WO2018090782A1 - 电机定子电阻的在线辨识方法、装置和电机控制*** - Google Patents

电机定子电阻的在线辨识方法、装置和电机控制*** Download PDF

Info

Publication number
WO2018090782A1
WO2018090782A1 PCT/CN2017/106843 CN2017106843W WO2018090782A1 WO 2018090782 A1 WO2018090782 A1 WO 2018090782A1 CN 2017106843 W CN2017106843 W CN 2017106843W WO 2018090782 A1 WO2018090782 A1 WO 2018090782A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
motor
stator resistance
current
frequency
Prior art date
Application number
PCT/CN2017/106843
Other languages
English (en)
French (fr)
Inventor
程云峰
龚黎明
Original Assignee
广东威灵电机制造有限公司
美的威灵电机技术(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东威灵电机制造有限公司, 美的威灵电机技术(上海)有限公司 filed Critical 广东威灵电机制造有限公司
Publication of WO2018090782A1 publication Critical patent/WO2018090782A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage

Definitions

  • the invention relates to the technical field of motors, in particular to an online identification method for stator resistance of a motor, an online identification device for stator resistance of a motor and a motor control system.
  • the stator resistance identification method based on the steady state model of the motor is to sequentially calculate the reactive power, the stator flux linkage, the rotor flux linkage and the electromagnetic torque of the motor according to the detected stator current and the stator voltage, and then according to the above calculation result.
  • the stator resistance is calculated by the pre-derived stator resistance identification expression.
  • the key point of the stator resistance identification method based on adaptive theory is to determine the appropriate error amount through repeated test adjustments, such as rotor magnetic based on voltage model and current model.
  • the error of the d-axis component of the chain, the error based on the active power or the reactive power, and the error of the stator current in the d-direction component of the synchronously rotating dq axis system are complicated. Therefore, how to reduce the complexity of on-line identification of stator resistance is a technical problem that needs to be solved in the field.
  • the present invention aims to solve at least one of the technical problems in the related art to some extent.
  • the first object of the present invention is to provide an on-line identification method for the stator resistance of a motor, which can obtain an accurate stator resistance, is simple to measure, and is easy to implement, and can be applied to engineering practice.
  • a second object of the present invention is to provide an on-line identification device for the stator resistance of a motor.
  • a third object of the present invention is to provide a motor control system.
  • a fourth object of the present invention is to provide a non-transitory computer readable storage medium.
  • an embodiment of the first aspect of the present invention provides an online identification method for a stator resistance of a motor, comprising the steps of: injecting a preset current into a d-axis of a synchronously rotating dq axis system; and acquiring the synchronous rotating dq axis system D-axis voltage and d-axis current; respectively performing high-pass filtering processing on the d-axis voltage and the d-axis current; and calculating the motor according to the d-axis voltage and the d-axis current after the high-pass filtering process and the stator inductance of the motor Stator resistance.
  • the preset current is first injected into the d-axis of the synchronously rotating dq axis system, and the d-axis voltage and the d-axis current of the synchronously rotating dq axis system are acquired, and then the d-axis is respectively Voltage and d-axis
  • the current is subjected to high-pass filtering, and the stator resistance of the motor is calculated according to the d-axis voltage and the d-axis current processed by the high-pass filter and the stator inductance of the motor.
  • the method can obtain accurate stator resistance, and the measurement is simple and easy to implement, and can be applied to engineering practice.
  • the preset current is an alternating current of constant amplitude and constant frequency, wherein the frequency of the preset current is 8-15 times of the rated frequency of the motor.
  • the d-axis voltage and the d-axis current are subjected to high-pass filtering processing by high-pass filtering links formed by cascading first-order high-pass filters having equal cutoff frequencies, respectively.
  • n is 1 to 3
  • the cutoff frequency is greater than or equal to the frequency of the preset current.
  • the stator resistance of the motor is calculated by the following formula:
  • Rs is the stator resistance of the motor
  • U df is the amplitude of the d-axis voltage after the high-pass filtering process
  • I df is the amplitude of the d-axis current after the high-pass filtering process
  • f inj is the The frequency of the preset current, L s , is the stator inductance of the motor.
  • an online identification device for a stator resistance of a motor includes: an injection module for injecting a preset current into a d-axis of a synchronously rotating dq axis system; and an acquisition module for Obtaining a d-axis voltage and a d-axis current of the synchronously rotating dq axis system; and a filter processing module, wherein the filter processing module is connected to the acquisition module, wherein the filter processing module is configured to respectively perform the d-axis voltage and the The d-axis current performs high-pass filtering processing; and the calculation module is connected to the filter processing module, and the calculation module is configured to calculate the d-axis voltage and the d-axis current and the stator inductance of the motor according to the high-pass filter processing The stator resistance of the motor.
  • the preset current is first injected into the d-axis of the synchronously rotating dq axis system through the injection module, and the d-axis voltage and the d-axis current of the synchronously rotating dq axis system are acquired by the acquisition module. Then, the d-axis voltage and the d-axis current are respectively subjected to high-pass filtering processing by the filter processing module, and finally the calculation module calculates the stator resistance of the motor according to the d-axis voltage and the d-axis current after the high-pass filter processing and the stator inductance of the motor.
  • the device is capable of obtaining accurate stator resistance and is easy to measure and easy to implement, and can be used in engineering practice.
  • the preset current is an alternating current of constant amplitude and constant frequency, wherein the frequency of the preset current is 8-15 times of the rated frequency of the motor.
  • the filter processing module is configured by cascading a first-order high-pass filter with equal cutoff frequencies, wherein the n is 1-3, and the cutoff frequency is greater than or equal to the preset. The frequency of the current.
  • the calculation module calculates the stator resistance of the motor by the following formula:
  • Rs is the stator resistance of the motor
  • U df is the amplitude of the d-axis voltage after the high-pass filtering process
  • I df is the amplitude of the d-axis current after the high-pass filtering process
  • f inj is the The frequency of the preset current, L s , is the stator inductance of the motor.
  • embodiments of the present invention also provide a motor control system including the above-described online identification device for the stator resistance of the motor.
  • the motor control system of the embodiment of the invention can obtain an accurate stator resistance through the above-mentioned online identification device of the stator resistance of the motor, and the measurement is simple and easy to implement, and can be applied to engineering practice.
  • embodiments of the present invention also provide a non-transitory computer readable storage medium having stored thereon a computer program that, when executed by the processor, implements the above-described online identification method of the stator resistance of the motor.
  • the non-transitory computer readable storage medium of the embodiment of the present invention can obtain an accurate stator resistance by performing the above-described online identification method of the stator resistance of the motor, and the measurement is simple and easy to implement, and can be applied to engineering practice.
  • FIG. 1 is a flow chart of an online identification method for stator resistance of a motor according to an embodiment of the present invention
  • FIG. 2 is a block diagram showing an online identification device for a stator resistance of a motor according to an embodiment of the present invention
  • FIG. 3 is a block schematic diagram of a motor control system in accordance with an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a motor control system in accordance with one embodiment of the present invention.
  • FIG. 1 is a flow chart of an online identification method for stator resistance of a motor according to an embodiment of the present invention. As shown in FIG. 1, the online identification method of the stator resistance of the motor may include the following steps:
  • a preset current is injected into the d-axis of the synchronously rotating dq axis system.
  • the preset current is an alternating current having a constant amplitude and a constant frequency, wherein the frequency of the preset current is 8 to 15 times the rated frequency of the motor, and the calibration may be performed according to actual conditions.
  • high-pass filtering is performed on the d-axis voltage and the d-axis current by a high-pass filtering link formed by cascading first-order high-pass filters with equal cutoff frequencies, wherein n is 1 to 3,
  • the cutoff frequency is greater than or equal to the frequency of the preset current, and can be calibrated according to actual conditions.
  • stator resistance of the motor can be calculated by the following formula (1):
  • an alternating current i inj having a small amplitude and a high frequency can be injected into the d-axis of the motor, and the d-axis voltage of the motor is obtained.
  • the subsequent d-axis current i df is then used to calculate the stator resistance Rs of the motor based on the d-axis voltage u df and the d-axis current i df after the filtering process.
  • the stator resistance Rs of the motor can be calculated by the above formula (1).
  • the preset current is first injected into the d-axis of the synchronously rotating dq axis system, and the d-axis voltage and the d-axis current of the synchronously rotating dq axis system are obtained. Then, the d-axis voltage and the d-axis current are respectively subjected to high-pass filtering processing, and the stator resistance of the motor is calculated according to the d-axis voltage and the d-axis current after the high-pass filtering process and the stator inductance of the motor.
  • the method can obtain accurate stator resistance, and the measurement is simple and easy to implement, and can be applied to engineering practice.
  • the present invention also provides a non-transitory computer readable storage medium having stored thereon a computer program that, when executed by the processor, implements the above-described online identification method of the stator resistance of the motor.
  • the non-transitory computer readable storage medium of the embodiment of the present invention can obtain an accurate stator resistance by performing the above-described online identification method of the stator resistance of the motor, and the measurement is simple and easy to implement, and can be applied to engineering practice.
  • the online identification device 100 of the stator resistance of the motor may include: an injection module 10, an acquisition module 20, and a filter processing module. 30 and calculation module 40.
  • the injection module 10 is configured to inject a preset current into the d-axis of the synchronously rotating dq axis system
  • the acquisition module 20 is configured to acquire the d-axis voltage and the d-axis current of the synchronously rotating dq axis system
  • the filter processing module 30 is connected to the acquisition module 20.
  • the filter processing module 30 is configured to perform high-pass filtering processing on the d-axis voltage and the d-axis current, respectively
  • the calculation module 40 is connected to the filter processing module 30, and the calculation module 40 is configured to perform d-axis voltage and d-axis current according to the high-pass filter processing and
  • the stator inductance of the motor calculates the stator resistance of the motor.
  • the preset current is an alternating current having a constant amplitude and a constant frequency, wherein the frequency of the preset current is 8 to 15 times the rated frequency of the motor.
  • the filter processing module 30 may be formed by cascading n first-order high-pass filters with equal cutoff frequencies, wherein n may be 1 to 3, and the cutoff frequency is greater than or equal to the frequency of the preset current.
  • the calculation module 40 can calculate the stator resistance of the motor by the above formula (1).
  • the injection module 10 injects an alternating current i inj having a small amplitude and a high frequency to the d-axis of the motor, and simultaneously acquires the module.
  • the d-axis voltage u d and the d-axis current i d of the motor are obtained, and the obtained d-axis voltage u d is subjected to high-pass filtering processing by the filter processing module 30 to obtain the filtered d-axis voltage u df , and simultaneously acquired
  • the d-axis current i d is subjected to high-pass filtering processing to obtain a filtered d-axis current i df
  • the calculation module 40 calculates the stator resistance Rs of the motor according to the d-axis voltage u df and the d-axis current i df after the filtering process, for example
  • the stator resistance Rs of the motor can be calculated by the above formula (1). This not only enables accurate stator resistance, but is also simple, reliable, easy to implement and can be used in engineering practice.
  • the preset current is first injected into the d-axis of the synchronously rotating dq axis system through the injection module, and the d-axis voltage and the d-axis current of the synchronously rotating dq axis system are acquired by the acquisition module. Then, the d-axis voltage and the d-axis current are respectively subjected to high-pass filtering processing by the filter processing module, and finally the calculation module calculates the stator resistance of the motor according to the d-axis voltage and the d-axis current after the high-pass filter processing and the stator inductance of the motor.
  • the device is capable of obtaining accurate stator resistance and is easy to measure and easy to implement, and can be used in engineering practice.
  • FIG. 3 is a block diagram showing the structure of a motor control system in accordance with an embodiment of the present invention.
  • the motor control system 1000 includes the above-described online identification device 100 for motor stator resistance.
  • the motor control system 1000 may include: a motor 1001, a current sampling module 1002, a first coordinate conversion module 1003, a current correction module 1004, a direct axis voltage module 1005, and an axis of intersection.
  • SVPWM Space Vector Pulse Width Modulation
  • the current sampling module 1002 is used to sample the three-phase current of the motor 1001.
  • the first coordinate conversion module 1003 uses The Clarke coordinate transformation and the Park coordinate transformation are performed on the three-phase current according to the initial position of the rotor to obtain a direct-axis (d-axis) current and an off-axis (q-axis) current.
  • the current correction module 1004 is configured to perform current correction on the direct-axis current and the cross-axis current according to the direct-axis reference current and the cross-axis reference current, respectively, to obtain a direct-axis voltage change value and a cross-axis voltage change value.
  • the straight-axis voltage module 1005 is for adjusting the straight-axis voltage according to the rotor electrical angular velocity.
  • the cross-axis voltage module 1006 is for adjusting the quadrature axis voltage according to the rotor electrical angular velocity.
  • the second coordinate conversion module 1007 performs inverse Clarke coordinate transformation and Park coordinate inverse transformation on the sum of the direct-axis voltage and the direct-axis voltage change value and the sum of the cross-axis voltage and the cross-axis voltage change value according to the initial position to obtain a three-phase voltage.
  • the SVPWM driving module 1008 is configured to output a driving signal according to a three-phase voltage.
  • the inverter 1009 is for controlling the current of the motor 1001 in accordance with the drive signal.
  • the DC power source 1010 is used to power the inverter 1009.
  • the preset current i inj is injected in the d-axis of the synchronously rotating dq axis of the motor, and then the d-axis voltage u d and the d-axis current i d of the synchronously rotating dq axis system are acquired, and After high-pass filtering the d-axis voltage u d and the d-axis current i d , the filtered d-axis voltage u df and the filtered d-axis current i df are obtained , and finally, according to the filtered d-axis voltage u df and the filtered The d-axis current i df calculates the stator resistance Rs of the motor. Therefore, not only accurate stator resistance can be obtained, but also measurement accuracy is high, calculation is simple, and it is easy to implement.
  • the accurate stator resistance can be obtained by the above-mentioned online identification device of the stator resistance of the motor, and the measurement is simple and easy to implement, and can be applied to engineering practice.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include at least one of the features, either explicitly or implicitly.
  • the meaning of "a plurality” is at least two, such as two, three, etc., unless specifically defined otherwise.
  • the terms “installation”, “connected”, “connected”, “fixed” and the like shall be understood broadly, and may be either a fixed connection or a detachable connection, unless explicitly stated and defined otherwise. , or integrated; can be mechanical or electrical connection; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of two elements or the interaction of two elements, unless otherwise specified Limited.
  • the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • the first feature may be “on” or “under” the second feature, unless otherwise explicitly stated and defined.
  • the first and second features are in direct contact, or the first and second features are in indirect contact through an intermediate medium.
  • the first feature "above”, “above” and “above” the second feature may be that the first feature is directly above or above the second feature, or merely that the first feature level is higher than the second feature.
  • the first feature “below”, “below” and “below” the second feature may be that the first feature is directly below or obliquely below the second feature, or merely that the first feature level is less than the second feature.
  • a "computer-readable medium” can be any apparatus that can contain, store, communicate, propagate, or transport a program for use in an instruction execution system, apparatus, or device, or in conjunction with the instruction execution system, apparatus, or device.
  • computer readable media include the following: electrical connections (electronic devices) having one or more wires, portable computer disk cartridges (magnetic devices), random access memory (RAM), Read only memory (ROM), erasable editable read only memory (EPROM or flash memory), fiber optic devices, and portable compact disk read only memory (CDROM).
  • the computer readable medium may even be a paper or other suitable medium on which the program can be printed, as it may be optically scanned, for example by paper or other medium, followed by editing, interpretation or, if appropriate, other suitable The method is processed to obtain the program electronically and then stored in computer memory.
  • portions of the invention may be implemented in hardware, software, firmware or a combination thereof.
  • multiple steps or methods may be implemented in software or firmware stored in a memory and executed by a suitable instruction execution system.
  • a suitable instruction execution system For example, if implemented in hardware and in another embodiment, the following techniques known in the art can be used. Any one of the operations or a combination thereof: a discrete logic circuit having logic gates for performing logic functions on data signals, an application specific integrated circuit with suitable combination logic gates, a programmable gate array (PGA) , Field Programmable Gate Array (FPGA), etc.
  • PGA programmable gate array
  • FPGA Field Programmable Gate Array

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

一种电机定子电阻的在线辨识方法、装置和电机控制***,其中,方法包括以下步骤:向同步旋转dq轴系的d轴注入预设电流(S1);获取所述同步旋转dq轴系的d轴电压和d轴电流(S2);分别对所述d轴电压和所述d轴电流进行高通滤波处理(S3);根据高通滤波处理后的d轴电压和d轴电流及电机的定子电感计算电机的定子电阻(S4)。该方法能够获得准确的定子电阻,且测量简单,实现容易,可运用于工程实践。

Description

电机定子电阻的在线辨识方法、装置和电机控制*** 技术领域
本发明涉及电机技术领域,特别涉及一种电机定子电阻的在线辨识方法、一种电机定子电阻的在线辨识装置和一种电机控制***。
背景技术
在基于矢量控制的无传感器控制过程中,需要掌握精确的磁链信息,因此需要进行磁链估计。在基于电压模型的定子磁链估计中,涉及到的电机参数只有定子电阻,故精确的定子电阻值可以提高磁链估计的精度。同时,根据精确的电机定子电阻值,也可以对电机的温度进行实时监测。
相关技术中,基于电机稳态模型的定子电阻辨识方法,是根据检测到的定子电流和定子电压依次计算电机的无功功率、定子磁链、转子磁链和电磁转矩,然后根据上述计算结果和预先推导得到的定子电阻辨识表达式计算定子电阻;基于自适应理论的定子电阻辨识方法的关键点是通过反复的试验调节,确定合适的误差量,如:基于电压模型和电流模型的转子磁链d轴分量的误差、基于有功功率或者无功功率的误差以及定子电流在同步旋转dq轴系的d方向分量的误差等,其过程是很复杂的。因此,如何降低定子电阻在线辨识的复杂度是本领域亟需解决的技术问题。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本发明的第一个目的在于提出一种电机定子电阻的在线辨识方法,该方法能够获得准确的定子电阻,且测量简单,实现容易,可运用于工程实践。
本发明的第二个目的在于提出一种电机定子电阻的在线辨识装置。
本发明的第三个目的在于提出一种电机控制***。
本发明的第四个目的在于提出一种非临时性计算机可读存储介质。
为实现上述目的,本发明第一方面实施例提出了一种电机定子电阻的在线辨识方法,包括以下步骤:向同步旋转dq轴系的d轴注入预设电流;获取所述同步旋转dq轴系的d轴电压和d轴电流;分别对所述d轴电压和所述d轴电流进行高通滤波处理;以及根据高通滤波处理后的d轴电压和d轴电流及电机的定子电感计算所述电机的定子电阻。
根据本发明实施例的电机定子电阻的在线辨识方法,首先向同步旋转dq轴系的d轴注入预设电流,并获取同步旋转dq轴系的d轴电压和d轴电流,然后分别对d轴电压和d轴 电流进行高通滤波处理,并根据高通滤波处理后的d轴电压和d轴电流及电机的定子电感计算电机的定子电阻。该方法能够获得准确的定子电阻,且测量简单,实现容易,可运用于工程实践。
根据本发明的一个实施例,所述预设电流为幅值恒定、频率恒定的交变电流,其中,所述预设电流的频率为所述电机的额定频率的8~15倍。
根据本发明的一个实施例,分别通过n个截止频率均相等的一阶高通滤波器级联构成的高通滤波环节对所述d轴电压和所述d轴电流进行高通滤波处理,其中,所述n为1~3,所述截止频率大于等于所述预设电流的频率。
根据本发明的一个实施例,通过以下公式计算所述电机的定子电阻:
Figure PCTCN2017106843-appb-000001
其中,Rs为所述电机的定子电阻,Udf为所述高通滤波处理后的d轴电压的幅值,Idf为所述高通滤波处理后的d轴电流的幅值,finj为所述预设电流的频率,Ls为所述电机的定子电感。
为实现上述目的,本发明第二方面实施例提出的一种电机定子电阻的在线辨识装置,包括:注入模块,用于向同步旋转dq轴系的d轴注入预设电流;获取模块,用于获取所述同步旋转dq轴系的d轴电压和d轴电流;滤波处理模块,所述滤波处理模块与所述获取模块相连,所述滤波处理模块用于分别对所述d轴电压和所述d轴电流进行高通滤波处理;以及计算模块,所述计算模块与所述滤波处理模块相连,所述计算模块用于根据高通滤波处理后的d轴电压和d轴电流及电机的定子电感计算所述电机的定子电阻。
根据本发明实施例的电机定子电阻的在线辨识装置,首先通过注入模块向同步旋转dq轴系的d轴注入预设电流,并通过获取模块获取同步旋转dq轴系的d轴电压和d轴电流,然后通过滤波处理模块分别对d轴电压和d轴电流进行高通滤波处理,最后计算模块根据高通滤波处理后的d轴电压和d轴电流及电机的定子电感计算电机的定子电阻。该装置能够获得准确的定子电阻,且测量简单,实现容易,可运用于工程实践。
根据本发明的一个实施例,所述预设电流为幅值恒定、频率恒定的交变电流,其中,所述预设电流的频率为所述电机的额定频率的8~15倍。
根据本发明的一个实施例,所述滤波处理模块由n个截止频率均相等的一阶高通滤波器级联构成,其中,所述n为1~3,所述截止频率大于等于所述预设电流的频率。
根据本发明的一个实施例,所述计算模块通过以下公式计算所述电机的定子电阻:
Figure PCTCN2017106843-appb-000002
其中,Rs为所述电机的定子电阻,Udf为所述高通滤波处理后的d轴电压的幅值,Idf为所述高通滤波处理后的d轴电流的幅值,finj为所述预设电流的频率,Ls为所述电机的定子电感。
另外,本发明的实施例还提出了一种电机控制***,其包括上述的电机定子电阻的在线辨识装置。
本发明实施例的电机控制***,通过上述的电机定子电阻的在线辨识装置,能够获得准确的定子电阻,且测量简单,实现容易,可运用于工程实践。
此外,本发明的实施例还提出了一种非临时性计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述的电机定子电阻的在线辨识方法。
本发明实施例的非临时性计算机可读存储介质,通过执行上述的电机定子电阻的在线辨识方法,能够获得准确的定子电阻,且测量简单,实现容易,可运用于工程实践。
附图说明
图1是根据本发明实施例的电机定子电阻的在线辨识方法的流程图;
图2是根据本发明实施例的电机定子电阻的在线辨识装置的方框示意图;
图3是根据本发明实施例的电机控制***的方框示意图;
图4是根据本发明一个实施例的电机控制***的示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
下面参照附图来描述根据本发明实施例提出的电机定子电阻的在线辨识方法、电机定子电阻的在线辨识装置和具有该装置的电机控制***。
图1是根据本发明实施例的电机定子电阻的在线辨识方法的流程图。如图1所示,该电机定子电阻的在线辨识方法可包括以下步骤:
S1,向同步旋转dq轴系的d轴注入预设电流。
根据本发明的一个实施例,预设电流为幅值恒定、频率恒定的交变电流,其中,预设电流的频率为电机的额定频率的8~15倍,具体可根据实际情况进行标定。
S2,获取同步旋转dq轴系的d轴电压和d轴电流。
S3,分别对d轴电压和d轴电流进行高通滤波处理。
根据本发明的一个实施例,分别通过n个截止频率均相等的一阶高通滤波器级联构成的高通滤波环节对d轴电压和d轴电流进行高通滤波处理,其中,n为1~3,截止频率大于等于预设电流的频率,具体可根据实际情况进行标定。
S4,根据高通滤波处理后的d轴电压和d轴电流及电机的定子电感计算电机的定子电阻。
根据本发明的一个实施例,可通过下述公式(1)计算电机的定子电阻:
Figure PCTCN2017106843-appb-000003
其中,Rs为电机的定子电阻,Udf为高通滤波处理后的d轴电压的幅值,Idf为高通滤波处理后的d轴电流的幅值,finj为预设电流的频率,Ls为电机的定子电感。
具体而言,为了能够在线获得电机的定子电阻,在电机运行的过程中,可以向电机的d轴注入幅值较小、频率较高的交变电流iinj,同时获取电机的d轴电压ud和d轴电流id,并对获取的d轴电压ud进行高通滤波处理,以获得滤波后的d轴电压udf,同时对获取的d轴电流id进行高通滤波处理,以获得滤波后的d轴电流idf,然后根据滤波处理后的d轴电压udf和d轴电流idf计算电机的定子电阻Rs,例如,可通过上述公式(1)计算电机的定子电阻Rs。从而不仅能够获得准确的定子电阻,而且方法简单可靠,易于实现,可运用于工程实践。
综上所述,根据本发明实施例的电机定子电阻的在线辨识方法,首先向同步旋转dq轴系的d轴注入预设电流,并获取同步旋转dq轴系的d轴电压和d轴电流,然后分别对d轴电压和d轴电流进行高通滤波处理,并根据高通滤波处理后的d轴电压和d轴电流及电机的定子电感计算电机的定子电阻。该方法能够获得准确的定子电阻,且测量简单,实现容易,可运用于工程实践。
另外,本发明还提供了一种非临时性计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述的电机定子电阻的在线辨识方法。
本发明实施例的非临时性计算机可读存储介质,通过执行上述的电机定子电阻的在线辨识方法,能够获得准确的定子电阻,且测量简单,实现容易,可运用于工程实践。
图2是根据本发明实施例的电机定子电阻的在线辨识装置的方框示意图。如图2所示,该电机定子电阻的在线辨识装置100可包括:注入模块10、获取模块20、滤波处理模块 30和计算模块40。
其中,注入模块10用于向同步旋转dq轴系的d轴注入预设电流,获取模块20用于获取同步旋转dq轴系的d轴电压和d轴电流,滤波处理模块30与获取模块20相连,滤波处理模块30用于分别对d轴电压和d轴电流进行高通滤波处理,计算模块40与滤波处理模块30相连,计算模块40用于根据高通滤波处理后的d轴电压和d轴电流及电机的定子电感计算电机的定子电阻。
根据本发明的一个实施例,预设电流为幅值恒定、频率恒定的交变电流,其中,预设电流的频率为电机的额定频率的8~15倍。
根据本发明的一个实施例,滤波处理模块30可由n个截止频率均相等的一阶高通滤波器级联构成,其中,n可以为1~3,截止频率大于等于预设电流的频率。
根据本发明的一个实施例,计算模块40可通过上述公式(1)计算电机的定子电阻。
具体而言,为了能够在线获得电机的定子电阻,在电机运行的过程中,通过注入模块10向电机的d轴注入幅值较小、频率较高的交变电流iinj,同时,通过获取模块20获取电机的d轴电压ud和d轴电流id,并通过滤波处理模块30对获取的d轴电压ud进行高通滤波处理,以获得滤波后的d轴电压udf,同时对获取的d轴电流id进行高通滤波处理,以获得滤波后的d轴电流idf,然后,计算模块40根据滤波处理后的d轴电压udf和d轴电流idf计算电机的定子电阻Rs,例如,可通过上述公式(1)计算电机的定子电阻Rs。从而不仅能够获得准确的定子电阻,而且简单可靠,易于实现,可运用于工程实践。
根据本发明实施例的电机定子电阻的在线辨识装置,首先通过注入模块向同步旋转dq轴系的d轴注入预设电流,并通过获取模块获取同步旋转dq轴系的d轴电压和d轴电流,然后通过滤波处理模块分别对d轴电压和d轴电流进行高通滤波处理,最后计算模块根据高通滤波处理后的d轴电压和d轴电流及电机的定子电感计算电机的定子电阻。该装置能够获得准确的定子电阻,且测量简单,实现容易,可运用于工程实践。
图3是根据本发明实施例的电机控制***的结构框图。如图3所示,该电机控制***1000包括上述的电机定子电阻的在线辨识装置100。
在本发明的一个具体示例中,如图4所示,电机控制***1000可以包括:电机1001、电流采样模块1002、第一坐标转换模块1003、电流校正模块1004、直轴电压模块1005、交轴电压模块1006、第二坐标转换模块1007、SVPWM(Space Vector Pulse Width Modulation,电压空间矢量脉宽调制)驱动模块1008、逆变器1009和直流电源1010。
其中,电流采样模块1002用于采样电机1001的三相电流。第一坐标转换模块1003用 于根据转子初始位置对三相电流进行Clarke坐标变换和Park坐标变换以获得直轴(d轴)电流和交轴(q轴)电流。电流校正模块1004用于根据直轴参考电流和交轴参考电流分别对直轴电流和交轴电流进行电流校正以获得直轴电压变化值和交轴电压变化值。直轴电压模块1005用于根据转子电角速度调整直轴电压。交轴电压模块1006用于根据转子电角速度调整交轴电压。第二坐标转换模块1007根据初始位置对直轴电压与直轴电压变化值之和和交轴电压与交轴电压变化值之和进行Clarke坐标反变换和Park坐标反变换以获得三相电压。SVPWM驱动模块1008用于根据三相电压输出驱动信号。逆变器1009用于根据驱动信号控制电机1001的电流。直流电源1010用于为逆变器1009供电。
这样,基于上述的电机控制***1000,通过在电机的同步旋转dq轴系的d轴注入预设电流iinj,然后获取同步旋转dq轴系的d轴电压ud和d轴电流id,并对d轴电压ud和d轴电流id进行高通滤波后,得到滤波后的d轴电压udf和滤波后的d轴电流idf,最后根据滤波后的d轴电压udf和滤波后的d轴电流idf计算出电机的定子电阻Rs。从而不仅能够获得准确的定子电阻,而且测量精度高,计算简单、易于实现。
根据本发明实施例的电机控制***,通过上述的电机定子电阻的在线辨识装置,能够获得准确的定子电阻,且测量简单,实现容易,可运用于工程实践。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以 是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现定制逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本发明的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本发明的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行***、装置或设备(如基于计算机的***、包括处理器的***或其他可以从指令执行***、装置或设备取指令并执行指令的***)使用,或结合这些指令执行***、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行***、装置或设备或结合这些指令执行***、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本发明的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行***执行的软件或固件来实现。如,如果用硬件来实现和在另一实施方式中一样,可用本领域公知的下列技 术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

  1. 一种电机定子电阻的在线辨识方法,其特征在于,包括以下步骤:
    向同步旋转dq轴系的d轴注入预设电流;
    获取所述同步旋转dq轴系的d轴电压和d轴电流;
    分别对所述d轴电压和所述d轴电流进行高通滤波处理;以及
    根据高通滤波处理后的d轴电压和d轴电流及电机的定子电感计算所述电机的定子电阻。
  2. 如权利要求1所述的电机定子电阻的在线辨识方法,其特征在于,所述预设电流为幅值恒定、频率恒定的交变电流,其中,所述预设电流的频率为所述电机的额定频率的8~15倍。
  3. 如权利要求1或2所述的电机定子电阻的在线辨识方法,其特征在于,分别通过n个截止频率均相等的一阶高通滤波器级联构成的高通滤波环节对所述d轴电压和所述d轴电流进行高通滤波处理,其中,所述n为1~3,所述截止频率大于等于所述预设电流的频率。
  4. 如权利要求3所述的电机定子电阻的在线辨识方法,其特征在于,通过以下公式计算所述电机的定子电阻:
    Figure PCTCN2017106843-appb-100001
    其中,Rs为所述电机的定子电阻,Udf为所述高通滤波处理后的d轴电压的幅值,Idf为所述高通滤波处理后的d轴电流的幅值,finj为所述预设电流的频率,Ls为所述电机的定子电感。
  5. 一种电机定子电阻的在线辨识装置,其特征在于,包括:
    注入模块,用于向同步旋转dq轴系的d轴注入预设电流;
    获取模块,用于获取所述同步旋转dq轴系的d轴电压和d轴电流;
    滤波处理模块,所述滤波处理模块与所述获取模块相连,所述滤波处理模块用于分别对所述d轴电压和所述d轴电流进行高通滤波处理;以及
    计算模块,所述计算模块与所述滤波处理模块相连,所述计算模块用于根据高通滤波处理后的d轴电压和d轴电流及电机的定子电感计算所述电机的定子电阻。
  6. 如权利要求5所述的电机定子电阻的在线辨识装置,其特征在于,所述预设电流为幅值恒定、频率恒定的交变电流,其中,所述预设电流的频率为所述电机的额定频率的8~15 倍。
  7. 如权利要求5或6所述的电机定子电阻的在线辨识装置,其特征在于,所述滤波处理模块由n个截止频率均相等的一阶高通滤波器级联构成,其中,所述n为1~3,所述截止频率大于等于所述预设电流的频率。
  8. 如权利要求7所述的电机定子电阻的在线辨识装置,其特征在于,所述计算模块通过以下公式计算所述电机的定子电阻:
    Figure PCTCN2017106843-appb-100002
    其中,Rs为所述电机的定子电阻,Udf为所述高通滤波处理后的d轴电压的幅值,Idf为所述高通滤波处理后的d轴电流的幅值,finj为所述预设电流的频率,Ls为所述电机的定子电感。
  9. 一种电机控制***,其特征在于,包括如权利要求5-8中任一项所述的电机定子电阻的在线辨识装置。
  10. 一种非临时性计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现如权利要求1-4中任一项所述的电机定子电阻的在线辨识方法。
PCT/CN2017/106843 2016-11-21 2017-10-19 电机定子电阻的在线辨识方法、装置和电机控制*** WO2018090782A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611042832.5 2016-11-21
CN201611042832.5A CN106505924B (zh) 2016-11-21 2016-11-21 电机定子电阻的在线辨识方法、装置和电机控制***

Publications (1)

Publication Number Publication Date
WO2018090782A1 true WO2018090782A1 (zh) 2018-05-24

Family

ID=58328300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/106843 WO2018090782A1 (zh) 2016-11-21 2017-10-19 电机定子电阻的在线辨识方法、装置和电机控制***

Country Status (2)

Country Link
CN (1) CN106505924B (zh)
WO (1) WO2018090782A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112994556A (zh) * 2021-04-02 2021-06-18 华中科技大学 全参数永磁电机电磁模型的建立方法及参数辨识方法
CN113659903A (zh) * 2021-07-28 2021-11-16 威灵(芜湖)电机制造有限公司 电机的控制方法、电机的控制装置、控制***和存储介质
CN113839594A (zh) * 2020-06-23 2021-12-24 美的威灵电机技术(上海)有限公司 电机的定子电阻的辨识方法、辨识装置和电机控制***
CN116317770A (zh) * 2023-02-03 2023-06-23 北京中科昊芯科技有限公司 离线辨识电机定子电阻的方法、控制电机的方法及介质

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106505924B (zh) * 2016-11-21 2019-05-24 广东威灵电机制造有限公司 电机定子电阻的在线辨识方法、装置和电机控制***
CN107294457B (zh) * 2017-07-31 2019-08-27 广东威灵电机制造有限公司 永磁同步电机定子电阻辨识方法、电机驱动器及存储介质
CN107404268B (zh) * 2017-07-31 2020-02-11 广东威灵电机制造有限公司 永磁同步电机定子电阻辨识方法、电机驱动器及存储介质
CN111800047A (zh) * 2019-03-19 2020-10-20 广东威灵电机制造有限公司 永磁同步电机的永磁磁链的测量方法、装置和电机控制***
CN114050752B (zh) * 2021-10-12 2024-02-09 广州极飞科技股份有限公司 电机的磁场定向控制、电机参数确定的方法和装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101969292A (zh) * 2010-09-10 2011-02-09 中冶南方(武汉)自动化有限公司 一种定子电阻参数的辨识方法
CN102386835A (zh) * 2010-08-27 2012-03-21 永济新时速电机电器有限责任公司 永磁同步电机的参数获取方法
CN102611383A (zh) * 2012-03-16 2012-07-25 阳光电源股份有限公司 定子电阻在线辨识方法及装置
CN103326657A (zh) * 2013-06-09 2013-09-25 深圳市汇川技术股份有限公司 异步电机定子电阻在线识别***及方法
CN104734593A (zh) * 2013-12-23 2015-06-24 广东美的制冷设备有限公司 永磁同步电机的控制***及定子电阻辨识方法
CN105119549A (zh) * 2015-09-11 2015-12-02 南京埃斯顿自动控制技术有限公司 一种电机定子电阻辨识方法
CN106505924A (zh) * 2016-11-21 2017-03-15 广东威灵电机制造有限公司 电机定子电阻的在线辨识方法、装置和电机控制***

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5886117B2 (ja) * 2012-04-22 2016-03-16 株式会社デンソー 交流電動機の制御装置
CN105591582B (zh) * 2014-10-23 2019-01-29 比亚迪股份有限公司 永磁同步电机的控制方法及控制装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102386835A (zh) * 2010-08-27 2012-03-21 永济新时速电机电器有限责任公司 永磁同步电机的参数获取方法
CN101969292A (zh) * 2010-09-10 2011-02-09 中冶南方(武汉)自动化有限公司 一种定子电阻参数的辨识方法
CN102611383A (zh) * 2012-03-16 2012-07-25 阳光电源股份有限公司 定子电阻在线辨识方法及装置
CN103326657A (zh) * 2013-06-09 2013-09-25 深圳市汇川技术股份有限公司 异步电机定子电阻在线识别***及方法
CN104734593A (zh) * 2013-12-23 2015-06-24 广东美的制冷设备有限公司 永磁同步电机的控制***及定子电阻辨识方法
CN105119549A (zh) * 2015-09-11 2015-12-02 南京埃斯顿自动控制技术有限公司 一种电机定子电阻辨识方法
CN106505924A (zh) * 2016-11-21 2017-03-15 广东威灵电机制造有限公司 电机定子电阻的在线辨识方法、装置和电机控制***

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113839594A (zh) * 2020-06-23 2021-12-24 美的威灵电机技术(上海)有限公司 电机的定子电阻的辨识方法、辨识装置和电机控制***
CN113839594B (zh) * 2020-06-23 2023-11-17 美的威灵电机技术(上海)有限公司 电机的定子电阻的辨识方法、辨识装置和电机控制***
CN112994556A (zh) * 2021-04-02 2021-06-18 华中科技大学 全参数永磁电机电磁模型的建立方法及参数辨识方法
CN112994556B (zh) * 2021-04-02 2022-09-16 华中科技大学 全参数永磁电机电磁模型的建立方法及参数辨识方法
CN113659903A (zh) * 2021-07-28 2021-11-16 威灵(芜湖)电机制造有限公司 电机的控制方法、电机的控制装置、控制***和存储介质
CN113659903B (zh) * 2021-07-28 2024-01-30 威灵(芜湖)电机制造有限公司 电机的控制方法、电机的控制装置、控制***和存储介质
CN116317770A (zh) * 2023-02-03 2023-06-23 北京中科昊芯科技有限公司 离线辨识电机定子电阻的方法、控制电机的方法及介质
CN116317770B (zh) * 2023-02-03 2024-01-26 北京中科昊芯科技有限公司 离线辨识电机定子电阻的方法、控制电机的方法及介质

Also Published As

Publication number Publication date
CN106505924B (zh) 2019-05-24
CN106505924A (zh) 2017-03-15

Similar Documents

Publication Publication Date Title
WO2018090782A1 (zh) 电机定子电阻的在线辨识方法、装置和电机控制***
WO2018090783A1 (zh) 电机定子电阻的在线辨识方法、装置和电机控制***
CN103916064B (zh) 定子电阻的测量方法、装置和温度检测方法、装置
US9188648B2 (en) Method and arrangement for determining inductances of synchronous reluctance machine
TWI518345B (zh) 感應電機的轉子電阻測量方法及測量裝置
CN106452241B (zh) 感应电机参数辨识方法
DE102018106837A1 (de) Vibrationsinduzierte ausprägung für synchrone permanentmagnetmaschinen
CN109274304B (zh) 电动汽车内嵌式永磁同步电机电感参数矩阵的辨识方法
DE102020108299A1 (de) Bestimmung einer anfänglichen position eines rotors einer permanentmagnet-synchronmaschine
WO2018028067A1 (zh) 三相异步电机在线参数辨识方法及装置
US10291165B2 (en) Method and device for detecting the presence of a permanent magnet of a rotor of a synchronous machine
CN111010059A (zh) 用于永磁同步电机初始位置的检测***、设备和方法
JP7084919B2 (ja) 同期リラクタンスモータの磁気特性を適合させる方法及び装置
CN106053952B (zh) 开关磁阻电机电感曲线的精确测量***及方法
EP2626996B1 (en) Motor constant calculating method for pm motor, and motor constant calculating device
CN109873589A (zh) 一种永磁同步电机转子零位检测方法
CN113691181B (zh) 电机电感检测方法、装置以及电机控制器、存储介质
CN109510543B (zh) 一种伺服电机负载惯量的测定方法
US9077316B2 (en) Transmitter finite impulse response characterization
CN110336508B (zh) 一种pmsm的定子磁链辨识方法及装置
EP3704790B1 (de) Verfahren zur ermittlung der rotorposition von synchron laufenden elektrischen maschinen ohne mechanischen geber
CN103701393A (zh) 一种异步电机弱磁时转矩精度的补偿方法
CN112269127A (zh) 用于三相逆变器、马达和驱动设计的dq0和反dq0变换
DE102021107106A1 (de) Detektion von unausgeglichenen phasenwiderständen in synchronmotorantrieben
CN113009333A (zh) 一种感应电机转子气隙偏心检测方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17871321

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10/10/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17871321

Country of ref document: EP

Kind code of ref document: A1