WO2018087961A1 - Illuminating device and image pickup device - Google Patents

Illuminating device and image pickup device Download PDF

Info

Publication number
WO2018087961A1
WO2018087961A1 PCT/JP2017/026607 JP2017026607W WO2018087961A1 WO 2018087961 A1 WO2018087961 A1 WO 2018087961A1 JP 2017026607 W JP2017026607 W JP 2017026607W WO 2018087961 A1 WO2018087961 A1 WO 2018087961A1
Authority
WO
WIPO (PCT)
Prior art keywords
infrared light
subject
emitted
unit
imaging
Prior art date
Application number
PCT/JP2017/026607
Other languages
French (fr)
Japanese (ja)
Inventor
祥 中川
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Publication of WO2018087961A1 publication Critical patent/WO2018087961A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • G03B15/02Illuminating scene
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • G03B15/02Illuminating scene
    • G03B15/03Combinations of cameras with lighting apparatus; Flash units
    • G03B15/05Combinations of cameras with electronic flash apparatus; Electronic flash units

Definitions

  • This technology relates to an illumination device and an imaging device. Specifically, the present invention relates to an illumination device that irradiates infrared light and an imaging device having the illumination device.
  • the dichroic mirror has first and second surfaces.
  • the first surface transmits infrared light and red light and totally reflects green light and blue light.
  • the second surface totally reflects infrared light and red light transmitted through the first surface.
  • the dichroic mirror reflects light through different optical paths according to the wavelength of light.
  • light having different wavelengths can be collected on the same optical axis.
  • Visible light and infrared light collected on the same optical axis by the dichroic mirror are diffused by a diffusion plate disposed at a desired position on the optical axis.
  • the above-described conventional technique has a problem in that the configuration of the apparatus becomes complicated because the dichroic mirror and the diffusion plate are used to diffuse infrared light.
  • the present technology has been created in view of such a situation, and an object of the present technology is to irradiate infrared light in a desired direction with a simple configuration in an illumination device that emits visible light and infrared light.
  • the present technology has been made to solve the above-described problems.
  • the first aspect of the present technology is a light source unit that emits visible light and infrared light, and transmits the emitted visible light and transmits the visible light.
  • An infrared light reflecting unit that reflects the emitted infrared light in a specific direction and irradiates the subject, and makes infrared light reflected by the subject out of the irradiated infrared light incident on the imaging unit; It is the illuminating device which comprises. This brings about the effect that infrared light is reflected in a specific direction and irradiated onto the subject.
  • the infrared light reflecting section may reflect the emitted infrared light with the direction of the subject as the specific direction. As a result, infrared light is reflected in the direction of the subject.
  • the infrared light reflection unit may reflect the emitted infrared light with an angle to the subject as a direction of the subject. This brings about the effect that the infrared light is reflected in the direction of the angle to the subject.
  • the infrared light reflecting section may reflect the emitted infrared light with an angle corresponding to a vertical distance and a horizontal distance to the subject as an angle to the subject. .
  • the infrared light is reflected in the direction of the angle according to the vertical distance and the horizontal distance.
  • the infrared light reflection unit reflects the emitted infrared light with an angle at which a tangent is substantially equal to a ratio of the vertical distance and the horizontal distance to the subject. May be. This brings about an effect that infrared light is reflected in the direction of an angle at which the tangent is substantially equal to the ratio of the vertical distance and the horizontal distance.
  • the infrared light reflecting portion may have a cone shape, and the infrared light may be reflected on the side surface of the cone. This brings about the effect
  • the infrared light reflecting section may have a bottom surface corresponding to the shape of the room in which the lighting device is disposed. This brings about the effect
  • the infrared light reflecting portion may have the bottom surface extended in accordance with a distance from the wall in the room.
  • the infrared light reflecting portion may have a conical shape. This brings about the effect that the infrared light is reflected by the conical infrared light reflecting portion.
  • the infrared light reflecting portion has an opening at the top and bottom of the cone, and the infrared light reflected by the subject is transmitted from the plurality of openings to the above-described opening. You may make it inject into an imaging part. Thereby, the effect
  • the infrared light reflecting portion may be divided into a plurality of cone shapes having different sizes. Therefore, the effect
  • the second aspect of the present technology provides a light source unit that emits visible light and infrared light, a subject that transmits the emitted visible light and reflects the emitted infrared light in a specific direction. And an imaging unit that performs imaging based on infrared light reflected by the subject out of infrared light irradiated on the subject. This brings about the effect that infrared light is reflected in a specific direction and irradiated onto the subject.
  • an illumination device that emits visible light and infrared light can have an excellent effect of irradiating infrared light in a desired direction with a simple configuration.
  • the effects described here are not necessarily limited, and may be any of the effects described in the present disclosure.
  • FIG. 1 is a diagram illustrating a configuration example of the imaging device 100 according to the first embodiment of the present technology.
  • the imaging apparatus 100 includes a light source unit 110, an infrared light reflection unit 120, and an imaging unit 130.
  • the light source unit 110 emits visible light and infrared light. Of these, visible light is used for indoor lighting. On the other hand, infrared light is used for indoor shooting. In this manner, by using infrared light in indoor shooting, it is possible to perform shooting with light having a luminance different from that of visible light. Thereby, the light of the optimal brightness
  • the light source unit 110 has an opening at the center, and the imaging unit 130 is disposed in the opening.
  • the infrared light reflection unit 120 reflects infrared light emitted from the light source unit 110 in a specific direction and irradiates the subject.
  • the direction of the subject corresponds to the specific direction.
  • the infrared light reflection unit 120 can transmit visible light emitted from the light source unit 110.
  • the infrared light emitted from the light source unit 110 is diffused widely in the room, and the visible light emitted from the light source unit 110 is irradiated to a preset region, for example, a region immediately below the imaging device 100.
  • the infrared light reflecting portion 120 in the figure has a conical shape and reflects infrared light on the side surface as will be described later.
  • the infrared light reflection part 120 of the same figure has an opening part in a top part and a bottom face. Details of the configuration of the infrared light reflection unit 120 will be described later.
  • the light source part 110 and the infrared light reflection part 120 comprise an illuminating device.
  • the shape of the infrared light reflection part 120 is not limited to this example.
  • a pituitary shape such as a quadrangular pyramid or an octagonal pyramid can be used.
  • a quadrangular pyramid is employed as the shape of the infrared light reflection unit 120
  • the shape of the bottom surface can be changed according to the shape of the room in which the imaging device 100 is disposed.
  • the shape of the room is a square
  • a vertical body having a square bottom surface can be formed, and when the room shape is a rectangular shape, a vertical body having a rectangular bottom surface can be obtained.
  • the imaging unit 130 performs imaging based on infrared light reflected by the subject among infrared light irradiated on the subject. Thereby, the intrusion etc. of the suspicious person into the room can be monitored. In addition, infrared light is incident on the imaging unit 130 of the same figure from the top and bottom openings of the infrared light reflection unit 120.
  • FIG. 2 is a cross-sectional view illustrating a configuration example of the imaging apparatus 100 according to the first embodiment of the present technology.
  • the light source unit 110 shown in the figure includes a substrate 111, a visible light source 112 and an infrared light source 113, and a plurality of visible light sources 112 and infrared light sources 113 are arranged on one surface of the substrate 111. Visible light and infrared light emitted from the visible light source 112 and the infrared light source 113 are emitted in a direction perpendicular to the surface of the substrate 111 on which the visible light source 112 and the like are disposed. Assuming that the imaging apparatus 100 is disposed on the ceiling of the room, visible light and infrared light emitted from the light source unit 110 are mainly irradiated in a direction toward the floor.
  • the imaging apparatus 100 in FIG. 1 has the infrared light reflection unit 120 disposed below the light source unit 110 to reflect and scatter the infrared light emitted from the light source unit 110.
  • visible light is used for illumination, and it is necessary to irradiate a target region, for example, a relatively narrow region immediately below the imaging device 100. Therefore, the infrared light reflection unit 120 is made of a material that reflects infrared light and transmits visible light. Thereby, the emitted visible light is irradiated to the region immediately below the imaging device 100 without being blocked by the infrared light reflection unit 120, and the region can be illuminated brightly.
  • the optical path 123 in the figure represents the optical path of visible light emitted from the visible light source 112. Visible light emitted from the visible light source 112 passes through the infrared light reflection unit 120 and is irradiated to a region immediately below the imaging device 100. Also, the optical path 122 in the figure represents the optical path of the infrared light emitted from the infrared light source 113. The emitted infrared light is reflected by the infrared light reflection unit 120 and scattered in the direction of the wall of the room. Thereafter, the infrared light is further scattered by the wall and irradiated to the entire room.
  • the infrared light reflection unit 120 By arranging the infrared light reflection unit 120, it is possible to make visible light and infrared light have optical paths in different directions.
  • the conical infrared light reflection unit 120 can irradiate infrared light in a desired direction, and the configuration of the imaging device 100 can be simplified.
  • the reflectance can be changed according to the shape of the room in which the imaging device 100 is arranged. For example, when the imaging device 100 is installed on the ceiling and the distance from the floor to the ceiling is relatively high, the reflectance can be lowered.
  • the imaging unit 130 performs imaging based on infrared light incident from the openings 121 and 124 of the infrared light reflection unit 120.
  • the imaging unit 130 in FIG. With this lens 131, infrared light incident from the entire room can be guided to an image sensor (not shown).
  • This image sensor is disposed in a main body portion of the image pickup unit 130 (a portion represented by a rectangle in the image pickup unit 130 in the figure).
  • the two-dot chain line in the figure represents the imaging range of the imaging unit 130.
  • FIG. 3 is a diagram illustrating an arrangement example of the imaging device 100 according to the first embodiment of the present technology.
  • the figure shows an example in which the imaging apparatus 100 is arranged on the ceiling of the room 300.
  • the imaging apparatus 100 in the figure represents an example including a protection unit 140.
  • the protection unit 140 protects the light source unit 110 and the like of the imaging device 100.
  • the presence of the imaging unit 130 can be concealed by configuring the protection unit 140 with a translucent member.
  • the entrance 301 is disposed in the room 300, and the intruder 401 enters the room through the entrance 301. Therefore, the imaging apparatus 100 performs monitoring by irradiating the entrance 301 with infrared light. At this time, by reflecting the infrared light emitted from the light source unit 110 in the direction of the center of the intruder 401, the entire intruder 401 can be irradiated with infrared light.
  • a one-dot chain line in the figure represents a center line of the imaging apparatus 100.
  • W, H1, and H2 in the figure represent the horizontal distance from the imaging apparatus 100 to the entrance, the height from the floor to the ceiling, and the height from the center of the intruder 401, respectively.
  • L represents a vertical distance from the imaging apparatus 100. This L is obtained by subtracting H2 from H1.
  • FIG. 4 is a diagram illustrating an example of the reflection direction of infrared light according to the first embodiment of the present technology.
  • the direction of infrared light reflection in the infrared light reflection unit 120 is expressed as an angle to the subject.
  • the angle to the subject can be set according to the vertical distance and the horizontal distance.
  • W ′ and L ′ in the figure represent the horizontal distance and the vertical distance, respectively, with the side surface of the infrared light reflection unit 120 as a reference.
  • W ′ and L ′ are equivalent to W and L described in FIG. 3 except for the distance from the center of the imaging apparatus 100 and the ceiling of the room 300 to the side surface of the infrared light reflection unit 120.
  • the relationship between the angle ⁇ to the subject (intruder 401) and W ′ and L ′ can be expressed by the following equation.
  • the angle ⁇ to the subject can be an angle at which the tangent is approximately equal to the ratio of the vertical distance and the horizontal distance.
  • the horizontal distance W from the imaging device 100 to the entrance is 4340 mm and the height H1 from the floor to the ceiling is 2350 mm, and the height of the intruder 401 is assumed to be 1700 mm, the vertical distance from the imaging device 100 L is 1500 mm.
  • the angle ⁇ to the subject can be calculated by the following equation.
  • the infrared light reflection unit 120 by irradiating the subject with infrared light by the infrared light reflection unit 120, it is possible to secure a light amount necessary for imaging. Thereby, the light of the optimal brightness
  • Second Embodiment> In the first embodiment described above, a conical infrared light reflecting section is used. On the other hand, the shape of the bottom surface may be changed according to the shape of the room.
  • the second embodiment of the present technology is different from the first embodiment in that a cone-shaped infrared light reflection unit whose bottom shape is changed is used.
  • FIG. 5 is a diagram illustrating a configuration example of the infrared light reflection unit 150 according to the second embodiment of the present technology.
  • a represents a top view of the infrared light reflecting section 150 and represents the relationship between the infrared light reflecting section 150 and the room 300.
  • b in the figure is a schematic diagram showing the configuration of the infrared light reflection unit 150.
  • the infrared light reflection unit 150 in the figure has a bottom surface corresponding to the shape of the room 300.
  • the infrared light reflection unit 150 in the figure is configured by extending the bottom surface of the region near the wall of the room 300 in the direction of the wall. By extending the bottom surface, the curvature of the side surface of the region increases. For this reason, the infrared light reflected by the side surface of this region is diffused over a wide range.
  • the curvature of the side surface becomes small, and the reflected infrared light is applied to a relatively narrow region.
  • the optical path 122 of the infrared light reflected by the infrared light reflecting section 150 is dispersed in the direction of the region where the bottom surface is not extended. Therefore, more infrared light can be distributed to the corner region than the region near the wall of the room 300, and the amount of infrared light near the corner and wall of the room 300 can be made uniform. Thereby, monitoring of a suspicious person etc. can be performed easily.
  • the configuration of the infrared light reflection unit 150 is not limited to this example.
  • the shape of the opening 151 of the infrared light reflection unit 150 can be the same shape as the bottom surface.
  • the shape of the bottom surface of the infrared light reflecting portion 150 can be an octagonal shape.
  • the infrared light reflection unit 150 can be arranged in a direction in which the octagonal side portion of the bottom surface of the infrared light reflection unit 150 faces the corner of the room 300.
  • FIG. 6 is a diagram illustrating another configuration example of the infrared light reflection unit 150 according to the second embodiment of the present technology.
  • the floor shape of the room 300 is a rectangle.
  • the bottom surface of the figure is a large extension of the region near the wall in the short side direction compared to the region near the wall in the long side direction of the room 300.
  • the curvature of the side surface of the region near the wall in the short side direction can be further increased, and the infrared light applied to the wall in the short side direction can be dispersed in other regions.
  • the amount of light can be made uniform.
  • imaging apparatus 100 Other configurations of the imaging apparatus 100 are the same as those of the imaging apparatus 100 according to the first embodiment of the present technology, and thus the description thereof is omitted.
  • the amount of infrared light near the corners and walls of the room 300 is changed by changing the shape of the infrared light reflecting portion according to the shape of the room. It is possible to prevent the light quantity from being insufficient during imaging.
  • FIG. 7 is a cross-sectional view illustrating a configuration example of the imaging apparatus 100 according to the third embodiment of the present technology.
  • the imaging device 100 in FIG. 2 includes infrared light reflection units 170 and 180 instead of the infrared light reflection unit 120, and an imaging unit 190 described in FIG. And different.
  • the infrared light reflectors 170 and 180 transmit visible light and reflect infrared light. These all have openings at the top and bottom. Further, the infrared light reflection unit 170 is larger than the infrared light reflection unit 180. And these are arrange
  • FIG. As described above, the infrared light reflection units 170 and 180 can be regarded as the infrared light reflection unit 120 described with reference to FIG.
  • the image pickup apparatus 100 can be reduced in size by being arranged in an overlapping manner.
  • the structure of an infrared light reflection part is not limited to this example. For example, it is possible to adopt a configuration in which three infrared light reflecting portions are arranged.
  • the imaging unit 190 performs imaging based on infrared light incident from the openings of the infrared light reflection units 170 and 180. Compared with the imaging unit 130 described in FIG. 2, the distance between the main body portion and the lens 191 can be shortened. For this reason, the imaging part 190 can be reduced in size.
  • imaging apparatus 100 Other configurations of the imaging apparatus 100 are the same as those of the imaging apparatus 100 according to the first embodiment of the present technology, and thus the description thereof is omitted.
  • the imaging apparatus 100 can be downsized by arranging a plurality of infrared light reflection units having different sizes and reflecting infrared light. it can.
  • the infrared light reflection unit 120 having an opening is used.
  • the modification of the embodiment of the present technology is different from the above-described embodiment in that a simplified infrared light reflection unit is used by omitting the opening.
  • FIG. 8 is a diagram illustrating a configuration example of the illumination device 200 according to a modification of the embodiment of the present technology.
  • the illumination device 200 includes a light source unit 210 and an infrared light reflection unit 220.
  • the light source unit 210 emits visible light and infrared light in the same manner as the light source unit 110 described in FIG.
  • the light source unit 210 is different from the light source unit 110 in that the opening is omitted.
  • the infrared light reflection unit 220 transmits visible light and reflects infrared light.
  • the infrared light reflection unit 220 is configured in a pit shape similar to the infrared light reflection unit 120 described in FIG. On the other hand, unlike the infrared light reflection part 120, the infrared light reflection part 220 can omit an opening.
  • an imaging apparatus can be configured by arranging the imaging unit 130.
  • the imaging unit 130 can be arranged at an arbitrary position away from the lighting device 200, for example, near the entrance of the room.
  • the configuration of the infrared light reflection unit 220 can be simplified by omitting the opening of the infrared light reflection unit 220.
  • this technique can also take the following structures.
  • a light source unit that emits visible light and infrared light; Transmitting the emitted visible light and reflecting the emitted infrared light in a specific direction to irradiate the subject, and infrared light reflected by the subject of the emitted infrared light is reflected.
  • An illuminating device including an infrared light reflecting unit that is incident on an imaging unit.
  • the illumination device according to (2), wherein the infrared light reflecting unit reflects the emitted infrared light with an angle to the subject as a direction of the subject.
  • the infrared light reflection unit reflects the emitted infrared light with an angle corresponding to a vertical distance and a horizontal distance to the subject as an angle to the subject.
  • the infrared light reflection unit reflects the emitted infrared light with an angle at which a tangent is approximately equal to a ratio of the vertical distance and the horizontal distance as an angle to the subject. Lighting equipment.
  • the infrared light reflection section includes the bottom surface extended in accordance with a distance from a wall in the room.
  • the infrared light reflecting portion has an opening at the top and bottom of the cone, and makes the infrared light reflected by the subject incident on the imaging unit from the plurality of openings.
  • a light source unit that emits visible light and infrared light
  • An infrared light reflector that transmits the emitted visible light and reflects the emitted infrared light in a specific direction to irradiate the subject
  • An imaging apparatus comprising: an imaging unit that performs imaging based on infrared light reflected by the subject out of infrared light irradiated on the subject.
  • Imaging device 110 210 Light source part 111
  • Substrate 112 Visible light source 113

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Stroboscope Apparatuses (AREA)
  • Studio Devices (AREA)

Abstract

Disclosed is an illuminating device that outputs visible light and infrared light, said illuminating device outputting the infrared light in the desired direction with a simple configuration. This illuminating device is provided with a light source section and an infrared light reflecting section. The light source section provided in the illuminating device outputs visible light and infrared light. The infrared light reflecting section provided in the illuminating device passes the visible light thus outputted, reflects, in the specified direction, the infrared light thus outputted, and irradiates an object with the reflected infrared light, then, inputs, to an image pickup section, the infrared light reflected by the object, said infrared light being a part of the infrared light, with which the object has been irradiated.

Description

照明装置および撮像装置Illumination device and imaging device
 本技術は、照明装置および撮像装置に関する。詳しくは、赤外光を照射する照明装置およびこの照明装置を有する撮像装置に関する。 This technology relates to an illumination device and an imaging device. Specifically, the present invention relates to an illumination device that irradiates infrared light and an imaging device having the illumination device.
 従来、可視光および赤外光を出射する照明装置が使用されている。このような照明装置において、可視光は対象物の照明等に使用される。一方、赤外光は照明以外の用途、例えば、対象物の検査等に使用される。このような可視光および赤外光を出射する照明装置として、例えば、赤色光、緑色光、青色光および赤外光の4つの光源からの光を同一の光軸に集光した後、拡散板により赤外光を拡散照射する照明装置が提案されている(例えば、特許文献1参照。)。この従来技術では、可視光および赤外光を同一の光軸に集光するために、ダイクロイックミラーを使用している。 Conventionally, lighting devices that emit visible light and infrared light have been used. In such an illuminating device, visible light is used for illumination of an object. On the other hand, infrared light is used for purposes other than illumination, such as inspection of an object. As such an illuminating device that emits visible light and infrared light, for example, after condensing light from four light sources of red light, green light, blue light, and infrared light on the same optical axis, a diffusion plate An illumination device that diffuses and irradiates infrared light has been proposed (for example, see Patent Document 1). In this prior art, a dichroic mirror is used to collect visible light and infrared light on the same optical axis.
特開平10-322519号公報Japanese Patent Laid-Open No. 10-322519
 上述の従来技術では、ダイクロイックミラーにより可視光および赤外光を同一の光軸に集光している。このダイクロイックミラーは、第1および第2の面を有する。第1面は、赤外光および赤色光を透過させるとともに緑色光および青色光を全反射する。また、第2面は、第1面を透過した赤外光および赤色光を全反射する。このように、ダイクロイックミラーは、光の波長に応じて異なる光路により光を反射する。このダイクロイックミラーの厚みおよび光の入射角度を調整することにより、波長の異なる光を同一の光軸に集光することができる。このダイクロイックミラーにより同一の光軸に集光された可視光および赤外光は、その光軸上の所望の位置に配置された拡散板により拡散される。このように、上述の従来技術では、ダイクロイックミラーおよび拡散板を使用して赤外光の拡散を行うため、装置の構成が複雑になるという問題がある。 In the above-described prior art, visible light and infrared light are collected on the same optical axis by a dichroic mirror. The dichroic mirror has first and second surfaces. The first surface transmits infrared light and red light and totally reflects green light and blue light. The second surface totally reflects infrared light and red light transmitted through the first surface. As described above, the dichroic mirror reflects light through different optical paths according to the wavelength of light. By adjusting the thickness of the dichroic mirror and the incident angle of light, light having different wavelengths can be collected on the same optical axis. Visible light and infrared light collected on the same optical axis by the dichroic mirror are diffused by a diffusion plate disposed at a desired position on the optical axis. As described above, the above-described conventional technique has a problem in that the configuration of the apparatus becomes complicated because the dichroic mirror and the diffusion plate are used to diffuse infrared light.
 本技術はこのような状況に鑑みて生み出されたものであり、可視光および赤外光を出射する照明装置において、簡便な構成により赤外光を所望の方向に照射することを目的とする。 The present technology has been created in view of such a situation, and an object of the present technology is to irradiate infrared light in a desired direction with a simple configuration in an illumination device that emits visible light and infrared light.
 本技術は、上述の問題点を解消するためになされたものであり、その第1の側面は、可視光および赤外光を出射する光源部と、上記出射された可視光を透過するとともに上記出射された赤外光を特定の方向に反射して被写体に照射させ、当該照射された赤外光のうちの上記被写体により反射される赤外光を撮像部に入射させる赤外光反射部とを具備する照明装置である。これにより、赤外光が特定の方向に反射されて被写体に照射されるという作用をもたらす。 The present technology has been made to solve the above-described problems. The first aspect of the present technology is a light source unit that emits visible light and infrared light, and transmits the emitted visible light and transmits the visible light. An infrared light reflecting unit that reflects the emitted infrared light in a specific direction and irradiates the subject, and makes infrared light reflected by the subject out of the irradiated infrared light incident on the imaging unit; It is the illuminating device which comprises. This brings about the effect that infrared light is reflected in a specific direction and irradiated onto the subject.
 また、この第1の側面において、上記赤外光反射部は、上記被写体の方向を上記特定の方向として上記出射された赤外光を反射してもよい。これにより、赤外光が被写体の方向に反射されるという作用をもたらす。 Also, in the first aspect, the infrared light reflecting section may reflect the emitted infrared light with the direction of the subject as the specific direction. As a result, infrared light is reflected in the direction of the subject.
 また、この第1の側面において、上記赤外光反射部は、上記被写体への角度を上記被写体の方向として上記出射された赤外光を反射してもよい。これにより、赤外光が被写体への角度の方向に反射されるという作用をもたらす。 Further, in the first aspect, the infrared light reflection unit may reflect the emitted infrared light with an angle to the subject as a direction of the subject. This brings about the effect that the infrared light is reflected in the direction of the angle to the subject.
 また、この第1の側面において、上記赤外光反射部は、上記被写体までの垂直距離および水平距離に応じた角度を上記被写体への角度として上記出射された赤外光を反射してもよい。これにより、垂直距離および水平距離に応じた角度の方向に赤外光が反射されるという作用をもたらす。 In the first aspect, the infrared light reflecting section may reflect the emitted infrared light with an angle corresponding to a vertical distance and a horizontal distance to the subject as an angle to the subject. . As a result, the infrared light is reflected in the direction of the angle according to the vertical distance and the horizontal distance.
 また、この第1の側面において、上記赤外光反射部は、正接が上記垂直距離および上記水平距離の比率に略等しくなる角度を上記被写体への角度として上記出射された赤外光を反射してもよい。これにより、正接が垂直距離および水平距離の比率に略等しくなる角度の方向に赤外光が反射されるという作用をもたらす。 In the first aspect, the infrared light reflection unit reflects the emitted infrared light with an angle at which a tangent is substantially equal to a ratio of the vertical distance and the horizontal distance to the subject. May be. This brings about an effect that infrared light is reflected in the direction of an angle at which the tangent is substantially equal to the ratio of the vertical distance and the horizontal distance.
 また、この第1の側面において、上記赤外光反射部は、錐体形状であり、当該錐体の側面において上記赤外光を反射してもよい。これにより、赤外光が錐体形状の赤外光反射部の側面において反射されるという作用をもたらす。 Further, in the first side surface, the infrared light reflecting portion may have a cone shape, and the infrared light may be reflected on the side surface of the cone. This brings about the effect | action that infrared light is reflected in the side surface of a cone-shaped infrared light reflection part.
 また、この第1の側面において、上記赤外光反射部は、自身の照明装置が配置された部屋の形状に応じた底面を有してもよい。これにより、部屋の形状に応じた底面を有する垂体形状の赤外光反射部により赤外光が反射されるという作用をもたらす。 Further, in the first side surface, the infrared light reflecting section may have a bottom surface corresponding to the shape of the room in which the lighting device is disposed. This brings about the effect | action that infrared light is reflected by the infrared light reflection part of the perpendicular body shape which has a bottom face according to the shape of the room.
 また、この第1の側面において、上記赤外光反射部は、上記部屋における壁との距離に応じて延展した上記底面を有してもよい。これにより、壁との距離に応じて延展された底面を有する垂体形状の赤外光反射部により、赤外光が反射されるという作用をもたらす。 Further, in the first side surface, the infrared light reflecting portion may have the bottom surface extended in accordance with a distance from the wall in the room. Thereby, the effect that infrared light is reflected by the infrared light reflection part of the perpendicular body shape which has the bottom face extended according to the distance with a wall is brought about.
 また、この第1の側面において、上記赤外光反射部は、円錐形状であってもよい。これにより、円錐形状の赤外光反射部により赤外光が反射されるという作用をもたらす。 Further, in the first aspect, the infrared light reflecting portion may have a conical shape. This brings about the effect that the infrared light is reflected by the conical infrared light reflecting portion.
 また、この第1の側面において、上記赤外光反射部は、上記錐体の頂部および底面に開口部を有する形状であり、上記被写体により反射される赤外光を上記複数の開口部から上記撮像部に入射させてもよい。これにより、赤外光反射部の開口部を介して赤外光が撮像部に入射するという作用をもたらす。 In the first aspect, the infrared light reflecting portion has an opening at the top and bottom of the cone, and the infrared light reflected by the subject is transmitted from the plurality of openings to the above-described opening. You may make it inject into an imaging part. Thereby, the effect | action that infrared light injects into an imaging part through the opening part of an infrared-light reflection part is brought about.
 また、この第1の側面において、上記赤外光反射部は、大きさが異なる複数の錐体形状に分割されてもよい。これにより、錐体形状を有する複数の赤外光反射部により赤外光が反射されるという作用をもたらす。 Further, in the first aspect, the infrared light reflecting portion may be divided into a plurality of cone shapes having different sizes. Thereby, the effect | action that infrared light is reflected by the some infrared light reflection part which has a cone shape is brought about.
 また、本技術の第2の側面は、可視光および赤外光を出射する光源部と、上記出射された可視光を透過するとともに上記出射された赤外光を特定の方向に反射して被写体に照射させる赤外光反射部と、上記被写体に照射された赤外光のうちの上記被写体により反射される赤外光に基づいて撮像を行う撮像部とを具備する撮像装置である。これにより、赤外光が特定の方向に反射されて被写体に照射されるという作用をもたらす。 Further, the second aspect of the present technology provides a light source unit that emits visible light and infrared light, a subject that transmits the emitted visible light and reflects the emitted infrared light in a specific direction. And an imaging unit that performs imaging based on infrared light reflected by the subject out of infrared light irradiated on the subject. This brings about the effect that infrared light is reflected in a specific direction and irradiated onto the subject.
 本技術によれば、可視光および赤外光を出射する照明装置において、簡便な構成により赤外光を所望の方向に照射するという優れた効果を奏し得る。なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。 According to the present technology, an illumination device that emits visible light and infrared light can have an excellent effect of irradiating infrared light in a desired direction with a simple configuration. Note that the effects described here are not necessarily limited, and may be any of the effects described in the present disclosure.
本技術の第1の実施の形態における撮像装置100の構成例を示す図である。It is a figure showing an example of composition of imaging device 100 in a 1st embodiment of this art. 本技術の第1の実施の形態における撮像装置100の構成例を示す断面図である。It is sectional drawing which shows the structural example of the imaging device 100 in 1st Embodiment of this technique. 本技術の第1の実施の形態における撮像装置100の配置例を示す図である。It is a figure showing an example of arrangement of imaging device 100 in a 1st embodiment of this art. 本技術の第1の実施の形態における赤外光の反射方向の一例を示す図である。It is a figure showing an example of a reflective direction of infrared light in a 1st embodiment of this art. 本技術の第2の実施の形態における赤外光反射部150の構成例を示す図である。It is a figure showing an example of composition of infrared light reflective part 150 in a 2nd embodiment of this art. 本技術の第2の実施の形態における赤外光反射部150の他の構成例を示す図である。It is a figure showing other examples of composition of infrared light reflective part 150 in a 2nd embodiment of this art. 本技術の第3の実施の形態における撮像装置100の構成例を示す断面図である。It is a sectional view showing an example of composition of imaging device 100 in a 3rd embodiment of this art. 本技術の実施の形態の変形例における照明装置200の構成例を示す図である。It is a figure which shows the structural example of the illuminating device 200 in the modification of embodiment of this technique.
 以下、本技術を実施するための形態(以下、実施の形態と称する)について説明する。説明は以下の順序により行う。
 1.第1の実施の形態(開口部を有する円錐形状の赤外光反射部を使用する場合の例)
 2.第2の実施の形態(赤外光反射部の底面を部屋の形状に応じて変更する場合の例)
 3.第3の実施の形態(複数の赤外光反射部を有する場合の例)
 4.変形例
Hereinafter, modes for carrying out the present technology (hereinafter referred to as embodiments) will be described. The description will be made in the following order.
1. 1st Embodiment (example in the case of using the cone-shaped infrared light reflection part which has an opening part)
2. 2nd Embodiment (example in the case of changing the bottom face of an infrared light reflection part according to the shape of a room)
3. 3rd Embodiment (example in the case of having a plurality of infrared light reflecting portions)
4). Modified example
 <1.第1の実施の形態>
 [撮像装置の構成]
 図1は、本技術の第1の実施の形態における撮像装置100の構成例を示す図である。この撮像装置100は、光源部110と、赤外光反射部120と、撮像部130とを備える。
<1. First Embodiment>
[Configuration of imaging device]
FIG. 1 is a diagram illustrating a configuration example of the imaging device 100 according to the first embodiment of the present technology. The imaging apparatus 100 includes a light source unit 110, an infrared light reflection unit 120, and an imaging unit 130.
 光源部110は、可視光および赤外光を出射するものである。このうち可視光は、室内の照明に使用される。一方、赤外光は、室内の撮影のために使用される。このように、室内の撮影において赤外光を使用することにより、可視光とは異なる輝度の光により撮影を行うことができる。これにより、照明および撮影のそれぞれに最適な輝度の光を照射することができる。また、赤外光による撮影を行うことにより、侵入者等に対して室内の撮影を隠匿することができる。また、煙等による撮影の妨害を防ぐことも可能となる。可視光および赤外光の光源には、例えば、LED(Light Emitting Diode)を使用することができる。また、光源部110は中央部に開口部を有しており、この開口部に撮像部130が配置される。 The light source unit 110 emits visible light and infrared light. Of these, visible light is used for indoor lighting. On the other hand, infrared light is used for indoor shooting. In this manner, by using infrared light in indoor shooting, it is possible to perform shooting with light having a luminance different from that of visible light. Thereby, the light of the optimal brightness | luminance can be irradiated for each of illumination and imaging | photography. Moreover, indoor imaging can be concealed from intruders and the like by performing imaging using infrared light. It is also possible to prevent shooting interference due to smoke or the like. As a light source for visible light and infrared light, for example, an LED (Light Emitting Diode) can be used. The light source unit 110 has an opening at the center, and the imaging unit 130 is disposed in the opening.
 赤外光反射部120は、光源部110から出射された赤外光を特定の方向に反射して被写体に照射するものである。この特定の方向には、例えば、被写体の方向が該当する。また、この赤外光反射部120は、光源部110から出射された可視光を透過させることができる。これにより、光源部110により出射された赤外光を室内に広く拡散させるとともに、光源部110により出射された可視光を予め設定された領域、例えば、撮像装置100の直下の領域に照射させることができる。同図の赤外光反射部120は、円錐形状であり、後述するように側面において赤外光を反射する。このため、赤外光を均一に反射することができる。また、同図の赤外光反射部120は、頂部および底面に開口部を有する。赤外光反射部120の構成の詳細については後述する。なお、光源部110および赤外光反射部120は、照明装置を構成する。 The infrared light reflection unit 120 reflects infrared light emitted from the light source unit 110 in a specific direction and irradiates the subject. For example, the direction of the subject corresponds to the specific direction. In addition, the infrared light reflection unit 120 can transmit visible light emitted from the light source unit 110. Thereby, the infrared light emitted from the light source unit 110 is diffused widely in the room, and the visible light emitted from the light source unit 110 is irradiated to a preset region, for example, a region immediately below the imaging device 100. Can do. The infrared light reflecting portion 120 in the figure has a conical shape and reflects infrared light on the side surface as will be described later. For this reason, infrared light can be reflected uniformly. Moreover, the infrared light reflection part 120 of the same figure has an opening part in a top part and a bottom face. Details of the configuration of the infrared light reflection unit 120 will be described later. In addition, the light source part 110 and the infrared light reflection part 120 comprise an illuminating device.
 なお、赤外光反射部120の形状は、この例に限定されない。例えば、四角錘や八角錐等の垂体形状にすることができる。赤外光反射部120の形状として四角錘を採用する場合には、撮像装置100が配置される部屋の形状に応じて底面の形状を変更することができる。例えば、部屋の形状が正方形の場合には正方形の形状の底面を有する垂体にすることができ、部屋の形状が長方形の場合には長方形の形状の底面を有する垂体にすることができる。 In addition, the shape of the infrared light reflection part 120 is not limited to this example. For example, a pituitary shape such as a quadrangular pyramid or an octagonal pyramid can be used. When a quadrangular pyramid is employed as the shape of the infrared light reflection unit 120, the shape of the bottom surface can be changed according to the shape of the room in which the imaging device 100 is disposed. For example, when the shape of the room is a square, a vertical body having a square bottom surface can be formed, and when the room shape is a rectangular shape, a vertical body having a rectangular bottom surface can be obtained.
 撮像部130は、被写体に照射された赤外光のうち、被写体により反射される赤外光に基づいて撮像を行うものである。これにより、不審者の室内への侵入等を監視することができる。また、同図の撮像部130には、赤外光反射部120の頂部および底面の開口部から赤外光が入射する。 The imaging unit 130 performs imaging based on infrared light reflected by the subject among infrared light irradiated on the subject. Thereby, the intrusion etc. of the suspicious person into the room can be monitored. In addition, infrared light is incident on the imaging unit 130 of the same figure from the top and bottom openings of the infrared light reflection unit 120.
 [撮像装置の構成]
 図2は、本技術の第1の実施の形態における撮像装置100の構成例を示す断面図である。同図の光源部110は、基板111、可視光光源112および赤外光光源113を備え、基板111の片面に複数の可視光光源112および赤外光光源113が配置されて構成される。可視光光源112および赤外光光源113から出射された可視光および赤外光は、基板111の可視光光源112等が配置された面に垂直な方向に出射される。撮像装置100が部屋の天井に配置された場合を想定すると、光源部110から出射された可視光および赤外光は、主に床に向かう方向に照射される。
[Configuration of imaging device]
FIG. 2 is a cross-sectional view illustrating a configuration example of the imaging apparatus 100 according to the first embodiment of the present technology. The light source unit 110 shown in the figure includes a substrate 111, a visible light source 112 and an infrared light source 113, and a plurality of visible light sources 112 and infrared light sources 113 are arranged on one surface of the substrate 111. Visible light and infrared light emitted from the visible light source 112 and the infrared light source 113 are emitted in a direction perpendicular to the surface of the substrate 111 on which the visible light source 112 and the like are disposed. Assuming that the imaging apparatus 100 is disposed on the ceiling of the room, visible light and infrared light emitted from the light source unit 110 are mainly irradiated in a direction toward the floor.
 赤外光は室内の監視に使用するため、室内に広く拡散させる必要がある。例えば、部屋への侵入者の監視を行う場合には、部屋の入り口付近に照射させる必要がある。そこで、同図の撮像装置100は、赤外光反射部120を光源部110の下方に配置し、光源部110から出射された赤外光を反射して散乱させる。一方、可視光は、照明に使用するものであり、対象の領域、例えば、撮像装置100の直下の比較的狭い領域に照射する必要がある。そこで、赤外光を反射するとともに可視光を透過する素材により赤外光反射部120を構成する。これにより、出射された可視光が赤外光反射部120により遮られることなく撮像装置100の直下の領域に照射され、当該領域を明るく照らすことができる。 Since infrared light is used for indoor monitoring, it must be widely diffused indoors. For example, when monitoring an intruder into a room, it is necessary to irradiate near the entrance of the room. In view of this, the imaging apparatus 100 in FIG. 1 has the infrared light reflection unit 120 disposed below the light source unit 110 to reflect and scatter the infrared light emitted from the light source unit 110. On the other hand, visible light is used for illumination, and it is necessary to irradiate a target region, for example, a relatively narrow region immediately below the imaging device 100. Therefore, the infrared light reflection unit 120 is made of a material that reflects infrared light and transmits visible light. Thereby, the emitted visible light is irradiated to the region immediately below the imaging device 100 without being blocked by the infrared light reflection unit 120, and the region can be illuminated brightly.
 同図の光路123は、可視光光源112から出射された可視光の光路を表したものである。可視光光源112から出射された可視光は、赤外光反射部120を透過して撮像装置100の直下の領域に照射される。また、同図の光路122は、赤外光光源113から出射された赤外光の光路を表したものである。出射された赤外光は赤外光反射部120により反射され、部屋の壁の方向に散乱される。その後、赤外光は、壁によりさらに散乱され、部屋全体に照射される。このように、赤外光反射部120を配置することにより、可視光および赤外光をそれぞれ異なる方向の光路にすることができる。また、円錐形状の赤外光反射部120により、赤外光を所望の方向に照射することができ、撮像装置100の構成を簡略化することができる。 The optical path 123 in the figure represents the optical path of visible light emitted from the visible light source 112. Visible light emitted from the visible light source 112 passes through the infrared light reflection unit 120 and is irradiated to a region immediately below the imaging device 100. Also, the optical path 122 in the figure represents the optical path of the infrared light emitted from the infrared light source 113. The emitted infrared light is reflected by the infrared light reflection unit 120 and scattered in the direction of the wall of the room. Thereafter, the infrared light is further scattered by the wall and irradiated to the entire room. As described above, by arranging the infrared light reflection unit 120, it is possible to make visible light and infrared light have optical paths in different directions. In addition, the conical infrared light reflection unit 120 can irradiate infrared light in a desired direction, and the configuration of the imaging device 100 can be simplified.
 なお、赤外光を反射する際の反射率を、略100%にすることにより、多くの赤外光を壁の方向に照射させることができる。また、この反射率は、撮像装置100が配置される部屋の形状に応じて変更することができる。例えば、撮像装置100が天井に設置され、床から天井までの距離が比較的高い場合には、反射率を低くすることができる。 It should be noted that a large amount of infrared light can be irradiated in the direction of the wall by setting the reflectivity when reflecting infrared light to approximately 100%. In addition, the reflectance can be changed according to the shape of the room in which the imaging device 100 is arranged. For example, when the imaging device 100 is installed on the ceiling and the distance from the floor to the ceiling is relatively high, the reflectance can be lowered.
 撮像部130は、赤外光反射部120の開口部121および124から入射した赤外光に基づく撮像を行う。同図の撮像部130は、レンズ131を有する。このレンズ131により、部屋全体から入射する赤外光を撮像素子(不図示)に導くことができる。この撮像素子は、撮像部130の本体部分(同図の撮像部130のうち矩形により表された部分)に配置される。なお、同図の2点鎖線は、撮像部130の撮像範囲を表したものである。 The imaging unit 130 performs imaging based on infrared light incident from the openings 121 and 124 of the infrared light reflection unit 120. The imaging unit 130 in FIG. With this lens 131, infrared light incident from the entire room can be guided to an image sensor (not shown). This image sensor is disposed in a main body portion of the image pickup unit 130 (a portion represented by a rectangle in the image pickup unit 130 in the figure). The two-dot chain line in the figure represents the imaging range of the imaging unit 130.
 [撮像装置の配置]
 図3は、本技術の第1の実施の形態における撮像装置100の配置例を示す図である。同図は、撮像装置100が部屋300の天井に配置される例を表したものである。また、同図の撮像装置100は、保護部140を備える例を表したものである。この保護部140は、撮像装置100の光源部110等を保護するものである。また、保護部140を半透明な部材により構成することにより、撮像部130の存在を隠匿することができる。
[Arrangement of imaging device]
FIG. 3 is a diagram illustrating an arrangement example of the imaging device 100 according to the first embodiment of the present technology. The figure shows an example in which the imaging apparatus 100 is arranged on the ceiling of the room 300. In addition, the imaging apparatus 100 in the figure represents an example including a protection unit 140. The protection unit 140 protects the light source unit 110 and the like of the imaging device 100. Moreover, the presence of the imaging unit 130 can be concealed by configuring the protection unit 140 with a translucent member.
 部屋300には入口301が配置され、侵入者401はこの入口301から室内に侵入する。そこで、撮像装置100は、この入口301に赤外光を照射して監視を行う。この際、光源部110から出射された赤外光を侵入者401の体の中心部の方向に反射することにより、侵入者401の全体に赤外光を照射することができる。同図の1点鎖線は、撮像装置100の中心線を表す。同図のW、H1およびH2は、それぞれ撮像装置100と入口までの水平距離、床から天井までの高さおよび侵入者401の中心部までの高さを表す。また、Lは、撮像装置100からの垂直距離を表す。このLは、H1からH2を減算したものである。 The entrance 301 is disposed in the room 300, and the intruder 401 enters the room through the entrance 301. Therefore, the imaging apparatus 100 performs monitoring by irradiating the entrance 301 with infrared light. At this time, by reflecting the infrared light emitted from the light source unit 110 in the direction of the center of the intruder 401, the entire intruder 401 can be irradiated with infrared light. A one-dot chain line in the figure represents a center line of the imaging apparatus 100. W, H1, and H2 in the figure represent the horizontal distance from the imaging apparatus 100 to the entrance, the height from the floor to the ceiling, and the height from the center of the intruder 401, respectively. L represents a vertical distance from the imaging apparatus 100. This L is obtained by subtracting H2 from H1.
 [赤外光の反射方向]
 図4は、本技術の第1の実施の形態における赤外光の反射方向の一例を示す図である。同図は、赤外光反射部120における赤外光の反射の方向を被写体への角度として表したものである。この被写体への角度は、垂直距離および水平距離に応じた角度にすることができる。同図のW'およびL'は、赤外光反射部120の側面を基準とした水平距離および垂直距離をそれぞれ表したものである。このW'およびL'は、撮像装置100の中心および部屋300の天井から赤外光反射部120の側面までの距離を除いて、図3において説明したWおよびLと等価である。同図に表したように、被写体(侵入者401)への角度θとW'およびL'との関係は、次式により表すことができる。
[Infrared light reflection direction]
FIG. 4 is a diagram illustrating an example of the reflection direction of infrared light according to the first embodiment of the present technology. In the figure, the direction of infrared light reflection in the infrared light reflection unit 120 is expressed as an angle to the subject. The angle to the subject can be set according to the vertical distance and the horizontal distance. W ′ and L ′ in the figure represent the horizontal distance and the vertical distance, respectively, with the side surface of the infrared light reflection unit 120 as a reference. W ′ and L ′ are equivalent to W and L described in FIG. 3 except for the distance from the center of the imaging apparatus 100 and the ceiling of the room 300 to the side surface of the infrared light reflection unit 120. As shown in the figure, the relationship between the angle θ to the subject (intruder 401) and W ′ and L ′ can be expressed by the following equation.
  tanθ=W'/L'
すなわち、被写体への角度θは、正接が垂直距離および水平距離の比率に略等しくなる角度にすることができる。例えば、撮像装置100と入口までの水平距離Wが4340mm、床から天井までの高さH1が2350mmの場合において、侵入者401の身長を1700mmと想定した場合には、撮像装置100からの垂直距離Lは、1500mmとなる。この場合には、被写体への角度θは、次式により算出することができる。
tan θ = W ′ / L ′
That is, the angle θ to the subject can be an angle at which the tangent is approximately equal to the ratio of the vertical distance and the horizontal distance. For example, when the horizontal distance W from the imaging device 100 to the entrance is 4340 mm and the height H1 from the floor to the ceiling is 2350 mm, and the height of the intruder 401 is assumed to be 1700 mm, the vertical distance from the imaging device 100 L is 1500 mm. In this case, the angle θ to the subject can be calculated by the following equation.
  θ=tan-1(W'/L')=tan-1(4340/1500)
   =70.9°
すなわち、被写体への角度を70.9°にすることにより、監視対象の侵入者401に対して赤外光を照射することができる。
θ = tan −1 (W ′ / L ′) = tan −1 (4340/1500)
= 70.9 °
That is, by setting the angle to the subject to 70.9 °, the intruder 401 to be monitored can be irradiated with infrared light.
 このように、本技術の第1の実施の形態では、赤外光反射部120によって赤外光を被写体に照射させることにより、撮像に必要な光量を確保することができる。これにより、照明および撮影のそれぞれに最適な輝度の光を照射することができ、撮像装置100の構成を簡略化することができる。 As described above, in the first embodiment of the present technology, by irradiating the subject with infrared light by the infrared light reflection unit 120, it is possible to secure a light amount necessary for imaging. Thereby, the light of the optimal brightness | luminance can be irradiated for each of illumination and imaging | photography, and the structure of the imaging device 100 can be simplified.
 <2.第2の実施の形態>
 上述の第1の実施の形態では、円錐形状の赤外光反射部を使用していた。これに対し、部屋の形状に応じて底面の形状を変更してもよい。本技術の第2の実施の形態では、底面の形状を変更した円錐形状の赤外光反射部を使用する点において、第1の実施の形態と異なる。
<2. Second Embodiment>
In the first embodiment described above, a conical infrared light reflecting section is used. On the other hand, the shape of the bottom surface may be changed according to the shape of the room. The second embodiment of the present technology is different from the first embodiment in that a cone-shaped infrared light reflection unit whose bottom shape is changed is used.
 [赤外光反射部の構成]
 図5は、本技術の第2の実施の形態における赤外光反射部150の構成例を示す図である。同図におけるaは、赤外光反射部150の上面図を表したものであり、赤外光反射部150と部屋300との関係を表したものである。また、同図におけるbは、赤外光反射部150の構成を表す模式図である。
[Configuration of infrared light reflection section]
FIG. 5 is a diagram illustrating a configuration example of the infrared light reflection unit 150 according to the second embodiment of the present technology. In the drawing, a represents a top view of the infrared light reflecting section 150 and represents the relationship between the infrared light reflecting section 150 and the room 300. Moreover, b in the figure is a schematic diagram showing the configuration of the infrared light reflection unit 150.
 同図においては、部屋300の床の形状は正方形であることを想定する。同図の赤外光反射部150は、部屋300の形状に応じた底面を有する。具体的には、同図の赤外光反射部150は、部屋300の壁に近い領域の底面が壁の方向に延展されて構成されたものである。底面を延展することにより、当該領域の側面の曲率が大きくなる。このため、この領域の側面により反射された赤外光は、広い範囲に拡散される。一方、底面の延展を行わない領域では、側面の曲率が小さくなり、反射された赤外光は、比較的狭い領域に照射される。同図に表したように、赤外光反射部150により反射された赤外光の光路122のうち、底面が延展された領域の光路122は、底面が延展されない領域の方向に分散される。このため、部屋300の壁に近い領域より隅の領域に多くの赤外光を配光することができ、部屋300の隅および壁近傍の赤外光の光量を均一にすることができる。これにより、不審者等の監視を容易に行うことができる。 In the figure, it is assumed that the floor shape of the room 300 is a square. The infrared light reflection unit 150 in the figure has a bottom surface corresponding to the shape of the room 300. Specifically, the infrared light reflection unit 150 in the figure is configured by extending the bottom surface of the region near the wall of the room 300 in the direction of the wall. By extending the bottom surface, the curvature of the side surface of the region increases. For this reason, the infrared light reflected by the side surface of this region is diffused over a wide range. On the other hand, in the region where the bottom surface is not extended, the curvature of the side surface becomes small, and the reflected infrared light is applied to a relatively narrow region. As shown in the figure, among the optical path 122 of the infrared light reflected by the infrared light reflecting section 150, the optical path 122 in the region where the bottom surface is extended is dispersed in the direction of the region where the bottom surface is not extended. Therefore, more infrared light can be distributed to the corner region than the region near the wall of the room 300, and the amount of infrared light near the corner and wall of the room 300 can be made uniform. Thereby, monitoring of a suspicious person etc. can be performed easily.
 また、赤外光の配光位置を調整する際には、赤外光反射部150を回転させることにより、容易に行うことができる。なお、赤外光反射部150の構成は、この例に限定されない。例えば、赤外光反射部150の開口部151の形状を底面と同様の形状にすることができる。また、赤外光反射部150の底面の形状を八角形状にすることもできる。この場合には、赤外光反射部150の底面のうち、八角形の辺の部分が部屋300の隅に対向する方向に赤外光反射部150を配置することができる。 Further, when adjusting the light distribution position of the infrared light, it can be easily performed by rotating the infrared light reflection unit 150. The configuration of the infrared light reflection unit 150 is not limited to this example. For example, the shape of the opening 151 of the infrared light reflection unit 150 can be the same shape as the bottom surface. Further, the shape of the bottom surface of the infrared light reflecting portion 150 can be an octagonal shape. In this case, the infrared light reflection unit 150 can be arranged in a direction in which the octagonal side portion of the bottom surface of the infrared light reflection unit 150 faces the corner of the room 300.
 図6は、本技術の第2の実施の形態における赤外光反射部150の他の構成例を示す図である。同図においては、部屋300の床の形状は長方形であることを想定する。同図の底面は部屋300の長辺方向の壁に近い領域と比較して短辺方向の壁に近い領域を大きく延展させたものである。このため、短辺方向の壁に近い領域の側面の曲率をより大きくすることができ、短辺方向の壁に照射される赤外光を他の領域に分散させることができる。この結果、部屋300の隅、長辺方向の壁および短辺方向の壁の順に反射赤外光を多く配光することができ、長方形の形状を有する部屋300において、隅および壁近傍の赤外光の光量を均一にすることができる。 FIG. 6 is a diagram illustrating another configuration example of the infrared light reflection unit 150 according to the second embodiment of the present technology. In the figure, it is assumed that the floor shape of the room 300 is a rectangle. The bottom surface of the figure is a large extension of the region near the wall in the short side direction compared to the region near the wall in the long side direction of the room 300. For this reason, the curvature of the side surface of the region near the wall in the short side direction can be further increased, and the infrared light applied to the wall in the short side direction can be dispersed in other regions. As a result, it is possible to distribute a large amount of reflected infrared light in the order of the corners of the room 300, the long side walls, and the short side walls. The amount of light can be made uniform.
 これ以外の撮像装置100の構成は本技術の第1の実施の形態における撮像装置100と同様であるため、説明を省略する。 Other configurations of the imaging apparatus 100 are the same as those of the imaging apparatus 100 according to the first embodiment of the present technology, and thus the description thereof is omitted.
 このように、本技術の第2の実施の形態によれば、赤外光反射部の形状を部屋の形状に応じて変更することにより、部屋300の隅および壁近傍の赤外光の光量を均一にして、撮像の際の光量の不足を防止することができる。 Thus, according to the second embodiment of the present technology, the amount of infrared light near the corners and walls of the room 300 is changed by changing the shape of the infrared light reflecting portion according to the shape of the room. It is possible to prevent the light quantity from being insufficient during imaging.
 <3.第3の実施の形態>
 上述の第1の実施の形態では、1つの赤外光反射部120を使用していた。これに対し、複数の赤外光反射部を使用してもよい。本技術の第3の実施の形態では、複数の赤外光反射部により赤外光を反射する点において、第1の実施の形態と異なる。
<3. Third Embodiment>
In the first embodiment described above, one infrared light reflection unit 120 is used. On the other hand, you may use a some infrared light reflection part. The third embodiment of the present technology is different from the first embodiment in that infrared light is reflected by a plurality of infrared light reflection units.
 [撮像装置の構成]
 図7は、本技術の第3の実施の形態における撮像装置100の構成例を示す断面図である。同図の撮像装置100は、赤外光反射部120の代わりに赤外光反射部170および180を備え、撮像部130の代わりに撮像部190を備える点で、図2において説明した撮像装置100と異なる。
[Configuration of imaging device]
FIG. 7 is a cross-sectional view illustrating a configuration example of the imaging apparatus 100 according to the third embodiment of the present technology. The imaging device 100 in FIG. 2 includes infrared light reflection units 170 and 180 instead of the infrared light reflection unit 120, and an imaging unit 190 described in FIG. And different.
 赤外光反射部170および180は、可視光を透過させ、赤外光を反射させるものである。これらは、何れも頂部および底面に開口部を有する。また、赤外光反射部170は、赤外光反射部180より大きい。そして、これらは、同じ軸に沿って配置され、赤外光反射部170は、赤外光反射部180の外側に配置される。このように、赤外光反射部170および180は、図2において説明した赤外光反射部120を分割し、重ねて配置したものと捉えることができる。重ねて配置することにより、撮像装置100を小型化することができる。なお、赤外光反射部の構成はこの例に限定されない。例えば、3つの赤外光反射部を配置する構成にすることもできる。 The infrared light reflectors 170 and 180 transmit visible light and reflect infrared light. These all have openings at the top and bottom. Further, the infrared light reflection unit 170 is larger than the infrared light reflection unit 180. And these are arrange | positioned along the same axis | shaft, and the infrared-light reflection part 170 is arrange | positioned on the outer side of the infrared-light reflection part 180. FIG. As described above, the infrared light reflection units 170 and 180 can be regarded as the infrared light reflection unit 120 described with reference to FIG. The image pickup apparatus 100 can be reduced in size by being arranged in an overlapping manner. In addition, the structure of an infrared light reflection part is not limited to this example. For example, it is possible to adopt a configuration in which three infrared light reflecting portions are arranged.
 撮像部190は、赤外光反射部170および180の開口部から入射した赤外光に基づいて撮像を行うものである。図2において説明した撮像部130と比較して、本体部分とレンズ191との距離を短くすることができる。このため、撮像部190を小型化することができる。 The imaging unit 190 performs imaging based on infrared light incident from the openings of the infrared light reflection units 170 and 180. Compared with the imaging unit 130 described in FIG. 2, the distance between the main body portion and the lens 191 can be shortened. For this reason, the imaging part 190 can be reduced in size.
 これ以外の撮像装置100の構成は本技術の第1の実施の形態における撮像装置100と同様であるため、説明を省略する。 Other configurations of the imaging apparatus 100 are the same as those of the imaging apparatus 100 according to the first embodiment of the present technology, and thus the description thereof is omitted.
 このように、本技術の第3の実施の形態によれば、大きさが異なる複数の赤外光反射部を配置して赤外光を反射することにより、撮像装置100を小型化することができる。 As described above, according to the third embodiment of the present technology, the imaging apparatus 100 can be downsized by arranging a plurality of infrared light reflection units having different sizes and reflecting infrared light. it can.
 <4.変形例>
 上述の実施の形態では、開口部を有する赤外光反射部120を使用していた。これに対し、開口部を省略した赤外光反射部を使用してもよい。本技術の実施の形態の変形例では、開口部を省略することにより、簡略化した赤外光反射部を使用する点において、上述の実施の形態と異なる。
<4. Modification>
In the above-described embodiment, the infrared light reflection unit 120 having an opening is used. On the other hand, you may use the infrared-light reflection part which abbreviate | omitted the opening part. The modification of the embodiment of the present technology is different from the above-described embodiment in that a simplified infrared light reflection unit is used by omitting the opening.
 [照明装置の構成]
 図8は、本技術の実施の形態の変形例における照明装置200の構成例を示す図である。この照明装置200は、光源部210と、赤外光反射部220とを備える。
[Configuration of lighting device]
FIG. 8 is a diagram illustrating a configuration example of the illumination device 200 according to a modification of the embodiment of the present technology. The illumination device 200 includes a light source unit 210 and an infrared light reflection unit 220.
 光源部210は、図1において説明した光源部110と同様、可視光および赤外光を出射するものである。この光源部210は、開口部を省略する点で、光源部110とは異なる。 The light source unit 210 emits visible light and infrared light in the same manner as the light source unit 110 described in FIG. The light source unit 210 is different from the light source unit 110 in that the opening is omitted.
 赤外光反射部220は、可視光を透過し、赤外光を反射するものである。この赤外光反射部220は、図1において説明した赤外光反射部120と同様に垂体形状に構成される。一方、赤外光反射部120とは異なり、赤外光反射部220は、開口部を省略することができる。 The infrared light reflection unit 220 transmits visible light and reflects infrared light. The infrared light reflection unit 220 is configured in a pit shape similar to the infrared light reflection unit 120 described in FIG. On the other hand, unlike the infrared light reflection part 120, the infrared light reflection part 220 can omit an opening.
 なお、撮像部130を配置することにより、撮像装置を構成することができる。撮像部130は、照明装置200から離れた任意の位置、例えば、部屋の入口付近に配置することができる。 Note that an imaging apparatus can be configured by arranging the imaging unit 130. The imaging unit 130 can be arranged at an arbitrary position away from the lighting device 200, for example, near the entrance of the room.
 これ以外の光源部210および赤外光反射部220の構成は本技術の第1の実施の形態における光源部110および赤外光反射部120と同様であるため、説明を省略する。 Other configurations of the light source unit 210 and the infrared light reflection unit 220 are the same as those of the light source unit 110 and the infrared light reflection unit 120 in the first embodiment of the present technology, and thus description thereof is omitted.
 このように、本技術の実施の形態の変形例によれば、赤外光反射部220の開口部を省略することにより、赤外光反射部220の構成を簡略化することができる。 As described above, according to the modification of the embodiment of the present technology, the configuration of the infrared light reflection unit 220 can be simplified by omitting the opening of the infrared light reflection unit 220.
 なお、上述の実施の形態は本技術を具現化するための一例を示したものであり、実施の形態における事項と、特許請求の範囲における発明特定事項とはそれぞれ対応関係を有する。同様に、特許請求の範囲における発明特定事項と、これと同一名称を付した本技術の実施の形態における事項とはそれぞれ対応関係を有する。ただし、本技術は実施の形態に限定されるものではなく、その要旨を逸脱しない範囲において実施の形態に種々の変形を施すことにより具現化することができる。 The above-described embodiment shows an example for embodying the present technology, and the matters in the embodiment and the invention-specific matters in the claims have a corresponding relationship. Similarly, the invention specific matter in the claims and the matter in the embodiment of the present technology having the same name as this have a corresponding relationship. However, the present technology is not limited to the embodiment, and can be embodied by making various modifications to the embodiment without departing from the gist thereof.
 なお、本明細書に記載された効果はあくまで例示であって、限定されるものではなく、また、他の効果があってもよい。 It should be noted that the effects described in this specification are merely examples, and are not limited, and other effects may be obtained.
 なお、本技術は以下のような構成もとることができる。
(1)可視光および赤外光を出射する光源部と、
 前記出射された可視光を透過するとともに前記出射された赤外光を特定の方向に反射して被写体に照射させ、当該照射された赤外光のうちの前記被写体により反射される赤外光を撮像部に入射させる赤外光反射部と
を具備する照明装置。
(2)前記赤外光反射部は、前記被写体の方向を前記特定の方向として前記出射された赤外光を反射する前記(1)に記載の照明装置。
(3)前記赤外光反射部は、前記被写体への角度を前記被写体の方向として前記出射された赤外光を反射する前記(2)に記載の照明装置。
(4)前記赤外光反射部は、前記被写体までの垂直距離および水平距離に応じた角度を前記被写体への角度として前記出射された赤外光を反射する前記(3)に記載の照明装置。
(5)前記赤外光反射部は、正接が前記垂直距離および前記水平距離の比率に略等しくなる角度を前記被写体への角度として前記出射された赤外光を反射する前記(4)に記載の照明装置。
(6)前記赤外光反射部は、錐体形状であり、当該錐体の側面において前記赤外光を反射する前記(1)に記載の照明装置。
(7)前記赤外光反射部は、自身の照明装置が配置された部屋の形状に応じた底面を有する前記(6)に記載の照明装置。
(8)前記赤外光反射部は、前記部屋における壁との距離に応じて延展した前記底面を有する前記(7)に記載の照明装置。
(9)前記赤外光反射部は、円錐形状である前記(6)から(8)のいずれかに記載の照明装置。
(10)前記赤外光反射部は、前記錐体の頂部および底面に開口部を有する形状であり、前記被写体により反射される赤外光を前記複数の開口部から前記撮像部に入射させる前記(6)から(9)のいずれかに記載の照明装置。
(11)前記赤外光反射部は、大きさが異なる複数の錐体形状に分割される前記(6)から(10)のいずれかに記載の照明装置。
(12)可視光および赤外光を出射する光源部と、
 前記出射された可視光を透過するとともに前記出射された赤外光を特定の方向に反射して被写体に照射させる赤外光反射部と、
 前記被写体に照射された赤外光のうちの前記被写体により反射される赤外光に基づいて撮像を行う撮像部と
を具備する撮像装置。
In addition, this technique can also take the following structures.
(1) a light source unit that emits visible light and infrared light;
Transmitting the emitted visible light and reflecting the emitted infrared light in a specific direction to irradiate the subject, and infrared light reflected by the subject of the emitted infrared light is reflected. An illuminating device including an infrared light reflecting unit that is incident on an imaging unit.
(2) The illumination device according to (1), wherein the infrared light reflection unit reflects the emitted infrared light with the direction of the subject as the specific direction.
(3) The illumination device according to (2), wherein the infrared light reflecting unit reflects the emitted infrared light with an angle to the subject as a direction of the subject.
(4) The illumination device according to (3), wherein the infrared light reflection unit reflects the emitted infrared light with an angle corresponding to a vertical distance and a horizontal distance to the subject as an angle to the subject. .
(5) The infrared light reflection unit reflects the emitted infrared light with an angle at which a tangent is approximately equal to a ratio of the vertical distance and the horizontal distance as an angle to the subject. Lighting equipment.
(6) The illumination device according to (1), wherein the infrared light reflection portion has a cone shape and reflects the infrared light on a side surface of the cone.
(7) The illuminating device according to (6), wherein the infrared light reflection unit has a bottom surface corresponding to a shape of a room in which the illuminating device is disposed.
(8) The illumination device according to (7), wherein the infrared light reflection section includes the bottom surface extended in accordance with a distance from a wall in the room.
(9) The illumination device according to any one of (6) to (8), wherein the infrared light reflection portion has a conical shape.
(10) The infrared light reflecting portion has an opening at the top and bottom of the cone, and makes the infrared light reflected by the subject incident on the imaging unit from the plurality of openings. The illumination device according to any one of (6) to (9).
(11) The illumination device according to any one of (6) to (10), wherein the infrared light reflection section is divided into a plurality of cone shapes having different sizes.
(12) a light source unit that emits visible light and infrared light;
An infrared light reflector that transmits the emitted visible light and reflects the emitted infrared light in a specific direction to irradiate the subject;
An imaging apparatus comprising: an imaging unit that performs imaging based on infrared light reflected by the subject out of infrared light irradiated on the subject.
 100 撮像装置
 110、210 光源部
 111 基板
 112 可視光光源
 113 赤外光光源
 120、150、170、180、220 赤外光反射部
 121、124、151 開口部
 130、190 撮像部
 131、191 レンズ
 140 保護部
 200 照明装置
 300 部屋
DESCRIPTION OF SYMBOLS 100 Imaging device 110, 210 Light source part 111 Substrate 112 Visible light source 113 Infrared light source 120, 150, 170, 180, 220 Infrared light reflection part 121, 124, 151 Opening part 130, 190 Imaging part 131, 191 Lens 140 Protection unit 200 Lighting device 300 Room

Claims (12)

  1.  可視光および赤外光を出射する光源部と、
     前記出射された可視光を透過するとともに前記出射された赤外光を特定の方向に反射して被写体に照射させ、当該照射された赤外光のうちの前記被写体により反射される赤外光を撮像部に入射させる赤外光反射部と
    を具備する照明装置。
    A light source that emits visible light and infrared light;
    Transmitting the emitted visible light and reflecting the emitted infrared light in a specific direction to irradiate the subject, and infrared light reflected by the subject of the emitted infrared light is reflected. An illuminating device including an infrared light reflecting unit that is incident on an imaging unit.
  2.  前記赤外光反射部は、前記被写体の方向を前記特定の方向として前記出射された赤外光を反射する請求項1記載の照明装置。 The illuminating device according to claim 1, wherein the infrared light reflecting unit reflects the emitted infrared light with the direction of the subject as the specific direction.
  3.  前記赤外光反射部は、前記被写体への角度を前記被写体の方向として前記出射された赤外光を反射する請求項2記載の照明装置。 The illuminating device according to claim 2, wherein the infrared light reflection unit reflects the emitted infrared light with an angle to the subject as a direction of the subject.
  4.  前記赤外光反射部は、前記被写体までの垂直距離および水平距離に応じた角度を前記被写体への角度として前記出射された赤外光を反射する請求項3記載の照明装置。 The illuminating device according to claim 3, wherein the infrared light reflection unit reflects the emitted infrared light with an angle corresponding to a vertical distance and a horizontal distance to the subject as an angle to the subject.
  5.  前記赤外光反射部は、正接が前記垂直距離および前記水平距離の比率に略等しくなる角度を前記被写体への角度として前記出射された赤外光を反射する請求項4記載の照明装置。 The illuminating device according to claim 4, wherein the infrared light reflection unit reflects the emitted infrared light with an angle at which a tangent is substantially equal to a ratio of the vertical distance and the horizontal distance as an angle to the subject.
  6.  前記赤外光反射部は、錐体形状であり、当該錐体の側面において前記赤外光を反射する請求項1記載の照明装置。 The illumination device according to claim 1, wherein the infrared light reflecting portion has a cone shape and reflects the infrared light on a side surface of the cone.
  7.  前記赤外光反射部は、自身の照明装置が配置された部屋の形状に応じた底面を有する請求項6記載の照明装置。 The illuminating device according to claim 6, wherein the infrared light reflecting portion has a bottom surface corresponding to a shape of a room in which the illuminating device is disposed.
  8.  前記赤外光反射部は、前記部屋における壁との距離に応じて延展した前記底面を有する請求項7記載の照明装置。 The illumination device according to claim 7, wherein the infrared light reflecting portion has the bottom surface extended in accordance with a distance from a wall in the room.
  9.  前記赤外光反射部は、円錐形状である請求項6記載の照明装置。 The illumination device according to claim 6, wherein the infrared light reflection portion has a conical shape.
  10.  前記赤外光反射部は、前記錐体の頂部および底面に開口部を有する形状であり、前記被写体により反射される赤外光を前記複数の開口部から前記撮像部に入射させる請求項6記載の照明装置。 The infrared light reflection portion has a shape having openings at the top and bottom surfaces of the cone, and makes infrared light reflected by the subject incident on the imaging unit from the plurality of openings. Lighting equipment.
  11.  前記赤外光反射部は、大きさが異なる複数の錐体形状に分割される請求項6記載の照明装置。 The illumination device according to claim 6, wherein the infrared light reflecting portion is divided into a plurality of cone shapes having different sizes.
  12.  可視光および赤外光を出射する光源部と、
     前記出射された可視光を透過するとともに前記出射された赤外光を特定の方向に反射して被写体に照射させる赤外光反射部と、
     前記被写体に照射された赤外光のうちの前記被写体により反射される赤外光に基づいて撮像を行う撮像部と
    を具備する撮像装置。
    A light source that emits visible light and infrared light;
    An infrared light reflector that transmits the emitted visible light and reflects the emitted infrared light in a specific direction to irradiate the subject;
    An imaging apparatus comprising: an imaging unit that performs imaging based on infrared light reflected by the subject out of infrared light irradiated on the subject.
PCT/JP2017/026607 2016-11-09 2017-07-24 Illuminating device and image pickup device WO2018087961A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-218497 2016-11-09
JP2016218497A JP2018077318A (en) 2016-11-09 2016-11-09 Illumination apparatus and imaging apparatus

Publications (1)

Publication Number Publication Date
WO2018087961A1 true WO2018087961A1 (en) 2018-05-17

Family

ID=62109481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/026607 WO2018087961A1 (en) 2016-11-09 2017-07-24 Illuminating device and image pickup device

Country Status (2)

Country Link
JP (1) JP2018077318A (en)
WO (1) WO2018087961A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63241803A (en) * 1987-03-28 1988-10-07 東芝ライテック株式会社 Lighting fixture
JP2002014292A (en) * 2000-06-28 2002-01-18 Inaryo Technica Kk Wide field image pickup device and wide field image pickup /display device
JP2008022812A (en) * 2006-07-25 2008-02-07 Matsushita Electric Works Ltd Lighting apparatus for plant growth

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63241803A (en) * 1987-03-28 1988-10-07 東芝ライテック株式会社 Lighting fixture
JP2002014292A (en) * 2000-06-28 2002-01-18 Inaryo Technica Kk Wide field image pickup device and wide field image pickup /display device
JP2008022812A (en) * 2006-07-25 2008-02-07 Matsushita Electric Works Ltd Lighting apparatus for plant growth

Also Published As

Publication number Publication date
JP2018077318A (en) 2018-05-17

Similar Documents

Publication Publication Date Title
JP7051950B2 (en) Lighting equipment and projection equipment
JP5807012B2 (en) Indirect lighting device and article inspection system using the same
TWI506224B (en) Illumination appliance
KR20110117222A (en) Lighting device
JP6629601B2 (en) Light flux controlling member, light emitting device, surface light source device, and display device
EP2711615A1 (en) Lens and light emitting device incorporating a lens
WO2015151675A1 (en) Light flux control member, light-emitting device, planar light source device and display device
JP6534065B2 (en) Optical lens, lens array and lighting apparatus
JP6102194B2 (en) Projector and projection screen
JP2011134508A (en) Lighting fixture
JP2005346970A5 (en)
WO2018194118A1 (en) Light flux control member, light-emitting device, surface light source device and display device
US20140185136A1 (en) Multi directional illumination for a microscope and microscope
CN105339827B (en) Lighting apparatus
JP2008218089A (en) Lighting system
US20160320002A1 (en) Color mixing output for high brightness led sources
JP2010161033A (en) Illumination device
CN103140861B (en) Lighting device for data reader
CN107110451B (en) Lighting device
WO2018087961A1 (en) Illuminating device and image pickup device
JP2019129082A (en) Luminaire
JP2014017182A (en) Illumination device
JP2008021561A (en) Illumination device
JP2011134509A (en) Lighting fixture
JP6757264B2 (en) Luminous flux control member, light emitting device, surface light source device and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17869277

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17869277

Country of ref document: EP

Kind code of ref document: A1