%で30%未満である混合物
     高分子量体の面積%=〔(R-I-L)/R〕×100 ・・・(1)
     式(1)における記号及び用語は、以下を意味する。
     ・R:(A)成分中の検出ピークの総面積
     ・I:グリセリントリ(メタ)アクリレートを含む検出ピークの面積
     ・L:グリセリントリ(メタ)アクリレートを含む検出ピークよりも重量平均分子量が小さい検出ピークの総面積
    (B)成分:フィラー
    (C)成分:(A)成分以外のエチレン性不飽和基を有する化合物
    A composition comprising the following components (A), (B) and (C):
    In a total of 100% by weight of the components (A), (B) and (C), the component (A) is 40 to 95% by weight, the component (B) is 5 to 60% by weight, and the component (C) is 0 to An active energy ray-curable composition containing 55% by weight.
    Component (A): a (meth) acrylate mixture mainly composed of glycerin tri (meth) acrylate, wherein the high molecular weight component in component (A) is an area% by gel permeation chromatography based on the formula (1) And the mixture is less than 30% area% of high molecular weight = [(R−IL) / R] × 100 (1)
    The symbols and terms in formula (1) mean the following.
    -R: Total area of detection peaks in component (A)-I: Area of detection peaks containing glycerin tri (meth) acrylate-L: Detection with a weight average molecular weight smaller than the detection peak containing glycerin tri (meth) acrylate Peak total area (B) Component: Filler (C) Component: Compound having ethylenically unsaturated group other than component (A)
  2. 前記(A)成分が、グリセリンと1個の(メタ)アクリロイル基を有する化合物をエステル交換反応させて得られる、グリセリントリ(メタ)アクリレートを主成分とする(メタ)アクリレート混合物である請求項1記載の活性エネルギー線硬化型組成物。 2. The (A) component is a (meth) acrylate mixture containing glycerin tri (meth) acrylate as a main component, obtained by subjecting a compound having glycerin and one (meth) acryloyl group to a transesterification reaction. The active energy ray-curable composition as described.
  3. 前記(A)成分が、下記触媒X及びYの存在下に、グリセリンと1個の(メタ)アクリロイル基を有する化合物をエステル交換反応させて得られる、グリセリントリ(メタ)アクリレートを主成分とする(メタ)アクリレート混合物である請求項2に記載の活性エネルギー線硬化型組成物。
    触媒X:アザビシクロ構造を有する環状3級アミン又はその塩若しくは錯体、アミジン又はその塩若しくは錯体、ピリジン環を有する化合物又はその塩若しくは錯体、及びホスフィン又はその塩若しくは錯体からなる群から選ばれる一種以上の化合物。
    触媒Y:亜鉛を含む化合物。
    The component (A) is mainly composed of glycerin tri (meth) acrylate obtained by transesterification of glycerin and a compound having one (meth) acryloyl group in the presence of the following catalysts X and Y. The active energy ray-curable composition according to claim 2, which is a (meth) acrylate mixture.
    Catalyst X: One or more selected from the group consisting of a cyclic tertiary amine having an azabicyclo structure or a salt or complex thereof, an amidine or a salt or complex thereof, a compound having a pyridine ring or a salt or complex thereof, and a phosphine or a salt or complex thereof Compound.
    Catalyst Y: Compound containing zinc.
  4. 前記触媒Xとして、下記化合物を使用したものである請求項3に記載の活性エネルギー線硬化型樹脂組成物。
    触媒X:アザビシクロ構造を有する環状3級アミン又はその塩若しくは錯体、アミジン又はその塩若しくは錯体、及びピリジン環を有する化合物又はその塩若しくは錯体からなる群から選ばれる一種以上の化合物。
    The active energy ray-curable resin composition according to claim 3, wherein the following compound is used as the catalyst X.
    Catalyst X: One or more compounds selected from the group consisting of a cyclic tertiary amine having an azabicyclo structure or a salt or complex thereof, an amidine or a salt or complex thereof, and a compound having a pyridine ring or a salt or complex thereof.
  5. 前記1個の(メタ)アクリロイル基を有する化合物がアルコキシアルキル(メタ)アクリレートである請求項3又は請求項4のいずれか1項に記載の活性エネルギー線硬化型組成物。 The active energy ray-curable composition according to any one of claims 3 and 4, wherein the compound having one (meth) acryloyl group is an alkoxyalkyl (meth) acrylate.
  6. 前記触媒Yが、有機酸亜鉛又は/及び亜鉛ジケトンエノラートである請求項3~請求項5のいずれか1項に記載の活性エネルギー線硬化型組成物。 The active energy ray-curable composition according to any one of claims 3 to 5, wherein the catalyst Y is an organic acid zinc or / and a zinc diketone enolate.
  7. 前記(A)成分の水酸基価が60mgKOH/g以下である請求項1~請求項6のいずれか1項に記載の活性エネルギー線硬化型組成物。 The active energy ray-curable composition according to any one of claims 1 to 6, wherein the hydroxyl value of the component (A) is 60 mgKOH / g or less.
  8. 前記(C)成分として、ホモポリマーのガラス転移温度が70℃以上である、分子内に1個のエチレン性不飽和基を有する化合物(C-1)を含む請求項1~請求項7のいずれか1項に記載の活性エネルギー線硬化型組成物。 The component (C) includes a compound (C-1) having one ethylenically unsaturated group in the molecule, wherein the homopolymer has a glass transition temperature of 70 ° C. or higher. 2. The active energy ray-curable composition according to item 1.
  9. 上記(C-1)成分が、分子内に窒素を含み、ホモポリマーのガラス転移温度が70℃以上である、分子内に1個のエチレン性不飽和基を有する化合物(C-1-N)である請求項8に記載の活性エネルギー線硬化型組成物。 Compound (C-1-N) wherein the component (C-1) contains nitrogen in the molecule and the homopolymer has a glass transition temperature of 70 ° C. or higher and has one ethylenically unsaturated group in the molecule (C-1-N) The active energy ray-curable composition according to claim 8.
  10. 前記(C)成分として、ウレタン(メタ)アクリレート(C-2)を含む請求項1~請求項9のいずれか1項に記載の活性エネルギー線硬化型組成物。 The active energy ray-curable composition according to any one of claims 1 to 9, which contains urethane (meth) acrylate (C-2) as the component (C).
  11. 上記(B)成分が、平均粒子径が可視光の波長以下である無機酸化物微粒子である請求項1~請求項10のいずれか1項に記載の活性エネルギー線硬化型組成物。 The active energy ray-curable composition according to any one of claims 1 to 10, wherein the component (B) is an inorganic oxide fine particle having an average particle diameter of not more than a wavelength of visible light.
  12. 上記(B)成分が、平均粒子径が可視光の波長以下であるシリカである請求項11に記載の活性エネルギー線硬化型組成物。 The active energy ray-curable composition according to claim 11, wherein the component (B) is silica having an average particle diameter of not more than the wavelength of visible light.
  13. 更に、(D)成分として光重合開始剤及び/又は増感剤を、(A)及び(C)成分の合計量100重量部に対して0.05~10重量部含む請求項1~請求項12のいずれか1項に記載の活性エネルギー線硬化型組成物。 The photopolymerization initiator and / or sensitizer as component (D) is further contained in an amount of 0.05 to 10 parts by weight based on 100 parts by weight of the total amount of components (A) and (C). 13. The active energy ray-curable composition according to any one of 12 above.
  14. 更に、有機溶剤を(A)及び(C)成分の合計量100重量部に対して0.1~1000重量部含む請求項1~請求項13のいずれか1項に記載の活性エネルギー線硬化型組成物。 The active energy ray-curable type according to any one of claims 1 to 13, further comprising 0.1 to 1000 parts by weight of an organic solvent with respect to 100 parts by weight of the total amount of the components (A) and (C). Composition.
  15. 請求項1~請求項14のいずれか1項に記載の組成物を含む、賦型材料用活性エネルギー線硬化型組成物。 An active energy ray-curable composition for a moldable material, comprising the composition according to any one of claims 1 to 14.
  16. 請求項1~請求項14のいずれか1項に記載の組成物を含む、ハードコート用活性エネルギー線硬化型組成物。 An active energy ray-curable composition for hard coat, comprising the composition according to any one of claims 1 to 14.
  17. グリセリンと1個の(メタ)アクリロイル基を有する化合物を、下記触媒X及びYの存在下にエステル交換反応させ、グリセリントリ(メタ)アクリレートを主成分とする(メタ)アクリレート混合物であって、混合物中の高分子量体が、前記式(1)に基づくゲルパーミエーションクロマトグラフィーによる面積%で30%未満である混合物(A)を製造する工程、及び
    得られた(A)成分と、下記(B)及び(C)成分を、(A)、(B)及び(C)成分の合計100重量%中に、(A)成分を40~95重量%、(B)成分を5~60重量%、及び(C)成分を0~55重量%含むよう混合する工程
    を含む活性エネルギー線硬化型組成物の製造方法。

    触媒X:アザビシクロ構造を有する環状3級アミン又はその塩若しくは錯体、アミジン又はその塩若しくは錯体、ピリジン環を有する化合物又はその塩若しくは錯体、及びホスフィン又はその塩若しくは錯体からなる群から選ばれる一種以上の化合物。
    触媒Y:亜鉛を含む化合物。

    (B)成分:フィラー
    (C)成分:(A)成分以外のエチレン性不飽和基を有する化合物
    A mixture of glycerin and a compound having one (meth) acryloyl group is subjected to a transesterification reaction in the presence of the following catalysts X and Y, and is a (meth) acrylate mixture mainly composed of glycerin tri (meth) acrylate, A step of producing a mixture (A) in which the high molecular weight body is less than 30% in area% by gel permeation chromatography based on the formula (1), and the obtained component (A), and the following (B ) And (C) components in a total of 100% by weight of components (A), (B) and (C), 40 to 95% by weight of component (A), 5 to 60% by weight of component (B), And a method for producing an active energy ray-curable composition, comprising a step of mixing so as to contain 0 to 55% by weight of component (C).

    Catalyst X: One or more selected from the group consisting of a cyclic tertiary amine having an azabicyclo structure or a salt or complex thereof, an amidine or a salt or complex thereof, a compound having a pyridine ring or a salt or complex thereof, and a phosphine or a salt or complex thereof Compound.
    Catalyst Y: Compound containing zinc.

    (B) Component: Filler (C) Component: Compound having ethylenically unsaturated group other than component (A)
  18. 前記触媒Xが、下記化合物を使用したものである請求項17に記載の活性エネルギー線硬化型組成物の製造方法。
    触媒X:アザビシクロ構造を有する環状3級アミン又はその塩若しくは錯体、アミジン又はその塩若しくは錯体、及びピリジン環を有する化合物又はその塩若しくは錯体からなる群から選ばれる一種以上の化合物。
    The method for producing an active energy ray-curable composition according to claim 17, wherein the catalyst X uses the following compound.
    Catalyst X: One or more compounds selected from the group consisting of a cyclic tertiary amine having an azabicyclo structure or a salt or complex thereof, an amidine or a salt or complex thereof, and a compound having a pyridine ring or a salt or complex thereof.
  19. 前記1個の(メタ)アクリロイル基を有する化合物がアルコキシアルキル(メタ)アクリレートである請求項17又は請求項18に記載の活性エネルギー線硬化型組成物の製造方法。 The method for producing an active energy ray-curable composition according to claim 17 or 18, wherein the compound having one (meth) acryloyl group is an alkoxyalkyl (meth) acrylate.
  20. 前記触媒Yが、有機酸亜鉛又は/及び亜鉛ジケトンエノラートである請求項17~請求項19のいずれか1項に記載の活性エネルギー線硬化型組成物の製造方法。 The method for producing an active energy ray-curable composition according to any one of claims 17 to 19, wherein the catalyst Y is an organic acid zinc or / and a zinc diketone enolate.
  21. さらに、光重合開始剤(D)を混合する工程を含む請求項17~請求項20のいずれか1項に記載の活性エネルギー線硬化型組成物の製造方法。 The method for producing an active energy ray-curable composition according to any one of claims 17 to 20, further comprising a step of mixing a photopolymerization initiator (D).
PCT/JP2017/040993 2016-11-17 2017-11-14 Active energy ray-curable composition WO2018092785A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018551651A JP6927233B2 (en) 2016-11-17 2017-11-14 Active energy ray-curable composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016223732 2016-11-17
JP2016-223732 2016-11-17

Publications (1)

Publication Number Publication Date
WO2018092785A1 true WO2018092785A1 (en) 2018-05-24

Family

ID=62146570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/040993 WO2018092785A1 (en) 2016-11-17 2017-11-14 Active energy ray-curable composition

Country Status (2)

Country Link
JP (1) JP6927233B2 (en)
WO (1) WO2018092785A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022225041A1 (en) * 2021-04-23 2022-10-27 東亞合成株式会社 Curable composition, active-energy-ray-curable composition, and active-energy-ray-curable coating composition

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4929632B1 (en) * 1970-12-30 1974-08-06
JPH10198032A (en) * 1997-01-08 1998-07-31 Nippon Synthetic Chem Ind Co Ltd:The Photosensitive resin composition and its use
JP2013231167A (en) * 2012-04-03 2013-11-14 Arakawa Chem Ind Co Ltd Polyfunctional thio(meth)acrylate resin, active energy ray-curable hard coat resin composition containing the same, cured film obtained by curing the composition, cured film laminated plastic film, plastic injection molded article and processed product using the plastic film
WO2015159611A1 (en) * 2014-04-16 2015-10-22 東亞合成株式会社 Multifunctional (meth)acrylate manufacturing method
WO2017002964A1 (en) * 2015-07-02 2017-01-05 東亞合成株式会社 Curable composition
WO2017033732A1 (en) * 2015-08-21 2017-03-02 東亞合成株式会社 Curable composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4929632B1 (en) * 1970-12-30 1974-08-06
JPH10198032A (en) * 1997-01-08 1998-07-31 Nippon Synthetic Chem Ind Co Ltd:The Photosensitive resin composition and its use
JP2013231167A (en) * 2012-04-03 2013-11-14 Arakawa Chem Ind Co Ltd Polyfunctional thio(meth)acrylate resin, active energy ray-curable hard coat resin composition containing the same, cured film obtained by curing the composition, cured film laminated plastic film, plastic injection molded article and processed product using the plastic film
WO2015159611A1 (en) * 2014-04-16 2015-10-22 東亞合成株式会社 Multifunctional (meth)acrylate manufacturing method
WO2017002964A1 (en) * 2015-07-02 2017-01-05 東亞合成株式会社 Curable composition
WO2017033732A1 (en) * 2015-08-21 2017-03-02 東亞合成株式会社 Curable composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022225041A1 (en) * 2021-04-23 2022-10-27 東亞合成株式会社 Curable composition, active-energy-ray-curable composition, and active-energy-ray-curable coating composition

Also Published As

Publication number Publication date
JPWO2018092785A1 (en) 2019-10-17
JP6927233B2 (en) 2021-08-25

Similar Documents

Publication Publication Date Title
JP7119553B2 (en) Active energy ray-curable composition
JP6458339B2 (en) Curable resin composition, cured product and laminate
WO2018021352A1 (en) Curable composition
JP6568383B2 (en) Active energy ray-curable polymer composition, cured film using the same, and laminate having the cured film
WO2018164260A1 (en) Curable composition
JP6493699B2 (en) Resin sheet and manufacturing method thereof
EP3438135B1 (en) Photocurable resin composition and cured product of same
WO2018117062A1 (en) Curable composition
JP6927233B2 (en) Active energy ray-curable composition
WO2020218365A1 (en) Curable composition
JP6388122B2 (en) Curable composition
WO2022225041A1 (en) Curable composition, active-energy-ray-curable composition, and active-energy-ray-curable coating composition
CN114867757B (en) Hardening composition, method for producing same, coating agent composition, molding material composition, and adhesive composition
WO2016006497A1 (en) Active-energy-ray-curable composition
JP7348594B2 (en) Method for producing curable composition
JP6524999B2 (en) Photocurable composition for forming resin film or sheet
WO2016104555A1 (en) Method for manufacturing resin sheet
JP7120240B2 (en) Resin sheet and curable composition for producing same
JP2022024597A (en) Curable composition
JP6722092B2 (en) Composition for inkjet ink
JP7363036B2 (en) (Meth)acrylate manufacturing method
JP7476553B2 (en) Active energy ray curable composition
JP2021017492A (en) Curable composition
JP2022184569A (en) Curable composition
WO2021187381A1 (en) Curable composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17871956

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018551651

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17871956

Country of ref document: EP

Kind code of ref document: A1