WO2018088167A1 - Magnetic heat pump device - Google Patents

Magnetic heat pump device Download PDF

Info

Publication number
WO2018088167A1
WO2018088167A1 PCT/JP2017/037910 JP2017037910W WO2018088167A1 WO 2018088167 A1 WO2018088167 A1 WO 2018088167A1 JP 2017037910 W JP2017037910 W JP 2017037910W WO 2018088167 A1 WO2018088167 A1 WO 2018088167A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
heat
temperature end
magnetic field
magnetic working
Prior art date
Application number
PCT/JP2017/037910
Other languages
French (fr)
Japanese (ja)
Inventor
相哲 裴
Original Assignee
サンデンホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデンホールディングス株式会社 filed Critical サンデンホールディングス株式会社
Priority to DE112017005721.3T priority Critical patent/DE112017005721T5/en
Priority to CN201780069512.5A priority patent/CN109937335A/en
Priority to US16/349,544 priority patent/US20190285319A1/en
Publication of WO2018088167A1 publication Critical patent/WO2018088167A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/06Heat pumps characterised by the source of low potential heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/002Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Definitions

  • the present invention relates to a magnetic heat pump device using the magnetocaloric effect of a magnetic working substance.
  • a magnetic heat pump device using a property (magnetocaloric effect) that causes a large temperature change when a magnetic working material is excited and demagnetized has been attracting attention in recent years. Yes.
  • a magnetic working material is filled in a duct of a magnetic working body, and a permanent magnet is separated from and attached to the magnetic working body, thereby changing a magnetic field applied to the magnetic working material.
  • the applied magnetic field is increased (excited)
  • the temperature of the magnetic working substance increases, and when it is decreased (demagnetized), the temperature decreases.
  • the heat medium moving device composed of a displacer (piston), a pump and a rotary valve
  • the heat medium water, etc.
  • the magnetic working material is excited, the temperature is increased, and the heat medium is moved from the low temperature end side to the high temperature end side.
  • the magnetic working body has a temperature gradient that is high on the high temperature end side and low on the low temperature end side.
  • the temperature change caused by the magnetocaloric effect is stored in the magnetic working body itself, and is efficiently taken out by the heat medium at the low temperature end side and the high temperature end side, thereby absorbing heat (freezing) with an external heat exchanger. And heat radiation (heating) (for example, see Patent Document 1).
  • the heat medium is moved from the low-temperature end side to the high-temperature end side simultaneously with the excitation of the magnetic working substance, and is moved from the high-temperature end side to the low-temperature end side simultaneously with demagnetization, before the sufficient heat exchange is performed.
  • the heat medium water
  • heat exchange between the magnetic working material and the heat medium becomes insufficient, and the temperature change due to the magnetocaloric effect of the magnetic working material cannot be used effectively.
  • the present invention has been made in order to solve the conventional technical problem, and it is possible to improve the efficiency by changing the magnitude of the magnetic field applied to the magnetic working material and improving the timing of the reciprocating movement of the heat medium. It is an object of the present invention to provide an improved magnetic heat pump device.
  • a magnetic heat pump device includes a magnetic working material having a magnetocaloric effect, a magnetic working body through which a heat medium is circulated, and a magnetic field changing device that changes the magnitude of a magnetic field applied to the magnetic working material.
  • a heat medium moving device for reciprocating the heat medium between the high temperature end and the low temperature end of the magnetic working body, a heat dissipating heat exchanger for dissipating the heat medium on the high temperature end side, and heat on the low temperature end side
  • An endothermic heat exchanger for causing the medium to absorb heat, the heat medium moving device before the magnetic field changing device increases the magnitude of the magnetic field applied to the magnetic working material. Is moved from the low temperature end side to the high temperature end side of the magnetic working body.
  • a magnetic heat pump device includes a magnetic working material having a magnetocaloric effect, a magnetic working body through which a heat medium is circulated, and a magnetic field changing device that changes the magnitude of a magnetic field applied to the magnetic working material.
  • a heat medium moving device for reciprocating the heat medium between the high temperature end and the low temperature end of the magnetic working body, a heat dissipating heat exchanger for dissipating the heat medium on the high temperature end side, and heat on the low temperature end side
  • An endothermic heat exchanger for causing the medium to absorb heat, the heat medium moving device after the magnetic field changing device reduces the magnitude of the magnetic field applied to the magnetic working material. Is moved from the high temperature end side to the low temperature end side of the magnetic working body.
  • a magnetic heat pump device includes a magnetic working material having a magnetocaloric effect, a magnetic working body through which a heat medium is circulated, and a magnetic field changing device that changes the magnitude of a magnetic field applied to the magnetic working material.
  • a heat medium moving device for reciprocating the heat medium between the high temperature end and the low temperature end of the magnetic working body, a heat dissipating heat exchanger for dissipating the heat medium on the high temperature end side, and heat on the low temperature end side
  • An endothermic heat exchanger for causing the medium to absorb heat, the heat medium moving device before the magnetic field changing device increases the magnitude of the magnetic field applied to the magnetic working material. Is moved from the low temperature end side to the high temperature end side of the magnetic working body and the magnetic field changing device reduces the magnitude of the magnetic field applied to the magnetic working material, It is moved to the end side.
  • a magnetic heat pump apparatus according to the first or third aspect of the present invention, wherein when the time during which the magnetic field changing device increases the magnitude of the magnetic field applied to the magnetic working material is T1, The apparatus is configured such that the magnetic medium changing device starts increasing the magnitude of the magnetic field applied to the magnetic working material, and the heat medium is transferred from the low temperature end side of the magnetic working body to the high temperature end before a time greater than 0 and less than 0.15 ⁇ T1. It is made to move to the side.
  • a magnetic heat pump device provides a heat transfer medium when the time during which the magnetic field changing device reduces the magnitude of the magnetic field applied to the magnetic working substance in the second or third aspect of the invention is T2.
  • the apparatus is configured such that after the magnetic field changing device reduces the magnitude of the magnetic field applied to the magnetic working material, the heat medium is moved to the high temperature end side of the magnetic working body after a time of 0.25 ⁇ T2 or more and 0.33 ⁇ T2 or less. It moves to the low temperature end side from.
  • a magnetic heat pump device is the magnetic heat pump device according to the third aspect, wherein when the magnetic field changing device increases the magnitude of the magnetic field applied to the magnetic working material by T1, the heat medium moving device The changing device starts to increase the magnitude of the magnetic field applied to the magnetic working material, and moves the heat medium from the low temperature end side to the high temperature end side of the magnetic working body before time greater than 0 and less than 0.15 ⁇ T1. At the same time, when the time during which the magnetic field changing device reduces the magnitude of the magnetic field applied to the magnetic working material is T2, the heat medium moving device determines the magnitude of the magnetic field applied to the magnetic working material by the magnetic field changing device. The heat medium is moved from the high temperature end side to the low temperature end side of the magnetic working body after 0.25 ⁇ T2 or more and 0.33 ⁇ T2 or less after the decrease.
  • the magnetic working material having the magnetocaloric effect, the magnetic working body through which the heat medium is circulated, and the magnetic field that changes the magnitude of the magnetic field applied to the magnetic working material.
  • Change device heat medium moving device for reciprocating the heat medium between the high temperature end and the low temperature end of the magnetic working body, the heat dissipating side heat exchanger for dissipating the heat medium on the high temperature end side, and the low temperature end side
  • the heat medium moving device before the magnetic field changing device increases the magnitude of the magnetic field applied to the magnetic working material, Since the heat medium is moved from the low temperature end side to the high temperature end side of the magnetic working body, the low temperature heat medium is fed into the magnetic working material before the magnitude of the magnetic field applied to the magnetic working material is increased. , Magnetism rising with subsequent increase in magnetic field It is possible to increase the temperature difference between the work material.
  • the magnetic working material and the heat medium are efficiently exchanged heat, the temperature gradient between the high temperature end and the low temperature end of the magnetic working body is expanded, and the temperature change due to the magnetocaloric effect of the magnetic working material is effective and It can be used efficiently.
  • the heat medium moving device is By moving the heat medium from the low temperature end side to the high temperature end side of the magnetic working body, before the time of starting from increasing the magnitude of the magnetic field applied to the magnetic working material, greater than 0 and less than 0.15 ⁇ T1, The temperature increase of the magnetic working substance can be effectively used.
  • the magnetic working material having the magnetocaloric effect is provided, the magnetic working body through which the heat medium is circulated, and the magnitude of the magnetic field applied to the magnetic working material is changed.
  • a magnetic field changing device a heat medium moving device for reciprocating a heat medium between a high temperature end and a low temperature end of a magnetic working body, a heat dissipating side heat exchanger for dissipating the heat medium on the high temperature end side, and a low temperature
  • the heat medium moving device reduces the magnitude of the magnetic field applied to the magnetic working material by the magnetic field changing device.
  • the heat medium moving device After a time of 0.25 ⁇ T2 or more and 0.33 ⁇ T2 or less after the magnitude of the magnetic field applied to the magnetic working material is decreased, the heat medium is moved from the high temperature end side to the low temperature end side of the magnetic working body. This makes it possible to effectively use the temperature drop of the magnetic working material.
  • FIG. 2 is a cross-sectional view of the magnetic heat pump AMR (Active Magnetic Regenerator) of FIG. 1. It is sectional drawing of the magnetic working body explaining the operation
  • AMR Active Magnetic Regenerator
  • FIG. 1 is an overall configuration diagram of a magnetic heat pump device 1 according to an embodiment to which the present invention is applied
  • FIG. 2 is a cross-sectional view of an AMR 2 for magnetic heat pump of the magnetic heat pump device 1.
  • the magnetic heat pump AMR 2 of the magnetic heat pump apparatus 1 has a hollow cylindrical housing 3 whose both ends in the axial direction are closed, and a pair of two (two A plurality of permanent magnets 6 (magnetic field generating members) and a rotating body 7 attached in a radial manner. Both ends of the shaft of the rotating body 7 are rotatably supported by the housing 3 and are further connected to a rotating shaft 10 of a motor M (FIG. 1, servo motor) via a speed reducer (not shown). The rotation is controlled.
  • a motor M FIG. 1, servo motor
  • the rotating body 7, the permanent magnet 6, the motor M, and the like constitute a magnetic field changing device that changes the magnitude of the magnetic field applied to the magnetic working material 13 described later. Further, a cam 9 (FIG. 1) for driving a displacer (piston) 8 to be described later is also connected to the rotating shaft 10 of the motor M.
  • magnetic working bodies 11A, 11A, 11B, and 11B which are twice the number of permanent magnets 6, are arranged in the circumferential direction in the state of being close to the outer peripheral surface of the permanent magnet 6 on the inner periphery of the housing 3. Fixed at regular intervals.
  • the magnetic working bodies 11A and 11A are arranged in an axially symmetric position with the rotating body 7 interposed therebetween, and the magnetic working bodies 11B and 11B are arranged in an axially symmetric position with the rotating body 7 interposed therebetween (FIG. 2). .
  • Each of the magnetic working bodies 11A and 11B has a magnetic working substance 13 having a magnetocaloric effect in a hollow duct 12 whose cross section is an arc shape along the inner periphery of the housing 3, and a heat medium (here, water). Each is filled so that it can be distributed (FIG. 1).
  • the magnetic working bodies 11A and 11B are actually arranged in two axially symmetrical positions as shown in FIG. 2, but one is shown as a representative in FIG. Moreover, in the Example, the duct 12 is comprised with the resin material with high heat insulation. As a result, the heat loss from the magnetic working material 13 to the atmosphere (external) that increases or decreases due to the change of the magnetic field (excitation and demagnetization) as will be described later is reduced. In the embodiment, a Mn-based or La-based material is used as the magnetic working substance 13.
  • each magnetic working body 11A, 11B has a high temperature end 14 at one end (the right end in FIG. 1) and the other end ( A cold end 16 is provided at the left end in FIG.
  • the high temperature piping 17 is connected to the high temperature end 14 of each magnetic working body 11A, 11A, 11B, 11B (one representative is shown in FIG. 1), and is pulled out from the housing 3 in FIG.
  • a low-temperature pipe 18 is connected to the low-temperature end 16 of each of the magnetic working bodies 11A, 11A, 11B, and 11B (one representative is shown in FIG. 1) and pulled out from the housing 3 in FIG.
  • a heat exchanger 19 on the heat radiation side is connected to the high temperature pipe 17, and a circulation pump 21 is interposed in the high temperature pipe 17.
  • a heat exchanger 22 on the heat absorption side is connected to the low temperature pipe 18, and a circulation pump 23 is interposed in the low temperature pipe 18.
  • Displacers (pistons) 8 are respectively disposed at the high temperature end 14 and the low temperature end 16 of each magnetic working body 11A, 11A, 11B, 11B, and are driven by a cam 9 that is rotated by the rotating shaft 10 of the motor M.
  • the heat medium water is reciprocated between the high temperature end 14 and the low temperature end 16 of each magnetic working body 11A, 11A, 11B, 11B.
  • a heat medium moving device for reciprocating the heat medium between the high temperature end 14 and the low temperature end 16 of each of the magnetic working bodies 11A, 11A, 11B, and 11B by the displacer 8, the cam 9, and the motor M, the rotating shaft 10 and the like. Is configured.
  • the magnetic working bodies 11A and 11A of the magnetic working bodies 11A and 11A that have been excited by the permanent magnets 6 and 6 are heated to exchange heat with the low-temperature heat medium.
  • the 14 side is high, and the low temperature end 16 side is low.
  • the permanent magnets 6 and 6 come to the 90 ° and 270 ° positions, so the magnetic working bodies 11B and 11B at the 90 ° and 270 ° positions.
  • the magnitude of the magnetic field applied to the magnetic working material 13 increases and is excited to increase the temperature.
  • the magnitude of the magnetic field applied to the magnetic working material 13 of the magnetic working bodies 11A and 11A at the positions of 0 ° and 180 ° that are 90 ° out of phase with each other is reduced, demagnetized, and the temperature is lowered.
  • the cams 9 and 9 are driven by the rotating shaft 10 of the motor M, and the displacer 8 on the high temperature end 14 side of the magnetic working bodies 11A and 11A is moved.
  • the displacer 8 on the low temperature end 16 side is moved back.
  • the heat medium is moved from the high temperature end 14 side to the low temperature end 16 side of the magnetic working body 11A.
  • the magnetic working material 13 of the magnetic working bodies 11A and 11A whose temperature has decreased due to demagnetization is exchanged with the high-temperature heat medium, and the temperature gradient of the magnetic working bodies 11A and 11A is further expanded.
  • the temperature gradient of the magnetic working bodies 11B, 11B is obtained by exchanging heat between the magnetic working material 13 of the magnetic working bodies 11B, 11B excited by the permanent magnets 6, 6 and the low-temperature heat medium. Is further expanded.
  • each magnetic working body 11A, 11A, 11B, 11B whose temperature has been increased in this way is circulated by the circulation pump 21 to the heat exchanger 19 on the heat radiation side via the high temperature pipe 17. Further, the heat medium on the low temperature end 16 side of each of the magnetic working bodies 11A, 11A, 11B, and 11B whose temperature has been lowered is circulated by the circulation pump 23 to the heat exchanger 22 on the heat absorption side via the low temperature pipe 18.
  • Such rotation of the rotating body 7 by the motor M and switching of the displacer 8 are performed at a relatively high speed and timing, and between the high temperature end 14 and the low temperature end 16 of each magnetic work body 11A, 11A, 11B, 11B.
  • the temperature difference between the high temperature end 14 and the low temperature end 16 of 11B gradually increases and eventually the temperature of the low temperature end 16 of each magnetic work body 11A, 11A, 11B, 11B connected to the heat exchanger 22 on the endothermic side is the magnetic work material.
  • the magnetic working bodies 11A, 11A connected to the heat exchanger 19 on the heat radiation side are lowered to a temperature at which the refrigeration capacity of 13 and the heat load of the cooled object cooled by the heat exchanger 22 are balanced. 1B, the temperature of the hot end 14 of the 11B becomes substantially constant temperature and the heat dissipation capacity and refrigeration capacity of the heat exchanger 19 and balanced.
  • the displacer 8 when exciting the magnetic working substance 13 of the magnetic working body 11A as shown in FIG. 1 (increasing the magnetic field), before the magnetic working body 11A is excited by the permanent magnet 6 as shown in FIG.
  • the heat medium is moved from the low temperature end 16 side to the high temperature end 14 side of the magnetic working body 11A.
  • the displacer 8 when the time during which the permanent magnet 6 excites the magnetic working material 13 of the magnetic working body 11A (increases the magnitude of the applied magnetic field) is T1, the displacer 8 causes the permanent magnet 6 to be magnetic.
  • the heating medium (water) is heated from the low temperature end 16 side of the magnetic working body 11A to a high temperature before the time when the working material 13 begins to be excited (increases the magnitude of the applied magnetic field) and is less than 0.15 ⁇ T1. Move to end 14 side.
  • the temperature of the flowing low-temperature heat medium (indicated by W1 in each figure. W2 is the high-temperature heat medium) is indicated by a solid line L1 in FIG.
  • W1 the temperature of the flowing low-temperature heat medium
  • W2 is the high-temperature heat medium
  • a solid line L1 in FIG. the temperature of the flowing low-temperature heat medium
  • the magnetic working material 13 of the magnetic working body 11A is excited by the permanent magnet 6 as shown in FIG. 4, so that the temperature is as shown by the solid line L3 in FIG.
  • the temperature difference of the heat medium (L3 ⁇ L1) becomes larger than the temperature difference (L3 ⁇ L2) in the case where the heat medium flows simultaneously.
  • the displacer 8 is not operated as shown in FIG. To do.
  • the broken line L4 shown in FIG. 5 is the temperature of the heat medium in this case, and the broken line L5 is the temperature of the heat medium when the heat medium is moved simultaneously with demagnetization. The temperature of the broken line L4 is lower than that of the broken line L5.
  • the displacer 8 moves the heat medium from the high temperature end 14 side to the low temperature end 16 side of the magnetic working body 11A.
  • T2 the time during which the permanent magnet 6 demagnetizes the magnetic working material 13 (decreasing the magnitude of the applied magnetic field)
  • the displacer 8 causes the permanent magnet 6 to demagnetize the magnetic working material 13.
  • L6 is the temperature of the magnetic working material 13 at this time.
  • the heat medium is transferred to the low temperature end 16 side of the magnetic working bodies 11A and 11B. Therefore, before the magnitude of the magnetic field applied to the magnetic working material 13 is increased, a low-temperature heat medium is sent to the magnetic working material 13 and the magnetic field is increased thereafter. The temperature difference from the rising magnetic working substance 13 can be increased.
  • the magnetic working material 13 and the heat medium are efficiently heat-exchanged, the temperature gradient between the high temperature end 14 and the low temperature end 16 of the magnetic working bodies 11A and 11B is expanded, and the amount of magnetic heat of the magnetic working material 13 is increased.
  • the temperature change due to the effect can be used effectively and efficiently.
  • the displacer 8 uses the magnetic field applied to the magnetic working material 13 by the permanent magnet 6. Since the heat medium is moved from the low temperature end 16 side to the high temperature end 14 side of the magnetic working bodies 11A and 11B before the time of 0.15 ⁇ T1 or less before starting to increase the size of the magnetic recording medium, the effect Thus, the temperature increase of the magnetic working material 13 can be utilized.
  • the heat medium is moved from the high temperature end 14 side to the low temperature end 16 side of the magnetic working bodies 11A and 11B. As described above, the heat medium is moved after the magnitude of the magnetic field applied to the magnetic working material 13 is decreased, and the temperature of the heat medium is further decreased by the magnetic working material 13 whose temperature is lowered by the decrease of the magnetic field. Will be able to.
  • the temperature drop between the high temperature end 14 and the low temperature end 16 of the magnetic working bodies 11 ⁇ / b> A and 11 ⁇ / b> B is expanded by effectively using the temperature drop of the magnetic working material 13, and the magnetocaloric effect of the magnetic working material 13 is increased.
  • the temperature change can be used effectively and efficiently.
  • the heat medium is moved from the high temperature end 14 side to the low temperature end 16 side of the magnetic working bodies 11A and 11B after a time of 0.25 ⁇ T2 or more and 0.33 ⁇ T2 or less after the size of the magnetic material is reduced. Therefore, the temperature decrease of the magnetic working material 13 can be effectively used.
  • both of the controls for moving to the end 16 side have been implemented, the present invention is not limited thereto, and only one of them is effective.
  • the overall configuration of the magnetic heat pump device is not limited to the embodiment, and the heat medium moving device may be configured by a circulation pump or a rotary valve instead of the displacer 8.
  • Magnetic heat pump device 2 AMR for magnetic heat pump 3 Housing 6 Permanent magnet (Magnetic field changing device) 7 Rotating body (magnetic field changing device) 8 Displacer (heat transfer device) 9 cam (heat transfer device) 11A, 11B Magnetic working body 12 Duct 13 Magnetic working material 14 High temperature end 16 Low temperature end 19, 22 Heat exchanger M Motor

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

A magnetic heat pump device (1) is provided with: a magnetic working substance (13) having a magnetocaloric effect; magnetic working bodies (11A, 11B) through which a heat medium is circulated; a permanent magnet (6) that changes the size of a magnetic field applied to the magnetic working substance; and a displacer (8) that causes the heat medium to move in a reciprocating manner between a high-temperature end (14) and a low-temperature end (16) of the magnetic working bodies. The heat medium is moved from the low-temperature end sides to the high-temperature end sides of the magnetic working bodies by the displacer (8) before the permanent magnet (6) increases the size of the magnetic field applied to the magnetic working substance. An improvement in efficiency is achieved by changing the size of the magnetic field applied to the magnetic working substance and by improving the timing of the reciprocating movement of the heat medium.

Description

磁気ヒートポンプ装置Magnetic heat pump device
 本発明は、磁気作業物質の磁気熱量効果を利用した磁気ヒートポンプ装置に関する。 The present invention relates to a magnetic heat pump device using the magnetocaloric effect of a magnetic working substance.
  フロン等の気体冷媒を使用した従来の蒸気圧縮冷凍装置に代わり、磁気作業物質が励磁と消磁の際に大きな温度変化を生じさせる性質(磁気熱量効果)を利用した磁気ヒートポンプ装置が近年注目されている。 Instead of conventional vapor compression refrigeration equipment using a gas refrigerant such as chlorofluorocarbon, a magnetic heat pump device using a property (magnetocaloric effect) that causes a large temperature change when a magnetic working material is excited and demagnetized has been attracting attention in recent years. Yes.
 従来よりこの種の磁気ヒートポンプ装置では、磁気作業物質を磁気作業体のダクト内に充填し、永久磁石を磁気作業体に離接させることで、磁気作業物質に印加する磁場を変更する。このとき、印加する磁場を増大(励磁)させると磁気作業物質の温度は上昇し、減少(消磁)させると温度は低下する。 Conventionally, in this type of magnetic heat pump device, a magnetic working material is filled in a duct of a magnetic working body, and a permanent magnet is separated from and attached to the magnetic working body, thereby changing a magnetic field applied to the magnetic working material. At this time, when the applied magnetic field is increased (excited), the temperature of the magnetic working substance increases, and when it is decreased (demagnetized), the temperature decreases.
 一方、ディスプレーサ(ピストン)や、ポンプとロータリ弁等から成る熱媒体移動装置を用い、磁気作業体の高温端と低温端の間で熱媒体(水等)を往復移動させる。この場合、磁気作業物質を励磁し、その温度を上昇させ、熱媒体を低温端側から高温端側に移動させることで、励磁によって温度が上昇した磁気作業物質と低温の熱媒体とを熱交換させる。これにより、磁気作業体には高温端側が高く、低温端側が低い温度勾配が生じる。 On the other hand, using a heat medium moving device composed of a displacer (piston), a pump and a rotary valve, the heat medium (water, etc.) is reciprocated between the high temperature end and the low temperature end of the magnetic working body. In this case, the magnetic working material is excited, the temperature is increased, and the heat medium is moved from the low temperature end side to the high temperature end side. Let As a result, the magnetic working body has a temperature gradient that is high on the high temperature end side and low on the low temperature end side.
 次に、磁気作業物質を消磁すると、その温度は低下するが、熱媒体を高温端側から低温端側に移動させることで、消磁によって温度が低下した磁気作業物質と高温の熱媒体とを熱交換させる。これにより、磁気作業体の温度勾配は更に拡大する。 Next, when the magnetic working material is demagnetized, its temperature decreases.However, by moving the heat medium from the high temperature end side to the low temperature end side, the magnetic working material whose temperature has been decreased by demagnetization and the high temperature heat medium are heated. Let them exchange. Thereby, the temperature gradient of the magnetic working body is further expanded.
 このようにして磁気熱量効果により生じる温度変化を磁気作業体自身に蓄熱し、低温端側と高温端側の熱媒体により効率良く外部に取り出すことで、外部の熱交換器にて吸熱(冷凍)や放熱(加熱)を行うものであった(例えば、特許文献1参照)。 In this way, the temperature change caused by the magnetocaloric effect is stored in the magnetic working body itself, and is efficiently taken out by the heat medium at the low temperature end side and the high temperature end side, thereby absorbing heat (freezing) with an external heat exchanger. And heat radiation (heating) (for example, see Patent Document 1).
特開2008-51409号公報JP 2008-51409 A
 しかしながら、従来では磁気作業物質の励磁と同時に熱媒体を低温端側から高温端側に移動させ、消磁と同時に高温端側から低温端側に移動させていたため、十分な熱交換が行われる前に熱媒体(水)が流れ出てしまい、磁気作業物質と熱媒体との熱交換が不十分となって、磁気作業物質の磁気熱量効果による温度変化を有効に利用することができていなかった。 However, since the heat medium is moved from the low-temperature end side to the high-temperature end side simultaneously with the excitation of the magnetic working substance, and is moved from the high-temperature end side to the low-temperature end side simultaneously with demagnetization, before the sufficient heat exchange is performed. The heat medium (water) flows out, heat exchange between the magnetic working material and the heat medium becomes insufficient, and the temperature change due to the magnetocaloric effect of the magnetic working material cannot be used effectively.
 本発明は、係る従来の技術的課題を解決するために成されたものであり、磁気作業物質に印加する磁場の大きさの変更と熱媒体の往復移動のタイミングを改善することで、効率の向上を図った磁気ヒートポンプ装置を提供することを目的とする。 The present invention has been made in order to solve the conventional technical problem, and it is possible to improve the efficiency by changing the magnitude of the magnetic field applied to the magnetic working material and improving the timing of the reciprocating movement of the heat medium. It is an object of the present invention to provide an improved magnetic heat pump device.
 請求項1の発明の磁気ヒートポンプ装置は、磁気熱量効果を有する磁気作業物質を備え、熱媒体が流通される磁気作業体と、磁気作業物質に印加される磁場の大きさを変更する磁場変更装置と、磁気作業体の高温端と低温端の間で熱媒体を往復移動させる熱媒体移動装置と、高温端側の熱媒体を放熱させるための放熱側の熱交換器と、低温端側の熱媒体に吸熱させるための吸熱側の熱交換器とを備えたものであって、熱媒体移動装置は、磁場変更装置が磁気作業物質に印加される磁場の大きさを増大させる前に、熱媒体を磁気作業体の低温端側から高温端側に移動させることを特徴とする。 A magnetic heat pump device according to a first aspect of the present invention includes a magnetic working material having a magnetocaloric effect, a magnetic working body through which a heat medium is circulated, and a magnetic field changing device that changes the magnitude of a magnetic field applied to the magnetic working material. A heat medium moving device for reciprocating the heat medium between the high temperature end and the low temperature end of the magnetic working body, a heat dissipating heat exchanger for dissipating the heat medium on the high temperature end side, and heat on the low temperature end side An endothermic heat exchanger for causing the medium to absorb heat, the heat medium moving device before the magnetic field changing device increases the magnitude of the magnetic field applied to the magnetic working material. Is moved from the low temperature end side to the high temperature end side of the magnetic working body.
 請求項2の発明の磁気ヒートポンプ装置は、磁気熱量効果を有する磁気作業物質を備え、熱媒体が流通される磁気作業体と、磁気作業物質に印加される磁場の大きさを変更する磁場変更装置と、磁気作業体の高温端と低温端の間で熱媒体を往復移動させる熱媒体移動装置と、高温端側の熱媒体を放熱させるための放熱側の熱交換器と、低温端側の熱媒体に吸熱させるための吸熱側の熱交換器とを備えたものであって、熱媒体移動装置は、磁場変更装置が磁気作業物質に印加される磁場の大きさを減少させた後に、熱媒体を磁気作業体の高温端側から低温端側に移動させることを特徴とする。 A magnetic heat pump device according to a second aspect of the present invention includes a magnetic working material having a magnetocaloric effect, a magnetic working body through which a heat medium is circulated, and a magnetic field changing device that changes the magnitude of a magnetic field applied to the magnetic working material. A heat medium moving device for reciprocating the heat medium between the high temperature end and the low temperature end of the magnetic working body, a heat dissipating heat exchanger for dissipating the heat medium on the high temperature end side, and heat on the low temperature end side An endothermic heat exchanger for causing the medium to absorb heat, the heat medium moving device after the magnetic field changing device reduces the magnitude of the magnetic field applied to the magnetic working material. Is moved from the high temperature end side to the low temperature end side of the magnetic working body.
 請求項3の発明の磁気ヒートポンプ装置は、磁気熱量効果を有する磁気作業物質を備え、熱媒体が流通される磁気作業体と、磁気作業物質に印加される磁場の大きさを変更する磁場変更装置と、磁気作業体の高温端と低温端の間で熱媒体を往復移動させる熱媒体移動装置と、高温端側の熱媒体を放熱させるための放熱側の熱交換器と、低温端側の熱媒体に吸熱させるための吸熱側の熱交換器とを備えたものであって、熱媒体移動装置は、磁場変更装置が磁気作業物質に印加される磁場の大きさを増大させる前に、熱媒体を磁気作業体の低温端側から高温端側に移動させると共に、磁場変更装置が磁気作業物質に印加される磁場の大きさを減少させた後に、熱媒体を磁気作業体の高温端側から低温端側に移動させることを特徴とする。 A magnetic heat pump device according to a third aspect of the present invention includes a magnetic working material having a magnetocaloric effect, a magnetic working body through which a heat medium is circulated, and a magnetic field changing device that changes the magnitude of a magnetic field applied to the magnetic working material. A heat medium moving device for reciprocating the heat medium between the high temperature end and the low temperature end of the magnetic working body, a heat dissipating heat exchanger for dissipating the heat medium on the high temperature end side, and heat on the low temperature end side An endothermic heat exchanger for causing the medium to absorb heat, the heat medium moving device before the magnetic field changing device increases the magnitude of the magnetic field applied to the magnetic working material. Is moved from the low temperature end side to the high temperature end side of the magnetic working body and the magnetic field changing device reduces the magnitude of the magnetic field applied to the magnetic working material, It is moved to the end side.
 請求項4の発明の磁気ヒートポンプ装置は、請求項1又は請求項3の発明において磁場変更装置が磁気作業物質に印加する磁場の大きさを増大させている時間をT1とした場合、熱媒体移動装置は、磁場変更装置が磁気作業物質に印加される磁場の大きさを増大させ始める0より大きく、0.15×T1以下の時間前に、熱媒体を磁気作業体の低温端側から高温端側に移動させることを特徴とする。 According to a fourth aspect of the present invention, there is provided a magnetic heat pump apparatus according to the first or third aspect of the present invention, wherein when the time during which the magnetic field changing device increases the magnitude of the magnetic field applied to the magnetic working material is T1, The apparatus is configured such that the magnetic medium changing device starts increasing the magnitude of the magnetic field applied to the magnetic working material, and the heat medium is transferred from the low temperature end side of the magnetic working body to the high temperature end before a time greater than 0 and less than 0.15 × T1. It is made to move to the side.
 請求項5の発明の磁気ヒートポンプ装置は、請求項2又は請求項3の発明において磁場変更装置が磁気作業物質に印加する磁場の大きさを減少させている時間をT2とした場合、熱媒体移動装置は、磁場変更装置が磁気作業物質に印加される磁場の大きさを減少させてから0.25×T2以上、0.33×T2以下の時間後に、熱媒体を磁気作業体の高温端側から低温端側に移動させることを特徴とする。 A magnetic heat pump device according to a fifth aspect of the present invention provides a heat transfer medium when the time during which the magnetic field changing device reduces the magnitude of the magnetic field applied to the magnetic working substance in the second or third aspect of the invention is T2. The apparatus is configured such that after the magnetic field changing device reduces the magnitude of the magnetic field applied to the magnetic working material, the heat medium is moved to the high temperature end side of the magnetic working body after a time of 0.25 × T2 or more and 0.33 × T2 or less. It moves to the low temperature end side from.
 請求項6の発明の磁気ヒートポンプ装置は、請求項3の発明において磁場変更装置が磁気作業物質に印加する磁場の大きさを増大させている時間をT1とした場合、熱媒体移動装置は、磁場変更装置が磁気作業物質に印加される磁場の大きさを増大させ始める0より大きく、0.15×T1以下の時間前に、熱媒体を磁気作業体の低温端側から高温端側に移動させると共に、磁場変更装置が磁気作業物質に印加する磁場の大きさを減少させている時間をT2とした場合、熱媒体移動装置は、磁場変更装置が磁気作業物質に印加される磁場の大きさを減少させてから0.25×T2以上、0.33×T2以下の時間後に、熱媒体を磁気作業体の高温端側から低温端側に移動させることを特徴とする。 A magnetic heat pump device according to a sixth aspect of the present invention is the magnetic heat pump device according to the third aspect, wherein when the magnetic field changing device increases the magnitude of the magnetic field applied to the magnetic working material by T1, the heat medium moving device The changing device starts to increase the magnitude of the magnetic field applied to the magnetic working material, and moves the heat medium from the low temperature end side to the high temperature end side of the magnetic working body before time greater than 0 and less than 0.15 × T1. At the same time, when the time during which the magnetic field changing device reduces the magnitude of the magnetic field applied to the magnetic working material is T2, the heat medium moving device determines the magnitude of the magnetic field applied to the magnetic working material by the magnetic field changing device. The heat medium is moved from the high temperature end side to the low temperature end side of the magnetic working body after 0.25 × T2 or more and 0.33 × T2 or less after the decrease.
 請求項1又は請求項3の発明によれば、磁気熱量効果を有する磁気作業物質を備え、熱媒体が流通される磁気作業体と、磁気作業物質に印加される磁場の大きさを変更する磁場変更装置と、磁気作業体の高温端と低温端の間で熱媒体を往復移動させる熱媒体移動装置と、高温端側の熱媒体を放熱させるための放熱側の熱交換器と、低温端側の熱媒体に吸熱させるための吸熱側の熱交換器とを備えた磁気ヒートポンプ装置において、熱媒体移動装置は、磁場変更装置が磁気作業物質に印加される磁場の大きさを増大させる前に、熱媒体を磁気作業体の低温端側から高温端側に移動させるようにしたので、磁気作業物質に印加される磁場の大きさが増大される前に、磁気作業物質に低温の熱媒体を送り込み、その後の磁場の増大で上昇する磁気作業物質との温度差を大きくすることができるようになる。 According to the invention of claim 1 or claim 3, the magnetic working material having the magnetocaloric effect, the magnetic working body through which the heat medium is circulated, and the magnetic field that changes the magnitude of the magnetic field applied to the magnetic working material. Change device, heat medium moving device for reciprocating the heat medium between the high temperature end and the low temperature end of the magnetic working body, the heat dissipating side heat exchanger for dissipating the heat medium on the high temperature end side, and the low temperature end side In the magnetic heat pump device including the heat exchanger on the heat absorption side for absorbing heat to the heat medium, the heat medium moving device, before the magnetic field changing device increases the magnitude of the magnetic field applied to the magnetic working material, Since the heat medium is moved from the low temperature end side to the high temperature end side of the magnetic working body, the low temperature heat medium is fed into the magnetic working material before the magnitude of the magnetic field applied to the magnetic working material is increased. , Magnetism rising with subsequent increase in magnetic field It is possible to increase the temperature difference between the work material.
 これにより、磁気作業物質と熱媒体とを効率良く熱交換させ、磁気作業体の高温端と低温端との間の温度勾配を拡大して、磁気作業物質の磁気熱量効果による温度変化を有効且つ効率的に利用することができるようになる。 As a result, the magnetic working material and the heat medium are efficiently exchanged heat, the temperature gradient between the high temperature end and the low temperature end of the magnetic working body is expanded, and the temperature change due to the magnetocaloric effect of the magnetic working material is effective and It can be used efficiently.
 この場合、請求項4や請求項6の発明の如く磁場変更装置が磁気作業物質に印加する磁場の大きさを増大させている時間をT1とした場合、熱媒体移動装置は、磁場変更装置が磁気作業物質に印加される磁場の大きさを増大させ始める0より大きく、0.15×T1以下の時間前に、熱媒体を磁気作業体の低温端側から高温端側に移動させることで、効果的に磁気作業物質の温度上昇を利用することができるようなる。 In this case, when the time during which the magnetic field changing device increases the magnitude of the magnetic field applied to the magnetic working material as T1 is set as T1 as in the invention of claim 4 or claim 6, the heat medium moving device is By moving the heat medium from the low temperature end side to the high temperature end side of the magnetic working body, before the time of starting from increasing the magnitude of the magnetic field applied to the magnetic working material, greater than 0 and less than 0.15 × T1, The temperature increase of the magnetic working substance can be effectively used.
 また、請求項2又は請求項3の発明によれば、磁気熱量効果を有する磁気作業物質を備え、熱媒体が流通される磁気作業体と、磁気作業物質に印加される磁場の大きさを変更する磁場変更装置と、磁気作業体の高温端と低温端の間で熱媒体を往復移動させる熱媒体移動装置と、高温端側の熱媒体を放熱させるための放熱側の熱交換器と、低温端側の熱媒体に吸熱させるための吸熱側の熱交換器とを備えた磁気ヒートポンプ装置において、熱媒体移動装置は、磁場変更装置が磁気作業物質に印加される磁場の大きさを減少させた後に、熱媒体を磁気作業体の高温端側から低温端側に移動させるようにしたので、磁気作業物質に印加される磁場の大きさを減少させた後に熱媒体を移動させ、磁場の減少により温度が低下する磁気作業物質で熱媒体の温度をより低下させることができるようになる。 According to the invention of claim 2 or claim 3, the magnetic working material having the magnetocaloric effect is provided, the magnetic working body through which the heat medium is circulated, and the magnitude of the magnetic field applied to the magnetic working material is changed. A magnetic field changing device, a heat medium moving device for reciprocating a heat medium between a high temperature end and a low temperature end of a magnetic working body, a heat dissipating side heat exchanger for dissipating the heat medium on the high temperature end side, and a low temperature In the magnetic heat pump apparatus having the heat absorption side heat exchanger for absorbing heat to the end side heat medium, the heat medium moving device reduces the magnitude of the magnetic field applied to the magnetic working material by the magnetic field changing device. Later, since the heat medium was moved from the high temperature end side to the low temperature end side of the magnetic working body, the heat medium was moved after the magnitude of the magnetic field applied to the magnetic working material was decreased, and the magnetic field decreased. Magnetic working material with decreasing temperature, heat medium Comprising a temperature so more can be reduced.
 これにより、磁気作業物質の温度低下を有効に利用し、磁気作業体の高温端と低温端との間の温度勾配を拡大して、磁気作業物質の磁気熱量効果による温度変化を有効且つ効率的に利用することができるようになる。 This effectively uses the temperature drop of the magnetic working material, expands the temperature gradient between the high temperature end and the low temperature end of the magnetic working material, and effectively and efficiently changes the temperature due to the magnetocaloric effect of the magnetic working material. Can be used.
 この場合、請求項5や請求項6の発明の如く磁場変更装置が磁気作業物質に印加する磁場の大きさを減少させている時間をT2とした場合、熱媒体移動装置は、磁場変更装置が磁気作業物質に印加される磁場の大きさを減少させてから0.25×T2以上、0.33×T2以下の時間後に、熱媒体を磁気作業体の高温端側から低温端側に移動させることで、効果的に磁気作業物質の温度低下を利用することができるようなる。 In this case, when the time during which the magnetic field changing device reduces the magnitude of the magnetic field applied to the magnetic working material is T2 as in the inventions of claim 5 and claim 6, the heat medium moving device After a time of 0.25 × T2 or more and 0.33 × T2 or less after the magnitude of the magnetic field applied to the magnetic working material is decreased, the heat medium is moved from the high temperature end side to the low temperature end side of the magnetic working body. This makes it possible to effectively use the temperature drop of the magnetic working material.
本発明を適用した実施例の磁気ヒートポンプ装置の全体構成図である。It is a whole block diagram of the magnetic heat pump apparatus of the Example to which this invention is applied. 図1の磁気ヒートポンプ用AMR(Active Magnetic regenator)の断面図である。FIG. 2 is a cross-sectional view of the magnetic heat pump AMR (Active Magnetic Regenerator) of FIG. 1. 磁気作業物質を励磁する前に熱媒体を移動させる動作を説明する磁気作業体の断面図である。It is sectional drawing of the magnetic working body explaining the operation | movement which moves a thermal medium before exciting a magnetic working material. 磁気作業物質を励磁した状態の磁気作業体の断面図である。It is sectional drawing of the magnetic working body of the state which excited the magnetic working substance. 磁気作業物質を消磁したときの磁気作業体の断面図である。It is sectional drawing of a magnetic working body when a magnetic working substance is demagnetized. 磁気作業物質を消磁した後、熱媒体を移動させる動作を説明する磁気作業体の断面図である。It is sectional drawing of the magnetic working body explaining the operation | movement which moves a thermal medium after demagnetizing a magnetic working material.
  以下、本発明の一実施形態を図面に基づいて説明する。図1は本発明を適用した実施例の磁気ヒートポンプ装置1の全体構成図、図2は磁気ヒートポンプ装置1の磁気ヒートポンプ用AMR2の断面図を示している。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is an overall configuration diagram of a magnetic heat pump device 1 according to an embodiment to which the present invention is applied, and FIG. 2 is a cross-sectional view of an AMR 2 for magnetic heat pump of the magnetic heat pump device 1.
(1)磁気ヒートポンプ装置1の構成
 先ず、図2の磁気ヒートポンプ用AMR2について説明する。磁気ヒートポンプ装置1の磁気ヒートポンプ用AMR2は、軸方向の両端が閉塞された中空筒状の筐体3と、この筐体3内の軸心にあって、軸対称となる周面に一対(二個)の永久磁石6(磁場発生部材)が放射状に取り付けられた回転体7とを備える。回転体7の軸の両端は筐体3によって回転自在に軸支されると共に、更に図示しない減速機を介してモータM(図1。サーボモータ)の回転軸10に連結され、このモータMにより回転制御される。これら回転体7や永久磁石6、モータM等により後述する磁気作業物質13に印加される磁場の大きさを変更する磁場変更装置が構成される。また、モータMの回転軸10には後述するディスプレーサ(ピストン)8を駆動するカム9(図1)も連結される。
(1) Configuration of Magnetic Heat Pump Device 1 First, the magnetic heat pump AMR 2 in FIG. 2 will be described. The magnetic heat pump AMR 2 of the magnetic heat pump apparatus 1 has a hollow cylindrical housing 3 whose both ends in the axial direction are closed, and a pair of two (two A plurality of permanent magnets 6 (magnetic field generating members) and a rotating body 7 attached in a radial manner. Both ends of the shaft of the rotating body 7 are rotatably supported by the housing 3 and are further connected to a rotating shaft 10 of a motor M (FIG. 1, servo motor) via a speed reducer (not shown). The rotation is controlled. The rotating body 7, the permanent magnet 6, the motor M, and the like constitute a magnetic field changing device that changes the magnitude of the magnetic field applied to the magnetic working material 13 described later. Further, a cam 9 (FIG. 1) for driving a displacer (piston) 8 to be described later is also connected to the rotating shaft 10 of the motor M.
  一方、筐体3の内周には、永久磁石6の二倍の個数である四本の磁気作業体11A、11A、11B、11Bが、永久磁石6の外周面に近接する状態で周方向に等間隔で固定されている。実施例の場合、磁気作業体11Aと11Aが回転体7を挟んで軸対称位置に配置され、磁気作業体11Bと11Bが回転体7を挟んで軸対称位置に配置されている(図2)。各磁気作業体11A、11Bは、断面が筐体3の内周に沿った円弧状となる中空のダクト12内に、磁気熱量効果を有する磁気作業物質13を、熱媒体(ここでは水)が流通可能にそれぞれ充填したものである(図1)。 On the other hand, four magnetic working bodies 11A, 11A, 11B, and 11B, which are twice the number of permanent magnets 6, are arranged in the circumferential direction in the state of being close to the outer peripheral surface of the permanent magnet 6 on the inner periphery of the housing 3. Fixed at regular intervals. In the case of the embodiment, the magnetic working bodies 11A and 11A are arranged in an axially symmetric position with the rotating body 7 interposed therebetween, and the magnetic working bodies 11B and 11B are arranged in an axially symmetric position with the rotating body 7 interposed therebetween (FIG. 2). . Each of the magnetic working bodies 11A and 11B has a magnetic working substance 13 having a magnetocaloric effect in a hollow duct 12 whose cross section is an arc shape along the inner periphery of the housing 3, and a heat medium (here, water). Each is filled so that it can be distributed (FIG. 1).
 尚、磁気作業体11Aと11Bは実際には図2の如く二つずつ軸対称位置に配置されているが、図1ではそれぞれ一つずつを代表して示している。また、実施例ではダクト12を断熱性の高い樹脂材料にて構成している。これにより、後述する如き磁場の変更(励磁と消磁)で温度が上昇し、或いは、低下する磁気作業物質13から大気(外部)への熱損失を低減させている。また、実施例では磁気作業物質13としてMn系、又は、La系材料を使用している。 Incidentally, the magnetic working bodies 11A and 11B are actually arranged in two axially symmetrical positions as shown in FIG. 2, but one is shown as a representative in FIG. Moreover, in the Example, the duct 12 is comprised with the resin material with high heat insulation. As a result, the heat loss from the magnetic working material 13 to the atmosphere (external) that increases or decreases due to the change of the magnetic field (excitation and demagnetization) as will be described later is reduced. In the embodiment, a Mn-based or La-based material is used as the magnetic working substance 13.
 そして、係る磁気ヒートポンプ用AMR2を組み込んだ図1の磁気ヒートポンプ装置1の全体構成図において、各磁気作業体11A、11Bは、一端(図1における右端)に高温端14を有し、他端(図1における左端)に低温端16を有している。そして、各磁気作業体11A、11A、11B、11B(図1では一つずつを代表して示す)の高温端14に高温配管17が接続され、図2の筐体3から引き出されている。また、各磁気作業体11A、11A、11B、11B(図1では一つずつを代表して示す)の低温端16に低温配管18が接続され、図2の筐体3から引き出されている。 And in the whole block diagram of the magnetic heat pump apparatus 1 of FIG. 1 incorporating the magnetic heat pump AMR 2, each magnetic working body 11A, 11B has a high temperature end 14 at one end (the right end in FIG. 1) and the other end ( A cold end 16 is provided at the left end in FIG. And the high temperature piping 17 is connected to the high temperature end 14 of each magnetic working body 11A, 11A, 11B, 11B (one representative is shown in FIG. 1), and is pulled out from the housing 3 in FIG. Further, a low-temperature pipe 18 is connected to the low-temperature end 16 of each of the magnetic working bodies 11A, 11A, 11B, and 11B (one representative is shown in FIG. 1) and pulled out from the housing 3 in FIG.
 そして、高温配管17には放熱側の熱交換器19が接続され、更に、高温配管17中には循環ポンプ21が介設されている。また、低温配管18には吸熱側の熱交換器22が接続され、更に、低温配管18中にも循環ポンプ23が介設されている。 Further, a heat exchanger 19 on the heat radiation side is connected to the high temperature pipe 17, and a circulation pump 21 is interposed in the high temperature pipe 17. Further, a heat exchanger 22 on the heat absorption side is connected to the low temperature pipe 18, and a circulation pump 23 is interposed in the low temperature pipe 18.
 また、ディスプレーサ(ピストン)8は各磁気作業体11A、11A、11B、11Bの高温端14と低温端16にそれぞれ配置されており、モータMの回転軸10で回転されるカム9により駆動され、各磁気作業体11A、11A、11B、11Bの高温端14と低温端16の間で熱媒体(水)を往復移動させる。 Displacers (pistons) 8 are respectively disposed at the high temperature end 14 and the low temperature end 16 of each magnetic working body 11A, 11A, 11B, 11B, and are driven by a cam 9 that is rotated by the rotating shaft 10 of the motor M. The heat medium (water) is reciprocated between the high temperature end 14 and the low temperature end 16 of each magnetic working body 11A, 11A, 11B, 11B.
 即ち、図1の如く磁気作業体11A、11Aの高温端14側のディスプレーサ8が後退し、低温端16側のディスプレーサ8が進出すると、熱媒体は磁気作業体11Aの低温端16側から高温端14側に移動される。一方、磁気作業体11B、11Bの低温端16側のディスプレーサ8は図1の如く後退し、高温端14側のディスプレーサ8は進出し、熱媒体は磁気作業体11Bの高温端14側から低温端16側に移動される。これらディスプレーサ8やカム9、更にはモータM、回転軸10等により、各磁気作業体11A、11A、11B、11Bの高温端14と低温端16の間で熱媒体を往復移動させる熱媒体移動装置が構成される。 That is, as shown in FIG. 1, when the displacer 8 on the high temperature end 14 side of the magnetic working bodies 11A and 11A moves backward and the displacer 8 on the low temperature end 16 side advances, the heat medium is transferred from the low temperature end 16 side of the magnetic working body 11A to the high temperature end. 14 side is moved. On the other hand, the displacer 8 on the low temperature end 16 side of the magnetic working bodies 11B and 11B retreats as shown in FIG. 1, the displacer 8 on the high temperature end 14 side advances, and the heat medium moves from the high temperature end 14 side of the magnetic working body 11B to the low temperature end. It is moved to the 16 side. A heat medium moving device for reciprocating the heat medium between the high temperature end 14 and the low temperature end 16 of each of the magnetic working bodies 11A, 11A, 11B, and 11B by the displacer 8, the cam 9, and the motor M, the rotating shaft 10 and the like. Is configured.
(2)磁気ヒートポンプ装置1の基本動作
 以上の構成の磁気ヒートポンプ装置1の基本的な動作について説明する。先ず、回転体7が0°の位置(図2に示す位置)にあるとき、永久磁石6、6が0°及び180°の位置にあるので、この0°及び180°の位置にある磁気作業体11A、11Aの磁気作業物質13に印加される磁場の大きさは増大し、励磁されて温度が上昇する。一方、これと90°位相が異なる90°及び270°の位置にある磁気作業体11B、11Bの磁気作業物質13に印加される磁場の大きさは減少し、消磁されて温度が低下する。
(2) Basic Operation of Magnetic Heat Pump Device 1 The basic operation of the magnetic heat pump device 1 having the above configuration will be described. First, when the rotating body 7 is at the 0 ° position (the position shown in FIG. 2), the permanent magnets 6 and 6 are at the 0 ° and 180 ° positions. Therefore, the magnetic work at the 0 ° and 180 ° positions is performed. The magnitude of the magnetic field applied to the magnetic working material 13 of the bodies 11A and 11A increases, and the temperature increases due to excitation. On the other hand, the magnitude of the magnetic field applied to the magnetic working material 13 of the magnetic working bodies 11B and 11B at the 90 ° and 270 ° positions that are 90 ° out of phase with each other decreases, demagnetizing and lowering the temperature.
  また、モータMの回転により回転体7が0°の位置(図2)にあるとき、カム9、9がモータMの回転軸10で駆動されて、図1の如く磁気作業体11A、11Aの高温端14側のディスプレーサ8を後退させ、低温端16側のディスプレーサ8を進出させる。これにより、熱媒体は磁気作業体11Aの低温端16側から高温端14側に移動される。 When the rotating body 7 is at the 0 ° position (FIG. 2) due to the rotation of the motor M, the cams 9 and 9 are driven by the rotating shaft 10 of the motor M, and the magnetic working bodies 11A and 11A are driven as shown in FIG. The displacer 8 on the high temperature end 14 side is retracted, and the displacer 8 on the low temperature end 16 side is advanced. Thereby, the heat medium is moved from the low temperature end 16 side to the high temperature end 14 side of the magnetic working body 11A.
 これにより、永久磁石6、6により励磁されての温度が上昇した磁気作業体11A、11Aの磁気作業物質13と低温の熱媒体とを熱交換させることで、磁気作業体11A、11Aに高温端14側が高く、低温端16側が低い温度勾配を生じさせる。 As a result, the magnetic working bodies 11A and 11A of the magnetic working bodies 11A and 11A that have been excited by the permanent magnets 6 and 6 are heated to exchange heat with the low-temperature heat medium. The 14 side is high, and the low temperature end 16 side is low.
 また、モータMの回転により回転体7が0°の位置(図2)にあるとき、カム9、9がモータMの回転軸10で駆動されて、図1の如く磁気作業体11B、11Bの高温端14側のディスプレーサ8を進出させ、低温端16側のディスプレーサ8を後退させる。これにより、熱媒体は磁気作業体11Aの高温端14側から低温端16側に移動される。これにより、消磁によって温度が低下した磁気作業体11B、11Bの磁気作業物質13と高温の熱媒体とを熱交換させ、磁気作業体11B、11Bの温度勾配を更に拡大させる。 When the rotating body 7 is at the 0 ° position (FIG. 2) due to the rotation of the motor M, the cams 9 and 9 are driven by the rotating shaft 10 of the motor M, and the magnetic working bodies 11B and 11B are driven as shown in FIG. The displacer 8 on the high temperature end 14 side is advanced, and the displacer 8 on the low temperature end 16 side is retracted. Thereby, the heat medium is moved from the high temperature end 14 side to the low temperature end 16 side of the magnetic working body 11A. As a result, heat exchange is performed between the magnetic working material 13 of the magnetic working bodies 11B and 11B whose temperature has decreased due to demagnetization and the high-temperature heat medium, and the temperature gradient of the magnetic working bodies 11B and 11B is further expanded.
 次に、モータMにより回転体7が90°回転されると、永久磁石6、6が90°及び270°の位置に来るので、この90°及び270°の位置にある磁気作業体11B、11Bの磁気作業物質13に印加される磁場の大きさは増大し、励磁されて温度が上昇する。一方、これと90°位相が異なる0°及び180°の位置にある磁気作業体11A、11Aの磁気作業物質13に印加される磁場の大きさは減少し、消磁されて温度が低下する。 Next, when the rotating body 7 is rotated 90 ° by the motor M, the permanent magnets 6 and 6 come to the 90 ° and 270 ° positions, so the magnetic working bodies 11B and 11B at the 90 ° and 270 ° positions. The magnitude of the magnetic field applied to the magnetic working material 13 increases and is excited to increase the temperature. On the other hand, the magnitude of the magnetic field applied to the magnetic working material 13 of the magnetic working bodies 11A and 11A at the positions of 0 ° and 180 ° that are 90 ° out of phase with each other is reduced, demagnetized, and the temperature is lowered.
  また、モータMの回転により回転体7が90°の位置にあるとき、カム9、9がモータMの回転軸10で駆動されて、磁気作業体11A、11Aの高温端14側のディスプレーサ8を進出させ、低温端16側のディスプレーサ8を後退させる。これにより、熱媒体は磁気作業体11Aの高温端14側から低温端16側に移動される。これにより、消磁によって温度が低下した磁気作業体11A、11Aの磁気作業物質13と高温の熱媒体とを熱交換させ、磁気作業体11A、11Aの温度勾配を更に拡大させる。 When the rotating body 7 is at a 90 ° position due to the rotation of the motor M, the cams 9 and 9 are driven by the rotating shaft 10 of the motor M, and the displacer 8 on the high temperature end 14 side of the magnetic working bodies 11A and 11A is moved. The displacer 8 on the low temperature end 16 side is moved back. Thereby, the heat medium is moved from the high temperature end 14 side to the low temperature end 16 side of the magnetic working body 11A. As a result, the magnetic working material 13 of the magnetic working bodies 11A and 11A whose temperature has decreased due to demagnetization is exchanged with the high-temperature heat medium, and the temperature gradient of the magnetic working bodies 11A and 11A is further expanded.
 また、モータMの回転により回転体7が90°の位置に来ると、カム9、9がモータMの回転軸10で駆動されて、磁気作業体11B、11Bの低温端16側のディスプレーサ8を進出させ、高温端14側のディスプレーサ8を後退させる。これにより、熱媒体は磁気作業体11Bの低温端16側から高温端14側に移動される。 When the rotating body 7 reaches the 90 ° position by the rotation of the motor M, the cams 9 and 9 are driven by the rotating shaft 10 of the motor M, and the displacer 8 on the low temperature end 16 side of the magnetic working bodies 11B and 11B is moved. The displacer 8 on the high temperature end 14 side is moved back. Thereby, the heat medium is moved from the low temperature end 16 side to the high temperature end 14 side of the magnetic working body 11B.
 これにより、永久磁石6、6により励磁されての温度が上昇した磁気作業体11B、11Bの磁気作業物質13と低温の熱媒体とを熱交換させることで、磁気作業体11B、11Bの温度勾配を更に拡大させる。 Thereby, the temperature gradient of the magnetic working bodies 11B, 11B is obtained by exchanging heat between the magnetic working material 13 of the magnetic working bodies 11B, 11B excited by the permanent magnets 6, 6 and the low-temperature heat medium. Is further expanded.
 このようにして温度が上昇した各磁気作業体11A、11A、11B、11Bの高温端14側の熱媒体は、循環ポンプ21により高温配管17を経て放熱側の熱交換器19に循環される。また、温度が低下した各磁気作業体11A、11A、11B、11Bの低温端16側の熱媒体は、循環ポンプ23により低温配管18を経て吸熱側の熱交換器22に循環される。 The heat medium on the high temperature end 14 side of each magnetic working body 11A, 11A, 11B, 11B whose temperature has been increased in this way is circulated by the circulation pump 21 to the heat exchanger 19 on the heat radiation side via the high temperature pipe 17. Further, the heat medium on the low temperature end 16 side of each of the magnetic working bodies 11A, 11A, 11B, and 11B whose temperature has been lowered is circulated by the circulation pump 23 to the heat exchanger 22 on the heat absorption side via the low temperature pipe 18.
 このようなモータMによる回転体7の回転とディスプレーサ8の切り換えを比較的高速の回転数とタイミングで行い、各磁気作業体11A、11A、11B、11Bの高温端14と低温端16の間で熱媒体(水)を往復移動させ、励磁/消磁される各磁気作業体11A、11A、11B、11Bの磁気作業物質13からの吸熱/放熱を繰り返すことによって、各磁気作業体11A、11A、11B、11Bの高温端14と低温端16の温度差が徐々に拡大し、やがて吸熱側の熱交換器22に繋がる各磁気作業体11A、11A、11B、11Bの低温端16の温度は磁気作業物質13の冷凍能力と熱交換器22で冷却される被冷却体の熱負荷とがバランスする温度まで低下し、放熱側の熱交換器19に繋がる各磁気作業体11A、11A、11B、11Bの高温端14の温度は熱交換器19の放熱能力と冷凍能力とがバランスして略一定温度になる。 Such rotation of the rotating body 7 by the motor M and switching of the displacer 8 are performed at a relatively high speed and timing, and between the high temperature end 14 and the low temperature end 16 of each magnetic work body 11A, 11A, 11B, 11B. By reciprocating the heat medium (water) and repeating heat absorption / dissipation from the magnetic working material 13 of each magnetic working body 11A, 11A, 11B, 11B to be excited / demagnetized, each magnetic working body 11A, 11A, 11B. The temperature difference between the high temperature end 14 and the low temperature end 16 of 11B gradually increases and eventually the temperature of the low temperature end 16 of each magnetic work body 11A, 11A, 11B, 11B connected to the heat exchanger 22 on the endothermic side is the magnetic work material. The magnetic working bodies 11A, 11A connected to the heat exchanger 19 on the heat radiation side are lowered to a temperature at which the refrigeration capacity of 13 and the heat load of the cooled object cooled by the heat exchanger 22 are balanced. 1B, the temperature of the hot end 14 of the 11B becomes substantially constant temperature and the heat dissipation capacity and refrigeration capacity of the heat exchanger 19 and balanced.
(3)ディスプレーサ8による熱媒体の往復移動の切り換え制御詳細
 次に、図3~図6を参照しながら、ディスプレーサ8によって熱媒体の移動(往復移動)を切り換えるタイミングについて詳述する。尚、各図では磁気作業体11Aについて説明するが、磁気作業体11Bについても同様である。また、以下の切り換えタイミングは実施例では主にカム9の形状により達成される。
(3) Details of switching control of reciprocating movement of heat medium by displacer 8 Next, the timing for switching the movement (reciprocating movement) of the heat medium by the displacer 8 will be described in detail with reference to FIGS. In addition, although each figure demonstrates the magnetic working body 11A, it is the same also about the magnetic working body 11B. Further, the following switching timing is achieved mainly by the shape of the cam 9 in the embodiment.
 先ず、本発明では図1の如く磁気作業体11Aの磁気作業物質13を励磁(磁場を増大)する際、図3に示す如く永久磁石6により磁気作業体11Aを励磁する前に、ディスプレーサ8により熱媒体を磁気作業体11Aの低温端16側から高温端14側に移動させる。この場合、実施例では永久磁石6が磁気作業体11Aの磁気作業物質13を励磁(印加する磁場の大きさを増大)している時間をT1とした場合、ディスプレーサ8により、永久磁石6が磁気作業物質13を励磁(印加される磁場の大きさを増大)し始める0より大きく、0.15×T1以下の時間前に、熱媒体(水)を磁気作業体11Aの低温端16側から高温端14側に移動させる。 First, in the present invention, when exciting the magnetic working substance 13 of the magnetic working body 11A as shown in FIG. 1 (increasing the magnetic field), before the magnetic working body 11A is excited by the permanent magnet 6 as shown in FIG. The heat medium is moved from the low temperature end 16 side to the high temperature end 14 side of the magnetic working body 11A. In this case, in the embodiment, when the time during which the permanent magnet 6 excites the magnetic working material 13 of the magnetic working body 11A (increases the magnitude of the applied magnetic field) is T1, the displacer 8 causes the permanent magnet 6 to be magnetic. The heating medium (water) is heated from the low temperature end 16 side of the magnetic working body 11A to a high temperature before the time when the working material 13 begins to be excited (increases the magnitude of the applied magnetic field) and is less than 0.15 × T1. Move to end 14 side.
 この時点で磁気作業物質13は励磁されていないので、流入した低温の熱媒体(各図中にW1で示す。尚、W2は高温の熱媒体)の温度は、図3中に実線L1で示す如く、励磁と同時に流入させる場合(破線L2)よりも低くなる。その後、図4の如く永久磁石6により磁気作業体11Aの磁気作業物質13は励磁されるので、その温度は図4中実線L3で示すような状態となるが、この場合の磁気作業物質13と熱媒体の温度差は(L3-L1)は、同時に流入させた場合の温度差(L3-L2)よりも大きくなる。 Since the magnetic working substance 13 is not excited at this time, the temperature of the flowing low-temperature heat medium (indicated by W1 in each figure. W2 is the high-temperature heat medium) is indicated by a solid line L1 in FIG. Thus, it becomes lower than the case where it is made to flow simultaneously with excitation (broken line L2). Thereafter, the magnetic working material 13 of the magnetic working body 11A is excited by the permanent magnet 6 as shown in FIG. 4, so that the temperature is as shown by the solid line L3 in FIG. The temperature difference of the heat medium (L3−L1) becomes larger than the temperature difference (L3−L2) in the case where the heat medium flows simultaneously.
 一方、本発明では磁気作業体11Aの磁気作業物質13を消磁(磁場を減少)した後も、図5に示す如くディスプレーサ8を動作させず、熱媒体と磁気作業物質13との熱交換を継続する。図5中に示す破線L4はこの場合の熱媒体の温度であり、破線L5は消磁と同時に熱媒体を移動させたときの熱媒体の温度である。破線L4の方が破線L5よりも温度が低くなる。 On the other hand, in the present invention, even after the magnetic working material 13 of the magnetic working body 11A is demagnetized (the magnetic field is reduced), the displacer 8 is not operated as shown in FIG. To do. The broken line L4 shown in FIG. 5 is the temperature of the heat medium in this case, and the broken line L5 is the temperature of the heat medium when the heat medium is moved simultaneously with demagnetization. The temperature of the broken line L4 is lower than that of the broken line L5.
 その後、図6の如くディスプレーサ8により熱媒体を磁気作業体11Aの高温端14側から低温端16側に移動させる。この場合、実施例では永久磁石6が磁気作業物質13を消磁(印加する磁場の大きさを減少)している時間をT2とした場合、ディスプレーサ8により、永久磁石6が磁気作業物質13を消磁(印加される磁場の大きさを減少)してから0.25×T2以上、0.33×T2以下の時間後に、熱媒体を磁気作業体11Aの高温端14側から低温端16側に移動させる。尚、図中L6はこのときの磁気作業物質13の温度である。 Thereafter, as shown in FIG. 6, the displacer 8 moves the heat medium from the high temperature end 14 side to the low temperature end 16 side of the magnetic working body 11A. In this case, in the embodiment, when the time during which the permanent magnet 6 demagnetizes the magnetic working material 13 (decreasing the magnitude of the applied magnetic field) is T2, the displacer 8 causes the permanent magnet 6 to demagnetize the magnetic working material 13. After 0.25 × T2 or more and 0.33 × T2 or less after (decreasing the magnitude of the applied magnetic field), the heat medium is moved from the high temperature end 14 side to the low temperature end 16 side of the magnetic working body 11A. Let In the figure, L6 is the temperature of the magnetic working material 13 at this time.
 以上の如く、本発明ではディスプレーサ8により、永久磁石6が磁気作業物質13に印加される磁場の大きさを増大(励磁)させる前に、熱媒体を磁気作業体11A、11Bの低温端16側から高温端14側に移動させるようにしたので、磁気作業物質13に印加される磁場の大きさが増大される前に、磁気作業物質13に低温の熱媒体を送り込み、その後の磁場の増大で上昇する磁気作業物質13との温度差を大きくすることができるようになる。 As described above, in the present invention, before the displacer 8 increases (excites) the magnitude of the magnetic field applied to the magnetic working material 13 by the displacer 8, the heat medium is transferred to the low temperature end 16 side of the magnetic working bodies 11A and 11B. Therefore, before the magnitude of the magnetic field applied to the magnetic working material 13 is increased, a low-temperature heat medium is sent to the magnetic working material 13 and the magnetic field is increased thereafter. The temperature difference from the rising magnetic working substance 13 can be increased.
 これにより、磁気作業物質13と熱媒体とを効率良く熱交換させ、磁気作業体11A、11Bの高温端14と低温端16との間の温度勾配を拡大して、磁気作業物質13の磁気熱量効果による温度変化を有効且つ効率的に利用することができるようになる。 Thereby, the magnetic working material 13 and the heat medium are efficiently heat-exchanged, the temperature gradient between the high temperature end 14 and the low temperature end 16 of the magnetic working bodies 11A and 11B is expanded, and the amount of magnetic heat of the magnetic working material 13 is increased. The temperature change due to the effect can be used effectively and efficiently.
 この場合、実施例では永久磁石6が磁気作業物質13に印加する磁場の大きさを増大させている時間をT1とした場合、ディスプレーサ8は、永久磁石6が磁気作業物質13に印加される磁場の大きさを増大させ始める0より大きく、0.15×T1以下の時間前に、熱媒体を磁気作業体11A、11Bの低温端16側から高温端14側に移動させるようにしたので、効果的に磁気作業物質13の温度上昇を利用することができるようなる。 In this case, in the embodiment, assuming that the time during which the magnitude of the magnetic field applied to the magnetic working material 13 by the permanent magnet 6 is T1, the displacer 8 uses the magnetic field applied to the magnetic working material 13 by the permanent magnet 6. Since the heat medium is moved from the low temperature end 16 side to the high temperature end 14 side of the magnetic working bodies 11A and 11B before the time of 0.15 × T1 or less before starting to increase the size of the magnetic recording medium, the effect Thus, the temperature increase of the magnetic working material 13 can be utilized.
 また、ディスプレーサ8により、永久磁石6が磁気作業物質13に印加される磁場の大きさを減少させた後に、熱媒体を磁気作業体11A、11Bの高温端14側から低温端16側に移動させるようにしたので、磁気作業物質13に印加される磁場の大きさを減少させた後に熱媒体を移動させ、磁場の減少により温度が低下する磁気作業物質13で熱媒体の温度をより低下させることができるようになる。 Further, after the displacer 8 reduces the magnitude of the magnetic field applied to the magnetic working material 13 by the permanent magnet 6, the heat medium is moved from the high temperature end 14 side to the low temperature end 16 side of the magnetic working bodies 11A and 11B. As described above, the heat medium is moved after the magnitude of the magnetic field applied to the magnetic working material 13 is decreased, and the temperature of the heat medium is further decreased by the magnetic working material 13 whose temperature is lowered by the decrease of the magnetic field. Will be able to.
 これにより、磁気作業物質13の温度低下を有効に利用し、磁気作業体11A、11Bの高温端14と低温端16との間の温度勾配を拡大して、磁気作業物質13の磁気熱量効果による温度変化を有効且つ効率的に利用することができるようになる。 Thereby, the temperature drop between the high temperature end 14 and the low temperature end 16 of the magnetic working bodies 11 </ b> A and 11 </ b> B is expanded by effectively using the temperature drop of the magnetic working material 13, and the magnetocaloric effect of the magnetic working material 13 is increased. The temperature change can be used effectively and efficiently.
 この場合、実施例では永久磁石6が磁気作業物質13に印加する磁場の大きさを減少させている時間をT2とした場合、ディスプレーサ8により、永久磁石6が磁気作業物質13に印加される磁場の大きさを減少させてから0.25×T2以上、0.33×T2以下の時間後に、熱媒体を磁気作業体11A、11Bの高温端14側から低温端16側に移動させるようにしたので、効果的に磁気作業物質13の温度低下を利用することができるようなる。 In this case, in the embodiment, when the time during which the magnitude of the magnetic field applied to the magnetic working material 13 by the permanent magnet 6 is reduced to T2, the magnetic field applied to the magnetic working material 13 by the displacer 8 by the displacer 8. The heat medium is moved from the high temperature end 14 side to the low temperature end 16 side of the magnetic working bodies 11A and 11B after a time of 0.25 × T2 or more and 0.33 × T2 or less after the size of the magnetic material is reduced. Therefore, the temperature decrease of the magnetic working material 13 can be effectively used.
 尚、実施例では磁気作業物質13を励磁する前に熱媒体を低温端16側から高温端14側に移動させる制御と、磁気作業物質13を消磁した後、熱媒体を高温端14側から低温端16側に移動させる制御の双方を実施したが、それに限らず、何れか一方のみでも有効である。 In the embodiment, the control of moving the heat medium from the low temperature end 16 side to the high temperature end 14 side before exciting the magnetic working material 13, and after demagnetizing the magnetic work material 13, the heat medium is moved from the high temperature end 14 side to the low temperature. Although both of the controls for moving to the end 16 side have been implemented, the present invention is not limited thereto, and only one of them is effective.
 また、磁気ヒートポンプ装置の全体構成も実施例に限られるものでは無く、熱媒体移動装置もディスプレーサ8に代えて、循環ポンプやロータリ弁で構成してもよい。 Further, the overall configuration of the magnetic heat pump device is not limited to the embodiment, and the heat medium moving device may be configured by a circulation pump or a rotary valve instead of the displacer 8.
 1 磁気ヒートポンプ装置
 2 磁気ヒートポンプ用AMR
 3 筐体
 6 永久磁石(磁場変更装置)
 7 回転体(磁場変更装置)
 8 ディスプレーサ(熱媒体移動装置)
 9 カム(熱媒体移動装置)
 11A、11B 磁気作業体
 12 ダクト
 13 磁気作業物質
 14 高温端
 16 低温端
 19、22 熱交換器
 M モータ
1 Magnetic heat pump device 2 AMR for magnetic heat pump
3 Housing 6 Permanent magnet (Magnetic field changing device)
7 Rotating body (magnetic field changing device)
8 Displacer (heat transfer device)
9 cam (heat transfer device)
11A, 11B Magnetic working body 12 Duct 13 Magnetic working material 14 High temperature end 16 Low temperature end 19, 22 Heat exchanger M Motor

Claims (6)

  1.  磁気熱量効果を有する磁気作業物質を備え、熱媒体が流通される磁気作業体と、
     前記磁気作業物質に印加される磁場の大きさを変更する磁場変更装置と、
     前記磁気作業体の高温端と低温端の間で前記熱媒体を往復移動させる熱媒体移動装置と、
     前記高温端側の前記熱媒体を放熱させるための放熱側の熱交換器と、
     前記低温端側の前記熱媒体に吸熱させるための吸熱側の熱交換器とを備えた磁気ヒートポンプ装置において、
     前記熱媒体移動装置は、
     前記磁場変更装置が前記磁気作業物質に印加される磁場の大きさを増大させる前に、前記熱媒体を前記磁気作業体の低温端側から高温端側に移動させることを特徴とする磁気ヒートポンプ装置。
    A magnetic working body comprising a magnetic working material having a magnetocaloric effect and through which a heat medium is distributed;
    A magnetic field changing device for changing the magnitude of the magnetic field applied to the magnetic working substance;
    A heat medium moving device for reciprocating the heat medium between a high temperature end and a low temperature end of the magnetic working body;
    A heat exchanger on the heat dissipation side for dissipating the heat medium on the high temperature end side, and
    In a magnetic heat pump device comprising a heat exchanger on the heat absorption side for causing the heat medium on the low temperature end side to absorb heat,
    The heat transfer device is
    Before the magnetic field changing device increases the magnitude of the magnetic field applied to the magnetic working substance, the heat medium is moved from the low temperature end side to the high temperature end side of the magnetic working body. .
  2.  磁気熱量効果を有する磁気作業物質を備え、熱媒体が流通される磁気作業体と、
     前記磁気作業物質に印加される磁場の大きさを変更する磁場変更装置と、
     前記磁気作業体の高温端と低温端の間で前記熱媒体を往復移動させる熱媒体移動装置と、
     前記高温端側の前記熱媒体を放熱させるための放熱側の熱交換器と、
     前記低温端側の前記熱媒体に吸熱させるための吸熱側の熱交換器とを備えた磁気ヒートポンプ装置において、
     前記熱媒体移動装置は、
     前記磁場変更装置が前記磁気作業物質に印加される磁場の大きさを減少させた後に、前記熱媒体を前記磁気作業体の高温端側から低温端側に移動させることを特徴とする磁気ヒートポンプ装置。
    A magnetic working body comprising a magnetic working material having a magnetocaloric effect and through which a heat medium is distributed;
    A magnetic field changing device for changing the magnitude of the magnetic field applied to the magnetic working substance;
    A heat medium moving device for reciprocating the heat medium between a high temperature end and a low temperature end of the magnetic working body;
    A heat exchanger on the heat dissipation side for dissipating the heat medium on the high temperature end side, and
    In a magnetic heat pump device comprising a heat exchanger on the heat absorption side for causing the heat medium on the low temperature end side to absorb heat,
    The heat transfer device is
    A magnetic heat pump device that moves the heat medium from the high temperature end side to the low temperature end side of the magnetic working body after the magnetic field changing device reduces the magnitude of the magnetic field applied to the magnetic working material. .
  3.  磁気熱量効果を有する磁気作業物質を備え、熱媒体が流通される磁気作業体と、
     前記磁気作業物質に印加される磁場の大きさを変更する磁場変更装置と、
     前記磁気作業体の高温端と低温端の間で前記熱媒体を往復移動させる熱媒体移動装置と、
     前記高温端側の前記熱媒体を放熱させるための放熱側の熱交換器と、
     前記低温端側の前記熱媒体に吸熱させるための吸熱側の熱交換器とを備えた磁気ヒートポンプ装置において、
     前記熱媒体移動装置は、
     前記磁場変更装置が前記磁気作業物質に印加される磁場の大きさを増大させる前に、前記熱媒体を前記磁気作業体の低温端側から高温端側に移動させると共に、
     前記磁場変更装置が前記磁気作業物質に印加される磁場の大きさを減少させた後に、前記熱媒体を前記磁気作業体の高温端側から低温端側に移動させることを特徴とする磁気ヒートポンプ装置。
    A magnetic working body comprising a magnetic working material having a magnetocaloric effect and through which a heat medium is distributed;
    A magnetic field changing device for changing the magnitude of the magnetic field applied to the magnetic working substance;
    A heat medium moving device for reciprocating the heat medium between a high temperature end and a low temperature end of the magnetic working body;
    A heat exchanger on the heat dissipation side for dissipating the heat medium on the high temperature end side, and
    In a magnetic heat pump device comprising a heat exchanger on the heat absorption side for causing the heat medium on the low temperature end side to absorb heat,
    The heat transfer device is
    Before the magnetic field changing device increases the magnitude of the magnetic field applied to the magnetic working material, the heat medium is moved from the low temperature end side to the high temperature end side of the magnetic working body, and
    A magnetic heat pump device that moves the heat medium from the high temperature end side to the low temperature end side of the magnetic working body after the magnetic field changing device reduces the magnitude of the magnetic field applied to the magnetic working material. .
  4.  前記磁場変更装置が前記磁気作業物質に印加する磁場の大きさを増大させている時間をT1とした場合、
     前記熱媒体移動装置は、前記磁場変更装置が前記磁気作業物質に印加される磁場の大きさを増大させ始める0より大きく、0.15×T1以下の時間前に、前記熱媒体を前記磁気作業体の低温端側から高温端側に移動させることを特徴とする請求項1又は請求項3に記載の磁気ヒートポンプ装置。
    When the time during which the magnetic field changing device increases the magnitude of the magnetic field applied to the magnetic working material is T1,
    The heat transfer device moves the heat transfer medium to the magnetic work before a time greater than 0 and less than 0.15 × T1 before the magnetic field changing device starts to increase the magnitude of the magnetic field applied to the magnetic work material. The magnetic heat pump device according to claim 1 or 3, wherein the magnetic heat pump device is moved from a low temperature end side to a high temperature end side of the body.
  5.  前記磁場変更装置が前記磁気作業物質に印加する磁場の大きさを減少させている時間をT2とした場合、
     前記熱媒体移動装置は、前記磁場変更装置が前記磁気作業物質に印加される磁場の大き
    さを減少させてから0.25×T2以上、0.33×T2以下の時間後に、前記熱媒体を前記磁気作業体の高温端側から低温端側に移動させることを特徴とする請求項2又は請求項3に記載の磁気ヒートポンプ装置。
    When the time during which the magnetic field changing device reduces the magnitude of the magnetic field applied to the magnetic working material is T2,
    The heat transfer device moves the heat transfer medium after a time of 0.25 × T2 or more and 0.33 × T2 or less after the magnetic field changing device reduces the magnitude of the magnetic field applied to the magnetic working material. The magnetic heat pump device according to claim 2 or 3, wherein the magnetic working body is moved from a high temperature end side to a low temperature end side.
  6.  前記磁場変更装置が前記磁気作業物質に印加する磁場の大きさを増大させている時間をT1とした場合、
     前記熱媒体移動装置は、前記磁場変更装置が前記磁気作業物質に印加される磁場の大きさを増大させ始める0より大きく、0.15×T1以下の時間前に、前記熱媒体を前記磁気作業体の低温端側から高温端側に移動させると共に、
     前記磁場変更装置が前記磁気作業物質に印加する磁場の大きさを減少させている時間をT2とした場合、
     前記熱媒体移動装置は、前記磁場変更装置が前記磁気作業物質に印加される磁場の大きさを減少させてから0.25×T2以上、0.33×T2以下の時間後に、前記熱媒体を前記磁気作業体の高温端側から低温端側に移動させることを特徴とする請求項3に記載の磁気ヒートポンプ装置。
    When the time during which the magnetic field changing device increases the magnitude of the magnetic field applied to the magnetic working material is T1,
    The heat transfer device moves the heat transfer medium to the magnetic work before a time greater than 0 and less than 0.15 × T1 before the magnetic field changing device starts to increase the magnitude of the magnetic field applied to the magnetic work material. While moving from the cold end of the body to the hot end,
    When the time during which the magnetic field changing device reduces the magnitude of the magnetic field applied to the magnetic working material is T2,
    The heat transfer device moves the heat transfer medium after a time of 0.25 × T2 or more and 0.33 × T2 or less after the magnetic field changing device reduces the magnitude of the magnetic field applied to the magnetic working material. The magnetic heat pump device according to claim 3, wherein the magnetic working body is moved from a high temperature end side to a low temperature end side.
PCT/JP2017/037910 2016-11-14 2017-10-20 Magnetic heat pump device WO2018088167A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112017005721.3T DE112017005721T5 (en) 2016-11-14 2017-10-20 Magnetic heat pump device
CN201780069512.5A CN109937335A (en) 2016-11-14 2017-10-20 Magnetic heat pump assembly
US16/349,544 US20190285319A1 (en) 2016-11-14 2017-10-20 Magnetic Heat Pump Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016221642A JP2018080854A (en) 2016-11-14 2016-11-14 Magnetic heat pump device
JP2016-221642 2016-11-14

Publications (1)

Publication Number Publication Date
WO2018088167A1 true WO2018088167A1 (en) 2018-05-17

Family

ID=62109725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037910 WO2018088167A1 (en) 2016-11-14 2017-10-20 Magnetic heat pump device

Country Status (5)

Country Link
US (1) US20190285319A1 (en)
JP (1) JP2018080854A (en)
CN (1) CN109937335A (en)
DE (1) DE112017005721T5 (en)
WO (1) WO2018088167A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7108183B2 (en) * 2018-09-27 2022-07-28 ダイキン工業株式会社 magnetic refrigeration system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003016794A1 (en) * 2001-08-17 2003-02-27 Abb Ab A fluid handling system
JP2012237545A (en) * 2011-04-26 2012-12-06 Denso Corp Magnetic heat pump apparatus
JP2012255641A (en) * 2011-01-27 2012-12-27 Denso Corp Magnetic refrigerating system and air conditioning device for automobile
US20150007582A1 (en) * 2013-07-04 2015-01-08 Samsung Electronics Co., Ltd. Magnetic cooling apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4917385B2 (en) 2006-08-24 2012-04-18 中部電力株式会社 Magnetic refrigeration equipment
JP5338889B2 (en) * 2011-04-28 2013-11-13 株式会社デンソー Magnetic heat pump system and air conditioner using the system
JP6350138B2 (en) * 2014-09-03 2018-07-04 株式会社デンソー Thermal equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003016794A1 (en) * 2001-08-17 2003-02-27 Abb Ab A fluid handling system
JP2012255641A (en) * 2011-01-27 2012-12-27 Denso Corp Magnetic refrigerating system and air conditioning device for automobile
JP2012237545A (en) * 2011-04-26 2012-12-06 Denso Corp Magnetic heat pump apparatus
US20150007582A1 (en) * 2013-07-04 2015-01-08 Samsung Electronics Co., Ltd. Magnetic cooling apparatus

Also Published As

Publication number Publication date
CN109937335A (en) 2019-06-25
JP2018080854A (en) 2018-05-24
US20190285319A1 (en) 2019-09-19
DE112017005721T5 (en) 2019-08-08

Similar Documents

Publication Publication Date Title
US9784482B2 (en) Magnetic cooling apparatus and method of controlling the same
WO2018135386A1 (en) Magnetic heat pump apparatus
JP5884806B2 (en) Magneto-caloric element and thermomagnetic cycle apparatus having the same
JP5278486B2 (en) Thermomagnetic engine device and reversible thermomagnetic cycle device
CA2941237C (en) Magnetic regenerator unit and magnetic cooling system with the same
US10443905B2 (en) Magnetocaloric refrigeration using fully solid state working medium
CN107726664B (en) Magnetic Refrigerator
US10598411B2 (en) Magnetic refrigerating device
JP2017526890A (en) Magnetic refrigeration system with unequal blow
US20100212327A1 (en) Magnetic assembly system and method
JP2005090921A (en) Temperature controlling device using magnetic body
JP6384255B2 (en) Magneto-caloric element and thermomagnetism cycle device
WO2018088167A1 (en) Magnetic heat pump device
WO2018088168A1 (en) Magnetic heat pump device
JP6344103B2 (en) Thermomagnetic cycle equipment
US9322579B2 (en) Thermo-magnetic cycle apparatus
JP6683138B2 (en) Thermomagnetic cycle device
JP2012167881A (en) Heat exchanger of magnetic temperature regulator
JP7030658B2 (en) Magnetic refrigerator
US10995973B2 (en) Cooling device and a method for cooling
JP6601300B2 (en) Thermomagnetic cycle equipment
JP2023141836A (en) Refrigerating device by solid refrigerant
JP2019086170A (en) Thermomagnetic cycle device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17870351

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17870351

Country of ref document: EP

Kind code of ref document: A1