WO2018088405A1 - セメント混和材、それを用いたセメント組成物、及びコンクリート構造物の塩害抑制加工方法 - Google Patents

セメント混和材、それを用いたセメント組成物、及びコンクリート構造物の塩害抑制加工方法 Download PDF

Info

Publication number
WO2018088405A1
WO2018088405A1 PCT/JP2017/040141 JP2017040141W WO2018088405A1 WO 2018088405 A1 WO2018088405 A1 WO 2018088405A1 JP 2017040141 W JP2017040141 W JP 2017040141W WO 2018088405 A1 WO2018088405 A1 WO 2018088405A1
Authority
WO
WIPO (PCT)
Prior art keywords
cement
mass
parts
cement admixture
cao
Prior art date
Application number
PCT/JP2017/040141
Other languages
English (en)
French (fr)
Inventor
泰一郎 森
悠太 藏本
万穂 吉岡
盛岡 実
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to EP17868817.2A priority Critical patent/EP3539937B1/en
Priority to MYPI2019002618A priority patent/MY193153A/en
Priority to CN201780068738.3A priority patent/CN109923089A/zh
Publication of WO2018088405A1 publication Critical patent/WO2018088405A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/06Aluminous cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00215Mortar or concrete mixtures defined by their oxide composition
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00482Coating or impregnation materials
    • C04B2111/00508Cement paints
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack

Definitions

  • the present invention relates to a cement admixture and a cement composition using the cement admixture, in particular, a cement admixture related to durability, chloride ion penetration resistance and temperature crack resistance used in civil engineering and construction, and a concrete structure.
  • the present invention relates to a salt damage control processing method.
  • salt damage in which rebar corrosion becomes obvious due to the presence of chloride ions.
  • chloride ion penetration resistance we impart chloride ion penetration resistance to concrete structures. There is a way to do it.
  • Non-Patent Document 1 As a method for suppressing the penetration of chloride ions into the interior of a hardened concrete and imparting chloride ion penetration resistance, a method of reducing the water / cement ratio is known (see Non-Patent Document 1). However, in the method of reducing the water / cement ratio, not only the workability is impaired but also a drastic measure may not be provided.
  • a method has been proposed in which a cement admixture containing a calcium ferroaluminate compound of 15 to 0.7 is used, has excellent chloride ion penetration resistance, and suppresses temperature cracking of mascon (Patent Document 2). reference).
  • cement admixtures have a problem that rapid hardening appears in a high temperature environment, and the workability of cement concrete containing the cement admixture is impaired. For example, in areas such as Okinawa in Japan and Singapore at high temperatures, and in areas where salt damage and acid degradation are likely to be accelerated, stiffness appears and workability is impaired. It has become clear that the penetration resistance of chloride ions is not fully exhibited. Originally, development of a rust prevention technique that is more effective in a high temperature environment where the diffusion rate of the corrosive component is high and the corrosion reaction is promoted is awaited.
  • a cement composition containing blast furnace granulated slag fine powder or pozzolanic material improves the resistance to penetration of chloride ions.
  • the reason for suppressing the penetration of chloride ions is that the Al component in the ground granulated blast furnace slag powder chemically fixes or electrically adsorbs chloride ions.
  • pozzolanic substances are considered to suppress the formation of voids of several tens to several hundreds of ⁇ m that are generated when calcium hydroxide is leached into seawater. .
  • An object of the present invention is to provide a cement admixture and a cement composition using the cement admixture, in particular, a chloride admixture resistant and temperature cracking resistant cement admixture used in civil engineering and construction.
  • the present invention is as follows.
  • the total chemical composition of CaO, Al 2 O 3 , SiO 2 , Fe 2 O 3 , and TiO 2 is 21 to 27 parts by mass of CaO, 65 to 73 parts by mass of Al 2 O 3 , and SiO 2 1 to 5 parts by mass, Fe 2 O 3 1 to 6 parts by mass, TiO 2 1 to 5 parts by mass, and a Blaine specific surface area value of 2,000 to 6,000 cm 2 / g of calcium aluminate. Cement admixture.
  • the present invention has excellent chloride ion penetration resistance, can sufficiently secure the time required for setting and hardening of cement concrete (usable time), has excellent strength development and dimensional stability, It is possible to provide a cement concrete structure that can remarkably reduce temperature cracks when used in the present invention.
  • cement concrete is a general term for cement paste, mortar, and concrete.
  • the present invention has a chemical composition of CaO, Al 2 O 3 , SiO 2 , Fe 2 O 3 , and TiO 2 , wherein CaO is 21 to 27 parts by mass, Al 2 O 3 is 65 to 73 parts by mass, SiO 2 1 to 5 parts by mass, Fe 2 O 3 1 to 6 parts by mass, TiO 2 1 to 5 parts by mass, and a Blaine specific surface area value of 2,000 to 6,000 cm 2 / g of calcium aluminate. And a cement composition containing gypsum and a cement composition containing cement and the cement admixture.
  • CA Calcium aluminate used in the present invention
  • CA has a chemical composition of CaO, Al 2 O 3 , SiO 2 , Fe 2 O 3 , and TiO 2 in the total of 21 to 27 parts by mass of CaO
  • Al 2 O 3 is 65 to 73 parts by mass
  • SiO 2 is 1 to 5 parts by mass
  • Fe 2 O 3 is 1 to 6 parts by mass
  • TiO 2 is 1 to 5 parts by mass
  • CaO is 21 to 25 parts by mass.
  • Al 2 O 3 is in the range of 67 to 71 parts by mass
  • SiO 2 is in the range of 2 to 4 parts by mass
  • Fe 2 O 3 is in the range of 2 to 5 parts by mass
  • TiO 2 is in the range of 2 to 4 parts by mass.
  • CA in the present invention as long as 10 wt% or less in total, MgO or R 2 O (R is an alkali metal) no particular problem even contain like. Moreover, if CA in this invention is 10 mass% or less in total amount, even if it contains the glass phase produced
  • the fineness of CA is 2,000 to 6,000 cm 2 / g, more preferably 2,500 to 5,000 cm 2 / g, in terms of the specific surface area of brain (hereinafter referred to as “brain value”).
  • the raw material used for manufacture of the cement admixture used by this invention is demonstrated.
  • the raw material containing CaO is not particularly limited.
  • Examples of commercially available industrial raw materials include quick lime (CaO), slaked lime (Ca (OH) 2 ), and limestone (CaCO 3 ).
  • the raw material containing Al 2 O 3 is not particularly limited.
  • Examples of the commercially available industrial raw materials include Al 2 O 3 , aluminum hydroxide, and bauxite. In particular, bauxite is desirable because it contains Fe 2 O 3 , SiO 2 and TiO 2 together with Al 2 O 3 .
  • Raw material containing SiO 2 is not particularly limited. Examples of commercially available industrial raw materials include quartzite, quartz sand, quartz, and diatomaceous earth.
  • the raw material containing the Fe component used as the supply source of Fe 2 O 3 is not particularly limited.
  • Examples of the commercially available industrial raw materials include iron ore and Fe 2 O 3 obtained by recovery and purification from steel material cleaning waste hydrochloric acid. If a necessary amount of Fe, FeO, Fe 2 O 3 , Fe 3 O 4 is contained in the raw material containing CaO or Al 2 O 3 , it may not be used.
  • the raw material containing TiO 2 is not particularly limited. Examples of the commercially available industrial raw material include TiO 2 , rutile ore, and ilmenite ore.
  • the fineness of the cement admixture used in the present invention is not particularly limited, it is usually preferably 2,000 to 6,000 cm 2 / g, and 2,500 cm 2 / g to 5,000 cm in terms of Blaine specific surface area. 2 / g is more preferable. If the coarse particles are less than 2,000 cm 2 / g, chloride ion permeation resistance and strength development may not be sufficiently obtained, and if the fine powder exceeds 6,000 cm 2 / g, rapid hardening will appear. In some cases, sufficient pot life cannot be secured.
  • the amount of the cement admixture of the present invention is not particularly limited, but usually 1 to 20 parts by mass is preferable and 3 to 10 parts by mass is more preferable in 100 parts by mass of the cement composition composed of cement and cement admixture. preferable. If the amount of cement admixture used is less than 1 part by mass, sufficient chloride ion penetration resistance and temperature cracking resistance may not be obtained. In some cases, the pot life cannot be ensured, and the strength development is reduced. Further, from the viewpoint of achieving both sufficient chloride ion penetration resistance and temperature crack resistance, the amount of the cement admixture of the present invention used is more preferably 5 to 15 parts by mass in 100 parts by mass of the cement composition.
  • gypsums together with calcium aluminate from the viewpoint of improving strength development and enhancing chloride ion penetration resistance.
  • gypsum any of anhydrous gypsum, half-water gypsum, and dihydrate gypsum can be used, and anhydrous gypsum is preferable from the viewpoint of strength development.
  • gypsum fineness is not particularly limited, usually, 3,000 ⁇ 8,000cm 2 / g are preferred in Blaine value, more preferably 4,000 ⁇ 6,000cm 2 / g. If the gypsum has a fineness of less than 3,000 cm 2 / g, sufficient strength development may not be obtained. On the other hand, if the fineness exceeds 8,000 cm 2 / g, workability may deteriorate.
  • the amount of gypsum used is not particularly limited, but it is usually preferably 50 parts by mass or less, more preferably 5 to 40 parts by mass in 100 parts by mass of the cement admixture composed of calcium aluminate and gypsum. Strength development and chloride ion penetration resistance are improved, and an effect of suppressing shrinkage during cement hydration can be obtained. If the amount of gypsum used exceeds 50 parts by mass, it may expand for a long time to cause cracks and the like, and strength development and chloride ion penetration resistance may not be obtained.
  • the cement used in the present invention is not particularly limited, and ordinary cement can be used.
  • various Portland cements such as normal, early strength, super early strength, moderate heat, and low heat, various mixed cements obtained by mixing blast furnace slag, fly ash, or silica with these Portland cements, and limestone fine Examples include filler cement mixed with powder and blast furnace slow-cooled slag fine powder, waste-use cement, eco-cement, alumina cement, high-alumina cement, etc., and one or more of these can be used. .
  • cement in the present invention, cement, a cement admixture, and a substance exhibiting hydraulic properties, latent hydraulic properties, and pozzolanic reactivity can be used as the binder.
  • the water / binder ratio is preferably 25 to 70%, more preferably 30 to 65%. If the water / binder ratio is less than 25%, pumpability and workability may be reduced or shrinkage may be caused. If it exceeds 70%, strength development may be reduced.
  • the cement admixture and cement composition of the present invention may be mixed at the time of construction, or a part or all of the materials may be mixed in advance.
  • additives such as additives, antifoaming agents, thickeners, rust inhibitors, antifreeze agents, shrinkage reducing agents, polymer emulsions, setting modifiers, clay minerals such as bentonite, and anion exchangers such as hydrotalcite, And blast furnace granulated slag fine powder, blast furnace slow-cooled slag fine powder, limestone fine powder, fly ash, and one or more kinds of admixtures such as silica fume, etc., within a range not hindering the object of the present invention. It is possible to use.
  • the cement admixture of the present invention has excellent chloride ion permeation resistance, can sufficiently secure the time required for setting and hardening of cement concrete (potential time), strength development and dimensional stability In addition, when used in mass concrete, there are obtained effects such as obtaining a cement composition capable of remarkably reducing the temperature crack.
  • Example 1 Reagent grade calcium carbonate, aluminum oxide, silicon dioxide, ferric trioxide, and titanium oxide are blended at a predetermined ratio, melted at 1,500 ° C. in an electric furnace, and then slowly cooled to the calcium aluminum shown in Table 1. Nate was synthesized and ground to 3,000 cm 2 / g in terms of Blaine specific surface area to obtain a cement admixture. In 100 parts by mass of cement composition composed of cement ⁇ and cement admixture, 10 parts by mass of calcium aluminate, which is a cement admixture, is blended to obtain a cement composition, and 300 parts by mass of fine aggregate with respect to 100 parts by mass of cement composition. Mortar with a water / binder ratio of 50% was prepared. Using the prepared mortar, the flow, setting time, compressive strength, and chloride penetration depth were measured, and the presence or absence of abnormal expansion was observed. The results are shown in Table 2.
  • Cement ⁇ Commercial ordinary Portland cement fine aggregate: Standard sand water for cement strength test used in JIS R 5201: Tap water
  • the chloride ion penetration depth was measured by using the fluorescein-silver nitrate method at eight points using a caliper for the portion of the mortar specimen where the cross section did not turn brown, and the average value was defined as the chloride ion penetration depth.
  • Presence or absence of abnormal expansion The mortar specimen was immersed in 20 ° C. water for 28 days, and the length change rate was measured according to JIS A 6202 (B). Observe for abnormal expansion and associated cracks. ⁇ indicates no abnormality within a rate of change in length of 2,000 ⁇ 10 ⁇ 6 , ⁇ indicates abnormal expansion exceeding 2,000 ⁇ 10 ⁇ 6 , and ⁇ indicates occurrence of cracks due to obvious abnormal expansion.
  • Example 2 It carried out similarly to Example 1 except having changed the usage-amount of calcium aluminate (b3). The results are also shown in Table 3.
  • Example 3 It carried out similarly to Example 1 except having changed the fineness of calcium aluminate (b3). The results are also shown in Table 4.
  • Example 4 The same procedure as in Example 1 was performed except that calcium aluminate (b3) was used and the type of cement was changed. The results are shown in Table 5. (Materials used) Cement ⁇ : Blast furnace cement B type, commercial cement ⁇ : Low heat Portland cement, commercial product
  • Example 5 A cement admixture was prepared by blending calcium aluminate (b3) and gypsum shown in Table 6, and the same amount as in Example 1 except that the cement admixture was 10 parts by mass in 100 parts by mass of the cement composition. Tested. The results are shown in Table 6. (Materials used) Gypsum A: Anhydrous gypsum, Blaine specific surface area value 4,000 cm 2 / g Gypsum B: Semi-water gypsum, Blaine specific surface area value 4,000 cm 2 / g Gypsum C: Two-water gypsum, Blaine specific surface area value 4,000 cm 2 / g
  • Example 6 Calcium aluminate (b3) was used as a cement admixture, and the effect of suppressing temperature cracks in mass concrete was investigated.
  • Hydration heat inhibitor a commercially available dextrin, cold water soluble content 30% by mass. Experiment No. 7-8 and 7-9 used instead of cement admixture. Hydration heat inhibitor b: Reagent tannic acid. Experiment No. 7-10 and 7-11 were used instead of cement admixture.
  • the cement admixture of the present invention has an excellent chloride ion penetration resistance, can secure a sufficient working time, has excellent strength development and dimensional stability, and has a remarkably high temperature cracking resistance. In order to achieve such effects, it is suitable for use in offshore structures, seawall structures, mass concrete, etc. mainly in the civil engineering and construction industries. Moreover, the cement composition of this invention can be used for various uses. In addition to the use of constructing concrete structures, the surface of existing concrete structures can be coated with cement concrete containing the cement composition of the present invention, and used for salt damage control processing of existing or new concrete structures. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Abstract

化学組成がCaO、Al、SiO、Fe、およびTiOの合計中、CaOが21~27質量部、Alが65~73質量部、SiOが1~5質量部、Feが1~6質量部、TiOが1~5質量部、ブレーン比表面積値が2,000~6,000cm/gのカルシウムアルミネートを含有してなるセメント混和材である。

Description

セメント混和材、それを用いたセメント組成物、及びコンクリート構造物の塩害抑制加工方法
 本発明は、セメント混和材およびそれを用いたセメント組成物、特に、土木・建築で使用される耐久性、塩化物イオン浸透抵抗性および温度ひび割れ抵抗性に関わるセメント混和材、及びコンクリート構造物の塩害抑制加工方法に関する。
 近年、土木・建築分野において、コンクリート構造物の耐久性向上に対する要求が高まっている。
 コンクリート構造物の劣化要因の一つとして、塩化物イオンの存在によって鉄筋腐食が顕在化する塩害があり、その塩害を抑制するための方法として、コンクリート構造物に塩化物イオンの浸透抵抗性を付与する方法がある。
 コンクリート硬化体の内部への塩化物イオンの浸透を抑制し、塩化物イオンの浸透抵抗性を与える方法としては、水/セメント比を小さくする方法が知られている(非特許文献1参照)。しかしながら、水/セメント比を小さくする方法では、施工性が損なわれるだけでなく、抜本的な対策とはならない場合があった。
 また、セメントコンクリートに早強性を付与し、かつ、鉄筋の腐食を防止するなどの目的で、CaO・2Alとセッコウを主体とし、更に無機塩化物を含有するセメント混和材を使用する方法が提案されている(特許文献1参照)。
 さらに、CaO/Alモル比が0.3~0.7、ブレーン比表面積値が2,000~6,000cm/gのカルシウムアルミネート、もしくはCaO/Alモル比が0.15~0.7のカルシウムフェロアルミネート化合物を含有するセメント混和材を使用し、優れた塩化物イオンの浸透抵抗性を持ち、マスコンの温度ひび割れ抑制する方法が提案されている(特許文献2参照)。
 しかしながら、これらセメント混和材は、高温環境下では急硬性が現れ、これを混和したセメントコンクリートの作業性が損なわれるという課題があった。例えば、日本国内では沖縄、海外ではシンガポールのような高温で、かつ、塩害や酸性劣化が促進されやすい地域では急硬性が現れ、作業性が損なわれるばかりか、本発明者らの数々の実験から、塩化物イオンの浸透抵抗性が充分に発揮されないことが明らかとなってきた。本来、腐食成分の拡散速度が速く、かつ、腐食反応が促進される高温環境下で、より有効に効く防錆技術の開発が待たれている。
 一方、高炉水砕スラグ微粉末やポゾラン物質を混和したセメント組成物が塩化物イオンの浸透抵抗性を向上させることが知られている。塩化物イオンの浸透を抑制する理由は、高炉水砕スラグ微粉末中のAl成分が塩化物イオンを化学的に固定化、あるいは電気的に吸着するためである。さらにポゾラン物質はセメント硬化体中の水酸化カルシウムの低減に関連して、水酸化カルシウムが海水中に溶脱した場合に生成する数十μm~数百μmの空隙の生成を抑制することが考えられる。しかしながら、高炉水砕スラグ微粉末やポゾラン物質の反応は長期にわたって起こるため、初期強度の発現を阻害する傾向にあり、若材齢で海水に浸漬されると塩化物イオンの浸透抵抗性が低下し、コンクリートが劣化するという課題があった。そのため、耐久性すなわち耐海水性を向上させるにはセメント硬化体中における反応を促進して初期材齢のうちから海水の作用による塩化物イオンの侵入を低減する必要がある。
 他方、鉄筋の防錆を目的として、亜硝酸塩などを添加する方法も提案されている(特許文献3、特許文献4参照)。しかしながら、亜硝酸塩には耐酸性を付与する効果は認められないものであった。
 他方、マッシブなコンクリート、いわゆるマスコンクリートで顕在化する温度ひび割れの抑制技術も強く求められている。
 マスコンの温度ひび割れを抑制する技術として、有機系の水和熱抑制剤を適用する方法が提案されている(特許文献5~特許文献8参照)。
 しかし、この方法では凝結時間が長くなったり、ブリーディングが生じ易くなる、あるいは硬化体の表面が荒れるなどの課題があった。
特開昭47-035020号公報 特開2005-104828号公報 特許第5688073号公報 特開平01-103970号公報 特開平06-305799号公報 特開2002-137951号公報 特開2002-241167号公報 特開2003-034564号公報
岸谷孝一、西澤紀昭他編、「コンクリート構造物の耐久性シリーズ、塩害(I)」、技報堂出版、pp.34-37、1986年5月
本発明の目的は、セメント混和材およびそれを用いたセメント組成物、特に土木・建築で使用される塩化物イオン浸透抵抗性および温度ひび割れ抵抗性のセメント混和材を提供するものである。
 すなわち本発明は、下記のとおりである。
[1] 化学組成がCaO、Al、SiO、Fe、およびTiOの合計中、CaOが21~27質量部、Alが65~73質量部、SiOが1~5質量部、Feが1~6質量部、TiOが1~5質量部、ブレーン比表面積値が2,000~6,000cm/gのカルシウムアルミネートを含有してなるセメント混和材。
[2] 前記CaOが21~25質量部、前記Alが67~71質量部、前記SiOが2~4質量部、前記Feが2~5質量部、前記TiOが2~4質量部である[1]に記載のセメント混和材。
[3] さらに、セッコウ類を含有してなる[1]又は[2]に記載のセメント混和材。
[4] 塩化物イオン浸透抵抗性を有する[1]~[3]のいずれかに記載のセメント混和材。
[5] セメントと、[1]~[4]のいずれかに記載のセメント混和材とを含有するセメント組成物。
[6] 既設若しくは新設コンクリート構造物の表面に[5]に記載のセメント組成物を含有するセメントコンクリートをコーティングするコンクリート構造物の塩害抑制加工方法。
 本発明によれば、優れた塩化物イオン浸透抵抗性を持ち、セメントコンクリートの凝結・硬化に要する時間(可使時間)を十分に確保でき、強度発現性と寸法安定性に優れ、さらに、マスコンに使用した時に温度ひび割れを著しく低減できるセメントコンクリート構造物を提供できる。
 本発明でいうセメントコンクリートとは、セメントペースト、モルタル及びコンクリートを総称するものである。
 本発明は、化学組成がCaO、Al、SiO、Fe、およびTiOの合計中、CaOが21~27質量部、Alが65~73質量部、SiOが1~5質量部、Feが1~6質量部、TiOが1~5質量部、ブレーン比表面積値が2,000~6,000cm/gのカルシウムアルミネートを含有してなるセメント混和材であり、さらに、セッコウ類を含有する該セメント混和材であり、セメントと、該セメント混和材とを含有するセメント組成物である。
 本発明で使用するカルシウムアルミネート(以下、CAという)は、その化学組成がCaO、Al、SiO、Fe、およびTiOの合計中、CaOが21~27質量部、Alが65~73質量部、SiOが1~5質量部、Feが1~6質量部、TiOが1~5質量部の範囲にあり、CaOが21~25質量部、Alが67~71質量部、SiOが2~4質量部、Feが2~5質量部、TiOが2~4質量部の範囲にあることがより好ましい。この範囲外では十分な流動性、強度発現性、寸法安定性、塩化物イオン浸透抵抗性が得られなかったり、水和発熱が大きくなったりする場合がある。
 本発明におけるCAは、総量で10質量%以下であれば、MgOやRO(Rはアルカリ金属)等を含有しても特に問題ない。また、本発明におけるCAは総量で10質量%以下であれば、急冷によって生成するガラス相を含んでも特に問題ない。
 CAの粉末度は、ブレーン比表面積値(以下、ブレーン値という)で2,000~6,000cm/gであり、2,500~5,000cm/gがより好ましい。2,000cm/g未満の粗粒では十分な塩化物イオン浸透抵抗性が得られない場合があり、一方、6,000cm/gを超える微粉では急硬性が現れるため、十分な流動性や可使時間を確保できない場合や、十分な塩化物イオン浸透抵抗性が得られない場合がある。
 本発明で使用するセメント混和材の製造に使用する原料について説明する。
 CaOを含む原料は特に限定されない。工業原料として市販されている、例えば、生石灰(CaO)、消石灰(Ca(OH))、石灰石(CaCO)などが挙げられる。
 Alを含む原料は特に限定されない。工業原料として市販されている、例えば、Alや水酸化アルミニウム、ボーキサイトなどが挙げられる。特にボーキサイトはAlとともにFe、さらにSiOやTiOを含んでいるため望ましい。
 SiOを含む原料は特に限定されない。工業原料として市販されている、例えば、ケイ石、ケイ砂、石英、珪藻土などが挙げられる。CaOやAlを含む原料中にSiOが必要量含まれていれば、使用しなくても良い。
 Feの供給源となるFe成分を含む原料は特に限定されない。工業原料として市販されている、例えば、鉄鉱石、鋼材洗浄廃塩酸から回収・精製して得られるFeなどが挙げられる。CaOやAlを含む原料中にFe、FeO、Fe、Feが必要量含まれていれば使用しなくても良い。
 TiOを含む原料は特に限定されない。工業原料として市販されている、例えば、TiOやルチル鉱、イルメナイト鉱石などが挙げられる。
 本発明で使用するセメント混和材の粉末度は特に限定されるものでないが、通常、ブレーン比表面積値で2,000~6,000cm/gが好ましく、2,500cm/g~5,000cm/gがより好ましい。2,000cm/g未満の粗粒だと塩化物イオン浸透抵抗性や強度発現性が十分に得られない場合があり、6,000cm/gを超える微粉では急硬性が現れるようになり、十分な可使時間を確保できない場合がある。
 本発明のセメント混和材の使用量は特に限定されるものでないが、通常、セメントとセメント混和材からなるセメント組成物100質量部中、1~20質量部が好ましく、3~10質量部がより好ましい。セメント混和材の使用量が1質量部未満では十分な塩化物イオン浸透抵抗性や温度ひび割れ抵抗性が得られない場合があり、20質量部を超え、過剰に使用すると急硬性が現れて十分な可使時間を確保できなかったり、強度発現性が低下する場合がある。また、十分な塩化物イオン浸透抵抗性及び温度ひび割れ抵抗性の両立の観点からは、本発明のセメント混和材の使用量は、セメント組成物100質量部中、5~15質量部がさらに好ましい。
 本発明では、強度発現性を良好にし、塩化物イオン浸透抵抗性を増強する面から、カルシウムアルミネートと共にセッコウ類を併用することが好ましい。
 セッコウ類としては、無水セッコウ、半水セッコウ、および二水セッコウのいずれも使用可能であり、強度発現性の面から、無水セッコウが好ましい。
 セッコウ類の粉末度は特に限定されるものではないが、通常、ブレーン値で3,000~8,000cm/gが好ましく、4,000~6,000cm/gがより好ましい。セッコウ類の粉末度が3,000cm/g未満では強度発現性が十分に得られない場合があり、一方、粉末度が8,000cm/gを超えると作業性が悪くなる場合がある。
 セッコウ類の使用量は特に限定されるものではないが、通常、カルシウムアルミネートとセッコウ類からなるセメント混和材100質量部中、50質量部以下が好ましく、5~40質量部がより好ましい。強度発現性、塩化物イオン浸透抵抗性が向上し、セメント水和時の収縮を抑制する効果が得られる。セッコウ類の使用量が50質量部を超えると、長期的に膨張してクラックなどを生じる場合があり、強度発現性や塩化物イオン浸透抵抗性が得られない場合がある。
 本発明で使用するセメントは特に限定されるものではなく、通常のセメントが使用可能である。具体的には、普通、早強、超早強、中庸熱、及び低熱等の各種ポルトランドセメント、これらのポルトランドセメントに、高炉スラグ、フライアッシュ、又はシリカを混合した各種混合セメント、また、石灰石微粉末や高炉徐冷スラグ微粉末等を混合したフィラーセメント、廃棄物利用型セメント、エコセメント、アルミナセメント、ハイアルミナセメント等が挙げられ、これらのうちの一種又は二種以上の使用が可能である。
 本発明では、セメント、セメント混和材、および水硬性や潜在水硬性、さらにポゾラン反応性を呈する物質を結合材として使用できる。
 本発明における水/結合材比は、25~70%が好ましく、30~65%がより好ましい。水/結合材比が25%未満だと、ポンプ圧送性や施工性が低下したり、収縮等の原因となる場合があり、70%を超えると強度発現性が低下する場合がある。
 本発明のセメント混和材やセメント組成物は、それぞれの材料を施工時に混合しても良いし、あらかじめ一部、あるいは全量を混合しておいても差し支えない。
 本発明では、セメント、セメント混和材、および砂等の細骨材や砂利等の粗骨材のほか、膨張材、急硬材、減水剤、AE減水剤、高性能減水剤、高性能AE減水剤、消泡剤、増粘剤、防錆剤、防凍剤、収縮低減剤、高分子エマルジョン、凝結調整剤、ベントナイトなどの粘土鉱物、およびハイドロタルサイトなどのアニオン交換体などの各種添加剤、並びに高炉水砕スラグ微粉末、高炉徐冷スラグ微粉末、石灰石微粉末、フライアッシュ、およびシリカフュームなどの混和材料などからなる群のうち一種または二種以上を、本発明の目的を阻害しない範囲で使用することが可能である。
 本発明のセメント混和材を使用することにより、優れた塩化物イオン浸透抵抗性を持ち、セメントコンクリートの凝結・硬化に要する時間(可使時間)を十分に確保でき、強度発現性と寸法安定性に優れ、さらに、マスコンクリートに使用した時は、その温度ひび割れを著しく低減できるセメント組成物が得られるなどの効果を奏する。
(実施例1)
 試薬1級の炭酸カルシウム、酸化アルミニウム、二酸化ケイ素、三酸化二鉄、酸化チタンを所定の割合で配合し、電気炉で1,500℃で溶融した後、徐冷して表1に示すカルシウムアルミネートを合成し、ブレーン比表面積値で3,000cm/gに粉砕してセメント混和材とした。
 セメントαとセメント混和材からなるセメント組成物100質量部中、セメント混和材であるカルシウムアルミネートを10質量部配合してセメント組成物とし、セメント組成物100質量部に対して細骨材300質量部、水結合材比を50%としたモルタルを作製した。
 作製したモルタルを用いてフロー、凝結時間、圧縮強度、及び塩化物浸透深さを測定し、異常膨張の有無を観察した。結果を表2に示す。
(使用材料)
セメントα:市販の普通ポルトランドセメント
細骨材:JIS R 5201で使用するセメント強さ試験用標準砂
水:水道水
(測定方法)
フロー:JIS R 5201に準じてフローを測定。
凝結時間:ASTM C 403に準じて終結時間を測定。
圧縮強度:4cm×4cm×16cmの角柱状のモルタル供試体を作製し、JIS R 5201に準じて材齢28日後の圧縮強度を測定。
塩化物イオン浸透深さ:φ10cm×20cmの円柱状のモルタル供試体を作製し、材齢28日まで20℃水中養生したモルタル供試体を、塩化物イオン濃度3.5質量%の食塩水である擬似海水に12週間浸漬した後、塩化物イオン浸透深さを測定することで塩化物イオン浸透抵抗性を評価した。塩化物イオン浸透深さは、フルオロセイン-硝酸銀法により、モルタル供試体の断面が茶色に変色しなかった部分をノギスを用いて8点測定し、その平均値を塩化物イオン浸透深さとした。
異常膨張の有無:モルタル供試体を20℃の水中に28日間浸漬し、JIS A 6202(B)に準じて長さ変化率を測定。異常膨張やそれに伴うクラックを生じていないか観察。○は長さ変化率2,000×10-6以内で異常なし、△は2,000×10-6を超える異常膨張が認められた、×は明らかな異常膨張によりクラック発生を意味する。
Figure JPOXMLDOC01-appb-T000001

 
Figure JPOXMLDOC01-appb-T000002

 
(実施例2)
カルシウムアルミネート(b3)の使用量を変えたこと以外は実施例1と同様に行った。結果を表3に併記する。
Figure JPOXMLDOC01-appb-T000003

 
(実施例3)
カルシウムアルミネート(b3)の粉末度を変えたこと以外は実施例1と同様に行った。結果を表4に併記する。
Figure JPOXMLDOC01-appb-T000004

 
(実施例4)
 カルシウムアルミネート(b3)を使用し、セメントの種類を変えたこと以外は実施例1と同様に行った。結果を表5に示す。
(使用材料)
セメントβ:高炉セメントB種、市販品
セメントγ:低熱ポルトランドセメント、市販品
Figure JPOXMLDOC01-appb-T000005

 
(実施例5)
 表6に示すカルシウムアルミネート(b3)とセッコウ類を配合してセメント混和材を調製し、セメント組成物100質量部中、セメント混和材を10質量部としたこと以外は実施例1と同様に試験した。結果を表6に示す。
(使用材料)
セッコウ類A:無水セッコウ、ブレーン比表面積値4,000cm/g
セッコウ類B:半水セッコウ、ブレーン比表面積値4,000cm/g
セッコウ類C:二水セッコウ、ブレーン比表面積値4,000cm/g
Figure JPOXMLDOC01-appb-T000006

 
(実施例6)
 セメント混和材としてカルシウムアルミネート(b3)を使用し、マスコンクリートの温度ひび割れの抑制効果を調べた。
 セメントαとセメント混和材からなるセメント組成物100質量部中、表7に示すセメント混和材量とした。
 単位セメント組成物量300kg/m、単位水量180kg/m、s/a=38質量%のコンクリートを調製し、その凝結時間を測定し、造成した壁のひび割れ発生状況を観察した。なお比較のために、従来の水和熱抑制剤を使用した場合についても同様に試験した。結果を表7に示す。
(使用材料)
水和熱抑制剤a:市販のデキストリン、冷水可溶分30質量%。実験No.7-8と7-9で、セメント混和材の代わりに使用した。
水和熱抑制剤b:試薬のタンニン酸。実験No.7-10と7-11で、セメント混和材の代わりに使用した。
(測定方法)
ひび割れ発生状況:調製したコンクリートを使用し、厚さ1m、高さ2.5m、長さ10mの壁を造成した。型枠の存置期間は材齢7日までとし、材齢28日までのひび割れの発生状況を観察した。×はひび割れ発生が2本以上、又はひび割れ発生本数は1本だがひび割れ幅が0.2mm以上、△はひび割れの本数は1本だが、ひび割れ幅が0.1mm以上、0.2mm未満、○はひび割れの本数が1本で、ひび割れ幅が0.05mm未満、◎は目視で観察できるひび割れなし。
Figure JPOXMLDOC01-appb-T000007

 
 本発明のセメント混和材は、優れた塩化物イオン浸透抵抗性を持ち、十分な作業時間も確保でき、強度発現性と寸法安定性に優れ、しかも、温度ひび割れ抵抗性が著しく高いセメント組成物が得られるなどの効果を奏するため、主に土木・建築業界等において海洋構造物、護岸構造物、マスコンクリートなどの用途に適する。
 また、本発明のセメント組成物は様々な用途に使用できる。コンクリート構造物を構築する用途のほか、既設コンクリート構造物の表面に本発明のセメント組成物を含有するセメントコンクリートをコーティングし、既存または新設コンクリート構造物の塩害抑制加工に使用することも可能である。

Claims (6)

  1.  化学組成がCaO、Al、SiO、Fe、およびTiOの合計中、CaOが21~27質量部、Alが65~73質量部、SiOが1~5質量部、Feが1~6質量部、TiOが1~5質量部、ブレーン比表面積値が2,000~6,000cm/gのカルシウムアルミネートを含有してなるセメント混和材。
  2.  前記CaOが21~25質量部、前記Alが67~71質量部、前記SiOが2~4質量部、前記Feが2~5質量部、前記TiOが2~4質量部である請求項1に記載のセメント混和材。
  3.  さらに、セッコウ類を含有してなる請求項1又は2に記載のセメント混和材。
  4.  塩化物イオン浸透抵抗性を有する請求項1~3のいずれか1項に記載のセメント混和材。
  5.  セメントと、請求項1~4のいずれか1項に記載のセメント混和材とを含有するセメント組成物。
  6.  既設若しくは新設コンクリート構造物の表面に請求項5に記載のセメント組成物を含有するセメントコンクリートをコーティングするコンクリート構造物の塩害抑制加工方法。
PCT/JP2017/040141 2016-11-11 2017-11-07 セメント混和材、それを用いたセメント組成物、及びコンクリート構造物の塩害抑制加工方法 WO2018088405A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17868817.2A EP3539937B1 (en) 2016-11-11 2017-11-07 Cement admixture, cement composition using same, and processing method for preventing salt damage in concrete structure
MYPI2019002618A MY193153A (en) 2016-11-11 2017-11-07 Cement admixture, cement composition using same, and processing method for preventing salt damage in concrete structure
CN201780068738.3A CN109923089A (zh) 2016-11-11 2017-11-07 水泥混合材、使用其的水泥组合物以及混凝土构造物的盐害抑制加工方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016220103A JP6312778B1 (ja) 2016-11-11 2016-11-11 セメント混和材およびそれを用いたセメント組成物
JP2016-220103 2016-11-11

Publications (1)

Publication Number Publication Date
WO2018088405A1 true WO2018088405A1 (ja) 2018-05-17

Family

ID=61968216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/040141 WO2018088405A1 (ja) 2016-11-11 2017-11-07 セメント混和材、それを用いたセメント組成物、及びコンクリート構造物の塩害抑制加工方法

Country Status (6)

Country Link
EP (1) EP3539937B1 (ja)
JP (1) JP6312778B1 (ja)
CN (1) CN109923089A (ja)
MY (1) MY193153A (ja)
TW (1) TWI734863B (ja)
WO (1) WO2018088405A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7085050B1 (ja) * 2021-09-29 2022-06-15 デンカ株式会社 セメント混和材、急硬モルタルコンクリート材料、急硬モルタルコンクリート組成物、及び硬化体
CN114105564B (zh) * 2021-12-06 2022-11-11 桂林理工大学 一种高抗蚀低收缩混凝土及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS515333A (ja) * 1974-07-03 1976-01-17 Nihon Cement Sementoyobochoseikonwazaino seizoho
JPH01103970A (ja) 1987-10-15 1989-04-21 Nissan Chem Ind Ltd 硬化コンクリートの劣化防止方法
JPH06305799A (ja) 1993-04-23 1994-11-01 Nichiden Kagaku Kk セメント組成物
JP2002137951A (ja) 2000-10-25 2002-05-14 Nippon Starch Chemical Co Ltd セメント組成物
JP2002241167A (ja) 2001-02-08 2002-08-28 Sumitomo Osaka Cement Co Ltd 低発熱・低自己収縮型セメント組成物
JP2003034564A (ja) 2001-07-18 2003-02-07 Oji Cornstarch Co Ltd セメント水和熱抑制剤、並びにそれを用いたモルタル及びコンクリートの製造方法
JP2005104828A (ja) 2003-09-10 2005-04-21 Denki Kagaku Kogyo Kk セメント混和材およびそれを用いたセメント組成物
JP5688073B2 (ja) 2010-03-01 2015-03-25 電気化学工業株式会社 カルシウムフェロアルミネート化合物、セメント混和材及びその製造方法、セメント組成物
JP2019035020A (ja) 2017-08-15 2019-03-07 シャープ株式会社 再生ポリスチレン樹脂組成物の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1222491A (zh) * 1998-01-08 1999-07-14 于世发 速凝高强度铝酸盐水泥及高炉熔融法生产工艺
JP5313623B2 (ja) * 2008-10-23 2013-10-09 電気化学工業株式会社 セメント混和材及びセメント組成物
ES2581863T3 (es) * 2013-05-15 2016-09-07 Calucem Gmbh Cemento aluminoso
CN105000856B (zh) * 2015-07-21 2016-09-07 山东宏艺科技股份有限公司 一种海工混凝土用胶凝材料

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS515333A (ja) * 1974-07-03 1976-01-17 Nihon Cement Sementoyobochoseikonwazaino seizoho
JPH01103970A (ja) 1987-10-15 1989-04-21 Nissan Chem Ind Ltd 硬化コンクリートの劣化防止方法
JPH06305799A (ja) 1993-04-23 1994-11-01 Nichiden Kagaku Kk セメント組成物
JP2002137951A (ja) 2000-10-25 2002-05-14 Nippon Starch Chemical Co Ltd セメント組成物
JP2002241167A (ja) 2001-02-08 2002-08-28 Sumitomo Osaka Cement Co Ltd 低発熱・低自己収縮型セメント組成物
JP2003034564A (ja) 2001-07-18 2003-02-07 Oji Cornstarch Co Ltd セメント水和熱抑制剤、並びにそれを用いたモルタル及びコンクリートの製造方法
JP2005104828A (ja) 2003-09-10 2005-04-21 Denki Kagaku Kogyo Kk セメント混和材およびそれを用いたセメント組成物
JP5688073B2 (ja) 2010-03-01 2015-03-25 電気化学工業株式会社 カルシウムフェロアルミネート化合物、セメント混和材及びその製造方法、セメント組成物
JP2019035020A (ja) 2017-08-15 2019-03-07 シャープ株式会社 再生ポリスチレン樹脂組成物の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Series of Durability of Concrete Structure, Salt Damage (I", May 1986, GIHODO SHUPPAN CO., LTD., pages: 34 - 37
See also references of EP3539937A4

Also Published As

Publication number Publication date
EP3539937B1 (en) 2021-03-17
MY193153A (en) 2022-09-26
JP2018076208A (ja) 2018-05-17
TWI734863B (zh) 2021-08-01
JP6312778B1 (ja) 2018-04-18
EP3539937A4 (en) 2020-07-22
CN109923089A (zh) 2019-06-21
TW201821384A (zh) 2018-06-16
EP3539937A1 (en) 2019-09-18

Similar Documents

Publication Publication Date Title
JP5688073B2 (ja) カルシウムフェロアルミネート化合物、セメント混和材及びその製造方法、セメント組成物
JP4382614B2 (ja) セメント混和材およびそれを用いたセメント組成物
JP2007153714A (ja) セメント混和材及びセメント組成物
JP6312778B1 (ja) セメント混和材およびそれを用いたセメント組成物
JP5345821B2 (ja) セメント混和材及びセメント組成物
JP5340692B2 (ja) セメント混和材及びセメント組成物
WO2022070685A1 (ja) 補修モルタル材料、補修モルタル組成物及び硬化体
JP4509015B2 (ja) セメント混和材及びセメント組成物
JP5345820B2 (ja) セメント混和材及びセメント組成物
JP2018016510A (ja) コンクリートの表面改質材およびそれを用いたコンクリートの表層品質を改善する方法
JP4642202B2 (ja) セメント混和材及びセメント組成物
JP5843105B2 (ja) セメント混和材、セメント組成物及びその製造方法
JP7062668B2 (ja) セメント混和材、セメント組成物及びその製造方法
JP5313624B2 (ja) セメント組成物及びセメントコンクリート
JP5313623B2 (ja) セメント混和材及びセメント組成物
JP5634683B2 (ja) セメント混和材及びセメント組成物の調整方法
JP5851343B2 (ja) セメント混和材、セメント組成物及びその製造方法
JP6509586B2 (ja) 塩害対策用混和材および鉄筋コンクリートの塩害対策方法
JP2007153715A (ja) セメント混和材及びセメント組成物
WO2022070684A1 (ja) 急硬補修モルタル材料、急硬補修モルタル組成物及び硬化体
JP2010100472A (ja) セメント混和材及びセメント組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17868817

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017868817

Country of ref document: EP

Effective date: 20190611