WO2018084318A1 - Multilayer foam sheet, method for producing multilayer foam sheet, and adhesive tape - Google Patents

Multilayer foam sheet, method for producing multilayer foam sheet, and adhesive tape Download PDF

Info

Publication number
WO2018084318A1
WO2018084318A1 PCT/JP2017/040152 JP2017040152W WO2018084318A1 WO 2018084318 A1 WO2018084318 A1 WO 2018084318A1 JP 2017040152 W JP2017040152 W JP 2017040152W WO 2018084318 A1 WO2018084318 A1 WO 2018084318A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin layer
sheet
multilayer
foamed
thickness
Prior art date
Application number
PCT/JP2017/040152
Other languages
French (fr)
Japanese (ja)
Inventor
秀明 矢野
麻美 永井
哲史 濱田
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to CN201780067758.9A priority Critical patent/CN109890886B/en
Priority to KR1020197012649A priority patent/KR102537427B1/en
Priority to JP2018514921A priority patent/JP7145069B2/en
Publication of WO2018084318A1 publication Critical patent/WO2018084318A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/065Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0036Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0012Mechanical treatment, e.g. roughening, deforming, stretching
    • B32B2038/0028Stretching, elongating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/72Cured, e.g. vulcanised, cross-linked
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/72Density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2405/00Adhesive articles, e.g. adhesive tapes

Definitions

  • the present invention relates to a multilayer foam sheet, a method for producing the multilayer foam sheet, and an adhesive tape including the multilayer foam sheet.
  • a foam sheet is widely used as a sealing material or a shock absorbing material.
  • the foam sheet may be used as an adhesive tape by applying an adhesive on at least one surface, for example, inside an electronic device.
  • a foam sheet used in these applications a cross-linked polyolefin resin foam sheet obtained by foaming and cross-linking a foamable polyolefin resin sheet containing a pyrolytic foaming agent is known (for example, Patent Documents). 1).
  • foam sheets used in electronic devices have been required to be thin as electronic devices become smaller and thinner, and may be, for example, 1.0 mm or less.
  • mechanical strength such as tensile strength tends to be low.
  • the foamed sheet is used as an adhesive tape, the foamed sheet is easily damaged when reworked.
  • the expansion ratio is lowered in order to increase the mechanical strength, the foam sheet may impair the properties inherent to the foam sheet, such as impact absorption.
  • the present invention has been made in view of the above circumstances, and even when the foamed sheet is thinned, foaming with high mechanical strength is achieved while maintaining the properties inherent to the foamed sheet such as shock absorption. It is an object to provide a sheet.
  • the present invention is a multilayer foamed sheet having a thickness of 0.05 to 2.0 mm, a foamed resin layer having a plurality of cells made of cells, and a skin provided on at least one surface of the foamed resin layer
  • this invention is an adhesive tape provided with the said multilayer foamed sheet and the adhesive material provided in the at least any one surface of the said multilayer foamed sheet. Furthermore, this invention is a manufacturing method of the said multilayer foamed sheet.
  • the present invention mainly includes the following first and second aspects.
  • the first aspect of the present invention provides the following [1-1] to [1-10].
  • [1-1] A multilayer foamed sheet having a thickness of 0.05 to 1.0 mm, a foamed resin layer having a plurality of cells made of cells, and a skin resin provided on at least one surface of the foamed resin layer A multilayer foamed sheet, wherein the skin resin layer is thicker than the thickness of the matrix resin between the cells of the foamed resin layer.
  • the multilayer foamed sheet according to the above [1-1] wherein the thickness of each skin resin layer is 150 times or less the thickness of the matrix resin between cells.
  • Adhesive comprising the multilayer foamed sheet according to any one of [1-1] to [1-8] above and an adhesive material provided on at least one surface of the multilayer foamed sheet tape.
  • the method for producing a multilayer foamed sheet according to any one of [1-1] to [1-8] above, from a foamable composition containing a resin and a pyrolytic foaming agent A multilayer foamed sheet obtained by laminating a foamable sheet and a resin sheet to obtain a multilayer sheet, and foaming the foamable sheet by heating the multilayer sheet, or foaming and stretching the multilayer sheet Manufacturing method.
  • the second aspect of the present invention provides the following [2-1] to [2-12].
  • [2-1] A multilayer foamed sheet having a thickness of 0.05 to 1.2 mm, a foamed resin layer having a plurality of cells made of cells, and a skin resin provided on at least one surface of the foamed resin layer A multilayer foamed sheet, wherein the skin resin layer is thicker than the thickness of the matrix resin between the cells of the foamed resin layer.
  • [2-3] The multilayer foamed sheet according to [2-1] or [2-2], wherein the thickness of the matrix resin between the cells in the foamed resin layer is 1 to 30 ⁇ m.
  • the thickness of each of the skin resin layers is 0.01 to 0.15 mm, and the thickness of the foamed resin layer is 0.03 to 0.95 mm. 2-3].
  • [2-5] The multilayer foamed sheet according to any one of [2-1] to [2-4], wherein the apparent density of the multilayer foamed sheet is 0.05 to 0.85 g / cm 3 .
  • [2-6] The multilayer foamed sheet according to any one of [2-1] to [2-5], wherein the resin constituting each of the foamed resin layer and the skin resin layer contains a polyolefin resin.
  • the foamed resin layer is any one of [2-1] to [2-7], which is a foam obtained by foaming a foamable composition containing a resin and a pyrolytic foaming agent. Multi-layer foam sheet.
  • any one of [2-1] to [2-10], comprising: a foamed resin layer having a plurality of cells made of bubbles; and a skin resin layer provided on at least one surface of the foamed resin layer
  • the foamed sheet even when the foamed sheet is thinned, it is possible to provide a foamed sheet with high mechanical strength while maintaining good properties inherent to the foamed sheet such as impact absorbability.
  • the present invention is a multilayer foamed sheet having a thickness of 0.05 to 2.0 mm, a foamed resin layer having a plurality of cells made of bubbles, and a skin resin layer provided on at least one surface of the foamed resin layer
  • the skin resin layer is a multilayer foam sheet thicker than the thickness of the matrix resin between cells of the foam resin layer.
  • the present invention mainly includes the following first and second aspects.
  • the present invention will be described in detail using respective embodiments according to these aspects.
  • the 1st aspect and the 2nd aspect are common in the point which provides a skin layer thicker than the thickness between the cells of a foamed resin layer in the multilayer foamed sheet in the at least one surface of a foamed resin layer.
  • the first aspect and the second aspect are different in ranges such as various thicknesses and apparent densities.
  • the skin layer is formed of a resin composition not containing a foaming agent.
  • the second aspect is different in that the degree of crosslinking of the skin layer is high and the skin layer may be formed of a resin composition containing a foaming agent.
  • the multilayer foamed sheet according to the first aspect of the present invention includes a foamed resin layer and a skin resin layer provided on at least one surface of the foamed resin layer.
  • the foamed resin layer is made of a foam and is provided with a large number of cells made of bubbles. In the foamed resin layer, the cells are separated from each other through a partition made of a matrix resin constituting the foam.
  • the skin resin layer is a resin layer that is non-foamed and does not have cells made of bubbles.
  • the multilayer foamed sheet 10 may include a foamed resin layer 11 and skin layers 12 and 12 laminated on both surfaces thereof.
  • stacked only on the one surface may be provided, as shown in FIG. 1, it is preferable that the skin resin layers 12 and 12 are provided in both surfaces.
  • the skin resin layer 12 is preferably laminated directly on the foamed resin layer 11 by coextrusion or the like to be described later, but the foamed resin layer is interposed via another layer such as an adhesive layer as long as the effect of the present invention is not impaired. 11 may be laminated.
  • the thickness of each skin resin layer is larger than the thickness of the matrix resin between cells (hereinafter also simply referred to as “inter-cell thickness”).
  • inter-cell thickness the thickness of each skin resin layer
  • the mechanical strength of the multilayer foamed sheet for example, the tensile strength, the tear strength, and the like becomes good. Therefore, when a multilayer foam sheet is used for an adhesive tape, reworkability becomes favorable.
  • the thickness between cells is the thickness of the matrix resin between adjacent cells (that is, the partition wall) measured by magnifying and observing the cross section of the foamed resin layer, as will be described in detail in Examples described later. Mean value.
  • each skin resin layer is preferably 150 times or less of the thickness between cells. By setting it to 150 times or less, each skin resin layer does not have an unnecessarily thick thickness, and it becomes easy to improve the flexibility and impact absorption of the multilayer foam sheet. Further, from the viewpoint of improving the mechanical strength, flexibility and shock absorption in a well-balanced manner, the thickness of each skin resin layer is more preferably 2 to 120 times the thickness between cells, preferably 2.5 to 100. More preferably, it is double.
  • the multilayer foam sheet of this embodiment has a thickness of 0.05 to 1.0 mm.
  • the thickness of the multilayer foamed sheet is preferably 0.1 to 1.0 mm, more preferably 0.12 to 0.40 mm, in order to improve various performances and facilitate use in thinned electronic devices. is there.
  • the thickness of each skin resin layer is 0.01 to 0.15 mm and the thickness of the foam resin layer is 0.03 to 0.95 mm.
  • the thickness of each skin resin layer is more preferably 0.02 to 0.09 mm, and further preferably 0.03 to 0.06 mm.
  • the thickness of the foamed resin layer is more preferably 0.05 to 0.90 mm, and still more preferably 0.06 to 0.30 mm.
  • the thickness of the foamed resin layer is usually larger than the thickness of each skin resin layer, and the thickness of the foamed resin layer is preferably 2 to 20 times the thickness of each skin resin layer, more preferably 2 It is 15 times, more preferably 3 to 10 times.
  • the cell thickness in the foamed resin layer is preferably 1 to 30 ⁇ m.
  • the inter-cell thickness is more preferably 2 to 25 ⁇ m, and further preferably 5 to 20.
  • the average cell diameter of the bubbles in the foamed resin layer is preferably 30 to 350 ⁇ m in MD, 30 to 400 ⁇ m in TD, and 10 to 150 ⁇ m in ZD. Further, the average cell diameter of the bubbles in the foamed resin layer is more preferably 60 to 300 ⁇ m in MD, 60 to 300 ⁇ m in TD, and 15 to 70 ⁇ m in ZD.
  • the ratio of the average bubble diameter of MD to the average bubble diameter of bubbles ZD (hereinafter also referred to as “MD / ZD”) is 1.2 to 8, and the average bubble diameter of TD with respect to the average bubble diameter of ZD The ratio (hereinafter also referred to as “TD / ZD”) is preferably 1.5 to 9.
  • MD / ZD is 1.5 to 7
  • TD / ZD is 1.5 to 7.
  • MD means Machine direction and is a direction that coincides with the extrusion direction and the like
  • TD means Transverse direction and is a direction orthogonal to MD and is a direction parallel to the sheet surface of the multilayer foam sheet.
  • ZD is the thickness direction of the multilayer foamed sheet, and is the direction perpendicular to both MD and TD.
  • the foamed resin layer has closed cells, and the closed cell rate is 70% or more. As described above, the bubbles included in the foamed resin layer are generally closed cells, and it is easy to improve the shock absorption and the like.
  • the closed cell ratio is preferably 80% or more, more preferably 90 to 100%. The closed cell ratio can be determined according to ASTM D2856 (1998).
  • the apparent density of the whole multilayer foamed sheet is preferably 0.15 ⁇ 0.85g / cm 3, more preferably 0.20 ⁇ 0.80g / cm 3, 0.20 ⁇ 0.60g / More preferably, it is cm 3 .
  • the expansion ratio of the foamed resin layer is not particularly limited, but is preferably 1.5 to 10 cm 3 / g, and more preferably 1.8 to 8.0 cm 3 / g. The expansion ratio is obtained by measuring the apparent density and calculating the reciprocal thereof. The apparent density is measured according to JIS K7222.
  • the multilayer foamed sheet is preferably cross-linked.
  • the degree of cross-linking of the foamed resin layer and the skin resin layer is preferably 15 to 60% by mass, more preferably 20 to 50% by mass, respectively.
  • the measuring method of a crosslinking degree is as follows. About 100 mg of a test piece is taken from each of the skin resin layer and the foamed resin layer, and the weight A (mg) of the test piece is precisely weighed.
  • the 25% compressive strength of the multilayer foamed sheet is preferably 20 to 1000 kPa. By setting it as 20 kPa or more, mechanical strength becomes favorable, and by setting it as 1000 kPa or less, the softness
  • the 25% compressive strength of the multilayer foam sheet is more preferably 30 to 800 kPa.
  • the tensile strength of the multilayer foamed sheet is preferably 5 to 30 MPa in MD and 5 to 25 MPa in TD, more preferably 10 to 25 MPa in MD and 8 to 20 MPa in TD. By making the tensile strength within these ranges, the mechanical strength of the multilayer foamed sheet can be easily improved.
  • the 25% compressive strength and tensile strength of the multilayer foamed sheet are measured according to the method of JIS K6767.
  • resin Various resins may be used as the resin constituting each of the foamed resin layer and the skin resin layer.
  • polyolefin resin polyamide resin, polycarbonate resin, polyester resin, ethylene propylene diene rubber (EPDM), etc.
  • Elastomer resins such as olefin elastomers and hydrogenated styrene thermoplastic elastomers (SEBS) can also be used.
  • polyolefin resin examples include polyethylene resin, polypropylene resin, and ethylene-vinyl acetate copolymer. Among these, polyethylene resin is preferable.
  • polyethylene resin examples include polyethylene resins polymerized with a polymerization catalyst such as a Ziegler-Natta compound, a metallocene compound, and a chromium oxide compound.
  • the polyethylene resin is preferably linear low density polyethylene.
  • the linear low density polyethylene is obtained by copolymerizing ethylene (for example, 75% by mass or more, preferably 90% by mass or more with respect to the total amount of monomers) and, if necessary, a small amount of ⁇ -olefin. More preferred is linear low density polyethylene.
  • Specific examples of the ⁇ -olefin include propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, and 1-octene.
  • polyethylene resin for example the density of the above-mentioned linear low density polyethylene is preferably 0.870 ⁇ 0.910g / cm 3, more preferably 0.875 ⁇ 0.907g / cm 3, 0.880 ⁇ 0.905g / Cm 3 is more preferable.
  • the polyethylene resin a plurality of polyethylene resins can be used, and a polyethylene resin outside the above-described density range may be added.
  • metallocene compound examples include compounds such as a bis (cyclopentadienyl) metal complex having a structure in which a transition metal is sandwiched between ⁇ -electron unsaturated compounds. More specifically, tetravalent transition metals such as titanium, zirconium, nickel, palladium, hafnium, and platinum have one or more cyclopentadienyl rings or their analogs as ligands (ligands). Can be mentioned. Such metallocene compounds have uniform active site properties and each active site has the same activity.
  • a polymer synthesized using a metallocene compound has high uniformity in molecular weight, molecular weight distribution, composition, composition distribution, etc., so when a sheet containing a polymer synthesized using a metallocene compound is crosslinked, the crosslinking is uniform. Proceed to. Since the uniformly crosslinked sheet is uniformly foamed, the physical properties are easily stabilized. Moreover, since it can extend
  • Examples of the ligand include a cyclopentadienyl ring and an indenyl ring. These cyclic compounds may be substituted with a hydrocarbon group, a substituted hydrocarbon group or a hydrocarbon-substituted metalloid group.
  • Examples of the hydrocarbon group include a methyl group, an ethyl group, various propyl groups, various butyl groups, various amyl groups, various hexyl groups, 2-ethylhexyl groups, various heptyl groups, various octyl groups, various nonyl groups, and various decyl groups. , Various cetyl groups, phenyl groups and the like.
  • the “various” means various isomers including n-, sec-, tert-, and iso-. Moreover, what polymerized the cyclic compound as an oligomer may be used as a ligand. In addition to ⁇ -electron unsaturated compounds, monovalent anion ligands such as chlorine and bromine or divalent anion chelate ligands, hydrocarbons, alkoxides, arylamides, aryloxides, amides, arylamides, phosphides, aryls Phosphide or the like may be used.
  • monovalent anion ligands such as chlorine and bromine or divalent anion chelate ligands, hydrocarbons, alkoxides, arylamides, aryloxides, amides, arylamides, phosphides, aryls Phosphide or the like may be used.
  • metallocene compounds containing tetravalent transition metals and ligands include, for example, cyclopentadienyl titanium tris (dimethylamide), methylcyclopentadienyl titanium tris (dimethylamide), bis (cyclopentadienyl) titanium dichloride, dimethyl And silyltetramethylcyclopentadienyl-t-butylamidozirconium dichloride.
  • the metallocene compound exhibits an action as a catalyst in the polymerization of various olefins by combining with a specific cocatalyst (co-catalyst).
  • cocatalyst include methylaluminoxane (MAO) and boron compounds.
  • the proportion of the cocatalyst used with respect to the metallocene compound is preferably 100,000 to 1,000,000 mole times, more preferably 50 to 5,000 mole times.
  • the above linear low density polyethylene may be used alone, but other polyolefin resins For example, it may be used in combination with other polyolefin resins described below.
  • the ratio of the other polyolefin resin to the linear low density polyethylene (100% by mass) is preferably 40% by mass or less, more preferably 30% by mass or less, and further preferably 20% by mass or less. preferable.
  • Examples of the ethylene-vinyl acetate copolymer used as the polyolefin resin include an ethylene-vinyl acetate copolymer containing 50% by mass or more of ethylene.
  • Examples of the polypropylene resin include polypropylene and a propylene- ⁇ -olefin copolymer containing 50% by mass or more of propylene. These may be used alone or in combination of two or more.
  • ⁇ -olefin constituting the propylene- ⁇ -olefin copolymer examples include ethylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, 1- Among these, ⁇ -olefins having 6 to 12 carbon atoms are preferable.
  • the polyolefin resin when used as the resin in each of the foamed resin layer and the skin resin layer, the polyolefin resin may be used alone as the resin contained in each of the foamed resin layer and the skin resin layer. Other resins may be included.
  • the ratio of the polyolefin resin to the total amount of the resin is preferably 60% by mass or more, more preferably 70% by mass or more, and still more preferably 80% by mass or more.
  • the resin other than the polyolefin resin used in combination with the polyolefin resin include the various resins described above.
  • the resin used for the foamed resin layer and the skin resin layer may be the same type as each other, or may be different from each other. That is, when a polyolefin resin is used for the foamed resin layer, it is preferable to use a polyolefin resin for the skin resin layer. When a polyethylene resin is used for the foamed resin layer, a polyethylene resin is also used for the skin resin layer. It is good to use.
  • the foamed resin layer of this aspect is preferably a foam formed by foaming a foamable composition containing the resin and a foaming agent.
  • the foamed resin layer obtained by foaming is composed of a foam having a large number of cells composed of cells inside, using a resin alone or a resin containing additives as necessary as a matrix resin.
  • the foaming agent include a pyrolytic foaming agent.
  • the pyrolytic foaming agent an organic foaming agent and an inorganic foaming agent can be used.
  • the thermally decomposable foaming agent those having a decomposition temperature higher than the melting temperature of the resin are usually used. For example, those having a decomposition temperature of 140 to 270 ° C. may be used.
  • organic foaming agents include azodicarbonamide, metal salts of azodicarboxylic acid (such as barium azodicarboxylate), azo compounds such as azobisisobutyronitrile, N, N′-dinitrosopentamethylenetetramine, and the like.
  • azo compounds such as azobisisobutyronitrile, N, N′-dinitrosopentamethylenetetramine, and the like.
  • examples thereof include nitroso compounds, hydrazodicarbonamide, 4,4′-oxybis (benzenesulfonyl hydrazide), hydrazine derivatives such as toluenesulfonyl hydrazide, and semicarbazide compounds such as toluenesulfonyl semicarbazide.
  • the inorganic foaming agent examples include ammonium carbonate, sodium carbonate, ammonium hydrogen carbonate, sodium hydrogen carbonate, ammonium nitrite, sodium borohydride, anhydrous monosodium citrate, and the like.
  • an azo compound is preferable and azodicarbonamide is particularly preferable from the viewpoint of obtaining fine bubbles and from the viewpoints of economy and safety.
  • These pyrolytic foaming agents can be used alone or in combination of two or more.
  • the amount of the thermally decomposable foaming agent in the foamable composition is preferably 0.5 to 20 parts by weight, more preferably 1 to 15 parts by weight, and further preferably 1 to 10 parts by weight with respect to 100 parts by weight of the resin. It is.
  • foamed resin layers that is, foamable compositions
  • foams such as antioxidants, heat stabilizers, colorants, flame retardants, antistatic agents, fillers, and decomposition temperature adjusters as necessary.
  • Additives used in the above may be blended.
  • an antioxidant and a decomposition temperature adjusting agent may be blended.
  • the skin resin layer is formed of a resin composition that does not contain a foaming agent, and may be composed of a single resin, or it may contain an antioxidant, a heat stabilizer, a colorant, a difficult resin.
  • Various additives such as a flame retardant, an antistatic agent, a filler, and a decomposition temperature adjusting agent may be blended. In these, it is preferable to use antioxidant.
  • antioxidant used for the skin resin layer and the foamed resin layer examples include phenolic antioxidants, sulfur-based antioxidants, phosphorus-based antioxidants, and amine-based antioxidants.
  • the content of the antioxidant is preferably 0.1 to 10 parts by mass and more preferably 0.2 to 5 parts by mass with respect to 100 parts by mass of the resin in each of the skin resin layer and the foamed resin layer.
  • Specific examples of the decomposition temperature adjusting agent include zinc oxide, zinc stearate, urea and the like.
  • the content of the decomposition temperature adjusting agent is preferably 0.01 to 5 parts by mass, more preferably 0.1 to 3 parts by mass with respect to 100 parts by mass of the resin in each of the skin resin layer and the foamed resin layer.
  • the multilayer foam sheet according to the first aspect of the present invention is not particularly limited, but is produced, for example, by a method including the following steps (1) to (2).
  • the multilayer sheet is preferably formed by coextrusion. Specifically, a resin, a foaming agent, and other additives that are blended as necessary are supplied to the first extruder and melt-kneaded. From the first extruder, a sheet-like foamable composition (that is, Extrude foamable sheet). Along with this extrusion, a resin constituting the skin resin layer, and other additives blended as necessary are supplied to the second extruder and melt-kneaded, and from the second extruder, a sheet-like resin composition (that is, Resin sheets) may be extruded and laminated to obtain a multilayer sheet.
  • a resin, a foaming agent, and other additives that are blended as necessary are supplied to the first extruder and melt-kneaded.
  • a sheet-like foamable composition that is, Extrude foamable sheet
  • a resin constituting the skin resin layer, and other additives blended as necessary are supplied to the second extruder and melt-kneaded, and from the second ex
  • the multilayer sheet may be formed by a method other than coextrusion.
  • a foam sheet and a resin sheet previously formed into a sheet shape may be pressure-bonded between rolls or the like to form a multilayer sheet.
  • the method of heating the multilayer sheet includes a method of heating the multilayer sheet with hot air, a method of heating with infrared rays, a method of heating with a salt bath, a method of heating with an oil bath, and the like. May be.
  • the heating temperature may be not less than the foaming temperature of the pyrolytic foaming agent, but is preferably 200 to 300 ° C., more preferably 220 to 280 ° C.
  • the multilayer sheet may be stretched during the step (2) or in a subsequent step. That is, the foamable sheet may be expanded to form a multilayer foamed sheet, or may be stretched, or may be stretched while foaming the foamable sheet. In this manufacturing method, it becomes easy to obtain the average cell diameter and inter-cell thickness in the above-described ranges by stretching the multilayer foamed sheet.
  • the multilayer foamed sheet when the multilayer foamed sheet is stretched after foaming the foamable sheet, the multilayer foamed sheet may be stretched while maintaining the molten state during foaming without cooling the multilayer foam sheet, After the multilayer foamed sheet is cooled, the multilayer foamed sheet may be stretched again by heating it to a molten or softened state.
  • the multilayer foam sheet may be stretched in one of MD and TD or in both directions, but is preferably stretched in both directions.
  • the stretching of the multilayer foamed sheet is preferably performed so that the thickness of the multilayer foamed sheet is 0.1 to 0.9 times by stretching, more preferably 0.15 to 0.75 times, and still more preferably 0.00. It is performed so as to be 25 to 0.45 times.
  • the compressive strength and tensile strength of the multilayer foamed sheet are likely to be good.
  • the foamed sheet is prevented from breaking during stretching, or the foaming gas escapes from the foamed resin layer during foaming to significantly reduce the foaming ratio.
  • the multilayer foamed sheet may be heated to, for example, 100 to 280 ° C., preferably 150 to 260 ° C. during stretching.
  • step (1) and step (2) it is preferable to perform a step of cross-linking the multilayer sheet (cross-linking step) between step (1) and step (2).
  • a step of cross-linking the multilayer sheet as a method of crosslinking the multilayer sheet, a method of irradiating the multilayer sheet with ionizing radiation such as electron beam, ⁇ ray, ⁇ ray, ⁇ ray and the like is used.
  • the irradiation amount of the ionizing radiation may be adjusted so that the degree of crosslinking of the resulting multilayer foamed sheet is within the desired range described above, but is preferably 1 to 15 Mrad, more preferably 4 to 13 Mrad. .
  • the method for producing the multilayer foamed sheet is not limited to the method described above, and may be a method other than the above.
  • an organic peroxide may be blended in advance in the foamable composition, and crosslinking may be performed by a method in which the foamable composition is heated to decompose the organic peroxide. Good.
  • the use of the multi-layer foam sheet is not particularly limited, but it is preferably used inside an electronic device, for example. Since the multilayer foam sheet of this aspect is thin, it can be suitably used in thin electronic devices such as various portable electronic devices. Examples of portable electronic devices include notebook personal computers, mobile phones, smartphones, tablets, and portable music devices.
  • the multilayer foamed sheet can be used as an impact absorbing material for absorbing an impact, a sealing material for filling a gap between members, and the like inside an electronic device.
  • the pressure-sensitive adhesive tape includes, for example, a multilayer foam sheet and an adhesive material provided on at least one surface of the multilayer foam sheet.
  • the adhesive tape can be bonded to another member via an adhesive material.
  • the adhesive tape may be one in which an adhesive material is provided on both sides of the multilayer foamed sheet, or one in which an adhesive material is provided on one side.
  • Adhesive tapes can also be used as shock absorbers and sealants.
  • an adhesive material is provided on the surface in which the skin resin layer was provided in a multilayer foamed sheet. With such a configuration, the multilayer foam sheet is less likely to be damaged during rework.
  • the pressure-sensitive adhesive material only needs to have at least a pressure-sensitive adhesive layer, and may be a single pressure-sensitive adhesive layer laminated on the surface of the multilayer foamed sheet, or a double-sided pressure-sensitive adhesive sheet affixed to the surface of the multilayer foamed sheet although it may be, it is preferable that it is a pressure sensitive adhesive layer simple substance.
  • a double-sided adhesive sheet is provided with a base material and the adhesive layer provided in both surfaces of the base material. The double-sided pressure-sensitive adhesive sheet is used for adhering one pressure-sensitive adhesive layer to the multilayer foamed sheet and bonding the other pressure-sensitive adhesive layer to another member.
  • an adhesive which comprises an adhesive layer
  • an acrylic adhesive, a urethane type adhesive, a rubber-type adhesive etc. can be used.
  • a release sheet such as a release paper may be further bonded onto the adhesive material.
  • the thickness of the adhesive material is preferably 5 to 200 ⁇ m, more preferably 7 to 150 ⁇ m, and still more preferably 10 to 100 ⁇ m.
  • the multilayer foamed sheet according to the second aspect of the present invention includes a foamed resin layer and a skin resin layer provided on at least one surface of the foamed resin layer.
  • the foamed resin layer is made of a foam and is provided with a large number of cells made of bubbles. In the foamed resin layer, the cells are separated from each other through a partition made of a matrix resin constituting the foam.
  • the skin resin layer is a resin layer that is non-foamed and does not have cells made of bubbles.
  • the multilayer foam sheet according to the second embodiment may include a foamed resin layer 11 and skin resin layers 12 and 12 laminated on both surfaces thereof, as shown in FIG. 2, the foamed resin layer 11 and the skin resin layer 12 laminated only on one surface thereof may be provided.
  • the skin resin layers 12, 12 are provided on both surfaces. It is preferable to be provided.
  • the thickness of each skin resin layer is larger than the thickness of the matrix resin between cells (hereinafter also simply referred to as “inter-cell thickness”).
  • inter-cell thickness the thickness of each skin resin layer
  • the mechanical strength of the multilayer foamed sheet for example, the tensile strength, the tear strength, and the like becomes good. Therefore, when a multilayer foam sheet is used for an adhesive tape, reworkability becomes favorable.
  • the thickness between cells is the average value of the thickness of the matrix resin (namely, partition wall) between adjacent cells measured by expanding and observing the cross section of a foamed resin layer similarly to the 1st aspect.
  • the layer having no air bubbles (the air bubbles cannot be confirmed in an enlarged photo described later) is the skin resin layer, and the layer having air bubbles is the foamed resin layer, so the boundary between the layer without air bubbles and the layer with air bubbles The distance from the surface of the multilayer foam sheet to the thickness of the skin resin layer.
  • a digital microscope for example, “VHX-900” manufactured by Keyence Corporation
  • an enlarged photograph is taken at a magnification of 500 times, for example, and the boundary between the skin resin layer and the foamed resin layer is confirmed.
  • the thickness of each skin resin layer is preferably 2 to 100 times the thickness between cells.
  • each skin resin layer does not have an unnecessarily thick thickness, and the flexibility, impact absorption, etc. of the multilayer foam sheet can be easily improved.
  • the thickness of each skin resin layer is more preferably 2 to 50 times the thickness between cells, and 2 to 40 times. More preferably it is.
  • the multilayer foam sheet of this embodiment has a thickness of 0.05 to 1.2 mm.
  • the thickness of the multilayer foamed sheet is preferably 0.05 to 1.0 mm, and more preferably 0.08 to 1.0 mm, in order to improve various performances and facilitate use in thinned electronic devices. is there.
  • the thickness of each skin resin layer is 0.01 to 0.15 mm and the thickness of the foam resin layer is 0.03 to 0.95 mm.
  • the thickness of each skin resin layer is more preferably 0.02 to 0.13 mm, and further preferably 0.03 to 0.10 mm.
  • the thickness of the foamed resin layer is more preferably 0.05 to 0.90 mm, and still more preferably 0.06 to 0.50 mm.
  • the thickness of the foamed resin layer is usually larger than the thickness of each skin resin layer, and the thickness of the foamed resin layer is preferably 2 to 20 times the thickness of each skin resin layer, more preferably 2 It is 15 times, more preferably 3 to 10 times.
  • the cell thickness in the foamed resin layer is preferably 1 to 30 ⁇ m.
  • the inter-cell thickness is more preferably 2 to 25 ⁇ m, and further preferably 5 to 20 ⁇ m.
  • the average cell diameter of the bubbles in the foamed resin layer is the same as the average cell diameter in the first aspect.
  • the degree of cross-linking of the skin resin layer is increased. It becomes higher than the degree of crosslinking at the center position in the thickness direction of the resin layer. Due to the high degree of crosslinking, in the foamed resin layer, the bubble diameter in the vicinity of the skin resin layer becomes smaller than the bubble diameter at the center position.
  • the foamed resin layer in the second mode has closed cells, but the closed cell rate in the foamed resin layer is the same as the closed cell rate in the first mode.
  • the apparent density of the whole multilayer foamed sheet is preferably 0.05 ⁇ 0.85g / cm 3, more preferably 0.07 ⁇ 0.80g / cm 3, 0.1 ⁇ 0.60g / More preferably, it is cm 3 .
  • the expansion ratio of the foamed resin layer is not particularly limited, but is preferably 1.5 to 12 cm 3 / g, and more preferably 1.8 to 11 cm 3 / g. The expansion ratio is obtained by measuring the apparent density and calculating the reciprocal thereof. The apparent density is measured according to JIS K7222.
  • the multilayer foamed sheet is preferably cross-linked.
  • the degree of crosslinking of the foamed resin layer is the same as in the first embodiment, and is preferably 15 to 60% by mass, more preferably 20 to 50% by mass.
  • the cross-linking degree of the skin resin layer is preferably larger than the cross-linking degree of the foamed resin layer. Moreover, the crosslinking degree of the skin resin layer is preferably 60% by mass or more, more preferably 63% by mass or more, and further preferably 65% by mass or more.
  • the surface layer that becomes the skin resin layer in the foamable sheet described later is blended with a foaming agent in the same manner as the inner layer that becomes the core resin layer. Or bubbles cannot grow after foaming, and a high-density skin resin layer can be formed.
  • the method for measuring the degree of crosslinking is the same as the method for measuring the degree of crosslinking in the first embodiment.
  • a foaming agent is contained (residual) in the skin resin layer.
  • a foaming agent here is a foaming agent mix
  • the skin resin layer is irradiated with ionizing radiation under predetermined conditions, and the surface layer serving as the skin resin layer is compared with the inner layer. Highly crosslinked.
  • foaming by the foaming agent does not occur in the surface layer, or even if it occurs, bubbles can grow only to the particle size level of the foaming agent.
  • the content of the foaming agent in the skin resin layer is preferably about 0.5 to 20 parts by mass with respect to 100 parts by mass of the resin constituting the skin resin layer. .
  • the preferred range, more preferred range, etc. of the 25% compressive strength of the multilayer foamed sheet are the same as the 25% compressive strength of the first embodiment.
  • the tensile strength of the multilayer foamed sheet is preferably 4 to 30 MPa in MD and 2 to 25 MPa in TD, more preferably 4.5 to 25 MPa in MD, and 2.5 to 20 MPa in TD. By making the tensile strength within these ranges, the mechanical strength of the multilayer foamed sheet can be easily improved.
  • resin As the resin constituting each of the foamed resin layer and the skin resin layer, various resins may be used, and the resins exemplified in the first embodiment are exemplified. Among these, polyolefin resins are preferable.
  • polyolefin resin examples include the resins mentioned in the first embodiment, and preferred resins and the like are the same as those of the polyolefin resin of the first embodiment. That is, examples of the polyolefin resin include a polyethylene resin, a polypropylene resin, and an ethylene-vinyl acetate copolymer. Among these, a polyethylene resin is preferable. Examples of the polyethylene resin include polyethylene resins polymerized with a polymerization catalyst such as a Ziegler-Natta compound, a metallocene compound, and a chromium oxide compound.
  • a polymerization catalyst such as a Ziegler-Natta compound, a metallocene compound, and a chromium oxide compound.
  • the polyethylene resin is preferably linear low density polyethylene.
  • the linear low density polyethylene is obtained by copolymerizing ethylene (for example, 75% by mass or more, preferably 90% by mass or more with respect to the total amount of monomers) and, if necessary, a small amount of ⁇ -olefin. More preferred is linear low density polyethylene.
  • Specific examples of the ⁇ -olefin include propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, and 1-octene.
  • polyethylene resin for example the density of the above-mentioned linear low density polyethylene is preferably 0.870 ⁇ 0.910g / cm 3, more preferably 0.875 ⁇ 0.907g / cm 3, 0.880 ⁇ 0.905g / Cm 3 is more preferable.
  • the polyethylene resin a plurality of polyethylene resins can be used, and a polyethylene resin outside the above-described density range may be added.
  • metallocene compound examples include compounds such as a bis (cyclopentadienyl) metal complex having a structure in which a transition metal is sandwiched between ⁇ -electron unsaturated compounds. More specifically, tetravalent transition metals such as titanium, zirconium, nickel, palladium, hafnium, and platinum have one or more cyclopentadienyl rings or their analogs as ligands (ligands). Can be mentioned. Such metallocene compounds have uniform active site properties and each active site has the same activity.
  • a polymer synthesized using a metallocene compound has high uniformity in molecular weight, molecular weight distribution, composition, composition distribution, etc., so when a sheet containing a polymer synthesized using a metallocene compound is crosslinked, the crosslinking is uniform. Proceed to. Since the uniformly crosslinked sheet is uniformly foamed, the physical properties are easily stabilized. Moreover, since it can extend
  • Examples of the ligand include a cyclopentadienyl ring and an indenyl ring. These cyclic compounds may be substituted with a hydrocarbon group, a substituted hydrocarbon group or a hydrocarbon-substituted metalloid group.
  • Examples of the hydrocarbon group include a methyl group, an ethyl group, various propyl groups, various butyl groups, various amyl groups, various hexyl groups, 2-ethylhexyl groups, various heptyl groups, various octyl groups, various nonyl groups, and various decyl groups. , Various cetyl groups, phenyl groups and the like.
  • the “various” means various isomers including n-, sec-, tert-, and iso-. Moreover, what polymerized the cyclic compound as an oligomer may be used as a ligand. In addition to ⁇ -electron unsaturated compounds, monovalent anion ligands such as chlorine and bromine or divalent anion chelate ligands, hydrocarbons, alkoxides, arylamides, aryloxides, amides, arylamides, phosphides, aryls Phosphide or the like may be used.
  • monovalent anion ligands such as chlorine and bromine or divalent anion chelate ligands, hydrocarbons, alkoxides, arylamides, aryloxides, amides, arylamides, phosphides, aryls Phosphide or the like may be used.
  • metallocene compounds containing tetravalent transition metals and ligands include, for example, cyclopentadienyl titanium tris (dimethylamide), methylcyclopentadienyl titanium tris (dimethylamide), bis (cyclopentadienyl) titanium dichloride, dimethyl And silyltetramethylcyclopentadienyl-t-butylamidozirconium dichloride.
  • the metallocene compound exhibits an action as a catalyst in the polymerization of various olefins by combining with a specific cocatalyst (co-catalyst).
  • cocatalyst include methylaluminoxane (MAO) and boron compounds.
  • the proportion of the cocatalyst used with respect to the metallocene compound is preferably 100,000 to 1,000,000 mole times, more preferably 50 to 5,000 mole times.
  • the above linear low density polyethylene may be used alone, but other polyolefin resins For example, it may be used in combination with other polyolefin resins described below.
  • the ratio of the other polyolefin resin to the linear low density polyethylene (100% by mass) is preferably 40% by mass or less, more preferably 30% by mass or less, and further preferably 20% by mass or less. preferable.
  • Examples of the ethylene-vinyl acetate copolymer used as the polyolefin resin include an ethylene-vinyl acetate copolymer containing 50% by mass or more of ethylene.
  • Examples of the polypropylene resin include polypropylene and a propylene- ⁇ -olefin copolymer containing 50% by mass or more of propylene. These may be used alone or in combination of two or more.
  • ⁇ -olefin constituting the propylene- ⁇ -olefin copolymer examples include ethylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, 1- Among these, ⁇ -olefins having 6 to 12 carbon atoms are preferable.
  • the resin contained in each of the foamed resin layer and the skin resin layer is the same as in the first aspect, and the polyolefin resin is used alone.
  • a resin other than the polyolefin resin may be included.
  • the ratio of the polyolefin resin to the total amount of the resin is preferably 60% by mass or more, more preferably 70% by mass or more, and still more preferably 80% by mass or more.
  • the resin other than the polyolefin resin used in combination with the polyolefin resin include the various resins described above.
  • the difference between the skin resin layer and the foamed resin layer is mainly the degree of crosslinking, and as described later, the steps until the foamable sheet is crosslinked by irradiating with ionizing radiation are common.
  • the material is also the same. Therefore, the resin used for these layers is necessarily the same.
  • the foamed resin layer of this aspect is the same as in the first aspect, and is preferably a foam formed by foaming a foamable composition containing the resin and a foaming agent.
  • the foamed resin layer obtained by foaming is composed of a foam having a large number of cells composed of cells inside, using a resin alone or a resin containing additives as necessary as a matrix resin.
  • the foaming agent is the same as the “foaming agent” in the first aspect.
  • the foamed resin layer that is, the foamable composition is the same as in the first embodiment, and if necessary, an antioxidant, a heat stabilizer, a colorant, a flame retardant, an antistatic agent, a filler, and a decomposition temperature adjustment.
  • Additives commonly used in foams such as agents may be blended. Among these, it is preferable to use an antioxidant and a decomposition temperature adjusting agent. These are the same as in the first embodiment.
  • the method for producing a multilayer foamed sheet according to the present invention comprises the foamed resin layer having a plurality of cells composed of air bubbles and the skin resin layer provided on at least one surface of the foamed resin layer. Is the method. And it includes the step of irradiating with ionizing radiation (for example, electron beam, ⁇ -ray, ⁇ -ray, ⁇ -ray, etc.) and crosslinking so that the degree of crosslinking of the skin resin layer is larger than the degree of crosslinking of the foamed resin layer.
  • ionizing radiation for example, electron beam, ⁇ -ray, ⁇ -ray, ⁇ -ray, etc.
  • the multilayer foam sheet of this embodiment is produced, for example, by a method including the following steps (1) to (3).
  • Step (1) Step of obtaining a foamable sheet comprising a foamable composition containing a resin and a thermally decomposable foaming agent
  • Step (2) The degree of cross-linking of the surface layer that becomes the skin resin layer is the degree of cross-linking of the inner layer that becomes the foamed resin layer
  • the foamable sheet is preferably formed by extrusion. Specifically, a resin, a foaming agent, and other additives blended as necessary are supplied to an extruder and melt-kneaded, and a sheet-like foamable composition (that is, a foamable sheet) is pressed from the extruder. Just put it out.
  • step (2) in order to make the degree of cross-linking of the surface layer of the foamable sheet to be the skin resin layer greater than the degree of cross-linking of the inner layer to be the foamed resin layer, the depth of irradiation dose is reduced by keeping the acceleration voltage low. Since it can suppress, only the crosslinking degree of a surface layer part can be enlarged. Moreover, when the acceleration voltage cannot be suppressed, the depth of irradiation dose can be suppressed by sandwiching a layer that attenuates the electron beam between the foamable sheet and the irradiation port. If it is difficult to control the depth of irradiation and the dose, ionizing radiation may be irradiated multiple times.
  • the first irradiation is performed on the entire sheet, and after the second time, the degree of cross-linking of only the surface layer is improved with a dose that does not cross-link to the inside.
  • the acceleration voltage is preferably 300 to 800 kV, the irradiation amount is preferably 2.5 to 10.0 Mrad, the acceleration voltage is 350 to 600 kV, and the irradiation amount is 3.5 to 8.0 Mrad. preferable.
  • the acceleration voltage after the second time is 50 to 300 kV and the irradiation amount is not particularly limited, but is preferably 4.0 to 15.0 Mrad, the acceleration voltage is 100 to 250 kV, and the irradiation amount is 6.0 to 13.0 Mrad. More preferably.
  • the first irradiation irradiation performed on the entire sheet
  • the second and subsequent irradiations may be performed simultaneously on both sides, or may be performed on each side.
  • the method of heating the foamable sheet includes a method of heating the foamable sheet with hot air, a method of heating with infrared rays, a method of heating with a salt bath, a method of heating with an oil bath, and the like. May be used in combination.
  • the heating temperature may be not less than the foaming temperature of the pyrolytic foaming agent, but is preferably 200 to 300 ° C., more preferably 220 to 280 ° C. Since the surface layer of the foamable sheet has a high degree of crosslinking, even if heated, the foaming agent foams and bubbles cannot grow, and cells due to the bubbles are not formed. On the other hand, when the inner layer is heated, the foaming agent foams to form cells by bubbles. As a result, a skin resin layer and a foamed resin layer are formed.
  • the foamable sheet may be stretched during the step (3) or in a subsequent step. That is, it may be stretched after foaming the foamable sheet, or may be stretched while foaming the foamable sheet. In this manufacturing method, it becomes easy to obtain the average cell diameter and cell thickness in the above-described ranges by stretching the foamable sheet. In addition, in the case of stretching after foaming the foamable sheet, the foamable sheet may be stretched while maintaining the molten state at the time of foaming without cooling the foamable sheet. Thereafter, the foamable sheet may be heated again to be melted or softened and then stretched. The foamable sheet may be stretched in one of MD and TD or in both directions, but is preferably stretched in both directions.
  • the foamable sheet is preferably stretched so that its thickness is 0.1 to 0.9 times, more preferably 0.15 to 0.75 times, and still more preferably 0.25 to 0. Perform to 45 times.
  • the foamable sheet is prevented from breaking during stretching, or the foaming gas escapes from the foamed resin layer during foaming to significantly reduce the foaming ratio.
  • the foamable sheet may be heated to, for example, 100 to 280 ° C., preferably 150 to 260 ° C. during stretching.
  • the use of the multi-layer foamed sheet is the same as in the first embodiment and is not particularly limited. However, it is preferably used inside an electronic device, for example. Since the multilayer foam sheet of this aspect is thin, it can be suitably used in thin electronic devices such as various portable electronic devices. Examples of portable electronic devices include notebook personal computers, mobile phones, smartphones, tablets, and portable music devices.
  • the multilayer foamed sheet can be used as an impact absorbing material for absorbing an impact, a sealing material for filling a gap between members, and the like inside an electronic device.
  • a multilayer foamed sheet is the same as that of the 1st aspect, and may be used for the adhesive tape which uses a multilayer foamed sheet as a base material.
  • the details of the pressure-sensitive adhesive tape, the pressure-sensitive adhesive material, etc. are the same as in the first aspect.
  • Example A and Example B The measurement method and evaluation method of each physical property in Example A and Example B are as follows. ⁇ Average bubble diameter> Cut the multi-layer foam sheet into 50mm square, soak in liquid nitrogen for 1 minute, then cut along the MD and TD in the thickness direction, and use a digital microscope (Keyence Co., Ltd., product name VHX-900) I took a 200x magnified photo. In the foamed resin layer of the photographed image, the bubble diameters of MD and ZD and the bubble diameters of TD and ZD and the bubble diameters of TD and ZD are measured for all the bubbles present on the cut surface of 2 mm in length in each of MD and TD. Repeated times.
  • the average value of the bubble diameters of all the bubbles MD and TD is taken as the average bubble diameter of the MD and TD, and the average value of the bubble diameters of all ZDs measured by the above operation is taken as the average bubble diameter of the ZD. It was. ⁇ Thickness between cells> Moreover, in the foamed resin layer of the 1000 times magnified photograph of the cut cross section cut along the plane along MD and ZD obtained in the same manner as the measurement of the average bubble diameter, the shortest distance between cells adjacent along MD Are measured at three points. The same operation is repeated 5 times, and the average value of a total of 15 points is defined as the intercell thickness in MD.
  • ⁇ Apparent density and expansion ratio> The apparent density was measured according to JIS K7222. The reciprocal of the apparent density was taken as the expansion ratio. ⁇ Closed cell ratio> It was measured according to the method described in the specification. ⁇ 25% compressive strength> The 25% compressive strength was measured according to JIS K6767. ⁇ Tensile strength> The multilayer foamed sheet was cut into dumbbell-shaped No. 1 as defined in JIS K6251 4.1. Using this as a sample, the tensile strength of MD and TD was measured with a tensile tester (product name: Tensilon RTF235, manufactured by A & D) at a measurement temperature of 23 ° C. according to JISK6767.
  • Example B The measurement method and evaluation method of the degree of crosslinking and thickness in Example B are as follows. ⁇ Degree of crosslinking> A surface layer portion (skin layer) sample was obtained by scraping the surface layer of the sheet after electron beam irradiation with a thin film slicer. The remaining part was used as a sample of the foamed resin layer. For these samples, the degree of crosslinking was measured according to the method described in the specification.
  • ⁇ Thickness> The distance from the boundary between the layer without air bubbles (skin resin layer) and the layer with air bubbles (foamed resin layer) to the surface of the multilayer foam sheet is the thickness of the skin resin layer, and the total thickness and the total thickness of the skin resin layers From the difference, the thickness of the foamed resin layer was determined. Specifically, an enlarged photograph was taken at a magnification of 500 times using a digital microscope (manufactured by Keyence Corporation, “VHX-900”).
  • Example A A linear low-density polyethylene resin (trade name “Kernel KF283”, manufactured by Nippon Polyethylene Co., Ltd., density: 0.921 g / cm 3 ) obtained by a polymerization catalyst of a metallocene compound was used as the polyolefin resin.
  • the foamable composition obtained by kneading the supplied components is coextruded from the first extruder, and the resin composition obtained by kneading the supplied components is coextruded from the second extruder.
  • a multilayer sheet was obtained by laminating a 0.10 mm thick resin sheet on both sides of a 0.21 mm thick foamable sheet.
  • the crosslinked multilayer sheet is continuously fed into a foaming furnace maintained at 250 ° C. by hot air and an infrared heater. Was heated and foamed, and then stretched in the MD and TD at 110 ° C. so that the total thickness became the thickness of Table 1, to obtain a multilayer foamed sheet.
  • the obtained multilayer foamed sheet was evaluated according to the above evaluation method. The results are shown in Table 1.
  • Example 1 The resin sheet was not laminated on both sides of the foamable sheet, and the same procedure was performed as in Example 1 except that the thickness of the foamable sheet and the foamed resin layer was adjusted to Table 1. A foam sheet was obtained. Table 1 shows the evaluation results of the obtained foamed sheet.
  • reworkability evaluation refers to whether reworkability when used as an adhesive tape is better than a foamed sheet consisting of a single foamed resin layer with the same compressive strength as the foamed resin layer. This is an index indicating three levels, “3” indicates that it is excellent, “2” indicates that it is good, and “1” indicates that it is comparable.
  • the adhesive tape used for this evaluation laminates
  • the thicknesses of the foamed resin layer and the skin resin layer before foaming mean the thicknesses of the foamable sheet and the resin sheet.
  • Example 1 the foamed resin was maintained while maintaining 25% compressive strength to some extent by laminating skin resin layers thicker than the cell thickness on both sides of the foamed resin layer. Compared with the comparative example 1 which consists of a single layer, tensile strength became favorable. Further, the multilayer foamed sheet of Example 1 was superior to Comparative Example 1 in reworkability when the pressure-sensitive adhesive layer was laminated on one side to form a pressure-sensitive adhesive tape.
  • Example 2 The composition of the foamable composition, each sheet, and the layer thickness were adjusted as shown in Table 2, and the same procedure as in Example 1 was performed to obtain a multilayer foam sheet. The evaluation results of the obtained multilayer foamed sheet are shown in Table 2.
  • Comparative Example 2 The composition of the foamable composition, the foamable sheet, and the thickness of the foamed resin layer were adjusted as shown in Table 2, and the same procedure as in Comparative Example 1 was performed to obtain a foamed sheet. Table 2 shows the evaluation results of the obtained foamed sheet.
  • Example 3 The composition of the foamable composition, each sheet, and the layer thickness were adjusted as shown in Table 3, and the same procedure as in Example 1 was performed to obtain a multilayer foam sheet. The evaluation results of the obtained multilayer foamed sheet are shown in Table 3.
  • Example 4 After changing the composition of the foamable composition as shown in Table 3, it was carried out in the same manner as in Example 1 to obtain a multilayer foamed sheet. The evaluation results of the obtained multilayer foamed sheet are shown in Table 3.
  • Example 5 Example 1 by changing the composition of the foamable composition as shown in Table 3, laminating a resin sheet on one side of the foamable sheet, and adjusting the thickness of each sheet and layer to Table 3.
  • Example B A linear low-density polyethylene resin (trade name “Kernel KF283”, manufactured by Nippon Polyethylene Co., Ltd., density: 0.921 g / cm 3 ) obtained by a polymerization catalyst of a metallocene compound was used as the polyolefin resin.
  • Kernel KF283 manufactured by Nippon Polyethylene Co., Ltd., density: 0.921 g / cm 3
  • both surfaces of the foamable sheet were irradiated with an electron beam with an acceleration voltage of 500 kV for 4.0 Mrad to be crosslinked to the inside, and further, both surfaces of the sheet were irradiated with an electron beam with an acceleration voltage of 100 kV for 10 Mrad to crosslink only the surface layer.
  • stretched to MD and TD at 110 degreeC so that it might become thickness of Table 4.
  • FIG. The stretched multilayer foam sheet was evaluated according to the above evaluation method. The results are shown in Table 4.
  • Example 4 In the irradiation step, a multilayer foam sheet was obtained in the same manner as in Example 6 except that the electron beam having an acceleration voltage of 500 kV was irradiated with 4.0 Mrad to crosslink the inside, and no additional irradiation was performed. Table 4 shows the evaluation results of the obtained foamed sheet.
  • the reworkability evaluation is an adhesive tape compared to a foamed sheet consisting of a single foamed resin layer with the same compressive strength of the foamed resin layer. It is an index that indicates whether or not the reworkability is good in three stages, “3” indicates that it is excellent, “2” indicates that it is good, and “1” indicates that it is comparable.
  • the adhesive tape used for this evaluation laminates
  • Example 7 A foamable sheet was produced in the same manner as in Example 6 except that the composition of the foamable composition, each sheet, and the layer thickness were adjusted as shown in Table 5. The both surfaces were irradiated with an electron beam with an acceleration voltage of 500 kV for 4.0 Mrad and cross-linked to the inside, and then both surfaces of the sheet were irradiated with an electron beam with an acceleration voltage of 120 kV for 10.0 Mrad to crosslink only the surface layer. Thereafter, foaming and stretching were performed in the same manner as in Example 6 to obtain a multilayer foamed sheet. The evaluation results of the obtained multilayer foamed sheet are shown in Table 5.
  • Example 5 In the irradiation step, a multilayer foam sheet was obtained in the same manner as in Example 7 except that 4.0 Mrad of an electron beam with an acceleration voltage of 500 kV was irradiated and crosslinked to the inside, and no additional irradiation was performed. The evaluation results of the obtained multilayer foamed sheet are shown in Table 5.
  • Example 8 A foamable sheet was produced in the same manner as in Example 6 except that the composition of the foamable composition, each sheet, and the layer thickness were adjusted as shown in Table 6. After irradiating an electron beam with an acceleration voltage of 500 kV on the both surfaces for 4.5 Mrad and crosslinking to the inside, the both surfaces of the sheet were further irradiated with an electron beam with an acceleration voltage of 130 kV for 10 Mrad to crosslink only the surface layer. Thereafter, foaming and stretching were performed in the same manner as in Example 6 to obtain a multilayer foamed sheet. Table 6 shows the evaluation results of the obtained multilayer foamed sheet.
  • Example 6 A multilayer foamed sheet was obtained in the same manner as in Example 8 except that in the irradiation step, an electron beam with an acceleration voltage of 500 kV was irradiated by 4.5 Mrad and crosslinked to the inside, and no additional irradiation was performed. Table 6 shows the evaluation results of the obtained multilayer foamed sheet.
  • Example 9 A foamable sheet was prepared in the same manner as in Example 6 except that the composition of the foamable composition, each sheet, and the layer thickness were adjusted as shown in Table 7. After irradiating both surfaces with an electron beam with an acceleration voltage of 500 kV for 4.5 Mrad to crosslink the inside, the both surfaces of the sheet were irradiated with an electron beam with an acceleration voltage of 150 kV for 12 Mrad to crosslink only the surface layer. Thereafter, foaming and stretching were performed in the same manner as in Example 6 to obtain a multilayer foamed sheet. Table 7 shows the evaluation results of the obtained multilayer foamed sheet.
  • Example 7 The composition of the foamable composition, each sheet, and the thickness of each layer are adjusted as shown in Table 4, and the irradiation process is performed by irradiating an electron beam with an acceleration voltage of 500 kV by 4.5 Mrad and crosslinking to the inside.
  • a multilayer foamed sheet was obtained in the same manner as in Example 9 except that the step was not performed.
  • Table 7 shows the evaluation results of the obtained multilayer foamed sheet.
  • Example 10 A multilayer foam sheet was obtained in the same manner as in Example 9 except that stretching was not performed.
  • Table 8 shows the evaluation results of the obtained multilayer foamed sheet.
  • the results of Example 9 are also shown in Table 8.
  • Multilayer foam sheet 11 Foamed resin layer 12 Skin resin layer

Abstract

A multilayer foam sheet having a thickness of 0.05-2.0 mm wherein the multilayer foam sheet is equipped with a foamed resin layer having a plurality of cells consisting of bubbles and a skin resin layer provided on at least one surface of the foamed resin layer, and the skin resin layer is thicker than the thickness of a matrix resin between the cells of the foamed resin layer.

Description

多層発泡シート、多層発泡シートの製造方法、及び粘着テープMultilayer foam sheet, method for producing multilayer foam sheet, and adhesive tape
 本発明は、多層発泡シート、多層発泡シートの製造方法、及び多層発泡シートを備える粘着テープに関する。 The present invention relates to a multilayer foam sheet, a method for producing the multilayer foam sheet, and an adhesive tape including the multilayer foam sheet.
 携帯電話、カメラ、ゲーム機器、電子手帳、パーソナルコンピュータ等の電子機器では、発泡シートがシール材又は衝撃吸収材として広く使用されている。また、発泡シートは、電子機器内部において、例えば少なくとも一方の面に粘着剤を塗布して、粘着テープにして使用されることもある。従来、これら用途において使用される発泡シートとしては、熱分解型発泡剤を含む発泡性ポリオレフィン系樹脂シートを発泡かつ架橋させて得られる架橋ポリオレフィン系樹脂発泡シートが知られている(例えば、特許文献1参照)。 In an electronic device such as a mobile phone, a camera, a game device, an electronic notebook, and a personal computer, a foam sheet is widely used as a sealing material or a shock absorbing material. The foam sheet may be used as an adhesive tape by applying an adhesive on at least one surface, for example, inside an electronic device. Conventionally, as a foam sheet used in these applications, a cross-linked polyolefin resin foam sheet obtained by foaming and cross-linking a foamable polyolefin resin sheet containing a pyrolytic foaming agent is known (for example, Patent Documents). 1).
特開2014-28925号公報JP 2014-28925 A
 近年、電子機器内部で使用される発泡シートは、電子機器の小型化、薄型化が進むことで、薄くすることが要求されており、例えば1.0mm以下とすることもある。しかし、発泡シートは、薄くなると引張強度等の機械強度が低くなりやすいため、例えば、発泡シートを粘着テープとして使用する場合には、リワークする際などに破損されやすくなる。一方で、発泡シートは、機械強度を高めるために発泡倍率を低くすると、衝撃吸収性など、発泡シートが本来有する特性を損なうことがある。 In recent years, foam sheets used in electronic devices have been required to be thin as electronic devices become smaller and thinner, and may be, for example, 1.0 mm or less. However, when the foamed sheet is thin, mechanical strength such as tensile strength tends to be low. For example, when the foamed sheet is used as an adhesive tape, the foamed sheet is easily damaged when reworked. On the other hand, when the expansion ratio is lowered in order to increase the mechanical strength, the foam sheet may impair the properties inherent to the foam sheet, such as impact absorption.
 本発明は、以上の事情に鑑みてなされたものであり、発泡シートを薄くした場合であっても、衝撃吸収性等の発泡シートが本来有する特性を良好に維持しつつ、機械強度が高い発泡シートを提供することを課題とする。 The present invention has been made in view of the above circumstances, and even when the foamed sheet is thinned, foaming with high mechanical strength is achieved while maintaining the properties inherent to the foamed sheet such as shock absorption. It is an object to provide a sheet.
 本発明者らは、鋭意検討した結果、シート厚さを一定の範囲にした多層発泡シートにおいて、発泡樹脂層の少なくとも一方の面に、発泡樹脂層のセル間の厚さよりも厚いスキン層(「スキン樹脂層」ともいう)を設けることで上記課題が解決できることを見出し、以下の本発明を完成させた。
 すなわち、本発明は、厚さが0.05~2.0mmである多層発泡シートであって、気泡からなるセルを複数有する発泡樹脂層と、前記発泡樹脂層の少なくとも一方の面に設けられるスキン樹脂層とを備えるとともに、前記スキン樹脂層が、前記発泡樹脂層のセル間のマトリックス樹脂の厚さよりも厚い多層発泡シートである。また、本発明は、当該多層発泡シートと、前記多層発泡シートの少なくともいずれか一方の面に設けた粘着材とを備える粘着テープである。さらに、本発明は、当該多層発泡シートの製造方法である。
 当該本発明は、主に、下記第1の態様及び第2の態様を含む。
As a result of intensive studies, the inventors of the present invention have found that in a multilayer foam sheet having a sheet thickness within a certain range, a skin layer thicker than the thickness between cells of the foam resin layer (“ It has been found that the above-mentioned problems can be solved by providing a skin resin layer ”, and the following invention has been completed.
That is, the present invention is a multilayer foamed sheet having a thickness of 0.05 to 2.0 mm, a foamed resin layer having a plurality of cells made of cells, and a skin provided on at least one surface of the foamed resin layer A multilayer foamed sheet including a resin layer and the skin resin layer being thicker than a thickness of a matrix resin between cells of the foamed resin layer. Moreover, this invention is an adhesive tape provided with the said multilayer foamed sheet and the adhesive material provided in the at least any one surface of the said multilayer foamed sheet. Furthermore, this invention is a manufacturing method of the said multilayer foamed sheet.
The present invention mainly includes the following first and second aspects.
 本発明の第1の態様は、以下の[1-1]~[1-10]を提供するものである。
[1-1]厚さが0.05~1.0mmである多層発泡シートであって、気泡からなるセルを複数有する発泡樹脂層と、前記発泡樹脂層の少なくとも一方の面に設けられるスキン樹脂層とを備えるとともに、前記スキン樹脂層が、前記発泡樹脂層のセル間のマトリックス樹脂の厚さよりも厚い多層発泡シート。
[1-2]各スキン樹脂層の厚さは、セル間のマトリックス樹脂の厚さの150倍以下である上記[1-1]に記載の多層発泡シート。
[1-3]前記セル間のマトリックス樹脂の厚さが1~30μmである上記[1-1]又は[1-2]に記載の多層発泡シート。
[1-4]前記スキン層それぞれの厚さが、0.01~0.15mmであるとともに、前記発泡樹脂層の厚さが0.03~0.95mmである上記[1-1]~[1-3]のいずれか1項に記載の多層発泡シート。
[1-5]多層発泡シートの見かけ密度が0.15~0.85g/cmである上記[1-1]~[1-4]のいずれか1項に記載の多層発泡シート。
[1-6]前記発泡樹脂層及びスキン樹脂層を構成する樹脂が、ポリオレフィン樹脂を含む上記[1-1]~[1-5]のいずれか1項に記載の多層発泡シート。
[1-7]多層発泡シートの25%圧縮強度が20~1000kPaである上記[1-1]~[1-6]のいずれか1項に記載の多層発泡シート。
[1-8]前記発泡樹脂層が、樹脂と熱分解型発泡剤とを含む発泡性組成物を発泡してなる発泡体である上記[1-1]~[1-7]のいずれか1項に記載の多層発泡シート。
[1-9]上記[1-1]~[1-8]のいずれか1項に記載の多層発泡シートと、前記多層発泡シートの少なくともいずれか一方の面に設けた粘着材とを備える粘着テープ。
[1-10]上記[1-1]~[1-8]のいずれか1項に記載の多層発泡シートの製造方法であって、樹脂と熱分解型発泡剤とを含む発泡性組成物からなる発泡性シートと、樹脂シートとを積層して多層シートを得て、前記多層シートを加熱することで前記発泡性シートを発泡させ、又は、発泡させかつ前記多層シートを延伸する、多層発泡シートの製造方法。
The first aspect of the present invention provides the following [1-1] to [1-10].
[1-1] A multilayer foamed sheet having a thickness of 0.05 to 1.0 mm, a foamed resin layer having a plurality of cells made of cells, and a skin resin provided on at least one surface of the foamed resin layer A multilayer foamed sheet, wherein the skin resin layer is thicker than the thickness of the matrix resin between the cells of the foamed resin layer.
[1-2] The multilayer foamed sheet according to the above [1-1], wherein the thickness of each skin resin layer is 150 times or less the thickness of the matrix resin between cells.
[1-3] The multilayer foamed sheet according to the above [1-1] or [1-2], wherein the thickness of the matrix resin between the cells is 1 to 30 μm.
[1-4] The above [1-1] to [1], wherein the skin layer has a thickness of 0.01 to 0.15 mm and the foamed resin layer has a thickness of 0.03 to 0.95 mm. 1-3] The multilayer foamed sheet according to any one of items 1 to 3.
[1-5] The multilayer foamed sheet according to any one of [1-1] to [1-4] above, wherein the apparent density of the multilayer foamed sheet is 0.15 to 0.85 g / cm 3 .
[1-6] The multilayer foamed sheet according to any one of [1-1] to [1-5] above, wherein the resin constituting the foamed resin layer and the skin resin layer contains a polyolefin resin.
[1-7] The multilayer foamed sheet according to any one of [1-1] to [1-6] above, wherein the 25% compressive strength of the multilayer foamed sheet is 20 to 1000 kPa.
[1-8] Any one of the above [1-1] to [1-7], wherein the foamed resin layer is a foam obtained by foaming a foamable composition containing a resin and a pyrolytic foaming agent. The multilayer foamed sheet according to item.
[1-9] Adhesive comprising the multilayer foamed sheet according to any one of [1-1] to [1-8] above and an adhesive material provided on at least one surface of the multilayer foamed sheet tape.
[1-10] The method for producing a multilayer foamed sheet according to any one of [1-1] to [1-8] above, from a foamable composition containing a resin and a pyrolytic foaming agent A multilayer foamed sheet obtained by laminating a foamable sheet and a resin sheet to obtain a multilayer sheet, and foaming the foamable sheet by heating the multilayer sheet, or foaming and stretching the multilayer sheet Manufacturing method.
 本発明の第2の態様は、以下の[2-1]~[2-12]を提供するものである。
[2-1] 厚さが0.05~1.2mmである多層発泡シートであって、気泡からなるセルを複数有する発泡樹脂層と、前記発泡樹脂層の少なくとも一方の面に設けられるスキン樹脂層とを備えるとともに、前記スキン樹脂層が、前記発泡樹脂層のセル間のマトリックス樹脂の厚さよりも厚い多層発泡シート。
[2-2] 前記スキン樹脂層それぞれの厚さは、セル間のマトリックス樹脂の厚さの2~100倍である[2-1]に記載の多層発泡シート。
[2-3] 前記発泡樹脂層における前記セル間のマトリックス樹脂の厚さが1~30μmである[2-1]又は[2-2]に記載の多層発泡シート。
[2-4] 前記スキン樹脂層それぞれの厚さが、0.01~0.15mmであるとともに、前記発泡樹脂層の厚さが0.03~0.95mmである[2-1]~[2-3]のいずれかに記載の多層発泡シート。
[2-5] 多層発泡シートの見かけ密度が0.05~0.85g/cmである[2-1]~[2-4]のいずれかに記載の多層発泡シート。
[2-6] 前記発泡樹脂層及びスキン樹脂層それぞれを構成する樹脂が、ポリオレフィン樹脂を含む[2-1]~[2-5]のいずれかに記載の多層発泡シート。
[2-7] 多層発泡シートの25%圧縮強度が20~1000kPaである[2-1]~[2-6]のいずれかに記載の多層発泡シート。
[2-8] 前記発泡樹脂層が、樹脂と熱分解型発泡剤とを含む発泡性組成物を発泡してなる発泡体である[2-1]~[2-7]のいずれかに記載の多層発泡シート。
[2-9] 前記スキン樹脂層に発泡剤が含有されてなる[2-1]~[2-8]のいずれかに記載の多層発泡シート。
[2-10] 前記スキン樹脂層の架橋度が前記発泡樹脂層の架橋度よりも大きい[2-1]~[2-9]のいずれかに記載の多層発泡シート。
[2-11] [2-1]~[2-10]のいずれかに記載の多層発泡シートと、前記多層発泡シートの少なくともいずれか一方の面に設けた粘着材とを備える粘着テープ。
[2-12] 気泡からなるセルを複数有する発泡樹脂層と、前記発泡樹脂層の少なくとも一方の面に設けられるスキン樹脂層とを備える、[2-1]~[2-10]のいずれかに記載の多層発泡シートの製造方法であって、前記スキン樹脂層の架橋度が前記発泡樹脂層の架橋度よりも大きくなるように、電離放射線を照射して架橋する、多層発泡シートの製造方法。
The second aspect of the present invention provides the following [2-1] to [2-12].
[2-1] A multilayer foamed sheet having a thickness of 0.05 to 1.2 mm, a foamed resin layer having a plurality of cells made of cells, and a skin resin provided on at least one surface of the foamed resin layer A multilayer foamed sheet, wherein the skin resin layer is thicker than the thickness of the matrix resin between the cells of the foamed resin layer.
[2-2] The multilayer foamed sheet according to [2-1], wherein the thickness of each skin resin layer is 2 to 100 times the thickness of the matrix resin between cells.
[2-3] The multilayer foamed sheet according to [2-1] or [2-2], wherein the thickness of the matrix resin between the cells in the foamed resin layer is 1 to 30 μm.
[2-4] The thickness of each of the skin resin layers is 0.01 to 0.15 mm, and the thickness of the foamed resin layer is 0.03 to 0.95 mm. 2-3].
[2-5] The multilayer foamed sheet according to any one of [2-1] to [2-4], wherein the apparent density of the multilayer foamed sheet is 0.05 to 0.85 g / cm 3 .
[2-6] The multilayer foamed sheet according to any one of [2-1] to [2-5], wherein the resin constituting each of the foamed resin layer and the skin resin layer contains a polyolefin resin.
[2-7] The multilayer foamed sheet according to any one of [2-1] to [2-6], wherein the multilayer foamed sheet has a 25% compressive strength of 20 to 1000 kPa.
[2-8] The foamed resin layer is any one of [2-1] to [2-7], which is a foam obtained by foaming a foamable composition containing a resin and a pyrolytic foaming agent. Multi-layer foam sheet.
[2-9] The multilayer foamed sheet according to any one of [2-1] to [2-8], wherein the skin resin layer contains a foaming agent.
[2-10] The multilayer foamed sheet according to any one of [2-1] to [2-9], wherein the degree of crosslinking of the skin resin layer is larger than the degree of crosslinking of the foamed resin layer.
[2-11] An adhesive tape comprising the multilayer foam sheet according to any one of [2-1] to [2-10] and an adhesive material provided on at least one surface of the multilayer foam sheet.
[2-12] Any one of [2-1] to [2-10], comprising: a foamed resin layer having a plurality of cells made of bubbles; and a skin resin layer provided on at least one surface of the foamed resin layer The method for producing a multilayer foamed sheet according to claim 2, wherein the skin resin layer is crosslinked by irradiation with ionizing radiation so that the degree of crosslinking of the skin resin layer is larger than the degree of crosslinking of the foamed resin layer. .
 本発明によれば、発泡シートを薄くした場合であっても、衝撃吸収性等の発泡シートが本来有する特性を良好に維持しつつ、機械強度が高い発泡シートを提供することが可能になる。 According to the present invention, even when the foamed sheet is thinned, it is possible to provide a foamed sheet with high mechanical strength while maintaining good properties inherent to the foamed sheet such as impact absorbability.
本発明の一実施形態に係る多層発泡シートを示す模式的な断面図である。It is typical sectional drawing which shows the multilayer foamed sheet which concerns on one Embodiment of this invention. 別の一実施形態に係る多層発泡シートを示す模式的な断面図である。It is typical sectional drawing which shows the multilayer foamed sheet which concerns on another one Embodiment.
 本発明は、厚さが0.05~2.0mmである多層発泡シートであって、気泡からなるセルを複数有する発泡樹脂層と、前記発泡樹脂層の少なくとも一方の面に設けられるスキン樹脂層とを備えるとともに、前記スキン樹脂層が、前記発泡樹脂層のセル間のマトリックス樹脂の厚さよりも厚い多層発泡シートである。
 厚さを0.05mm未満とすると、スキン樹脂層、発泡樹脂層の厚さが必要以上に小さくなり、機械強度、衝撃吸収性等の各種機能を良好にすることが難しくなる。また、2.0mmより大きくすると、薄型化された各種電子機器に適用することが特に難しくなるとともに、スキン樹脂層が必要以上に厚くなって、多層発泡シートの衝撃吸収性、柔軟性が損なわれやすくなる。
 本発明は、主に、下記第1の態様及び第2の態様を含む。以下、本発明について、これらの態様に係るそれぞれの実施形態を用いて詳細に説明する。
 なお、第1の態様及び第2の態様は、多層発泡シートにおいて、発泡樹脂層の少なくとも一方の面に、発泡樹脂層のセル間の厚さよりも厚いスキン層を設ける点で共通している。一方で、第1の態様及び第2の態様は、各種の厚さや見かけ密度等の範囲が相違するが、特に、第1の態様は、発泡剤を含有しない樹脂組成物によりスキン層が形成されてなり、第2の態様は、スキン層の架橋度が高くなっており、発泡剤を含有する樹脂組成物によりスキン層が形成されていてもよいという点で相違している。
The present invention is a multilayer foamed sheet having a thickness of 0.05 to 2.0 mm, a foamed resin layer having a plurality of cells made of bubbles, and a skin resin layer provided on at least one surface of the foamed resin layer And the skin resin layer is a multilayer foam sheet thicker than the thickness of the matrix resin between cells of the foam resin layer.
When the thickness is less than 0.05 mm, the thickness of the skin resin layer and the foamed resin layer becomes unnecessarily small, and it is difficult to improve various functions such as mechanical strength and shock absorption. On the other hand, if it is larger than 2.0 mm, it is particularly difficult to apply to various types of thinned electronic devices, and the skin resin layer becomes thicker than necessary, and the impact absorbability and flexibility of the multilayer foam sheet are impaired. It becomes easy.
The present invention mainly includes the following first and second aspects. Hereinafter, the present invention will be described in detail using respective embodiments according to these aspects.
In addition, the 1st aspect and the 2nd aspect are common in the point which provides a skin layer thicker than the thickness between the cells of a foamed resin layer in the multilayer foamed sheet in the at least one surface of a foamed resin layer. On the other hand, the first aspect and the second aspect are different in ranges such as various thicknesses and apparent densities. In particular, in the first aspect, the skin layer is formed of a resin composition not containing a foaming agent. Thus, the second aspect is different in that the degree of crosslinking of the skin layer is high and the skin layer may be formed of a resin composition containing a foaming agent.
[1]第1の態様
[多層発泡シート]
 本発明の第1の態様に係る多層発泡シートは、発泡樹脂層と、発泡樹脂層の少なくとも一方の面に設けられるスキン樹脂層と備える。発泡樹脂層は、発泡体により構成され、気泡よりなる多数のセルが設けられる。発泡樹脂層において、セルとセルの間は、発泡体を構成するマトリックス樹脂よりなる隔壁を介して隔てられている。スキン樹脂層は、非発泡体であり、気泡よりなるセルを有しない樹脂層である。
[1] First embodiment [Multilayer foam sheet]
The multilayer foamed sheet according to the first aspect of the present invention includes a foamed resin layer and a skin resin layer provided on at least one surface of the foamed resin layer. The foamed resin layer is made of a foam and is provided with a large number of cells made of bubbles. In the foamed resin layer, the cells are separated from each other through a partition made of a matrix resin constituting the foam. The skin resin layer is a resin layer that is non-foamed and does not have cells made of bubbles.
 図1に示すように、多層発泡シート10は、発泡樹脂層11と、その両面に積層されたスキン層12、12を備えるものでもよいし、図2に示すように、発泡樹脂層11と、その一方の面のみに積層されるスキン樹脂層12を備えるものでよいが、図1に示すように、両面にスキン樹脂層12、12が設けられることが好ましい。両面にスキン層12を設けることで、多層発泡シート10の機械強度を高めやすくなる。
 スキン樹脂層12は、後述する共押出等により、発泡樹脂層11に直接積層することが好ましいが、本発明の効果を阻害しない範囲で、接着剤層等の他の層を介して発泡樹脂層11に積層してもよい。
As shown in FIG. 1, the multilayer foamed sheet 10 may include a foamed resin layer 11 and skin layers 12 and 12 laminated on both surfaces thereof. As shown in FIG. 2, as shown in FIG. Although the skin resin layer 12 laminated | stacked only on the one surface may be provided, as shown in FIG. 1, it is preferable that the skin resin layers 12 and 12 are provided in both surfaces. By providing the skin layers 12 on both surfaces, the mechanical strength of the multilayer foamed sheet 10 can be easily increased.
The skin resin layer 12 is preferably laminated directly on the foamed resin layer 11 by coextrusion or the like to be described later, but the foamed resin layer is interposed via another layer such as an adhesive layer as long as the effect of the present invention is not impaired. 11 may be laminated.
 以下、多層発泡シートについてより詳細に説明する。
(厚さ)
 本態様では、各スキン樹脂層の厚さが、セル間のマトリックス樹脂の厚さ(以下、単に“セル間厚さ”ともいう)よりも大きくなる。各スキン樹脂層の厚さをセル間厚さよりも大きくすることで、多層発泡シートの機械強度、例えば、引張強度、引裂き強度等が良好になる。そのため、多層発泡シートを粘着テープに使用したときにはリワーク性が良好となる。
 なお、セル間厚さとは、後述する実施例で詳述するように、発泡樹脂層の断面を拡大して観察して測定した、隣接するセル間のマトリックス樹脂(すなわち、隔壁)の厚さの平均値をいう。
Hereinafter, the multilayer foamed sheet will be described in more detail.
(thickness)
In this embodiment, the thickness of each skin resin layer is larger than the thickness of the matrix resin between cells (hereinafter also simply referred to as “inter-cell thickness”). By making the thickness of each skin resin layer larger than the thickness between cells, the mechanical strength of the multilayer foamed sheet, for example, the tensile strength, the tear strength, and the like becomes good. Therefore, when a multilayer foam sheet is used for an adhesive tape, reworkability becomes favorable.
In addition, the thickness between cells is the thickness of the matrix resin between adjacent cells (that is, the partition wall) measured by magnifying and observing the cross section of the foamed resin layer, as will be described in detail in Examples described later. Mean value.
 また、各スキン樹脂層の厚さは、セル間厚さの150倍以下であることが好ましい。150倍以下とすることで、各スキン樹脂層は、必要以上の厚さにならずに、多層発泡シートの柔軟性、衝撃吸収性等を良好にしやすくなる。また、機械強度、柔軟性、衝撃吸収性をバランスよく良好にする観点から、各スキン樹脂層の厚さは、セル間厚さの2~120倍であることがより好ましく、2.5~100倍であることがさらに好ましい。 Also, the thickness of each skin resin layer is preferably 150 times or less of the thickness between cells. By setting it to 150 times or less, each skin resin layer does not have an unnecessarily thick thickness, and it becomes easy to improve the flexibility and impact absorption of the multilayer foam sheet. Further, from the viewpoint of improving the mechanical strength, flexibility and shock absorption in a well-balanced manner, the thickness of each skin resin layer is more preferably 2 to 120 times the thickness between cells, preferably 2.5 to 100. More preferably, it is double.
 また、本態様の多層発泡シートは、その厚さが0.05~1.0mmとなるものである。多層発泡シートは、厚さを0.05mm未満とすると、スキン樹脂層、発泡樹脂層の厚さが必要以上に小さくなり、機械強度、衝撃吸収性等の各種機能を良好にすることが難しくなる。また、1.0mmより大きくすると、薄型化された各種電子機器に適用することが難しくなるとともに、スキン樹脂層が必要以上に厚くなって、多層発泡シートの衝撃吸収性、柔軟性が損なわれやすくなる。
 多層発泡シートの厚さは、各種性能を良好にしつつ、薄型化された電子機器に使用しやすくするために、好ましくは0.1~1.0mm、より好ましくは0.12~0.40mmである。
Further, the multilayer foam sheet of this embodiment has a thickness of 0.05 to 1.0 mm. When the thickness of the multilayer foam sheet is less than 0.05 mm, the thickness of the skin resin layer and the foam resin layer becomes unnecessarily small, and it becomes difficult to improve various functions such as mechanical strength and shock absorption. . On the other hand, when the thickness is larger than 1.0 mm, it is difficult to apply to various thinned electronic devices, and the skin resin layer becomes thicker than necessary, and the impact absorbability and flexibility of the multilayer foam sheet are easily impaired. Become.
The thickness of the multilayer foamed sheet is preferably 0.1 to 1.0 mm, more preferably 0.12 to 0.40 mm, in order to improve various performances and facilitate use in thinned electronic devices. is there.
 また、多層発泡シートにおいて、各スキン樹脂層の厚さが0.01~0.15mmであるとともに、発泡樹脂層の厚さが0.03~0.95mmであることが好ましい。スキン樹脂層及び発泡樹脂層の厚さを上記範囲内とすることで、機械強度、柔軟性、衝撃吸収性をバランスよく良好にしやすくなる。また、各スキン樹脂層の厚さは、0.02~0.09mmがより好ましく、0.03~0.06mmがさらに好ましい。一方で、発泡樹脂層の厚さは、より好ましくは0.05~0.90mm、さらに好ましくは0.06~0.30mmである。なお、発泡樹脂層の厚さは、通常、スキン樹脂層それぞれの厚さよりも大きくなり、発泡樹脂層の厚さは、スキン樹脂層それぞれの厚さの2~20倍が好ましく、より好ましくは2~15倍、さらに好ましくは3~10倍である。 Further, in the multilayer foam sheet, it is preferable that the thickness of each skin resin layer is 0.01 to 0.15 mm and the thickness of the foam resin layer is 0.03 to 0.95 mm. By making the thickness of the skin resin layer and the foamed resin layer within the above ranges, it becomes easy to improve the mechanical strength, flexibility, and shock absorption in a well-balanced manner. Further, the thickness of each skin resin layer is more preferably 0.02 to 0.09 mm, and further preferably 0.03 to 0.06 mm. On the other hand, the thickness of the foamed resin layer is more preferably 0.05 to 0.90 mm, and still more preferably 0.06 to 0.30 mm. The thickness of the foamed resin layer is usually larger than the thickness of each skin resin layer, and the thickness of the foamed resin layer is preferably 2 to 20 times the thickness of each skin resin layer, more preferably 2 It is 15 times, more preferably 3 to 10 times.
(セル間厚さ)
 発泡樹脂層におけるセル間厚さは、1~30μmであることが好ましい。セル間厚さをこのような範囲内とすることで、機械強度、柔軟性、衝撃吸収性をバランスよく良好にしやすくなる。これらの観点から、セル間厚さは、2~25μmがより好ましく、5~20がさらに好ましい。
(Thickness between cells)
The cell thickness in the foamed resin layer is preferably 1 to 30 μm. By setting the inter-cell thickness within such a range, the mechanical strength, flexibility, and shock absorption can be easily improved in a well-balanced manner. From these viewpoints, the inter-cell thickness is more preferably 2 to 25 μm, and further preferably 5 to 20.
(平均気泡径)
 発泡樹脂層における気泡の平均気泡径は、好ましくはMDにおいて30~350μm、TDにおいて30~400μm、ZDにおいて10~150μmとなるものである。また、発泡樹脂層における気泡の平均気泡径は、より好ましくは、MDにおいて60~300μm、TDにおいて60~300μm、ZDにおいて15~70μmとなるものである。
 また、気泡のZDの平均気泡径に対するMDの平均気泡径の比(以下、“MD/ZD”ともいう)が1.2~8であるとともに、ZDの平均気泡径に対するTDの平均気泡径の比(以下、“TD/ZD”ともいう)が1.5~9であることが好ましい。さらには、MD/ZDが1.5~7、TD/ZDが1.5~7であることがより好ましい。
 平均気泡径及び平均気泡径の比を上記範囲内とすると、多層発泡シートの柔軟性、衝撃吸収性等が良好となりやすい。
 なお、MDは、Machine directionを意味し、押出方向等と一致する方向であるとともに、TDは、Transverse directionを意味し、MDに直交する方向であり、多層発泡シートのシート面に平行な方向である。また、ZDは、多層発泡シートの厚さ方向であり、MD及びTDのいずれにも垂直な方向である。
(Average bubble diameter)
The average cell diameter of the bubbles in the foamed resin layer is preferably 30 to 350 μm in MD, 30 to 400 μm in TD, and 10 to 150 μm in ZD. Further, the average cell diameter of the bubbles in the foamed resin layer is more preferably 60 to 300 μm in MD, 60 to 300 μm in TD, and 15 to 70 μm in ZD.
The ratio of the average bubble diameter of MD to the average bubble diameter of bubbles ZD (hereinafter also referred to as “MD / ZD”) is 1.2 to 8, and the average bubble diameter of TD with respect to the average bubble diameter of ZD The ratio (hereinafter also referred to as “TD / ZD”) is preferably 1.5 to 9. More preferably, MD / ZD is 1.5 to 7, and TD / ZD is 1.5 to 7.
When the ratio of the average cell diameter and the average cell diameter is within the above range, the flexibility and impact absorbability of the multilayer foam sheet are likely to be good.
In addition, MD means Machine direction and is a direction that coincides with the extrusion direction and the like, and TD means Transverse direction and is a direction orthogonal to MD and is a direction parallel to the sheet surface of the multilayer foam sheet. is there. ZD is the thickness direction of the multilayer foamed sheet, and is the direction perpendicular to both MD and TD.
(独立気泡率)
 発泡樹脂層は、独立気泡を有するものであり、独立気泡率が70%以上となるものである。このように、発泡樹脂層の内部に包含された気泡は概ね独立気泡となり、衝撃吸収性等を良好にしやすくなる。独立気泡率は、好ましくは80%以上、より好ましくは90~100%である。なお、独立気泡率は、ASTM  D2856(1998)に準拠して求めることができる。
(Closed cell rate)
The foamed resin layer has closed cells, and the closed cell rate is 70% or more. As described above, the bubbles included in the foamed resin layer are generally closed cells, and it is easy to improve the shock absorption and the like. The closed cell ratio is preferably 80% or more, more preferably 90 to 100%. The closed cell ratio can be determined according to ASTM D2856 (1998).
 独立気泡率は、より詳細には下記の要領で測定できる。
 まず、発泡樹脂層から一辺が5cmの平面正方形状の試験片を切り出す。そして、試験片の厚さを測定して試験片の見掛け体積V1を算出すると共に、試験片の重量W1を測定する。
 次に、気泡の占める体積V2を下記式に基づいて算出する。なお、試験片を構成しているマトリックス樹脂の密度はρ(g/cm3)とする。
  気泡の占める体積V2=V1-W1/ρ
 続いて、試験片を23℃の蒸留水中に水面から100mmの深さに沈めて、試験片に15kPaの圧力を3分間に亘って加える。その後、水中で加圧から解放し、1分間静置した後、試験片を水中から取り出して試験片の表面に付着した水分を除去して試験片の重量W2を測定し、下記式に基づいて連続気泡率F1及び独立気泡率F2を算出する。
  連続気泡率F1(%)=100×(W2-W1)/V2
  独立気泡率F2(%)=100-F1
The closed cell ratio can be measured in more detail as follows.
First, a flat square test piece having a side of 5 cm is cut out from the foamed resin layer. Then, the thickness of the test piece is measured to calculate the apparent volume V 1 of the test piece, and the weight W 1 of the test piece is measured.
Next, the volume V 2 occupied by the bubbles is calculated based on the following formula. The density of the matrix resin constituting the test piece is ρ (g / cm 3 ).
Volume occupied by bubbles V 2 = V 1 −W 1 / ρ
Subsequently, the test piece is submerged in distilled water at 23 ° C. to a depth of 100 mm from the water surface, and a pressure of 15 kPa is applied to the test piece over 3 minutes. Then, after releasing from pressurization in water and allowing to stand for 1 minute, the test piece is taken out of the water, the water adhering to the surface of the test piece is removed, and the weight W 2 of the test piece is measured. The open cell rate F 1 and the closed cell rate F 2 are calculated.
Open cell ratio F 1 (%) = 100 × (W 2 −W 1 ) / V 2
Closed cell ratio F 2 (%) = 100−F 1
(見かけ密度、発泡倍率)
 多層発泡シート全体の見かけ密度は、0.15~0.85g/cm3であることが好ましく、0.20~0.80g/cm3であることがより好ましく、0.20~0.60g/cm3であることがさらに好ましい。多層発泡シートの見かけ密度を上記範囲内とすることで、多層発泡シートの柔軟性、機械強度等を適切にし、多層発泡シートの衝撃吸収性を良好にしやすくなる。
 また、発泡樹脂層の発泡倍率は、特に限定されないが、1.5~10cm3/gであることが好ましく、1.8~8.0cm3/gであることがより好ましい。
 なお、発泡倍率は、見かけ密度を測定してその逆数を求めたものである。また、見かけ密度は、JIS K7222に準拠して測定したものである。
(Apparent density, expansion ratio)
The apparent density of the whole multilayer foamed sheet is preferably 0.15 ~ 0.85g / cm 3, more preferably 0.20 ~ 0.80g / cm 3, 0.20 ~ 0.60g / More preferably, it is cm 3 . By setting the apparent density of the multilayer foamed sheet within the above range, the flexibility and mechanical strength of the multilayer foamed sheet can be made appropriate, and the impact absorbability of the multilayer foamed sheet can be easily improved.
The expansion ratio of the foamed resin layer is not particularly limited, but is preferably 1.5 to 10 cm 3 / g, and more preferably 1.8 to 8.0 cm 3 / g.
The expansion ratio is obtained by measuring the apparent density and calculating the reciprocal thereof. The apparent density is measured according to JIS K7222.
(架橋度)
 多層発泡シートは、架橋されたものが好ましい。具体的には、発泡樹脂層及びスキン樹脂層の架橋度はそれぞれ、好ましくは15~60質量%、より好ましくは20~50質量%である。発泡樹脂層及びスキン樹脂層の架橋度を上記範囲内とすることで、多層発泡シートの機械強度、柔軟性、衝撃吸収性等を良好にしやすくなる。また、発泡樹脂層における発泡を適切に行うことが可能になる。なお、架橋度の測定方法は、以下のとおりである。
 スキン樹脂層、発泡樹脂層それぞれから約100mgの試験片を採取し、試験片の重量A(mg)を精秤する。次に、この試験片を120℃のキシレン30cm中に浸漬して24時間放置した後、200メッシュの金網で濾過して金網上の不溶解分を採取、真空乾燥し、不溶解分の重量B(mg)を精秤する。得られた値から、下記式により架橋度(質量%)を算出した。
      架橋度(質量%)=100×(B/A)
(Crosslinking degree)
The multilayer foamed sheet is preferably cross-linked. Specifically, the degree of cross-linking of the foamed resin layer and the skin resin layer is preferably 15 to 60% by mass, more preferably 20 to 50% by mass, respectively. By setting the degree of cross-linking of the foamed resin layer and the skin resin layer within the above range, the mechanical strength, flexibility, impact absorption, etc. of the multilayer foamed sheet can be easily improved. Further, it is possible to appropriately perform foaming in the foamed resin layer. In addition, the measuring method of a crosslinking degree is as follows.
About 100 mg of a test piece is taken from each of the skin resin layer and the foamed resin layer, and the weight A (mg) of the test piece is precisely weighed. Next, this test piece was immersed in 30 cm 3 of xylene at 120 ° C. and allowed to stand for 24 hours, then filtered through a 200-mesh wire mesh to collect the insoluble matter on the wire mesh, vacuum dried, and the weight of the insoluble matter. Weigh B (mg) precisely. From the obtained value, the degree of crosslinking (% by mass) was calculated by the following formula.
Crosslinking degree (% by mass) = 100 × (B / A)
(25%圧縮強度)
 多層発泡シートの25%圧縮強度は、20~1000kPaであることが好ましい。20kPa以上とすることで機械強度が良好となり、1000kPa以下とすることで多層発泡シートの柔軟性、衝撃吸収性等が良好になる。多層発泡シートの25%圧縮強度は、30~800kPaであることがより好ましい。
(25% compressive strength)
The 25% compressive strength of the multilayer foamed sheet is preferably 20 to 1000 kPa. By setting it as 20 kPa or more, mechanical strength becomes favorable, and by setting it as 1000 kPa or less, the softness | flexibility of a multilayer foamed sheet, impact absorption property, etc. become favorable. The 25% compressive strength of the multilayer foam sheet is more preferably 30 to 800 kPa.
(引張り強度)
 多層発泡シートの引張り強度は、MDにおいて5~30MPa、TDにおいて5~25MPaであることが好ましく、MDにおいて10~25MPa、TDにおいて8~20MPaであることがより好ましい。引張り強度をこれら範囲とすることで、多層発泡シートの機械強度を良好にしやすくなる。なお、本発明において多層発泡シートの25%圧縮強度、引張り強度はJISK6767の方法に従って測定したものである。
(Tensile strength)
The tensile strength of the multilayer foamed sheet is preferably 5 to 30 MPa in MD and 5 to 25 MPa in TD, more preferably 10 to 25 MPa in MD and 8 to 20 MPa in TD. By making the tensile strength within these ranges, the mechanical strength of the multilayer foamed sheet can be easily improved. In the present invention, the 25% compressive strength and tensile strength of the multilayer foamed sheet are measured according to the method of JIS K6767.
[樹脂]
 発泡樹脂層及びスキン樹脂層それぞれを構成する樹脂としては、各種の樹脂を使用すればよいが、例えば、ポリオレフィン樹脂、ポリアミド樹脂、ポリカーボネート樹脂、ポリエステル樹脂の他、エチレンプロピレンジエンゴム(EPDM)などのオレフィン系エラストマー、水添スチレン系熱可塑性エラストマー(SEBS)等のエラストマー樹脂を用いることもできる。
[resin]
Various resins may be used as the resin constituting each of the foamed resin layer and the skin resin layer. For example, polyolefin resin, polyamide resin, polycarbonate resin, polyester resin, ethylene propylene diene rubber (EPDM), etc. Elastomer resins such as olefin elastomers and hydrogenated styrene thermoplastic elastomers (SEBS) can also be used.
(ポリオレフィン樹脂)
 ポリオレフィン樹脂としては、ポリエチレン樹脂、ポリプロピレン樹脂、エチレン-酢酸ビニル共重合体等が挙げられ、これらの中ではポリエチレン樹脂が好ましい。ポリエチレン樹脂としては、チーグラー・ナッタ化合物、メタロセン化合物、酸化クロム化合物等の重合触媒で重合されたポリエチレン樹脂が挙げられる。
(Polyolefin resin)
Examples of the polyolefin resin include polyethylene resin, polypropylene resin, and ethylene-vinyl acetate copolymer. Among these, polyethylene resin is preferable. Examples of the polyethylene resin include polyethylene resins polymerized with a polymerization catalyst such as a Ziegler-Natta compound, a metallocene compound, and a chromium oxide compound.
 また、ポリエチレン樹脂としては、直鎖状低密度ポリエチレンが好ましい。直鎖状低密度ポリエチレンを用いることにより、多層発泡シートに高い柔軟性を与えるとともに、発泡樹脂層、スキン樹脂層の薄肉化が可能になる。また、直鎖状低密度ポリエチレンは、エチレン(例えば、全モノマー量に対して75質量%以上、好ましくは90質量%以上)と必要に応じて少量のα-オレフィンとを共重合することにより得られる直鎖状低密度ポリエチレンがより好ましい。
 α-オレフィンとして、具体的には、プロピレン、1-ブテン、1-ペンテン、4-メチル-1-ペンテン、1-ヘキセン、1-ヘプテン、及び1-オクテン等が挙げられる。
なかでも、炭素数4~10のα-オレフィンが好ましい。
 ポリエチレン樹脂、例えば上記した直鎖状低密度ポリエチレンの密度は、0.870~0.910g/cmが好ましく、0.875~0.907g/cmがより好ましく、0.880~0.905g/cmが更に好ましい。ポリエチレン樹脂としては、複数のポリエチレン樹脂を用いることもでき、また、上記した密度範囲以外のポリエチレン樹脂を加えてもよい。
The polyethylene resin is preferably linear low density polyethylene. By using the linear low density polyethylene, it is possible to give the multilayer foamed sheet high flexibility and to reduce the thickness of the foamed resin layer and the skin resin layer. The linear low density polyethylene is obtained by copolymerizing ethylene (for example, 75% by mass or more, preferably 90% by mass or more with respect to the total amount of monomers) and, if necessary, a small amount of α-olefin. More preferred is linear low density polyethylene.
Specific examples of the α-olefin include propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, and 1-octene.
Of these, α-olefins having 4 to 10 carbon atoms are preferred.
Polyethylene resin, for example the density of the above-mentioned linear low density polyethylene is preferably 0.870 ~ 0.910g / cm 3, more preferably 0.875 ~ 0.907g / cm 3, 0.880 ~ 0.905g / Cm 3 is more preferable. As the polyethylene resin, a plurality of polyethylene resins can be used, and a polyethylene resin outside the above-described density range may be added.
(メタロセン化合物)
 メタロセン化合物としては、遷移金属をπ電子系の不飽和化合物で挟んだ構造を有するビス(シクロペンタジエニル)金属錯体等の化合物を挙げることができる。より具体的には、チタン、ジルコニウム、ニッケル、パラジウム、ハフニウム、及び白金等の四価の遷移金属に、1又は2以上のシクロペンタジエニル環又はその類縁体がリガンド(配位子)として存在する化合物を挙げることができる。
 このようなメタロセン化合物は、活性点の性質が均一であり各活性点が同じ活性度を備えている。メタロセン化合物を用いて合成した重合体は、分子量、分子量分布、組成、組成分布等の均一性が高いため、メタロセン化合物を用いて合成した重合体を含むシートを架橋した場合には、架橋が均一に進行する。均一に架橋されたシートは、均一に発泡されるため、物性を安定させやすくなる。また、均一に延伸できるため、発泡樹脂層、スキン樹脂層の厚さを均一にできる。
(Metallocene compound)
Examples of the metallocene compound include compounds such as a bis (cyclopentadienyl) metal complex having a structure in which a transition metal is sandwiched between π-electron unsaturated compounds. More specifically, tetravalent transition metals such as titanium, zirconium, nickel, palladium, hafnium, and platinum have one or more cyclopentadienyl rings or their analogs as ligands (ligands). Can be mentioned.
Such metallocene compounds have uniform active site properties and each active site has the same activity. A polymer synthesized using a metallocene compound has high uniformity in molecular weight, molecular weight distribution, composition, composition distribution, etc., so when a sheet containing a polymer synthesized using a metallocene compound is crosslinked, the crosslinking is uniform. Proceed to. Since the uniformly crosslinked sheet is uniformly foamed, the physical properties are easily stabilized. Moreover, since it can extend | stretch uniformly, the thickness of a foamed resin layer and a skin resin layer can be made uniform.
 リガンドとしては、例えば、シクロペンタジエニル環、インデニル環等を挙げることができる。これらの環式化合物は、炭化水素基、置換炭化水素基又は炭化水素-置換メタロイド基により置換されていてもよい。炭化水素基としては、例えば、メチル基、エチル基、各種プロピル基、各種ブチル基、各種アミル基、各種ヘキシル基、2-エチルヘキシル基、各種ヘプチル基、各種オクチル基、各種ノニル基、各種デシル基、各種セチル基、フェニル基等が挙げられる。なお、「各種」とは、n-、sec-、tert-、iso-を含む各種異性体を意味する。
 また、環式化合物をオリゴマーとして重合したものをリガンドとして用いてもよい。
 更に、π電子系の不飽和化合物以外にも、塩素や臭素等の一価のアニオンリガンド又は二価のアニオンキレートリガンド、炭化水素、アルコキシド、アリールアミド、アリールオキシド、アミド、アリールアミド、ホスフィド、アリールホスフィド等を用いてもよい。
Examples of the ligand include a cyclopentadienyl ring and an indenyl ring. These cyclic compounds may be substituted with a hydrocarbon group, a substituted hydrocarbon group or a hydrocarbon-substituted metalloid group. Examples of the hydrocarbon group include a methyl group, an ethyl group, various propyl groups, various butyl groups, various amyl groups, various hexyl groups, 2-ethylhexyl groups, various heptyl groups, various octyl groups, various nonyl groups, and various decyl groups. , Various cetyl groups, phenyl groups and the like. The “various” means various isomers including n-, sec-, tert-, and iso-.
Moreover, what polymerized the cyclic compound as an oligomer may be used as a ligand.
In addition to π-electron unsaturated compounds, monovalent anion ligands such as chlorine and bromine or divalent anion chelate ligands, hydrocarbons, alkoxides, arylamides, aryloxides, amides, arylamides, phosphides, aryls Phosphide or the like may be used.
 四価の遷移金属やリガンドを含むメタロセン化合物としては、例えば、シクロペンタジエニルチタニウムトリス(ジメチルアミド)、メチルシクロペンタジエニルチタニウムトリス(ジメチルアミド)、ビス(シクロペンタジエニル)チタニウムジクロリド、ジメチルシリルテトラメチルシクロペンタジエニル-t-ブチルアミドジルコニウムジクロリド等が挙げられる。
 メタロセン化合物は、特定の共触媒(助触媒)と組み合わせることにより、各種オレフィンの重合の際に触媒としての作用を発揮する。具体的な共触媒としては、メチルアルミノキサン(MAO)、ホウ素系化合物等が挙げられる。なお、メタロセン化合物に対する共触媒の使用割合は、10~100万モル倍が好ましく、50~5,000モル倍がより好ましい。
 発泡樹脂層、スキン樹脂層それぞれに含まれるポリオレフィン樹脂として、上記した直鎖状低密度ポリエチレンを使用する場合、上記の直鎖状低密度ポリエチレンを単独で使用してもよいが、他のポリオレフィン樹脂と併用してもよく、例えば、以下に述べる他のポリオレフィン樹脂と併用してもよい。他のポリオレフィン樹脂を併用する場合、直鎖状低密度ポリエチレン(100質量%)に対する他のポリオレフィン樹脂の割合は、40質量%以下が好ましく、30質量%以下がより好ましく、20質量%以下が更に好ましい。
Examples of metallocene compounds containing tetravalent transition metals and ligands include, for example, cyclopentadienyl titanium tris (dimethylamide), methylcyclopentadienyl titanium tris (dimethylamide), bis (cyclopentadienyl) titanium dichloride, dimethyl And silyltetramethylcyclopentadienyl-t-butylamidozirconium dichloride.
The metallocene compound exhibits an action as a catalyst in the polymerization of various olefins by combining with a specific cocatalyst (co-catalyst). Specific examples of the cocatalyst include methylaluminoxane (MAO) and boron compounds. The proportion of the cocatalyst used with respect to the metallocene compound is preferably 100,000 to 1,000,000 mole times, more preferably 50 to 5,000 mole times.
When the above linear low density polyethylene is used as the polyolefin resin contained in each of the foamed resin layer and the skin resin layer, the above linear low density polyethylene may be used alone, but other polyolefin resins For example, it may be used in combination with other polyolefin resins described below. When other polyolefin resin is used in combination, the ratio of the other polyolefin resin to the linear low density polyethylene (100% by mass) is preferably 40% by mass or less, more preferably 30% by mass or less, and further preferably 20% by mass or less. preferable.
 ポリオレフィン樹脂として使用するエチレン-酢酸ビニル共重合体は、例えば、エチレンを50質量%以上含有するエチレン-酢酸ビニル共重合体が挙げられる。
 また、ポリプロピレン樹脂としては、例えば、ポリプロピレン、プロピレンを50質量%以上含有するプロピレン-α-オレフィン共重合体等が挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
 プロピレン-α-オレフィン共重合体を構成するα-オレフィンとしては、具体的には、エチレン、1-ブテン、1-ペンテン、4-メチル-1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン等が挙げることができ、これらの中では、炭素数6~12のα-オレフィンが好ましい。
Examples of the ethylene-vinyl acetate copolymer used as the polyolefin resin include an ethylene-vinyl acetate copolymer containing 50% by mass or more of ethylene.
Examples of the polypropylene resin include polypropylene and a propylene-α-olefin copolymer containing 50% by mass or more of propylene. These may be used alone or in combination of two or more.
Specific examples of the α-olefin constituting the propylene-α-olefin copolymer include ethylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, 1- Among these, α-olefins having 6 to 12 carbon atoms are preferable.
 また、発泡樹脂層、スキン樹脂層それぞれにおいて、樹脂としてポリオレフィン樹脂を使用する場合、発泡樹脂層、スキン樹脂層それぞれに含有される樹脂は、ポリオレフィン樹脂を単独で使用してもよいが、ポリオレフィン樹脂以外の樹脂を含んでもよい。発泡樹脂層、スキン樹脂層それぞれにおいて、ポリオレフィン樹脂の樹脂全量に対する割合は、60質量%以上が好ましく、70質量%以上がより好ましく、80質量%以上が更に好ましい。ポリオレフィン樹脂として併用されるポリオレフィン樹脂以外の樹脂としては、上記した各種樹脂が挙げられる。
 さらに、発泡樹脂層、スキン樹脂層に使用される樹脂は、互いに同種のものを使用してもよいし、互いに異なるものを使用してもよい。すなわち、発泡樹脂層にポリオレフィン樹脂を使用する場合には、スキン樹脂層にもポリオレフィン樹脂を使用することが好ましく、発泡樹脂層にポリエチレン樹脂を使用する場合には、スキン樹脂層にもポリエチレン樹脂を使用するとよい。
In addition, when a polyolefin resin is used as the resin in each of the foamed resin layer and the skin resin layer, the polyolefin resin may be used alone as the resin contained in each of the foamed resin layer and the skin resin layer. Other resins may be included. In each of the foamed resin layer and the skin resin layer, the ratio of the polyolefin resin to the total amount of the resin is preferably 60% by mass or more, more preferably 70% by mass or more, and still more preferably 80% by mass or more. Examples of the resin other than the polyolefin resin used in combination with the polyolefin resin include the various resins described above.
Furthermore, the resin used for the foamed resin layer and the skin resin layer may be the same type as each other, or may be different from each other. That is, when a polyolefin resin is used for the foamed resin layer, it is preferable to use a polyolefin resin for the skin resin layer. When a polyethylene resin is used for the foamed resin layer, a polyethylene resin is also used for the skin resin layer. It is good to use.
[発泡剤]
 本態様の発泡樹脂層は、上記樹脂と発泡剤とを含む発泡性組成物を発泡してなる発泡体であることが好ましい。発泡して得られた発泡樹脂層は、樹脂単体又は必要に応じて添加剤が配合された樹脂をマトリックス樹脂として、気泡からなるセルを内部に多数有する発泡体により構成される。
 発泡剤としては、熱分解発泡剤が挙げられ、熱分解型発泡剤としては、有機発泡剤、無機発泡剤が使用可能である。熱分解型発泡剤は、通常、樹脂の溶融温度より高い分解温度を有するものを使用し、例えば分解温度が140~270℃のものを使用すればよい。
 具体的な有機系発泡剤としては、アゾジカルボンアミド、アゾジカルボン酸金属塩(アゾジカルボン酸バリウム等)、アゾビスイソブチロニトリル等のアゾ化合物、N,N’-ジニトロソペンタメチレンテトラミン等のニトロソ化合物、ヒドラゾジカルボンアミド、4,4’-オキシビス(ベンゼンスルホニルヒドラジド)、トルエンスルホニルヒドラジド等のヒドラジン誘導体、トルエンスルホニルセミカルバジド等のセミカルバジド化合物等が挙げられる。
 無機系発泡剤としては、炭酸アンモニウム、炭酸ナトリウム、炭酸水素アンモニウム、炭酸水素ナトリウム、亜硝酸アンモニウム、水素化ホウ素ナトリウム、無水クエン酸モノソーダ等が挙げられる。
 これらの中では、微細な気泡を得る観点、及び経済性、安全面の観点から、アゾ化合物が好ましく、アゾジカルボンアミドが特に好ましい。これらの熱分解型発泡剤は、単独で又は2以上を組み合わせて使用することができる。
 発泡性組成物における熱分解型発泡剤の配合量は、樹脂100質量部に対して、好ましくは0.5~20質量部、より好ましくは1~15質量部、さらに好ましくは1~10質量部である。
[Foaming agent]
The foamed resin layer of this aspect is preferably a foam formed by foaming a foamable composition containing the resin and a foaming agent. The foamed resin layer obtained by foaming is composed of a foam having a large number of cells composed of cells inside, using a resin alone or a resin containing additives as necessary as a matrix resin.
Examples of the foaming agent include a pyrolytic foaming agent. As the pyrolytic foaming agent, an organic foaming agent and an inorganic foaming agent can be used. As the thermally decomposable foaming agent, those having a decomposition temperature higher than the melting temperature of the resin are usually used. For example, those having a decomposition temperature of 140 to 270 ° C. may be used.
Specific examples of organic foaming agents include azodicarbonamide, metal salts of azodicarboxylic acid (such as barium azodicarboxylate), azo compounds such as azobisisobutyronitrile, N, N′-dinitrosopentamethylenetetramine, and the like. Examples thereof include nitroso compounds, hydrazodicarbonamide, 4,4′-oxybis (benzenesulfonyl hydrazide), hydrazine derivatives such as toluenesulfonyl hydrazide, and semicarbazide compounds such as toluenesulfonyl semicarbazide.
Examples of the inorganic foaming agent include ammonium carbonate, sodium carbonate, ammonium hydrogen carbonate, sodium hydrogen carbonate, ammonium nitrite, sodium borohydride, anhydrous monosodium citrate, and the like.
Among these, an azo compound is preferable and azodicarbonamide is particularly preferable from the viewpoint of obtaining fine bubbles and from the viewpoints of economy and safety. These pyrolytic foaming agents can be used alone or in combination of two or more.
The amount of the thermally decomposable foaming agent in the foamable composition is preferably 0.5 to 20 parts by weight, more preferably 1 to 15 parts by weight, and further preferably 1 to 10 parts by weight with respect to 100 parts by weight of the resin. It is.
[その他の添加剤]
 発泡樹脂層、すなわち、発泡性組成物には、必要に応じて、酸化防止剤、熱安定剤、着色剤、難燃剤、帯電防止剤、充填材、分解温度調整剤等の発泡体に一般的に使用する添加剤を配合されてもよい。これらの中では酸化防止剤、分解温度調整剤を使用することが好ましい。
 また、スキン樹脂層は、発泡剤を含有しない樹脂組成物により形成されるものであり、樹脂単体からなるものであってもよいし、樹脂に、酸化防止剤、熱安定剤、着色剤、難燃剤、帯電防止剤、充填材、分解温度調整剤等の各種添加剤が配合されたものであってもよい。これらの中では、酸化防止剤を使用することが好ましい。
[Other additives]
For foamed resin layers, that is, foamable compositions, it is generally used for foams such as antioxidants, heat stabilizers, colorants, flame retardants, antistatic agents, fillers, and decomposition temperature adjusters as necessary. Additives used in the above may be blended. Among these, it is preferable to use an antioxidant and a decomposition temperature adjusting agent.
The skin resin layer is formed of a resin composition that does not contain a foaming agent, and may be composed of a single resin, or it may contain an antioxidant, a heat stabilizer, a colorant, a difficult resin. Various additives such as a flame retardant, an antistatic agent, a filler, and a decomposition temperature adjusting agent may be blended. In these, it is preferable to use antioxidant.
 スキン樹脂層、発泡樹脂層に使用される酸化防止剤としては、フェノール系酸化防止剤、イオウ系酸化防止剤、リン系酸化防止剤、アミン系酸化防止剤等が挙げられる。酸化防止剤の含有量は、スキン樹脂層、発泡樹脂層それぞれにおいて、樹脂100質量部に対して、0.1~10質量部が好ましく、0.2~5質量部がより好ましい。
 また、分解温度調整剤の具体的な化合物としては、酸化亜鉛、ステアリン酸亜鉛、尿素等が挙げられる。分解温度調整剤の含有量は、スキン樹脂層、発泡樹脂層それぞれにおいて、樹脂100質量部に対して、好ましくは0.01~5質量部、より好ましくは0.1~3質量部である。
Examples of the antioxidant used for the skin resin layer and the foamed resin layer include phenolic antioxidants, sulfur-based antioxidants, phosphorus-based antioxidants, and amine-based antioxidants. The content of the antioxidant is preferably 0.1 to 10 parts by mass and more preferably 0.2 to 5 parts by mass with respect to 100 parts by mass of the resin in each of the skin resin layer and the foamed resin layer.
Specific examples of the decomposition temperature adjusting agent include zinc oxide, zinc stearate, urea and the like. The content of the decomposition temperature adjusting agent is preferably 0.01 to 5 parts by mass, more preferably 0.1 to 3 parts by mass with respect to 100 parts by mass of the resin in each of the skin resin layer and the foamed resin layer.
[多層発泡シートの製造方法]
 本発明の第1の態様に係る多層発泡シートは、特に制限されるわけではないが、例えば、以下の工程(1)~(2)を含む方法で製造する。
工程(1):樹脂と熱分解型発泡剤とを含む発泡性組成物からなる発泡性シートと、樹脂シートとを積層して多層シートを得る工程
工程(2):多層シートを加熱することで前記発泡性シートを発泡させる工程
[Method for producing multilayer foam sheet]
The multilayer foam sheet according to the first aspect of the present invention is not particularly limited, but is produced, for example, by a method including the following steps (1) to (2).
Step (1): Step of obtaining a multilayer sheet by laminating a foamable sheet made of a foamable composition containing a resin and a thermally decomposable foaming agent and a resin sheet (2): By heating the multilayer sheet Step of foaming the foamable sheet
 工程(1)において、多層シートは、共押出により成形することが好ましい。具体的には、樹脂、発泡剤、その他必要に応じて配合される添加剤を第1の押出機に供給して溶融混練し、第1の押出機からシート状の発泡性組成物(すなわち、発泡性シート)を押し出す。この押し出しとともに、スキン樹脂層を構成する樹脂、その他必要に応じて配合される添加剤を第2の押出機に供給して溶融混練し、第2の押出機からシート状の樹脂組成物(すなわち樹脂シート)を押し出し、それらを積層して多層シートを得ればよい。また、発泡樹脂層の両面にスキン樹脂層を積層する場合には、樹脂組成物を押し出すための第2の押出機を2つ用意して、発泡性シートの両面に樹脂シートを積層すればよい。
 また、多層シートは、共押出以外の方法で成形してもよく、例えば、予めシート状に成形した発泡性シートと、樹脂シートとをロール間等で圧着して多層シートとしてもよい。
In step (1), the multilayer sheet is preferably formed by coextrusion. Specifically, a resin, a foaming agent, and other additives that are blended as necessary are supplied to the first extruder and melt-kneaded. From the first extruder, a sheet-like foamable composition (that is, Extrude foamable sheet). Along with this extrusion, a resin constituting the skin resin layer, and other additives blended as necessary are supplied to the second extruder and melt-kneaded, and from the second extruder, a sheet-like resin composition (that is, Resin sheets) may be extruded and laminated to obtain a multilayer sheet. Moreover, when laminating a skin resin layer on both sides of a foamed resin layer, it is only necessary to prepare two second extruders for extruding the resin composition and laminate the resin sheet on both sides of the foamable sheet. .
The multilayer sheet may be formed by a method other than coextrusion. For example, a foam sheet and a resin sheet previously formed into a sheet shape may be pressure-bonded between rolls or the like to form a multilayer sheet.
 工程(2)において、多層シートを加熱する方法は、多層シートを熱風により加熱する方法、赤外線により加熱する方法、塩浴により加熱する方法、オイルバスにより加熱する方法等が挙げられ、これらは併用してもよい。また、加熱温度は、熱分解型発泡剤の発泡温度以上であればよいが、好ましくは200~300℃、より好ましくは220~280℃である。 In the step (2), the method of heating the multilayer sheet includes a method of heating the multilayer sheet with hot air, a method of heating with infrared rays, a method of heating with a salt bath, a method of heating with an oil bath, and the like. May be. The heating temperature may be not less than the foaming temperature of the pyrolytic foaming agent, but is preferably 200 to 300 ° C., more preferably 220 to 280 ° C.
 工程(2)の最中、または後工程において多層シートを延伸してもよい。すなわち、発泡性シートを発泡させて多層発泡シートとした後に延伸を行ってもよいし、発泡性シートを発泡させつつ延伸を行ってもよい。本製造方法では、多層発泡シートを延伸することで上記した範囲の平均気泡径、セル間厚さを得やすくなる。なお、発泡性シートを発泡させた後、多層発泡シートを延伸する場合には、多層発泡シートを冷却することなく発泡時の溶融状態を維持したまま続けて多層発泡シートを延伸してもよく、多層発泡シートを冷却した後、再度、多層発泡シートを加熱して溶融又は軟化状態とした上で多層発泡シートを延伸してもよい。
 多層発泡シートは、MD及びTDの一方に延伸させてもよいし、両方向に延伸させてもよいが、両方向に延伸させることが好ましい。
 多層発泡シートの延伸は、延伸により多層発泡シートの厚さが0.1~0.9倍となるように行うことが好ましく、より好ましくは0.15~0.75倍、さらに好ましくは0.25~0.45倍となるように行う。これら範囲内となるように多層発泡シートを延伸することで、多層発泡シートの圧縮強度及び引張強度が良好になりやすくなる。また、下限値以上とすると、発泡シートが延伸中に破断したり、発泡中の発泡樹脂層から発泡ガスが抜けて発泡倍率が著しく低下したりすることを防止する。
 また、延伸時に多層発泡シートは、例えば100~280℃、好ましくは150~260℃に加熱すればよい。
The multilayer sheet may be stretched during the step (2) or in a subsequent step. That is, the foamable sheet may be expanded to form a multilayer foamed sheet, or may be stretched, or may be stretched while foaming the foamable sheet. In this manufacturing method, it becomes easy to obtain the average cell diameter and inter-cell thickness in the above-described ranges by stretching the multilayer foamed sheet. In addition, when the multilayer foamed sheet is stretched after foaming the foamable sheet, the multilayer foamed sheet may be stretched while maintaining the molten state during foaming without cooling the multilayer foam sheet, After the multilayer foamed sheet is cooled, the multilayer foamed sheet may be stretched again by heating it to a molten or softened state.
The multilayer foam sheet may be stretched in one of MD and TD or in both directions, but is preferably stretched in both directions.
The stretching of the multilayer foamed sheet is preferably performed so that the thickness of the multilayer foamed sheet is 0.1 to 0.9 times by stretching, more preferably 0.15 to 0.75 times, and still more preferably 0.00. It is performed so as to be 25 to 0.45 times. By stretching the multilayer foamed sheet so as to be within these ranges, the compressive strength and tensile strength of the multilayer foamed sheet are likely to be good. On the other hand, when the value is not less than the lower limit, the foamed sheet is prevented from breaking during stretching, or the foaming gas escapes from the foamed resin layer during foaming to significantly reduce the foaming ratio.
Further, the multilayer foamed sheet may be heated to, for example, 100 to 280 ° C., preferably 150 to 260 ° C. during stretching.
 本製造方法では、工程(1)と工程(2)の間に多層シートを架橋する工程(架橋工程)を行うことが好ましい。架橋工程において、多層シートを架橋する方法としては、多層シートに電子線、α線、β線、γ線等の電離性放射線を照射する方法を用いる。上記電離放射線の照射量は、得られる多層発泡シートの架橋度が上記した所望の範囲となるように調整すればよいが、1~15Mradであることが好ましく、4~13Mradであることがより好ましい。 In this production method, it is preferable to perform a step of cross-linking the multilayer sheet (cross-linking step) between step (1) and step (2). In the crosslinking step, as a method of crosslinking the multilayer sheet, a method of irradiating the multilayer sheet with ionizing radiation such as electron beam, α ray, β ray, γ ray and the like is used. The irradiation amount of the ionizing radiation may be adjusted so that the degree of crosslinking of the resulting multilayer foamed sheet is within the desired range described above, but is preferably 1 to 15 Mrad, more preferably 4 to 13 Mrad. .
 多層発泡シートの製造方法は、上記した方法に限定されずに、上記以外の方法であってもよい。例えば、電離性放射線を照射する代わりに、発泡性組成物に予め有機過酸化物を配合しておき、発泡性組成物を加熱して有機過酸化物を分解させる方法等により架橋を行ってもよい。 The method for producing the multilayer foamed sheet is not limited to the method described above, and may be a method other than the above. For example, instead of irradiating with ionizing radiation, an organic peroxide may be blended in advance in the foamable composition, and crosslinking may be performed by a method in which the foamable composition is heated to decompose the organic peroxide. Good.
 多層発泡シートの用途は、特に限定されないが、例えば電子機器内部で使用することが好ましい。本態様の多層発泡シートは、薄厚であるため、薄型の電子機器、例えば、各種の携帯電子機器内部で好適に使用できる。携帯電子機器としては、ノート型パーソナルコンピュータ、携帯電話、スマートフォン、タブレット、携帯音楽機器等が挙げられる。多層発泡シートは、電子機器内部において、衝撃を吸収するための衝撃吸収材、部材間の隙間を埋めるシール材等として使用可能である。 The use of the multi-layer foam sheet is not particularly limited, but it is preferably used inside an electronic device, for example. Since the multilayer foam sheet of this aspect is thin, it can be suitably used in thin electronic devices such as various portable electronic devices. Examples of portable electronic devices include notebook personal computers, mobile phones, smartphones, tablets, and portable music devices. The multilayer foamed sheet can be used as an impact absorbing material for absorbing an impact, a sealing material for filling a gap between members, and the like inside an electronic device.
[粘着テープ]
 また、第1の態様に係る多層発泡シートは、多層発泡シートを基材とする粘着テープに使用してもよい。粘着テープは、例えば、多層発泡シートと、多層発泡シートの少なくともいずれか一方の面に設けた粘着材とを備えるものである。粘着テープは、粘着材を介して他の部材に接着することが可能になる。粘着テープは、多層発泡シートの両面に粘着材を設けたものでもよいし、片面に粘着材を設けたものでもよい。粘着テープも衝撃吸収材、シール材として使用可能である。
 また、粘着材は、多層発泡シートにおいて、スキン樹脂層が設けられた表面上に設けられることが好ましい。このような構成により、リワーク時に多層発泡シートが破損されにくくなる。
[Adhesive tape]
Moreover, you may use the multilayer foam sheet which concerns on a 1st aspect for the adhesive tape which uses a multilayer foam sheet as a base material. The pressure-sensitive adhesive tape includes, for example, a multilayer foam sheet and an adhesive material provided on at least one surface of the multilayer foam sheet. The adhesive tape can be bonded to another member via an adhesive material. The adhesive tape may be one in which an adhesive material is provided on both sides of the multilayer foamed sheet, or one in which an adhesive material is provided on one side. Adhesive tapes can also be used as shock absorbers and sealants.
Moreover, it is preferable that an adhesive material is provided on the surface in which the skin resin layer was provided in a multilayer foamed sheet. With such a configuration, the multilayer foam sheet is less likely to be damaged during rework.
 また、粘着材は、少なくとも粘着剤層を備えるものであればよく、多層発泡シートの表面に積層された粘着剤層単体であってもよいし、多層発泡シートの表面に貼付された両面粘着シートであってもよいが、粘着剤層単体であることが好ましい。なお、両面粘着シートは、基材と、基材の両面に設けられた粘着剤層とを備えるものである。両面粘着シートは、一方の粘着剤層を多層発泡シートに接着させるとともに、他方の粘着剤層を他の部材に接着させるために使用する。
 粘着剤層を構成する粘着剤としては、特に制限はなく、例えば、アクリル系粘着剤、ウレタン系粘着剤、ゴム系粘着剤等を用いることができる。また、粘着材の上には、さらに離型紙等の剥離シートが貼り合わされてもよい。
 粘着材の厚さは、5~200μmであることが好ましく、より好ましくは7~150μmであり、更に好ましくは10~100μmである。
The pressure-sensitive adhesive material only needs to have at least a pressure-sensitive adhesive layer, and may be a single pressure-sensitive adhesive layer laminated on the surface of the multilayer foamed sheet, or a double-sided pressure-sensitive adhesive sheet affixed to the surface of the multilayer foamed sheet Although it may be, it is preferable that it is a pressure sensitive adhesive layer simple substance. In addition, a double-sided adhesive sheet is provided with a base material and the adhesive layer provided in both surfaces of the base material. The double-sided pressure-sensitive adhesive sheet is used for adhering one pressure-sensitive adhesive layer to the multilayer foamed sheet and bonding the other pressure-sensitive adhesive layer to another member.
There is no restriction | limiting in particular as an adhesive which comprises an adhesive layer, For example, an acrylic adhesive, a urethane type adhesive, a rubber-type adhesive etc. can be used. Further, a release sheet such as a release paper may be further bonded onto the adhesive material.
The thickness of the adhesive material is preferably 5 to 200 μm, more preferably 7 to 150 μm, and still more preferably 10 to 100 μm.
[2]第2の態様
[多層発泡シート]
 本発明の第2の態様に係る多層発泡シートは、発泡樹脂層と、発泡樹脂層の少なくとも一方の面に設けられるスキン樹脂層と備える。発泡樹脂層は、発泡体により構成され、気泡よりなる多数のセルが設けられる。発泡樹脂層において、セルとセルの間は、発泡体を構成するマトリックス樹脂よりなる隔壁を介して隔てられている。スキン樹脂層は、非発泡体であり、気泡よりなるセルを有しない樹脂層である。
[2] Second aspect [Multilayer foam sheet]
The multilayer foamed sheet according to the second aspect of the present invention includes a foamed resin layer and a skin resin layer provided on at least one surface of the foamed resin layer. The foamed resin layer is made of a foam and is provided with a large number of cells made of bubbles. In the foamed resin layer, the cells are separated from each other through a partition made of a matrix resin constituting the foam. The skin resin layer is a resin layer that is non-foamed and does not have cells made of bubbles.
 第2の態様に係る多層発泡シートは、第1の態様と同様に、図1に示すように、発泡樹脂層11と、その両面に積層されたスキン樹脂層12、12を備えるものでもよいし、図2に示すように、発泡樹脂層11と、その一方の面のみに積層されるスキン樹脂層12を備えるものでよいが、図1に示すように、両面にスキン樹脂層12、12が設けられることが好ましい。両面にスキン樹脂層12を設けることで、多層発泡シート10の機械強度を高めやすくなる。 As in the first embodiment, the multilayer foam sheet according to the second embodiment may include a foamed resin layer 11 and skin resin layers 12 and 12 laminated on both surfaces thereof, as shown in FIG. 2, the foamed resin layer 11 and the skin resin layer 12 laminated only on one surface thereof may be provided. However, as shown in FIG. 1, the skin resin layers 12, 12 are provided on both surfaces. It is preferable to be provided. By providing the skin resin layers 12 on both sides, the mechanical strength of the multilayer foamed sheet 10 can be easily increased.
 以下、多層発泡シートについてより詳細に説明する。
(厚さ)
 本態様では、各スキン樹脂層の厚さが、セル間のマトリックス樹脂の厚さ(以下、単に“セル間厚さ”ともいう)よりも大きくなる。各スキン樹脂層の厚さをセル間厚さよりも大きくすることで、多層発泡シートの機械強度、例えば、引張強度、引裂き強度等が良好になる。そのため、多層発泡シートを粘着テープに使用したときにはリワーク性が良好となる。
 なお、セル間厚さとは、第1の態様と同様に、発泡樹脂層の断面を拡大して観察して測定した、隣接するセル間のマトリックス樹脂(すなわち、隔壁)の厚さの平均値をいう。 また、上記したように、気泡がない(後述の拡大写真で気泡が確認できない)層がスキン樹脂層、気泡がある層が発泡樹脂層であるため、気泡がない層と気泡がある層の境界から多層発泡シートの表面までの距離をスキン樹脂層の厚さとする。このとき、デジタルマイクロスコープ(例えば、キーエンス社製、「VHX-900」等)を用いて、例えば、500倍倍率で拡大写真を撮影し、スキン樹脂層と発泡樹脂層との境界を確認する。
 各スキン樹脂層の厚さは、セル間厚さの2~100倍であることが好ましい。2~100倍とすることで、各スキン樹脂層は、必要以上の厚さにならずに、多層発泡シートの柔軟性、衝撃吸収性等を良好にしやすくなる。また、機械強度、柔軟性、衝撃吸収性をバランスよく良好にする観点から、各スキン樹脂層の厚さは、セル間厚さの2~50倍であることがより好ましく、2~40倍であることがさらに好ましい。
Hereinafter, the multilayer foamed sheet will be described in more detail.
(thickness)
In this embodiment, the thickness of each skin resin layer is larger than the thickness of the matrix resin between cells (hereinafter also simply referred to as “inter-cell thickness”). By making the thickness of each skin resin layer larger than the thickness between cells, the mechanical strength of the multilayer foamed sheet, for example, the tensile strength, the tear strength, and the like becomes good. Therefore, when a multilayer foam sheet is used for an adhesive tape, reworkability becomes favorable.
In addition, the thickness between cells is the average value of the thickness of the matrix resin (namely, partition wall) between adjacent cells measured by expanding and observing the cross section of a foamed resin layer similarly to the 1st aspect. Say. In addition, as described above, the layer having no air bubbles (the air bubbles cannot be confirmed in an enlarged photo described later) is the skin resin layer, and the layer having air bubbles is the foamed resin layer, so the boundary between the layer without air bubbles and the layer with air bubbles The distance from the surface of the multilayer foam sheet to the thickness of the skin resin layer. At this time, using a digital microscope (for example, “VHX-900” manufactured by Keyence Corporation), an enlarged photograph is taken at a magnification of 500 times, for example, and the boundary between the skin resin layer and the foamed resin layer is confirmed.
The thickness of each skin resin layer is preferably 2 to 100 times the thickness between cells. By setting the ratio to 2 to 100 times, each skin resin layer does not have an unnecessarily thick thickness, and the flexibility, impact absorption, etc. of the multilayer foam sheet can be easily improved. Further, from the viewpoint of improving the mechanical strength, flexibility, and shock absorption in a good balance, the thickness of each skin resin layer is more preferably 2 to 50 times the thickness between cells, and 2 to 40 times. More preferably it is.
 また、本態様の多層発泡シートは、その厚さが0.05~1.2mmとなるものである。多層発泡シートは、厚さを0.05mm未満とすると、スキン樹脂層、発泡樹脂層の厚さが必要以上に小さくなり、機械強度、衝撃吸収性等の各種機能を良好にすることが難しくなる。また、1.2mmより大きくすると、薄型化された各種電子機器に適用することが難しくなる。
 多層発泡シートの厚さは、各種性能を良好にしつつ、薄型化された電子機器に使用しやすくするために、好ましくは0.05~1.0mm、より好ましくは0.08~1.0mmである。
In addition, the multilayer foam sheet of this embodiment has a thickness of 0.05 to 1.2 mm. When the thickness of the multilayer foam sheet is less than 0.05 mm, the thickness of the skin resin layer and the foam resin layer becomes unnecessarily small, and it becomes difficult to improve various functions such as mechanical strength and shock absorption. . On the other hand, if it is larger than 1.2 mm, it is difficult to apply it to various thinned electronic devices.
The thickness of the multilayer foamed sheet is preferably 0.05 to 1.0 mm, and more preferably 0.08 to 1.0 mm, in order to improve various performances and facilitate use in thinned electronic devices. is there.
 また、多層発泡シートにおいて、各スキン樹脂層の厚さが0.01~0.15mmであるとともに、発泡樹脂層の厚さが0.03~0.95mmであることが好ましい。スキン樹脂層及び発泡樹脂層の厚さを上記範囲内とすることで、機械強度、柔軟性、衝撃吸収性をバランスよく良好にしやすくなる。また、各スキン樹脂層の厚さは、0.02~0.13mmがより好ましく、0.03~0.10mmがさらに好ましい。一方で、発泡樹脂層の厚さは、より好ましくは0.05~0.90mm、さらに好ましくは0.06~0.50mmである。なお、発泡樹脂層の厚さは、通常、スキン樹脂層それぞれの厚さよりも大きくなり、発泡樹脂層の厚さは、スキン樹脂層それぞれの厚さの2~20倍が好ましく、より好ましくは2~15倍、さらに好ましくは3~10倍である。 Further, in the multilayer foam sheet, it is preferable that the thickness of each skin resin layer is 0.01 to 0.15 mm and the thickness of the foam resin layer is 0.03 to 0.95 mm. By making the thickness of the skin resin layer and the foamed resin layer within the above ranges, it becomes easy to improve the mechanical strength, flexibility, and shock absorption in a well-balanced manner. Further, the thickness of each skin resin layer is more preferably 0.02 to 0.13 mm, and further preferably 0.03 to 0.10 mm. On the other hand, the thickness of the foamed resin layer is more preferably 0.05 to 0.90 mm, and still more preferably 0.06 to 0.50 mm. The thickness of the foamed resin layer is usually larger than the thickness of each skin resin layer, and the thickness of the foamed resin layer is preferably 2 to 20 times the thickness of each skin resin layer, more preferably 2 It is 15 times, more preferably 3 to 10 times.
(セル間厚さ)
 発泡樹脂層におけるセル間厚さは、1~30μmであることが好ましい。セル間厚さをこのような範囲内とすることで、機械強度、柔軟性、衝撃吸収性をバランスよく良好にしやすくなる。これらの観点から、セル間厚さは、2~25μmがより好ましく、5~20μmがさらに好ましい。
(Thickness between cells)
The cell thickness in the foamed resin layer is preferably 1 to 30 μm. By setting the inter-cell thickness within such a range, the mechanical strength, flexibility, and shock absorption can be easily improved in a well-balanced manner. From these viewpoints, the inter-cell thickness is more preferably 2 to 25 μm, and further preferably 5 to 20 μm.
(平均気泡径)
 発泡樹脂層における気泡の平均気泡径は、第1の態様における平均気泡径と同様である。
 なお、後述するように、第2の態様に係る多層発泡シートでは、スキン樹脂層の架橋度を高くするものであるが、それに伴い、発泡樹脂層でもスキン樹脂層近傍部分の架橋度は、発泡樹脂層の厚さ方向における中心位置の架橋度よりも高くなる。架橋度が高いことにより、発泡樹脂層において、スキン樹脂層近傍部分の気泡径は、中心位置の気泡径よりも小さくなる。
(Average bubble diameter)
The average cell diameter of the bubbles in the foamed resin layer is the same as the average cell diameter in the first aspect.
As will be described later, in the multilayer foam sheet according to the second aspect, the degree of cross-linking of the skin resin layer is increased. It becomes higher than the degree of crosslinking at the center position in the thickness direction of the resin layer. Due to the high degree of crosslinking, in the foamed resin layer, the bubble diameter in the vicinity of the skin resin layer becomes smaller than the bubble diameter at the center position.
(独立気泡率)
 第2の態様における発泡樹脂層は、独立気泡を有するものであるが、当該発泡樹脂層における独立気泡率は、第1の態様における独立気泡率と同様である。
(Closed cell rate)
The foamed resin layer in the second mode has closed cells, but the closed cell rate in the foamed resin layer is the same as the closed cell rate in the first mode.
(見かけ密度、発泡密度)
 多層発泡シート全体の見かけ密度は、0.05~0.85g/cmであることが好ましく、0.07~0.80g/cmであることがより好ましく、0.1~0.60g/cmであることがさらに好ましい。多層発泡シートの見かけ密度を上記範囲内とすることで、多層発泡シートの柔軟性、機械強度等を適切にし、多層発泡シートの衝撃吸収性を良好にしやすくなる。
 また、発泡樹脂層の発泡倍率は、特に限定されないが、1.5~12cm/gであることが好ましく、1.8~11cm/gであることがより好ましい。
 なお、発泡倍率は、見かけ密度を測定してその逆数を求めたものである。また、見かけ密度は、JIS K7222に準拠して測定したものである。
(Apparent density, foam density)
The apparent density of the whole multilayer foamed sheet is preferably 0.05 ~ 0.85g / cm 3, more preferably 0.07 ~ 0.80g / cm 3, 0.1 ~ 0.60g / More preferably, it is cm 3 . By setting the apparent density of the multilayer foamed sheet within the above range, the flexibility and mechanical strength of the multilayer foamed sheet can be made appropriate, and the impact absorbability of the multilayer foamed sheet can be easily improved.
The expansion ratio of the foamed resin layer is not particularly limited, but is preferably 1.5 to 12 cm 3 / g, and more preferably 1.8 to 11 cm 3 / g.
The expansion ratio is obtained by measuring the apparent density and calculating the reciprocal thereof. The apparent density is measured according to JIS K7222.
(架橋度)
 多層発泡シートは、架橋されたものが好ましい。具体的には、発泡樹脂層の架橋度は、第1の態様と同様で、好ましくは15~60質量%、より好ましくは20~50質量%である。発泡樹脂層の架橋度を上記範囲内とすることで、多層発泡シートの機械強度、柔軟性、衝撃吸収性等を良好にしやすくなる。また、発泡樹脂層における発泡を適切に行うことが可能になる。
(Crosslinking degree)
The multilayer foamed sheet is preferably cross-linked. Specifically, the degree of crosslinking of the foamed resin layer is the same as in the first embodiment, and is preferably 15 to 60% by mass, more preferably 20 to 50% by mass. By setting the degree of cross-linking of the foamed resin layer within the above range, the mechanical strength, flexibility, impact absorption and the like of the multilayer foamed sheet can be easily improved. Further, it is possible to appropriately perform foaming in the foamed resin layer.
 スキン樹脂層の架橋度は発泡樹脂層の架橋度よりも大きいことが好ましい。また、スキン樹脂層の架橋度は、60質量%以上が好ましく、63質量%以上がより好ましく、65質量%以上がさらに好ましい。後述する発泡性シートにおいてスキン樹脂層となる表層は、コア樹脂層となる内層と同様に発泡剤が配合されるものであるが、高架橋にすることで、加熱しても表層の発泡剤が発泡されず、または発泡後に気泡が成長できず、高密度のスキン樹脂層を形成することが可能である。なお、架橋度の測定方法は、第1の態様における架橋度の測定方法と同様である。 The cross-linking degree of the skin resin layer is preferably larger than the cross-linking degree of the foamed resin layer. Moreover, the crosslinking degree of the skin resin layer is preferably 60% by mass or more, more preferably 63% by mass or more, and further preferably 65% by mass or more. The surface layer that becomes the skin resin layer in the foamable sheet described later is blended with a foaming agent in the same manner as the inner layer that becomes the core resin layer. Or bubbles cannot grow after foaming, and a high-density skin resin layer can be formed. The method for measuring the degree of crosslinking is the same as the method for measuring the degree of crosslinking in the first embodiment.
(スキン樹脂層中の発泡剤)
 スキン樹脂層に発泡剤が含有(残留)されてなることが好ましい。ここでいう発泡剤は発泡樹脂層を形成する際に配合される発泡剤である。スキン樹脂層は後述するように、所定の樹脂と発泡剤とを含む発泡性樹脂組成物を発泡させる前に、電離放射線を所定の条件で照射してスキン樹脂層となる表層を内層に比べて高架橋させる。その結果、その後の発泡の際には、当該表層では発泡剤による発泡が起こらないか、起こっても発泡剤の粒子径レベルまでしか気泡が成長できない。ほとんどそのまま発泡剤としてスキン樹脂層に存在する場合のスキン樹脂層における発泡剤の含有量は、スキン樹脂層を構成する樹脂100質量部に対して0.5~20質量部程度であることが好ましい。
(Foaming agent in skin resin layer)
It is preferable that a foaming agent is contained (residual) in the skin resin layer. A foaming agent here is a foaming agent mix | blended when forming a foamed resin layer. As will be described later, before foaming a foamable resin composition containing a predetermined resin and a foaming agent, the skin resin layer is irradiated with ionizing radiation under predetermined conditions, and the surface layer serving as the skin resin layer is compared with the inner layer. Highly crosslinked. As a result, in the subsequent foaming, foaming by the foaming agent does not occur in the surface layer, or even if it occurs, bubbles can grow only to the particle size level of the foaming agent. When the skin resin layer is present almost as it is in the skin resin layer, the content of the foaming agent in the skin resin layer is preferably about 0.5 to 20 parts by mass with respect to 100 parts by mass of the resin constituting the skin resin layer. .
(25%圧縮強度)
 多層発泡シートの25%圧縮強度の好ましい範囲、より好ましい範囲等は、第1の態様の25%圧縮強度と同様である。
(25% compressive strength)
The preferred range, more preferred range, etc. of the 25% compressive strength of the multilayer foamed sheet are the same as the 25% compressive strength of the first embodiment.
(引張り強度)
 多層発泡シートの引張り強度は、MDにおいて4~30MPa、TDにおいて2~25MPaであることが好ましく、MDにおいて4.5~25MPa、TDにおいて2.5~20MPaであることがより好ましい。引張り強度をこれら範囲とすることで、多層発泡シートの機械強度を良好にしやすくなる。
(Tensile strength)
The tensile strength of the multilayer foamed sheet is preferably 4 to 30 MPa in MD and 2 to 25 MPa in TD, more preferably 4.5 to 25 MPa in MD, and 2.5 to 20 MPa in TD. By making the tensile strength within these ranges, the mechanical strength of the multilayer foamed sheet can be easily improved.
[樹脂]
 発泡樹脂層及びスキン樹脂層それぞれを構成する樹脂としては、各種の樹脂を使用すればよく、第1の態様で挙げられた樹脂が例示されるが、これらの中では、ポリオレフィン樹脂が好ましい。
[resin]
As the resin constituting each of the foamed resin layer and the skin resin layer, various resins may be used, and the resins exemplified in the first embodiment are exemplified. Among these, polyolefin resins are preferable.
(ポリオレフィン樹脂)
 ポリオレフィン樹脂としては、第1の態様で挙げられた樹脂が例示され、好ましい樹脂等も第1の態様のポリオレフィン樹脂と同様である。
 すなわち、ポリオレフィン樹脂としては、ポリエチレン樹脂、ポリプロピレン樹脂、エチレン-酢酸ビニル共重合体等が挙げられ、これらの中ではポリエチレン樹脂が好ましい。ポリエチレン樹脂としては、チーグラー・ナッタ化合物、メタロセン化合物、酸化クロム化合物等の重合触媒で重合されたポリエチレン樹脂が挙げられる。
(Polyolefin resin)
Examples of the polyolefin resin include the resins mentioned in the first embodiment, and preferred resins and the like are the same as those of the polyolefin resin of the first embodiment.
That is, examples of the polyolefin resin include a polyethylene resin, a polypropylene resin, and an ethylene-vinyl acetate copolymer. Among these, a polyethylene resin is preferable. Examples of the polyethylene resin include polyethylene resins polymerized with a polymerization catalyst such as a Ziegler-Natta compound, a metallocene compound, and a chromium oxide compound.
 また、ポリエチレン樹脂としては、直鎖状低密度ポリエチレンが好ましい。直鎖状低密度ポリエチレンを用いることにより、多層発泡シートに高い柔軟性を与えるとともに、発泡樹脂層、スキン樹脂層の薄肉化が可能になる。また、直鎖状低密度ポリエチレンは、エチレン(例えば、全モノマー量に対して75質量%以上、好ましくは90質量%以上)と必要に応じて少量のα-オレフィンとを共重合することにより得られる直鎖状低密度ポリエチレンがより好ましい。
 α-オレフィンとして、具体的には、プロピレン、1-ブテン、1-ペンテン、4-メチル-1-ペンテン、1-ヘキセン、1-ヘプテン、及び1-オクテン等が挙げられる。なかでも、炭素数4~10のα-オレフィンが好ましい。
 ポリエチレン樹脂、例えば上記した直鎖状低密度ポリエチレンの密度は、0.870~0.910g/cmが好ましく、0.875~0.907g/cmがより好ましく、0.880~0.905g/cmが更に好ましい。ポリエチレン樹脂としては、複数のポリエチレン樹脂を用いることもでき、また、上記した密度範囲以外のポリエチレン樹脂を加えてもよい。
The polyethylene resin is preferably linear low density polyethylene. By using the linear low density polyethylene, it is possible to give the multilayer foamed sheet high flexibility and to reduce the thickness of the foamed resin layer and the skin resin layer. The linear low density polyethylene is obtained by copolymerizing ethylene (for example, 75% by mass or more, preferably 90% by mass or more with respect to the total amount of monomers) and, if necessary, a small amount of α-olefin. More preferred is linear low density polyethylene.
Specific examples of the α-olefin include propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, and 1-octene. Of these, α-olefins having 4 to 10 carbon atoms are preferred.
Polyethylene resin, for example the density of the above-mentioned linear low density polyethylene is preferably 0.870 ~ 0.910g / cm 3, more preferably 0.875 ~ 0.907g / cm 3, 0.880 ~ 0.905g / Cm 3 is more preferable. As the polyethylene resin, a plurality of polyethylene resins can be used, and a polyethylene resin outside the above-described density range may be added.
(メタロセン化合物)
 メタロセン化合物としては、遷移金属をπ電子系の不飽和化合物で挟んだ構造を有するビス(シクロペンタジエニル)金属錯体等の化合物を挙げることができる。より具体的には、チタン、ジルコニウム、ニッケル、パラジウム、ハフニウム、及び白金等の四価の遷移金属に、1又は2以上のシクロペンタジエニル環又はその類縁体がリガンド(配位子)として存在する化合物を挙げることができる。
 このようなメタロセン化合物は、活性点の性質が均一であり各活性点が同じ活性度を備えている。メタロセン化合物を用いて合成した重合体は、分子量、分子量分布、組成、組成分布等の均一性が高いため、メタロセン化合物を用いて合成した重合体を含むシートを架橋した場合には、架橋が均一に進行する。均一に架橋されたシートは、均一に発泡されるため、物性を安定させやすくなる。また、均一に延伸できるため、発泡樹脂層、スキン樹脂層の厚さを均一にできる。
(Metallocene compound)
Examples of the metallocene compound include compounds such as a bis (cyclopentadienyl) metal complex having a structure in which a transition metal is sandwiched between π-electron unsaturated compounds. More specifically, tetravalent transition metals such as titanium, zirconium, nickel, palladium, hafnium, and platinum have one or more cyclopentadienyl rings or their analogs as ligands (ligands). Can be mentioned.
Such metallocene compounds have uniform active site properties and each active site has the same activity. A polymer synthesized using a metallocene compound has high uniformity in molecular weight, molecular weight distribution, composition, composition distribution, etc., so when a sheet containing a polymer synthesized using a metallocene compound is crosslinked, the crosslinking is uniform. Proceed to. Since the uniformly crosslinked sheet is uniformly foamed, the physical properties are easily stabilized. Moreover, since it can extend | stretch uniformly, the thickness of a foamed resin layer and a skin resin layer can be made uniform.
 リガンドとしては、例えば、シクロペンタジエニル環、インデニル環等を挙げることができる。これらの環式化合物は、炭化水素基、置換炭化水素基又は炭化水素-置換メタロイド基により置換されていてもよい。炭化水素基としては、例えば、メチル基、エチル基、各種プロピル基、各種ブチル基、各種アミル基、各種ヘキシル基、2-エチルヘキシル基、各種ヘプチル基、各種オクチル基、各種ノニル基、各種デシル基、各種セチル基、フェニル基等が挙げられる。なお、「各種」とは、n-、sec-、tert-、iso-を含む各種異性体を意味する。
 また、環式化合物をオリゴマーとして重合したものをリガンドとして用いてもよい。
 更に、π電子系の不飽和化合物以外にも、塩素や臭素等の一価のアニオンリガンド又は二価のアニオンキレートリガンド、炭化水素、アルコキシド、アリールアミド、アリールオキシド、アミド、アリールアミド、ホスフィド、アリールホスフィド等を用いてもよい。
Examples of the ligand include a cyclopentadienyl ring and an indenyl ring. These cyclic compounds may be substituted with a hydrocarbon group, a substituted hydrocarbon group or a hydrocarbon-substituted metalloid group. Examples of the hydrocarbon group include a methyl group, an ethyl group, various propyl groups, various butyl groups, various amyl groups, various hexyl groups, 2-ethylhexyl groups, various heptyl groups, various octyl groups, various nonyl groups, and various decyl groups. , Various cetyl groups, phenyl groups and the like. The “various” means various isomers including n-, sec-, tert-, and iso-.
Moreover, what polymerized the cyclic compound as an oligomer may be used as a ligand.
In addition to π-electron unsaturated compounds, monovalent anion ligands such as chlorine and bromine or divalent anion chelate ligands, hydrocarbons, alkoxides, arylamides, aryloxides, amides, arylamides, phosphides, aryls Phosphide or the like may be used.
 四価の遷移金属やリガンドを含むメタロセン化合物としては、例えば、シクロペンタジエニルチタニウムトリス(ジメチルアミド)、メチルシクロペンタジエニルチタニウムトリス(ジメチルアミド)、ビス(シクロペンタジエニル)チタニウムジクロリド、ジメチルシリルテトラメチルシクロペンタジエニル-t-ブチルアミドジルコニウムジクロリド等が挙げられる。
 メタロセン化合物は、特定の共触媒(助触媒)と組み合わせることにより、各種オレフィンの重合の際に触媒としての作用を発揮する。具体的な共触媒としては、メチルアルミノキサン(MAO)、ホウ素系化合物等が挙げられる。なお、メタロセン化合物に対する共触媒の使用割合は、10~100万モル倍が好ましく、50~5,000モル倍がより好ましい。
 発泡樹脂層、スキン樹脂層それぞれに含まれるポリオレフィン樹脂として、上記した直鎖状低密度ポリエチレンを使用する場合、上記の直鎖状低密度ポリエチレンを単独で使用してもよいが、他のポリオレフィン樹脂と併用してもよく、例えば、以下に述べる他のポリオレフィン樹脂と併用してもよい。他のポリオレフィン樹脂を併用する場合、直鎖状低密度ポリエチレン(100質量%)に対する他のポリオレフィン樹脂の割合は、40質量%以下が好ましく、30質量%以下がより好ましく、20質量%以下が更に好ましい。
Examples of metallocene compounds containing tetravalent transition metals and ligands include, for example, cyclopentadienyl titanium tris (dimethylamide), methylcyclopentadienyl titanium tris (dimethylamide), bis (cyclopentadienyl) titanium dichloride, dimethyl And silyltetramethylcyclopentadienyl-t-butylamidozirconium dichloride.
The metallocene compound exhibits an action as a catalyst in the polymerization of various olefins by combining with a specific cocatalyst (co-catalyst). Specific examples of the cocatalyst include methylaluminoxane (MAO) and boron compounds. The proportion of the cocatalyst used with respect to the metallocene compound is preferably 100,000 to 1,000,000 mole times, more preferably 50 to 5,000 mole times.
When the above linear low density polyethylene is used as the polyolefin resin contained in each of the foamed resin layer and the skin resin layer, the above linear low density polyethylene may be used alone, but other polyolefin resins For example, it may be used in combination with other polyolefin resins described below. When other polyolefin resin is used in combination, the ratio of the other polyolefin resin to the linear low density polyethylene (100% by mass) is preferably 40% by mass or less, more preferably 30% by mass or less, and further preferably 20% by mass or less. preferable.
 ポリオレフィン樹脂として使用するエチレン-酢酸ビニル共重合体は、例えば、エチレンを50質量%以上含有するエチレン-酢酸ビニル共重合体が挙げられる。
 また、ポリプロピレン樹脂としては、例えば、ポリプロピレン、プロピレンを50質量%以上含有するプロピレン-α-オレフィン共重合体等が挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
 プロピレン-α-オレフィン共重合体を構成するα-オレフィンとしては、具体的には、エチレン、1-ブテン、1-ペンテン、4-メチル-1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン等が挙げることができ、これらの中では、炭素数6~12のα-オレフィンが好ましい。
Examples of the ethylene-vinyl acetate copolymer used as the polyolefin resin include an ethylene-vinyl acetate copolymer containing 50% by mass or more of ethylene.
Examples of the polypropylene resin include polypropylene and a propylene-α-olefin copolymer containing 50% by mass or more of propylene. These may be used alone or in combination of two or more.
Specific examples of the α-olefin constituting the propylene-α-olefin copolymer include ethylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, 1- Among these, α-olefins having 6 to 12 carbon atoms are preferable.
 また、発泡樹脂層、スキン樹脂層それぞれにおいて、樹脂としてポリオレフィン樹脂を使用する場合、発泡樹脂層、スキン樹脂層それぞれに含有される樹脂は、第1の態様と同様で、ポリオレフィン樹脂を単独で使用してもよいが、ポリオレフィン樹脂以外の樹脂を含んでもよい。発泡樹脂層、スキン樹脂層それぞれにおいて、ポリオレフィン樹脂の樹脂全量に対する割合は、60質量%以上が好ましく、70質量%以上がより好ましく、80質量%以上が更に好ましい。ポリオレフィン樹脂として併用されるポリオレフィン樹脂以外の樹脂としては、上記した各種樹脂が挙げられる。
 なお、第2の態様において、スキン樹脂層と発泡樹脂層との相違は主に架橋度であり、後述するように、発泡性シートに電離放射線を照射して架橋するまでの工程は共通しており、その材料も同一である。したがって、これらの層に使用される樹脂は必然的に同一のものとなる。
In addition, when using a polyolefin resin as the resin in each of the foamed resin layer and the skin resin layer, the resin contained in each of the foamed resin layer and the skin resin layer is the same as in the first aspect, and the polyolefin resin is used alone. Alternatively, a resin other than the polyolefin resin may be included. In each of the foamed resin layer and the skin resin layer, the ratio of the polyolefin resin to the total amount of the resin is preferably 60% by mass or more, more preferably 70% by mass or more, and still more preferably 80% by mass or more. Examples of the resin other than the polyolefin resin used in combination with the polyolefin resin include the various resins described above.
In the second aspect, the difference between the skin resin layer and the foamed resin layer is mainly the degree of crosslinking, and as described later, the steps until the foamable sheet is crosslinked by irradiating with ionizing radiation are common. The material is also the same. Therefore, the resin used for these layers is necessarily the same.
[発泡剤]
 本態様の発泡樹脂層は、第1の態様と同様で、上記樹脂と発泡剤とを含む発泡性組成物を発泡してなる発泡体であることが好ましい。発泡して得られた発泡樹脂層は、樹脂単体又は必要に応じて添加剤が配合された樹脂をマトリックス樹脂として、気泡からなるセルを内部に多数有する発泡体により構成される。
 発泡剤としては、第1の態様の「発泡剤」と同様である。
[Foaming agent]
The foamed resin layer of this aspect is the same as in the first aspect, and is preferably a foam formed by foaming a foamable composition containing the resin and a foaming agent. The foamed resin layer obtained by foaming is composed of a foam having a large number of cells composed of cells inside, using a resin alone or a resin containing additives as necessary as a matrix resin.
The foaming agent is the same as the “foaming agent” in the first aspect.
[その他の添加剤]
 発泡樹脂層、すなわち、発泡性組成物には、第1の態様と同様で、必要に応じて、酸化防止剤、熱安定剤、着色剤、難燃剤、帯電防止剤、充填材、分解温度調整剤等の発泡体に一般的に使用する添加剤を配合されてもよい。これらの中では酸化防止剤、分解温度調整剤を使用することが好ましい。これらについても第1の態様と同様である。
[Other additives]
The foamed resin layer, that is, the foamable composition is the same as in the first embodiment, and if necessary, an antioxidant, a heat stabilizer, a colorant, a flame retardant, an antistatic agent, a filler, and a decomposition temperature adjustment. Additives commonly used in foams such as agents may be blended. Among these, it is preferable to use an antioxidant and a decomposition temperature adjusting agent. These are the same as in the first embodiment.
[多層発泡シートの製造方法]
 本発明の多層発泡シートの製造方法は、気泡からなるセルを複数有する発泡樹脂層と、その発泡樹脂層の少なくとも一方の面に設けられるスキン樹脂層とを備える、既述の多層発泡シートの製造方法である。そして、スキン樹脂層の架橋度が発泡樹脂層の架橋度よりも大きくなるように、電離放射線(例えば、電子線、α線、β線、γ線など)を照射して架橋する工程を含む。
[Method for producing multilayer foam sheet]
The method for producing a multilayer foamed sheet according to the present invention comprises the foamed resin layer having a plurality of cells composed of air bubbles and the skin resin layer provided on at least one surface of the foamed resin layer. Is the method. And it includes the step of irradiating with ionizing radiation (for example, electron beam, α-ray, β-ray, γ-ray, etc.) and crosslinking so that the degree of crosslinking of the skin resin layer is larger than the degree of crosslinking of the foamed resin layer.
 本態様の多層発泡シートは、例えば、以下の工程(1)~(3)を含む方法で製造する。
工程(1):樹脂と熱分解型発泡剤とを含む発泡性組成物からなる発泡性シート得る工程
工程(2):スキン樹脂層となる表層の架橋度が発泡樹脂層となる内層の架橋度よりも大きくなるように、発泡性シートに電離放射線を照射して架橋する工程
工程(3):発泡性シートを加熱することで前記発泡性シートを発泡させる工程
The multilayer foam sheet of this embodiment is produced, for example, by a method including the following steps (1) to (3).
Step (1): Step of obtaining a foamable sheet comprising a foamable composition containing a resin and a thermally decomposable foaming agent Step (2): The degree of cross-linking of the surface layer that becomes the skin resin layer is the degree of cross-linking of the inner layer that becomes the foamed resin layer Step (3) of irradiating the foamable sheet with ionizing radiation to crosslink so that the foamable sheet is larger: Step of foaming the foamable sheet by heating the foamable sheet
 工程(1)において、発泡性シートは、押出により成形することが好ましい。具体的には、樹脂、発泡剤、その他必要に応じて配合される添加剤を押出機に供給して溶融混練し、押出機からシート状の発泡性組成物(すなわち、発泡性シート)を押し出せばよい。 In step (1), the foamable sheet is preferably formed by extrusion. Specifically, a resin, a foaming agent, and other additives blended as necessary are supplied to an extruder and melt-kneaded, and a sheet-like foamable composition (that is, a foamable sheet) is pressed from the extruder. Just put it out.
 工程(2)においては、スキン樹脂層となる発泡性シートの表層の架橋度が発泡樹脂層となる内層の架橋度よりも大きくするためには、加速電圧を低く抑えることで照射線量の深度を抑えることができるため表層部の架橋度のみを大きくすることができる。また、加速電圧を抑えることができない場合には、発泡性シートと照射口の間に電子線が減衰するような層を挟むことで照射線量の深度をおさえることができる。照射線量の深度と線量の制御が難しい場合には、電離放射線を複数回照射すればしてもよい。例えば、1回目の照射はシート全体に行い、2回目以降は内部まで架橋されない程度の線量で表層部のみの架橋度を向上させる。1回目の照射における加速電圧は300~800kV、照射量は2.5~10.0Mradであることが好ましく、加速電圧は350~600kV、照射量は3.5~8.0Mradであることがより好ましい。2回目以降における加速電圧は50~300kV、照射量は特に限定されないが、4.0~15.0Mradであることが好ましく、加速電圧は100~250kV、照射量は6.0~13.0Mradであることがより好ましい。
 なお、1回目の照射(シート全体に行う照射)は両面同時で行ってもよいし、片面ずつ行ってもよい。また、その後の2回目以降の照射も両面同時で行ってもよいし、片面ずつ行ってもよい。
In step (2), in order to make the degree of cross-linking of the surface layer of the foamable sheet to be the skin resin layer greater than the degree of cross-linking of the inner layer to be the foamed resin layer, the depth of irradiation dose is reduced by keeping the acceleration voltage low. Since it can suppress, only the crosslinking degree of a surface layer part can be enlarged. Moreover, when the acceleration voltage cannot be suppressed, the depth of irradiation dose can be suppressed by sandwiching a layer that attenuates the electron beam between the foamable sheet and the irradiation port. If it is difficult to control the depth of irradiation and the dose, ionizing radiation may be irradiated multiple times. For example, the first irradiation is performed on the entire sheet, and after the second time, the degree of cross-linking of only the surface layer is improved with a dose that does not cross-link to the inside. In the first irradiation, the acceleration voltage is preferably 300 to 800 kV, the irradiation amount is preferably 2.5 to 10.0 Mrad, the acceleration voltage is 350 to 600 kV, and the irradiation amount is 3.5 to 8.0 Mrad. preferable. The acceleration voltage after the second time is 50 to 300 kV and the irradiation amount is not particularly limited, but is preferably 4.0 to 15.0 Mrad, the acceleration voltage is 100 to 250 kV, and the irradiation amount is 6.0 to 13.0 Mrad. More preferably.
Note that the first irradiation (irradiation performed on the entire sheet) may be performed simultaneously on both sides or may be performed on each side. Further, the second and subsequent irradiations may be performed simultaneously on both sides, or may be performed on each side.
 工程(3)において、発泡性シートを加熱する方法は、発泡性シートを熱風により加熱する方法、赤外線により加熱する方法、塩浴により加熱する方法、オイルバスにより加熱する方法等が挙げられ、これらは併用してもよい。また、加熱温度は、熱分解型発泡剤の発泡温度以上であればよいが、好ましくは200~300℃、より好ましくは220~280℃である。
 発泡性シートにおける表層は架橋度が高いため、加熱されても発泡剤が発泡して気泡が成長することができず、気泡によるセルが形成されない。一方で、内層は、加熱されることで発泡剤が発泡して、気泡によるセルが形成される。これらにより、スキン樹脂層と発泡樹脂層とが形成される。
In the step (3), the method of heating the foamable sheet includes a method of heating the foamable sheet with hot air, a method of heating with infrared rays, a method of heating with a salt bath, a method of heating with an oil bath, and the like. May be used in combination. The heating temperature may be not less than the foaming temperature of the pyrolytic foaming agent, but is preferably 200 to 300 ° C., more preferably 220 to 280 ° C.
Since the surface layer of the foamable sheet has a high degree of crosslinking, even if heated, the foaming agent foams and bubbles cannot grow, and cells due to the bubbles are not formed. On the other hand, when the inner layer is heated, the foaming agent foams to form cells by bubbles. As a result, a skin resin layer and a foamed resin layer are formed.
 工程(3)の最中、または後工程において発泡性シートを延伸してもよい。すなわち、発泡性シートを発泡させた後に延伸を行ってもよいし、発泡性シートを発泡させつつ延伸を行ってもよい。本製造方法では、発泡性シートを延伸することで上記した範囲の平均気泡径、セル間厚さを得やすくなる。なお、発泡性シートを発泡させた後、延伸する場合には、発泡性シートを冷却することなく発泡時の溶融状態を維持したまま続けて発泡性シートを延伸してもよく、これを冷却した後、再度、発泡性シートを加熱して溶融又は軟化状態とした上で延伸してもよい。
 発泡性シートは、MD及びTDの一方に延伸させてもよいし、両方向に延伸させてもよいが、両方向に延伸させることが好ましい。
 発泡性シートの延伸は、延伸によりその厚さが0.1~0.9倍となるように行うことが好ましく、より好ましくは0.15~0.75倍、さらに好ましくは0.25~0.45倍となるように行う。これら範囲内となるように発泡性シートを延伸することで、多圧縮強度及び引張強度が良好になりやすくなる。また、下限値以上とすると、発泡性シートが延伸中に破断したり、発泡中の発泡樹脂層から発泡ガスが抜けて発泡倍率が著しく低下したりすることを防止する。
 また、延伸時に発泡性シートは、例えば100~280℃、好ましくは150~260℃に加熱すればよい。
The foamable sheet may be stretched during the step (3) or in a subsequent step. That is, it may be stretched after foaming the foamable sheet, or may be stretched while foaming the foamable sheet. In this manufacturing method, it becomes easy to obtain the average cell diameter and cell thickness in the above-described ranges by stretching the foamable sheet. In addition, in the case of stretching after foaming the foamable sheet, the foamable sheet may be stretched while maintaining the molten state at the time of foaming without cooling the foamable sheet. Thereafter, the foamable sheet may be heated again to be melted or softened and then stretched.
The foamable sheet may be stretched in one of MD and TD or in both directions, but is preferably stretched in both directions.
The foamable sheet is preferably stretched so that its thickness is 0.1 to 0.9 times, more preferably 0.15 to 0.75 times, and still more preferably 0.25 to 0. Perform to 45 times. By stretching the foamable sheet so as to be within these ranges, the multi-compression strength and the tensile strength are likely to be good. On the other hand, when the value is not less than the lower limit, the foamable sheet is prevented from breaking during stretching, or the foaming gas escapes from the foamed resin layer during foaming to significantly reduce the foaming ratio.
Further, the foamable sheet may be heated to, for example, 100 to 280 ° C., preferably 150 to 260 ° C. during stretching.
 多層発泡シートの用途は、第1の態様と同様で、特に限定されないが、例えば電子機器内部で使用することが好ましい。本態様の多層発泡シートは、薄厚であるため、薄型の電子機器、例えば、各種の携帯電子機器内部で好適に使用できる。携帯電子機器としては、ノート型パーソナルコンピュータ、携帯電話、スマートフォン、タブレット、携帯音楽機器等が挙げられる。多層発泡シートは、電子機器内部において、衝撃を吸収するための衝撃吸収材、部材間の隙間を埋めるシール材等として使用可能である。 The use of the multi-layer foamed sheet is the same as in the first embodiment and is not particularly limited. However, it is preferably used inside an electronic device, for example. Since the multilayer foam sheet of this aspect is thin, it can be suitably used in thin electronic devices such as various portable electronic devices. Examples of portable electronic devices include notebook personal computers, mobile phones, smartphones, tablets, and portable music devices. The multilayer foamed sheet can be used as an impact absorbing material for absorbing an impact, a sealing material for filling a gap between members, and the like inside an electronic device.
[粘着テープ]
 また、多層発泡シートは、第1の態様と同様で、多層発泡シートを基材とする粘着テープに使用してもよい。粘着テープ、粘着材等の詳細は第1の態様と同様である。
[Adhesive tape]
Moreover, a multilayer foamed sheet is the same as that of the 1st aspect, and may be used for the adhesive tape which uses a multilayer foamed sheet as a base material. The details of the pressure-sensitive adhesive tape, the pressure-sensitive adhesive material, etc. are the same as in the first aspect.
 本発明を実施例A及び実施例Bにより更に詳細に説明するが、本発明はこれらの例によってなんら限定されるものではない。 The present invention will be described in more detail with reference to Example A and Example B, but the present invention is not limited to these examples.
[測定方法]
 実施例A及び実施例Bにおける各物性の測定方法及び評価方法は、次の通りである。
<平均気泡径>
 多層発泡シートを50mm四方にカットし、液体窒素に1分間浸した後にMD及びTDそれぞれに沿って厚さ方向に切断して、デジタルマイクロスコープ(株式会社キーエンス製、製品名VHX-900)を用いて200倍の拡大写真を撮影した。その撮影画像の発泡樹脂層において、MD、TDそれぞれにおける長さ2mm分の切断面に存在する全ての気泡についてMD,ZDの気泡径、及びTD,ZDの気泡径を測定し、その操作を5回繰り返した。そして、全ての気泡のMD、TDそれぞれの気泡径の平均値をMD、TDの平均気泡径とするとともに、以上の操作によって測定された全てのZDの気泡径の平均値をZDの平均気泡径とした。
<セル間厚さ>
 また、平均気泡径の測定時と同様にして得た、MD及びZDに沿う平面に沿って切断した切断断面の1000倍拡大写真の発泡樹脂層において、MDに沿って隣接するセル間の最短距離を3点測定する。同じ操作を5回繰り返し、計15点の平均値をMDにおけるセル間厚さとする。同様に、TD及びZDに沿う平面に沿って切断した切断面の1000倍拡大写真において、TDに沿って隣接するセル間の最短距離を3点測定する。同じ操作を5回繰り返し、計15点の平均値をTDにおけるセル間厚さとする。そして、MDにおけるセル間厚さと、TDにおけるセル間厚さの平均値を発泡樹脂層におけるセル間厚さとした。
[Measuring method]
The measurement method and evaluation method of each physical property in Example A and Example B are as follows.
<Average bubble diameter>
Cut the multi-layer foam sheet into 50mm square, soak in liquid nitrogen for 1 minute, then cut along the MD and TD in the thickness direction, and use a digital microscope (Keyence Co., Ltd., product name VHX-900) I took a 200x magnified photo. In the foamed resin layer of the photographed image, the bubble diameters of MD and ZD and the bubble diameters of TD and ZD and the bubble diameters of TD and ZD are measured for all the bubbles present on the cut surface of 2 mm in length in each of MD and TD. Repeated times. The average value of the bubble diameters of all the bubbles MD and TD is taken as the average bubble diameter of the MD and TD, and the average value of the bubble diameters of all ZDs measured by the above operation is taken as the average bubble diameter of the ZD. It was.
<Thickness between cells>
Moreover, in the foamed resin layer of the 1000 times magnified photograph of the cut cross section cut along the plane along MD and ZD obtained in the same manner as the measurement of the average bubble diameter, the shortest distance between cells adjacent along MD Are measured at three points. The same operation is repeated 5 times, and the average value of a total of 15 points is defined as the intercell thickness in MD. Similarly, in the 1000 times magnified photograph of the cut surface cut along the plane along TD and ZD, three shortest distances between adjacent cells are measured along TD. The same operation is repeated 5 times, and the average value of a total of 15 points is defined as the inter-cell thickness at TD. And the average value of the thickness between cells in MD and the thickness between cells in TD was made into the thickness between cells in a foamed resin layer.
<見かけ密度及び発泡倍率>
 見かけ密度はJIS  K7222に準拠して測定した。また、見かけ密度の逆数を発泡倍率とした。
<独立気泡率>
 明細書記載の方法に従って測定した。
<25%圧縮強度>
 JIS  K6767に準拠して25%圧縮強度を測定した。
<引張り強度>
 多層発泡シートをJIS K6251 4.1に規定されるダンベル状1号形にカットした。これを試料として用い、引張試験機(製品名.テンシロンRTF235、エー・アンド・デイ社製)により、測定温度23℃で、JISK6767に準拠して、MD及びTDの引張り強度を測定した。
<Apparent density and expansion ratio>
The apparent density was measured according to JIS K7222. The reciprocal of the apparent density was taken as the expansion ratio.
<Closed cell ratio>
It was measured according to the method described in the specification.
<25% compressive strength>
The 25% compressive strength was measured according to JIS K6767.
<Tensile strength>
The multilayer foamed sheet was cut into dumbbell-shaped No. 1 as defined in JIS K6251 4.1. Using this as a sample, the tensile strength of MD and TD was measured with a tensile tester (product name: Tensilon RTF235, manufactured by A & D) at a measurement temperature of 23 ° C. according to JISK6767.
 実施例Bにおける架橋度及び厚さの測定方法及び評価方法は、次の通りである。
<架橋度>
 電子線照射後のシートの表層を薄膜スライサーで削ることで表層部分(スキン層)の試料とした。また、残りの部分を発泡樹脂層の試料とした。これらの試料について明細書記載の方法に従って架橋度を測定した。
The measurement method and evaluation method of the degree of crosslinking and thickness in Example B are as follows.
<Degree of crosslinking>
A surface layer portion (skin layer) sample was obtained by scraping the surface layer of the sheet after electron beam irradiation with a thin film slicer. The remaining part was used as a sample of the foamed resin layer. For these samples, the degree of crosslinking was measured according to the method described in the specification.
<厚さ>
 気泡がない層(スキン樹脂層)と気泡がある層(発泡樹脂層)との境界から多層発泡シートの表面までの距離をスキン樹脂層の厚さとし、全体の厚さとスキン樹脂層の合計の厚さとの差から発泡樹脂層の厚さを求めた。具体的には、デジタルマイクロスコープ(キーエンス社製、「VHX-900」)を用いて、500倍倍率で拡大写真を撮影して求めた。
<Thickness>
The distance from the boundary between the layer without air bubbles (skin resin layer) and the layer with air bubbles (foamed resin layer) to the surface of the multilayer foam sheet is the thickness of the skin resin layer, and the total thickness and the total thickness of the skin resin layers From the difference, the thickness of the foamed resin layer was determined. Specifically, an enlarged photograph was taken at a magnification of 500 times using a digital microscope (manufactured by Keyence Corporation, “VHX-900”).
<<実施例A>>
[実施例1]
 ポリオレフィン樹脂としてメタロセン化合物の重合触媒によって得られた直鎖状低密度ポリエチレン樹脂(日本ポリエチレン社製、商品名「カーネルKF283」、密度:0.921g/cm)を使用した。この樹脂100質量部と、熱分解型発泡剤であるアゾジカルボンアミド2質量部と、分解温度調整剤である酸化亜鉛(堺化学工業株式会社製商品名「OW-212F」)1質量部と、フェノール系酸化防止剤である2,6-ジ-t-ブチル-p-クレゾール0.5質量部とを第1の押出機に供給して130℃で溶融混練した。また、2つ用意した第2の押出機それぞれに、上記のポリオレフィン樹脂100質量部と、分解温度調整剤1質量部と、酸化防止剤0.5質量部とを供給して130℃で溶融混練した。供給された各成分を混練して得た発泡性組成物を第1の押出機から、また、供給された各成分を混練して得た樹脂組成物を第2の押出機それぞれから共押出しして、厚さ0.21mmの発泡性シートの両面に厚さ0.10mmの樹脂シートを積層して多層シートを得た。
 次に、多層シートの両面に加速電圧500kVの電子線を4Mrad照射して多層シートを架橋した後、架橋した多層シートを熱風及び赤外線ヒーターにより250℃に保持された発泡炉内に連続的に送り込んで加熱して発泡させ、その後、全体の厚さが表1の厚さとなるように、110℃でMD及びTDに延伸して多層発泡シートを得た。得られた多層発泡シートを上記評価方法に従って評価した。その結果を表1に示す。
<< Example A >>
[Example 1]
A linear low-density polyethylene resin (trade name “Kernel KF283”, manufactured by Nippon Polyethylene Co., Ltd., density: 0.921 g / cm 3 ) obtained by a polymerization catalyst of a metallocene compound was used as the polyolefin resin. 100 parts by weight of this resin, 2 parts by weight of azodicarbonamide which is a thermal decomposition type foaming agent, 1 part by weight of zinc oxide (trade name “OW-212F” manufactured by Sakai Chemical Industry Co., Ltd.) which is a decomposition temperature adjusting agent, 0.5 parts by mass of 2,6-di-t-butyl-p-cresol, which is a phenolic antioxidant, was supplied to the first extruder and melt-kneaded at 130 ° C. In addition, 100 parts by mass of the polyolefin resin, 1 part by mass of the decomposition temperature adjusting agent, and 0.5 parts by mass of the antioxidant are supplied to each of the two prepared second extruders, and melt kneaded at 130 ° C. did. The foamable composition obtained by kneading the supplied components is coextruded from the first extruder, and the resin composition obtained by kneading the supplied components is coextruded from the second extruder. A multilayer sheet was obtained by laminating a 0.10 mm thick resin sheet on both sides of a 0.21 mm thick foamable sheet.
Next, after irradiating both surfaces of the multilayer sheet with 4 Mrad of an electron beam with an acceleration voltage of 500 kV to crosslink the multilayer sheet, the crosslinked multilayer sheet is continuously fed into a foaming furnace maintained at 250 ° C. by hot air and an infrared heater. Was heated and foamed, and then stretched in the MD and TD at 110 ° C. so that the total thickness became the thickness of Table 1, to obtain a multilayer foamed sheet. The obtained multilayer foamed sheet was evaluated according to the above evaluation method. The results are shown in Table 1.
[比較例1]
 樹脂シートを発泡性シートの両面に積層せず、また発泡性シート、発泡樹脂層の厚さが表1となるように調整した以外は実施例1と同様に実施して、発泡樹脂層単層からなる発泡シートを得た。得られた発泡シートの評価結果を表1に示す。
[Comparative Example 1]
The resin sheet was not laminated on both sides of the foamable sheet, and the same procedure was performed as in Example 1 except that the thickness of the foamable sheet and the foamed resin layer was adjusted to Table 1. A foam sheet was obtained. Table 1 shows the evaluation results of the obtained foamed sheet.
Figure JPOXMLDOC01-appb-T000001

 
※なお、表1~3において、リワーク性評価とは、発泡樹脂層の圧縮強度が同程度である発泡樹脂層単体からなる発泡シートに比べて、粘着テープとしたときのリワーク性が良好か否かを3段階で示す指標であり、“3”が優れることを示し、“2”が良好であることを示し、“1”が同程度であることを示す。なお、本評価に使用した粘着テープは、多層発泡シートのスキン樹脂層が設けられた面に粘着剤層単層を積層したものである。
※表1~3において、発泡前の発泡樹脂層及びスキン樹脂層それぞれの厚さは、発泡性シート、及び樹脂シートの厚さを意味する。
Figure JPOXMLDOC01-appb-T000001


* In Tables 1 to 3, reworkability evaluation refers to whether reworkability when used as an adhesive tape is better than a foamed sheet consisting of a single foamed resin layer with the same compressive strength as the foamed resin layer. This is an index indicating three levels, “3” indicates that it is excellent, “2” indicates that it is good, and “1” indicates that it is comparable. In addition, the adhesive tape used for this evaluation laminates | stacks the adhesive layer single layer on the surface in which the skin resin layer of the multilayer foamed sheet was provided.
* In Tables 1 to 3, the thicknesses of the foamed resin layer and the skin resin layer before foaming mean the thicknesses of the foamable sheet and the resin sheet.
 表1の結果から明らかなように、実施例1では、セル間厚さよりも厚いスキン樹脂層を発泡樹脂層の両面に積層することで、25%圧縮強度をある程度良好に維持しつつ、発泡樹脂層単層からなる比較例1に比べて引張り強度が良好となった。また、実施例1の多層発泡シートは、粘着剤層を片面に積層して粘着テープにしたときのリワーク性が比較例1より優れていた。 As is clear from the results in Table 1, in Example 1, the foamed resin was maintained while maintaining 25% compressive strength to some extent by laminating skin resin layers thicker than the cell thickness on both sides of the foamed resin layer. Compared with the comparative example 1 which consists of a single layer, tensile strength became favorable. Further, the multilayer foamed sheet of Example 1 was superior to Comparative Example 1 in reworkability when the pressure-sensitive adhesive layer was laminated on one side to form a pressure-sensitive adhesive tape.
[実施例2]
 発泡性組成物の配合、各シート、層の厚さを表2に示すように調整して、実施例1と同様に実施して多層発泡シートを得た。得られた多層発泡シートの評価結果を表2に示す。[比較例2]
 発泡性組成物の配合、発泡性シート、発泡樹脂層の厚さを表2に示すように調整して、比較例1と同様に実施して発泡シートを得た。得られた発泡シートの評価結果を表2に示す。
[Example 2]
The composition of the foamable composition, each sheet, and the layer thickness were adjusted as shown in Table 2, and the same procedure as in Example 1 was performed to obtain a multilayer foam sheet. The evaluation results of the obtained multilayer foamed sheet are shown in Table 2. [Comparative Example 2]
The composition of the foamable composition, the foamable sheet, and the thickness of the foamed resin layer were adjusted as shown in Table 2, and the same procedure as in Comparative Example 1 was performed to obtain a foamed sheet. Table 2 shows the evaluation results of the obtained foamed sheet.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[実施例3]
 発泡性組成物の配合、各シート、層の厚さを表3に示すように調整して、実施例1と同様に実施して多層発泡シートを得た。得られた多層発泡シートの評価結果を表3に示す。
[実施例4]
 発泡性組成物の配合を表3に示すように変更したうえで、実施例1と同様に実施して多層発泡シートを得た。得られた多層発泡シートの評価結果を表3に示す。
[実施例5]
 発泡性組成物の配合を表3に示すように変更し、発泡性シートの片面に樹脂シートを積層し、かつ各シート、層の厚さが表3となるように調整して、実施例1と同様に実施して、発泡樹脂層の片面のみにスキン樹脂層を有する多層発泡シートを得た。得られた多層発泡シートの評価結果を表3に示す。
[比較例3]
 発泡性組成物の配合、及び発泡性シート、発泡樹脂層の厚さを表3に示すように調整して、比較例1と同様に実施して発泡シートを得た。得られた発泡シートの評価結果を表3に示す。
[Example 3]
The composition of the foamable composition, each sheet, and the layer thickness were adjusted as shown in Table 3, and the same procedure as in Example 1 was performed to obtain a multilayer foam sheet. The evaluation results of the obtained multilayer foamed sheet are shown in Table 3.
[Example 4]
After changing the composition of the foamable composition as shown in Table 3, it was carried out in the same manner as in Example 1 to obtain a multilayer foamed sheet. The evaluation results of the obtained multilayer foamed sheet are shown in Table 3.
[Example 5]
Example 1 by changing the composition of the foamable composition as shown in Table 3, laminating a resin sheet on one side of the foamable sheet, and adjusting the thickness of each sheet and layer to Table 3. In the same manner as described above, a multilayer foam sheet having a skin resin layer only on one side of the foam resin layer was obtained. The evaluation results of the obtained multilayer foamed sheet are shown in Table 3.
[Comparative Example 3]
The composition of the foamable composition and the thickness of the foamable sheet and the foamed resin layer were adjusted as shown in Table 3, and the same procedure as in Comparative Example 1 was carried out to obtain a foamed sheet. The evaluation results of the obtained foamed sheet are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表2、3の結果から明らかなように、発泡倍率を高くした場合であっても、実施例1と同様に、セル間厚さよりも厚いスキン樹脂層を発泡樹脂層の両面又は片面に積層することで、25%圧縮強度をある程度良好に維持しつつ、発泡樹脂層単層からなる比較例2、3に比べて引張り強度が良好となった。そして、実施例2~5の多層発泡シートは、粘着剤層を片面に積層して粘着テープにしたときのリワーク性が比較例2、3よりも良好であった。 As is clear from the results in Tables 2 and 3, even when the foaming ratio is increased, the skin resin layer thicker than the inter-cell thickness is laminated on both sides or one side of the foamed resin layer as in Example 1. Thus, the tensile strength was improved as compared with Comparative Examples 2 and 3 comprising a single foamed resin layer while maintaining the 25% compressive strength to some extent. The multilayer foamed sheets of Examples 2 to 5 had better reworkability than Comparative Examples 2 and 3 when the pressure-sensitive adhesive layer was laminated on one side to form a pressure-sensitive adhesive tape.
<<実施例B>>
[実施例6]
 ポリオレフィン樹脂としてメタロセン化合物の重合触媒によって得られた直鎖状低密度ポリエチレン樹脂(日本ポリエチレン社製、商品名「カーネルKF283」、密度:0.921g/cm)を使用した。この樹脂100質量部と、熱分解型発泡剤であるアゾジカルボンアミド1.4質量部と、分解温度調整剤である酸化亜鉛(堺化学工業株式会社製商品名「OW-212F」)1質量部と、フェノール系酸化防止剤である2,6-ジ-t-ブチル-p-クレゾール0.5質量部とを押出機に供給して130℃で溶融混練した。混練して得た発泡性組成物を押出機から押出しして、厚さ0.20mmの発泡性シートを得た。
 次に、発泡性シートの両面に加速電圧500kVの電子線を4.0Mrad照射し内部まで架橋した後、さらに、シートの両面に加速電圧100kVの電子線を10Mrad照射して表層のみを架橋した。
 架橋したシートを熱風及び赤外線ヒーターにより250℃に保持された発泡炉内に連続的に送り込んで加熱して発泡させて、発泡樹脂層を内層としその両面にスキン樹脂層が形成された多層発泡シートを得た。その後、表4の厚さとなるように、110℃でMD及びTDに延伸した。延伸後の多層発泡シートを上記評価方法に従って評価した。その結果を表4に示す。
<< Example B >>
[Example 6]
A linear low-density polyethylene resin (trade name “Kernel KF283”, manufactured by Nippon Polyethylene Co., Ltd., density: 0.921 g / cm 3 ) obtained by a polymerization catalyst of a metallocene compound was used as the polyolefin resin. 100 parts by mass of this resin, 1.4 parts by mass of azodicarbonamide, which is a thermal decomposition type foaming agent, and 1 part by mass of zinc oxide, which is a decomposition temperature adjusting agent (trade name “OW-212F” manufactured by Sakai Chemical Industry Co., Ltd.) Then, 0.5 parts by mass of 2,6-di-t-butyl-p-cresol, which is a phenolic antioxidant, was supplied to an extruder and melt-kneaded at 130 ° C. The foamable composition obtained by kneading was extruded from an extruder to obtain a foamable sheet having a thickness of 0.20 mm.
Next, both surfaces of the foamable sheet were irradiated with an electron beam with an acceleration voltage of 500 kV for 4.0 Mrad to be crosslinked to the inside, and further, both surfaces of the sheet were irradiated with an electron beam with an acceleration voltage of 100 kV for 10 Mrad to crosslink only the surface layer.
A multi-layer foam sheet in which a cross-linked sheet is continuously sent into a foaming furnace maintained at 250 ° C. by hot air and an infrared heater, heated and foamed, and a foam resin layer is used as an inner layer and skin resin layers are formed on both sides thereof. Got. Then, it extended | stretched to MD and TD at 110 degreeC so that it might become thickness of Table 4. FIG. The stretched multilayer foam sheet was evaluated according to the above evaluation method. The results are shown in Table 4.
[比較例4]
 照射工程で加速電圧500kVの電子線を4.0Mrad照射し内部まで架橋したのみで、追加で照射を行わなかった以外は、実施例6と同様にして多層発泡シートを得た。得られた発泡シートの評価結果を表4に示す。
[Comparative Example 4]
In the irradiation step, a multilayer foam sheet was obtained in the same manner as in Example 6 except that the electron beam having an acceleration voltage of 500 kV was irradiated with 4.0 Mrad to crosslink the inside, and no additional irradiation was performed. Table 4 shows the evaluation results of the obtained foamed sheet.
Figure JPOXMLDOC01-appb-T000004

※なお、表4(後述の表5~8も同様)において、リワーク性評価とは、発泡樹脂層の圧縮強度が同程度である発泡樹脂層単体からなる発泡シートに比べて、粘着テープとしたときのリワーク性が良好か否かを3段階で示す指標であり、“3”が優れることを示し、“2”が良好であることを示し、“1”が同程度であることを示す。なお、本評価に使用した粘着テープは、多層発泡シートのスキン樹脂層が設けられた面に粘着剤層単層を積層したものである。
Figure JPOXMLDOC01-appb-T000004

* In Table 4 (the same applies to Tables 5 to 8 to be described later), the reworkability evaluation is an adhesive tape compared to a foamed sheet consisting of a single foamed resin layer with the same compressive strength of the foamed resin layer. It is an index that indicates whether or not the reworkability is good in three stages, “3” indicates that it is excellent, “2” indicates that it is good, and “1” indicates that it is comparable. In addition, the adhesive tape used for this evaluation laminates | stacks the adhesive layer single layer on the surface in which the skin resin layer of the multilayer foamed sheet was provided.
[実施例7]
 発泡性組成物の配合、各シート、層の厚さを表5に示すように調整した以外は実施例6と同様にして発泡性シートを作製した。その両面に加速電圧500kVの電子線を4.0Mrad照射し内部まで架橋した後、さらに、シートの両面に加速電圧120kVの電子線を10.0Mrad照射して表層のみを架橋した。その後は実施例6と同様にして、発泡、延伸を行い多層発泡シートを得た。得られた多層発泡シートの評価結果を表5に示す。
[Example 7]
A foamable sheet was produced in the same manner as in Example 6 except that the composition of the foamable composition, each sheet, and the layer thickness were adjusted as shown in Table 5. The both surfaces were irradiated with an electron beam with an acceleration voltage of 500 kV for 4.0 Mrad and cross-linked to the inside, and then both surfaces of the sheet were irradiated with an electron beam with an acceleration voltage of 120 kV for 10.0 Mrad to crosslink only the surface layer. Thereafter, foaming and stretching were performed in the same manner as in Example 6 to obtain a multilayer foamed sheet. The evaluation results of the obtained multilayer foamed sheet are shown in Table 5.
[比較例5]
 照射工程で加速電圧500kVの電子線を4.0Mrad照射し内部まで架橋したのみで、追加で照射を行わなかった以外は、実施例7と同様にして多層発泡シートを得た。得られた多層発泡シートの評価結果を表5に示す。
[Comparative Example 5]
In the irradiation step, a multilayer foam sheet was obtained in the same manner as in Example 7 except that 4.0 Mrad of an electron beam with an acceleration voltage of 500 kV was irradiated and crosslinked to the inside, and no additional irradiation was performed. The evaluation results of the obtained multilayer foamed sheet are shown in Table 5.
Figure JPOXMLDOC01-appb-T000005

 
Figure JPOXMLDOC01-appb-T000005

 
[実施例8]
 発泡性組成物の配合、各シート、層の厚さを表6に示すように調整した以外は実施例6と同様にして発泡性シートを作製した。その両面に加速電圧500kVの電子線を4.5Mrad照射し内部まで架橋した後、さらに、シートの両面に加速電圧130kVの電子線を10Mrad照射して表層のみを架橋した。その後は実施例6と同様にして、発泡、延伸を行い多層発泡シートを得た。得られた多層発泡シートの評価結果を表6に示す。
[Example 8]
A foamable sheet was produced in the same manner as in Example 6 except that the composition of the foamable composition, each sheet, and the layer thickness were adjusted as shown in Table 6. After irradiating an electron beam with an acceleration voltage of 500 kV on the both surfaces for 4.5 Mrad and crosslinking to the inside, the both surfaces of the sheet were further irradiated with an electron beam with an acceleration voltage of 130 kV for 10 Mrad to crosslink only the surface layer. Thereafter, foaming and stretching were performed in the same manner as in Example 6 to obtain a multilayer foamed sheet. Table 6 shows the evaluation results of the obtained multilayer foamed sheet.
[比較例6]
 照射工程で加速電圧500kVの電子線を4.5Mrad照射し内部まで架橋したのみで、追加で照射を行わなかった以外は実施例8と同様にして多層発泡シートを得た。得られた多層発泡シートの評価結果を表6に示す。
[Comparative Example 6]
A multilayer foamed sheet was obtained in the same manner as in Example 8 except that in the irradiation step, an electron beam with an acceleration voltage of 500 kV was irradiated by 4.5 Mrad and crosslinked to the inside, and no additional irradiation was performed. Table 6 shows the evaluation results of the obtained multilayer foamed sheet.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
[実施例9]
 発泡性組成物の配合、各シート、層の厚さを表7に示すように調整した以外は実施例6と同様にして発泡性シートを作製した。その両面に加速電圧500kVの電子線を4.5Mrad照射し内部まで架橋した後、さらに、シートの両面に加速電圧150kVの電子線を12Mrad照射して表層のみを架橋した。その後は実施例6と同様にして、発泡、延伸を行い多層発泡シートを得た。得られた多層発泡シートの評価結果を表7に示す。
[Example 9]
A foamable sheet was prepared in the same manner as in Example 6 except that the composition of the foamable composition, each sheet, and the layer thickness were adjusted as shown in Table 7. After irradiating both surfaces with an electron beam with an acceleration voltage of 500 kV for 4.5 Mrad to crosslink the inside, the both surfaces of the sheet were irradiated with an electron beam with an acceleration voltage of 150 kV for 12 Mrad to crosslink only the surface layer. Thereafter, foaming and stretching were performed in the same manner as in Example 6 to obtain a multilayer foamed sheet. Table 7 shows the evaluation results of the obtained multilayer foamed sheet.
[比較例7]
 発泡性組成物の配合、各シート、層の厚さを表4に示すように調整して、照射工程で加速電圧500kVの電子線を4.5Mrad照射し内部まで架橋したのみで、追加で照射を行わなかった以外は、実施例9と同様にして多層発泡シートを得た。得られた多層発泡シートの評価結果を表7に示す。
[Comparative Example 7]
The composition of the foamable composition, each sheet, and the thickness of each layer are adjusted as shown in Table 4, and the irradiation process is performed by irradiating an electron beam with an acceleration voltage of 500 kV by 4.5 Mrad and crosslinking to the inside. A multilayer foamed sheet was obtained in the same manner as in Example 9 except that the step was not performed. Table 7 shows the evaluation results of the obtained multilayer foamed sheet.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
[実施例10]
 延伸を行わなかった以外は、実施例9と同様にして多層発泡シートを得た。得られた多層発泡シートの評価結果を表8に示す。なお、参考のため実施例9の結果も表8に示す。
[Example 10]
A multilayer foam sheet was obtained in the same manner as in Example 9 except that stretching was not performed. Table 8 shows the evaluation results of the obtained multilayer foamed sheet. For reference, the results of Example 9 are also shown in Table 8.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 10 多層発泡シート
 11 発泡樹脂層
 12 スキン樹脂層
10 Multilayer foam sheet 11 Foamed resin layer 12 Skin resin layer

Claims (17)

  1.  厚さが0.05~2.0mmである多層発泡シートであって、
     気泡からなるセルを複数有する発泡樹脂層と、前記発泡樹脂層の少なくとも一方の面に設けられるスキン樹脂層とを備えるとともに、
     前記スキン樹脂層が、前記発泡樹脂層のセル間のマトリックス樹脂の厚さよりも厚い多層発泡シート。
    A multilayer foam sheet having a thickness of 0.05 to 2.0 mm,
    While having a foamed resin layer having a plurality of cells made of bubbles, and a skin resin layer provided on at least one surface of the foamed resin layer,
    A multilayer foam sheet in which the skin resin layer is thicker than a thickness of a matrix resin between cells of the foam resin layer.
  2.  前記厚さが0.05~1.2mmである請求項1に記載の多層発泡シート。 The multilayer foamed sheet according to claim 1, wherein the thickness is 0.05 to 1.2 mm.
  3.  前記厚さが0.05~1.0mmである請求項2に記載の多層発泡シート。 The multilayer foamed sheet according to claim 2, wherein the thickness is 0.05 to 1.0 mm.
  4.  前記スキン樹脂層それぞれの厚さは、セル間のマトリックス樹脂の厚さの150倍以下である請求項1~3のいずれか1項に記載の多層発泡シート。 The multilayer foamed sheet according to any one of claims 1 to 3, wherein the thickness of each skin resin layer is 150 times or less the thickness of the matrix resin between cells.
  5.  前記スキン樹脂層それぞれの厚さは、セル間のマトリックス樹脂の厚さの2~100倍である請求項4に記載の多層発泡シート。 The multilayer foamed sheet according to claim 4, wherein the thickness of each skin resin layer is 2 to 100 times the thickness of the matrix resin between cells.
  6.  前記セル間のマトリックス樹脂の厚さが1~30μmである請求項1~5のいずれか1項に記載の多層発泡シート。 The multilayer foamed sheet according to any one of claims 1 to 5, wherein the matrix resin between the cells has a thickness of 1 to 30 µm.
  7.  前記スキン層それぞれの厚さが、0.01~0.15mmであるとともに、前記発泡樹脂層の厚さが0.03~0.95mmである請求項1~6のいずれか1項に記載の多層発泡シート。 The thickness of each of the skin layers is 0.01 to 0.15 mm, and the thickness of the foamed resin layer is 0.03 to 0.95 mm. Multi-layer foam sheet.
  8.  多層発泡シートの見かけ密度が0.05~0.85g/cmである請求項1~7のいずれか1項に記載の多層発泡シート。 The multilayer foamed sheet according to any one of claims 1 to 7, wherein the apparent density of the multilayer foamed sheet is 0.05 to 0.85 g / cm 3 .
  9.  多層発泡シートの見かけ密度が0.15~0.85g/cmである請求項8に記載の多層発泡シート。 The multilayer foamed sheet according to claim 8, wherein the apparent density of the multilayer foamed sheet is 0.15 to 0.85 g / cm 3 .
  10.  前記発泡樹脂層及びスキン樹脂層それぞれを構成する樹脂が、ポリオレフィン樹脂を含む請求項1~9のいずれか1項に記載の多層発泡シート。 The multilayer foamed sheet according to any one of claims 1 to 9, wherein the resin constituting each of the foamed resin layer and the skin resin layer contains a polyolefin resin.
  11.  多層発泡シートの25%圧縮強度が20~1000kPaである請求項1~10のいずれか1項に記載の多層発泡シート。 The multilayer foamed sheet according to any one of claims 1 to 10, wherein the 25% compressive strength of the multilayer foamed sheet is 20 to 1000 kPa.
  12.  前記発泡樹脂層が、樹脂と熱分解型発泡剤とを含む発泡性組成物を発泡してなる発泡体である請求項1~11のいずれか1項に記載の多層発泡シート。 The multilayer foamed sheet according to any one of claims 1 to 11, wherein the foamed resin layer is a foam obtained by foaming a foamable composition containing a resin and a thermally decomposable foaming agent.
  13.  前記スキン樹脂層に発泡剤が含有されてなる請求項1~12のいずれか1項に記載の多層発泡シート。 The multilayer foamed sheet according to any one of claims 1 to 12, wherein a foaming agent is contained in the skin resin layer.
  14.  前記スキン樹脂層の架橋度が前記発泡樹脂層の架橋度よりも大きい請求項1~13のいずれか1項に記載の多層発泡シート。 The multilayer foamed sheet according to any one of claims 1 to 13, wherein the degree of crosslinking of the skin resin layer is larger than the degree of crosslinking of the foamed resin layer.
  15.  請求項1~14のいずれか1項に記載の多層発泡シートと、前記多層発泡シートの少なくともいずれか一方の面に設けた粘着材とを備える粘着テープ。 15. An adhesive tape comprising the multilayer foamed sheet according to any one of claims 1 to 14 and an adhesive material provided on at least one surface of the multilayer foamed sheet.
  16.  請求項1~12のいずれか1項に記載の多層発泡シートの製造方法であって、
     樹脂と熱分解型発泡剤とを含む発泡性組成物からなる発泡性シートと、樹脂シートとを積層して多層シートを得て、前記多層シートを加熱することで前記発泡性シートを発泡させ、又は、発泡させかつ前記多層シートを延伸する、多層発泡シートの製造方法。
    A method for producing a multilayer foamed sheet according to any one of claims 1 to 12,
    A foamable sheet comprising a foamable composition containing a resin and a thermally decomposable foaming agent, and a resin sheet are laminated to obtain a multilayer sheet, and the multilayer sheet is heated to foam the foamable sheet, Or the manufacturing method of a multilayer foamed sheet which makes it foam and stretches the said multilayer sheet.
  17.  気泡からなるセルを複数有する発泡樹脂層と、前記発泡樹脂層の少なくとも一方の面に設けられるスキン樹脂層とを備える、請求項1~14のいずれか1項に記載の多層発泡シートの製造方法であって、前記スキン樹脂層の架橋度が前記発泡樹脂層の架橋度よりも大きくなるように、電離放射線を照射して架橋する、多層発泡シートの製造方法。
     
     
    The method for producing a multilayer foamed sheet according to any one of claims 1 to 14, comprising a foamed resin layer having a plurality of cells composed of cells and a skin resin layer provided on at least one surface of the foamed resin layer. And the manufacturing method of a multilayer foamed sheet | seat which irradiates and ionizes radiation so that the crosslinking degree of the said skin resin layer may become larger than the crosslinking degree of the said foamed resin layer.

PCT/JP2017/040152 2016-11-07 2017-11-07 Multilayer foam sheet, method for producing multilayer foam sheet, and adhesive tape WO2018084318A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780067758.9A CN109890886B (en) 2016-11-07 2017-11-07 Multilayer foamed sheet, method for producing multilayer foamed sheet, and adhesive tape
KR1020197012649A KR102537427B1 (en) 2016-11-07 2017-11-07 Multilayer foam sheet, manufacturing method of multilayer foam sheet, and adhesive tape
JP2018514921A JP7145069B2 (en) 2016-11-07 2017-11-07 Multilayer foam sheet, method for manufacturing multilayer foam sheet, and adhesive tape

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016217227 2016-11-07
JP2016-217227 2016-11-07
JP2017-072742 2017-03-31
JP2017072742 2017-03-31

Publications (1)

Publication Number Publication Date
WO2018084318A1 true WO2018084318A1 (en) 2018-05-11

Family

ID=62076680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/040152 WO2018084318A1 (en) 2016-11-07 2017-11-07 Multilayer foam sheet, method for producing multilayer foam sheet, and adhesive tape

Country Status (4)

Country Link
JP (1) JP7145069B2 (en)
KR (1) KR102537427B1 (en)
CN (1) CN109890886B (en)
WO (1) WO2018084318A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020138494A (en) * 2019-02-28 2020-09-03 積水化学工業株式会社 Foam composite sheet and adhesive tape
CN113348072A (en) * 2019-01-31 2021-09-03 积水化学工业株式会社 Multilayer foam sheet
CN113454149A (en) * 2019-03-26 2021-09-28 东丽株式会社 Polyolefin resin foam sheet and method for producing same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102375515B1 (en) * 2020-04-09 2022-03-17 영보화학 주식회사 A polyolefin polymer based foam sheet having multi-layered structure, manufacturing method thereof and an electronic product having the same
JP2023552353A (en) * 2020-12-17 2023-12-15 エルジー・ケム・リミテッド Crosslinked structure-containing polyolefin porous base material, method for producing the same, and crosslinked structure-containing separation membrane for lithium secondary batteries containing the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05230255A (en) * 1992-02-24 1993-09-07 Jsp Corp Propylene resin foam sheet for molding
JPH06134909A (en) * 1992-10-26 1994-05-17 Sekisui Chem Co Ltd Surface modified polyolefinic resin foam, self-adhesive polyolefinic resin foam and production thereof
JPH08325403A (en) * 1995-06-02 1996-12-10 Sekisui Chem Co Ltd Foamed crosslinked polyolefin resin sheet
JPH1134253A (en) * 1997-01-14 1999-02-09 Sekisui Chem Co Ltd Olefinic laminated sheet
JP2005200473A (en) * 2004-01-13 2005-07-28 Sekisui Chem Co Ltd Manufacturing method of crosslinked polyolefin based resin foamed sheet
JP2006143786A (en) * 2004-11-16 2006-06-08 Sekisui Chem Co Ltd Crosslinked polyolefin resin foamed sheet, composite sheet and internal trim material for motor vehicle
JP2016008290A (en) * 2014-06-26 2016-01-18 Dic株式会社 Double-sided adhesive tape and article

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL1647384T3 (en) * 2004-10-18 2009-05-29 Sekisui Alveo Ag Combined compression and shearing process for the production of a crushed polyolefin foam and product obtained thereby
JP2011213090A (en) * 2009-09-29 2011-10-27 Sekisui Chem Co Ltd Resin laminated sheet
ES2530168T3 (en) * 2012-05-23 2015-02-26 Sekisui Alveo Ag Flame retardant polyolefin foam and its production
JP6207009B2 (en) 2012-07-03 2017-10-04 積水化学工業株式会社 Cross-linked polyolefin resin foam sheet

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05230255A (en) * 1992-02-24 1993-09-07 Jsp Corp Propylene resin foam sheet for molding
JPH06134909A (en) * 1992-10-26 1994-05-17 Sekisui Chem Co Ltd Surface modified polyolefinic resin foam, self-adhesive polyolefinic resin foam and production thereof
JPH08325403A (en) * 1995-06-02 1996-12-10 Sekisui Chem Co Ltd Foamed crosslinked polyolefin resin sheet
JPH1134253A (en) * 1997-01-14 1999-02-09 Sekisui Chem Co Ltd Olefinic laminated sheet
JP2005200473A (en) * 2004-01-13 2005-07-28 Sekisui Chem Co Ltd Manufacturing method of crosslinked polyolefin based resin foamed sheet
JP2006143786A (en) * 2004-11-16 2006-06-08 Sekisui Chem Co Ltd Crosslinked polyolefin resin foamed sheet, composite sheet and internal trim material for motor vehicle
JP2016008290A (en) * 2014-06-26 2016-01-18 Dic株式会社 Double-sided adhesive tape and article

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113348072A (en) * 2019-01-31 2021-09-03 积水化学工业株式会社 Multilayer foam sheet
JP2020138494A (en) * 2019-02-28 2020-09-03 積水化学工業株式会社 Foam composite sheet and adhesive tape
JP7265374B2 (en) 2019-02-28 2023-04-26 積水化学工業株式会社 Foam composite sheet and adhesive tape
CN113454149A (en) * 2019-03-26 2021-09-28 东丽株式会社 Polyolefin resin foam sheet and method for producing same
CN113454149B (en) * 2019-03-26 2022-09-06 东丽株式会社 Polyolefin resin foam sheet and method for producing same

Also Published As

Publication number Publication date
KR20190082211A (en) 2019-07-09
CN109890886B (en) 2023-01-10
JPWO2018084318A1 (en) 2019-09-26
JP7145069B2 (en) 2022-09-30
CN109890886A (en) 2019-06-14
KR102537427B1 (en) 2023-05-26

Similar Documents

Publication Publication Date Title
JP6709300B2 (en) Polyolefin resin foam sheet and adhesive tape
JP5785514B2 (en) Cross-linked polyolefin resin foam sheet
JP6379040B2 (en) Cross-linked polyolefin resin foam sheet
WO2018084318A1 (en) Multilayer foam sheet, method for producing multilayer foam sheet, and adhesive tape
JP5899027B2 (en) Cross-linked polyolefin resin foam sheet, adhesive tape and sealing material
JP2013053179A (en) Crosslinked polyolefin resin foamed sheet, pressure-sensitive adhesive tape, and sealing material
JP7071836B2 (en) Foam sheet and adhesive tape
WO2019235529A1 (en) Resin foam sheet
JP7071848B2 (en) Foam sheet and adhesive tape
JP7188896B2 (en) Cushion material for electronic parts and adhesive tape for electronic parts
WO2018062444A1 (en) Closed cell resin foam and method for manufacturing same
JP2018053225A (en) Resin foam sheet, method for producing resin foam sheet, and resin foam sheet with support
JP2013053178A (en) Crosslinked polyolefin resin foamed sheet, pressure-sensitive adhesive tape, and sealing material
WO2018181498A1 (en) Polyolefin-based foamed sheet, production method therefor, and pressure-sensitive adhesive tape
JP7453768B2 (en) Foam sheets and adhesive tapes
WO2020158886A1 (en) Multilayer foam sheet
JP7265374B2 (en) Foam composite sheet and adhesive tape
JP2019064076A (en) Laminate
KR20160140570A (en) Adhesive tape and method for producing adhesive tape
WO2019189452A1 (en) Foamed composite sheet, adhesive tape, cushioning material for electronic components, and adhesive tape for electronic components
WO2023176985A1 (en) Foam sheet and adhesive tape
JP6898109B2 (en) Resin foam sheet and its manufacturing method
KR20230087477A (en) Multi-layer foam sheet and adhesive tape
JP2019183142A (en) Resin foam sheet
WO2022030649A1 (en) Multilayer foam sheet

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018514921

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17867951

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197012649

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17867951

Country of ref document: EP

Kind code of ref document: A1