WO2018092295A1 - 変倍光学系、光学機器、撮像機器および変倍光学系の製造方法 - Google Patents

変倍光学系、光学機器、撮像機器および変倍光学系の製造方法 Download PDF

Info

Publication number
WO2018092295A1
WO2018092295A1 PCT/JP2016/084395 JP2016084395W WO2018092295A1 WO 2018092295 A1 WO2018092295 A1 WO 2018092295A1 JP 2016084395 W JP2016084395 W JP 2016084395W WO 2018092295 A1 WO2018092295 A1 WO 2018092295A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens group
lens
optical system
refractive power
variable magnification
Prior art date
Application number
PCT/JP2016/084395
Other languages
English (en)
French (fr)
Inventor
幸介 町田
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to JP2018550988A priority Critical patent/JPWO2018092295A1/ja
Priority to EP16921831.0A priority patent/EP3543759A4/en
Priority to US16/345,185 priority patent/US11175485B2/en
Priority to CN201680090860.6A priority patent/CN109964161B/zh
Priority to PCT/JP2016/084395 priority patent/WO2018092295A1/ja
Publication of WO2018092295A1 publication Critical patent/WO2018092295A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/145Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only
    • G02B15/1451Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/145Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only
    • G02B15/1451Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive
    • G02B15/145105Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive arranged +-+--
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/145Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only
    • G02B15/1451Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive
    • G02B15/145121Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive arranged +-+-+
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/145Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only
    • G02B15/1451Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive
    • G02B15/145125Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive arranged +--++
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/163Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group
    • G02B15/167Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group having an additional fixed front lens or group of lenses
    • G02B15/173Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group having an additional fixed front lens or group of lenses arranged +-+
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/20Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having an additional movable lens or lens group for varying the objective focal length
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/60Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having five components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/146Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having more than five groups
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • G02B27/646Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/62Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having six components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/64Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having more than six components

Definitions

  • the present invention relates to a variable magnification optical system, an optical apparatus and an imaging apparatus using the variable magnification optical system, and a method for manufacturing the variable magnification optical system.
  • the focusing lens group has not been sufficiently reduced in weight.
  • the zoom optical system includes, in order from the object side, a front lens group having a positive refractive power, an M1 lens group having a negative refractive power, an M2 lens group having a positive refractive power, and a negative An RN lens group having a refractive power and a subsequent lens group, and at the time of zooming, the distance between the front lens group and the M1 lens group changes, and the distance between the M1 lens group and the M2 lens group is The distance between the M2 lens group and the RN lens group changes, and the RN lens group moves during focusing from an object at infinity to a near object.
  • the optical apparatus according to the present invention is configured by mounting the variable magnification optical system.
  • An imaging apparatus includes the zoom optical system and an imaging unit that captures an image formed by the zoom optical system.
  • the zoom optical system manufacturing method includes, in order from the object side, a front lens group having a positive refractive power, an M1 lens group having a negative refractive power, and an M2 lens group having a positive refractive power.
  • a method for manufacturing a variable magnification optical system including an RN lens group having a negative refractive power and a subsequent lens group, and the distance between the front lens group and the M1 lens group at the time of zooming
  • the distance between the M1 lens group and the M2 lens group is changed, and the distance between the M2 lens group and the RN lens group is changed.
  • the RN lens group moves, and the subsequent lens group includes, in order from the object side, a lens having a negative refractive power and a lens having a positive refractive power. Satisfies the equation.
  • fN focal length of the lens having the strongest negative refractive power in the subsequent lens group
  • fP focal length of the lens having the strongest positive refractive power in the subsequent lens group
  • FIG. 2A is a diagram of various aberrations during focusing at infinity in the wide-angle end state of the variable magnification optical system according to the first example
  • FIG. 2B is a blur correction for a rotational blur of 0.30 °.
  • FIG. 6 is a meridional lateral aberration diagram (coma aberration diagram) when performing.
  • FIG. 7 is a diagram illustrating various aberrations during focusing at infinity in the intermediate focal length state of the variable magnification optical system according to the first example.
  • FIG. 2A is a diagram of various aberrations during focusing at infinity in the wide-angle end state of the variable magnification optical system according to the first example
  • FIG. 2B is a blur correction for a rotational blur of 0.30 °.
  • FIG. 6 is a meridional lateral aberration diagram (coma aberration diagram) when performing.
  • FIG. 7 is a diagram illustrating various aberrations during focusing at infinity in the intermediate focal length state of the variable magnification optical system
  • FIG. 4A is a diagram of various aberrations during focusing at infinity in the telephoto end state of the variable magnification optical system according to the first example
  • FIG. 4B is a blur correction for a rotational blur of 0.20 °. It is a meridional transverse aberration diagram when performing. 5 (a), 5 (b), and 5 (c) respectively show the close-up focus in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the first example.
  • FIG. It is a figure which shows the lens structure of the variable magnification optical system which concerns on 2nd Example of this embodiment.
  • FIG. 7A is a diagram showing various aberrations during focusing at infinity in the wide-angle end state of the variable magnification optical system according to the second example, and FIG. 7B is a blur correction for a rotational blur of 0.30 °. It is a meridional transverse aberration diagram when performing.
  • FIG. 12 is a diagram illustrating various aberrations at the time of focusing on infinity in the intermediate focal length state of the variable magnification optical system according to the second example.
  • FIG. 9A is a diagram of various aberrations during focusing at infinity in the telephoto end state of the variable magnification optical system according to the second example, and FIG. 9B is a blur correction for a rotational blur of 0.20 °.
  • FIG. 12A is a diagram of various aberrations at the time of focusing at infinity in the wide-angle end state of the variable magnification optical system according to the third example
  • FIG. 12B is a blur correction for a rotational blur of 0.30 °. It is a meridional transverse aberration diagram when performing.
  • FIG. 14A is a diagram of various aberrations at the time of focusing on infinity in the telephoto end state of the variable magnification optical system according to the third example
  • FIG. 14B is a blur correction for a rotational blur of 0.20 °.
  • 15 (a), 15 (b), and 15 (c) respectively show the close-up focus in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the third example.
  • FIG. 15 (a), 15 (b), and 15 (c) respectively show the close-up focus in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the third example.
  • FIG. 17A is a diagram of various aberrations at the time of focusing at infinity in the wide-angle end state of the variable magnification optical system according to the fourth example
  • FIG. 17B is a blur correction for a rotational blur of 0.30 °. It is a meridional transverse aberration diagram when performing.
  • FIG. 12 is a diagram illustrating various aberrations during focusing at infinity in the intermediate focal length state of the variable magnification optical system according to the fourth example.
  • FIG. 12 is a diagram illustrating various aberrations during focusing at infinity in the intermediate focal length state of the variable magnification optical system according to the fourth example.
  • FIG. 19A is a diagram of various aberrations at the time of focusing on infinity in the telephoto end state of the variable magnification optical system according to the fourth example
  • FIG. 19B is a blur correction with respect to a rotational blur of 0.20 °.
  • It is a meridional transverse aberration diagram when performing. 20 (a), 20 (b), and 20 (c), respectively, at the time of short distance focusing in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the fourth example.
  • FIG. It is a figure which shows the lens structure of the variable magnification optical system which concerns on 5th Example of this embodiment.
  • FIG. 22A is a diagram of various aberrations at the time of focusing at infinity in the wide-angle end state of the variable magnification optical system according to the fifth example, and FIG. FIG. 6 is a meridional lateral aberration diagram when correction is performed.
  • FIG. 10 is a diagram illustrating various aberrations during focusing at infinity in the intermediate focal length state of the variable magnification optical system according to the fifth example.
  • FIG. 24A is a diagram of various aberrations during focusing at infinity in the telephoto end state of the variable magnification optical system according to the fifth example, and FIG. FIG. 6 is a meridional lateral aberration diagram when correction is performed.
  • FIG. 25 (a), 25 (b), and 25 (c) are respectively close-focused in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the fifth example.
  • FIG. It is a figure which shows the lens structure of the variable magnification optical system which concerns on 6th Example of this embodiment.
  • FIG. 27A is a diagram of various aberrations at the time of focusing at infinity in the wide-angle end state of the variable magnification optical system according to the sixth example.
  • FIG. 27B is a diagram showing a blurring with respect to a rotational blur of 0.30 °.
  • FIG. 6 is a meridional lateral aberration diagram when correction is performed.
  • FIG. 12 is a diagram illustrating various aberrations at the time of focusing on infinity in the intermediate focal length state of the variable magnification optical system according to the sixth example.
  • FIG. 29A is a diagram of various aberrations at the time of focusing at infinity in the telephoto end state of the variable magnification optical system according to Example 6, and
  • FIG. FIG. 6 is a meridional lateral aberration diagram when correction is performed.
  • 30 (a), 30 (b), and 30 (c), respectively, are in close focus at the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the sixth example.
  • FIG. It is a figure which shows the lens structure of the variable magnification optical system which concerns on the 7th Example of this embodiment.
  • FIG. 32A is a diagram of various aberrations at the time of focusing on infinity in the wide-angle end state of the variable magnification optical system according to Example 7, and FIG. FIG. 6 is a meridional lateral aberration diagram when correction is performed.
  • FIG. 12A is a diagram illustrating various aberrations during focusing at infinity in the intermediate focal length state of the variable magnification optical system according to the seventh example.
  • FIG. 34A is a diagram of various aberrations at the time of focusing on infinity in the telephoto end state of the variable magnification optical system according to the seventh example, and
  • FIG. 34B is a diagram showing a blur with respect to a rotational blur of 0.20 °.
  • FIG. 6 is a meridional lateral aberration diagram when correction is performed.
  • FIGS. 35 (a), 35 (b), and 35 (c) are respectively in close focus at the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the seventh example.
  • FIG. It is a figure which shows the lens structure of the variable magnification optical system which concerns on the 8th Example of this embodiment.
  • FIG. 37A is a diagram of various aberrations at the time of focusing on infinity in the wide-angle end state of the variable magnification optical system according to the eighth example
  • FIG. FIG. 6 is a meridional lateral aberration diagram when correction is performed. It is an aberration diagram at the time of infinity focusing in the intermediate
  • FIG. 39A is a diagram of various aberrations at the time of focusing on infinity in the telephoto end state of the variable magnification optical system according to Example 8, and FIG. FIG. 6 is a meridional lateral aberration diagram when correction is performed.
  • 40 (a), 40 (b), and 40 (c) are respectively close-in-focus in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the eighth example.
  • FIG. It is a figure which shows the lens structure of the variable magnification optical system which concerns on the 9th Example of this embodiment.
  • FIG. 42A is a diagram of various aberrations at the time of focusing at infinity in the wide-angle end state of the variable magnification optical system according to Example 9, and FIG.
  • FIG. 42B is a graph showing a blur with respect to a rotational blur of 0.30 °.
  • FIG. 6 is a meridional lateral aberration diagram when correction is performed. It is various aberrational figures at the time of infinity focusing in the intermediate focal length state of the variable magnification optical system concerning the 9th example.
  • FIG. 44A is a diagram of various aberrations at the time of focusing at infinity in the telephoto end state of the variable magnification optical system according to Example 9, and
  • FIG. 44B is a graph showing a blur with respect to a rotational blur of 0.20 °.
  • FIG. 6 is a meridional lateral aberration diagram when correction is performed.
  • FIG. 45 (a), 45 (b), and 45 (c) respectively show the close-up focus in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the ninth example.
  • FIG. It is a figure which shows the lens structure of the variable magnification optical system which concerns on 10th Example of this embodiment.
  • FIG. 47A is a diagram of various aberrations at the time of focusing on infinity in the wide-angle end state of the variable magnification optical system according to the tenth example.
  • FIG. 47B is a graph showing a blurring with respect to a rotational blur of 0.30 °.
  • FIG. 6 is a meridional lateral aberration diagram when correction is performed.
  • FIG. 49A is a diagram of various aberrations at the time of focusing at infinity in the telephoto end state of the variable magnification optical system according to the tenth example
  • FIG. FIG. 6 is a meridional lateral aberration diagram when correction is performed.
  • 50 (a), 50 (b), and 50 (c) are respectively close-in-focus in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the tenth example.
  • FIG. It is a figure which shows the lens structure of the variable magnification optical system which concerns on the 11th Example of this embodiment.
  • FIGS. 52 (a), 52 (b), and 52 (c) are in-focus at infinity in the wide-angle end state, intermediate focal length state, and telephoto end state of the variable magnification optical system according to Example 11, respectively.
  • FIG. 53 (a), 53 (b), and 53 (c) respectively show the close-up focusing in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the eleventh example.
  • FIG. 55 (a), 55 (b), and 55 (c) are in-focus at infinity in the wide-angle end state, intermediate focal length state, and telephoto end state of the variable magnification optical system according to the twelfth example, respectively.
  • FIG. 56 (a), 56 (b), and 56 (c), respectively, are in close focus at the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the twelfth example.
  • FIGS. 59 (a), 59 (b), and 59 (c) are each in close focus in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the thirteenth example.
  • a variable power optical system ZL (1) as an example of a variable power optical system (zoom lens) ZL according to the present embodiment includes a front lens group GFS having a positive refractive power in order from the object side.
  • the distance between the front lens group GFS and the M1 lens group GM1 changes, the distance between the M1 lens group GM1 and the M2 lens group GM2 changes, the distance between the M2 lens group GM2 and the RN lens group GRN changes, and infinite.
  • the RN lens group GRN moves during focusing from a distant object to a close object.
  • the variable magnification optical system ZL includes a variable magnification optical system ZL (2) shown in FIG. 6, a variable magnification optical system ZL (3) shown in FIG. 11, and a variable magnification optical system ZL ( 4), the variable magnification optical system ZL (5) shown in FIG. 21, the variable magnification optical system ZL (6) shown in FIG. 26, the variable magnification optical system ZL (7) shown in FIG. Variable magnification optical system ZL (8), Variable magnification optical system ZL (9) shown in FIG. 41, Variable magnification optical system ZL (10) shown in FIG. 46, Variable magnification optical system ZL (11) shown in FIG. Alternatively, the zoom optical system ZL (12) shown in FIG. 54 or the zoom optical system ZL (13) shown in FIG. 57 may be used.
  • the variable magnification optical system of the present embodiment has at least five lens groups, and by changing the distance between the lens groups at the time of zooming from the wide-angle end state to the telephoto end state, good aberration correction at the time of zooming Can be achieved. Further, by performing focusing with the RN lens group GRN, the lens group for focusing can be reduced in size and weight. The same effect can be obtained by the manufacturing method of the optical device, the imaging device, and the variable magnification optical system according to the present embodiment.
  • the subsequent lens group GRS may have a lens having a negative refractive power and a lens having a positive refractive power in order from the object side.
  • variable magnification optical system is configured so as to satisfy the following conditional expression (1). 0.70 ⁇ ( ⁇ fN) / fP ⁇ 2.00 (1)
  • fN focal length of the lens with the strongest negative refractive power in the subsequent lens group
  • fP focal length of the lens with the strongest positive refractive power in the subsequent lens group
  • Conditional expression (1) indicates that the focal length of the lens having the strongest negative refractive power on the image side of the subsequent lens group GRS and the focal length of the lens having the strongest positive refractive power on the image side of the subsequent lens group GRS The ratio is defined.
  • conditional expression (1) When the corresponding value of the conditional expression (1) exceeds the upper limit value, the refractive power of the lens having the positive refractive power on the image side of the focusing lens group becomes strong, and the generation of coma aberration becomes excessive.
  • the upper limit of conditional expression (1) it is preferable to set the upper limit of conditional expression (1) to 1.80.
  • conditional expression (1) When the corresponding value of the conditional expression (1) is below the lower limit value, the refractive power of the lens having negative refractive power on the image side of the focusing lens group becomes strong, and the correction of coma aberration becomes excessive.
  • the lower limit value of conditional expression (1) By setting the lower limit value of conditional expression (1) to 0.80, the effect of the present embodiment can be made more reliable. In order to ensure the effect of the present embodiment, it is preferable to set the lower limit of conditional expression (1) to 0.90.
  • the front lens group GFS is moved to the object side during zooming from the wide-angle end state to the telephoto end state. Thereby, the total lens length in the wide-angle end state can be shortened, and the variable magnification optical system can be miniaturized.
  • the RN lens group GRN preferably includes at least one lens having a positive refractive power and at least one lens having a negative refractive power.
  • variable magnification optical system satisfies the following conditional expression (2). 0.15 ⁇ ( ⁇ fTM1) / f1 ⁇ 0.35 (2)
  • fTM1 Focal length of the M1 lens group GM1 in the telephoto end state
  • f1 Focal length of the front lens group GFS
  • Conditional expression (2) defines the ratio between the focal length of the M1 lens unit GM1 and the focal length of the front lens unit GFS in the telephoto end state.
  • conditional expression (2) If the corresponding value of the conditional expression (2) exceeds the upper limit value, the refractive power of the front lens unit GFS becomes strong, and various aberrations including spherical aberration at the time of zooming from the wide angle end to the telephoto end are corrected. It becomes difficult.
  • the upper limit of conditional expression (2) By setting the upper limit of conditional expression (2) to 0.33, the effect of this embodiment can be made more reliable. In order to ensure the effect of the present embodiment, it is preferable to set the upper limit of conditional expression (2) to 0.31.
  • conditional expression (2) When the corresponding value of the conditional expression (2) is below the lower limit value, the refractive power of the M1 lens group GM1 becomes strong, and fluctuations of various aberrations including spherical aberration at the time of zooming from the wide angle end to the telephoto end. It becomes difficult to suppress.
  • the lower limit of conditional expression (2) By setting the lower limit of conditional expression (2) to 0.16, the effect of this embodiment can be made more reliable. In order to secure the effect of the present embodiment, it is preferable to set the lower limit of conditional expression (2) to 0.17.
  • variable power optical system satisfies the following conditional expression (3). 0.20 ⁇ fTM2 / f1 ⁇ 0.40 (3)
  • fTM2 focal length of the M2 lens group GM2 in the telephoto end state
  • f1 focal length of the front lens group GFS
  • Conditional expression (3) defines the ratio between the focal length of the M2 lens group GM2 and the focal length of the front lens group GFS in the telephoto end state.
  • conditional expression (3) When the corresponding value of the conditional expression (3) exceeds the upper limit value, the refractive power of the front lens group GFS becomes strong, and various aberrations including spherical aberration at the time of zooming from the wide angle end to the telephoto end are corrected. It becomes difficult.
  • the upper limit of conditional expression (3) By setting the upper limit of conditional expression (3) to 0.37, the effect of this embodiment can be made more reliable. In order to secure the effect of the present embodiment, it is preferable to set the upper limit of conditional expression (3) to 0.34.
  • conditional expression (3) When the corresponding value of the conditional expression (3) is below the lower limit, the refractive power of the M2 lens group GM2 becomes strong, and fluctuations of various aberrations including spherical aberration at the time of zooming from the wide angle end to the telephoto end. It becomes difficult to suppress.
  • the lower limit value of conditional expression (3) By setting the lower limit value of conditional expression (3) to 0.22, the effect of the present embodiment can be made more reliable. In order to secure the effect of the present embodiment, it is preferable to set the lower limit of conditional expression (3) to 0.24.
  • a negative meniscus lens having a concave surface facing the object side adjacent to the image side of the RN lens group GRN.
  • variable power optical system satisfies the following conditional expression (4). 1.80 ⁇ f1 / fw ⁇ 3.50 (4)
  • f1 Focal length of the front lens group
  • GFS fw Focal length of the variable magnification optical system in the wide-angle end state
  • Conditional expression (4) defines the ratio between the focal length of the front lens group GFS and the focal length of the variable magnification optical system in the wide-angle end state.
  • the refractive power of the front lens group GFS becomes weak and the lens barrel becomes large.
  • the upper limit of conditional expression (4) it is preferable to set the upper limit of conditional expression (4) to 3.10.
  • conditional expression (4) When the corresponding value of the conditional expression (4) is below the lower limit, the refractive power of the front lens group GFS becomes strong, and various aberrations including spherical aberration at the time of zooming from the wide angle end to the telephoto end are corrected. It becomes difficult.
  • the lower limit of conditional expression (4) By setting the lower limit of conditional expression (4) to 1.90, the effect of this embodiment can be made more reliable.
  • variable power optical system satisfies the following conditional expression (5). 3.70 ⁇ f1 / ( ⁇ fTM1) ⁇ 5.00 (5)
  • f1 Focal length of front lens group
  • GFS Focal length of M1 lens group GM1 in the telephoto end state
  • Conditional expression (5) defines the ratio between the focal length of the front lens group GFS and the focal length of the M1 lens group GM1.
  • conditional expression (5) When the corresponding value of the conditional expression (5) exceeds the upper limit value, the refractive power of the M1 lens group GM1 becomes strong, and fluctuations of various aberrations including spherical aberration at the time of zooming from the wide angle end to the telephoto end are increased. It becomes difficult to suppress.
  • the upper limit value of conditional expression (5) By setting the upper limit value of conditional expression (5) to 4.90, the effect of the present embodiment can be made more reliable. In order to further secure the effect of the present embodiment, it is preferable to set the upper limit of conditional expression (5) to 4.80.
  • conditional expression (5) When the corresponding value of the conditional expression (5) is below the lower limit value, the refractive power of the front lens group GFS becomes strong, and various aberrations including spherical aberration at the time of zooming from the wide angle end to the telephoto end are corrected. It becomes difficult.
  • the lower limit value of conditional expression (5) By setting the lower limit value of conditional expression (5) to 3.90, the effect of the present embodiment can be made more reliable. In order to further secure the effect of the present embodiment, it is preferable to set the lower limit of conditional expression (5) to 3.95.
  • variable power optical system satisfies the following conditional expression (6). 3.20 ⁇ f1 / fTM2 ⁇ 5.00 (6)
  • f1 Focal length of the front lens group
  • GFS Focal length of the M2 lens group GM2 in the telephoto end state
  • Conditional expression (6) defines the ratio between the focal length of the front lens group GFS and the focal length of the M2 lens group GM2.
  • conditional expression (6) When the corresponding value of the conditional expression (6) exceeds the upper limit value, the refractive power of the M2 lens group GM2 becomes strong, and fluctuations of various aberrations including spherical aberration at the time of zooming from the wide angle end to the telephoto end are increased. It becomes difficult to suppress.
  • the upper limit value of conditional expression (6) By setting the upper limit value of conditional expression (6) to 4.80, the effect of the present embodiment can be made more reliable. In order to further secure the effect of the present embodiment, it is preferable to set the upper limit of conditional expression (6) to 4.60.
  • the refractive power of the front lens group GFS becomes strong and various aberrations including spherical aberration at the time of zooming from the wide angle end to the telephoto end are corrected. It becomes difficult.
  • the lower limit of conditional expression (6) it is preferable to set the lower limit of conditional expression (6) to 3.60.
  • the lens unit closest to the object side in the M1 lens unit GM1 is fixed with respect to the image plane during zooming. As a result, performance degradation due to manufacturing errors can be suppressed and mass productivity can be ensured.
  • the M2 lens group GM2 has an anti-vibration lens group that can move in a direction orthogonal to the optical axis in order to correct the imaging position displacement due to camera shake or the like.
  • the anti-vibration lens group in the M2 lens group GM2, it is possible to effectively suppress the performance deterioration when the blur correction is performed.
  • the vibration-proof lens group includes a lens having a negative refractive power and a lens having a positive refractive power in order from the object side. As a result, it is possible to effectively suppress performance degradation when blur correction is performed.
  • variable power optical system satisfies the following conditional expression (7). 1.00 ⁇ nvrN / nvrP ⁇ 1.25 (7)
  • nvrN Refractive index of a lens having negative refractive power in the image stabilizing lens group
  • nvrP Refractive index of a lens having positive refractive power in the image stabilizing lens group
  • Conditional expression (7) is the relationship between the refractive index of the lens having negative refractive power in the anti-vibration lens group provided in the M2 lens group GM2 and the refractive index of lens having positive refractive power in the anti-vibration lens group. The ratio is specified.
  • conditional expression (7) If the corresponding value of the conditional expression (7) exceeds the upper limit value, the refractive index of the lens having a positive refractive power in the anti-vibration lens group becomes low, and the eccentric coma aberration generated when blur correction is performed. The occurrence is excessive and it is difficult to correct.
  • the upper limit of conditional expression (7) By setting the upper limit of conditional expression (7) to 1.22, the effect of this embodiment can be made more reliable. In order to secure the effect of the present embodiment, it is preferable to set the upper limit of conditional expression (7) to 1.20.
  • conditional expression (7) When the corresponding value of the conditional expression (7) is within this range, the refractive index of the lens having negative refractive power in the anti-vibration lens group is appropriate, and decentering coma aberration when blur correction is performed. Is favorably corrected.
  • the lower limit value of conditional expression (7) By setting the lower limit value of conditional expression (7) to 1.03, the effect of the present embodiment can be made more reliable. In order to secure the effect of the present embodiment, it is preferable to set the lower limit of conditional expression (7) to 1.05.
  • variable power optical system satisfies the following conditional expression (8). 0.30 ⁇ vrN / ⁇ vrP ⁇ 0.90 (8)
  • ⁇ vrN Abbe number of a lens having negative refractive power in the vibration-proof lens group
  • ⁇ vrP Abbe number of a lens having positive refractive power in the vibration-proof lens group
  • Conditional expression (8) defines the ratio between the Abbe number of a lens having negative refractive power in the image stabilizing lens group and the Abbe number of a lens having positive refractive power in the image stabilizing lens group.
  • conditional expression (8) When the corresponding value of conditional expression (8) is within this range, the Abbe number of the lens having positive refractive power in the anti-vibration lens group is appropriate, and chromatic aberration generated when blur correction is performed is good. Is preferable.
  • the upper limit value of conditional expression (8) By setting the upper limit value of conditional expression (8) to 0.85, the effect of the present embodiment can be made more reliable. In order to secure the effect of the present embodiment, it is preferable to set the upper limit of conditional expression (8) to 0.80.
  • conditional expression (8) If the corresponding value of conditional expression (8) is less than the lower limit, the Abbe number of the lens having negative refractive power in the anti-vibration lens group becomes small, and it is difficult to correct chromatic aberration that occurs when blur correction is performed. Become.
  • the lower limit of conditional expression (8) By setting the lower limit of conditional expression (8) to 0.35, the effect of this embodiment can be made more reliable. In order to secure the effect of the present embodiment, it is preferable to set the lower limit of conditional expression (8) to 0.40.
  • the M1 lens group GM1 has an anti-vibration lens group that can move in a direction orthogonal to the optical axis in order to correct the imaging position displacement due to camera shake or the like.
  • the anti-vibration lens group includes a lens having a negative refractive power and a lens having a positive refractive power in order from the object side.
  • variable power optical system satisfies the following conditional expression (9). 0.80 ⁇ nvrN / nvrP ⁇ 1.00 (9)
  • nvrN Refractive index of a lens having negative refractive power in the image stabilizing lens group
  • nvrP Refractive index of a lens having positive refractive power in the image stabilizing lens group
  • Conditional expression (9) expresses the refractive index of a lens having a negative refractive power in the anti-vibration lens group provided in the M1 lens group GM1 and the positive refractive power in the anti-vibration lens group provided in the M1 lens group GM1. It defines the ratio with the refractive index of the lens it has.
  • conditional expression (9) exceeds the upper limit value, the refractive index of the lens having positive refractive power in the anti-vibration lens group provided in the M1 lens group GM1 becomes low, and blur correction is performed. It becomes difficult to correct the decentered coma that occurs.
  • the upper limit value of conditional expression (9) it is preferable to set the upper limit of conditional expression (9) to 0.96.
  • conditional expression (9) When the corresponding value of the conditional expression (9) is below the lower limit value, the refractive index of the lens having negative refractive power in the anti-vibration lens group provided in the M1 lens group GM1 becomes low, and blur correction is performed. It becomes difficult to correct the decentered coma that occurs.
  • the lower limit value of conditional expression (9) By setting the lower limit value of conditional expression (9) to 0.82, the effect of the present embodiment can be made more reliable. In order to further secure the effect of the present embodiment, it is preferable to set the lower limit of conditional expression (9) to 0.84.
  • variable power optical unit satisfies the following conditional expression (10). 1.20 ⁇ vrN / ⁇ vrP ⁇ 2.40 (10) However, ⁇ vrN: Abbe number of a lens having negative refractive power in the vibration-proof lens group ⁇ vrP: Abbe number of a lens having positive refractive power in the vibration-proof lens group
  • Conditional expression (10) expresses the Abbe number of a lens having negative refractive power in the anti-vibration lens group provided in the M1 lens group GM1 and the positive refractive power in the anti-vibration lens group provided in the M1 lens group GM1. It defines the ratio with the Abbe number of the lens it has. By satisfying this conditional expression (10), it is possible to effectively suppress performance degradation when blur correction is performed.
  • conditional expression (10) When the corresponding value of the conditional expression (10) exceeds the upper limit value, the Abbe number of the lens having positive refractive power in the anti-vibration lens group provided in the M1 lens group GM1 becomes too small, and thus blur correction is performed. It becomes difficult to correct the chromatic aberration that occurs at the time.
  • the upper limit of conditional expression (10) By setting the upper limit of conditional expression (10) to 2.30, the effect of the present embodiment can be made more reliable. In order to further secure the effect of the present embodiment, it is preferable to set the upper limit of conditional expression (10) to 2.20.
  • conditional expression (10) When the corresponding value of the conditional expression (10) is less than the lower limit value, the Abbe number of the lens having negative refractive power in the anti-vibration lens group provided in the M1 lens group GM1 becomes too small, and thus blur correction is performed. It becomes difficult to correct the chromatic aberration that occurs at the time.
  • the lower limit value of conditional expression (10) By setting the lower limit value of conditional expression (10) to 1.30, the effect of the present embodiment can be made more reliable. In order to further secure the effect of the present embodiment, it is preferable to set the lower limit of conditional expression (10) to 1.40.
  • the subsequent lens group GRS includes a lens having a positive refractive power.
  • various aberrations including coma can be effectively corrected.
  • variable magnification optical system satisfies the conditional expression (2). 0.15 ⁇ ( ⁇ fTM1) / f1 ⁇ 0.35 (2)
  • Conditional expression (2) is the same as that described above, and the contents thereof are as described above.
  • conditional expression (2) when the corresponding value of the conditional expression (2) is below the lower limit value, the refractive power of the M1 lens group GM1 becomes strong, and various aberrations such as spherical aberration at the time of zooming from the wide angle end to the telephoto end are increased. It becomes difficult to suppress fluctuations.
  • the lower limit of conditional expression (2) By setting the lower limit of conditional expression (2) to 0.16, the effect of this embodiment can be made more reliable. In order to secure the effect of the present embodiment, it is preferable to set the lower limit of conditional expression (2) to 0.17.
  • variable power optical system satisfies the following conditional expression (3). 0.20 ⁇ fTM2 / f1 ⁇ 0.40 (3)
  • Conditional expression (3) is the same as described above, and the description thereof is as described above.
  • conditional expression (3) When the corresponding value of the conditional expression (3) is below the lower limit, the refractive power of the M2 lens group GM2 becomes strong, and fluctuations of various aberrations including spherical aberration at the time of zooming from the wide angle end to the telephoto end. It becomes difficult to suppress.
  • the lower limit value of conditional expression (3) By setting the lower limit value of conditional expression (3) to 0.22, the effect of the present embodiment can be made more reliable. In order to secure the effect of the present embodiment, it is preferable to set the lower limit of conditional expression (3) to 0.24.
  • variable power optical system satisfies the following conditional expression (4). 1.80 ⁇ f1 / fw ⁇ 3.50 (4)
  • Conditional expression (4) is the same as described above, and the description thereof is as described above.
  • the refractive power of the front lens group GFS becomes weak and the lens barrel becomes large.
  • the upper limit of conditional expression (4) it is preferable to set the upper limit of conditional expression (4) to 3.10.
  • conditional expression (4) When the corresponding value of the conditional expression (4) is below the lower limit, the refractive power of the front lens group GFS becomes strong, and various aberrations including spherical aberration at the time of zooming from the wide angle end to the telephoto end are corrected. It becomes difficult.
  • the lower limit of conditional expression (4) By setting the lower limit of conditional expression (4) to 1.90, the effect of this embodiment can be made more reliable.
  • variable power optical system satisfies the following conditional expression (5). 3.70 ⁇ f1 / ( ⁇ fTM1) ⁇ 5.00 (5)
  • Conditional expression (5) is the same as described above, and the contents thereof are as described above.
  • conditional expression (5) when the corresponding value of the conditional expression (5) exceeds the upper limit value, the refractive power of the M1 lens group GM1 becomes strong, and spherical aberration at the time of zooming from the wide-angle end to the telephoto end starts. It becomes difficult to suppress fluctuations in various aberrations.
  • the upper limit value of conditional expression (5) it is preferable to set the upper limit of conditional expression (5) to 4.80.
  • conditional expression (5) When the corresponding value of the conditional expression (5) is below the lower limit value, the refractive power of the front lens group GFS becomes strong, and various aberrations including spherical aberration at the time of zooming from the wide angle end to the telephoto end are corrected. It becomes difficult.
  • the lower limit value of conditional expression (5) By setting the lower limit value of conditional expression (5) to 3.90, the effect of the present embodiment can be made more reliable. In order to further secure the effect of the present embodiment, it is preferable to set the lower limit of conditional expression (5) to 3.95.
  • variable power optical system satisfies the following conditional expression (6). 3.20 ⁇ f1 / fTM2 ⁇ 5.00 (6)
  • Conditional expression (6) is the same as described above, and the description thereof is as described above.
  • conditional expression (6) Even in this case, if the corresponding value of the conditional expression (6) exceeds the upper limit value, the refractive power of the M2 lens group GM2 becomes strong, and spherical aberration at the time of zooming from the wide-angle end to the telephoto end is included. It becomes difficult to suppress fluctuations in various aberrations.
  • the upper limit value of conditional expression (6) it is preferable to set the upper limit of conditional expression (6) to 4.60.
  • the refractive power of the front lens group GFS becomes strong and various aberrations including spherical aberration at the time of zooming from the wide angle end to the telephoto end are corrected. It becomes difficult.
  • the lower limit of conditional expression (6) it is preferable to set the lower limit of conditional expression (6) to 3.60.
  • the optical apparatus and the imaging apparatus of the present embodiment are configured to include the variable magnification optical system having the above-described configuration.
  • a camera (corresponding to the imaging apparatus of the present invention) provided with the above-described variable magnification optical system ZL will be described with reference to FIG.
  • the camera 1 has a lens assembly configuration in which the photographic lens 2 can be exchanged. That is, the photographing lens 2 corresponds to the optical apparatus of the present invention.
  • the camera 1 is a digital camera, and light from an object (subject) (not shown) is collected by the photographing lens 2 and reaches the image sensor 3. Thereby, the light from the subject is picked up by the image pickup device 3 and recorded as a subject image in a memory (not shown). In this way, the photographer can shoot the subject with the camera 1.
  • This camera may be a mirrorless camera or a single-lens reflex camera having a quick return mirror.
  • the camera 1 in which the variable magnification optical system ZL is mounted on the photographic lens 2 can reduce the size and weight of the focusing lens group, and can perform high-speed AF and AF without increasing the size of the lens barrel. Silence can be realized. Furthermore, it is possible to satisfactorily suppress aberration fluctuations at the time of zooming from the wide-angle end state to the telephoto end state and aberration fluctuations at the time of focusing from an object at infinity to an object at a short distance, thereby realizing good optical performance.
  • a method for manufacturing the above-described variable magnification optical system ZL will be outlined with reference to FIG.
  • a front lens group GFS having a positive refractive power, an M1 lens group GM1 having a negative refractive power, an M2 lens group GM2 having a positive refractive power, and an RN having a negative refractive power The lens group GRN and the subsequent lens group GRS are arranged (step ST1).
  • the distance between the front lens group GFS and the M1 lens group GM1 changes, the distance between the M1 lens group GM1 and the M2 lens group GM2 changes, and the distance between the M2 lens group GM2 and the RN lens group GRN.
  • the RN lens group GRN is configured to move when focusing from an object at infinity to an object at a short distance (step ST3), and the subsequent lens group GRS has negative refractive power in order from the object side.
  • a lens and a lens having a positive refractive power are included (step ST4). Further, each lens is arranged so as to satisfy a predetermined conditional expression (step ST5).
  • variable magnification optical system (zoom lens) ZL according to an example of the present embodiment will be described with reference to the drawings.
  • 1, 6, 11, 16, 21, 26, 31, 36, 41, 46, 51, 54, and 57 are modified according to the first to thirteenth embodiments.
  • It is sectional drawing which shows the structure and refractive power distribution of double optical system ZL ⁇ ZL (1) -ZL (13) ⁇ .
  • the movement of each lens group along the optical axis when changing magnification from the wide-angle end state (W) to the telephoto end state (T) Directions are indicated by arrows.
  • the moving direction when the focusing group GRN focuses on an object at a short distance from infinity is indicated by an arrow together with the characters “focusing”.
  • each lens group is denoted by a symbol G and a number or Each lens is represented by a combination of a symbol L and a number by a combination of alphabets.
  • the lens groups and the like are represented using combinations of codes and numbers independently for each embodiment. For this reason, even if the combination of the same code
  • Tables 1 to 13 are shown below. Of these, Tables 1 to 13 are each a table showing various data in each of the first to thirteenth examples. In each embodiment, the d-line (wavelength 587.562 nm) and the g-line (wavelength 435.835 nm) are selected as the aberration characteristic calculation targets.
  • the surface number indicates the order of the optical surfaces from the object side along the light traveling direction, and R indicates the radius of curvature of each optical surface (the surface where the center of curvature is located on the image side).
  • D is a positive value
  • D is a surface interval that is the distance on the optical axis from each optical surface to the next optical surface (or image surface)
  • nd is the refractive index of the material of the optical member with respect to d-line
  • ⁇ d is optical The Abbe numbers based on the d-line of the material of the member are shown respectively.
  • the object plane indicates the object plane
  • the curvature radius “ ⁇ ” indicates a plane or aperture
  • (aperture S) indicates the aperture stop S
  • the image plane indicates the image plane I.
  • Description of the refractive index of air nd 1.000 is omitted.
  • f is the focal length of the entire lens system
  • FNO is the F number
  • 2 ⁇ is the angle of view (unit is ° (degree)
  • is the half angle of view
  • Ymax is the maximum image height.
  • Show. TL indicates a distance obtained by adding BF to the distance from the forefront lens to the final lens surface on the optical axis at the time of focusing on infinity
  • BF is an image from the final lens surface on the optical axis at the time of focusing on infinity.
  • the distance to the surface I (back focus) is shown.
  • the table of [variable distance data] is the surface number (for example, surface numbers 5, 13, 25, and 29 in Example 1) in which the surface distance is “variable” in the table indicating [lens specifications]. Indicates the surface spacing.
  • W wide angle end
  • M intermediate focal length
  • T telephoto end
  • the [Conditional Expression Corresponding Value] table shows values corresponding to the conditional expressions (1) to (10). At this time, since not all the examples correspond to all the conditional expressions, the values of the corresponding conditional expressions are shown in the respective examples.
  • mm is generally used for the focal length f, curvature radius R, surface distance D, and other lengths, etc. unless otherwise specified, but the optical system is proportionally enlarged. Alternatively, the same optical performance can be obtained even by proportional reduction, and the present invention is not limited to this.
  • FIG. 1 is a diagram showing a lens configuration of a variable magnification optical system according to the first example of the present embodiment.
  • the variable magnification optical system ZL (1) according to the present example includes, in order from the object side, a first lens group G1 having positive refractive power, a second lens group G2 having negative refractive power, and a first lens group having positive refractive power.
  • the third lens group G3 includes a third lens group G3, a fourth lens group G4 having negative refractive power, and a fifth lens group G5 having positive refractive power.
  • the sign (+) or ( ⁇ ) attached to each lens group symbol indicates the refractive power of each lens group, and this is the same in all the following embodiments.
  • the first lens group G1 is in the front lens group GFS
  • the second lens group G2 is in the M1 lens group GM1
  • the third lens group G3 is in the M2 lens group GM2
  • the fourth lens is related to the above embodiment.
  • the group G4 corresponds to the RN lens group GRN
  • the fifth lens group G5 corresponds to the subsequent lens group GRS.
  • the first lens group G1 in order from the object side, includes a positive convex flat lens L11 having a convex surface directed toward the object side, a negative meniscus lens L12 having a convex surface directed toward the object side, and a positive meniscus lens L13 having a convex surface directed toward the object side. And a cemented positive lens.
  • the second lens group G2 in order from the object side, has a negative meniscus lens L21 having a convex surface directed toward the object side, a biconvex positive lens L22, a biconcave negative lens L23, and a concave surface directed toward the object side. It comprises a negative meniscus lens L24.
  • the third lens group G3 includes, in order from the object side, a cemented positive lens of a negative meniscus lens L31 having a convex surface directed toward the object side and a biconvex positive lens L32, a biconvex positive lens L33, and a biconcave shape.
  • the fourth lens group G4 includes, in order from the object side, a positive meniscus lens L41 having a concave surface directed toward the object side, and a biconcave negative lens L42.
  • the fifth lens group G5 includes, in order from the object side, a negative meniscus lens L51 having a concave surface directed toward the object side, and a biconvex positive lens L52.
  • focusing from a long-distance object to a short-distance object is performed by moving the fourth lens group G4 in the image plane direction.
  • variable magnification optical system a cemented positive lens of a negative meniscus lens L31 having a convex surface facing the object side and constituting a third lens group G3 (M2 lens group GM2) and a biconvex positive lens L32 is used.
  • M2 lens group GM2 third lens group G3
  • biconvex positive lens L32 By moving in a direction perpendicular to the optical axis, the displacement of the imaging position due to camera shake or the like is corrected (vibrated).
  • the moving lens group for blur correction may be moved in the direction orthogonal to the optical axis by (f ⁇ tan ⁇ ) / K.
  • the image stabilization coefficient is 1.65 and the focal length is 72.1 mm. Therefore, the movement amount of the image stabilization lens group for correcting the rotation blur of 0.30 ° is 0.23 mm.
  • the movement amount of the image stabilization lens group for correcting the rotation blur of 0.20 ° is 0.49 mm.
  • Table 1 below lists the values of the specifications of the optical system according to this example.
  • f indicates the focal length
  • BF indicates the back focus.
  • FIGS. 2A and 2B are diagrams showing various aberrations at the time of focusing at infinity in the wide-angle end state of the variable magnification optical system having the image stabilization function according to the first example, and a rotation of 0.30 °, respectively.
  • FIG. 6 is a meridional lateral aberration diagram when blur correction is performed on blur.
  • FIG. 3 is a diagram of various aberrations during focusing at infinity in the intermediate focal length state of the variable magnification optical system having the image stabilization function according to the first example.
  • FIG. 4 (a) and 4 (b) are diagrams showing various aberrations at the time of focusing on infinity in the telephoto end state of the variable magnification optical system having the image stabilization function according to the first example, and rotation of 0.20 °, respectively.
  • FIG. 6 is a meridional lateral aberration diagram when blur correction is performed on blur.
  • 5 (a), 5 (b), and 5 (c) respectively show the close-up focus in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the first example.
  • FNO indicates the F number
  • NA indicates the numerical aperture
  • Y indicates the image height
  • the spherical aberration diagram shows the F-number or numerical aperture value corresponding to the maximum aperture
  • the astigmatism diagram and the distortion diagram show the maximum image height
  • the coma diagram shows the value of each image height.
  • the solid line indicates the sagittal image plane
  • the broken line indicates the meridional image plane. Note that the same reference numerals as in this example are also used in the aberration diagrams of the examples shown below.
  • variable magnification optical system has excellent imaging performance by correcting various aberrations well from the wide-angle end state to the telephoto end state, and also at the time of focusing at a short distance. It can be seen that the imaging performance is excellent.
  • FIG. 6 is a diagram showing a lens configuration of a variable magnification optical system according to the second example of the present application.
  • the variable magnification optical system according to the present example includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens group G3 having a negative refractive power. And a fourth lens group G4 having positive refracting power, a fifth lens group G5 having negative refracting power, and a sixth lens group G6 having positive refracting power.
  • the first lens group G1 is in the front lens group GFS
  • the second lens group G2 and the third lens group G3 are in the M1 lens group GM1
  • the fourth lens group G4 is in the M2 lens group.
  • GM2 the fifth lens group G5 corresponds to the RN lens group GRN
  • the sixth lens group G6 corresponds to the subsequent lens group GRS.
  • the first lens group G1 in order from the object side, includes a positive convex flat lens L11 having a convex surface directed toward the object side, a negative meniscus lens L12 having a convex surface directed toward the object side, and a positive meniscus lens L13 having a convex surface directed toward the object side. And a cemented positive lens.
  • the second lens group G2 includes, in order from the object side, a negative meniscus lens L21 having a convex surface directed toward the object side, a biconvex positive lens L22, and a biconcave negative lens L23.
  • the third lens group G3 includes a negative meniscus lens L31 having a concave surface directed toward the object side.
  • the fourth lens group G4 includes, in order from the object side, a cemented positive lens of a negative meniscus lens L41 having a convex surface directed toward the object side and a biconvex positive lens L42, a biconvex positive lens L43, and a biconcave shape.
  • the fifth lens group G5 includes, in order from the object side, a positive meniscus lens L51 having a concave surface directed toward the object side, and a biconcave negative lens L52.
  • the sixth lens group G6 includes, in order from the object side, a negative meniscus lens L61 having a concave surface directed toward the object side, and a biconvex positive lens L62.
  • focusing from a long-distance object to a short-distance object is performed by moving the fifth lens group G5 in the image plane direction.
  • the cemented positive lens of the negative meniscus lens L41 having a convex surface facing the object side and the biconvex positive lens L42 constituting the fourth lens group G4 (M2 lens group GM2) is moved in a direction orthogonal to the optical axis.
  • the focal length of the entire system is f
  • the image stabilization coefficient ratio of image movement amount on the imaging surface to the movement amount of the moving lens group in shake correction
  • K the image stabilization coefficient
  • the moving lens group for blur correction may be moved in the direction orthogonal to the optical axis by (f ⁇ tan ⁇ ) / K.
  • the image stabilization coefficient is 1.66 and the focal length is 72.1 mm. Therefore, the movement amount of the image stabilization lens group for correcting the rotation blur of 0.30 ° is 0.23 mm.
  • the movement amount of the image stabilization lens group for correcting 0.20 ° rotational blur is 0.49 mm.
  • Table 2 below lists values of specifications of the optical system according to the present example.
  • Table 2 Second Example [Lens specifications] Surface number R D nd ⁇ d Object ⁇ 1 107.5723 4.600 1.48749 70.32 2 ⁇ 0.200 3 96.9007 1.800 1.62004 36.40 4 47.8324 7.200 1.49700 81.61 5 361.3792 Variable 6 139.8663 1.700 1.69680 55.52 7 33.7621 6.806 8 33.5312 5.500 1.78472 25.64 9 -139.8348 0.637 10 -492.0620 1.300 1.80400 46.60 11 35.1115 Variable 12 -34.6163 1.200 1.83400 37.18 13 -377.1306 Variable 14 74.8969 1.200 1.80100 34.92 15 31.6202 5.900 1.64000 60.19 16 -69.0444 1.500 17 34.2668 6.000 1.48749 70.32 18 -42.8334 1.300 1.80610 40.97 19 4
  • FIGS. 7A and 7B are diagrams showing various aberrations at the time of focusing at infinity in the wide-angle end state of the variable magnification optical system having the image stabilization function according to the second example, and a rotation of 0.30 °, respectively.
  • FIG. 6 is a meridional lateral aberration diagram when blur correction is performed on blur.
  • FIG. 8 is a diagram of various aberrations when focusing on infinity in the intermediate focal length state of the variable magnification optical system having the image stabilization function according to the second example.
  • FIGS. 9A and 9B are diagrams showing various aberrations at the time of focusing at infinity in the telephoto end state of the variable magnification optical system having the image stabilization function according to the second example, and rotation by 0.20 °, respectively.
  • FIG. 6 is a meridional lateral aberration diagram when blur correction is performed on blur.
  • 10 (a), 10 (b), and 10 (c), respectively, are in close focus at the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the second example.
  • FIG. 10 (a), 10 (b), and 10 (c), respectively, are in close focus at the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the second example.
  • variable magnification optical system has excellent imaging performance by correcting various aberrations well from the wide-angle end state to the telephoto end state, and also at the time of focusing at a short distance. It can be seen that the imaging performance is excellent.
  • FIG. 11 is a diagram showing a lens configuration of the variable magnification optical system according to the third example of the present application.
  • the variable magnification optical system according to this example includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens group G3 having a positive refractive power. And a fourth lens group G4 having positive refracting power, a fifth lens group G5 having negative refracting power, and a sixth lens group G6 having positive refracting power.
  • the first lens group G1 is in the front lens group GFS
  • the second lens group G2 is in the M1 lens group GM1
  • the third lens group G3 and the fourth lens group G4 are in the M2 lens group.
  • the fifth lens group G5 corresponds to the RN lens group GRN
  • the sixth lens group G6 corresponds to the subsequent lens group GRS.
  • the first lens group G1 in order from the object side, includes a positive convex flat lens L11 having a convex surface directed toward the object side, a negative meniscus lens L12 having a convex surface directed toward the object side, and a positive meniscus lens L13 having a convex surface directed toward the object side. And a cemented positive lens.
  • the second lens group G2 in order from the object side, has a negative meniscus lens L21 having a convex surface directed toward the object side, a biconvex positive lens L22, a biconcave negative lens L23, and a concave surface directed toward the object side. It comprises a negative meniscus lens L24.
  • the third lens group G3 includes, in order from the object side, a cemented positive lens of a negative meniscus lens L31 having a convex surface directed toward the object side and a biconvex positive lens L32, a biconvex positive lens L33, and a biconcave shape. It is composed of a positive lens joined to the negative lens L34 and an aperture stop S.
  • the fourth lens group G4 includes, in order from the object side, a cemented negative lens of a negative meniscus lens L41 having a convex surface directed toward the object side and a biconvex positive lens L42, and a biconvex positive lens L43. .
  • the fifth lens group G5 includes, in order from the object side, a positive meniscus lens L51 having a concave surface directed toward the object side, and a biconcave negative lens L52.
  • the sixth lens group G6 includes, in order from the object side, a negative meniscus lens L61 having a concave surface directed toward the object side, and a biconvex positive lens L62.
  • focusing from a long-distance object to a short-distance object is performed by moving the fifth lens group G5 in the image plane direction.
  • the cemented positive lens of the negative meniscus lens L31 having a convex surface facing the object side and the biconvex positive lens L32 constituting the third lens group G3 is moved in a direction orthogonal to the optical axis.
  • the focal length of the entire system is f
  • the image stabilization coefficient ratio of image movement amount on the imaging surface to the movement amount of the moving lens group in shake correction
  • K the image stabilization coefficient
  • the moving lens group for blur correction may be moved in the direction orthogonal to the optical axis by (f ⁇ tan ⁇ ) / K.
  • the image stabilization coefficient is 1.65 and the focal length is 72.1 mm. Therefore, the movement amount of the image stabilization lens group for correcting the rotation blur of 0.30 ° is 0.23 mm.
  • the movement amount of the image stabilization lens group for correcting 0.20 ° rotational blur is 0.49 mm.
  • Table 3 below lists the values of the specifications of the optical system according to the present example.
  • FIGS. 12A and 12B are diagrams showing various aberrations at the time of focusing at infinity in the wide-angle end state of the variable magnification optical system having the image stabilization function according to the third example, and a rotation of 0.30 °, respectively.
  • FIG. 6 is a meridional lateral aberration diagram when blur correction is performed on blur.
  • FIG. 13 is a diagram of various aberrations at the time of focusing at infinity in the intermediate focal length state of the variable magnification optical system having the image stabilization function according to the third example.
  • FIG. 14A and 14B are diagrams showing various aberrations at the time of focusing on infinity in the telephoto end state of the variable magnification optical system having the image stabilization function according to the third example, and rotation of 0.20 °, respectively.
  • FIG. 6 is a meridional lateral aberration diagram when blur correction is performed on blur.
  • 15 (a), 15 (b), and 15 (c) respectively show the close-up focus in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the third example.
  • variable magnification optical system has excellent imaging performance by correcting various aberrations well from the wide-angle end state to the telephoto end state, and also at the time of focusing at a short distance. It can be seen that the imaging performance is excellent.
  • FIG. 16 is a diagram showing a lens configuration of a variable magnification optical system according to the fourth example of the present application.
  • the variable magnification optical system according to this example includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens group G3 having a positive refractive power. And a fourth lens group G4 having negative refractive power and a fifth lens group G5 having positive refractive power.
  • the first lens group G1 is in the front lens group GFS
  • the second lens group G2 is in the M1 lens group GM1
  • the third lens group G3 is in the M2 lens group GM2
  • the fourth lens is related to the above embodiment.
  • the group G4 corresponds to the RN lens group GRN
  • the fifth lens group G5 corresponds to the subsequent lens group GRS.
  • the first lens group G1 in order from the object side, includes a positive convex flat lens L11 having a convex surface directed toward the object side, a negative meniscus lens L12 having a convex surface directed toward the object side, and a positive meniscus lens L13 having a convex surface directed toward the object side. And a cemented positive lens.
  • the second lens group G2 in order from the object side, has a negative meniscus lens L21 having a convex surface directed toward the object side, a biconvex positive lens L22, a biconcave negative lens L23, and a concave surface directed toward the object side. It comprises a negative meniscus lens L24.
  • the third lens group G3 includes, in order from the object side, a cemented positive lens of a negative meniscus lens L31 having a convex surface directed toward the object side and a biconvex positive lens L32, a biconvex positive lens L33, and a biconcave shape.
  • the fourth lens group G4 includes, in order from the object side, a positive meniscus lens L41 having a concave surface directed toward the object side, and a biconcave negative lens L42.
  • the fifth lens group G5 includes, in order from the object side, a negative meniscus lens L51 having a concave surface directed toward the object side, a positive bilens lens L52, and a positive meniscus lens L53 having a convex surface directed toward the object side. .
  • focusing from a long-distance object to a short-distance object is performed by moving the fourth lens group G4 in the image plane direction.
  • the cemented positive lens of the negative meniscus lens L31 having a convex surface facing the object side and the biconvex positive lens L32 constituting the third lens group G3 is moved in a direction orthogonal to the optical axis.
  • the focal length of the entire system is f
  • the image stabilization coefficient ratio of image movement amount on the imaging surface to the movement amount of the moving lens group in shake correction
  • K the image stabilization coefficient
  • the moving lens group for blur correction may be moved in the direction orthogonal to the optical axis by (f ⁇ tan ⁇ ) / K.
  • the image stabilization coefficient is 1.65 and the focal length is 72.1 mm
  • the amount of movement of the image stabilization lens group for correcting the 0.30 ° rotation blur is 0.23 mm.
  • the image stabilization coefficient is 2.10 and the focal length is 292.0 mm
  • the amount of movement of the image stabilization lens group for correcting 0.20 ° rotational blur is 0.49 mm.
  • Table 4 lists the values of the specifications of the optical system according to this example.
  • FIGS. 17A and 17B are graphs showing various aberrations at the time of focusing at infinity in the wide-angle end state of the variable magnification optical system having the image stabilization function according to the fourth example, and a rotation of 0.30 °, respectively.
  • FIG. 6 is a meridional lateral aberration diagram when blur correction is performed on blur.
  • FIG. 18 is a diagram of various aberrations when focusing on infinity in the intermediate focal length state of the variable magnification optical system having the image stabilization function according to the fourth example.
  • FIG. 19A and 19B are diagrams showing various aberrations at the time of focusing at infinity in the telephoto end state of the variable magnification optical system having the image stabilization function according to the fourth example, and the rotation of 0.20 °, respectively.
  • FIG. 6 is a meridional lateral aberration diagram when blur correction is performed on blur. 20 (a), 20 (b), and 20 (c), respectively, at the time of short distance focusing in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the fourth example.
  • variable magnification optical system has excellent imaging performance by correcting various aberrations well from the wide-angle end state to the telephoto end state, and also at the time of focusing at a short distance. It can be seen that the imaging performance is excellent.
  • FIG. 21 is a diagram showing a lens configuration of a variable magnification optical system according to the fifth example of the present embodiment.
  • the variable magnification optical system ZL (5) according to the fifth example includes a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a positive lens arranged in order from the object side.
  • W wide-angle end state
  • T telephoto end state
  • the first to fifth lens groups G1 to G5 move in directions indicated by arrows in FIG.
  • the first lens group G1 is in the front lens group GFS
  • the second lens group G2 is in the M1 lens group GM1
  • the third lens group G3 is in the M2 lens group GM2
  • the fourth lens is related to the above embodiment.
  • the group G4 corresponds to the RN lens group GRN
  • the fifth lens group G5 corresponds to the subsequent lens group GRS.
  • the first lens group G1 includes a positive meniscus lens L11 having a convex surface facing the object side, a negative meniscus lens L12 having a convex surface facing the object side, and a biconvex positive lens L13, which are arranged in order from the object side. And a lens.
  • the second lens group G2 includes, in order from the object side, a negative meniscus lens L21 having a convex surface directed toward the object side, a biconvex positive lens L22, a biconcave negative lens L23, and a biconcave negative lens. And a cemented negative lens including a positive meniscus lens L25 having a convex surface facing the object side.
  • the third lens group G3 includes, in order from the object side, a biconvex positive lens L31, a cemented positive lens including a biconvex positive lens L32 and a biconcave negative lens L33, an aperture stop S, It comprises a cemented positive lens composed of a negative meniscus lens L34 having a convex surface facing the object side and a biconvex positive lens L35, and a biconvex positive lens L36.
  • the fourth lens group G4 includes a positive meniscus lens L41 arranged in order from the object side and having a concave surface directed toward the object side, and a biconcave negative lens L42.
  • the fifth lens group G5 includes a negative meniscus lens L51 having a concave surface facing the object side and a positive meniscus lens L52 having a convex surface facing the object side, which are arranged in order from the object side.
  • An image plane I is disposed on the image side of the fifth lens group G5.
  • variable magnification optical system ZL (5) the entire fourth lens group G4 forms a focusing lens group, and the entire fourth lens group G4 is moved in the image plane direction to Focusing from a distance object to a near object is performed.
  • the cemented negative lens including the negative lens L24 and the positive meniscus lens L25 constituting the second lens group G2 (M1 lens group GM1) has an optical axis.
  • An anti-vibration lens group that can move in the vertical direction is configured, and displacement of the imaging position (image blur on the image plane I) due to camera shake or the like is corrected.
  • the focal length of the entire system is f and the image stabilization coefficient (the ratio of the amount of image movement on the imaging surface to the amount of movement of the moving lens group in shake correction) is K
  • the rotational shake at an angle ⁇ is corrected.
  • the moving lens group for blur correction may be moved in the direction orthogonal to the optical axis by (f ⁇ tan ⁇ ) / K.
  • the image stabilization coefficient is 0.97 and the focal length is 72.1 mm
  • the amount of movement of the image stabilization lens group for correcting the rotation blur of 0.30 ° is 0.39 mm.
  • the image stabilization coefficient is 2.01 and the focal length is 292.0 mm
  • the amount of movement of the image stabilization lens group for correcting the rotation blur of 0.20 ° is 0.51 mm.
  • Table 5 lists values of specifications of the optical system according to the fifth example.
  • FIGS. 22A and 22B are diagrams showing various aberrations at the time of focusing at infinity in the wide-angle end state of the variable magnification optical system having the image stabilization function according to the fifth example, and 0.30 °, respectively.
  • FIG. 6 is a meridional transverse aberration diagram when blur correction is performed for rotational blur.
  • FIG. 23 is a diagram of various aberrations at the time of focusing at infinity in the intermediate focal length state of the variable magnification optical system having the image stabilization function according to the fifth example.
  • FIGS. 24A and 24B are diagrams showing various aberrations at the time of focusing at infinity in the telephoto end state of the variable magnification optical system having the image stabilization function according to the fifth example, and 0.20 °, respectively.
  • FIG. 6 is a meridional transverse aberration diagram when blur correction is performed for rotational blur.
  • FIGS. 25 (a), 25 (b), and 25 (c) are respectively close-focused in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the fifth example.
  • FIG. 25 (a), 25 (b), and 25 (c) are respectively close-focused in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the fifth example.
  • variable magnification optical system according to the fifth example has excellent imaging performance by satisfactorily correcting various aberrations from the wide-angle end state to the telephoto end state. It can be seen that it has excellent imaging performance.
  • FIG. 26 is a diagram showing a lens configuration of a variable magnification optical system according to the sixth example of the present embodiment.
  • the variable magnification optical system ZL (6) according to the sixth example includes a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a positive lens arranged in order from the object side.
  • W wide-angle end state
  • T telephoto end state
  • the first to fifth lens groups G1 to G5 move in directions indicated by arrows in FIG.
  • the first lens group G1 is in the front lens group GFS
  • the second lens group G2 is in the M1 lens group GM1
  • the third lens group G3 is in the M2 lens group GM2
  • the fourth lens is related to the above embodiment.
  • the group G4 corresponds to the RN lens group GRN
  • the fifth lens group G5 corresponds to the subsequent lens group GRS.
  • the first lens group G1 includes a positive meniscus lens L11 having a convex surface facing the object side, a negative meniscus lens L12 having a convex surface facing the object side, and a biconvex positive lens L13, which are arranged in order from the object side. And a lens.
  • the second lens group G2 includes, in order from the object side, a negative meniscus lens L21 having a convex surface facing the object side, a cemented positive lens composed of a biconvex positive lens L22 and a biconcave negative lens L23,
  • the lens includes a concave negative lens L24 and a cemented negative lens including a positive meniscus lens L25 having a convex surface facing the object side.
  • the third lens group G3 includes, in order from the object side, a biconvex positive lens L31, a cemented positive lens including a biconvex positive lens L32 and a biconcave negative lens L33, an aperture stop S, It is composed of a cemented negative lens composed of a negative meniscus lens L34 having a convex surface facing the object side and a positive meniscus lens L35 having a convex surface facing the object side, and a biconvex positive lens L36.
  • the fourth lens group G4 includes a positive meniscus lens L41 arranged in order from the object side and having a concave surface directed toward the object side, and a biconcave negative lens L42.
  • the fifth lens group G5 includes a negative meniscus lens L51 having a concave surface facing the object side and a positive meniscus lens L52 having a convex surface facing the object side, which are arranged in order from the object side.
  • An image plane I is disposed on the image side of the fifth lens group G5.
  • the entire fourth lens group G4 forms a focusing lens group, and the entire fourth lens group G4 is moved in the image plane direction to Focusing from a distance object to a near object is performed.
  • the cemented negative lens including the negative lens L24 and the positive meniscus lens L25 constituting the second lens group G2 (M1 lens group GM1) has an optical axis.
  • An anti-vibration lens group that can move in the vertical direction is configured, and displacement of the imaging position (image blur on the image plane I) due to camera shake or the like is corrected.
  • the focal length of the entire system is f and the image stabilization coefficient (the ratio of the amount of image movement on the imaging surface to the amount of movement of the moving lens group in shake correction) is K
  • the rotational shake at an angle ⁇ is corrected.
  • the moving lens group for blur correction may be moved in the direction orthogonal to the optical axis by (f ⁇ tan ⁇ ) / K.
  • the image stabilization coefficient is 0.93 and the focal length is 72.1 mm. Therefore, the amount of movement of the image stabilization lens group for correcting the rotation blur of 0.30 ° is 0.41 mm.
  • the image stabilization coefficient is 1.90 and the focal length is 292.0 mm
  • the amount of movement of the image stabilization lens group for correcting the rotation blur of 0.20 ° is 0.54 mm.
  • Table 6 below lists values of specifications of the optical system according to the sixth example.
  • FIGS. 27A and 27B are diagrams showing various aberrations at the time of focusing on infinity in the wide-angle end state of the variable magnification optical system having the image stabilization function according to the sixth example, and 0.30 °, respectively.
  • FIG. 6 is a meridional transverse aberration diagram when blur correction is performed for rotational blur.
  • FIG. 28 is a diagram of various aberrations at the time of focusing at infinity in the intermediate focal length state of the variable magnification optical system having the image stabilization function according to Example 6.
  • FIGS. 29A and 29B are diagrams showing various aberrations at the time of focusing on infinity in the telephoto end state of the variable magnification optical system having the image stabilization function according to the sixth example, and 0.20 °, respectively.
  • FIG. 6 is a meridional transverse aberration diagram when blur correction is performed for rotational blur.
  • 30 (a), 30 (b), and 30 (c), respectively, are in close focus at the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the sixth example.
  • FIG. 6 is a meridional transverse aberration diagram when blur correction is performed for rotational blur.
  • variable magnification optical system according to the sixth example has excellent imaging performance by satisfactorily correcting various aberrations from the wide-angle end state to the telephoto end state. It can be seen that it has excellent imaging performance.
  • FIG. 31 is a diagram showing a lens configuration of a variable magnification optical system according to the seventh example of the present embodiment.
  • the variable magnification optical system ZL (7) according to the seventh example includes a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a positive lens arranged in order from the object side.
  • W wide-angle end state
  • T telephoto end state
  • the first to fifth lens groups G1 to G5 move in directions indicated by arrows in FIG.
  • the first lens group G1 is in the front lens group GFS
  • the second lens group G2 is in the M1 lens group GM1
  • the third lens group G3 is in the M2 lens group GM2
  • the fourth lens is related to the above embodiment.
  • the group G4 corresponds to the RN lens group GRN
  • the fifth lens group G5 corresponds to the subsequent lens group GRS.
  • the first lens group G1 includes a biconvex positive lens L11 arranged in order from the object side, and a cemented positive lens including a negative meniscus lens L12 having a convex surface facing the object side and a biconvex positive lens L13. Composed.
  • the second lens group G2 includes, in order from the object side, a negative meniscus lens L21 having a convex surface facing the object side, a cemented positive lens composed of a biconvex positive lens L22 and a biconcave negative lens L23,
  • the lens includes a concave negative lens L24 and a cemented negative lens including a positive meniscus lens L25 having a convex surface facing the object side.
  • the third lens group G3 includes, in order from the object side, a biconvex positive lens L31, a cemented positive lens including a biconvex positive lens L32 and a biconcave negative lens L33, an aperture stop S, A cemented positive lens including a negative meniscus lens L34 having a convex surface facing the object side and a biconvex positive lens L35.
  • the fourth lens group G4 includes a positive meniscus lens L41 arranged in order from the object side and having a concave surface directed toward the object side, and a biconcave negative lens L42.
  • the fifth lens group G5 is composed of a negative meniscus lens L51 arranged in order from the object side and having a concave surface directed toward the object side, and a biconvex positive lens L52.
  • An image plane I is disposed on the image side of the fifth lens group G5.
  • the entire fourth lens group G4 forms a focusing lens group, and the entire fourth lens group G4 is moved in the image plane direction to Focusing from a distance object to a near object is performed.
  • the cemented negative lens including the negative lens L24 and the positive meniscus lens L25 constituting the second lens group G2 (M1 lens group GM1) has an optical axis.
  • An anti-vibration lens group that can move in the vertical direction is configured, and displacement of the imaging position (image blur on the image plane I) due to camera shake or the like is corrected.
  • the focal length of the entire system is f and the image stabilization coefficient (the ratio of the amount of image movement on the imaging surface to the amount of movement of the moving lens group in shake correction) is K
  • the rotational shake at an angle ⁇ is corrected.
  • the moving lens group for blur correction may be moved in the direction orthogonal to the optical axis by (f ⁇ tan ⁇ ) / K.
  • the image stabilization coefficient is 0.96 and the focal length is 72.1 mm. Therefore, the amount of movement of the image stabilization lens group for correcting the rotation blur of 0.30 ° is 0.39 mm.
  • the image stabilization coefficient is 2.00 and the focal length is 292.0 mm
  • the amount of movement of the image stabilization lens group for correcting the rotation blur of 0.20 ° is 0.51 mm.
  • Table 7 lists the values of the specifications of the optical system according to the seventh example.
  • FIGS. 32A and 32B are diagrams showing various aberrations at the time of focusing at infinity in the wide-angle end state of the variable magnification optical system having the image stabilization function according to the seventh example, and 0.30 °, respectively.
  • FIG. 6 is a meridional transverse aberration diagram when blur correction is performed for rotational blur.
  • FIG. 33 is a diagram of various aberrations during focusing at infinity in the intermediate focal length state of the variable magnification optical system having the image stabilization function according to the seventh example.
  • FIGS. 34 (a) and 34 (b) are graphs showing various aberrations at the time of focusing at infinity in the telephoto end state of the variable magnification optical system having the image stabilization function according to the seventh example, and 0.20 °, respectively.
  • FIG. 6 is a meridional transverse aberration diagram when blur correction is performed for rotational blur.
  • FIGS. 35 (a), 35 (b), and 35 (c) are respectively in close focus at the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the seventh example.
  • FIG. 35 (a), 35 (b), and 35 (c) are respectively in close focus at the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the seventh example.
  • variable magnification optical system according to the seventh example has excellent imaging performance by satisfactorily correcting various aberrations from the wide-angle end state to the telephoto end state. It can be seen that it has excellent imaging performance.
  • FIG. 36 is a diagram showing a lens configuration of a variable magnification optical system according to the eighth example of the present embodiment.
  • the variable magnification optical system ZL (4) according to the eighth example includes a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a positive lens arranged in order from the object side.
  • W wide-angle end state
  • T telephoto end state
  • the first to fifth lens groups G1 to G5 move in directions indicated by arrows in FIG.
  • the first lens group G1 is in the front lens group GFS
  • the second lens group G2 is in the M1 lens group GM1
  • the third lens group G3 is in the M2 lens group GM2
  • the fourth lens is related to the above embodiment.
  • the group G4 corresponds to the RN lens group GRN
  • the fifth lens group G5 corresponds to the subsequent lens group GRS.
  • the first lens group G1 includes a biconvex positive lens L11 arranged in order from the object side, and a cemented positive lens including a negative meniscus lens L12 having a convex surface facing the object side and a biconvex L13.
  • the second lens group G2 includes, in order from the object side, a negative meniscus lens L21 having a convex surface facing the object side, a cemented positive lens composed of a biconvex positive lens L22 and a biconcave negative lens L23,
  • the lens includes a concave negative lens L24 and a cemented negative lens including a positive meniscus lens L25 having a convex surface facing the object side.
  • the third lens group G3 includes, in order from the object side, a biconvex positive lens L31, a cemented positive lens including a biconvex positive lens L32 and a biconcave negative lens L33, an aperture stop S, A cemented positive lens including a negative meniscus lens L34 having a convex surface facing the object side and a biconvex positive lens L35.
  • the fourth lens group G4 includes a positive meniscus lens L41 arranged in order from the object side and having a concave surface directed toward the object side, and a biconcave negative lens L42.
  • the fifth lens group G5 includes a negative meniscus lens L51 having a concave surface directed toward the object side, and a biconvex positive lens L52.
  • An image plane I is disposed on the image side of the fifth lens group G5.
  • the positive meniscus lens L41 and the negative lens L42 of the fourth lens group G4 constitute a focusing lens group, and the positive meniscus lens L41 of the fourth lens group G4 and By moving the negative lens L42 in the image plane direction, focusing from a long-distance object to a short-distance object is performed.
  • the cemented negative lens including the negative lens L24 and the positive meniscus lens L25 constituting the second lens group G2 (M1 lens group GM1) has an optical axis.
  • An anti-vibration lens group that can move in the vertical direction is configured, and displacement of the imaging position (image blur on the image plane I) due to camera shake or the like is corrected.
  • the focal length of the entire system is f and the image stabilization coefficient (the ratio of the amount of image movement on the imaging surface to the amount of movement of the moving lens group in shake correction) is K
  • the rotational shake at an angle ⁇ is corrected.
  • the moving lens group for blur correction may be moved in the direction orthogonal to the optical axis by (f ⁇ tan ⁇ ) / K.
  • the image stabilization coefficient is 1.05 and the focal length is 72.1 mm. Therefore, the amount of movement of the image stabilization lens group for correcting the rotation blur of 0.30 ° is as follows. 0.36 mm.
  • the image stabilization coefficient is 2.20 and the focal length is 292.0 mm
  • the amount of movement of the image stabilization lens group for correcting the rotation blur of 0.20 ° is 0.46 mm.
  • Table 8 lists the values of the specifications of the optical system according to the eighth example.
  • FIGS. 37A and 37B are diagrams showing various aberrations at the time of focusing on infinity in the wide-angle end state of the variable magnification optical system having the image stabilization function according to the eighth example, and 0.30 °, respectively.
  • FIG. 6 is a meridional transverse aberration diagram when blur correction is performed for rotational blur.
  • FIG. 38 is a diagram of various aberrations at the time of focusing on infinity in the intermediate focal length state of the variable magnification optical system having the image stabilization function according to the eighth example.
  • FIG. 39 (a) and 39 (b) are graphs showing various aberrations at the time of focusing at infinity in the telephoto end state of the variable magnification optical system having the image stabilization function according to the eighth example, and 0.20 °, respectively.
  • FIG. 6 is a meridional transverse aberration diagram when blur correction is performed for rotational blur.
  • 40 (a), 40 (b), and 40 (c) are respectively close-in-focus in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the eighth example.
  • variable magnification optical system according to the eighth example has excellent imaging performance by satisfactorily correcting various aberrations from the wide-angle end state to the telephoto end state. It can be seen that it has excellent imaging performance.
  • FIG. 41 is a diagram showing a lens configuration of a variable magnification optical system according to the ninth example of the present embodiment.
  • the variable magnification optical system ZL (9) according to the ninth example includes a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a positive lens arrayed in order from the object side.
  • W wide-angle end state
  • T telephoto end state
  • the first to fifth lens groups G1 to G5 move in directions indicated by arrows in FIG.
  • the first lens group G1 is in the front lens group GFS
  • the second lens group G2 is in the M1 lens group GM1
  • the third lens group G3 is in the M2 lens group GM2
  • the fourth lens is related to the above embodiment.
  • the group G4 corresponds to the RN lens group GRN
  • the fifth lens group G5 corresponds to the subsequent lens group GRS.
  • the first lens group G1 is a cemented positive lens composed of a biconvex positive lens L11 arranged in order from the object side, a negative meniscus lens L12 having a convex surface facing the object side, and a biconvex positive lens L13 facing the object side. And.
  • the second lens group G2 includes a negative meniscus lens L21 having a convex surface directed toward the object side, a positive meniscus lens L22 having a convex surface directed toward the object side, a biconcave negative lens L23, and an object side. And a cemented negative lens composed of a positive meniscus lens L24 having a convex surface directed toward the surface.
  • the third lens group G3 includes, in order from the object side, a biconvex positive lens L31, a cemented positive lens including a biconvex positive lens L32 and a biconcave negative lens L33, an aperture stop S, A cemented positive lens including a negative meniscus lens L34 having a convex surface facing the object side and a biconvex positive lens L35.
  • the fourth lens group G4 includes a positive meniscus lens L41 arranged in order from the object side and having a concave surface directed toward the object side, and a biconcave negative lens L42.
  • the fifth lens group G5 is composed of a negative meniscus lens L51 arranged in order from the object side and having a concave surface directed toward the object side, and a biconvex positive lens L52.
  • An image plane I is disposed on the image side of the fifth lens group G5.
  • the entire fourth lens group G4 forms a focusing lens group, and the entire fourth lens group G4 is moved in the image plane direction to Focusing from a distance object to a near object is performed.
  • the cemented negative lens including the negative lens L23 and the positive meniscus lens L24 that form the second lens group G2 (M1 lens group GM1) is connected to the optical axis.
  • An anti-vibration lens group that can move in the vertical direction is configured, and displacement of the imaging position (image blur on the image plane I) due to camera shake or the like is corrected.
  • the focal length of the entire system is f and the image stabilization coefficient (the ratio of the amount of image movement on the imaging surface to the amount of movement of the moving lens group in shake correction) is K
  • the rotational shake at an angle ⁇ is corrected.
  • the moving lens group for blur correction may be moved in the direction orthogonal to the optical axis by (f ⁇ tan ⁇ ) / K.
  • the image stabilization coefficient is 1.02 and the focal length is 72.1 mm. Therefore, the amount of movement of the image stabilization lens group for correcting the rotation blur of 0.30 ° is as follows. 0.37 mm.
  • the image stabilization coefficient is 2.10 and the focal length is 292.0 mm
  • the amount of movement of the image stabilization lens group for correcting the rotation blur of 0.20 ° is 0.49 mm.
  • Table 9 lists values of specifications of the optical system according to the ninth example.
  • FIGS. 42A and 42B are diagrams showing various aberrations at the time of focusing at infinity in the wide-angle end state of the variable magnification optical system having the image stabilization function according to the ninth example, and 0.30 °, respectively.
  • FIG. 6 is a meridional transverse aberration diagram when blur correction is performed for rotational blur.
  • FIG. 43 is a diagram of various aberrations at the time of focusing at infinity in the intermediate focal length state of the variable magnification optical system having the image stabilization function according to the ninth example.
  • 44 (a) and 44 (b) are graphs showing various aberrations during focusing at infinity in the telephoto end state of the variable magnification optical system having the image stabilization function according to the ninth example, and 0.20 °, respectively.
  • FIG. 6 is a meridional transverse aberration diagram when blur correction is performed for rotational blur.
  • 45 (a), 45 (b), and 45 (c) respectively show the close-up focus in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the ninth example.
  • FIG. 45 (a), 45 (b), and 45 (c) respectively show the close-up focus in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the ninth example.
  • variable magnification optical system according to the ninth example has excellent imaging performance with excellent correction of various aberrations from the wide-angle end state to the telephoto end state. It can be seen that it has excellent imaging performance.
  • FIG. 46 is a diagram showing a lens configuration of a variable magnification optical system according to the 10th example of the present embodiment.
  • the variable magnification optical system ZL (10) according to the tenth example includes a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a positive lens arranged in order from the object side.
  • W wide-angle end state
  • T telephoto end state
  • the first to fifth lens groups G1 to G5 move in directions indicated by arrows in FIG. 46, respectively.
  • the first lens group G1 is in the front lens group GFS
  • the second lens group G2 is in the M1 lens group GM1
  • the third lens group G3 is in the M2 lens group GM2
  • the fourth lens is related to the above embodiment.
  • the group G4 corresponds to the RN lens group GRN
  • the fifth lens group G5 corresponds to the subsequent lens group GRS.
  • the first lens group G1 includes, in order from the object side, a cemented positive lens including a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12, and a positive meniscus lens having a convex surface facing the object side. L13.
  • the second lens group G2 includes, in order from the object side, a biconvex positive lens L21, a biconcave negative lens L22, a positive meniscus lens L23 having a convex surface facing the object side, and a biconcave negative lens. And a cemented negative lens including a positive meniscus lens L25 having a convex surface facing the object side.
  • the third lens group G3 includes, in order from the object side, a biconvex positive lens L31, a cemented positive lens including a biconvex positive lens L32 and a biconcave negative lens L33, an aperture stop S, A cemented positive lens including a negative meniscus lens L34 having a convex surface facing the object side and a biconvex positive lens L35.
  • the fourth lens group G4 is composed of a biconvex positive lens L41 and a biconcave negative lens L42 arranged in order from the object side.
  • the fifth lens group G5 includes a negative meniscus lens L51 having a concave surface facing the object side and a positive meniscus lens L52 having a convex surface facing the object side, which are arranged in order from the object side.
  • An image plane I is disposed on the image side of the fifth lens group G5.
  • the entire fourth lens group G4 forms a focusing lens group, and the entire fourth lens group G4 is moved in the image plane direction to Focusing from a distance object to a near object is performed.
  • the cemented negative lens including the negative lens L24 and the positive meniscus lens L25 constituting the second lens group G2 (M1 lens group GM1) has an optical axis.
  • An anti-vibration lens group that can move in the vertical direction is configured, and displacement of the imaging position (image blur on the image plane I) due to camera shake or the like is corrected.
  • the focal length of the entire system is f and the image stabilization coefficient (the ratio of the amount of image movement on the imaging surface to the amount of movement of the moving lens group in shake correction) is K
  • the rotational shake at an angle ⁇ is corrected.
  • the moving lens group for blur correction may be moved in the direction orthogonal to the optical axis by (f ⁇ tan ⁇ ) / K.
  • the image stabilization coefficient is 1.01 and the focal length is 72.1 mm. Therefore, the amount of movement of the image stabilization lens group for correcting the rotation blur of 0.30 ° is 0.37 mm.
  • the image stabilization coefficient is 2.10 and the focal length is 292.0 mm. Therefore, the amount of movement of the image stabilization lens group for correcting the rotation blur of 0.20 ° is 0.49 mm.
  • Table 10 lists values of specifications of the optical system according to the tenth example.
  • FIG. 47 (a) and 47 (b) are graphs showing various aberrations at the time of focusing at infinity in the wide-angle end state of the variable magnification optical system having the image stabilization function according to the tenth example, and 0.30 °, respectively.
  • FIG. 6 is a meridional transverse aberration diagram when blur correction is performed for rotational blur.
  • FIG. 48 is a diagram of various aberrations at the time of focusing on infinity in the intermediate focal length state of the variable magnification optical system having the image stabilization function according to the tenth example.
  • 49A and 49B are diagrams showing various aberrations at the time of focusing on infinity in the telephoto end state of the variable magnification optical system having the image stabilization function according to the tenth example, and 0.20 °, respectively.
  • FIG. 6 is a meridional transverse aberration diagram when blur correction is performed for rotational blur.
  • 50 (a), 50 (b), and 50 (c) are respectively close-in-focus in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the tenth example.
  • variable magnification optical system according to the tenth example has excellent imaging performance by satisfactorily correcting various aberrations from the wide-angle end state to the telephoto end state. It can be seen that it has excellent imaging performance.
  • FIG. 51 is a diagram illustrating a lens configuration of a variable magnification optical system according to the eleventh example of the present embodiment.
  • the variable magnification optical system ZL (11) according to the eleventh example includes a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, arranged in order from the object side, and a positive A third lens group G3 having a negative refractive power, a fourth lens group G4 having a negative refractive power, and a fifth lens group G5 having a positive refractive power.
  • An aperture stop S is provided in the third lens group G3, and an image surface I is provided facing the image surface side of the fifth lens group G5.
  • the first lens group G1 is in the front lens group GFS
  • the second lens group G2 is in the M1 lens group GM1
  • the third lens group G3 is in the M2 lens group GM2
  • the fourth lens is related to the above embodiment.
  • the group G4 corresponds to the RN lens group GRN
  • the fifth lens group G5 corresponds to the subsequent lens group GRS.
  • the first lens group G1 is composed of a biconvex positive lens L11 arranged in order from the object side, a negative meniscus lens L12 having a convex surface facing the object side, and a positive meniscus lens L13 having a convex surface facing the object side. And a lens.
  • the second lens group G2 includes, in order from the object side, a cemented negative lens composed of a biconcave negative lens L21 and a positive meniscus lens L22 having a convex surface facing the object, and a biconcave negative lens L23. Composed.
  • the third lens group G3 includes, in order from the object side, a biconvex positive lens L31, an aperture stop S, a cemented positive lens including a biconvex positive lens L32 and a biconcave negative lens L33.
  • the lens includes a cemented positive lens including a negative meniscus lens L34 having a convex surface facing the object side and a biconvex positive lens L35, and a positive meniscus lens L36 having a convex surface facing the object side.
  • the fourth lens group G4 is composed of a positive meniscus lens L41 having a concave surface directed toward the object side and a cemented negative lens made up of a biconcave negative lens L42.
  • the fifth lens group G5 includes a biconvex positive lens L51.
  • the fourth lens group G4 (RN lens group GRN) in the image plane direction.
  • the second lens group G2 (M1 lens group GM1) constitutes an anti-vibration lens group having a displacement component in a direction perpendicular to the optical axis, and image blur correction on the image plane I (anti-vibration, camera shake). Correction) is preferably performed.
  • Table 11 lists values of specifications of the optical system according to the eleventh example.
  • 52 (a), 52 (b), and 52 (c) respectively show the zooming optical system according to the eleventh example when focusing at infinity in the wide-angle end state, the intermediate focal length state, and the telephoto end state. It is an aberration diagram.
  • 53 (a), 53 (b), and 53 (c) respectively show the zooming optical system according to the eleventh example at the time of close focus in the wide-angle end state, the intermediate focal length state, and the telephoto end state. It is an aberration diagram.
  • variable magnification optical system has excellent imaging performance by correcting various aberrations well from the wide-angle end state to the telephoto end state, and also at the time of focusing at a short distance. It can be seen that the imaging performance is excellent.
  • FIG. 54 is a diagram showing a lens configuration of a variable magnification optical system according to the twelfth example of the present embodiment.
  • the variable magnification optical system ZL (12) according to the twelfth example includes a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a positive lens arrayed in order from the object side.
  • the first lens group G1 is in the front lens group GFS
  • the second lens group G2 is in the M1 lens group GM1
  • the third lens group G3 is in the M2 lens group GM2
  • the fourth lens is related to the above embodiment.
  • the group G4 corresponds to the RN lens group GRN
  • the fifth lens group G5 corresponds to the subsequent lens group GRS.
  • the first lens group G1 is composed of a biconvex positive lens L11 arranged in order from the object side, a negative meniscus lens L12 having a convex surface facing the object side, and a positive meniscus lens L13 having a convex surface facing the object side. And a lens.
  • the second lens group G2 is composed of a biconcave negative lens L21 arranged in order from the object side, a cemented negative lens composed of a positive meniscus lens L22 having a convex surface facing the object side, and a biconcave negative lens L23. Is done.
  • the third lens group G3 includes, in order from the object side, a biconvex positive lens L31, a cemented positive lens including a biconvex positive lens L32 and a biconcave negative lens L33, an aperture stop S,
  • the lens includes a cemented positive lens including a negative meniscus lens L34 having a convex surface facing the object side and a biconvex positive lens L35, and a positive meniscus lens L36 having a convex surface facing the object side.
  • the fourth lens group G4 includes a cemented negative lens composed of a positive meniscus lens L41 having a concave surface directed toward the object side and a biconcave negative lens L42.
  • the fifth lens group G5 includes a positive meniscus lens L51 having a convex surface directed toward the object side.
  • the second lens group G2 (M1 lens group GM1) constitutes an anti-vibration lens group having a displacement component in the direction perpendicular to the optical axis and image blur correction (anti-vibration) on the image plane I. It is preferable to perform (camera shake correction).
  • Table 12 lists values of specifications of the optical system according to the twelfth example.
  • variable magnification optical system according to the present example has excellent imaging performance by correcting various aberrations well from the wide-angle end state to the telephoto end state, and also at the time of focusing at a short distance. It can be seen that the imaging performance is excellent.
  • FIG. 57 is a diagram showing a lens configuration of a variable magnification optical system according to the 13th example of the present embodiment.
  • the variable magnification optical system ZL (13) according to the thirteenth example includes a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a positive lens arranged in order from the object side.
  • the first lens group G1 is in the front lens group GFS
  • the second lens group G2 is in the M1 lens group GM1
  • the third lens group G3 is in the M2 lens group GM2
  • the fourth lens is related to the above embodiment.
  • the group G4 corresponds to the RN lens group GRN
  • the fifth lens group G5 corresponds to the subsequent lens group GRS.
  • the first lens group G1 is composed of a biconvex positive lens L11 arranged in order from the object side, a negative meniscus lens L12 having a convex surface facing the object side, and a positive meniscus lens L13 having a convex surface facing the object side. And a positive lens.
  • the second lens group G2 is composed of a biconcave negative lens L21 arranged in order from the object side, a cemented negative lens composed of a positive meniscus lens L22 having a convex surface facing the object side, and a biconcave negative lens L23. Is done.
  • the third lens group G3 includes, in order from the object side, a biconvex positive lens L31, a cemented positive lens including a biconvex positive lens L32 and a biconcave negative lens L33, an aperture stop S,
  • the lens includes a cemented positive lens including a negative meniscus lens L34 having a convex surface facing the object side and a biconvex positive lens L35, and a positive meniscus lens L36 having a convex surface facing the object side.
  • the fourth lens group G4 includes a cemented negative lens including a positive meniscus lens L41 having a concave surface directed toward the object side and a biconcave negative lens L42, and a negative meniscus lens L43 having a convex surface directed toward the object side.
  • the fifth lens group G5 includes a positive meniscus lens L51 having a convex surface directed toward the object side.
  • the second lens group G2 (M1 lens group GM1) constitutes an anti-vibration lens group having a displacement component in the direction perpendicular to the optical axis and image blur correction (anti-vibration) on the image plane I. It is preferable to perform (camera shake correction).
  • Table 13 lists values of specifications of the optical system according to the thirteenth example.
  • variable magnification optical system according to the present example has excellent imaging performance by correcting various aberrations well from the wide-angle end state to the telephoto end state, and also at the time of focusing at a short distance. It can be seen that the imaging performance is excellent.
  • the focusing lens group is reduced in size and weight so that high-speed AF without increasing the size of the lens barrel, quietness during AF is achieved, and further, from the wide-angle end state to the telephoto end. It is possible to realize a variable magnification optical system that satisfactorily suppresses aberration fluctuations during zooming to a state and aberration fluctuations during focusing from an object at infinity to a short distance object.
  • each of the above embodiments shows a specific example of the present invention, and the present invention is not limited to these.
  • variable magnification optical system of the present application a five-group structure and a six-group structure are shown, but the present application is not limited to this, and the variable-magnification optical system of other group structures (for example, seven groups) Can also be configured.
  • a configuration in which a lens or a lens group is added to the most object side or the most image plane side of the variable magnification optical system of the present application may be used.
  • the lens group refers to a portion having at least one lens separated by an air interval that changes during zooming.
  • the lens surface of the lens constituting the variable magnification optical system of the present application may be a spherical surface, a flat surface, or an aspheric surface.
  • the lens surface is a spherical surface or a flat surface, it is preferable because lens processing and assembly adjustment are easy, and deterioration of optical performance due to errors in lens processing and assembly adjustment can be prevented. Further, even when the image plane is deviated, it is preferable because there is little deterioration in drawing performance.
  • the lens surface is aspherical, any of aspherical surface by grinding, glass mold aspherical surface in which glass is molded into an aspherical shape, or composite aspherical surface in which resin provided on the glass surface is formed in an aspherical shape Good.
  • the lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.
  • an antireflection film having a high transmittance in a wide wavelength range may be applied to the lens surface of the lens constituting the variable magnification optical system of the present application. Thereby, flare and ghost can be reduced, and high optical performance with high contrast can be achieved.
  • the present camera 1 in which the variable magnification optical system according to the first embodiment is mounted as the photographing lens 2 can reduce the size and weight of the focusing lens group without increasing the size of the lens barrel. AF and quietness at the time of AF are achieved, and aberration fluctuation at the time of zooming from the wide-angle end state to the telephoto end state and aberration fluctuation at the time of focusing from an object at infinity to a short distance object are well suppressed. Good optical performance can be realized. Even if a camera equipped with the variable magnification optical system according to the second to seventh examples as the photographing lens 2 is configured, the same effect as the camera 1 can be obtained.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Lenses (AREA)

Abstract

変倍光学系が、物体側から順に、正の屈折力を有する前側レンズ群(GFS)と、負の屈折力を有するM1レンズ群(GM1)と、正の屈折力を有するM2レンズ群(GM2)と、負の屈折力を有するRNレンズ群(GRN)と、後続レンズ群(GRS)とを有し、変倍時に、前側レンズ群(GFS)とM1レンズ群(GM1)との間隔が変化し、M1レンズ群(GM1)とM2レンズ群(GM2)との間隔が変化し、M2レンズ群(GM2)とRNレンズ群(GRN)との間隔が変化し、無限遠物体から近距離物体への合焦の際、RNレンズ群(GRN)が移動する構成である。

Description

変倍光学系、光学機器、撮像機器および変倍光学系の製造方法
 本発明は、変倍光学系、これを用いた光学機器および撮像機器並びに変倍光学系の製造方法に関する。
 従来、写真用カメラ、電子スチルカメラ、ビデオカメラ等に適した変倍光学系が提案されている(例えば、特許文献1を参照)。
特開平4-293007号
 しかしながら、従来の変倍光学系にあっては、合焦レンズ群の軽量化が不十分であった。
 本発明に係る変倍光学系は、物体側から順に、正の屈折力を有する前側レンズ群と、負の屈折力を有するM1レンズ群と、正の屈折力を有するM2レンズ群と、負の屈折力を有するRNレンズ群と、後続レンズ群とを有し、変倍時に、前記前側レンズ群と前記M1レンズ群との間隔が変化し、前記M1レンズ群と前記M2レンズ群との間隔が変化し、前記M2レンズ群と前記RNレンズ群との間隔が変化し、無限遠物体から近距離物体への合焦の際、前記RNレンズ群が移動する。
 本発明に係る光学機器は、前記変倍光学系を搭載して構成される。
 本発明にかかる撮像機器は、前記変倍光学系と、前記変倍光学系によって形成される像を撮像する撮像部とを備える。
 本発明に係る変倍光学系の製造方法は、物体側から順に、正の屈折力を有する前側レンズ群と、負の屈折力を有するM1レンズ群と、正の屈折力を有するM2レンズ群と、負の屈折力を有するRNレンズ群と、後続レンズ群とを有して構成される変倍光学系の製造方法であって、変倍時に、前記前側レンズ群と前記M1レンズ群との間隔が変化し、前記M1レンズ群と前記M2レンズ群との間隔が変化し、前記M2レンズ群と前記RNレンズ群との間隔が変化するように配置することを含み、無限遠物体から近距離物体への合焦の際、前記RNレンズ群が移動し、前記後続レンズ群は、物体側から順に、負の屈折力を有するレンズと、正の屈折力を有するレンズとを有し、以下の条件式を満足する。
   0.70<(-fN)/fP<2.00
 但し、
 fN:前記後続レンズ群にある最も負の屈折力が強いレンズの焦点距離
 fP:前記後続レンズ群にある最も正の屈折力が強いレンズの焦点距離
本実施形態の第1実施例に係る変倍光学系のレンズ構成を示す図である。 図2(a)は、第1実施例に係る変倍光学系の広角端状態における無限遠合焦時の諸収差図であり、図2(b)は0.30°の回転ブレに対してブレ補正を行った際のメリディオナル横収差図(コマ収差図)である。 第1実施例に係る変倍光学系の中間焦点距離状態における無限遠合焦時の諸収差図である。 図4(a)は、第1実施例に係る変倍光学系の望遠端状態における無限遠合焦時の諸収差図であり、図4(b)は0.20°の回転ブレに対してブレ補正を行った際のメリディオナル横収差図である。 図5(a)、図5(b)、及び図5(c)はそれぞれ、第1実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における近距離合焦時の諸収差図である。 本実施形態の第2実施例に係る変倍光学系のレンズ構成を示す図である。 図7(a)は、第2実施例に係る変倍光学系の広角端状態における無限遠合焦時の諸収差図であり、図7(b)は0.30°の回転ブレに対してブレ補正を行った際のメリディオナル横収差図である。 第2実施例に係る変倍光学系の中間焦点距離状態における無限遠合焦時の諸収差図である。 図9(a)は、第2実施例に係る変倍光学系の望遠端状態における無限遠合焦時の諸収差図であり、図9(b)は0.20°の回転ブレに対してブレ補正を行った際のメリディオナル横収差図である。 図10(a)、図10(b)、及び図10(c)はそれぞれ、第2実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における近距離合焦時の諸収差図である。 本実施形態の第3実施例に係る変倍光学系のレンズ構成を示す図である。 図12(a)は、第3実施例に係る変倍光学系の広角端状態における無限遠合焦時の諸収差図であり、図12(b)は0.30°の回転ブレに対してブレ補正を行った際のメリディオナル横収差図である。 第3実施例に係る変倍光学系の中間焦点距離状態における無限遠合焦時の諸収差図である。 図14(a)は、第3実施例に係る変倍光学系の望遠端状態における無限遠合焦時の諸収差図であり、図14(b)は0.20°の回転ブレに対してブレ補正を行った際のメリディオナル横収差図である。 図15(a)、図15(b)、及び図15(c)はそれぞれ、第3実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における近距離合焦時の諸収差図である。 本実施形態の第4実施例に係る変倍光学系のレンズ構成を示す図である。 図17(a)は、第4実施例に係る変倍光学系の広角端状態における無限遠合焦時の諸収差図であり、図17(b)は0.30°の回転ブレに対してブレ補正を行った際のメリディオナル横収差図である。 第4実施例に係る変倍光学系の中間焦点距離状態における無限遠合焦時の諸収差図である。 図19(a)は、第4実施例に係る変倍光学系の望遠端状態における無限遠合焦時の諸収差図であり、図19(b)は0.20°の回転ブレに対してブレ補正を行った際のメリディオナル横収差図である。 図20(a)、図20(b)、及び図20(c)はそれぞれ、第4実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における近距離合焦時の諸収差図である。 本実施形態の第5実施例に係る変倍光学系のレンズ構成を示す図である。 図22(a)は、第5実施例に係る変倍光学系の広角端状態における無限遠合焦時の諸収差図であり、図22(b)は、0.30°の回転ブレに対してブレ補正を行った際のメリディオナル横収差図である。 第5実施例に係る変倍光学系の中間焦点距離状態における無限遠合焦時の諸収差図である。 図24(a)は、第5実施例に係る変倍光学系の望遠端状態における無限遠合焦時の諸収差図であり、図24(b)は、0.20°の回転ブレに対してブレ補正を行った際のメリディオナル横収差図である。 図25(a)、図25(b)、および図25(c)はそれぞれ、第5実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における近距離合焦時の諸収差図である。 本実施形態の第6実施例に係る変倍光学系のレンズ構成を示す図である。 図27(a)は、第6実施例に係る変倍光学系の広角端状態における無限遠合焦時の諸収差図であり、図27(b)は、0.30°の回転ブレに対してブレ補正を行った際のメリディオナル横収差図である。 第6実施例に係る変倍光学系の中間焦点距離状態における無限遠合焦時の諸収差図である。 図29(a)は、第6実施例に係る変倍光学系の望遠端状態における無限遠合焦時の諸収差図であり、図29(b)は、0.20°の回転ブレに対してブレ補正を行った際のメリディオナル横収差図である。 図30(a)、図30(b)、および図30(c)はそれぞれ、第6実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における近距離合焦時の諸収差図である。 本実施形態の第7実施例に係る変倍光学系のレンズ構成を示す図である。 図32(a)は、第7実施例に係る変倍光学系の広角端状態における無限遠合焦時の諸収差図であり、図32(b)は、0.30°の回転ブレに対してブレ補正を行った際のメリディオナル横収差図である。 第7実施例に係る変倍光学系の中間焦点距離状態における無限遠合焦時の諸収差図である。 図34(a)は、第7実施例に係る変倍光学系の望遠端状態における無限遠合焦時の諸収差図であり、図34(b)は、0.20°の回転ブレに対してブレ補正を行った際のメリディオナル横収差図である。 図35(a)、図35(b)、および図35(c)はそれぞれ、第7実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における近距離合焦時の諸収差図である。 本実施形態の第8実施例に係る変倍光学系のレンズ構成を示す図である。 図37(a)は、第8実施例に係る変倍光学系の広角端状態における無限遠合焦時の諸収差図であり、図37(b)は、0.30°の回転ブレに対してブレ補正を行った際のメリディオナル横収差図である。 第8実施例に係る変倍光学系の中間焦点距離状態における無限遠合焦時の諸収差図である。 図39(a)は、第8実施例に係る変倍光学系の望遠端状態における無限遠合焦時の諸収差図であり、図39(b)は、0.20°の回転ブレに対してブレ補正を行った際のメリディオナル横収差図である。 図40(a)、図40(b)、および図40(c)はそれぞれ、第8実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における近距離合焦時の諸収差図である。 本実施形態の第9実施例に係る変倍光学系のレンズ構成を示す図である。 図42(a)は、第9実施例に係る変倍光学系の広角端状態における無限遠合焦時の諸収差図であり、図42(b)は、0.30°の回転ブレに対してブレ補正を行った際のメリディオナル横収差図である。 第9実施例に係る変倍光学系の中間焦点距離状態における無限遠合焦時の諸収差図である。 図44(a)は、第9実施例に係る変倍光学系の望遠端状態における無限遠合焦時の諸収差図であり、図44(b)は、0.20°の回転ブレに対してブレ補正を行った際のメリディオナル横収差図である。 図45(a)、図45(b)、および図45(c)はそれぞれ、第9実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における近距離合焦時の諸収差図である。 本実施形態の第10実施例に係る変倍光学系のレンズ構成を示す図である。 図47(a)は、第10実施例に係る変倍光学系の広角端状態における無限遠合焦時の諸収差図であり、図47(b)は、0.30°の回転ブレに対してブレ補正を行った際のメリディオナル横収差図である。 第10実施例に係る変倍光学系の中間焦点距離状態における無限遠合焦時の諸収差図である。 図49(a)は、第10実施例に係る変倍光学系の望遠端状態における無限遠合焦時の諸収差図であり、図49(b)は、0.20°の回転ブレに対してブレ補正を行った際のメリディオナル横収差図である。 図50(a)、図50(b)、および図50(c)はそれぞれ、第10実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における近距離合焦時の諸収差図である。 本実施形態の第11実施例に係る変倍光学系のレンズ構成を示す図である。 図52(a)、図52(b)、および図52(c)はそれぞれ、第11実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における無限遠合焦時の諸収差図である。 図53(a)、図53(b)、および図53(c)はそれぞれ、第11実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における近距離合焦時の諸収差図である。 本実施形態の第12実施例に係る変倍光学系のレンズ構成を示す図である。 図55(a)、図55(b)、および図55(c)はそれぞれ、第12実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における無限遠合焦時の諸収差図である。 図56(a)、図56(b)、および図56(c)はそれぞれ、第12実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における近距離合焦時の諸収差図である。 本実施形態の第13実施例に係る変倍光学系のレンズ構成を示す図である。 図58(a)、図58(b)、および図58(c)はそれぞれ、第13実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における無限遠合焦時の諸収差図である。 図59(a)、図59(b)、および図59(c)はそれぞれ、第13実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における近距離合焦時の諸収差図である。 本実施形態に係る変倍光学系を備えたカメラの構成を示す図である。 本実施形態に係る変倍光学系の製造方法を示すフローチャートである。
 以下、本実施形態の変倍光学系、光学機器、撮像機器について図を参照して説明する。本実施形態に係る変倍光学系(ズームレンズ)ZLの一例としての変倍光学系ZL(1)は、図1に示すように、物体側から順に、正の屈折力を有する前側レンズ群GFSと、負の屈折力を有するM1レンズ群GM1と、正の屈折力を有するM2レンズ群GM2と、負の屈折力を有するRNレンズ群GRNと、後続レンズ群GRSとを有し、変倍時に、前側レンズ群GFSとM1レンズ群GM1との間隔が変化し、M1レンズ群GM1とM2レンズ群GM2との間隔が変化し、M2レンズ群GM2とRNレンズ群GRNとの間隔が変化し、無限遠物体から近距離物体への合焦の際、RNレンズ群GRNが移動する。
 本実施形態に係る変倍光学系ZLは、図6に示す変倍光学系ZL(2)や、図11に示す変倍光学系ZL(3)や、図16に示す変倍光学系ZL(4)や、図21に示す変倍光学系ZL(5)や、図26に示す変倍光学系ZL(6)や、図31に示す変倍光学系ZL(7)や、図36に示す変倍光学系ZL(8)や、図41に示す変倍光学系ZL(9)や、図46に示す変倍光学系ZL(10)や、図51に示す変倍光学系ZL(11)や、図54に示す変倍光学系ZL(12)や、図57に示す変倍光学系ZL(13)でも良い。
 本実施形態の変倍光学系は、少なくとも5つのレンズ群を有し、広角端状態から望遠端状態への変倍時に、各レンズ群間隔を変化させることによって、変倍時の良好な収差補正を図ることができる。また、RNレンズ群GRNで合焦を行うことにより、合焦のためのレンズ群を小型軽量化できる。また、本実施形態に係る光学機器、撮像機器および変倍光学系の製造方法によっても同様の効果が得られる。
 本実施形態において、後続レンズ群GRSは、物体側から順に、負の屈折力を有するレンズと、正の屈折力を有するレンズとを有するようにしても良い。これにより、コマ収差をはじめとする諸収差を効果的に補正することができる。
 さらに、以下の条件式(1)を満足するように上記変倍光学系を構成するのが好ましい。
   0.70<(-fN)/fP<2.00  ・・・(1)
 但し、
 fN:後続レンズ群GRSにある最も負の屈折力が強いレンズの焦点距離
 fP:後続レンズ群GRSにある最も正の屈折力が強いレンズの焦点距離
 上記条件式(1)は、後続レンズ群GRSの像側にある最も負の屈折力が強いレンズの焦点距離と後続レンズ群GRSの像側にある最も正の屈折力が強いレンズの焦点距離との比を規定するものである。この条件式(1)を満足することで、コマ収差をはじめとする諸収差を効果的に補正することができる。
 上記条件式(1)の対応値が上限値を上回ると、合焦レンズ群の像側にある正屈折力を有するレンズの屈折力が強くなり、コマ収差の発生が過大となる。条件式(1)の上限値を1.90に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をより確実にするために、条件式(1)の上限値を1.80にすることが好ましい。
 上記条件式(1)の対応値が下限値を下回ると、合焦レンズ群の像側にある負屈折力を有するレンズの屈折力が強くなり、コマ収差の補正が過大となる。条件式(1)の下限値を0.80に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をより確実にするために、条件式(1)の下限値を0.90にすることが好ましい。
 本実施形態において、広角端状態から望遠端状態への変倍時に、前側レンズ群GFSが物体側へ移動する構成とすることが好ましい。これにより、広角端状態でのレンズ全長の短縮ができ、変倍光学系の小型化を図ることができる。
 本実施形態において、RNレンズ群GRNは、少なくとも一つの正の屈折力を有するレンズと少なくとも一つの負の屈折力を有するレンズを有することが好ましい。
 本実施形態において、変倍光学系が以下の条件式(2)を満足するのが好ましい。
   0.15<(-fTM1)/f1<0.35  ・・・(2)
 但し、
 fTM1:望遠端状態におけるM1レンズ群GM1の焦点距離
 f1:前側レンズ群GFSの焦点距離
 条件式(2)は、望遠端状態におけるM1レンズ群GM1の焦点距離と前側レンズ群GFSの焦点距離との比を規定するものである。この条件式(2)を満足することで、広角端から望遠端への変倍の際の球面収差をはじめとする諸収差の変動を抑えることができる。
 条件式(2)の対応値が上限値を上回ると、前側レンズ群GFSの屈折力が強くなり、広角端から望遠端への変倍の際の球面収差をはじめとする諸収差を補正することが困難となる。条件式(2)の上限値を0.33に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をより確実にするために、条件式(2)の上限値を0.31にすることが好ましい。
 上記条件式(2)の対応値が下限値を下回ると、M1レンズ群GM1の屈折力が強くなり、広角端から望遠端への変倍の際の球面収差をはじめとする諸収差の変動を抑えることが困難となる。条件式(2)の下限値を0.16に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をより確実にするために、条件式(2)の下限値を0.17にすることが好ましい。
 本実施形態において、変倍光学係が以下の条件式(3)を満足するのが好ましい。
   0.20<fTM2/f1<0.40  ・・・(3)
 但し、
 fTM2:望遠端状態におけるM2レンズ群GM2の焦点距離
 f1:前側レンズ群GFSの焦点距離
 条件式(3)は、望遠端状態におけるM2レンズ群GM2の焦点距離と前側レンズ群GFSの焦点距離との比を規定するものである。この条件式(3)を満足することで、広角端から望遠端への変倍の際の球面収差をはじめとする諸収差の変動を抑えることができる。
 上記条件式(3)の対応値が上限値を上回ると、前側レンズ群GFSの屈折力が強くなり、広角端から望遠端への変倍の際の球面収差をはじめとする諸収差を補正することが困難となる。条件式(3)の上限値を0.37に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をより確実にするために、条件式(3)の上限値を0.34にすることが好ましい。
 上記条件式(3)の対応値が下限値を下回ると、M2レンズ群GM2の屈折力が強くなり、広角端から望遠端への変倍の際の球面収差をはじめとする諸収差の変動を抑えることが困難となる。条件式(3)の下限値を0.22に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をより確実にするために、条件式(3)の下限値を0.24にすることが好ましい。
 本実施形態において、RNレンズ群GRNの像側に隣接して、物体側に凹面を向けた負メニスカスレンズを有することが好ましい。これにより、コマ収差をはじめとする諸収差を効果的に補正することができる。
 本実施形態において、変倍光学係が以下の条件式(4)を満足するのが好ましい。
   1.80<f1/fw<3.50  ・・・(4)
 但し、
 f1:前側レンズ群GFSの焦点距離
 fw:広角端状態における変倍光学系の焦点距離
 条件式(4)は、前側レンズ群GFSの焦点距離と広角端状態における変倍光学系の焦点距離との比を規定するものである。この条件式(4)を満足することで、鏡筒の大型化を防ぎ、広角端から望遠端への変倍の際の球面収差をはじめとする諸収差の変動を抑えることができる。
 上記条件式(4)の対応値が上限値を上回ると、前側レンズ群GFSの屈折力が弱くなり、鏡筒が大型化する。条件式(4)の上限値を3.30に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(4)の上限値を3.10に設定することが好ましい。
 上記条件式(4)の対応値が下限値を下回ると、前側レンズ群GFSの屈折力が強くなり、広角端から望遠端への変倍の際の球面収差をはじめとする諸収差を補正することが困難となる。条件式(4)の下限値を1.90に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(4)の下限値を2.00に設定することが好ましく、条件式(4)の下限値を2.10に設定することがより好ましい。
 本実施形態において、変倍光学係が以下の条件式(5)を満足するのが好ましい。
   3.70<f1/(-fTM1)<5.00  ・・・(5)
 但し、
 f1:前側レンズ群GFSの焦点距離
 fTM1:望遠端状態におけるM1レンズ群GM1の焦点距離
 条件式(5)は、前側レンズ群GFSの焦点距離とM1レンズ群GM1の焦点距離との比を規定するものである。この条件式(5)を満足することで、広角端から望遠端への変倍の際の球面収差をはじめとする諸収差の変動を抑えることができる。
 上記条件式(5)の対応値が上限値を上回ると、M1レンズ群GM1の屈折力が強くなり、広角端から望遠端への変倍の際の球面収差をはじめとする諸収差の変動を抑えることが困難となる。条件式(5)の上限値を4.90に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(5)の上限値を4.80に設定することが好ましい。
 上記条件式(5)の対応値が下限値を下回ると、前側レンズ群GFSの屈折力が強くなり、広角端から望遠端への変倍の際の球面収差をはじめとする諸収差を補正することが困難となる。条件式(5)の下限値を3.90に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(5)の下限値を3.95に設定することが好ましい。
 本実施形態において、変倍光学係が以下の条件式(6)を満足するのが好ましい。
   3.20<f1/fTM2<5.00  ・・・(6)
 但し、
 f1:前側レンズ群GFSの焦点距離
 fTM2:望遠端状態におけるM2レンズ群GM2の焦点距離
 条件式(6)は、前側レンズ群GFSの焦点距離とM2レンズ群GM2の焦点距離との比を規定するものである。この条件式(6)を満足することで、広角端から望遠端への変倍の際の球面収差をはじめとする諸収差の変動を抑えることができる。
 上記条件式(6)の対応値が上限値を上回ると、M2レンズ群GM2の屈折力が強くなり、広角端から望遠端への変倍の際の球面収差をはじめとする諸収差の変動を抑えることが困難となる。条件式(6)の上限値を4.80に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(6)の上限値を4.60に設定することが好ましい。
 上記条件式(6)の対応値が下限値を下回ると、前側レンズ群GFSの屈折力が強くなり、広角端から望遠端への変倍の際の球面収差をはじめとする諸収差を補正することが困難となる。条件式(6)の下限値を3.40に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(6)の下限値を3.60に設定することが好ましい。
 本実施形態において、変倍時に、M1レンズ群GM1中の最も物体側にあるレンズ群が像面に対して固定であることが好ましい。これにより、製造誤差による性能劣化を抑え、量産性を確保することができる。
 本実施形態において、M2レンズ群GM2は、手ブレ等による結像位置変位の補正を行うために光軸と直交する方向へ移動可能な防振レンズ群を有することが好ましい。このようにM2レンズ群GM2中に防振レンズ群を配置することで、ブレ補正を行った際の性能劣化を効果的に抑えることができる。
 本実施形態において、上記防振レンズ群は、物体側から順に、負の屈折力を有するレンズと正の屈折力を有するレンズとからなることが好ましい。これにより、ブレ補正を行った際の性能劣化を効果的に抑えることができる。
 本実施形態において、変倍光学係が以下の条件式(7)を満足するのが好ましい。
   1.00<nvrN/nvrP<1.25  ・・・(7)
 但し、
 nvrN:上記防振レンズ群内の負の屈折力を有するレンズの屈折率
 nvrP:上記防振レンズ群内の正の屈折力を有するレンズの屈折率
 条件式(7)は、M2レンズ群GM2に設けられた防振レンズ群内の負の屈折力を有するレンズの屈折率と防振レンズ群内の正の屈折力を有するレンズの屈折率との比を規定するものである。この条件式(7)を満足することで、ブレ補正を行った際の性能劣化を効果的に抑えることができる。
 この条件式(7)の対応値が上限値を上回ると、防振レンズ群内の正の屈折力を有するレンズの屈折率が低くなり、ブレ補正を行った際に発生する偏芯コマ収差の発生が過大となり、補正するのが困難となる。この条件式(7)の上限値を1.22に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をより確実にするために、条件式(7)の上限値を1.20にすることが好ましい。
 上記条件式(7)の対応値が、この範囲内である時、防振レンズ群内の負の屈折力を有するレンズの屈折率が適当であり、ブレ補正を行った際の偏芯コマ収差が良好に補正され、好ましい。条件式(7)の下限値を1.03に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をより確実にするために、条件式(7)の下限値を1.05にすることが好ましい。
 本実施形態において、変倍光学係が以下の条件式(8)を満足するのが好ましい。
   0.30<νvrN/νvrP<0.90  ・・・(8)
 但し、
 νvrN:上記防振レンズ群内の負の屈折力を有するレンズのアッベ数
 νvrP:上記防振レンズ群内の正の屈折力を有するレンズのアッベ数
 条件式(8)は、防振レンズ群内の負の屈折力を有するレンズのアッベ数と防振レンズ群内の正の屈折力を有するレンズのアッベ数との比を規定するものである。この条件式(8)を満足することで、ブレ補正を行った際の性能劣化を効果的に抑えることができる。
 条件式(8)の対応値が、この範囲内である時、防振レンズ群内の正の屈折力を有するレンズのアッベ数が適当であり、ブレ補正を行った際に発生する色収差が良好に補正され、好ましい。条件式(8)の上限値を0.85に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をより確実にするために、条件式(8)の上限値を0.80にすることが好ましい。
 条件式(8)の対応値が下限値を下回ると、防振レンズ群内の負の屈折力を有するレンズのアッベ数が小さくなり、ブレ補正を行った際に発生する色収差の補正が困難となる。条件式(8)の下限値を0.35に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をより確実にするために、条件式(8)の下限値を0.40にすることが好ましい。
 本実施形態において、M1レンズ群GM1は、手ブレ等による結像位置変位の補正を行うために光軸と直交する方向へ移動可能な防振レンズ群を有することも好ましい。この場合、この防振レンズ群は、物体側から順に、負の屈折力を有するレンズと正の屈折力を有するレンズからなることが好ましい。
 本実施形態において、変倍光学係が以下の条件式(9)を満足するのが好ましい。
   0.80<nvrN/nvrP<1.00  ・・・(9)
 但し、
 nvrN:上記防振レンズ群内の負の屈折力を有するレンズの屈折率
 nvrP:上記防振レンズ群内の正の屈折力を有するレンズの屈折率
 条件式(9)は、M1レンズ群GM1に設けられた防振レンズ群における負の屈折力を有するレンズの屈折率と、M1レンズ群GM1に設けられた防振レンズ群における正の屈折力を有するレンズの屈折率との比を規定するものである。この条件式(9)を満足することで、ブレ補正を行った際の性能劣化を効果的に抑えることができる。
 上記条件式(9)の対応値が上限値を上回ると、M1レンズ群GM1に設けられた防振レンズ群における正の屈折力を有するレンズの屈折率が低くなり、ブレ補正を行った際に発生する偏芯コマ収差を補正することが困難となる。条件式(9)の上限値を0.98に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(9)の上限値を0.96に設定することが好ましい。
 上記条件式(9)の対応値が下限値を下回ると、M1レンズ群GM1に設けられた防振レンズ群における負の屈折力を有するレンズの屈折率が低くなり、ブレ補正を行った際に発生する偏芯コマ収差を補正することが困難となる。条件式(9)の下限値を0.82に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(9)の下限値を0.84に設定することが好ましい。
 本実施形態において、変倍光学係が以下の条件式(10)を満足するのが好ましい。
   1.20<νvrN/νvrP<2.40  ・・・(10)
 但し、
 νvrN:上記防振レンズ群内の負の屈折力を有するレンズのアッベ数
 νvrP:上記防振レンズ群内の正の屈折力を有するレンズのアッベ数
 条件式(10)は、M1レンズ群GM1に設けられた防振レンズ群における負の屈折力を有するレンズのアッベ数と、M1レンズ群GM1に設けられた防振レンズ群における正の屈折力を有するレンズのアッベ数との比を規定するものである。この条件式(10)を満足することで、ブレ補正を行った際の性能劣化を効果的に抑えることができる。
 上記条件式(10)の対応値が上限値を上回ると、M1レンズ群GM1に設けられた防振レンズ群における正の屈折力を有するレンズのアッベ数が小さくなりすぎるため、ブレ補正を行った際に発生する色収差を補正することが困難となる。条件式(10)の上限値を2.30に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(10)の上限値を2.20に設定することが好ましい。
 上記条件式(10)の対応値が下限値を下回ると、M1レンズ群GM1に設けられた防振レンズ群における負の屈折力を有するレンズのアッベ数が小さくなりすぎるため、ブレ補正を行った際に発生する色収差を補正することが困難となる。条件式(10)の下限値を1.30に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(10)の下限値を1.40に設定することが好ましい。
 本実施形態において、後続レンズ群GRSは、正の屈折力を有するレンズを有するのが好ましい。これにより、コマ収差をはじめとする諸収差を効果的に補正することができる。
 この場合において、変倍光学系が条件式(2)を満足するのが好ましい。
   0.15<(-fTM1)/f1<0.35  ・・・(2)
 なお、この条件式(2)は上述したものと同一であり、その内容説明は上述した通りである。
 この場合においても、条件式(2)の対応値が上限値を上回ると、前側レンズ群GFSの屈折力が強くなり、広角端から望遠端への変倍の際の球面収差をはじめとする諸収差を補正することが困難となる。条件式(2)の上限値を0.33に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をより確実にするために、条件式(2)の上限値を0.31にすることが好ましい。
 また、上記条件式(2)の対応値が下限値を下回ると、M1レンズ群GM1の屈折力が強くなり、広角端から望遠端への変倍の際の球面収差をはじめとする諸収差の変動を抑えることが困難となる。条件式(2)の下限値を0.16に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をより確実にするために、条件式(2)の下限値を0.17にすることが好ましい。
 上記の場合において、変倍光学係が以下の条件式(3)を満足するのが好ましい。
   0.20<fTM2/f1<0.40  ・・・(3)
 この条件式(3)は上述したものと同一であり、その内容説明は上述した通りである。
 この場合においても、上記条件式(3)の対応値が上限値を上回ると、前側レンズ群GFSの屈折力が強くなり、広角端から望遠端への変倍の際の球面収差をはじめとする諸収差を補正することが困難となる。条件式(3)の上限値を0.37に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をより確実にするために、条件式(3)の上限値を0.34にすることが好ましい。
 上記条件式(3)の対応値が下限値を下回ると、M2レンズ群GM2の屈折力が強くなり、広角端から望遠端への変倍の際の球面収差をはじめとする諸収差の変動を抑えることが困難となる。条件式(3)の下限値を0.22に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をより確実にするために、条件式(3)の下限値を0.24にすることが好ましい。
 上記の場合において、変倍光学係が以下の条件式(4)を満足するのが好ましい。
   1.80<f1/fw<3.50  ・・・(4)
 この条件式(4)は上述したものと同一であり、その内容説明は上述した通りである。
 この場合においても、条件式(4)の対応値が上限値を上回ると、前側レンズ群GFSの屈折力が弱くなり、鏡筒が大型化する。条件式(4)の上限値を3.30に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(4)の上限値を3.10に設定することが好ましい。
 上記条件式(4)の対応値が下限値を下回ると、前側レンズ群GFSの屈折力が強くなり、広角端から望遠端への変倍の際の球面収差をはじめとする諸収差を補正することが困難となる。条件式(4)の下限値を1.90に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(4)の下限値を2.00に設定することが好ましく、条件式(4)の下限値を2.10に設定することがより好ましい。
 さらに上記の場合において、変倍光学係が以下の条件式(5)を満足するのが好ましい。
   3.70<f1/(-fTM1)<5.00  ・・・(5)
 この条件式(5)は上述したものと同一であり、その内容説明は上述した通りである。
 この場合においても、上記条件式(5)の対応値が上限値を上回ると、M1レンズ群GM1の屈折力が強くなり、広角端から望遠端への変倍の際の球面収差をはじめとする諸収差の変動を抑えることが困難となる。条件式(5)の上限値を4.90に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(5)の上限値を4.80に設定することが好ましい。
 上記条件式(5)の対応値が下限値を下回ると、前側レンズ群GFSの屈折力が強くなり、広角端から望遠端への変倍の際の球面収差をはじめとする諸収差を補正することが困難となる。条件式(5)の下限値を3.90に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(5)の下限値を3.95に設定することが好ましい。
 さらに上記の場合において、変倍光学係が以下の条件式(6)を満足するのが好ましい。
   3.20<f1/fTM2<5.00  ・・・(6)
 この条件式(6)は上述したものと同一であり、その内容説明は上述した通りである。
 この場合においても、上記条件式(6)の対応値が上限値を上回ると、M2レンズ群GM2の屈折力が強くなり、広角端から望遠端への変倍の際の球面収差をはじめとする諸収差の変動を抑えることが困難となる。条件式(6)の上限値を4.80に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(6)の上限値を4.60に設定することが好ましい。
 上記条件式(6)の対応値が下限値を下回ると、前側レンズ群GFSの屈折力が強くなり、広角端から望遠端への変倍の際の球面収差をはじめとする諸収差を補正することが困難となる。条件式(6)の下限値を3.40に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(6)の下限値を3.60に設定することが好ましい。
 本実施形態の光学機器および撮像機器は、上述した構成の変倍光学系を備えて構成される。その具体例として、上記変倍光学系ZLを備えたカメラ(本願発明の撮像機器に対応)を図60に基づいて説明する。このカメラ1は、図60に示すように撮影レンズ2が交換可能なレンズアセンブリ構成であり、この撮影レンズ2に上述した構成の変倍光学係が設けられている。すなわち、撮影レンズ2が本願発明の光学機器に対応する。カメラ1はデジタルカメラであり、不図示の物体(被写体)からの光は、撮影レンズ2で集光されて、撮像素子3へ到達する。これにより被写体からの光は、当該撮像素子3によって撮像されて、被写体画像として不図示のメモリに記録される。このようにして、撮影者はカメラ1による被写体の撮影を行うことができる。なお、このカメラは、ミラーレスカメラでも、クイックリターンミラーを有した一眼レフタイプのカメラであっても良い。
 以上の構成により、上記変倍光学系ZLを撮影レンズ2に搭載したカメラ1は、合焦用レンズ群を小型軽量化することで、鏡筒を大型化することなく高速なAF、AF時の静粛性を実現することができる。さらに、広角端状態から望遠端状態への変倍時の収差変動、ならびに無限遠物体から近距離物体への合焦時の収差変動を良好に抑え、良好な光学性能を実現することができる。
 続いて、図61を参照しながら、上述の変倍光学系ZLの製造方法について概説する。まず、物体側から順に、正の屈折力を有する前側レンズ群GFSと、負の屈折力を有するM1レンズ群GM1と、正の屈折力を有するM2レンズ群GM2と、負の屈折力を有するRNレンズ群GRNと、後続レンズ群GRSとを配置する(ステップST1)。そして、変倍時に、前側レンズ群GFSとM1レンズ群GM1との間隔が変化し、M1レンズ群GM1とM2レンズ群GM2との間隔が変化し、M2レンズ群GM2とRNレンズ群GRNとの間隔が変化するように構成する(ステップST2)。このとき、無限遠物体から近距離物体への合焦の際、RNレンズ群GRNが移動するように構成し(ステップST3)、後続レンズ群GRSは、物体側から順に、負の屈折力を有するレンズと、正の屈折力を有するレンズとを有して構成する(ステップST4)。さらに、所定の条件式を満足するように各レンズを配置する(ステップST5)。
 以下、本実施形態の実施例に係る変倍光学系(ズームレンズ)ZLを図面に基づいて説明する。図1、図6、図11、図16、図21、図26、図31、図36、図41、図46、図51、図54、図57は、第1~第13実施例に係る変倍光学系ZL{ZL(1)~ZL(13)}の構成及び屈折力配分を示す断面図である。変倍光学系ZL(1)~ZL(13)の断面図の下部には、広角端状態(W)から望遠端状態(T)に変倍する際の各レンズ群の光軸に沿った移動方向を矢印で示す。さらに、合焦群GRNが無限遠から近距離物体に合焦する際の移動方向を「合焦」という文字とともに矢印で示している。
 これら図1、図6、図11、図16、図21、図26、図31、図36、図41、図46、図51、図54、図57において、各レンズ群を符号Gと数字もしくはアルファベットの組み合わせにより、各レンズを符号Lと数字の組み合わせにより、それぞれ表している。この場合において、符号、数字の種類および数が大きくなって煩雑化するのを防止するため、実施例毎にそれぞれ独立して符号と数字の組み合わせを用いてレンズ群等を表している。このため、実施例間で同一の符号と数字の組み合わせが用いられていても、同一の構成であることを意味するものでは無い。
 以下に表1~表13を示すが、この内、表1~13は第1実施例~第13実施例のそれぞれにおける各諸元データを示す表である。各実施例では収差特性の算出対象として、d線(波長587.562nm)、g線(波長435.835nm)を選んでいる。
 [レンズ諸元]の表において、面番号は光線の進行する方向に沿った物体側からの光学面の順序を示し、Rは各光学面の曲率半径(曲率中心が像側に位置する面を正の値としている)、Dは各光学面から次の光学面(又は像面)までの光軸上の距離である面間隔、ndは光学部材の材質のd線に対する屈折率、νdは光学部材の材質のd線を基準とするアッベ数を、それぞれ示す。物面とは物体面のことを示し、曲率半径の「∞」は平面又は開口を、(絞りS)は開口絞りSを、像面は像面Iを、それぞれ示す。空気の屈折率nd=1.00000の記載は省略している。
 [各種データ]の表において、fはレンズ全系の焦点距離、FNOはFナンバー、2ωは画角(単位は°(度)で、ωが半画角である)、Ymaxは最大像高を示す。TLは無限遠合焦時の光軸上でのレンズ最前面からレンズ最終面までの距離にBFを加えた距離を示し、BFは無限遠合焦時の光軸上でのレンズ最終面から像面Iまでの距離(バックフォーカス)を示す。なお、これらの値は、広角端(W)、中間焦点距離(M)、望遠端(T)の各変倍状態におけるそれぞれについて示している。
 [可変間隔データ]の表は、[レンズ諸元]を示す表において面間隔が「可変」となっている面番号(例えば、実施例1では、面番号5,13,25,29)での面間隔を示す。ここでは無限遠および近距離に合焦させたときのそれぞれについて、広角端(W)、中間焦点距離(M)、望遠端(T)の各変倍状態における面間隔を示す。
 [レンズ群データ]の表において、第1~第5レンズ群(もしくは第6レンズ群)のそれぞれの始面(最も物体側の面)と焦点距離を示す。
 [条件式対応値]の表には、上記の条件式(1)~(10)に対応する値を示す。このとき、全ての実施例が全ての条件式に対応する訳ではないので、各実施例において対応する条件式の値を示している。
 以下、全ての諸元値において、掲載されている焦点距離f、曲率半径R、面間隔D、その他の長さ等は、特記のない場合一般に「mm」が使われるが、光学系は比例拡大又は比例縮小しても同等の光学性能が得られるので、これに限られるものではない。
 ここまでの表の説明は全ての実施例において共通であり、以下での重複する説明は省略する。
 (第1実施例)
 第1実施例について、図1および表1を用いて説明する。図1は、本実施形態の第1実施例に係る変倍光学系のレンズ構成を示す図である。本実施例に係る変倍光学系ZL(1)は、物体側から順に、正屈折力を有する第1レンズ群G1と、負屈折力を有する第2レンズ群G2と、正屈折力を有する第3レンズ群G3と、負屈折力を有する第4レンズ群G4と、正屈折力を有する第5レンズ群G5から構成されている。各レンズ群記号に付けている符号(+)もしくは(-)は各レンズ群の屈折力を示し、このことは以下の全ての実施例でも同様である。
 この構成は上記実施形態との関係として、第1レンズ群G1が前側レンズ群GFSに、第2レンズ群G2がM1レンズ群GM1に、第3レンズ群G3がM2レンズ群GM2に、第4レンズ群G4がRNレンズ群GRNに、第5レンズ群G5が後続レンズ群GRSに対応する。
 第1レンズ群G1は、物体側から順に、物体側に凸面を向けた正凸平レンズL11と、物体側に凸面を向けた負メニスカスレンズL12と物体側に凸面を向けた正メニスカスレンズL13との接合正レンズとから構成される。
 第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、両凸形状の正レンズL22と、両凹形状の負レンズL23と、物体側に凹面を向けた負メニスカスレンズL24とから構成される。
 第3レンズ群G3は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL31と両凸形状の正レンズL32との接合正レンズと、両凸形状の正レンズL33と両凹形状の負レンズL34との接合正レンズと、開口絞りSと、物体側に凸面を向けた負メニスカスレンズL35と両凸形状の正レンズL36との接合負レンズと、両凸形状の正レンズL37とから構成される。
 第4レンズ群G4は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL41と、両凹形状の負レンズL42とから構成される。
 第5レンズ群G5は、物体側から順に、物体側に凹面を向けた負メニスカスレンズL51と、両凸形状の正レンズL52とから構成される。
 本実施例に係る光学系では、第4レンズ群G4を像面方向へ移動させることにより、遠距離物体から近距離物体への合焦が行われる。
 本実施例に係る変倍光学系では、第3レンズ群G3(M2レンズ群GM2)を構成する物体側に凸面を向けた負メニスカスレンズL31と両凸形状の正レンズL32との接合正レンズを光軸と直交する方向へ移動させることによって、手ブレ等による結像位置変位を補正する(防振する)。
 全系の焦点距離がfで、防振係数(ブレ補正での移動レンズ群の移動量に対する結像面での像移動量比)がKのレンズで角度θの回転ブレを補正するには、ブレ補正用の移動レンズ群を(f・tanθ)/Kだけ光軸と直交方向に移動させればよい。第1実施例の広角端においては、防振係数1.65であり、焦点距離は72.1mmであるので、0.30°の回転ブレを補正するための防振レンズ群の移動量は0.23mmである。第1実施例の望遠端状態においては、防振係数2.10であり、焦点距離は292.0mmであるので、0.20°の回転ブレを補正するための防振レンズ群の移動量は0.49mmである。
 以下の表1に、本実施例に係る光学系の諸元の値を掲げる。表1において、fは焦点距離、BFはバックフォーカスを示す。
(表1)第1実施例 
[レンズ諸元] 
面番号    R    D     nd    νd 
物面    ∞ 
  1   109.4870   4.600   1.48749   70.31 
  2    ∞     0.200 
  3   101.1800   1.800   1.62004   36.40 
  4   49.8109   7.200   1.49700   81.61 
  5   385.8166   可変
  6   176.0187   1.700   1.69680   55.52 
  7   31.3680   5.150 
  8   32.6087   5.500   1.78472   25.64 
  9  -129.7634   1.447 
 10  -415.4105   1.300   1.77250   49.62 
 11   34.3083   4.300 
 12   -33.1502   1.200   1.85026   32.35 
 13  -203.5644   可変
 14   70.9040   1.200   1.80100   34.92 
 15   30.2785   5.900   1.64000   60.20 
 16   -70.1396   1.500 
 17   34.0885   6.000   1.48749   70.31 
 18   -42.6106   1.300   1.80610   40.97 
 19   401.2557   2.700 
 20    ∞    14.110             (絞りS)
 21   350.0000   1.200   1.83400   37.18 
 22   30.1592   4.800   1.51680   63.88 
 23   -94.9908   0.200
 24   66.3243   2.800   1.80100   34.92 
 25  -132.5118   可変
 26   -92.0997   2.200   1.80518   25.45 
 27   -44.0090   6.500
 28   -36.9702   1.000   1.77250   49.62 
 29   68.3346   可変
 30   -24.5000   1.400   1.62004   36.40 
 31   -41.1519   0.200 
 32   106.0000   3.800   1.67003   47.14 
 33  -106.0000   BF 
像面    ∞
 
[各種データ]
変倍比   4.05
      W    M     T 
f     72.1   100.0   292.0 
FNO    4.49   4.86   5.88
2ω    33.96   24.48   8.44
Ymax   21.60   21.60   21.60 
TL    190.13  205.07  245.82 
BF    39.12   46.45   67.12 
 
[可変間隔データ]
       W    M    T      W    M    T 
      無限遠  無限遠  無限遠    近距離  近距離  近距離 
d5     6.204  21.150  61.895    6.204  21.150  61.895 
d13    30.000  22.666  2.000    30.000  22.666  2.000
d25     2.180  3.742  3.895    2.837  4.562  5.614 
d29    21.418  19.856  19.703    20.761  19.036  17.984 
 
[レンズ群データ] 
群  始面     f 
G1    1    145.319 
G2    6    -29.546 
G3   14    38.298 
G4   26    -48.034
G5   30    324.470
 
[条件式対応値]
(1) (-fN)/fP = 1.266
(2) (-fTM1)/f1 = 0.203
(3) fTM2/f1 = 0.264
(4) f1/fw= 2.016
(5) f1/(-fTM1)= 4.918
(6) f1/fTM2= 3.794
(7) nvrN/nvrP = 1.098
(8) νvrN/νvrP = 0.580
 
 図2(a)、及び図2(b)はそれぞれ、第1実施例に係る防振機能を有する変倍光学系の広角端状態における無限遠合焦時の諸収差図、及び0.30°の回転ブレに対してブレ補正を行った際のメリディオナル横収差図である。図3は、第1実施例に係る防振機能を有する変倍光学系の中間焦点距離状態における無限遠合焦時の諸収差図である。図4(a)、及び図4(b)はそれぞれ、第1実施例に係る防振機能を有する変倍光学系の望遠端状態における無限遠合焦時の諸収差図、及び0.20°の回転ブレに対してブレ補正を行った際のメリディオナル横収差図である。図5(a)、図5(b)、及び図5(c)はそれぞれ、第1実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における近距離合焦時の諸収差図である。
 図2~図5の各収差図において、FNOはFナンバー、NAは開口数、Yは像高をそれぞれ示す。なお、球面収差図では最大口径に対応するFナンバーまたは開口数の値を示し、非点収差図及び歪曲収差図では像高の最大値をそれぞれ示し、コマ収差図では各像高の値を示す。dはd線(λ=587.6nm)、gはg線(λ=435.8nm)をそれぞれ示す。非点収差図において、実線はサジタル像面、破線はメリディオナル像面をそれぞれ示す。なお、以下に示す各実施例の収差図においても、本実施例と同様の符号を用いる。
 各諸収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差を良好に補正し優れた結像性能を有しており、さらに近距離合焦時にも優れた結像性能を有していることがわかる。
 (第2実施例)
 図6は、本願の第2実施例に係る変倍光学系のレンズ構成を示す図である。本実施例に係る変倍光学系は、物体側から順に、正屈折力を有する第1レンズ群G1と、負屈折力を有する第2レンズ群G2と、負屈折力を有する第3レンズ群G3と、正屈折力を有する第4レンズ群G4と、負屈折力を有する第5レンズ群G5と、正屈折力を有する第6レンズ群G6から構成されている。
 この構成は上記実施形態との関係として、第1レンズ群G1が前側レンズ群GFSに、第2レンズ群G2および第3レンズ群G3がM1レンズ群GM1に、第4レンズ群G4がM2レンズ群GM2に、第5レンズ群G5がRNレンズ群GRNに、第6レンズ群G6が後続レンズ群GRSに対応する。
 第1レンズ群G1は、物体側から順に、物体側に凸面を向けた正凸平レンズL11と、物体側に凸面を向けた負メニスカスレンズL12と物体側に凸面を向けた正メニスカスレンズL13との接合正レンズとから構成される。
 第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、両凸形状の正レンズL22と、両凹形状の負レンズL23とから構成される。
 第3レンズ群G3は、物体側に凹面を向けた負メニスカスレンズL31からなる。
 第4レンズ群G4は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL41と両凸形状の正レンズL42との接合正レンズと、両凸形状の正レンズL43と両凹形状の負レンズL44との接合正レンズと、開口絞りSと、物体側に凸面を向けた負メニスカスレンズL45と両凸形状の正レンズL46との接合負レンズと、両凸形状の正レンズL47とから構成される。
 第5レンズ群G5は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL51と、両凹形状の負レンズL52とから構成される。
 第6レンズ群G6は、物体側から順に、物体側に凹面を向けた負メニスカスレンズL61と、両凸形状の正レンズL62とから構成される。
 本実施例に係る光学系では、第5レンズ群G5を像面方向へ移動させることにより、遠距離物体から近距離物体への合焦が行われる。また、第4レンズ群G4(M2レンズ群GM2)を構成する物体側に凸面を向けた負メニスカスレンズL41と両凸形状の正レンズL42との接合正レンズを光軸と直交する方向へ移動させることによって、手ブレ等による結像位置変位を補正する。
 なお、全系の焦点距離がfで、防振係数(ブレ補正での移動レンズ群の移動量に対する結像面での像移動量比)がKのレンズで角度θの回転ブレを補正するには、ブレ補正用の移動レンズ群を(f・tanθ)/Kだけ光軸と直交方向に移動させればよい。第2実施例の広角端においては、防振係数1.66であり、焦点距離は72.1mmであるので、0.30°の回転ブレを補正するための防振レンズ群の移動量は0.23mmである。第2実施例の望遠端状態においては、防振係数2.10であり、焦点距離は292.0mmであるので、0.20°の回転ブレを補正するための防振レンズ群の移動量は0.49mmである。
 以下の表2に、本実施例に係る光学系の諸元の値を掲げる。 
(表2)第2実施例 
[レンズ諸元] 
面番号   R     D     nd    νd 
物面    ∞ 
  1   107.5723   4.600   1.48749   70.32 
  2    ∞     0.200 
  3   96.9007   1.800   1.62004   36.40 
  4   47.8324   7.200   1.49700   81.61 
  5   361.3792   可変
  6   139.8663   1.700   1.69680   55.52 
  7   33.7621   6.806 
  8   33.5312   5.500   1.78472   25.64 
  9  -139.8348   0.637 
 10  -492.0620   1.300   1.80400   46.60 
 11   35.1115   可変
 12   -34.6163   1.200   1.83400   37.18 
 13  -377.1306   可変 
 14   74.8969   1.200   1.80100   34.92 
 15   31.6202   5.900   1.64000   60.19 
 16   -69.0444   1.500
 17   34.2668   6.000   1.48749   70.32 
 18   -42.8334   1.300   1.80610   40.97 
 19   434.9585   2.700
 20    ∞    14.312              (絞りS)
 21   350.0000   1.200   1.83400   37.18 
 22   30.4007   4.800   1.51680   63.88 
 23   -98.0361   0.200
 24   68.9306   2.800   1.80100   34.92 
 25  -129.3404   可変
 26   -90.5065   2.200   1.80518   25.45 
 27   -44.1796   6.500
 28   -37.6907   1.000   1.77250   49.62 
 29   68.3000   可変
 30   -24.5545   1.400   1.62004   36.40 
 31   -41.7070   0.200 
 32   106.0000   3.800   1.67003   47.14 
 33  -106.0000   BF
像面    ∞
 
[各種データ] 
変倍比   4.05
      W    M    T 
f     72.1  100.0  292.0 
FNO    4.53   4.89   5.88
2ω    33.98  24.48   8.44
Ymax   21.60  21.60  21.60 
TL    190.82  206.02  245.82 
BF    39.12  46.27  66.46 
 
[可変間隔データ]
       W    M    T      W    M    T 
      無限遠  無限遠  無限遠    近距離  近距離  近距離 
d5     2.861  18.057  57.861    2.861  18.057  57.861 
d11     5.727  5.812  6.883    5.727  5.812  6.883
d13    30.500  23.259  2.000    30.500  23.259  2.000 
d25     2.246  3.634  3.634    2.888  4.436  5.329 
d29    22.411  21.023  21.023    21.770  20.221  19.329 
 
[レンズ群データ] 
群  始面     f
G1    1    141.867 
G2    6   -104.910 
G3   12    -45.774 
G4   14    38.681
G5   26    -48.266
G6   30    340.779
 
[条件式対応値]
(1) (-fN)/fP = 1.248
(2) (-fTM1)/f1 = 0.208
(3) fTM2/f1 = 0.273
(4) f1/fw =1.968
(5) f1/(-fTM1) = 4.804
(6) f1/fTM2 = 3.668
(7) nvrN/nvrP = 1.098
(8) νvrN/νvrP = 0.580
 
 図7(a)、及び図7(b)はそれぞれ、第2実施例に係る防振機能を有する変倍光学系の広角端状態における無限遠合焦時の諸収差図、及び0.30°の回転ブレに対してブレ補正を行った際のメリディオナル横収差図である。図8は、第2実施例に係る防振機能を有する変倍光学系の中間焦点距離状態における無限遠合焦時の諸収差図である。図9(a)、及び図9(b)はそれぞれ、第2実施例に係る防振機能を有する変倍光学系の望遠端状態における無限遠合焦時の諸収差図、及び0.20°の回転ブレに対してブレ補正を行った際のメリディオナル横収差図である。図10(a)、図10(b)、及び図10(c)はそれぞれ、第2実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における近距離合焦時の諸収差図である。
 各諸収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差を良好に補正し優れた結像性能を有しており、さらに近距離合焦時にも優れた結像性能を有していることがわかる。
 (第3実施例)
 図11は、本願の第3実施例に係る変倍光学系のレンズ構成を示す図である。本実施例に係る変倍光学系は、物体側から順に、正屈折力を有する第1レンズ群G1と、負屈折力を有する第2レンズ群G2と、正屈折力を有する第3レンズ群G3と、正屈折力を有する第4レンズ群G4と、負屈折力を有する第5レンズ群G5と、正屈折力を有する第6レンズ群G6から構成されている。
 この構成は上記実施形態との関係として、第1レンズ群G1が前側レンズ群GFSに、第2レンズ群G2がM1レンズ群GM1に、第3レンズ群G3および第4レンズ群G4がM2レンズ群GM2に、第5レンズ群G5がRNレンズ群GRNに、第6レンズ群G6が後続レンズ群GRSに対応する。
 第1レンズ群G1は、物体側から順に、物体側に凸面を向けた正凸平レンズL11と、物体側に凸面を向けた負メニスカスレンズL12と物体側に凸面を向けた正メニスカスレンズL13との接合正レンズとから構成される。
 第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、両凸形状の正レンズL22と、両凹形状の負レンズL23と、物体側に凹面を向けた負メニスカスレンズL24とから構成される。
 第3レンズ群G3は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL31と両凸形状の正レンズL32との接合正レンズと、両凸形状の正レンズL33と両凹形状の負レンズL34との接合正レンズと、開口絞りSとから構成される。
 第4レンズ群G4は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL41と両凸形状の正レンズL42との接合負レンズと、両凸形状の正レンズL43とから構成される。
 第5レンズ群G5は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL51と、両凹形状の負レンズL52とから構成される。
 第6レンズ群G6は、物体側から順に、物体側に凹面を向けた負メニスカスレンズL61と、両凸形状の正レンズL62とから構成される。
 本実施例に係る光学系では、第5レンズ群G5を像面方向へ移動させることにより、遠距離物体から近距離物体への合焦が行われる。また、第3レンズ群G3(M2レンズ群GM2)を構成する物体側に凸面を向けた負メニスカスレンズL31と両凸形状の正レンズL32との接合正レンズを光軸と直交する方向へ移動させることによって、手ブレ等による結像位置変位を補正する。
 なお、全系の焦点距離がfで、防振係数(ブレ補正での移動レンズ群の移動量に対する結像面での像移動量比)がKのレンズで角度θの回転ブレを補正するには、ブレ補正用の移動レンズ群を(f・tanθ)/Kだけ光軸と直交方向に移動させればよい。第3実施例の広角端においては、防振係数1.65であり、焦点距離は72.1mmであるので、0.30°の回転ブレを補正するための防振レンズ群の移動量は0.23mmである。第3実施例の望遠端状態においては、防振係数2.10であり、焦点距離は292.0mmであるので、0.20°の回転ブレを補正するための防振レンズ群の移動量は0.49mmである。
 以下の表3に、本実施例に係る光学系の諸元の値を掲げる。
 (表3)第3実施例 
[レンズ諸元] 
面番号   R     D     nd    νd 
物面    ∞ 
  1   106.7563   4.600   1.48749   70.32 
  2    ∞     0.200 
  3   99.4635   1.800   1.62004   36.40 
  4   49.2336   7.200   1.49700   81.61 
  5   332.7367   可変
  6   152.3830   1.700   1.69680   55.52 
  7   31.0229   5.695 
  8   32.0867   5.500   1.78472   25.64 
  9  -139.5695   1.399 
 10  -403.4713   1.300   1.77250   49.62 
 11   33.8214   4.300 
 12   -34.0003   1.200   1.85026   32.35 
 13  -235.0206   可変
 14   69.3622   1.200   1.80100   34.92 
 15   29.8420   5.900   1.64000   60.19 
 16   -71.2277   1.500 
 17   34.4997   6.000   1.48749   70.32 
 18   -43.1246   1.300   1.80610   40.97 
 19   382.2412   2.700 
 20    ∞     可変              (絞りS)
 21   350.0000   1.200   1.83400   37.18 
 22   30.6178   4.800   1.51680   63.88 
 23   -88.2508   0.200 
 24   66.4312   2.800   1.80100   34.92 
 25  -142.7832   可変
 26   -93.6206   2.200   1.80518   25.45 
 27   -44.3477   6.500 
 28   -37.1859   1.000   1.77250   49.62 
 29   68.3000   可変
 30   -24.9508   1.400   1.62004   36.40 
 31   -42.7086   0.200 
 32   106.0000   3.800   1.67003   47.14 
 33  -106.0000   BF
像面    ∞
 
[各種データ] 
変倍比   4.05
      W    M    T 
f     72.1  100.0  292.0 
FNO    4.49   4.85   5.88
2ω    33.98  24.48   8.44
Ymax   21.60  21.60  21.60 
TL    190.26  205.79  245.82 
BF    39.12  46.10  67.12 
 
[可変間隔データ]
       W    M    T      W    M    T 
      無限遠  無限遠  無限遠    近距離  近距離  近距離 
d5     5.981  21.510  61.535    5.981  21.510  61.535 
d13    30.000  23.014  2.000    30.000  23.014  2.000
d20    14.365  14.107  14.196    14.365  14.107  14.196 
d25     2.202  3.476  3.676    2.867  4.301  5.396 
d29    21.004  19.988  19.700    20.339  19.163  17.979 
 
[レンズ群データ] 
群  始面     f 
G1    1    145.335 
G2    6    -29.607 
G3   14    48.974 
G4   21    62.364
G5   26    -48.296
G6   30    336.791
 
[条件式対応値]
(1) (-fN)/fP = 1.253
(2) (-fTM1)/f1 = 0.204
(3) fTM2/f1 = 0.264
(4) f1/fw = 2.016
(5) f1/(-fTM1) = 4.909
(6) f1/fTM2 = 3.786
(7) nvrN/nvrP = 1.098
(8) νvrN/νvrP = 0.580
 
 図12(a)、及び図12(b)はそれぞれ、第3実施例に係る防振機能を有する変倍光学系の広角端状態における無限遠合焦時の諸収差図、及び0.30°の回転ブレに対してブレ補正を行った際のメリディオナル横収差図である。図13は、第3実施例に係る防振機能を有する変倍光学系の中間焦点距離状態における無限遠合焦時の諸収差図である。図14(a)、及び図14(b)はそれぞれ、第3実施例に係る防振機能を有する変倍光学系の望遠端状態における無限遠合焦時の諸収差図、及び0.20°の回転ブレに対してブレ補正を行った際のメリディオナル横収差図である。図15(a)、図15(b)、及び図15(c)はそれぞれ、第3実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における近距離合焦時の諸収差図である。
 各諸収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差を良好に補正し優れた結像性能を有しており、さらに近距離合焦時にも優れた結像性能を有していることがわかる。
 (第4実施例)
 図16は、本願の第4実施例に係る変倍光学系のレンズ構成を示す図である。本実施例に係る変倍光学系は、物体側から順に、正屈折力を有する第1レンズ群G1と、負屈折力を有する第2レンズ群G2と、正屈折力を有する第3レンズ群G3と、負屈折力を有する第4レンズ群G4と、正屈折力を有する第5レンズ群G5から構成されている。
 この構成は上記実施形態との関係として、第1レンズ群G1が前側レンズ群GFSに、第2レンズ群G2がM1レンズ群GM1に、第3レンズ群G3がM2レンズ群GM2に、第4レンズ群G4がRNレンズ群GRNに、第5レンズ群G5が後続レンズ群GRSに対応する。
 第1レンズ群G1は、物体側から順に、物体側に凸面を向けた正凸平レンズL11と、物体側に凸面を向けた負メニスカスレンズL12と物体側に凸面を向けた正メニスカスレンズL13との接合正レンズとから構成される。
 第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、両凸形状の正レンズL22と、両凹形状の負レンズL23と、物体側に凹面を向けた負メニスカスレンズL24とから構成される。
 第3レンズ群G3は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL31と両凸形状の正レンズL32との接合正レンズと、両凸形状の正レンズL33と両凹形状の負レンズL34との接合正レンズと、開口絞りSと、物体側に凸面を向けた負メニスカスレンズL35と両凸形状の正レンズL36との接合負レンズと、両凸形状の正レンズL37とから構成される。
 第4レンズ群G4は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL41と、両凹形状の負レンズL42とから構成される。
 第5レンズ群G5は、物体側から順に、物体側に凹面を向けた負メニスカスレンズL51と、両凸形状の正レンズL52と、物体側に凸面を向けた正メニスカスレンズL53とから構成される。
 本実施例に係る光学系では、第4レンズ群G4を像面方向へ移動させることにより、遠距離物体から近距離物体への合焦が行われる。また、第3レンズ群G3(M2レンズ群GM2)を構成する物体側に凸面を向けた負メニスカスレンズL31と両凸形状の正レンズL32との接合正レンズを光軸と直交する方向へ移動させることによって、手ブレ等による結像位置変位を補正する。
 なお、全系の焦点距離がfで、防振係数(ブレ補正での移動レンズ群の移動量に対する結像面での像移動量比)がKのレンズで角度θの回転ブレを補正するには、ブレ補正用の移動レンズ群を(f・tanθ)/Kだけ光軸と直交方向に移動させればよい。第4実施例の広角端においては、防振係数1.65であり、焦点距離は72.1mmであるので、0.30°の回転ブレを補正するための防振レンズ群の移動量は0.23mmである。第4実施例の望遠端状態においては、防振係数2.10であり、焦点距離は292.0mmであるので、0.20°の回転ブレを補正するための防振レンズ群の移動量は0.49mmである。
 以下の表4に、本実施例に係る光学系の諸元の値を掲げる。
 (表4)第4実施例 
[レンズ諸元] 
面番号   R     D     nd    νd 
物面    ∞ 
  1   109.5099   4.600   1.48749   70.32
  2    ∞     0.200 
  3   101.8486   1.800   1.62004   36.40
  4   49.8873   7.200   1.49700   81.61
  5   403.0130   可変
  6   166.1577   1.700   1.69680   55.52
  7   31.1882   3.953 
  8   32.0256   5.500   1.78472   25.64
  9  -139.5816   1.553 
 10  -767.2482   1.300   1.77250   49.62
 11   33.9202   4.300 
 12   -32.8351   1.200   1.85026   32.35
 13  -256.2484   可変
 14   69.5902   1.200   1.80100   34.92
 15   29.9877   5.900   1.64000   60.19
 16   -70.0411   1.500 
 17   36.2271   6.000   1.48749   70.32
 18   -39.9358   1.300   1.80610   40.97
 19   820.8027   2.700 
 20    ∞    14.092             (絞りS)
 21   427.1813   1.200   1.83400   37.18
 22   31.7606   4.800   1.51680   63.88
 23   -89.4727   0.200 
 24   73.5865   2.800   1.80100   34.92
 25  -110.0493   可変
 26   -83.7398   2.200   1.80518   25.45
 27   -42.9999   6.500 
 28   -36.8594   1.000   1.77250   49.62
 29   73.0622   可変
 30   -26.0662   1.400   1.62004   36.4
 31   -40.4068   0.200 
 32   143.0444   3.035   1.67003   47.14
 33  -220.8402   0.200 
 34   100.4330   2.145   1.79002   47.32
 35   170.3325   BF
像面    ∞
 
[各種データ] 
変倍比   4.05
      W    M    T 
f     72.1  100.0  292.0 
FNO    4.48   4.85   5.87
2ω    33.94  24.44   8.42
Ymax   21.60  21.60  21.60 
TL    190.21  205.27  245.82 
BF    39.12  46.37  67.13 
 
[可変間隔データ]
       W    M    T      W    M    T 
      無限遠  無限遠  無限遠    近距離  近距離  近距離 
d5     5.892  20.953  61.502    5.892  20.953  61.502 
d13    30.000  22.752  2.000    30.000  22.752  2.000
d25     2.212  3.707  3.900    2.864  4.521  5.606 
d29    21.306  19.811  19.618    20.654  18.997  17.912 
 
[レンズ群データ] 
群  始面     f 
G1    1    145.022 
G2    6    -29.562 
G3   14    38.233 
G4   26    -48.257
G5   30    318.066
 
[条件式対応値]
(1) (-fN)/fP = 0.947
(2) (-fTM1)/f1 = 0.204
(3) fTM2/f1 = 0.264
(4) f1/fw = 2.011
(5) f1/(-fTM1) = 4.906
(6) f1/fTM2 = 3.793
(7) nvrN/nvrP = 1.098
(8) νvrN/νvrP = 0.580
 
 図17(a)、及び図17(b)はそれぞれ、第4実施例に係る防振機能を有する変倍光学系の広角端状態における無限遠合焦時の諸収差図、及び0.30°の回転ブレに対してブレ補正を行った際のメリディオナル横収差図である。図18は、第4実施例に係る防振機能を有する変倍光学系の中間焦点距離状態における無限遠合焦時の諸収差図である。図19(a)、及び図19(b)はそれぞれ、第4実施例に係る防振機能を有する変倍光学系の望遠端状態における無限遠合焦時の諸収差図、及び0.20°の回転ブレに対してブレ補正を行った際のメリディオナル横収差図である。図20(a)、図20(b)、及び図20(c)はそれぞれ、第4実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における近距離合焦時の諸収差図である。
 各諸収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差を良好に補正し優れた結像性能を有しており、さらに近距離合焦時にも優れた結像性能を有していることがわかる。
 (第5実施例)
 第5実施例について、図21~図25および表5を用いて説明する。図21は、本実施形態の第5実施例に係る変倍光学系のレンズ構成を示す図である。第5実施例に係る変倍光学系ZL(5)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とから構成されている。広角端状態(W)から望遠端状態(T)に変倍する際、第1~第5レンズ群G1~G5がそれぞれ図21の矢印で示す方向に移動する。
 この構成は上記実施形態との関係として、第1レンズ群G1が前側レンズ群GFSに、第2レンズ群G2がM1レンズ群GM1に、第3レンズ群G3がM2レンズ群GM2に、第4レンズ群G4がRNレンズ群GRNに、第5レンズ群G5が後続レンズ群GRSに対応する。
 第1レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けた正メニスカスレンズL11と、物体側に凸面を向けた負メニスカスレンズL12および両凸形状の正レンズL13からなる接合正レンズと、から構成される。
 第2レンズ群G2は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL21と、両凸形状の正レンズL22と、両凹形状の負レンズL23と、両凹形状の負レンズL24および物体側に凸面を向けた正メニスカスレンズL25からなる接合負レンズと、から構成される。
 第3レンズ群G3は、物体側から順に並んだ、両凸形状の正レンズL31と、両凸形状の正レンズL32および両凹形状の負レンズL33からなる接合正レンズと、開口絞りSと、物体側に凸面を向けた負メニスカスレンズL34および両凸形状の正レンズL35からなる接合正レンズと、両凸形状の正レンズL36と、から構成される。
 第4レンズ群G4は、物体側から順に並んだ、物体側に凹面を向けた正メニスカスレンズL41と、両凹形状の負レンズL42と、から構成される。
 第5レンズ群G5は、物体側から順に並んだ、物体側に凹面を向けた負メニスカスレンズL51と、物体側に凸面を向けた正メニスカスレンズL52と、から構成される。第5レンズ群G5の像側に、像面Iが配置される。
 第5実施例に係る変倍光学系ZL(5)では、第4レンズ群G4の全体が合焦レンズ群を構成し、第4レンズ群G4の全体を像面方向へ移動させることにより、遠距離物体から近距離物体への合焦が行われる。また、第5実施例に係る変倍光学系ZL(5)では、第2レンズ群G2(M1レンズ群GM1)を構成する負レンズL24および正メニスカスレンズL25からなる接合負レンズが、光軸と垂直な方向へ移動可能な防振レンズ群を構成し、手ブレ等による結像位置の変位(像面I上の像ブレ)を補正する。
 なお、全系の焦点距離がfで、防振係数(ブレ補正での移動レンズ群の移動量に対する結像面での像移動量比)がKのレンズで角度θの回転ブレを補正するには、ブレ補正用の移動レンズ群を(f・tanθ)/Kだけ光軸と直交方向に移動させればよい。第5実施例の広角端状態において、防振係数は0.97であり、焦点距離は72.1mmであるので、0.30°の回転ブレを補正するための防振レンズ群の移動量は0.39mmである。第5実施例の望遠端状態において、防振係数は2.01であり、焦点距離は292.0mmであるので、0.20°の回転ブレを補正するための防振レンズ群の移動量は0.51mmである。
 以下の表5に、第5実施例に係る光学系の諸元の値を掲げる。
(表5)第5実施例
[レンズ諸元]
 面番号    R     D     nd    νd
 物面     ∞
  1    121.1094   4.980   1.48749   70.31
  2    474.6427   0.200
  3    104.9110   1.700   1.83400   37.18
  4    63.9583   9.069   1.49700   81.73
  5   -1816.1542   可変
  6    153.9285   1.000   1.83400   37.18
  7    37.0130   9.180
  8    41.8122   5.321   1.80518   25.45
  9   -148.0087   1.552
  10   -153.0936   1.000   1.90366   31.27
  11    74.4958   4.888
  12   -65.0702   1.000   1.69680   55.52
  13    35.9839   3.310   1.83400   37.18
  14   121.5659   可変
  15    85.1793   3.534   1.80400   46.60
  16   -101.3301   0.200
  17    38.9890   5.033   1.49700   81.73
  18   -62.2191   1.200   1.95000   29.37
  19   378.6744   1.198
  20     ∞    19.885              (絞りS)
  21    44.8832   1.200   1.85026   32.35
  22    20.5002   4.485   1.51680   63.88
  23   -586.4581   0.200
  24    64.4878   2.563   1.62004   36.40
  25   -357.2881   可変
  26   -801.6030   2.383   1.80518   25.45
  27   -50.3151   1.298
  28   -57.1873   1.000   1.77250   49.62
  29    26.1668   可変
  30   -21.0000   1.300   1.77250   49.62
  31   -28.8136   0.200
  32    58.9647   3.137   1.62004   36.40
  33   524.5289   BF
 像面     ∞
 
[各種データ]
 変倍比 4.05
        W       M       T
  f    72.1      99.9     292.0
FNO     4.57      4.79      5.88
 2ω    33.24     23.82      8.24
Ymax     21.60     21.60     21.60
 TL    191.32     204.14     241.16
 BF    38.52     42.04     60.52
 
[可変間隔データ]
      W     M     T    W    M     T
     無限遠  無限遠  無限遠  近距離  近距離  近距離
 d5   2.000  22.163  69.630   2.000  22.163  69.630
 d14  41.783  30.929   2.000  41.783  30.929   2.000
 d25   2.000   3.259   2.000   2.462   3.867   3.166
 d29  14.999  13.740  14.999  14.538  13.133  13.833
 
[レンズ群データ]
群   始面    f
G1    1   167.635
G2    6   -39.933
G3    15    37.727
G4    26   -36.765
G5    30   2825.740
 
[条件式対応値]
(1) (-fN)/fP = 1.011
(2) (-fTM1)/f1 = 0.238
(3) fTM2/f1 = 0.225
(4) f1/fw= 2.325
(5) f1/(-fTM1)= 4.198
(6) f1/fTM2= 4.443
(9) nvrN/nvrP = 0.925
(10) νvrN/νvrP = 1.493
 
 図22(a)および図22(b)はそれぞれ、第5実施例に係る防振機能を有する変倍光学系の広角端状態における無限遠合焦時の諸収差図、および0.30°の回転ブレに対してブレ補正を行った際のメリディオナル横収差図である。図23は、第5実施例に係る防振機能を有する変倍光学系の中間焦点距離状態における無限遠合焦時の諸収差図である。図24(a)および図24(b)はそれぞれ、第5実施例に係る防振機能を有する変倍光学系の望遠端状態における無限遠合焦時の諸収差図、および0.20°の回転ブレに対してブレ補正を行った際のメリディオナル横収差図である。図25(a)、図25(b)、および図25(c)はそれぞれ、第5実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における近距離合焦時の諸収差図である。
 各諸収差図より、第5実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差を良好に補正し優れた結像性能を有しており、さらに近距離合焦時にも優れた結像性能を有していることがわかる。
(第6実施例)
 第6実施例について、図26~図30および表6を用いて説明する。図26は、本実施形態の第6実施例に係る変倍光学系のレンズ構成を示す図である。第6実施例に係る変倍光学系ZL(6)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5とから構成されている。広角端状態(W)から望遠端状態(T)に変倍する際、第1~第5レンズ群G1~G5がそれぞれ図26の矢印で示す方向に移動する。
 この構成は上記実施形態との関係として、第1レンズ群G1が前側レンズ群GFSに、第2レンズ群G2がM1レンズ群GM1に、第3レンズ群G3がM2レンズ群GM2に、第4レンズ群G4がRNレンズ群GRNに、第5レンズ群G5が後続レンズ群GRSに対応する。
 第1レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けた正メニスカスレンズL11と、物体側に凸面を向けた負メニスカスレンズL12および両凸形状の正レンズL13からなる接合正レンズと、から構成される。
 第2レンズ群G2は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL21と、両凸形状の正レンズL22および両凹形状の負レンズL23からなる接合正レンズと、両凹形状の負レンズL24および物体側に凸面を向けた正メニスカスレンズL25からなる接合負レンズと、から構成される。
 第3レンズ群G3は、物体側から順に並んだ、両凸形状の正レンズL31と、両凸形状の正レンズL32および両凹形状の負レンズL33からなる接合正レンズと、開口絞りSと、物体側に凸面を向けた負メニスカスレンズL34および物体側に凸面を向けた正メニスカスレンズL35からなる接合負レンズと、両凸形状の正レンズL36と、から構成される。
 第4レンズ群G4は、物体側から順に並んだ、物体側に凹面を向けた正メニスカスレンズL41と、両凹形状の負レンズL42と、から構成される。
 第5レンズ群G5は、物体側から順に並んだ、物体側に凹面を向けた負メニスカスレンズL51と、物体側に凸面を向けた正メニスカスレンズL52と、から構成される。第5レンズ群G5の像側に、像面Iが配置される。
 第6実施例に係る変倍光学系ZL(6)では、第4レンズ群G4の全体が合焦レンズ群を構成し、第4レンズ群G4の全体を像面方向へ移動させることにより、遠距離物体から近距離物体への合焦が行われる。また、第6実施例に係る変倍光学系ZL(6)では、第2レンズ群G2(M1レンズ群GM1)を構成する負レンズL24および正メニスカスレンズL25からなる接合負レンズが、光軸と垂直な方向へ移動可能な防振レンズ群を構成し、手ブレ等による結像位置の変位(像面I上の像ブレ)を補正する。
 なお、全系の焦点距離がfで、防振係数(ブレ補正での移動レンズ群の移動量に対する結像面での像移動量比)がKのレンズで角度θの回転ブレを補正するには、ブレ補正用の移動レンズ群を(f・tanθ)/Kだけ光軸と直交方向に移動させればよい。第6実施例の広角端状態において、防振係数は0.93であり、焦点距離は72.1mmであるので、0.30°の回転ブレを補正するための防振レンズ群の移動量は0.41mmである。第6実施例の望遠端状態において、防振係数は1.90であり、焦点距離は292.0mmであるので、0.20°の回転ブレを補正するための防振レンズ群の移動量は0.54mmである。
 以下の表6に、第6実施例に係る光学系の諸元の値を掲げる。
(表6)第6実施例
[レンズ諸元]
 面番号    R     D     nd    νd
 物面     ∞
  1    114.5391   5.639   1.48749   70.31
  2    663.8041   0.200
  3    103.9783   1.700   1.83400   37.18
  4    62.4686   8.805   1.49700   81.73
  5  -43979.1830   可変
  6    146.6152   1.000   1.77250   49.62
  7    35.8241   11.693
  8    37.5245   4.696   1.68893   31.16
  9   -254.6834   1.000   1.83400   37.18
  10    64.6045   5.066
  11   -60.5874   1.000   1.56883   56.00
  12    39.1203   2.952   1.75520   27.57
  13    93.1442   可変
  14    92.3597   3.688   1.80400   46.60
  15   -87.7395   0.200
  16    36.8528   5.291   1.49700   81.73
  17   -63.3187   1.200   1.95000   29.37
  18   264.8384   1.289
  19     ∞    19.911              (絞りS)
  20    52.0583   1.200   1.85026   32.35
  21    20.7485   3.983   1.51680   63.88
  22   439.3463   0.200
  23    64.0215   2.788   1.62004   36.40
  24   -130.2911   可変
  25   -343.5287   2.371   1.80518   25.45
  26   -47.6881   1.474
  27   -51.9782   1.000   1.77250   49.62
  28    29.6298   可変
  29   -21.0360   1.300   1.60300   65.44
  30   -30.1613   0.200
  31    64.8879   2.981   1.57501   41.51
  32   614.9077   BF
 像面     ∞
 
[各種データ]
 変倍比 4.05
        W       M       T
  f    72.1      99.9     292.0
FNO     4.59      4.76      5.87
 2ω    33.22     23.72      8.22
Ymax     21.60     21.60     21.60
 TL    191.32     205.16     240.15
 BF    38.52     41.03     60.02
 
[可変間隔データ]
      W     M    T     W    M     T
     無限遠  無限遠  無限遠  近距離  近距離  近距離
 d5   2.000  23.304  67.717   2.000  23.304  67.717
 d13  40.383  30.413   2.000  40.383  30.413   2.000
 d24   2.000   3.305   2.001   2.487   3.962   3.248
 d28  15.588  14.284  15.587  15.101  13.626  14.340
 
[レンズ群データ]
群   始面    f
G1    1   161.728
G2    6   -38.469
G3    14    38.469
G4    25   -39.083
G5    29  -12107.081
 
[条件式対応値]
(1) (-fN)/fP = 0.968
(2) (-fTM1)/f1 = 0.238
(3) fTM2/f1 = 0.238
(4) f1/fw= 2.243
(5) f1/(-fTM1)= 4.204
(6) f1/fTM2= 4.204
(9) nvrN/nvrP = 0.894
(10) νvrN/νvrP = 2.031
 
 図27(a)および図27(b)はそれぞれ、第6実施例に係る防振機能を有する変倍光学系の広角端状態における無限遠合焦時の諸収差図、および0.30°の回転ブレに対してブレ補正を行った際のメリディオナル横収差図である。図28は、第6実施例に係る防振機能を有する変倍光学系の中間焦点距離状態における無限遠合焦時の諸収差図である。図29(a)および図29(b)はそれぞれ、第6実施例に係る防振機能を有する変倍光学系の望遠端状態における無限遠合焦時の諸収差図、および0.20°の回転ブレに対してブレ補正を行った際のメリディオナル横収差図である。図30(a)、図30(b)、および図30(c)はそれぞれ、第6実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における近距離合焦時の諸収差図である。
 各諸収差図より、第6実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差を良好に補正し優れた結像性能を有しており、さらに近距離合焦時にも優れた結像性能を有していることがわかる。
(第7実施例)
 第7実施例について、図31~図35並びに表7を用いて説明する。図31は、本実施形態の第7実施例に係る変倍光学系のレンズ構成を示す図である。第7実施例に係る変倍光学系ZL(7)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とから構成されている。広角端状態(W)から望遠端状態(T)に変倍する際、第1~第5レンズ群G1~G5がそれぞれ図31の矢印で示す方向に移動する。
 この構成は上記実施形態との関係として、第1レンズ群G1が前側レンズ群GFSに、第2レンズ群G2がM1レンズ群GM1に、第3レンズ群G3がM2レンズ群GM2に、第4レンズ群G4がRNレンズ群GRNに、第5レンズ群G5が後続レンズ群GRSに対応する。
 第1レンズ群G1は、物体側から順に並んだ、両凸形状の正レンズL11と、物体側に凸面を向けた負メニスカスレンズL12および両凸形状の正レンズL13からなる接合正レンズと、から構成される。
 第2レンズ群G2は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL21と、両凸形状の正レンズL22および両凹形状の負レンズL23からなる接合正レンズと、両凹形状の負レンズL24および物体側に凸面を向けた正メニスカスレンズL25からなる接合負レンズと、から構成される。
 第3レンズ群G3は、物体側から順に並んだ、両凸形状の正レンズL31と、両凸形状の正レンズL32および両凹形状の負レンズL33からなる接合正レンズと、開口絞りSと、物体側に凸面を向けた負メニスカスレンズL34および両凸形状の正レンズL35からなる接合正レンズと、から構成される。
 第4レンズ群G4は、物体側から順に並んだ、物体側に凹面を向けた正メニスカスレンズL41と、両凹形状の負レンズL42と、から構成される。
 第5レンズ群G5は、物体側から順に並んだ、物体側に凹面を向けた負メニスカスレンズL51と、両凸形状の正レンズL52と、から構成される。第5レンズ群G5の像側に、像面Iが配置される。
 第7実施例に係る変倍光学系ZL(7)では、第4レンズ群G4の全体が合焦レンズ群を構成し、第4レンズ群G4の全体を像面方向へ移動させることにより、遠距離物体から近距離物体への合焦が行われる。また、第7実施例に係る変倍光学系ZL(7)では、第2レンズ群G2(M1レンズ群GM1)を構成する負レンズL24および正メニスカスレンズL25からなる接合負レンズが、光軸と垂直な方向へ移動可能な防振レンズ群を構成し、手ブレ等による結像位置の変位(像面I上の像ブレ)を補正する。
 なお、全系の焦点距離がfで、防振係数(ブレ補正での移動レンズ群の移動量に対する結像面での像移動量比)がKのレンズで角度θの回転ブレを補正するには、ブレ補正用の移動レンズ群を(f・tanθ)/Kだけ光軸と直交方向に移動させればよい。第7実施例の広角端状態において、防振係数は0.96であり、焦点距離は72.1mmであるので、0.30°の回転ブレを補正するための防振レンズ群の移動量は0.39mmである。第7実施例の望遠端状態において、防振係数は2.00であり、焦点距離は292.0mmであるので、0.20°の回転ブレを補正するための防振レンズ群の移動量は0.51mmである。
 以下の表7に、第7実施例に係る光学系の諸元の値を掲げる。
(表7)第7実施例
[レンズ諸元]
 面番号    R     D     nd    νd
 物面     ∞
  1    268.8673   3.827   1.48749   70.31
  2   -1922.6559   0.200
  3    111.5860   1.700   1.62004   36.40
  4    61.6123   8.761   1.49700   81.73
  5   -1745.4439   可変
  6    124.2629   1.000   1.77250   49.62
  7    34.3759   7.147
  8    35.3149   5.189   1.60342   38.03
  9   -190.5775   1.000   1.77250   49.62
  10    75.4448   4.904
  11   -65.2960   1.000   1.67003   47.14
  12    37.2634   3.301   1.80518   25.45
  13   119.9726   可変
  14    80.9765   3.968   1.77250   49.62
  15   -78.4621   0.200
  16    33.2120   5.701   1.49700   81.73
  17   -56.7466   1.200   1.85026   32.35
  18   108.8392   1.685
  19     ∞    18.569              (絞りS)
  20    40.1917   1.200   1.85026   32.35
  21    18.3878   4.752   1.54814   45.79
  22   -98.0255   可変
  23   -121.4042   2.367   1.75520   27.57
  24   -36.6433   2.111
  25   -37.5895   1.000   1.77250   49.62
  26    35.8631   可変
  27   -21.0000   1.300   1.60311   60.69
  28   -30.2149   0.200
  29    95.7916   3.938   1.67003   47.14
  30   -115.9256   BF
 像面     ∞
 
[各種データ]
 変倍比 4.05
        W       M       T
  f    72.1      99.9     292.0
FNO     4.61      4.79      5.87
 2ω    33.52     23.90      8.28
Ymax     21.60     21.60     21.60
 TL    191.32     207.98     243.25
 BF    38.52     41.37     61.52
 
[可変間隔データ]
      W     M    T     W    M     T
     無限遠  無限遠  無限遠  近距離  近距離  近距離
 d5   2.000  25.429  72.273   2.000  25.429  72.273
 d13  43.342  33.718   2.000  43.342  33.718   2.000
 d22   2.000   3.210   3.710   2.512   3.900   5.147
 d26  19.235  18.025  17.525  18.723  17.335  16.088
 
[レンズ群データ]
群   始面    f
G1    1   169.647
G2    6   -39.988
G3    14    38.817
G4    23   -37.515
G5    27   207.702
 
[条件式対応値]
(1) (-fN)/fP = 1.529
(2) (-fTM1)/f1 = 0.236
(3) fTM2/f1 = 0.229
(4) f1/fw= 2.353
(5) f1/(-fTM1)= 4.242
(6) f1/fTM2= 4.370
(9) nvrN/nvrP = 0.925
(10) νvrN/νvrP = 1.852
 
 図32(a)および図32(b)はそれぞれ、第7実施例に係る防振機能を有する変倍光学系の広角端状態における無限遠合焦時の諸収差図、および0.30°の回転ブレに対してブレ補正を行った際のメリディオナル横収差図である。図33は、第7実施例に係る防振機能を有する変倍光学系の中間焦点距離状態における無限遠合焦時の諸収差図である。図34(a)および図34(b)はそれぞれ、第7実施例に係る防振機能を有する変倍光学系の望遠端状態における無限遠合焦時の諸収差図、および0.20°の回転ブレに対してブレ補正を行った際のメリディオナル横収差図である。図35(a)、図35(b)、および図35(c)はそれぞれ、第7実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における近距離合焦時の諸収差図である。
 各諸収差図より、第7実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差を良好に補正し優れた結像性能を有しており、さらに近距離合焦時にも優れた結像性能を有していることがわかる。
(第8実施例)
 第8実施例について、図36~図40および表8を用いて説明する。図36は本実施形態の第8実施例に係る変倍光学系のレンズ構成を示す図である。第8実施例に係る変倍光学系ZL(4)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とから構成されている。広角端状態(W)から望遠端状態(T)に変倍する際、第1~第5レンズ群G1~G5がそれぞれ図36の矢印で示す方向に移動する。
 この構成は上記実施形態との関係として、第1レンズ群G1が前側レンズ群GFSに、第2レンズ群G2がM1レンズ群GM1に、第3レンズ群G3がM2レンズ群GM2に、第4レンズ群G4がRNレンズ群GRNに、第5レンズ群G5が後続レンズ群GRSに対応する。
 第1レンズ群G1は、物体側から順に並んだ、両凸形状の正レンズL11と、物体側に凸面を向けた負メニスカスレンズL12および両凸形状のL13からなる接合正レンズと、から構成される。
 第2レンズ群G2は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL21と、両凸形状の正レンズL22および両凹形状の負レンズL23からなる接合正レンズと、両凹形状の負レンズL24および物体側に凸面を向けた正メニスカスレンズL25からなる接合負レンズと、から構成される。
 第3レンズ群G3は、物体側から順に並んだ、両凸形状の正レンズL31と、両凸形状の正レンズL32および両凹形状の負レンズL33からなる接合正レンズと、開口絞りSと、物体側に凸面を向けた負メニスカスレンズL34および両凸形状の正レンズL35からなる接合正レンズと、から構成される。
 第4レンズ群G4は、物体側から順に並んだ、物体側に凹面を向けた正メニスカスレンズL41と、両凹形状の負レンズL42とから構成される。
 第5レンズ群G5は、物体側に凹面を向けた負メニスカスレンズL51と、両凸形状の正レンズL52とから構成される。第5レンズ群G5の像側に、像面Iが配置される。
 第8実施例に係る変倍光学系ZL(8)では、第4レンズ群G4の正メニスカスレンズL41および負レンズL42が合焦レンズ群を構成し、第4レンズ群G4の正メニスカスレンズL41および負レンズL42を像面方向へ移動させることにより、遠距離物体から近距離物体への合焦が行われる。また、第8実施例に係る変倍光学系ZL(8)では、第2レンズ群G2(M1レンズ群GM1)を構成する負レンズL24および正メニスカスレンズL25からなる接合負レンズが、光軸と垂直な方向へ移動可能な防振レンズ群を構成し、手ブレ等による結像位置の変位(像面I上の像ブレ)を補正する。
 なお、全系の焦点距離がfで、防振係数(ブレ補正での移動レンズ群の移動量に対する結像面での像移動量比)がKのレンズで角度θの回転ブレを補正するには、ブレ補正用の移動レンズ群を(f・tanθ)/Kだけ光軸と直交方向に移動させればよい。第8実施例の広角端状態において、防振係数は1.05であり、焦点距離は72.1mmであるので、0.30°の回転ブレを補正するための防振レンズ群の移動量は0.36mmである。第8実施例の望遠端状態において、防振係数は2.20であり、焦点距離は292.0mmであるので、0.20°の回転ブレを補正するための防振レンズ群の移動量は0.46mmである。
 以下の表8に、第8実施例に係る光学系の諸元の値を掲げる。
(表8)第8実施例
[レンズ諸元]
 面番号    R     D     nd    νd
 物面     ∞
  1    384.8872   4.307   1.48749   70.31
  2   -459.3665   0.200
  3    108.5471   1.700   1.62004   36.40
  4    59.1633   8.722   1.49700   81.73
  5   -3828.8091   可変
  6    116.0785   1.000   1.77250   49.62
  7    33.3782   6.789
  8    34.8547   5.123   1.64769   33.73
  9   -166.2311   1.000   1.80400   46.60
  10    68.6485   5.021
  11   -58.3172   1.000   1.66755   41.87
  12    33.1524   3.543   1.80518   25.45
  13   108.5224   可変
  14    80.6236   4.111   1.77250   49.62
  15   -73.7947   0.200
  16    32.8485   5.846   1.49700   81.73
  17   -53.4390   1.200   1.85026   32.35
  18   100.1735   1.748
  19     ∞    17.032               (絞りS)
  20    45.6071   1.200   1.80100   34.92
  21    18.9488   5.048   1.54814   45.79
  22   -90.5382   可変
  23   -106.0821   2.387   1.72825   28.38
  24   -35.2284   2.066
  25   -36.8890   1.000   1.77250   49.62
  26    46.9619   可変
  27   -21.5153   1.300   1.60311   60.69
  28   -31.7338   0.200
  29   126.4587   3.612   1.77250   49.62
  30   -132.9868   BF
 像面     ∞
 
[各種データ]
 変倍比 4.05
       W       M       T
  f    72.1      99.9     292.0
FNO    4.60      4.77      5.88
 2ω    33.56     23.82      8.26
Ymax    21.60     21.60     21.60
 TL   192.32     210.67     244.12
 BF    38.52     40.08     57.94
 
[可変間隔データ]
      W     M    T     W     M    T
     無限遠  無限遠  無限遠  近距離  近距離  近距離
 d5   2.000  25.713  69.580   2.000  25.713  69.580
 d13  40.783  32.701   2.000  40.783  32.701   2.000
 d22   2.000   3.163   5.584   2.559   3.917   7.234
 d26  23.661  23.661  23.661  23.103  22.908  22.012
 
[レンズ群データ]
群   始面    f
G1    1   164.404
G2    6   -37.386
G3    14    38.634
G4    23   -43.744
G5    27   272.771
 
[条件式対応値]
(1) (-fN)/fP = 1.378
(2) (-fTM1)/f1 = 0.227
(3) fTM2/f1 = 0.235
(4) f1/fw= 2.280
(5) f1/(-fTM1)= 4.397
(6) f1/fTM2= 4.255
(9) nvrN/nvrP = 0.924
(10) νvrN/νvrP = 1.645
 
 図37(a)および図37(b)はそれぞれ、第8実施例に係る防振機能を有する変倍光学系の広角端状態における無限遠合焦時の諸収差図、および0.30°の回転ブレに対してブレ補正を行った際のメリディオナル横収差図である。図38は、第8実施例に係る防振機能を有する変倍光学系の中間焦点距離状態における無限遠合焦時の諸収差図である。図39(a)および図39(b)はそれぞれ、第8実施例に係る防振機能を有する変倍光学系の望遠端状態における無限遠合焦時の諸収差図、および0.20°の回転ブレに対してブレ補正を行った際のメリディオナル横収差図である。図40(a)、図40(b)、および図40(c)はそれぞれ、第8実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における近距離合焦時の諸収差図である。
 各諸収差図より、第8実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差を良好に補正し優れた結像性能を有しており、さらに近距離合焦時にも優れた結像性能を有していることがわかる。
(第9実施例)
 第9実施例について、図41~図45および表9を用いて説明する。図41は本実施形態の第9実施例に係る変倍光学系のレンズ構成を示す図である。第9実施例に係る変倍光学系ZL(9)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とから構成されている。広角端状態(W)から望遠端状態(T)に変倍する際、第1~第5レンズ群G1~G5がそれぞれ図41の矢印で示す方向に移動する。
 この構成は上記実施形態との関係として、第1レンズ群G1が前側レンズ群GFSに、第2レンズ群G2がM1レンズ群GM1に、第3レンズ群G3がM2レンズ群GM2に、第4レンズ群G4がRNレンズ群GRNに、第5レンズ群G5が後続レンズ群GRSに対応する。
 第1レンズ群G1は、物体側から順に並んだ、両凸形状の正レンズL11と、物体側に凸面を向けた負メニスカスレンズL12および物体側に両凸形状の正レンズL13からなる接合正レンズと、から構成される。
 第2レンズ群G2は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL21と、物体側に凸面を向けた正メニスカスレンズL22と、両凹形状の負レンズL23および物体側に凸面を向けた正メニスカスレンズL24からなる接合負レンズと、から構成される。
 第3レンズ群G3は、物体側から順に並んだ、両凸形状の正レンズL31と、両凸形状の正レンズL32および両凹形状の負レンズL33からなる接合正レンズと、開口絞りSと、物体側に凸面を向けた負メニスカスレンズL34および両凸形状の正レンズL35からなる接合正レンズと、から構成される。
 第4レンズ群G4は、物体側から順に並んだ、物体側に凹面を向けた正メニスカスレンズL41と、両凹形状の負レンズL42と、から構成される。
 第5レンズ群G5は、物体側から順に並んだ、物体側に凹面を向けた負メニスカスレンズL51と、両凸形状の正レンズL52と、から構成される。第5レンズ群G5の像側に、像面Iが配置される。
 第9実施例に係る変倍光学系ZL(9)では、第4レンズ群G4の全体が合焦レンズ群を構成し、第4レンズ群G4の全体を像面方向へ移動させることにより、遠距離物体から近距離物体への合焦が行われる。また、第9実施例に係る変倍光学系ZL(9)では、第2レンズ群G2(M1レンズ群GM1)を構成する負レンズL23および正メニスカスレンズL24からなる接合負レンズが、光軸と垂直な方向へ移動可能な防振レンズ群を構成し、手ブレ等による結像位置の変位(像面I上の像ブレ)を補正する。
 なお、全系の焦点距離がfで、防振係数(ブレ補正での移動レンズ群の移動量に対する結像面での像移動量比)がKのレンズで角度θの回転ブレを補正するには、ブレ補正用の移動レンズ群を(f・tanθ)/Kだけ光軸と直交方向に移動させればよい。第9実施例の広角端状態において、防振係数は1.02であり、焦点距離は72.1mmであるので、0.30°の回転ブレを補正するための防振レンズ群の移動量は0.37mmである。第9実施例の望遠端状態において、防振係数は2.10であり、焦点距離は292.0mmであるので、0.20°の回転ブレを補正するための防振レンズ群の移動量は0.49mmである。
 以下の表9に、第9実施例に係る光学系の諸元の値を掲げる。
(表9)第9実施例
[レンズ諸元]
 面番号    R     D     nd    νd
 物面     ∞
  1    494.4763   3.486   1.48749   70.31
  2   -654.7200   0.200
  3    104.3848   1.700   1.62004   36.40
  4    60.0944   8.673   1.49700   81.73
  5   -2277.9468   可変
  6    131.3496   1.300   1.80400   46.60
  7    35.6812   7.900
  8    36.7192   2.871   1.68893   31.16
  9    62.4101   4.726
  10   -66.4912   1.000   1.70000   48.11
  11    36.3174   3.414   1.80518   25.45
  12   127.2974   可変
  13    90.0733   3.862   1.80400   46.60
  14   -78.6804   0.200
  15    33.8033   5.583   1.49700   81.73
  16   -57.6791   1.200   1.85026   32.35
  17   101.7237   1.726
  18     ∞    19.598             (絞りS)
  19    49.9975   1.200   1.85026   32.35
  20    20.1023   4.713   1.54814   45.79
  21   -72.4003   可変
  22   -158.4470   2.458   1.71736   29.57
  23   -37.7406   1.732
  24   -39.9149   1.000   1.77250   49.62
  25    43.7406   可変
  26   -22.3495   1.300   1.69680   55.52
  27   -32.8093   0.200
  28   139.7659   3.301   1.80610   40.97
  29   -141.5832   BF
 像面     ∞
 
[各種データ]
 変倍比 4.05
        W       M       T
  f    72.1      99.9     292.0
FNO     4.68      4.85      5.88
 2ω    33.48     23.86      8.26
Ymax     21.60     21.60     21.60
 TL    192.32     208.96     243.67
 BF    38.32     41.06     60.32
 
[可変間隔データ]
      W     M    T     W    M     T
     無限遠  無限遠  無限遠  近距離  近距離  近距離
 d5   2.000  26.074  74.834   2.000  26.074  77.834
 d12  45.487  35.318   2.000  45.487  35.318   2.000
 d21   2.000   3.315   2.845   2.597   4.123   4.511
 d25  21.171  19.856  20.326  20.574  19.048  18.660
 
[レンズ群データ]
群   始面    f
G1    1   171.348
G2    6   -41.929
G3    13    40.969
G4    22   -45.959
G5    26   423.598
 
[条件式対応値]
(1) (-fN)/fP = 1.209
(2) (-fTM1)/f1 = 0.245
(3) fTM2/f1 = 0.239
(4) f1/fw= 2.377
(5) f1/(-fTM1)= 4.087
(6) f1/fTM2= 4.182
(9) nvrN/nvrP = 0.942
(10) νvrN/νvrP = 1.890
 
 図42(a)および図42(b)はそれぞれ、第9実施例に係る防振機能を有する変倍光学系の広角端状態における無限遠合焦時の諸収差図、および0.30°の回転ブレに対してブレ補正を行った際のメリディオナル横収差図である。図43は、第9実施例に係る防振機能を有する変倍光学系の中間焦点距離状態における無限遠合焦時の諸収差図である。図44(a)および図44(b)はそれぞれ、第9実施例に係る防振機能を有する変倍光学系の望遠端状態における無限遠合焦時の諸収差図、および0.20°の回転ブレに対してブレ補正を行った際のメリディオナル横収差図である。図45(a)、図45(b)、および図45(c)はそれぞれ、第9実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における近距離合焦時の諸収差図である。
 各諸収差図より、第9実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差を良好に補正し優れた結像性能を有しており、さらに近距離合焦時にも優れた結像性能を有していることがわかる。
(第10実施例)
 第10実施例について、図46~図50および表10を用いて説明する。図46は本実施形態の第10実施例に係る変倍光学系のレンズ構成を示す図である。第10実施例に係る変倍光学系ZL(10)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とから構成されている。広角端状態(W)から望遠端状態(T)に変倍する際、第1~第5レンズ群G1~G5がそれぞれ図46の矢印で示す方向に移動する。
 この構成は上記実施形態との関係として、第1レンズ群G1が前側レンズ群GFSに、第2レンズ群G2がM1レンズ群GM1に、第3レンズ群G3がM2レンズ群GM2に、第4レンズ群G4がRNレンズ群GRNに、第5レンズ群G5が後続レンズ群GRSに対応する。
 第1レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11および両凸形状の正レンズL12からなる接合正レンズと、物体側に凸面を向けた正メニスカスレンズL13と、から構成される。
 第2レンズ群G2は、物体側から順に並んだ、両凸形状の正レンズL21と、両凹形状の負レンズL22と、物体側に凸面を向けた正メニスカスレンズL23と、両凹形状の負レンズL24および物体側に凸面を向けた正メニスカスレンズL25からなる接合負レンズと、から構成される。
 第3レンズ群G3は、物体側から順に並んだ、両凸形状の正レンズL31と、両凸形状の正レンズL32および両凹形状の負レンズL33からなる接合正レンズと、開口絞りSと、物体側に凸面を向けた負メニスカスレンズL34および両凸形状の正レンズL35からなる接合正レンズと、から構成される。
 第4レンズ群G4は、物体側から順に並んだ、両凸形状の正レンズL41と、両凹形状の負レンズL42と、から構成される。
 第5レンズ群G5は、物体側から順に並んだ、物体側に凹面を向けた負メニスカスレンズL51と、物体側に凸面を向けた正メニスカスレンズL52と、から構成される。第5レンズ群G5の像側に、像面Iが配置される。
 第10実施例に係る変倍光学系ZL(10)では、第4レンズ群G4の全体が合焦レンズ群を構成し、第4レンズ群G4の全体を像面方向へ移動させることにより、遠距離物体から近距離物体への合焦が行われる。また、第10実施例に係る変倍光学系ZL(10)では、第2レンズ群G2(M1レンズ群GM1)を構成する負レンズL24および正メニスカスレンズL25からなる接合負レンズが、光軸と垂直な方向へ移動可能な防振レンズ群を構成し、手ブレ等による結像位置の変位(像面I上の像ブレ)を補正する。
 なお、全系の焦点距離がfで、防振係数(ブレ補正での移動レンズ群の移動量に対する結像面での像移動量比)がKのレンズで角度θの回転ブレを補正するには、ブレ補正用の移動レンズ群を(f・tanθ)/Kだけ光軸と直交方向に移動させればよい。第10実施例の広角端状態において、防振係数は1.01であり、焦点距離は72.1mmであるので、0.30°の回転ブレを補正するための防振レンズ群の移動量は0.37mmである。第10実施例の望遠端状態において、防振係数は2.10であり、焦点距離は292.0mmであるので、0.20°の回転ブレを補正するための防振レンズ群の移動量は0.49mmである。
 以下の表10に、第10実施例に係る光学系の諸元の値を掲げる。
(表10)第10実施例
[レンズ諸元]
 面番号    R     D     nd    νd
 物面     ∞
  1    139.3408   1.700   1.64769   33.73
  2    77.5654   9.455   1.49700   81.73
  3   -496.0322   0.200
  4    144.5249   3.734   1.48749   70.31
  5    357.2933   可変
  6    142.3498   3.303   1.84666   23.80
  7   -361.0297   1.824
  8   -451.3220   1.300   1.83400   37.18
  9    33.3045   7.193
  10    35.8308   3.147   1.71736   29.57
  11    69.2532   4.718
  12   -63.1663   1.000   1.66755   41.87
  13    34.7105   3.239   1.80518   25.45
  14   102.2323   可変
  15    73.7312   3.697   1.77250   49.62
  16   -95.2978   0.200
  17    33.5557   5.512   1.49700   81.73
  18   -68.5312   1.200   1.90366   31.27
  19   129.3820   1.534
  20     ∞    17.193             (絞りS)
  21    40.0826   1.200   1.85026   32.35
  22    17.3868   5.268   1.56732   42.58
  23   -141.3282   可変
  24   297.2824   2.624   1.64769   33.73
  25   -42.2438   0.835
  26   -48.9103   1.000   1.77250   49.62
  27    31.0082   可変
  28   -22.3095   1.300   1.69680   55.52
  29   -31.0148   0.200
  30    73.8865   3.135   1.80100   34.92
  31   3043.5154   BF
 像面     ∞
 
[各種データ]
 変倍比 4.05
        W      M       T
  f    72.1     100.0     292.0
FNO     4.65      4.93      5.88
 2ω    33.24     23.86      8.28
Ymax     21.60     21.60     21.60
 TL    192.32     206.35     244.34
 BF    38.32     42.77     60.32
 
[可変間隔データ]
      W     M    T     W    M     T
     無限遠  無限遠  無限遠  近距離  近距離  近距離
 d5   2.000  22.642  74.835   2.000  22.642  74.835
 d14  44.818  33.757   2.000  44.818  33.757   2.000
 d23   2.000   3.329   2.024   2.604   4.116   3.661
 d27  19.472  18.143  19.448  18.869  17.356  17.812
 
[レンズ群データ]
群   始面    f
G1    1   176.000
G2    6   -42.283
G3    15    38.971
G4    24   -44.470
G5    28   381.600
 
[条件式対応値]
(1) (-fN)/fP = 1.286
(2) (-fTM1)/f1 = 0.240
(3) fTM2/f1 = 0.221
(4) f1/fw= 2.441
(5) f1/(-fTM1)= 4.162
(6) f1/fTM2= 4.516
(9) nvrN/nvrP = 0.924
(10) νvrN/νvrP = 1.645
 
 図47(a)および図47(b)はそれぞれ、第10実施例に係る防振機能を有する変倍光学系の広角端状態における無限遠合焦時の諸収差図、および0.30°の回転ブレに対してブレ補正を行った際のメリディオナル横収差図である。図48は、第10実施例に係る防振機能を有する変倍光学系の中間焦点距離状態における無限遠合焦時の諸収差図である。図49(a)および図49(b)はそれぞれ、第10実施例に係る防振機能を有する変倍光学系の望遠端状態における無限遠合焦時の諸収差図、および0.20°の回転ブレに対してブレ補正を行った際のメリディオナル横収差図である。図50(a)、図50(b)、および図50(c)はそれぞれ、第10実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における近距離合焦時の諸収差図である。
 各諸収差図より、第10実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差を良好に補正し優れた結像性能を有しており、さらに近距離合焦時にも優れた結像性能を有していることがわかる。
 (第11実施例)
 第11実施例について、図51、図52および図53並びに表11を用いて説明する。図51は、本実施形態の第11実施例に係る変倍光学系のレンズ構成を示す図である。第11実施例に係る変倍光学系ZL(11)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とから構成されている。第3レンズ群G3内に開口絞りSが設けられ、第5レンズ群G5の像面側に対向して像面Iが設けられている。
 この構成は上記実施形態との関係として、第1レンズ群G1が前側レンズ群GFSに、第2レンズ群G2がM1レンズ群GM1に、第3レンズ群G3がM2レンズ群GM2に、第4レンズ群G4がRNレンズ群GRNに、第5レンズ群G5が後続レンズ群GRSに対応する。
 第1レンズ群G1は、物体側から順に並んだ、両凸形状の正レンズL11と、物体側に凸面を向けた負メニスカスレンズL12および物体側に凸面を向けた正メニスカスレンズL13からなる接合正レンズと、から構成される。
 第2レンズ群G2は、物体側から順に並んだ、両凹形状の負レンズL21および物体側に凸面を向けた正メニスカスレンズL22からなる接合負レンズと、両凹形状の負レンズL23と、から構成される。
 第3レンズ群G3は、物体側から順に並んだ、両凸形状の正レンズL31と、開口絞りSと、両凸形状の正レンズL32および両凹形状の負レンズL33からなる接合正レンズと、物体側に凸面を向けた負メニスカスレンズL34および両凸形状の正レンズL35からなる接合正レンズと、物体側に凸面を向けた正メニスカスレンズL36と、から構成される。
 第4レンズ群G4は、物体側に凹面を向けた正メニスカスレンズL41および両凹形状の負レンズL42からなる接合負レンズと、から構成される。
 第5レンズ群G5は、両凸形状の正レンズL51から構成される。
 第11実施例に係る光学系では、第4レンズ群G4(RNレンズ群GRN)を像面方向へ移動させることにより、遠距離物体から近距離物体への合焦が行われる。また、第2レンズ群G2(M1レンズ群GM1)が光軸と光軸と垂直な方向の変位成分を有する防振レンズ群を構成し、像面I上の像ブレ補正(防振、手ブレ補正)を行うようにするのが好ましい。
 以下の表11に、第11実施例に係る光学系の諸元の値を掲げる。
 (表11)第11実施例
[レンズ諸元]
面番号   R     D     nd    νd
物面   ∞   
  1   91.1552   6.167   1.51680   63.88
  2  -844.6033   0.204
  3   92.5357   1.500   1.64769   33.73
  4   45.6802   6.598   1.48749   70.31
 5   154.0927   可変
  6  -211.4795   1.000   1.69680   55.52
  7   22.5821   3.677   1.80518   25.45
  8   60.3602   2.652
  9   -46.9021   1.000   1.77250   49.62
 10   299.7358   可変
 11   48.8916   3.796   1.69680   55.52
 12  -131.4333   1.000
 13    ∞     1.000             (絞りS)
 14   39.8799   4.932   1.69680   55.52
 15   -49.6069   1.000   1.85026   32.35
 16   72.3703   8.805
 17   57.3477   1.000   1.80100   34.92
 18   18.1075   6.038   1.48749   70.31
 19  -116.1586   0.200
 20   26.5494   3.513   1.62004   36.40
 21   96.5593   可変
 22  -119.7021   3.510   1.74950   35.25
 23   -16.6839   1.000   1.69680   55.52
 24   25.6230   可変
 25   124.9308   2.143   1.48749   70.31
 26  -480.8453   BF
像面    ∞
 
[各種データ]
変倍比   4.12   
     W     M     T
f    71.4   100.0   294.0
FNO    4.56    4.26    5.89
2ω   22.82   16.04    5.46
Ymax   14.25   14.25   14.25
TL   159.32   185.24   219.32
BF    45.32   39.43   70.09
 
[可変間隔データ]
     W    M     T      W    M     T
    無限遠  無限遠  無限遠    近距離  近距離  近距離
d5   2.881  37.560  65.654    2.881  37.560  65.654
d10  29.543  26.683   2.000    29.543  26.683   2.000
d21   5.002   5.002   5.002    5.295   5.470   5.772
d24  15.836  15.836  15.836    15.543  15.368  15.066
 
[レンズ群データ]
群   始面   f
G1   1   146.976
G2   6   -31.771
G3   11   30.544
G4   22   -32.594
G5   25   203.039
 
[条件式対応値]
(2) (-fTM1)/f1 = 0.216
(3) fTM2/f1 = 0.208
(4) f1/fw = 2.058
(5) f1/(-fTM1) = 4.626
(6) f1/fTM2 = 4.809
 
 図52(a)、図52(b)および図52(c)はそれぞれ、第11実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における無限遠合焦時の諸収差図である。
 図53(a)、図53(b)および図53(c)はそれぞれ、第11実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における近距離合焦時の諸収差図である。
 各諸収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差を良好に補正し優れた結像性能を有しており、さらに近距離合焦時にも優れた結像性能を有していることがわかる。
(第12実施例)
 第12実施例について、図54、図55および図56並びに表12を用いて説明する。図54は、本実施形態の第12実施例に係る変倍光学系のレンズ構成を示す図である。第12実施例に係る変倍光学系ZL(12)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とから構成されている。
 この構成は上記実施形態との関係として、第1レンズ群G1が前側レンズ群GFSに、第2レンズ群G2がM1レンズ群GM1に、第3レンズ群G3がM2レンズ群GM2に、第4レンズ群G4がRNレンズ群GRNに、第5レンズ群G5が後続レンズ群GRSに対応する。
 第1レンズ群G1は、物体側から順に並んだ、両凸形状の正レンズL11と、物体側に凸面を向けた負メニスカスレンズL12および物体側に凸面を向けた正メニスカスレンズL13からなる接合正レンズと、から構成される。
 第2レンズ群G2は、物体側から順に並んだ、両凹形状の負レンズL21および物体側に凸面を向けた正メニスカスレンズL22からなる接合負レンズと、両凹形状の負レンズL23とから構成される。
 第3レンズ群G3は、物体側から順に並んだ、両凸形状の正レンズL31と、両凸形状の正レンズL32および両凹形状の負レンズL33からなる接合正レンズと、開口絞りSと、物体側に凸面を向けた負メニスカスレンズL34および両凸形状の正レンズL35からなる接合正レンズと、物体側に凸面を向けた正メニスカスレンズL36と、から構成される。
 第4レンズ群G4は、物体側に凹面を向けた正メニスカスレンズL41および両凹形状の負レンズL42の接合負レンズから構成される。
 第5レンズ群G5は、物体側に凸面を向けた正メニスカスレンズL51から構成される。
 第12実施例に係る光学系では、第4レンズ群G4を像面方向へ移動させることにより、遠距離物体から近距離物体への合焦が行われる。本実施例において、第2レンズ群G2(M1レンズ群GM1)が光軸と光軸と垂直な方向の変位成分を有する防振レンズ群を構成し、像面I上の像ブレ補正(防振、手ブレ補正)を行うようにするのが好ましい。
 以下の表12に、第12実施例に係る光学系の諸元の値を掲げる。
 (表12)第12実施例
[レンズ諸元]
面番号   R     D     nd    νd
物面   ∞   
  1   100.0120   5.590   1.51680   63.88
  2  -356.7115   0.200
  3   87.0822   1.500   1.62004   36.40
  4   36.8924   7.184   1.51680   63.88
 5   131.1594   可変
  6  -122.1413   1.000   1.69680   55.52
  7   20.4910   3.496   1.80518   25.45
  8   49.8357   2.470
  9   -48.8699   1.000   1.77250   49.62
 10  8360.2394   可変
 11   56.6713   3.785   1.58913   61.22
 12   -64.2309   0.200
 13   35.4309   4.669   1.48749   70.31
 14   -48.4394   1.000   1.80100   34.92
 15   159.7328   1.860
 16    ∞    16.684             (絞りS)
 17   57.8297   1.000   1.80100   34.92
 18   19.6163   4.946   1.48749   70.31
 19   -96.4204   0.200
 20   27.1066   2.717   1.62004   36.40
 21   65.2029   可変
 22  -157.1131   3.395   1.64769   33.73
 23   -22.3553   1.000   1.56883   56.00
 24   25.0407   可変
 25   46.5745   2.500   1.62004   36.40
 26   60.0000   
像面   ∞   
 
[各種データ]
変倍比   4.29   
     W     M     T
f    68.6   100.0   294.0
FNO    4.69    4.72   6.10
2ω   23.74   16.04   5.46
Ymax   14.25   14.25   14.25
TL   164.32   184.76  221.32
BF    38.52   38.73   64.73
 
[可変間隔データ]
     W     M    T      W     M    T
    無限遠  無限遠  無限遠    近距離  近距離  近距離
d5    4.964  31.058  63.669    4.964  31.058  63.669
d10   29.909  24.050   2.000    29.909  24.050   2.000
d21   3.666   4.368   2.697    4.068   4.962   3.755
d24   20.866  20.163  21.834    20.464  19.569  20.776
 
[レンズ群データ]
群   始面   f
G1   1   137.939
G2   6   -30.083
G3   11   34.644
G4   22   -42.585
G5   25   313.363
 
[条件式対応値]
(2) (-fTM1)/f1 = 0.218
(3) fTM2/f1 = 0.251
(4) f1/fw = 2.011
(5) f1/(-fTM1) = 4.585
(6) f1/fTM2 = 3.982
 
 図55(a)、図55(b)および図55(c)はそれぞれ、第12実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における無限遠合焦時の諸収差図である。図56(a)、図56(b)および図56(c)はそれぞれ、第12実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における近距離合焦時の諸収差図である。各諸収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差を良好に補正し優れた結像性能を有しており、さらに近距離合焦時にも優れた結像性能を有していることがわかる。
(第13実施例)
 第13実施例について、図57、図58および図59並びに表13を用いて説明する。図57は本実施形態の第13実施例に係る変倍光学系のレンズ構成を示す図である。第13実施例に係る変倍光学系ZL(13)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とから構成されている。
 この構成は上記実施形態との関係として、第1レンズ群G1が前側レンズ群GFSに、第2レンズ群G2がM1レンズ群GM1に、第3レンズ群G3がM2レンズ群GM2に、第4レンズ群G4がRNレンズ群GRNに、第5レンズ群G5が後続レンズ群GRSに対応する。
 第1レンズ群G1は、物体側から順に並んだ、両凸形状の正レンズL11と、物体側に凸面を向けた負メニスカスレンズL12および物体側に凸面を向けた正メニスカスレンズL13とからなる接合正レンズと、から構成される。
 第2レンズ群G2は、物体側から順に並んだ、両凹形状の負レンズL21および物体側に凸面を向けた正メニスカスレンズL22からなる接合負レンズと、両凹形状の負レンズL23とから構成される。
 第3レンズ群G3は、物体側から順に並んだ、両凸形状の正レンズL31と、両凸形状の正レンズL32および両凹形状の負レンズL33からなる接合正レンズと、開口絞りSと、物体側に凸面を向けた負メニスカスレンズL34および両凸形状の正レンズL35からなる接合正レンズと、物体側に凸面を向けた正メニスカスレンズL36と、から構成される。
 第4レンズ群G4は、物体側に凹面を向けた正メニスカスレンズL41および両凹形状の負レンズL42からなる接合負レンズと、物体側に凸面を向けた負メニスカスレンズL43とから構成される。
 第5レンズ群G5は、物体側に凸面を向けた正メニスカスレンズL51から構成される。
 第13実施例に係る光学系では、第4レンズ群G4を像面方向へ移動させることにより、遠距離物体から近距離物体への合焦が行われる。本実施例において、第2レンズ群G2(M1レンズ群GM1)が光軸と光軸と垂直な方向の変位成分を有する防振レンズ群を構成し、像面I上の像ブレ補正(防振、手ブレ補正)を行うようにするのが好ましい。
 以下の表13に、第13実施例に係る光学系の諸元の値を掲げる。
 (表13)第13実施例
[レンズ諸元]
面番号   R     D     nd    νd
物面   ∞   
  1   102.5193   5.542   1.51680   63.88
  2  -366.1796   0.200
  3   90.4094   1.500   1.62004   36.40
  4   37.8518   7.229   1.51680   63.88
  5   144.7539   可変
  6  -163.5053   1.000   1.69680   55.52
  7   20.5835   3.475   1.80518   25.45
  8   48.1602   2.598
  9   -47.4086   1.000   1.77250   49.62
 10  4634.3570   可変
 11   57.6094   3.843   1.58913   61.22
 12   -66.7307   0.200
 13   36.4629   4.709   1.48749   70.31
 14   -48.7603   1.000   1.80100   34.92
 15   206.1449   1.786
 16    ∞    16.497             (絞りS)
 17   55.1101   1.000   1.80100   34.92
 18   19.3181   4.785   1.48749   70.31
 19  -100.3387   0.200
 20   26.0254   2.707   1.62004   36.40
 21   57.5286   可変
 22  -201.9970   3.376   1.64769   33.73
 23   -22.7237   1.000   1.56883   56.00
 24   29.2295   1.172
 25   34.9681   1.000   1.79952   42.09
 26   26.1166   可変
 27   39.9439   2.135   1.62004   36.40
 28   60.0000   BF
像面   ∞   
 
[各種データ]
変倍比   4.28   
     W     M     T
f    68.7   100.0   294.0
FNO   4.70    4.73    6.06
2ω   23.74   16.08    5.48
Ymax  14.25   14.25   14.25
TL   164.32   184.47   221.32
BF   38.52   38.72   64.52
 
[可変間隔データ]
     W     M    T      W     M    T
    無限遠  無限遠  無限遠    近距離  近距離  近距離
d5    4.000  30.052  63.492    4.000  30.052  63.492
d10   30.492  24.393   2.000    30.492  24.393   2.000
d21   3.686   4.454   2.923    4.052   4.994   3.907
d26   19.668  18.899  20.430    19.301  18.359  19.446
 
[レンズ群データ]
群   始面   f
G1   1   138.289
G2   6   -30.436
G3   11   34.256
G4   22   -36.764
G5   27   185.180
 
[条件式対応値]
(2) (-fTM1)/f1 = 0.220
(3) fTM2/f1 = 0.248
(4) f1/fw = 2.013
(5) f1/(-fTM1) = 4.544
(6) f1/fTM2 = 4.037
 
 図58(a)、図58(b)および図58(c)はそれぞれ、第13実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における無限遠合焦時の諸収差図である。図59(a)、図59(b)および図59(c)はそれぞれ、第13実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における近距離合焦時の諸収差図である。各諸収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差を良好に補正し優れた結像性能を有しており、さらに近距離合焦時にも優れた結像性能を有していることがわかる。
 上記各実施例によれば、合焦用レンズ群を小型軽量化することで、鏡筒を大型化することなく高速なAF、AF時の静粛性を実現し、さらに、広角端状態から望遠端状態への変倍時の収差変動、ならびに無限遠物体から近距離物体への合焦時の収差変動を良好に抑えた変倍光学系を実現することができる。 
 ここで、上記各実施例は本願発明の一具体例を示しているものであり、本願発明はこれらに限定されるものではない。
 なお、以下の内容は、本願の変倍光学系の光学性能を損なわない範囲で適宜採用することが可能である。
 本願の変倍光学系の数値実施例として5群構成のものと6群構成のものを示したが、本願はこれに限られず、その他の群構成(例えば、7群等)の変倍光学系を構成することもできる。具体的には、本願の変倍光学系の最も物体側や最も像面側にレンズ又はレンズ群を追加した構成でも構わない。なお、レンズ群とは、変倍時に変化する空気間隔で分離された、少なくとも1枚のレンズを有する部分を示す。
 また、本願の変倍光学系を構成するレンズのレンズ面は、球面又は平面としてもよく、或いは非球面としてもよい。レンズ面が球面又は平面の場合、レンズ加工及び組立調整が容易になり、レンズ加工及び組立調整の誤差による光学性能の劣化を防ぐことができるため好ましい。また、像面がずれた場合でも描写性能の劣化が少ないため好ましい。レンズ面が非球面の場合、研削加工による非球面、ガラスを型で非球面形状に成型したガラスモールド非球面、又はガラス表面に設けた樹脂を非球面形状に形成した複合型非球面のいずれでもよい。また、レンズ面は回折面としてもよく、レンズを屈折率分布型レンズ(GRINレンズ)或いはプラスチックレンズとしてもよい。
 また、本願の変倍光学系を構成するレンズのレンズ面に、広い波長域で高い透過率を有する反射防止膜を施してもよい。これにより、フレアやゴーストを軽減し、高コントラストの高い光学性能を達成することができる。
 以上の構成により、上記第1実施例に係る変倍光学系を撮影レンズ2として搭載した本カメラ1は、合焦用レンズ群を小型軽量化することで、鏡筒を大型化することなく高速なAF、AF時の静粛性を実現し、さらに、広角端状態から望遠端状態への変倍時の収差変動、ならびに無限遠物体から近距離物体への合焦時の収差変動を良好に抑え、良好な光学性能を実現することができる。なお、上記第2~上記第7実施例に係る変倍光学系を撮影レンズ2として搭載したカメラを構成しても上記カメラ1と同様の効果を奏することができる。 
 G1 第1レンズ群          G2 第2レンズ群
 G3 第3レンズ群          G4 第4レンズ群
 G5 第5レンズ群          GFS 前側レンズ群
 GM1 M1レンズ群         GM2 M2レンズ群
 GRN RNレンズ群         GRS 後続レンズ群
 I 像面               S 開口絞り

Claims (29)

  1.  物体側から順に、正の屈折力を有する前側レンズ群と、負の屈折力を有するM1レンズ群と、正の屈折力を有するM2レンズ群と、負の屈折力を有するRNレンズ群と、後続レンズ群とを有し、
     変倍時に、前記前側レンズ群と前記M1レンズ群との間隔が変化し、前記M1レンズ群と前記M2レンズ群との間隔が変化し、前記M2レンズ群と前記RNレンズ群との間隔が変化し、
     無限遠物体から近距離物体への合焦の際、前記RNレンズ群が移動する変倍光学系。
  2.  前記後続レンズ群は、物体側から順に、負の屈折力を有するレンズと、正の屈折力を有するレンズとを有する請求項1に記載の変倍光学系。
  3.  以下の条件式を満足する請求項2に記載の変倍光学系。
       0.70<(-fN)/fP<2.00
     但し、
     fN:前記後続レンズ群にある最も負の屈折力が強いレンズの焦点距離
     fP:前記後続レンズ群にある最も正の屈折力が強いレンズの焦点距離
  4.  広角端状態から望遠端状態への変倍時に、前記前側レンズ群が物体側へ移動する請求項1~3のいずれかに記載の変倍光学系。
  5.  前記RNレンズ群は、少なくとも一つの正の屈折力を有するレンズと少なくとも一つの負の屈折力を有するレンズを有する請求項1~4のいずれかに記載の変倍光学系。
  6.  以下の条件式を満足する請求項1~5のいずれかに記載の変倍光学系。
       0.15<(-fTM1)/f1<0.35
     但し、
     fTM1:望遠端状態における前記M1レンズ群の焦点距離
     f1:前記前側レンズ群の焦点距離
  7.  以下の条件式を満足する請求項1~6のいずれかに記載の変倍光学系。
       0.20<fTM2/f1<0.40
     但し、
     fTM2:望遠端状態における前記M2レンズ群の焦点距離
     f1:前記前側レンズ群の焦点距離
  8.  前記RNレンズ群の像側に隣接して、物体側に凹面を向けた負メニスカスレンズを有する請求項1~7のいずれかに記載の変倍光学系。
  9.  以下の条件式を満足する請求項1~8のいずれかに記載の変倍光学系。
       1.80<f1/fw<3.50
     但し、
     f1:前記前側レンズ群の焦点距離
     fw:広角端状態における前記変倍光学系の焦点距離
  10.  以下の条件式を満足する請求項1~9のいずれかに記載の変倍光学系。
       3.70<f1/(-fTM1)<5.00
     但し、
     f1:前記前側レンズ群の焦点距離
     fTM1:望遠端状態における前記M1レンズ群の焦点距離
  11.  以下の条件式を満足する請求項1~10のいずれかに記載の変倍光学系。
       3.20<f1/fTM2<5.00
     但し、
     f1:前記前側レンズ群の焦点距離
     fTM2:望遠端状態における前記M2レンズ群の焦点距離 
  12.  変倍時に、前記M1レンズ群中の最も物体側にあるレンズ群が像面に対して固定である請求項1~11のいずれかに記載の変倍光学系。
  13.  前記M2レンズ群は、手ブレ等による結像位置変位の補正を行うために光軸と直交する方向へ移動可能な防振レンズ群を有する請求項1~12のいずれかに記載の変倍光学系。
  14.  前記防振レンズ群は、物体側から順に、負の屈折力を有するレンズと正の屈折力を有するレンズとからなる請求項13に記載の変倍光学系。
  15.  以下の条件式を満足する請求項14に記載の変倍光学系。
       1.00<nvrN/nvrP<1.25
     但し、
     nvrN:前記防振レンズ群内の負の屈折力を有するレンズの屈折率
     nvrP:前記防振レンズ群内の正の屈折力を有するレンズの屈折率
  16.  以下の条件式を満足する請求項14もしくは15に記載の変倍光学系。
       0.30<νvrN/νvrP<0.90
     但し、
     νvrN:前記防振レンズ群内の負の屈折力を有するレンズのアッベ数
     νvrP:前記防振レンズ群内の正の屈折力を有するレンズのアッベ数
  17.  前記M1レンズ群は、手ブレ等による結像位置変位の補正を行うために光軸と直交する方向へ移動可能な防振レンズ群を有する請求項1~12のいずれかに記載の変倍光学系。
  18.  前記防振レンズ群は、物体側から順に、負の屈折力を有するレンズと正の屈折力を有するレンズからなる請求項17に記載の変倍光学系。
  19.  以下の条件式を満足する請求項18に記載の変倍光学系。
       0.80<nvrN/nvrP<1.00
     但し、
     nvrN:前記防振レンズ群内の負の屈折力を有するレンズの屈折率
     nvrP:前記防振レンズ群内の正の屈折力を有するレンズの屈折率
  20.  以下の条件式を満足する請求項18もしくは19に記載の変倍光学系。
       1.20<νvrN/νvrP<2.40
     但し、
     νvrN:前記防振レンズ群内の負の屈折力を有するレンズのアッベ数
     νvrP:前記防振レンズ群内の正の屈折力を有するレンズのアッベ数
  21.  前記後続レンズ群は、正の屈折力を有するレンズを有する請求項1に記載の変倍光学系。
  22.  以下の条件式を満足する請求項21に記載の変倍光学系。
       0.15<(-fTM1)/f1<0.35
     但し、
     fTM1:望遠端状態における前記M1レンズ群の焦点距離
     f1:前記前側レンズ群の焦点距離
  23.  以下の条件式を満足する請求項21もしくは22に記載の変倍光学系。
       0.20<fTM2/f1<0.40
     但し、
     fTM2:望遠端状態における前記M2レンズ群の焦点距離
     f1:前記前側レンズ群の焦点距離
  24.  以下の条件式を満足する請求項21~23のいずれかに記載の変倍光学系。
       1.80<f1/fw<3.50
     但し、
     f1:前記前側レンズ群の焦点距離
     fw:広角端状態における前記変倍光学系の焦点距離
  25.  以下の条件式を満足する請求項21~24のいずれかに記載の変倍光学系。
       3.70<f1/(-fTM1)<5.00
     但し、
     f1:前記前側レンズ群の焦点距離
     fTM1:望遠端状態における前記M1レンズ群の焦点距離
  26.  以下の条件式を満足する請求項21~25のいずれかに記載の変倍光学系。
       3.20<f1/fTM2<5.00
     但し、
     f1:前記前側レンズ群の焦点距離
     fTM2:望遠端状態における前記M2レンズ群の焦点距離
  27.  請求項1~26のいずれかに記載の変倍光学系を有する光学機器。
  28.  請求項1~26のいずれかに記載の変倍光学系と、前記変倍光学系によって形成される像を撮像する撮像部とを備える撮像機器。
  29.  物体側から順に、正の屈折力を有する前側レンズ群と、負の屈折力を有するM1レンズ群と、正の屈折力を有するM2レンズ群と、負の屈折力を有するRNレンズ群と、後続レンズ群とを有して構成される変倍光学系の製造方法であって、
     変倍時に、前記前側レンズ群と前記M1レンズ群との間隔が変化し、前記M1レンズ群と前記M2レンズ群との間隔が変化し、前記M2レンズ群と前記RNレンズ群との間隔が変化するように配置することを含み、
     無限遠物体から近距離物体への合焦の際、前記RNレンズ群が移動し、
     前記後続レンズ群は、物体側から順に、負の屈折力を有するレンズと、正の屈折力を有するレンズとを有し、
    以下の条件式を満足する変倍光学系の製造方法。
       0.70<(-fN)/fP<2.00
     但し、
     fN:前記後続レンズ群にある最も負の屈折力が強いレンズの焦点距離
     fP:前記後続レンズ群にある最も正の屈折力が強いレンズの焦点距離
PCT/JP2016/084395 2016-11-21 2016-11-21 変倍光学系、光学機器、撮像機器および変倍光学系の製造方法 WO2018092295A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018550988A JPWO2018092295A1 (ja) 2016-11-21 2016-11-21 変倍光学系、光学機器、撮像機器および変倍光学系の製造方法
EP16921831.0A EP3543759A4 (en) 2016-11-21 2016-11-21 VARIABLE MAGNIFICATION OPTICAL SYSTEM, OPTICAL DEVICE, IMAGING DEVICE, AND METHOD OF MANUFACTURING A VARIABLE MAGNIFICATION OPTICAL SYSTEM
US16/345,185 US11175485B2 (en) 2016-11-21 2016-11-21 Zoom optical system, optical apparatus, imaging apparatus and method for manufacturing the zoom optical system
CN201680090860.6A CN109964161B (zh) 2016-11-21 2016-11-21 变倍光学***、光学设备以及摄像设备
PCT/JP2016/084395 WO2018092295A1 (ja) 2016-11-21 2016-11-21 変倍光学系、光学機器、撮像機器および変倍光学系の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/084395 WO2018092295A1 (ja) 2016-11-21 2016-11-21 変倍光学系、光学機器、撮像機器および変倍光学系の製造方法

Publications (1)

Publication Number Publication Date
WO2018092295A1 true WO2018092295A1 (ja) 2018-05-24

Family

ID=62145364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/084395 WO2018092295A1 (ja) 2016-11-21 2016-11-21 変倍光学系、光学機器、撮像機器および変倍光学系の製造方法

Country Status (5)

Country Link
US (1) US11175485B2 (ja)
EP (1) EP3543759A4 (ja)
JP (1) JPWO2018092295A1 (ja)
CN (1) CN109964161B (ja)
WO (1) WO2018092295A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020105111A1 (ja) * 2018-11-20 2020-05-28 株式会社ニコン 変倍光学系、光学機器、および変倍光学系の製造方法
WO2022264542A1 (ja) * 2021-06-15 2022-12-22 株式会社ニコン 変倍光学系、光学機器、および変倍光学系の製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7270569B2 (ja) * 2020-03-11 2023-05-10 富士フイルム株式会社 ズームレンズおよび撮像装置
CN114236791B (zh) * 2021-11-17 2023-09-19 中国航空工业集团公司洛阳电光设备研究所 一种具有扫描成像功能的多模连续变焦光学***

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59147314A (ja) * 1983-02-12 1984-08-23 Minolta Camera Co Ltd ズ−ムレンズ系
JPS59195214A (ja) * 1983-04-20 1984-11-06 Olympus Optical Co Ltd 高変倍ズ−ムレンズ
JPS61138228A (ja) * 1984-12-10 1986-06-25 Canon Inc リヤ−フオ−カス式のズ−ムレンズ
JPS61286813A (ja) * 1985-06-14 1986-12-17 Canon Inc リヤ−フオ−カス式のズ−ムレンズ
JPH04293007A (ja) 1991-03-20 1992-10-16 Canon Inc ズームレンズ
JPH085913A (ja) * 1994-06-23 1996-01-12 Canon Inc リヤフォーカス式ズームレンズ
JPH08146295A (ja) * 1994-11-15 1996-06-07 Canon Inc リヤーフォーカス式のズームレンズ
JPH09184981A (ja) * 1996-01-06 1997-07-15 Canon Inc ズームレンズ
JP2001075008A (ja) * 1999-09-02 2001-03-23 Nikon Corp 防振機能を有するズームレンズ
JP2001124992A (ja) * 1999-10-29 2001-05-11 Canon Inc 防振機能を有する変倍光学系及びそれを備える光学機器
JP2007304195A (ja) * 2006-05-09 2007-11-22 Sony Corp ズームレンズ及び撮像装置
JP2009265652A (ja) * 2008-04-02 2009-11-12 Panasonic Corp ズームレンズ系、交換レンズ装置、及びカメラシステム
JP2009282398A (ja) * 2008-05-23 2009-12-03 Canon Inc ズームレンズ及びそれを有する撮像装置
JP2011175098A (ja) * 2010-02-24 2011-09-08 Nikon Corp 変倍光学系、光学装置、変倍光学系の製造方法
JP2012113285A (ja) * 2010-11-01 2012-06-14 Canon Inc ズームレンズ及びそれを有する撮像装置
JP2013195749A (ja) * 2012-03-21 2013-09-30 Canon Inc ズームレンズ及びそれを有する撮像装置
JP2014044246A (ja) * 2012-08-24 2014-03-13 Sigma Corp ズームレンズ

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5847882A (en) 1994-06-23 1998-12-08 Canon Kabushiki Kaisha Rear focusing zoom lens
US6392816B1 (en) 1999-10-29 2002-05-21 Canon Kabushiki Kaisha Variable magnification optical system and optical apparatus having the same
JP2004317867A (ja) * 2003-04-17 2004-11-11 Canon Inc ズームレンズ
JP4822074B2 (ja) 2007-10-01 2011-11-24 株式会社ニコン ズームレンズ及びこのズームレンズを備えた光学機器
EP2360504B1 (en) 2010-02-24 2016-04-06 Nikon Corporation Zoom lens system, optical apparatus and method for manufacturing zoom lens system
JP6238153B2 (ja) * 2012-06-15 2017-11-29 パナソニックIpマネジメント株式会社 ズームレンズ系、交換レンズ装置及びカメラシステム
JP6214205B2 (ja) 2013-05-10 2017-10-18 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
WO2015107912A1 (ja) * 2014-01-20 2015-07-23 株式会社ニコン 光学系、撮像装置、および光学系の製造方法
JP6818429B2 (ja) * 2016-05-06 2021-01-20 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59147314A (ja) * 1983-02-12 1984-08-23 Minolta Camera Co Ltd ズ−ムレンズ系
JPS59195214A (ja) * 1983-04-20 1984-11-06 Olympus Optical Co Ltd 高変倍ズ−ムレンズ
JPS61138228A (ja) * 1984-12-10 1986-06-25 Canon Inc リヤ−フオ−カス式のズ−ムレンズ
JPS61286813A (ja) * 1985-06-14 1986-12-17 Canon Inc リヤ−フオ−カス式のズ−ムレンズ
JPH04293007A (ja) 1991-03-20 1992-10-16 Canon Inc ズームレンズ
JPH085913A (ja) * 1994-06-23 1996-01-12 Canon Inc リヤフォーカス式ズームレンズ
JPH08146295A (ja) * 1994-11-15 1996-06-07 Canon Inc リヤーフォーカス式のズームレンズ
JPH09184981A (ja) * 1996-01-06 1997-07-15 Canon Inc ズームレンズ
JP2001075008A (ja) * 1999-09-02 2001-03-23 Nikon Corp 防振機能を有するズームレンズ
JP2001124992A (ja) * 1999-10-29 2001-05-11 Canon Inc 防振機能を有する変倍光学系及びそれを備える光学機器
JP2007304195A (ja) * 2006-05-09 2007-11-22 Sony Corp ズームレンズ及び撮像装置
JP2009265652A (ja) * 2008-04-02 2009-11-12 Panasonic Corp ズームレンズ系、交換レンズ装置、及びカメラシステム
JP2009282398A (ja) * 2008-05-23 2009-12-03 Canon Inc ズームレンズ及びそれを有する撮像装置
JP2011175098A (ja) * 2010-02-24 2011-09-08 Nikon Corp 変倍光学系、光学装置、変倍光学系の製造方法
JP2012113285A (ja) * 2010-11-01 2012-06-14 Canon Inc ズームレンズ及びそれを有する撮像装置
JP2013195749A (ja) * 2012-03-21 2013-09-30 Canon Inc ズームレンズ及びそれを有する撮像装置
JP2014044246A (ja) * 2012-08-24 2014-03-13 Sigma Corp ズームレンズ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3543759A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020105111A1 (ja) * 2018-11-20 2020-05-28 株式会社ニコン 変倍光学系、光学機器、および変倍光学系の製造方法
JPWO2020105111A1 (ja) * 2018-11-20 2021-09-27 株式会社ニコン 変倍光学系、光学機器、および変倍光学系の製造方法
US11409086B2 (en) 2018-11-20 2022-08-09 Nikon Corporation Variable magnification optical system, optical equipment, and method for producing variable magnification optical system
JP7228136B2 (ja) 2018-11-20 2023-02-24 株式会社ニコン 変倍光学系、光学機器
US11644655B2 (en) 2018-11-20 2023-05-09 Nikon Corporation Variable magnification optical system, optical equipment, and method for producing variable magnification optical system
WO2022264542A1 (ja) * 2021-06-15 2022-12-22 株式会社ニコン 変倍光学系、光学機器、および変倍光学系の製造方法

Also Published As

Publication number Publication date
JPWO2018092295A1 (ja) 2019-10-10
EP3543759A4 (en) 2020-11-04
CN109964161B (zh) 2021-10-15
US11175485B2 (en) 2021-11-16
EP3543759A1 (en) 2019-09-25
CN109964161A (zh) 2019-07-02
US20190361212A1 (en) 2019-11-28

Similar Documents

Publication Publication Date Title
WO2012070559A1 (ja) 変倍光学系、光学機器、および変倍光学系の製造方法
WO2017094662A1 (ja) 変倍光学系、光学機器および変倍光学系の製造方法
JP6773125B2 (ja) 変倍光学系、光学機器および撮像機器
WO2018092295A1 (ja) 変倍光学系、光学機器、撮像機器および変倍光学系の製造方法
JP5648900B2 (ja) 変倍光学系、及び、この変倍光学系を有する光学機器
JP6729717B2 (ja) 変倍光学系、これを用いた光学機器および撮像機器
JP5845972B2 (ja) 変倍光学系、光学装置
JP6708262B2 (ja) 変倍光学系、光学機器および撮像機器
JP5839062B2 (ja) ズームレンズ、光学装置
WO2016104742A1 (ja) 変倍光学系、光学装置、及び、変倍光学系の製造方法
JP6743904B2 (ja) 変倍光学系、これを用いた光学機器および撮像機器
WO2017094664A1 (ja) 変倍光学系、光学機器および変倍光学系の製造方法
JP6911869B2 (ja) 変倍光学系、これを用いた光学機器および撮像機器
JP7088327B2 (ja) 変倍光学系および光学機器
WO2013129487A1 (ja) 変倍光学系、光学装置、変倍光学系の製造方法
WO2017094663A1 (ja) 変倍光学系、光学機器および変倍光学系の製造方法
JP7243884B2 (ja) 変倍光学系、これを用いた光学機器および撮像機器
JP7375970B2 (ja) 変倍光学系およびこれを用いた光学機器
JP7036152B2 (ja) 変倍光学系およびこれを用いた光学機器
JP6693531B2 (ja) 変倍光学系および光学機器
JP2021002063A (ja) 変倍光学系、光学機器および撮像機器
JP5831294B2 (ja) 変倍光学系、光学装置
JP5935390B2 (ja) 変倍光学系、光学装置
JP2012042548A (ja) 変倍光学系、この変倍光学系を有する光学機器、及び、変倍光学系の製造方法
JP2012042547A (ja) 変倍光学系、この変倍光学系を有する光学機器、及び、変倍光学系の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16921831

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018550988

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016921831

Country of ref document: EP

Effective date: 20190621