WO2018086586A1 - 一种包括halbach阵列的电机及包括该电机的设备 - Google Patents

一种包括halbach阵列的电机及包括该电机的设备 Download PDF

Info

Publication number
WO2018086586A1
WO2018086586A1 PCT/CN2017/110443 CN2017110443W WO2018086586A1 WO 2018086586 A1 WO2018086586 A1 WO 2018086586A1 CN 2017110443 W CN2017110443 W CN 2017110443W WO 2018086586 A1 WO2018086586 A1 WO 2018086586A1
Authority
WO
WIPO (PCT)
Prior art keywords
halbach array
permanent magnet
stator
mover
permanent magnets
Prior art date
Application number
PCT/CN2017/110443
Other languages
English (en)
French (fr)
Other versions
WO2018086586A9 (zh
Inventor
何国斌
Original Assignee
南方电机科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南方电机科技有限公司 filed Critical 南方电机科技有限公司
Priority to US16/348,946 priority Critical patent/US20190273405A1/en
Priority to EP17870107.4A priority patent/EP3528366B1/en
Publication of WO2018086586A1 publication Critical patent/WO2018086586A1/zh
Publication of WO2018086586A9 publication Critical patent/WO2018086586A9/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/278Surface mounted magnets; Inset magnets
    • H02K1/2783Surface mounted magnets; Inset magnets with magnets arranged in Halbach arrays
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/17Stator cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2786Outer rotors
    • H02K1/2787Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/2789Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2791Surface mounted magnets; Inset magnets
    • H02K1/2792Surface mounted magnets; Inset magnets with magnets arranged in Halbach arrays
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the present invention relates to the field of motor technology, and in particular to a motor including a HALBACH array and an apparatus including the same.
  • HALBACH array permanent magnets In order to achieve high torque density, HALBACH array permanent magnets have been used.
  • the HALBACH array permanent magnets are superimposed and offset by the intermediate magnetic field, so that the magnetic field strength of the single side is enhanced, and the air gap magnetic density of the motor can be improved.
  • the field of permanent magnet motors has been widely used, as mentioned in the patent: CN203278585, as shown in Fig. 6, the rotor of the motor comprises a HALBACH array arranged on the opposite side of the rotor and the stator, and the arrangement is adopted.
  • the HALBACH array requires a plurality of permanent magnets of various magnetization directions to be combined, so that the processing is complicated and costly, and the arrangement of the array requires the permanent magnets located in the middle to be in close contact with each other, so that assembly is troublesome, and It is easy to cause damage to permanent magnets.
  • the present invention provides a motor including a HALBACH array and a device including the same, and a plurality of HALBACH array permanent magnet units are respectively distributed in slots of a stator and/or a mover to form a simple HALBACH array arrangement. Therefore, the torque density of the motor can be improved, the mass production of the permanent magnet can be facilitated, the production cost can be reduced, and the installation can be facilitated and not easily damaged.
  • a first aspect of the invention provides an electric machine including a stator and a mover assembly, the stator and the mover phase
  • the plurality of teeth and groove structures are formed oppositely, and the electric machine further includes a plurality of HALBACH array permanent magnet units distributed in the plurality of slots of the stator and/or the mover.
  • each of the HALBACH array permanent magnet units is the same, and the direction of the formed single-sided magnetic field corresponds to the gap between the mover and the stator.
  • At least one end of the permanent magnet of the HALBACH array permanent magnet distributed in each slot adjacent to the opposite side of the mover or the stator is at a distance lower than the same end of the permanent magnet located in the middle .
  • a height ratio of the height of the permanent magnets on both sides to the permanent magnet located in the middle includes: 1.5:1 to 1.9:1.
  • the width of the permanent magnet located in the middle of each of the HALBACH array permanent magnets is greater than the width of the permanent magnets located on both sides.
  • width of the permanent magnet located in the middle and the width of the permanent magnets located on both sides are 2.5:1.
  • each of the HALBACH array permanent magnets includes at least first, second, and third permanent magnets arranged in a lateral direction.
  • the plurality of HALBACH array permanent magnet units distributed in the plurality of slots of the stator and/or the mover include:
  • a plurality of HALBACH array permanent magnet units are distributed in each of the slots or in every several slots.
  • a second aspect of the invention provides an apparatus comprising a motor as described above.
  • the present invention provides a motor in which a plurality of HALBACH array permanent magnet units are respectively distributed in slots of a stator and/or a mover to form a simple HALBACH array arrangement, which achieves the following technical effects:
  • the plurality of HALBACH array permanent magnet units are distributed in each of the slots of the stator and/or the mover due to the plurality of teeth and groove structures formed on opposite sides of the stator and the mover, forming a simple
  • the HALBACH array is arranged so that it can increase the torque density of the motor and contribute to the batch of permanent magnets. Production, reduce production costs, and easy to install, not easy to damage.
  • each HARBACH array permanent magnet unit Since the shape of each HARBACH array permanent magnet unit is the same, in order to ensure that the direction of the formed single-sided magnetic field corresponds to the gap between the mover and the stator between the mover and the stator, only the permanent magnets constituting the HALBACH array unit need to be adjusted. Installation direction, so mass production can be completed to the maximum extent, ensuring the convenience of installation and product consistency.
  • the first and third permanent magnets are located at least one end of the opposite side of the mover or the stator is lower than the same end of the second permanent magnet, by adopting the above structure, on the one hand, Since the area affected by the anti-magnetization is removed, the entire HALBACH array permanent magnet is not demagnetized, which affects the stability of the entire motor. On the other hand, since some of the permanent magnet structures are removed, each group of HALBACH arrays can be relatively reduced. The quality of the magnet, thus reducing the weight of the motor to a certain extent.
  • FIG. 1 is a partial structural schematic view of a linear motor according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a rotating electrical machine according to an embodiment of the present invention, wherein a right side is an enlarged schematic view of a portion A;
  • 3A-3D are schematic diagrams showing several embodiments of a magnetic flux direction on each HALBACH array permanent magnet according to an embodiment of the present invention
  • FIGS. 4A-4D are schematic diagrams of several embodiments of each HALBACH array permanent magnet according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of an embodiment of a motor according to an embodiment of the present invention.
  • FIG. 6 is a magnetic density change of each permanent magnet in a HALBACH array permanent magnet according to an embodiment of the present invention.
  • FIGS. 7A-7B are schematic diagrams showing two embodiments of a HALBACH array permanent magnet according to an embodiment of the present invention.
  • Figure 8 is a top plan view of a prior art motor.
  • FIG. 1 is a schematic structural diagram of a portion of a linear motor according to an embodiment of the present invention
  • FIG. 2 is a schematic structural view of a rotating electrical machine according to an embodiment of the present invention, wherein a right side is an enlarged schematic view of a portion A.
  • HALBACH arrays In the field of permanent magnet motors, there are currently permanent magnet motors employing HALBACH arrays, as described in the background, in which the rotor and stator faces are enclosed by a HALBACH array.
  • the HALBACH array adopting such an arrangement requires a plurality of permanent magnets of various magnetization directions to be combined, and the processing thereof is complicated, and the arrangement of the array requires the permanent magnets located in the middle to be in close contact with each other, so that assembly is compared. Trouble, and easily cause damage to permanent magnets.
  • the present invention provides an electric motor including a stator 10 and a mover 20 assembly, and the stator 10 and the mover 20 form a plurality of teeth 11, 21 on opposite sides.
  • the slots 12, 22 are configured such that the plurality of HALBACH array permanent magnets 30 are distributed within the slots of the stator 10 and/or the mover 20.
  • the torque density of the motor can be improved (relative to the existing motor with a single permanent magnet)
  • the permanent magnet of the same size and overall size, the torque of the motor using the structure of the invention is 2.5 times that of the existing motor), and also contributes to the mass production of the permanent magnet and the production reduction. Cost, easy to install, not easy to damage.
  • the motor may include an electric motor that converts electrical energy into a kinetic energy output (the electric motor may include: a rotary motion rotary motor, a linear motion linear motor); and may also include a generator that converts kinetic energy into electrical energy output.
  • the two can be implemented by the same structure, and the functions of the generator or the motor are respectively realized by adopting different electrical connections and mechanical connections to the same structure.
  • the shapes of the respective HALBACH array units are the same, so that the requirements for mass production can be satisfied to the greatest extent, but the assembly needs to be adjusted according to the direction of the single-sided magnetic field formed by each HARBACH array permanent magnet unit to form each HALBACH array.
  • the mounting direction of the permanent magnets of the permanent magnet unit is such that the single-sided magnetic fields generated by the respective HARBACH array permanent magnet units mounted on the stator and/or the mover correspond to the gap direction of the mover and the stator (as shown in the enlarged view on the right side of FIG. 2) Magnetic flux direction).
  • each HALBACH array permanent magnet unit does not have to be the same, for example, the HALBACH array unit located in the stator slot can be different in shape from the HALBACH array unit located in the mover slot, as long as the stator and the mover are guaranteed.
  • the single-sided magnetic field formed by the upper HALBACH array may correspond to the gap direction of the mover and the stator.
  • the opposite faces of the stator and the mover form a plurality of teeth and slots, and preferably, the plurality of HALBACH array permanent magnet units are respectively distributed in the slots of the stator and the mover as shown in FIG. 2, so that the To achieve a large torque density of the motor, when such an arrangement is adopted, it is only necessary to ensure that the single-sided magnetic field formed by each of the HARBACH array permanent magnet units on the stator and/or the mover corresponds to the gap direction of the mover and the stator.
  • At least one HALBACH array unit is distributed in each slot of the stator and/or the mover (that is, one HALBACH array is distributed in each slot, or a plurality of slots are distributed in each slot.
  • HALBACH array unit instead of distributing one HALBACH array unit in each slot, for example, distributing at least one HALBACH array every several slots unit.
  • 3A-3D are schematic diagrams showing several embodiments of magnetic flux directions on each of the HALBACH array permanent magnets according to an embodiment of the present invention.
  • 4A-4D are schematic diagrams showing several embodiments of each of the HALBACH array permanent magnets according to an embodiment of the present invention.
  • each of the HALBACH array permanent magnets 30 includes: at least first, second, and third permanent magnets 31, 32, 33 arranged in a lateral direction.
  • the first permanent magnet 31 includes a first magnetic flux direction
  • the second permanent magnet 32 includes a second magnetic flux direction
  • the third permanent magnet 33 includes a third magnetic flux direction.
  • the first, second, and third magnetic flux directions may be any combination of directions in accordance with the HALBACH array principle, so that the single-sided magnetic field generated by the composed HALBACH array corresponds to the gap between the stator and the stator between the stator and the stator.
  • the direction is fine.
  • the second magnetic flux direction is perpendicular (including completely vertical and approximately vertical) to the opposite faces of the stator or mover, and the first and third magnetic flux directions are mutually Symmetrical or parallel inversion.
  • the respective permanent magnets constituting the HALBACH array can be designed in various shapes as needed.
  • the shapes of the first, second, and third permanent magnets are preferably rectangular;
  • the HALBACH array includes first, second, and third permanent magnets that are respectively trapezoidal.
  • the HALBACH array includes first, second, and third permanent magnets that are respectively triangular.
  • any permanent magnet shape that satisfies the HALBACH array principle is within the scope of the present invention.
  • FIGS. 7A-7B are schematic diagrams showing two embodiments of a HALBACH array permanent magnet according to an embodiment of the present invention.
  • the number of the HARBACH array permanent magnets is preferably the first, second, and third permanent magnets, but the number of the permanent magnets is not limited to the first, second, and third permanent magnets, and may be five ( 7A, 7B, 7, 9, etc., with the second permanent magnet as the center, any number of equal permanent magnets can be added to both sides.
  • the other related permanent magnets reference may be made to the related descriptions of the first and third permanent magnets, and the detailed description thereof will not be repeated here.
  • FIG. 5 is a schematic diagram of an embodiment of a motor according to an embodiment of the present invention.
  • the embodiment of the present invention preferably has at least one end of the opposite side of the mover or the stator located on both sides of the HALBACH array at a certain distance lower than the same end of the permanent magnet located in the middle.
  • the HALBACH array includes three permanent magnets of the first, second, third, 31, 32, and 33, and the first 31 and the third permanent magnet 33 are close to the mover or the One end of the opposite surface of the stator is lower than the same end of the second permanent magnet 32 by a certain distance.
  • the HALBACH array permanent magnet includes five first, second, third, fourth, and fifth permanent magnets 31, 32, 33, 34, 35, preferably as described in FIG. 7A, fourth, One end of the five permanent magnets near the opposite side of the mover or the stator is lower than the same end of the second permanent magnet located at the middle; or may be first, third, as described in FIG. 7B The one end of the fourth and fifth permanent magnets adjacent to the mover or the opposite surface of the stator is lower than the same end of the second permanent magnet located at the middle.
  • the height of the permanent magnets on both sides and the permanent magnet located in the middle The height ratio includes: 1:1.5 to 1:1.9.
  • the height ratio of the height of the first and third permanent magnets 31, 33 to the second permanent magnet 32 preferably includes, from 1:1.5 to 1:1.9.
  • each of the permanent magnets is not limited to the range of values listed above, and there may be other changes depending on the specifications of the motors of different specifications and the HARBACH array permanent magnets used. It is within the scope of the present invention to ensure that the missing portions of the first and second permanent magnets are part of the range that may be adversely magnetized by magnetic lines of force.
  • FIG. 6 is a diagram showing changes in magnetic density of each permanent magnet in a HALBACH array permanent magnet according to a width change ratio according to an embodiment of the present invention.
  • the width of the permanent magnets in the middle of each of the HALBACH array permanent magnets is greater than the width of the permanent magnets on both sides, so that a better sinusoidal magnetic field can be formed.
  • the width of the second permanent magnet 32 is P
  • the width of the first and third permanent magnets 31, 33 is T
  • the ratio of the two is about 2.5
  • width ratio is not limited to the ratio described above, as long as the width of the second permanent magnet 32 located in the middle is greater than the widths of the first and third permanent magnets 31, 33 located on both sides.
  • the other permanent magnets can be referred to the related design of the second and third permanent magnets.
  • the second embodiment of the present invention further provides an apparatus, where the apparatus includes the motor of the first embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Linear Motors (AREA)

Abstract

一种包括HALBACH阵列的电机及包括该电机的设备,该电机包括定子(10)和动子(20)组件,所述定子(10)和动子(20)相对面形成多个齿(11、21)和槽(12、22)结构,所述电机还包括分布在所述定子(10)和/或所述动子(20)的所述多个槽(12、22)内的多个HALBACH阵列永磁体单元(30)。采用上述电机,将多个HALBACH阵列永磁体单元分别分布在定子和/或动子的槽内,形成简易的HALBACH阵列排布,因此即能提高电机的扭矩密度,又有助于永磁体的批量生产、降低生产成本,且方便安装、不容易损坏。

Description

一种包括HALBACH阵列的电机及包括该电机的设备 技术领域
本发明涉及电机技术领域,具体涉及一种包括HALBACH阵列的电机及包括该电机的设备。
背景技术
目前在永磁电机领域,通常采用在定子和/或动子的相对面设置齿和槽结构,将单个永磁体放置在槽内,但是采用该结构的电机,往往扭矩密度较小,随着工业机器人的发展,需要能实现大扭矩密度的电机,而采用该种结构的电机不能满足要求。
为了实现高扭矩密度,人们又开始采用HALBACH阵列永磁体,HALBACH阵列永磁体是通过位于中间磁场的相互叠加和抵消,使得单边的磁场强度增强,进而可以提高电机的气隙磁密度,因此在永磁电机领域得到了广泛的应用,比如专利:CN203278585中所提到的,如图6所示,所述电机的转子包括设置在转子与定子的相对面的HALBACH阵列,采用这种排布方式的HALBACH阵列,需要多个各种充磁方向的永磁体共同构成,因此加工复杂且成本高,且这种阵列的排布方式需要位于中间的永磁体彼此紧贴,因此组装时比较麻烦,且容易造成永磁体的损坏。
发明内容
本发明为解决上述问题,提供一种包括HALBACH阵列的电机及包括该电机的设备,将多个HALBACH阵列永磁体单元分别分布在定子和/或动子的槽内,形成简易的HALBACH阵列排布,因此即能提高电机的扭矩密度,又有助于永磁体的批量生产、降低生产成本,且方便安装、不容易损坏。
本发明第一方面提供一种电机,包括定子和动子组件,所述定子和动子相 对面形成多个齿和槽结构,所述电机还包括分布在所述定子和/或所述动子的所述多个槽内的多个HALBACH阵列永磁体单元。
进一步,所述各个HALBACH阵列永磁体单元的形状相同,形成的单边磁场的方向对应所述动子和所述定子之间的间隙。
进一步,所述每个槽内分布的HALBACH阵列永磁体的至少位于两侧的永磁体的靠近所述动子或所述定子相对面的一端低于所述位于中间的永磁体的同一端一定距离。
进一步,所述位于两侧的永磁体的高度与所述位于中间的永磁体的高度比包括:1.5∶1至1.9∶1。
进一步,所述每个HALBACH阵列永磁体中位于中间的永磁体的宽度大于位于两侧的永磁体的宽度。
进一步,所述位于中间的永磁体的宽度与位于两侧的永磁体的宽度比为2.5∶1。
进一步,所述每个HALBACH阵列永磁体包括:横向排列的至少第一、第二、第三永磁体。
进一步,所述分布在所述定子和/或所述动子的所述多个槽内的多个HALBACH阵列永磁体单元包括:
所述每个槽内或每隔若干个槽内分布一个HALBACH阵列永磁体单元;或
所述每个槽内或每隔若干个槽内分布多个HALBACH阵列永磁体单元。
本发明第二方面提供一种设备,包括如上所述的电机。
由上可见,本发明提供一种电机,将多个HALBACH阵列永磁体单元分别分布在定子和/或动子的槽内,形成简易的HALBACH阵列排布取得了以下技术效果:
1、由于所述定子和动子相对面形成多个齿和槽结构,所述多个HALBACH阵列永磁体单元分布在所述定子和/或所述动子的所述每个槽内,形成简易的HALBACH阵列排布,因此即能提高电机的扭矩密度,又有助于永磁体的批量 生产、降低生产成本,且方便安装、不容易损坏。
2、由于各个HALBACH阵列永磁体单元的形状相同,为保证形成的单边磁场的方向对应所述动子和定子之间的动子和定子的间隙,只需要调整组成HALBACH阵列单元的永磁体的安装方向,因此可以最大限度的完成批量生产,保证安装的方便和产品的一致性。
3、由于所述第一和第三永磁体至少位于所述动子或所述定子相对面的一端低于所述第二永磁体的同一端一定距离,因此通过采用上面的结构,一方面,由于去掉了受到反充磁影响的区域,因此不会造成整个HALBACH阵列永磁体退磁,进而影响整个电机的稳定性;另一方面,由于去掉了部分永磁体结构,能够相对减少每组HALBACH阵列永磁体的质量,从而在一定程度上减少电机的重量。
4、由于每个HALBACH阵列永磁体中位于中间的永磁体的宽度大于位于两侧的永磁体的宽度,这样可以形成更好的正弦磁场。
附图说明
为了更清楚地说明本发明实施例技术方案,下面将对实施例和现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为本发明实施例提供的一种直线电机的部分结构示意图;
图2为本发明实施例提供的一种旋转电机的结构示意图,其中右侧为局部A的放大结构示意图;
图3A-3D为本发明实施例提供的每个HALBACH阵列永磁体上的磁通方向的几种实施例的示意图;
图4A-4D为本发明实施例提供的每个HALBACH阵列永磁体的几种实施例的示意图;
图5为本发明实施例提供的一种电机的实施例的示意图;
图6本发明实施例提供的HALBACH阵列永磁体中各个永磁体随宽度变化比值产生的磁密度变化;
图7A-7B为本发明实施例提供的HALBACH阵列永磁体的2个实施例的示意图;
图8为现有技术的电机的俯视图。
具体实施方式
为了使本领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都应当属于本发明保护的范围。
实施例一、
图1为本发明实施例提供的一种直线电机的部分结构示意图;图2为本发明实施例提供的一种旋转电机的结构示意图,其中右侧为局部A的放大结构示意图。
在永磁电机领域,现有采用HALBACH阵列的永磁电机,如背景技术中所述,所述电机的转子与定子的相对面由HALBACH阵列围成。采用这种排布方式的HALBACH阵列,需要多个各种充磁方向的永磁体共同构成,其加工复杂,且这种阵列的排布方式需要位于中间的永磁体彼此紧贴,因此组装时比较麻烦,且容易造成永磁体的损坏。
如图1、2所示,为解决上述问题,本发明提供一种电机,所述电机包括定子10和动子20组件,所述定子10和动子20相对面形成多个齿11、21和槽12、22结构,,所述多个HALBACH阵列永磁体30单元分布在所述定子10和/或所述动子20的所述每个槽内。
由于将多个HALBACH阵列永磁体单元分别分布在定子和/或动子的槽内,形成简易的HALBACH阵列排布,因此即能提高电机的扭矩密度(相对于现有的设置单一永磁体的电机,整体同样规格大小的永磁体,采用本发明所述的结构的电机的扭矩是现有电机的2.5倍),又有助于永磁体的批量生产、降低生产 成本,且方便安装、不容易损坏。
需要说明的是,所述电机即可以包括将电能转换成动能输出的电动机(电动机可以包括:旋转运动的旋转电动机、直线运动的直线电动机);也可以包括将动能转化为电能输出的发电机。二者之间在一些情况中是可以采用同一结构实现的,通过对相同的结构采用不同的电连接和机械连接的方式,从而分别实现发电机或电动机的功能。
在一些优选实施例中,所述各个HALBACH阵列单元的形状相同,因此可以最大程度满足批量生产的要求,只是安装时需要根据各个HALBACH阵列永磁体单元形成的单边磁场的方向调整组成各个HALBACH阵列永磁体单元的永磁体的安装方向,使得定子和/或动子上安装的各个HALBACH阵列永磁体单元产生的单边磁场都对应动子和定子的间隙方向(如图2右侧放大图中显示的磁通方向)。除了优选的方式,各个HALBACH阵列永磁体单元的形状并不一定要相同,比如:可以使得位于定子槽内的HALBACH阵列单元与位于动子槽内的HALBACH阵列单元形状不同,只要保证定子和动子上HALBACH阵列形成的单边磁场对应动子和定子的间隙方向即可。
需要说明的是,定子和动子的相对面形成多个齿和槽,优选如图2所示的将多个HALBACH阵列永磁体单元分别分布在定子和动子的槽内,这样可以更大程度实现电机的大扭矩密度,当采用这种排布方式时,只要保证定子和/或动子上的各个HALBACH阵列永磁体单元形成的单边磁场对应动子和定子的间隙方向即可。除上段所述的设置方式之外,也可以只在动子的槽内设置HALBACH阵列永磁体(如图1所示),或者只在定子的槽内设置HALBACH阵列永磁体(图未示意出)。
进一步需要说明的是,上述的各个设置方式中,优选定子和/或动子的每个槽内都分布至少一个HALBACH阵列单元(即每个槽内分布一个HALBACH阵列,或者每个槽内分布多个HALBACH阵列单元);也可以不是每个槽内都分布一个HALBACH阵列单元,比如:每隔若干个槽分布至少一个HALBACH阵列 单元。
图3A-3D为本发明实施例提供的每个HALBACH阵列永磁体上的磁通方向的几种实施例的示意图。图4A-4D为本发明实施例提供的每个HALBACH阵列永磁体的几种实施例的示意图。
如图1所示,所述每个HALBACH阵列永磁体30包括:依次横向排列的至少第一、第二、第三永磁体31、32、33,
所述第一永磁体31包括第一磁通方向,
所述第二永磁体32包括第二磁通方向,
所述第三永磁体33包括第三磁通方向。
所述第一、第二、第三磁通方向可以为符合HALBACH阵列原理的任意方向的组合,只要使得组成的HALBACH阵列产生的单边磁场对应定子和动子之间的动子和定子的间隙方向即可。在本具体实施例中,如图3A-3D所示,优选第二磁通方向垂直(包括完全垂直和近似垂直)于所述定子或者动子的相对面,第一和第三磁通方向彼此对称或者平行反向。
如图4A-4D所示,所述构成HALBACH阵列的各个永磁体可以根据需要设计成各种形状。
如图4A、4B所示,所述第一、第二、第三永磁体的形状优选矩形;
如图4C所示,所述HALBACH阵列包括分别成梯形的第一、第二、第三永磁体。
如图4D所示,所述HALBACH阵列包括分别成三角形的第一、第二、第三永磁体。
除本实施例中的附图4所列明的第一、第二、第三永磁体的形状外,任意满足HALBACH阵列原理的永磁体形状都属于本发明保护的范围内。
图7A-7B为本发明实施例提供的HALBACH阵列永磁体的2个实施例的示意图。
所述HALBACH阵列永磁体的数量优选第一、第二、第三3个永磁体,但所述永磁体的数量并不限于第一、第二、第三3个永磁体,可以为5个(如图7A、7B所示)、7个、9个等等,以第二永磁体为中心,向两侧可以分别添加任意数量相等的永磁体。所述其它相关永磁体可以参见第一、第三永磁体的相关描述,在此不再一一重复赘述。
图5为本发明实施例提供的一种电机的实施例的示意图。
如图5所示,在一些优选实施例中,由于在一些位于磁密度比较高的电机中,往往每个槽内的HALBACH阵列永磁体中,位于两侧的永磁体的端部会受到通过的磁力线40的影响,当磁力线40的方向与永磁体自身的磁场方向不同时,有可能造成该部分永磁体发生退磁现象,从而影响整个电机的稳定性。为解决上述问题,本发明实施例优选将至少位于所述HALBACH阵列两侧的靠近所述动子或所述定子相对面的一端低于所述位于中间的永磁体的同一端一定距离。
通过采用上面的结构,一方面,由于去掉了受到退磁影响的区域,因此不会造成整个HALBACH阵列永磁体退磁,进而影响整个电机的稳定性;另一方面,由于去掉了部分永磁体结构,能够相对减少每组HALBACH阵列永磁体的质量,从而在一定程度上减少电机的重量。
如图5所示,以HALBACH阵列包括第一、第二、第三31、32、33三个永磁体为例,所述第一31和第三永磁体33的靠近所述动子或所述定子相对面的一端低于所述第二永磁体32的同一端一定距离。
所述HALBACH阵列永磁体包括5个第一、第二、第三、第四、第五永磁体31、32、33、34、35,优选的可以是如图7A中所述,第四、第五永磁体的靠近所述动子或所述定子相对面的一端低于所述位于位于中间的第二永磁体的同一端一定距离;也可以是如图7B中所述,第一、第三、第四、第五永磁体的靠近所述动子或所述定子相对面的一端低于所述位于位于中间的第二永磁体的同一端一定距离。
在一些优选实施例中,位于两侧的永磁体的高度与所述位于中间的永磁体 的高度比包括:1∶1.5至1∶1.9。如图5所示,即所述第一、第三永磁体31、33的高度与第二永磁体32的高度比优选包括,1∶1.5至1∶1.9。
但需要说明的是,所述各个永磁体的高度比值并不限于上面所列明的数值范围,根据不同规格的电机和采用的HALBACH阵列永磁体的规格,该比例可能还会有其它的变化,只要保证第一、第二永磁体的缺少的部分属于可能受磁力线反充磁影响的部分都属于本发明保护的范围内。
图6为本发明实施例提供的HALBACH阵列永磁体中各个永磁体随宽度变化比值产生的磁密度变化。
在一些优选实施例中,所述每个HALBACH阵列永磁体中位于中间的永磁体的宽度大于位于两侧的永磁体的宽度,这样可以形成更好的正弦磁场。如图6中所示,设第二永磁体32宽度为P,第一、第三永磁体31、33的宽度为T,当二者比值为2.5左右时,磁力矩密度最大。
需要说明的是,所述宽度比并不限于上面所述的比值,只要满足位于中间的第二永磁体32的宽度大于位于两侧的第一、第三永磁体31、33的宽度,都属于本发明的优选实施例范围。
当HALBACH阵列永磁体中包括5个以上的永磁体时,其它的永磁体可参见第二、第三永磁体的相关设计。
实施例二、
本发明实施例二还提供一种设备,所述设备包括实施例一所述的电机。
所述电机参见实施例一中的描述,在此不再重复赘述。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详细描述的部分,可以参见其它实施例的相关描述。
需要说明的是,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的结构和模块并不一定是本发明所必须的。
以上对本发明实施例所提供的包括HALBACH阵列的电机及包括该电机的 设备进行了详细介绍,但以上实施例的说明只是用于帮助理解本发明的方法及其核心思想,不应理解为对本发明的限制。本技术领域的技术人员,依据本发明的思想,在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。

Claims (9)

  1. 一种包括HALBACH阵列的电机,包括定子和动子组件,所述定子和动子相对面形成多个齿和槽结构,其特征在于,所述电机还包括分布在所述定子和/或所述动子的所述多个槽内的多个HALBACH阵列永磁体单元。
  2. 根据权利要求1所述的包括HALBACH阵列的电机,其特征在于,所述各个HALBACH阵列永磁体单元的形状相同,形成的单边磁场的方向对应所述动子和所述定子之间的间隙。
  3. 根据权利要求1或2所述的包括HALBACH阵列的电机,其特征在于,所述每个槽内分布的HALBACH阵列永磁体的至少位于两侧的永磁体的靠近所述动子或所述定子相对面的一端低于所述位于中间的永磁体的同一端一定距离。
  4. 根据权利要求3所述的包括HALBACH阵列的电机,其特征在于,所述位于两侧的永磁体的高度与所述位于中间的永磁体的高度比包括:1.5∶1至1.9∶1。
  5. 根据权利要求1或2所述的包括HALBACH阵列的电机,其特征在于,所述每个HALBACH阵列的位于中间的永磁体的磁通方向垂直于所述定子或者所述动子的相对面,所述分别位于左右两侧的永磁体的磁通方向彼此对称或者平行反向。
  6. 根据权利要求1或2任意一项所述的包括HALBACH阵列的电机,其特征在于,所述每个HALBACH阵列永磁体单元中位于中间的永磁体的宽度大于位于两侧的永磁体的宽度。
  7. 根据权利要求6所述的包括HALBACH阵列的电机,其特征在于,所述位于中间的永磁体的宽度与位于两侧的永磁体的宽度比为2.5∶1。
  8. 根据权利要求1或2所述的包括HALBACH阵列的电机,其特征在于,所述每个HALBACH阵列永磁体包括:横向排列的至少第一、第二、第三永磁体。
  9. 根据权利要求1或2所述的包括HALBACH阵列的电机,其特征在于,所述分布在所述定子和/或所述动子的所述多个槽内的多个HALBACH阵列永磁体单元包括:
    所述每个槽内或每隔若干个槽内分布一个HALBACH阵列永磁体单元;或
PCT/CN2017/110443 2016-11-11 2017-11-10 一种包括halbach阵列的电机及包括该电机的设备 WO2018086586A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/348,946 US20190273405A1 (en) 2016-11-11 2017-11-10 Motor comprising halbach array and apparatus comprising same
EP17870107.4A EP3528366B1 (en) 2016-11-11 2017-11-10 Motor comprising halbach array and apparatus comprising same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610994572.5A CN106849409B (zh) 2016-11-11 2016-11-11 一种包括halbach阵列的电机及包括该电机的设备
CN201610994572.5 2016-11-11

Publications (2)

Publication Number Publication Date
WO2018086586A1 true WO2018086586A1 (zh) 2018-05-17
WO2018086586A9 WO2018086586A9 (zh) 2019-04-25

Family

ID=59145713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/110443 WO2018086586A1 (zh) 2016-11-11 2017-11-10 一种包括halbach阵列的电机及包括该电机的设备

Country Status (4)

Country Link
US (1) US20190273405A1 (zh)
EP (1) EP3528366B1 (zh)
CN (1) CN106849409B (zh)
WO (1) WO2018086586A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3672038A1 (en) * 2018-11-29 2020-06-24 Kabushiki Kaisha Toshiba Permanent magnet rotor and its manufacturing method

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106849409B (zh) * 2016-11-11 2020-10-30 南方电机科技有限公司 一种包括halbach阵列的电机及包括该电机的设备
CN108880014B (zh) * 2018-05-29 2021-10-29 南方电机科技有限公司 一种定子、马达及自动化设备
CN108574350B (zh) * 2018-05-29 2021-04-02 南方电机科技有限公司 一种轴向磁通马达的定子、轴向磁通马达及自动化设备
US11245317B2 (en) 2019-12-05 2022-02-08 Whirlpool Corporation Direct drive electric motor having stator and magnet configurations for improved torque capability
CN111764205A (zh) * 2020-07-23 2020-10-13 苏州英磁新能源科技有限公司 一种磁悬浮列车用导轨
CN112383163B (zh) * 2020-11-23 2022-03-08 兰州交通大学 一种轨道车辆用独立轮牵引轮毂电机
EP4023558A1 (en) * 2020-12-30 2022-07-06 Phase Motion Control S.p.A. Aeronautical propulsion device
CN112769257B (zh) * 2021-01-06 2022-03-25 宁波精成车业有限公司 一种Halbach阵列方形电机
CN115642728A (zh) * 2021-07-19 2023-01-24 上海舞肌科技有限公司 一种Halbach阵列永磁电机转子、转子制造方法及Halbach阵列永磁电机
CN114352616B (zh) * 2021-12-31 2022-07-19 哈尔滨工业大学 一种用于磁浮运动台的海尔贝克阵列装配方法
CN115833520B (zh) * 2022-11-28 2024-05-28 中国科学院宁波材料技术与工程研究所 一种U型Halbach复合永磁游标无磁轨直线电机

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101707405A (zh) * 2009-11-30 2010-05-12 哈尔滨工业大学 复合结构永磁电机的Halbach阵列外转子
CN102570754A (zh) * 2012-01-17 2012-07-11 东南大学 一种用于低速大转矩的永磁游标电机
CN203278585U (zh) 2013-06-09 2013-11-06 上海电机学院 Halbach并列转子混合励磁同步电机
CN103647423A (zh) * 2013-11-28 2014-03-19 江苏大学 一种定转子永磁型游标电机
CN104333150A (zh) * 2014-11-02 2015-02-04 北京理工大学 一种凸型磁块Halbach永磁阵列
JP2016163366A (ja) * 2015-02-26 2016-09-05 日立金属株式会社 磁界発生装置の組立方法及び磁界発生装置
CN106849409A (zh) * 2016-11-11 2017-06-13 南方电机科技有限公司 一种包括halbach阵列的电机及包括该电机的设备
CN206712560U (zh) * 2016-11-11 2017-12-05 南方电机科技有限公司 一种包括halbach阵列的电机及包括该电机的机器人设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002354721A (ja) * 2001-05-29 2002-12-06 Hitachi Ltd 永久磁石式回転子を備えた回転電機
WO2012141932A2 (en) * 2011-04-13 2012-10-18 Smith James S Flux focusing arrangement for permanent magnets, methods of fabricating such arrangements, and machines including such arrangements
CN102403856A (zh) * 2011-09-05 2012-04-04 同济大学 电动车用可控磁通永磁同步电机及控制***
CN103166406B (zh) * 2011-12-09 2015-02-18 同济大学 车用高功率密度高效率的永磁同步电机
DE102013225093A1 (de) * 2013-12-06 2015-06-11 Siemens Aktiengesellschaft Rotor für eine elektrische Maschine
JP6385064B2 (ja) * 2014-01-30 2018-09-05 住友重機械工業株式会社 永久磁石電動機およびその着磁方法、製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101707405A (zh) * 2009-11-30 2010-05-12 哈尔滨工业大学 复合结构永磁电机的Halbach阵列外转子
CN102570754A (zh) * 2012-01-17 2012-07-11 东南大学 一种用于低速大转矩的永磁游标电机
CN203278585U (zh) 2013-06-09 2013-11-06 上海电机学院 Halbach并列转子混合励磁同步电机
CN103647423A (zh) * 2013-11-28 2014-03-19 江苏大学 一种定转子永磁型游标电机
CN104333150A (zh) * 2014-11-02 2015-02-04 北京理工大学 一种凸型磁块Halbach永磁阵列
JP2016163366A (ja) * 2015-02-26 2016-09-05 日立金属株式会社 磁界発生装置の組立方法及び磁界発生装置
CN106849409A (zh) * 2016-11-11 2017-06-13 南方电机科技有限公司 一种包括halbach阵列的电机及包括该电机的设备
CN206712560U (zh) * 2016-11-11 2017-12-05 南方电机科技有限公司 一种包括halbach阵列的电机及包括该电机的机器人设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3528366A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3672038A1 (en) * 2018-11-29 2020-06-24 Kabushiki Kaisha Toshiba Permanent magnet rotor and its manufacturing method

Also Published As

Publication number Publication date
EP3528366A4 (en) 2020-05-27
US20190273405A1 (en) 2019-09-05
CN106849409A (zh) 2017-06-13
WO2018086586A9 (zh) 2019-04-25
EP3528366B1 (en) 2022-05-04
CN106849409B (zh) 2020-10-30
EP3528366A1 (en) 2019-08-21

Similar Documents

Publication Publication Date Title
WO2018086586A1 (zh) 一种包括halbach阵列的电机及包括该电机的设备
JP5515478B2 (ja) 周期磁界発生装置およびそれを用いたリニアモータ、回転型モータ
US8466587B2 (en) Linear motor
CN103703523B (zh) 用于永磁体的通量集中结构、制造这种结构的方法和包括这种结构的机器
US8829752B2 (en) Synchronous permanent magnet machine
CN106340982B (zh) 永磁同步电机的转子及电机
US20180069464A1 (en) Linear Motor
KR101721462B1 (ko) 풍력발전기 및 그 고정자 철심 및 고정자 철심모듈
RU2494520C2 (ru) Магнитоэлектрический генератор
CN108270338B (zh) 齿槽型双边初级永磁体同步直线电机
JP2008067561A (ja) 永久磁石形電動機
WO2017010552A1 (ja) リニアモータ用界磁部及びリニアモータ
CN206712560U (zh) 一种包括halbach阵列的电机及包括该电机的机器人设备
JP6345355B1 (ja) リニアモータ
WO2023245918A1 (zh) 永磁电机
RU2506688C2 (ru) Магнитоэлектрический генератор
CN104467327A (zh) 永磁体分段pwm排列正弦波盘式电机
CN207868887U (zh) 一种高速永磁体同步电机转子结构
JPS62126856A (ja) リニアモ−タ
CN107579612B (zh) 转子冲片、转子铁芯和电机
EP3334010B1 (en) Rotor for use in motor and motor adopting same
CN111600405A (zh) 磁极模块、转子、转子的装配方法及电机
KR20130008725A (ko) 전동기
CN212572203U (zh) 一种新型直线电机底条定子
WO2022074821A1 (ja) 電動機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17870107

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017870107

Country of ref document: EP

Effective date: 20190516