WO2018084108A1 - Attachment structure for vehicle motor, in-vehicle equipment, and brushless motor - Google Patents

Attachment structure for vehicle motor, in-vehicle equipment, and brushless motor Download PDF

Info

Publication number
WO2018084108A1
WO2018084108A1 PCT/JP2017/039098 JP2017039098W WO2018084108A1 WO 2018084108 A1 WO2018084108 A1 WO 2018084108A1 JP 2017039098 W JP2017039098 W JP 2017039098W WO 2018084108 A1 WO2018084108 A1 WO 2018084108A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
mounting structure
vehicle
motor
motor mounting
Prior art date
Application number
PCT/JP2017/039098
Other languages
French (fr)
Japanese (ja)
Inventor
横山 誠也
貴宏 土屋
茂昌 加藤
洋次 山田
晃司 三上
晃尚 服部
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016217249A external-priority patent/JP6740865B2/en
Priority claimed from JP2017194384A external-priority patent/JP2018082610A/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to US16/332,295 priority Critical patent/US11649742B2/en
Priority to CN201780066776.5A priority patent/CN109923774A/en
Priority to DE112017005600.4T priority patent/DE112017005600T5/en
Publication of WO2018084108A1 publication Critical patent/WO2018084108A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2793Rotors axially facing stators
    • H02K1/2795Rotors axially facing stators the rotor consisting of two or more circumferentially positioned magnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/352Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using bevel or epicyclic gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
    • B60T13/748Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive acting on electro-magnetic brakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/14Actuating mechanisms for brakes; Means for initiating operation at a predetermined position
    • F16D65/16Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged in or on the brake
    • F16D65/18Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged in or on the brake adapted for drawing members together, e.g. for disc brakes
    • F16D65/186Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged in or on the brake adapted for drawing members together, e.g. for disc brakes with full-face force-applying member, e.g. annular
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/352Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using bevel or epicyclic gear
    • F01L2001/3522Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using bevel or epicyclic gear with electromagnetic brake
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2301/00Using particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2810/00Arrangements solving specific problems in relation with valve gears
    • F01L2810/03Reducing vibration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2810/00Arrangements solving specific problems in relation with valve gears
    • F01L2810/04Reducing noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2820/00Details on specific features characterising valve gear arrangements
    • F01L2820/01Absolute values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2820/00Details on specific features characterising valve gear arrangements
    • F01L2820/02Formulas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2820/00Details on specific features characterising valve gear arrangements
    • F01L2820/03Auxiliary actuators
    • F01L2820/032Electric motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2820/00Details on specific features characterising valve gear arrangements
    • F01L2820/04Sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/02Pumping cooling-air; Arrangements of cooling-air pumps, e.g. fans or blowers
    • F01P5/04Pump-driving arrangements
    • F01P2005/046Pump-driving arrangements with electrical pump drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • F01P5/12Pump-driving arrangements
    • F01P2005/125Driving auxiliary pumps electrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/20Cooling circuits not specific to a single part of engine or machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0203Variable control of intake and exhaust valves
    • F02D13/0215Variable control of intake and exhaust valves changing the valve timing only
    • F02D13/0219Variable control of intake and exhaust valves changing the valve timing only by shifting the phase, i.e. the opening periods of the valves are constant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D15/00Varying compression ratio
    • F02D15/02Varying compression ratio by alteration or displacement of piston stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2121/00Type of actuator operation force
    • F16D2121/18Electric or magnetic
    • F16D2121/20Electric or magnetic using electromagnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/173Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings
    • H02K5/1732Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings radially supporting the rotary shaft at both ends of the rotor

Definitions

  • the present invention relates to a motor mounting structure provided in an in-vehicle device.
  • Patent Document 1 discloses a valve timing variable device that adjusts the relative phase between a crankshaft and a camshaft that determines the opening / closing timing of an intake valve or an exhaust valve of an internal combustion engine based on the driving force of a motor. It is disclosed.
  • a brushless motor for a vehicle includes a stator having a coil, a rotor facing the stator, and a drive circuit connected to the stator coil as disclosed in, for example, Patent Document 2.
  • a rotating magnetic field is generated in the stator coil by energization of the stator coil from the drive circuit, the rotor is rotationally driven in accordance with the rotating magnetic field.
  • JP 2008-160964 A Japanese Patent Laid-Open No. 7-264822
  • the output side of the motor is often fixed to the in-vehicle device main body, and the opposite side of the motor protrudes from the in-vehicle device main body. For this reason, the motor is likely to vibrate due to the vibration of the vehicle during traveling, the vibration of the in-vehicle device itself, and the like, and there are problems such as generation of abnormal noise due to vibration, performance degradation, and structural deterioration.
  • An object of the present invention is to provide a vehicle motor mounting structure and an in-vehicle device capable of suppressing motor vibration.
  • a vehicle motor mounting structure includes an axial gap type motor including a rotor and a stator that are axially opposed to each other.
  • the motor is attached to the in-vehicle device in such a manner that the axial direction is perpendicular to the vertical direction.
  • FIG. 3 is an exploded perspective view of the rotor and stator of FIG. 2.
  • the top view which shows a part of rotor of FIG.
  • the graph for demonstrating the cogging torque in the motor of FIG. The perspective view which shows typically the electric power steering device concerning 2nd Embodiment.
  • Sectional drawing of the motor of FIG. FIG. 8 is an exploded perspective view of the rotor and stator of FIG. 7.
  • the top view which shows a part of rotor of FIG.
  • the top view which shows a part of stator core of FIG.
  • the top view which shows a part of rotor of a modification.
  • the top view which shows a part of stator core of a modification The top view which shows a part of stator core of a modification.
  • the top view which shows a part of stator core of a modification The top view which shows a part of stator core of a modification. Sectional drawing of the motor in a modification.
  • (A) (b) The top view which shows the relationship between the stator and rotor in a modification.
  • the top view of the rotor of a modification The top view of the rotor of a modification.
  • the schematic diagram which shows an electric brake device The schematic diagram which shows an electric brake device.
  • the schematic diagram which shows an electric brake device The schematic diagram which shows an electric compressor.
  • (A) The electric circuit diagram which shows the connection aspect of the coil in 1st Embodiment (b) The electric circuit diagram which shows the connection aspect of the coil in a modification.
  • the top view of each coil in 1st Embodiment The top view of each coil in a modification.
  • the schematic diagram for demonstrating the position of the lead wire of the coil in 2nd Embodiment The schematic diagram for demonstrating the position of the lead wire of the coil in a modification.
  • a variable valve timing device 11 mounted on an internal combustion engine 10 of a vehicle includes a motor 12, and a camshaft 13 with respect to a crankshaft (not shown) in the internal combustion engine 10 based on driving of the motor 12. This adjusts the relative rotational phase. More specifically, the rotating shaft 14 of the motor 12 is connected via an adjusting mechanism 15 to a camshaft 13 that opens and closes an engine valve (not shown). The timing at which the adjusting mechanism 15 operated by the rotational torque output from the motor 12 operates the camshaft 13 to open and close the engine valve is adjusted.
  • the motor 12 In a state in which the internal combustion engine 10 is mounted on a vehicle, the motor 12 has an axis L direction (hereinafter, referred to as an axial direction of the motor 12 or simply referred to as an axial direction) of the rotating shaft 14 in a vertical direction X (vehicle up-down direction). It is attached to the internal combustion engine 10 so as to be perpendicular to. In other words, in the vehicle mounted state of the internal combustion engine 10, the axial direction of the motor 12 is parallel to the horizontal direction. Further, the axial direction of the motor 12 is also perpendicular to the reciprocating direction of the piston 16 of the internal combustion engine 10. Furthermore, the axial direction of the motor 12 is also perpendicular to the front-rear direction of the vehicle (the direction perpendicular to the plane of FIG. 1). That is, the axial direction of the motor 12 is parallel to the vehicle width direction.
  • the motor 12 includes a motor case 21, a rotor 22 and a stator 23 housed in the motor case 21, and a drive circuit 24 electrically connected to the stator 23.
  • the motor 12 is a configuration in which the rotor 22 and the stator 23 face each other in the axial direction, that is, an axial gap type brushless motor having an air gap G between the rotor 22 and the stator 23 in the axial direction.
  • the motor case 21 includes a yoke housing 25 having a bottomed cylindrical shape, and an end frame 26 fixed to the yoke housing 25 so as to close the opening side end of the yoke housing 25.
  • the rotating shaft 14 of the rotor 22 protrudes from the end frame 26 to the outside, and the protruding portion is configured as an output unit connected to the adjustment mechanism 15. That is, the end frame 26 constitutes the output side of the motor case 21.
  • the motor case 21 is fixed to the housing in such a manner that the end frame 26 abuts against the housing of the variable valve timing device 11 (housing of the internal combustion engine 10) (see FIG. 1).
  • the rotor 22 includes a disk-shaped rotor core 31 in which the rotating shaft 14 is fixed at the center, and a plurality of magnets 32 provided on one end surface in the axial direction of the rotor core 31. Yes.
  • the rotating shaft 14 of the rotor 22 is rotatably supported by bearings 33 provided on the yoke housing 25 and the end frame 26, respectively.
  • the rotor core 31 is provided perpendicular to the rotating shaft 14.
  • the rotor core 31 and the rotating shaft 14 are fixed to each other so as to be integrally rotatable.
  • the magnets 32 of the rotor 22 are juxtaposed along the circumferential direction on the end surface of the rotor core 31 near the stator 23 in the axial direction.
  • the surface of each magnet 32 facing the stator 23 (the end surface near the stator 23 in the axial direction) has a planar shape perpendicular to the axis L of the rotating shaft 14.
  • Each magnet 32 is magnetized in the axial direction so that a magnetic pole appears on the axial end face of each magnet 32.
  • eight magnets 32 are provided in the rotor 22, the magnet 32 whose magnetic pole appearing on the surface facing the stator 23 is an N pole, and the magnet whose magnetic pole appearing on the surface facing the stator 23 is an S pole.
  • the rotor 22 is composed of 8 poles.
  • each magnet 32 has a fan shape when viewed from the axial direction. Moreover, each magnet 32 is arrange
  • a pair of groove portions 35 are recessed in the end surface of each magnet 32 near the stator 23 in the axial direction (the surface facing the stator 23).
  • Each groove portion 35 is formed linearly along the radial direction from the radially inner end to the outer end of the magnet 32.
  • the circumferential center line C1 of the groove 35 is configured to intersect the axis L of the rotating shaft 14, and the groove 35 is formed in a straight line having the same width along the circumferential center line C1. .
  • the formation position of a pair of groove part 35 is demonstrated.
  • the circumferential center line C1 of each of the pair of grooves 35 is clockwise and counterclockwise from the magnetic pole center line P of the magnet 32 (the circumferential center line of the magnet 32), respectively. It is provided so as to be shifted by the same angle (angle ⁇ ) in the rotation direction. That is, the pair of groove portions 35 are provided at positions that are axisymmetric with respect to the magnetic pole center line P of the magnet 32.
  • the formation position (angle ⁇ ) of the pair of groove portions 35 with respect to the magnetic pole center line P is determined based on the period of cogging torque (angle ⁇ ) using the following arithmetic expression.
  • (1/2 + n) ⁇ ⁇
  • the magnet 32 is preferably composed of a bonded magnet (plastic magnet, rubber magnet, etc.) in consideration of the ease of forming the groove 35, but is composed of, for example, a sintered magnet other than the bonded magnet. Is also possible.
  • a bonded magnet it is preferably composed of a rare earth magnet such as a samarium iron nitrogen (SmFeN) magnet, a samarium cobalt (SmCo) magnet, or a neodymium magnet.
  • a sintered magnet it is preferably composed of, for example, a ferrite magnet, a samarium cobalt (SmCo) magnet, a neodymium magnet, or the like.
  • the stator 23 includes an annular stator core 41 supported by the motor case 21, and a plurality of coils 42 wound around the stator core 41.
  • the stator core 41 is fixed inside the yoke housing 25 in the motor case 21.
  • the stator core 41 is composed of a dust core formed by press-molding magnetic powder.
  • the stator core 41 has a base portion 43 that has an annular plate shape and functions as a back yoke, and twelve teeth 44 that protrude in the axial direction from the base portion 43 toward the rotor 22.
  • the base portion 43 is fixed to the inner surface of the bottom portion 25 a of the yoke housing 25.
  • the twelve teeth 44 are provided at equiangular intervals in the circumferential direction (30-degree intervals in the present embodiment).
  • the teeth 44 have a substantially fan shape when viewed from the axial direction, and have a columnar shape protruding at a predetermined height in the axial direction. All twelve teeth 44 have the same shape.
  • the axial front end surface of each tooth 44 (the end surface near the rotor 22 in the axial direction) has a planar shape perpendicular to the axis L of the rotating shaft 14, and the axial front end surface corresponds to the magnet 32 of the rotor 22. It faces in the axial direction through the air gap G.
  • each slot 45 has the same width in the radial direction. That is, the circumferential side surfaces 44a of the pair of teeth 44 facing each other in the circumferential direction are parallel to each other.
  • the outer diameter of the base portion 43 is set to be larger than the diameter of the outer end portion 44 b in the radial direction of each tooth 44.
  • a plurality of notches 46 are provided on the outer peripheral edge of the base portion 43 at intervals in the circumferential direction.
  • the number of each notch 46 is set to be equal to the number of slots 45 (that is, the number of teeth 44), and each notch 46 is provided on the radially outer side of each slot 45. The same width as each slot 45 in the circumferential direction.
  • a portion between the notches 46 in the circumferential direction on the outer peripheral edge portion of the base portion 43 (a portion where the notches 46 are not formed) is a convex portion 47 protruding outward in the radial direction.
  • Each convex portion 47 is provided on the radially outer side of each tooth 44.
  • both side surfaces 44a in the circumferential direction of the teeth 44 and both ends in the circumferential direction of the convex portions 47 located on the radially outer side of the teeth 44 are configured to be aligned on the same straight line when viewed from the axial direction. .
  • the outer peripheral end portion of the base portion 43 (that is, the radial front end portion of each convex portion 47) is in contact with the inner peripheral surface of the yoke housing 25 in the radial direction (see FIG. 2).
  • the inner peripheral edge 43a of the base part 43 is configured to recede radially outward from the inner end 44c of the teeth 44.
  • the portion where the inner end portion 44 c of the tooth 44 protrudes from the inner peripheral edge 43 a of the base portion 43 extends in the axial direction to the back surface of the base portion 43 and is flush with the back surface.
  • a coil 42 is wound around each tooth 44 by concentrated winding.
  • the twelve coils 42 are three-phase coils of U phase, V phase, and W phase.
  • the radially outer end of each convex portion 47 is positioned more radially outward than the outer end of the coil 42.
  • a lead wire 48a which is an end portion of a conducting wire constituting the coil 42 is drawn out from some of the coils 42.
  • the lead wire 48 a is drawn out to the back surface (the side opposite to the teeth 44) of the base portion 43 through the notch portion 46.
  • the lead wire 48a is drawn out of the yoke housing 25 through an insertion hole (not shown) formed in the bottom portion 25a of the yoke housing 25, and the axially outer side surface of the bottom portion 25a.
  • the drive circuit 24 is fixed to the drive circuit 24. Note that the form of the lead lines 48a (the number of the lead lines 48a, which coil 42 to draw from, etc.) is appropriately determined according to the winding form of the coils 42.
  • the coils 42 classified into three phases are arranged in the clockwise direction in the order of U1, V1, W1, U2, V2, W2, U3, V3, W3, U4, V4, W4.
  • Each of the teeth 44 is wound in the same direction by concentrated winding.
  • the U-phase coils U1 to U4 are arranged at equal intervals in the circumferential direction (90 ° intervals).
  • the V-phase coils V1 to V4 are arranged at equal intervals in the circumferential direction (90 ° intervals).
  • the W-phase coils W1 to W4 are arranged at equal circumferential intervals (90 ° intervals).
  • the coils 42 are connected in series for each phase. That is, U-phase coils U1 to U4, V-phase coils V1 to V4, and W-phase coils W1 to W4 each form a series circuit.
  • a series circuit of U-phase coils U1 to U4, a series circuit of V-phase coils V1 to V4, and a series circuit of W-phase coils W1 to W4 are star-connected.
  • winding is continuously performed from the U-phase coil U1 at the start of winding to the U-phase coil U4 at the end of winding. That is, as shown in FIG. 28, the winding start lead wire 48a (winding start wire Us) is drawn from the U phase coil U1, and the winding end lead wire 48a (winding end wire Ue) is drawn from the U phase coil U4. ing.
  • This winding mode is the same for the V-phase coils V1 to V4 and the W-phase coils W1 to W4. That is, the winding start line Vs is drawn from the V-phase coil V1, and the winding end line Ve is drawn from the V-phase coil V4. Further, a winding start line Ws is drawn from the W-phase coil W1, and a winding end line We is drawn from the W-phase coil W4.
  • Each lead line 48a (each winding start line Us, Vs, Ws and each winding end line Ue, Ve, We) is drawn out along the axial direction and at a constant interval in the circumferential direction (30 ° in this embodiment). ).
  • each lead line 48a (each winding start line Us, Vs, Ws and each winding end line Ue, Ve, We) passes through the corresponding notch 46 and the back surface ( Pulled to the opposite side of the teeth 44).
  • Each winding start line Us, Vs, Ws is drawn out of the yoke housing 25 through the insertion hole, and connected to the drive circuit 24 fixed to the outer surface in the axial direction of the bottom portion 25a to be electrically connected to the power source. Will be connected. Further, the winding end lines Ue, Ve, We are electrically connected to each other (see FIG. 27A).
  • said winding aspect is an example, You may change to not only the above star connection but a delta connection, for example.
  • the number of the lead wires 48a is an example, and may be changed as appropriate according to the winding mode of the coil 42.
  • the groove cogging torque Tb is superimposed on the cogging torque Ta to increase the combined cogging torque Tc.
  • the motor 12 is an axial gap type motor including a rotor 22 and a stator 23 facing each other in the axial direction.
  • the axial gap type motor can be made smaller in the axial direction than a radial gap type motor having the same output (a motor having a configuration in which the rotor and the stator are opposed in the radial direction). That is, by using an axial gap type motor that is advantageous for downsizing in the axial direction as the motor 12 of the valve timing variable device 11 that is one of the in-vehicle devices, the motor from the valve timing variable device 11 (internal combustion engine 10). It becomes possible to set it as the structure which suppressed 12 protrusion. As a result, the vibration of the motor 12 is suppressed, and as a result, the occurrence of abnormal noise or the like can be suppressed.
  • the motor 12 is attached to the valve timing variable device 11 so that its axial direction is perpendicular to the vertical direction X.
  • the entire vehicle body including the internal combustion engine 10 vibrates mainly in the vertical direction X during traveling.
  • the rotor 22 and the stator 23 of the motor 12 face each other in the vertical direction (that is, the horizontal direction) with respect to the vertical direction X, vibrations in the vertical direction X when the vehicle travels cause an interval between the rotor 22 and the stator 23 (air gap). G) is not affected.
  • variation of the output characteristic of the motor 12 which may arise by the fluctuation
  • the axial direction of the axial gap type motor 12 is also perpendicular to the longitudinal direction of the vehicle. That is, since the rotor 22 of the motor 12 and the stator 23 face each other in the direction perpendicular to the vehicle front-rear direction (that is, the vehicle width direction), vibration in the vehicle front-rear direction causes an interval between the rotor 22 and the stator 23 (air gap G). ) Is not affected. Thereby, the fluctuation
  • the axial direction of the axial gap type motor 12 is also perpendicular to the reciprocating direction of the piston 16 which is the main vibration source of the internal combustion engine 10. For this reason, the influence which the vibration which generate
  • the rotor 22 has a facing surface that faces the stator 23.
  • the magnet 32 of the rotor 22 has a facing surface that faces the stator 23.
  • a groove 35 extending along the radial direction for adjusting cogging torque (synthetic cogging torque Tc) generated in the motor 12 is provided on the facing surface. Therefore, the cogging torque can be adjusted according to the in-vehicle device on which the motor is mounted by the configuration of the groove portion 35.
  • the position of the rotor 22 is adjusted by the cogging torque when not energized. It is preferable to hold. Therefore, in this embodiment, in order to increase the cogging torque, the formation position of the groove 35 is set based on the period (angle ⁇ ) of the cogging torque. As a result, the position of the rotor 22 during non-energization by cogging torque can be more reliably performed.
  • the stator core 41 includes a base portion 43 having an annular plate shape, and a plurality of teeth 44 protruding in an axial direction from one surface of the base portion 43 and arranged in parallel along the circumferential direction. Since the outer peripheral edge portion (the radially outer end portion of each convex portion 47) of the base portion 43 is positioned outside the outer end portion 44b of each tooth 44 in the radial direction, the outer peripheral portion of the base portion 43 is sufficiently outside. Accordingly, a decrease in the magnetic path in the base portion 43 can be suppressed.
  • stator core 41 is formed of a powder magnetic core (magnetic powder press molding)
  • the projected area in the axial direction of the stator core 41 is increased, a large press is required, resulting in an increase in manufacturing cost. For this reason, it is possible to suppress an increase in manufacturing cost by suppressing an increase in the projected area in the axial direction of the stator core 41.
  • the lead wire 48 a drawn out from the coil 42 is inserted into the cutout portion 46 of the base portion 43.
  • the lead wire 48a can be accommodated in the physique of the stator core 41 in the radial direction, and as a result, the increase in size of the motor 12 in the radial direction can be suppressed.
  • the output side of the motor 12 is fixed to the valve timing variable device 11 (internal combustion engine 10), and the drive circuit 24 is provided on the non-output side of the motor case 21. Thereby, the influence of the heat from the internal combustion engine 10 with respect to the drive circuit 24 can be suppressed.
  • the electric power steering apparatus 50 of this embodiment is a column assist type.
  • the electric power steering device 50 includes a steering shaft 52 to which a steering wheel 51 is connected, and a motor 54 connected to the steering shaft 52 via a speed reduction mechanism 53.
  • the motor 54 is controlled according to a steering torque, a vehicle speed, and the like detected by a torque sensor (not shown) provided in the speed reduction mechanism 53, and performs power assist for the driver's operation of the steering wheel 51.
  • the motor 54 is attached to the electric power steering device 50 so that its axial direction (axis L direction) is perpendicular to the vertical direction X.
  • the axial direction of the motor 54 is parallel to the horizontal direction.
  • the axial direction of the motor 54 is also perpendicular to the longitudinal direction of the vehicle. That is, the axial direction of the motor 54 is parallel to the vehicle width direction.
  • the motor 54 includes a rotor 55 having a rotating shaft 14 and a pair of stators (first stator 56 and second stator 57) disposed on both sides in the axial direction with respect to the rotor 55.
  • This is an axial gap type brushless motor.
  • the rotor 55 and the first and second stators 56 and 57 are accommodated in the motor case 21.
  • the motor 54 includes a pair of drive circuits (a first drive circuit 58 and a second drive circuit 59) provided on both sides of the motor case 21 in the axial direction.
  • the first and second drive circuits 58 and 59 are electrically connected to the first and second stators 56 and 57, respectively.
  • the rotating shaft 14 of the rotor 55 penetrates the end frame 26 and the second drive circuit 59 in the axial direction and protrudes to the outside, and the protruding portion is connected to the speed reduction mechanism 53. Configured as part.
  • the rotor 55 includes a disk-shaped rotor core 61 in which the rotation shaft 14 is fixed at the center portion, and first magnets (first electrodes fixed to both end surfaces in the axial direction of the rotor core 61.
  • the rotor core 61 is provided perpendicular to the rotating shaft 14.
  • the rotor core 61 and the rotating shaft 14 are fixed to each other so as to be integrally rotatable.
  • Each of the first and second magnets 62 and 63 is a single magnet having an annular shape centered on the axis L and magnetized in the axial direction.
  • the first magnet 62 fixed to one end surface of the rotor core 61 in the axial direction has N poles and S poles alternately set in the circumferential direction, and has eight magnetic poles in the circumferential direction.
  • the eight magnetic poles of the first magnet 62 are provided at equiangular intervals in the circumferential direction.
  • a groove portion 64 extending along the radial direction corresponds to each magnetic pole of the first magnet 62.
  • a plurality are provided.
  • Each groove portion 64 is formed linearly along the radial direction from the inner peripheral end portion to the outer peripheral end portion of the first magnet 62.
  • Each groove portion 64 is provided along the circumferential center (magnetic pole center C2) of each magnetic pole of the first magnet 62, and has a predetermined width centered on the magnetic pole center C2.
  • the second magnet 63 fixed to the other end surface of the rotor core 61 in the axial direction has the same configuration as the first magnet 62, and the second magnet 63 is equiangularly spaced in the circumferential direction. It has 8 set magnetic poles.
  • the second magnet 63 is fixed to the rotor core 61 so as to be displaced in the circumferential direction by one magnetic pole with respect to the first magnet 62. Therefore, the magnetic poles of the first magnet 62 and the magnetic poles of the second magnet 63 that overlap in the axial direction are different from each other (N pole and S pole).
  • the first and second stators 56 and 57 disposed on both sides in the axial direction of the rotor 55 have the same configuration as the stator 23 of the first embodiment. Specifically, as shown in FIGS. 7 and 8, the first and second stators 56 and 57 arranged on both sides in the axial direction of the rotor 55 have the same configuration.
  • Each of the stators 56 and 57 includes an annular stator core 41 supported by the motor case 21 and a plurality of coils 42 a and 42 b wound around the stator core 41.
  • the coil of the first stator 56 is the first coil 42a
  • the coil of the second stator 57 is the second coil 42b.
  • the stator core 41 is composed of a dust core formed by press-molding magnetic powder.
  • the stator core 41 has a base portion 43 that has an annular plate shape and functions as a back yoke, and twelve teeth 44 that protrude in the axial direction from the base portion 43 toward the rotor 55.
  • the twelve teeth 44 are provided at equiangular intervals in the circumferential direction (30-degree intervals in the present embodiment).
  • the teeth 44 have a substantially fan shape when viewed from the axial direction, and have a columnar shape protruding at a predetermined height in the axial direction. All twelve teeth 44 have the same shape.
  • the front end surface in the axial direction of each tooth 44 (the end surface near the axial rotor 55) has a planar shape perpendicular to the axis L of the rotating shaft 14.
  • the teeth 44 adjacent to each other in the circumferential direction are separated from each other in the circumferential direction, and this gap becomes a slot 45 through which the coils 42a and 42b are passed.
  • Each slot 45 has the same width in the radial direction. That is, the circumferential side surfaces 44a of the pair of teeth 44 facing each other in the circumferential direction are parallel to each other.
  • the outer diameter of the base portion 43 is set to be larger than the diameter of the outer end portion 44b in the radial direction of each tooth 44.
  • a plurality of notches 46 are provided on the outer peripheral edge of the base portion 43 at intervals in the circumferential direction.
  • the number of each notch 46 is set to be equal to the number of slots 45 (that is, the number of teeth 44), and each notch 46 is provided on the radially outer side of each slot 45. The same width as each slot 45 in the circumferential direction.
  • a portion between the notches 46 in the circumferential direction on the outer peripheral edge portion of the base portion 43 (a portion where the notches 46 are not formed) is a convex portion 47 protruding outward in the radial direction.
  • Each convex portion 47 is provided on the radially outer side of each tooth 44.
  • both side surfaces 44a in the circumferential direction of the teeth 44 and both ends in the circumferential direction of the convex portions 47 located on the radially outer side of the teeth 44 are configured to be aligned on the same straight line when viewed from the axial direction. .
  • the outer peripheral end portion of the base portion 43 that is, the radial tip portion of each convex portion 47
  • the inner peripheral edge portion 43a of the base portion 43 is configured to recede radially outward from the inner end portion 44c of the teeth 44, and the retracted portion is a notch portion that is recessed radially outward. 43b (see FIG. 10).
  • the portion where the inner end portion 44 c of the tooth 44 projects from the inner peripheral edge 43 a of the base portion 43 extends in the axial direction to the back surface side of the base portion 43 and is flush with the back surface.
  • coils 42a and 42b are wound around the teeth 44 by concentrated winding.
  • the twelve coils 42a and 42b are each composed of a U-phase, V-phase, and W-phase three-phase coil.
  • the first stator 56 and the second stator 57 are arranged such that their teeth 44 face each other in the axial direction, and the rotor core 61 and the first and second magnets 62 and 63 are arranged therebetween. That is, each tooth 44 and the first coil 42 a of the first stator 56 are configured to face the first magnet 62 of the rotor 55 in the axial direction. Similarly, each tooth 44 and the second coil 42b of the second stator 57 are configured to face the second magnet 63 of the rotor 55 in the axial direction.
  • the first stator 56 is fixed to the inner surface of the bottom portion 25 a of the yoke housing 25, and the second stator 57 is fixed to the inner side surface in the axial direction of the end frame 26. Further, the coils 42a of the first stator 56 and the coils 42b of the second stator 57 are configured so as not to deviate from each other in the circumferential direction (so that projection in one axial direction overlaps the other).
  • the first drive circuit 58 is provided on the non-output side of the motor case 21, and the second drive circuit 59 is provided on the output side of the motor case 21.
  • the first drive circuit 58 is fixed to the outer surface in the axial direction of the bottom 25 a of the yoke housing 25.
  • the second drive circuit 59 is fixed to the outer side surface of the end frame 26 in the axial direction.
  • the rotating shaft 14 of the rotor 55 penetrates the end frame 26 and the second drive circuit 59 in the axial direction and protrudes to the outside, and the protruding portion is connected to the speed reduction mechanism 53. Configured as part.
  • a lead wire 48a which is an end portion of a conducting wire constituting the first coil 42a, is drawn out from a part of the first coil 42a of the first stator 56 in the axial direction.
  • the lead line 48 a passes through the notch portion 46 of the stator core 41 and is drawn to the back surface of the base portion 43 (on the side opposite to the teeth 44).
  • the lead wire 48 a is drawn out of the yoke housing 25 through an insertion hole (not shown) formed in the bottom portion 25 a of the yoke housing 25, and is connected to the first drive circuit 58.
  • a lead wire 48b which is an end portion of a conducting wire constituting the second coil 42b is drawn out in the axial direction.
  • the lead wire 48 b passes through the notch portion 46 of the stator core 41 and is drawn to the back surface of the base portion 43 (the side opposite to the teeth 44). Further, the lead wire 48 b is drawn out of the motor case 21 through an insertion hole (not shown) formed in the end frame 26 and connected to the second drive circuit 59.
  • each of the lead wires 48a and 48b (the number of the lead wires 48a and 48b, the coil 42a and 42b to be drawn from, etc.) is appropriately determined according to the winding mode of the coils 42a and 42b.
  • the system of the first stator 56 and the first drive circuit 58 and the system of the second stator 57 and the second drive circuit 59 are configured to be electrically separated from each other.
  • the first drive circuit 58 controls the three-phase drive current supplied to the first coils 42 a of the first stator 57
  • the second drive circuit 59 supplies the second coils 42 b of the second stator 57. Control three-phase drive current.
  • the winding modes of the coils 42a and 42b of the first and second stators 56 and 57 are the same as those in the first embodiment. Specifically, as shown in FIGS. 8 and 30, in the first stator 56, lead wires 48 a are drawn from six coils 42 a that are arranged adjacent to each other in the circumferential direction. The six first lead lines 48a are arranged at a constant interval (30 ° in the present embodiment) with respect to each other in the circumferential direction.
  • lead wires 48b are drawn from six coils 42b arranged adjacent to each other in the circumferential direction.
  • the six second lead lines 48b are arranged at a constant interval (30 ° in the present embodiment) with respect to each other in the circumferential direction.
  • the six first lead lines 48a are arranged at positions opposed to each of the six second lead lines 48b at 180 ° with the axis L as the center when viewed in the direction of the axis L of the rotary shaft 14.
  • the corresponding first lead line 48a and second lead line 48b are arranged at positions overlapping the straight line L1 orthogonal to the axis L at a position sandwiching the axis L when viewed in the direction of the axis L.
  • all the first lead lines 48a are configured not to overlap the second lead lines 48b in the axial direction. More specifically, a total of 12 lead lines including the first lead lines 48a and the second lead lines 48b are arranged at equal intervals (30 ° intervals) in the circumferential direction.
  • each first lead line 48a and each second lead line 48b are set at the same radial position (dimension from the axis L). That is, the first lead lines 48a and the second lead lines 48b are arranged so as to be point-symmetric with respect to the axis L.
  • the groove portion 64 is provided in each magnetic pole center C2 of the first and second magnets 62 and 63 of the rotor 55.
  • the cogging torque Ta when there is no groove 64 and the groove cogging torque Td are in opposite phases (phase difference 180 degrees).
  • the combined cogging torque Te obtained by combining the cogging torque Ta and the groove cogging torque Td is subtracted from the cogging torque Ta by the amount of the groove cogging torque Td, so that the combined cogging torque Te is reduced.
  • the motor 54 includes a pair of stators (first and second stators 56 and 57) provided on both axial sides of the rotor 55.
  • the motor 54 is connected to the coil 42a of the first stator 56, and is connected to the first drive circuit 58 for controlling the drive current supplied to the coil 42a and the coil 42b of the second stator 57.
  • a second drive circuit 59 for controlling the drive current supplied to 42b.
  • the system of the first stator 56 and the first drive circuit 58 and the system of the second stator 57 and the second drive circuit 59 are configured to be electrically separated from each other.
  • 42 a and 42 b are separated from each other by the rotor 55.
  • each base portion 43 of the first and second stators 56 and 57 there is provided a notch portion 46 having a concave shape that is recessed in the radial direction, and the notches 46 are provided with coils 42a, Arrangement of motor components such as the strands constituting 42b becomes possible. That is, the degree of freedom of arrangement of the motor components is increased, and the arrangement can be performed efficiently, and the stators 56 and 57 can be downsized, and the motor 54 can be downsized.
  • notch portions 43b are also provided on the inner peripheral edge portions of the base portions 43 of the first and second stators 56 and 57, and coils 42a and 42b are formed in the notch portions 43b.
  • Arrangement of motor components such as strands is possible, which can contribute to the miniaturization of the stators 56 and 57 and the miniaturization of the motor 54.
  • the lead wire 48a drawn from the first coil 42a and the lead wire 48b drawn from the second coil 42b are inserted into the cutout portions 46 of the base portions 43 of the corresponding stators 56 and 57, respectively.
  • the lead wires 48a and 48b can be accommodated in the physique of the stator core 41 in the radial direction, and as a result, the increase in size of the motor 54 in the radial direction can be suppressed.
  • Cogging torque (synthetic cogging torque Te) generated in the motor 54 is respectively provided on the surface of the first magnet 62 of the rotor 55 facing the first stator 56 and the surface of the second magnet 63 facing the second stator 57. ) Is provided to extend along the radial direction. Therefore, the cogging torque can be adjusted according to the in-vehicle device on which the motor is mounted by the configuration of the groove portion 64.
  • the cogging torque is reduced to reduce the vibration of the motor 54.
  • the cogging torque synthetic cogging torque Te is reduced by setting the groove portion 64 to each magnetic pole center C2 of the first and second magnets 62 and 63.
  • the motor 54 is an axial gap type motor in which the rotor 55 and the first and second stators 56 and 57 face each other in the axial direction, and is electrically driven so that the axial direction is perpendicular to the vertical direction X. It is attached to the power steering device 50.
  • the entire vehicle body including the electric power steering device 50 vibrates mainly in the vertical direction X during traveling.
  • the rotor 55 of the motor 54 and each of the stators 56 and 57 face each other in the vertical direction (that is, the horizontal direction) with respect to the vertical direction X
  • the vibration in the vertical direction X when the vehicle travels causes the rotor 55 and each stator 56 to vibrate.
  • the first lead wire 48a (at least the root position) and the second lead wire 48b (at least the root position) are centered on the axis L (rotation axis of the motor 54) of the rotary shaft 14. It is arranged at a 180 ° facing position. According to this configuration, it is possible to further improve the structural balance (weight balance) around the axis L, and as a result, it is possible to more suitably suppress the vibration of the motor caused by resonance or the like. Thereby, the fluctuation
  • the rotor 70 shown in FIG. 12 includes a disk-shaped rotor core 71 in which the rotation shaft 14 is fixed at the center, and a magnet group 72 provided on the end surface of the rotor core 71 in the axial direction.
  • the magnet group 72 includes a plurality (eight in this example) of magnets 73 arranged in parallel at equal intervals in the circumferential direction.
  • Each magnet 73 of the magnet group 72 fixed to one end surface of the rotor core 71 in the axial direction has a fan shape when viewed from the axial direction. Moreover, each magnet 73 is arrange
  • Each magnet 73 is magnetized in the axial direction so that two different magnetic poles (N pole and S pole) appear on the axial end face with the circumferential center as a boundary.
  • Each of the N poles and the S poles of each magnet 73 is configured to be adjacent in the circumferential direction with the inter-magnet portion 74 interposed therebetween.
  • a pair of N poles adjacent in the circumferential direction constitutes one N pole of the magnet group 72
  • a pair of S poles adjacent in the circumferential direction is one S pole of the magnet group 72.
  • the N poles and S poles of the magnet group 72 are alternately set at equal angular intervals in the circumferential direction, and the number of poles of the magnet group 72 is the same as that of the magnets 73 (that is, 8 poles).
  • Each inter-magnet portion 74 is located at the circumferential center (magnetic pole center C3) of each magnetic pole of the magnet group 72.
  • each inter-magnet portion 74 since each inter-magnet portion 74 is located at each magnetic pole center C3 of the magnet group 72, the inter-magnet portion 74 acts in the same manner as the groove portion 64 of the second embodiment, and the cogging torque. Can be reduced. Further, in this configuration, the cogging torque can be adjusted without providing the magnet 73 with a groove, and the magnet 73 can be easily manufactured. Specifically, according to this configuration, when the same pole of a pair of magnets 73 adjacent in the circumferential direction is regarded as one magnetic pole of the rotor 70, the inter-magnet portion 74 is disposed in the magnetic pole of the rotor 70. It will be.
  • each magnet 73 magnetized in advance may be fixed to the rotor core 71. Further, after fixing each non-magnetized magnet 73 to the rotor core 71, the magnet 73 is magnetized. You may go.
  • the cogging torque is reduced by disposing the inter-magnet portion 74 at the magnetic pole center C3 of the magnet group 72, but is not particularly limited thereto.
  • the cogging torque may be increased by shifting the inter-magnet portion 74 from the magnetic pole center C3 in the circumferential direction.
  • the setting manner of the position of the inter-magnet portion 74 is the same as the setting manner of the position of the groove portion 35 of the first embodiment.
  • each notch 46 is provided on the radially outer side of each slot 45.
  • each convex portion 47 of the base portion 43 located between the circumferential directions of the notches 46 is provided on the radially outer side of each slot 45.
  • the formation position of the notch 46 is not limited to the outer peripheral edge of the base 43, and may be provided on the inner peripheral edge of the base 43.
  • the inner diameter of the base portion 43 (the diameter of the inner peripheral edge portion 43 a) is set smaller than the diameter of the inner end portion 44 c in the radial direction of each tooth 44.
  • a plurality of cutout portions 65 are provided in the inner peripheral edge portion 43a of the base portion 43 at intervals in the circumferential direction.
  • the number of each notch portion 65 is set to be equal to the number of slots 45 (that is, the number of teeth 44), and each notch portion 65 is provided on the radially inner side of each slot 45. .
  • each notch part 65 (part in which the notch part 65 is not formed) in the inner peripheral edge part 43a of the base part 43 becomes a convex part 66 projecting radially inward.
  • Each convex portion 66 is provided on the radially inner side of each tooth 44.
  • each notch portion 65 may be provided on the radially inner side of each tooth 44.
  • the number of the notches 46 is set to be the same as the number of the slots 45, but is not necessarily the same as the number of the slots 45, and may be changed as appropriate.
  • the lead lines 48a and 48b of the coils 42a and 42b are drawn in the axial direction, but the present invention is not particularly limited thereto.
  • the lead wires 48 a and 48 b are drawn radially outward from the coils 42 a and 42 b of the first and second stators 56 and 57, and the motor case 21.
  • the lead wires 48a and 48b are inserted in the radial direction through insertion holes (not shown) formed in the peripheral wall (for example, the yoke housing 25).
  • the lead wire 48 a of the first coil 42 a is connected to a connection portion 58 a that extends to the outer peripheral side of the peripheral wall of the motor case 21 in the first drive circuit 58.
  • the lead wire 48 b of the second coil 42 b is connected to a connection portion 59 a that extends to the outer peripheral side of the peripheral wall of the motor case 21 in the second drive circuit 59. Note that such a connection mode of the lead lines 48a and 48b is also applicable to the first embodiment.
  • the circumferential end 32 a of the magnet 32 overlaps with the circumferential side surface 44 a of the tooth 44 when viewed in the axial direction.
  • the teeth 44 are inclined in the circumferential direction with respect to the circumferential side surface 44a. For this reason, a so-called skew effect is produced in which the magnetic field change in the circumferential direction of the rotor 22 is gradual, thereby reducing the cogging torque.
  • the reason why the circumferential end 32a of the magnet 32 and the circumferential side surface 44a of the teeth 44 are inclined in the circumferential direction is to reduce the dead space in the slot 45 by narrowing the interval between the coils 42 adjacent in the circumferential direction. Therefore, the slots 45 between the circumferential directions of the teeth 44 are configured with the same width in the radial direction.
  • the magnet 32 has the same shape as the slot 45 when viewed in the axial direction. That is, both end portions 32a in the circumferential direction of the magnet 32 are linearly parallel to each other when viewed from the axial direction, and the entire end portions 32a in the circumferential direction respectively overlap the circumferential side surfaces 44a of the teeth 44 facing in the circumferential direction. .
  • the magnetic field change in the circumferential direction of the rotor 22 with respect to the teeth 44 is steep and the skew effect is suppressed, so that the reduction in cogging torque can be suppressed.
  • the shape of the magnet 32 corresponds to the shape of a pair of teeth 44 adjacent in the circumferential direction and the slot 45 between them when viewed in the axial direction. ing. That is, when viewed in the axial direction, the entire circumferential end portion 32x of the magnet 32 is a circumferential side surface of the pair of teeth 44 (the teeth 44x and the teeth 44y) adjacent to each other in the circumferential direction near the counter teeth 44y of one tooth 44x. 44a. In addition, when viewed in the axial direction, the whole circumferential other end portion 32y of the magnet 32 overlaps with the circumferential side surface 44a near the counter teeth 44x of the other tooth 44y.
  • the magnetic field change in the circumferential direction of the rotor 22 with respect to the teeth 44 is steep and the skew effect is suppressed, so that the reduction in cogging torque can be suppressed.
  • the area of the magnet 32 can be taken larger compared with the example of FIG. 17, the fall of an output can be suppressed.
  • the shape of the magnet 32 corresponds to the shape of one tooth 44x and the slot 45x adjacent to the tooth 44x when viewed in the axial direction. . That is, when viewed in the axial direction, the entire circumferential end portion 32x of the magnet 32 overlaps with the circumferential side surface 44a near the slot 45x in the tooth 44y adjacent to the tooth 44x. Further, when viewed in the axial direction, the entire circumferential other end 32y of the magnet 32 overlaps with the circumferential side surface 44a of the teeth 44x near the anti-slot 45x.
  • the magnetic field change in the circumferential direction of the rotor 22 with respect to the teeth 44 is steep and the skew effect is suppressed, so that the reduction in cogging torque can be suppressed.
  • the area of the magnet 32 can be taken larger compared with the example of FIG. 17, the fall of an output can be suppressed.
  • auxiliary magnets 81 magnetized in the circumferential direction may be provided between the circumferential directions of the magnets 32 as shown in FIG.
  • the auxiliary magnet 81 is magnetized in the circumferential direction so that the magnetic pole at its circumferential end is the same as the adjacent magnet 32.
  • auxiliary magnets 81 magnetized in the circumferential direction may be provided between the circumferential directions of the respective magnets 32.
  • the auxiliary magnets 81 magnetized in the circumferential direction may be provided between the circumferential directions of the magnets 32 as shown in FIG.
  • the output can be supplemented by the magnetic force of the auxiliary magnet 81, and the decrease in the output due to the adjustment of the shape of the end of the magnet 32 in the circumferential direction can be suppressed.
  • the stator 23 is fixed to the bottom 25a of the yoke housing 25, and the rotor 22 is disposed between the stator 23 and the end frame 26 in the axial direction.
  • the rotor 22 may be arranged between the stator 23 and the bottom portion 25a of the yoke housing 25 while being fixed to the inner surface of the end frame 26.
  • a pair of groove portions 35 are provided for one magnet 32.
  • the present invention is not limited thereto, and only one of the pair of groove portions 35 may be provided.
  • the rotor 22 includes a plurality of magnets 32 that are individually separated for each magnetic pole.
  • the present invention is not limited to this, and an annular magnet having N and S poles alternately in the circumferential direction. May be provided.
  • the groove cogging torques Tb and Td are adjusted by adjusting at least one of the circumferential width, the axial depth, and the radial length of the grooves 35 and 64. May be.
  • the cogging torque is increased by increasing the circumferential width of the grooves 35 and 64, and the cogging torque is decreased by decreasing the circumferential width of the grooves 35 and 64.
  • the cogging torque is increased by increasing the axial depth of the grooves 35 and 64, and the cogging torque is decreased by decreasing the axial depth of the grooves 35 and 64.
  • the cogging torque is increased by increasing the radial length of the groove portions 35 and 64, and the cogging torque is decreased by decreasing the radial length of the groove portions 35 and 64.
  • groove parts 35 and 64 were provided in the rotors 22 and 55, it is not restricted to this, A groove part is made into stators 23, 56, and 57 (specifically, axial direction with the rotor in the teeth 44) You may provide in an opposing surface.
  • the stator core 41 may be manufactured by, for example, lamination of electromagnetic steel sheets or a combination of lamination of electromagnetic steel sheets and a dust core other than the dust core.
  • the drive circuits 24, 58, 59 are provided outside the motor case 21, but the present invention is not limited to this, and the drive circuits 24, 58, 59 may be provided in the motor case 21. .
  • the end frame 26 constitutes the output side of the motor case 21, but the present invention is not limited to this, and the end frame 26 may constitute the opposite output side of the motor case 21.
  • the number of poles of the rotors 22 and 55 and the number of slots of the stators 23, 56, and 57 are not limited to the number of slots in the first and second embodiments, and may be changed as appropriate.
  • the ratio of the number of rotor poles to the number of stator slots is configured as 8:12. It is preferable.
  • the poles of the rotor When it is desirable to reduce cogging torque, such as motors used in electric power steering devices and electric brake devices (when the function of maintaining the position of the rotor when de-energized is not required), the poles of the rotor
  • the ratio of the number of slots to the number of slots in the stator is preferably 10:12 or 14:12.
  • the motor 12 according to the first embodiment is configured as a so-called single gap type in which the stator 23 is arranged only on one side of the rotor 22 in the axial direction.
  • the present invention is not limited to this and is a double gap type as in the second embodiment. You may comprise.
  • the motor 54 of the second embodiment is configured as a double gap type in which the first and second stators 56 and 57 are arranged on both sides in the axial direction of the rotor 55.
  • the present invention is not limited to this, as in the first embodiment.
  • a single gap type may be used.
  • the present invention is applied to a brushless motor.
  • the present invention may be applied to a DC motor.
  • the present invention is applied to the column assist type electric power steering apparatus 50.
  • the present invention may be applied to, for example, a rack assist type or pinion assist type electric power steering apparatus. Good.
  • valve timing variable device is exemplified in the first embodiment
  • electric power steering device is exemplified in the second embodiment.
  • vehicles such as a power window device and a wiper device are used.
  • the present invention may be applied to other auxiliary machines.
  • the in-vehicle device is not limited to an auxiliary machine, and the present invention may be applied to a main machine that generates a driving force of a vehicle in the in-vehicle device.
  • the present invention may be applied to the compression ratio variable device 90 of the internal combustion engine 10 (see FIG. 1).
  • the compression ratio varying device 90 as the in-vehicle device varies the compression ratio in the internal combustion engine 10 by varying the position of the top dead center of the piston 16 based on the driving of the motor, for example.
  • the motor of the variable compression ratio device 90 a motor having the same configuration as the motor 12 of the first embodiment or the motor 54 of the second embodiment is used.
  • the same aspect as the motor 12 of the first embodiment, that is, the axial direction of the motor is the vertical direction X, the reciprocating movement direction of the piston 16, and the longitudinal direction of the vehicle. It is preferable that they are attached so as to be vertical.
  • a cooling water circulation device 91 as an in-vehicle device is a device that circulates cooling water in a circulation path R extending between the internal combustion engine 10 and the radiator 92, and is operated by driving of a motor.
  • a motor having the same configuration as the motor 12 of the first embodiment or the motor 54 of the second embodiment is used as the motor of the cooling water circulation device 91.
  • the same aspect as the motor 12 of the first embodiment that is, the axial direction of the motor is perpendicular to the vertical direction X, the reciprocating movement direction of the piston 16, and the longitudinal direction of the vehicle. It is preferable to be attached so as to form
  • the cooling water circulation device 91 may be provided in a circulation path in the internal combustion engine 10, or may be provided in a pipe line between the internal combustion engine 10 and the radiator 92.
  • the present invention may be applied to an electric brake device 93 for generating a braking force for the wheel 94 as shown in FIG.
  • the electric brake device 93 as an in-vehicle device is configured to generate a braking force on the wheel 94 by pressing the friction member against the rotating body that rotates integrally with the wheel 94 by driving the motor.
  • the electric brake device 93 may be either a disk type or a drum type.
  • the electric brake device 93 may be any of a foot brake and a parking brake of a vehicle, or a brake device that also uses them.
  • As the motor of the electric brake device 93 a motor having the same configuration as the motor 12 of the first embodiment or the motor 54 of the second embodiment is used.
  • the motor of the electric brake device 93 can also be attached in the same manner as the motor 54 of the second embodiment, that is, so that the axial direction of the motor is perpendicular to the vertical direction X and the longitudinal direction of the vehicle. preferable.
  • an electromechanical brake device EMB: Electro-Mechanical Brake
  • EHB Electro-Hydraulic Brake
  • An electric brake device 95 as an in-vehicle device includes a hydraulic actuator 96 having a motor 96a and a pump unit 96b. A braking force is generated on the wheels.
  • a motor having the same configuration as the motor 12 of the first embodiment or the motor 54 of the second embodiment is used, and the same mode as the motor 54 of the second embodiment, that is, the axial direction of the motor.
  • an electric compressor 98 used in a vehicle air conditioner as shown in FIG.
  • An electric compressor 98 as an in-vehicle device includes a motor 98a and a scroll compressor 98b that operates by driving the motor 98a.
  • a motor having the same configuration as the motor 12 of the first embodiment or the motor 54 of the second embodiment is used, and the same mode as the motor 54 of the second embodiment, that is, the axial direction of the motor.
  • the winding mode of the coil 42 in the first embodiment may be changed as shown in FIGS.
  • U1, bar U1, bar V1, V1, W1, bar W1, bar U2, U2, V2, bar V2, bar W2, W2 are sequentially arranged in the clockwise direction. Yes.
  • W1 and bar W2 are constituted by reverse winding.
  • the U-phase coil U1 and the bar U1 are arranged adjacent to each other in the circumferential direction (that is, wound around the teeth 44 adjacent in the circumferential direction).
  • the U-phase coil U2 and the bar U2 are arranged adjacent to each other in the circumferential direction.
  • U-phase coil U1 and bar U2 are arranged at positions that oppose each other by 180 °
  • U-phase coil U2 and bar U1 are arranged at positions that oppose each other by 180 °. The same applies to the other phases (V phase and W phase).
  • the U-phase coil U1 and the bar U1 are continuously wound from the winding start line Us1 to the winding end line Ue1. That is, the U-phase coil U1 and the U-phase coil bar U1 constitute a series circuit. Similarly, the U-phase coil U2 and the bar U2 are continuously wound from the winding start line Us2 to the winding end line Ue2 to form a series circuit.
  • the series circuit of the U-phase coil U1 and the bar U1 and the series circuit of the U-phase coil U2 and the bar U2 are connected in parallel (see FIG. 27B).
  • the winding mode of the U phase is the same in the other phases (V phase and W phase). That is, the pair of V-phase coil V1 and bar V1 and the pair of V-phase coil V2 and bar V2 are respectively wound continuously from winding start lines Vs1 and Vs2 to winding end lines Ve1 and Ve2 to form a series circuit. is doing.
  • the series circuit of the V-phase coils V1 and V1 and the series circuit of the V-phase coils V2 and V2 are connected in parallel (see FIG. 27B).
  • the pair of W-phase coil W1 and bar W1 and the pair of W-phase coil W2 and bar W2 are respectively wound continuously from winding start lines Ws1 and Ws2 to winding end lines We1 and We2 to form a series circuit. is doing.
  • the series circuit of the W-phase coils W1 and W1 and the series circuit of the W-phase coils W2 and W2 are connected in parallel (see FIG. 27B).
  • the winding start lines Us1, Us2, Vs1, Vs2, Ws1, and Ws2 are axially provided from coils 42 (every other coil 42 in this example) arranged at equal intervals in the circumferential direction. It has been pulled out. Then, the winding start lines Us1, Us2, Vs1, Vs2, Ws1, and Ws2 are arranged at equal intervals in the circumferential direction (60 ° intervals in this example). Further, the radial positions (dimensions from the axis L of the rotating shaft 14) of the winding start lines Us1, Us2, Vs1, Vs2, Ws1, and Ws2 are set at the same position.
  • winding start lines Us1, Us2, Vs1, Vs2, Ws1, and Ws2 are drawn out to the back surface (the side opposite to the teeth 44) of the base portion 43 through the corresponding cutout portions 46, respectively, and the drive circuit 24.
  • the winding end lines Ue1, Ue2, Ve1, Ve2, We1, We2 are electrically connected to each other.
  • said winding aspect is an example and the winding aspect in which a winding start line and a winding end line are opposite may be sufficient.
  • the number of poles of the rotor 22 is preferably 10 poles or 14 poles.
  • the plurality of lead wires (each winding start line Us1, Us2, Vs1, Vs2, Ws1, Ws2) of the stator 23 are arranged at equal intervals in the circumferential direction. For this reason, it is possible to improve the structural balance (weight balance) around the axis L, and as a result, it is possible to suitably suppress vibration of the motor 12 caused by resonance or the like. Thereby, the fluctuation
  • the first lead wires 48a are provided in a plurality (six) of coils 42a arranged adjacent to each other in the circumferential direction.
  • a plurality of (six) coils 42b arranged adjacent to each other in the circumferential direction are provided with the second lead wires 48b.
  • the present invention is not particularly limited to this, and can be changed as appropriate. Also good.
  • every other coil 42a in the circumferential direction is provided with the first lead wires 48a, and the six first lead wires 48a are arranged at equal intervals in the circumferential direction (60 °). Are arranged at intervals).
  • the second lead wires 48b are provided in every other coil 42b in the circumferential direction, and the six second lead wires 48b are arranged at equal intervals in the circumferential direction (60 ° intervals).
  • the first lead lines 48a and the second lead lines 48b are alternately arranged at equal intervals in the circumferential direction when viewed in the direction of the axis L.
  • the configuration of the first and second lead wires 48a and 48b in the first and second stators 56 and 57 shown in the figure can be realized by applying the winding mode shown in FIG. 29, for example.
  • all the lead lines 48a and 48b (at least the root portions thereof) in the first and second stators 56 and 57 are arranged at equal intervals in the circumferential direction. Is done. For this reason, it is possible to improve the structural balance (weight balance) around the axis L, and as a result, it is possible to suitably suppress vibration of the motor 54 caused by resonance or the like.
  • the first lead lines 48a and the second lead lines 48b are arranged alternately in the circumferential direction when viewed in the direction of the axis L. That is, the first lead line 48a and the second lead line 48b are configured not to overlap in the axial direction. Therefore, the structural balance (weight balance) of the motor 54 becomes better than the configuration in which the first lead wire 48a and the second lead wire 48b overlap in the axial direction, and as a result, the vibration of the motor caused by resonance or the like. Can be more suitably suppressed.
  • the number of the lead wires 48a and 48b of the first and second stators 56 and 57 in the second embodiment is merely an example, and is appropriately changed according to the winding mode of the coils 42a and 42b.
  • A An axial gap type motor in which the magnetic pole portion of the rotor and the teeth of the stator face each other in the axial direction, The rotor having a magnetic pole portion on an axial end face;
  • a stator including a plate-shaped base portion and a stator core including a plurality of teeth, and a plurality of coils, wherein the plurality of teeth protrude in an axial direction from one surface of the base portion and are aligned in a circumferential direction.
  • Each of the plurality of coils includes the stator wound around the teeth, A motor in which one end in the circumferential direction of the magnetic pole portion of the rotor overlaps with one end in the circumferential direction of the teeth when viewed in the axial direction.
  • the first lead line is one of a plurality of first lead lines
  • the second lead line is one of a plurality of second lead lines;
  • the same number of the first lead lines and the second lead lines are provided,
  • Each of the first lead lines and the second lead lines is a vehicle motor mounting structure that is disposed at a position opposite to each other at 180 ° centering on the rotation axis of the motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

An attachment structure for a vehicle motor is applied for the purpose of attaching a vehicle motor to in-vehicle equipment. The attachment structure for a vehicle motor is provided with an axial gap motor that includes a rotor and a stator facing each other in the axial direction. The motor is attached to the in-vehicle equipment in a mode in which the axial direction is perpendicular to the vertical direction.

Description

車両用モータの取付構造、車載機器及びブラシレスモータMounting structure for vehicle motor, in-vehicle device and brushless motor
 本発明は、車載機器に設けられるモータの取付構造に関するものである。 The present invention relates to a motor mounting structure provided in an in-vehicle device.
 従来、車両には、モータを駆動源として備えた種々の車載機器が搭載されている。車載機器の一例として、例えば特許文献1には、内燃機関の吸気バルブ又は排気バルブの開閉タイミングを決めるクランクシャフトとカムシャフトの相対位相を、モータの駆動力に基づいて調整するバルブタイミング可変装置が開示されている。 Conventionally, various in-vehicle devices equipped with a motor as a drive source are mounted on the vehicle. As an example of in-vehicle equipment, for example, Patent Document 1 discloses a valve timing variable device that adjusts the relative phase between a crankshaft and a camshaft that determines the opening / closing timing of an intake valve or an exhaust valve of an internal combustion engine based on the driving force of a motor. It is disclosed.
 また、従来、車両用のブラシレスモータは、例えば特許文献2に示されるように、コイルを有するステータと、該ステータと対向するロータと、ステータのコイルと接続される駆動回路とを備える。駆動回路からステータのコイルへの通電により、ステータのコイルに回転磁界が発生すると、その回転磁界に応じてロータが回転駆動されるようになっている。 Conventionally, a brushless motor for a vehicle includes a stator having a coil, a rotor facing the stator, and a drive circuit connected to the stator coil as disclosed in, for example, Patent Document 2. When a rotating magnetic field is generated in the stator coil by energization of the stator coil from the drive circuit, the rotor is rotationally driven in accordance with the rotating magnetic field.
特開2008-160964号公報JP 2008-160964 A 特開平7-264822号公報Japanese Patent Laid-Open No. 7-264822
 ところで、特許文献1に記載のような車載機器では、モータの出力側が車載機器本体に固定され、モータの反出力側が車載機器本体から突出する態様となることが多い。このため、走行時の車両の振動や車載機器自身の振動等によってモータが振動しやすく、振動による異音の発生や、性能低下、構造劣化等の問題があった。 By the way, in the in-vehicle device as described in Patent Document 1, the output side of the motor is often fixed to the in-vehicle device main body, and the opposite side of the motor protrudes from the in-vehicle device main body. For this reason, the motor is likely to vibrate due to the vibration of the vehicle during traveling, the vibration of the in-vehicle device itself, and the like, and there are problems such as generation of abnormal noise due to vibration, performance degradation, and structural deterioration.
 特許文献2に記載のようなブラシレスモータでは、冗長性を如何に確保するかが課題となっている。上記文献のブラシレスモータでは、コイル及び駆動回路の組を2系統とすることで、冗長性の向上を図っている。しかしながら、2系統分のコイルが1つのティースに巻回されるため、何らかの原因によって一方の系統のコイルが被膜溶融又は炭化するほどに発熱したときに、その熱が他方の系統のコイルに影響を与えやすく、この点においてなお、改善の余地があった。 In the brushless motor described in Patent Document 2, how to ensure redundancy is a problem. In the brushless motor of the above document, redundancy is improved by using two sets of coils and drive circuits. However, since two coils are wound around one tooth, when heat is generated so that the coil of one system melts or carbonizes due to some cause, the heat affects the coil of the other system. There is still room for improvement in this respect.
 本発明の目的は、モータの振動を抑制できる車両用モータの取付構造及び車載機器を提供することにある。 An object of the present invention is to provide a vehicle motor mounting structure and an in-vehicle device capable of suppressing motor vibration.
 上記目的を達成するため、車両用モータの取付構造は、車両用モータを車載機器に取り付けるために適用される。車両用モータの取付構造は、軸方向に互いに対向するロータとステータとを含むアキシャルギャップ型のモータを備える。前記モータは、前記軸方向が鉛直方向に対して垂直となる態様で前記車載機器に取り付けられる。 In order to achieve the above object, the mounting structure of the vehicle motor is applied to mount the vehicle motor on the in-vehicle device. A vehicle motor mounting structure includes an axial gap type motor including a rotor and a stator that are axially opposed to each other. The motor is attached to the in-vehicle device in such a manner that the axial direction is perpendicular to the vertical direction.
第1実施形態にかかるバルブタイミング可変装置を示す模式図。The schematic diagram which shows the valve timing variable apparatus concerning 1st Embodiment. 図1のモータの断面図。Sectional drawing of the motor of FIG. 図2のロータ及びステータの分解斜視図。FIG. 3 is an exploded perspective view of the rotor and stator of FIG. 2. 図3のロータの一部を示す平面図。The top view which shows a part of rotor of FIG. 図2のモータにおけるコギングトルクを説明するためのグラフ。The graph for demonstrating the cogging torque in the motor of FIG. 第2実施形態にかかる電動パワーステアリング装置を模式的に示す斜視図。The perspective view which shows typically the electric power steering device concerning 2nd Embodiment. 図6のモータの断面図。Sectional drawing of the motor of FIG. 図7のロータ及びステータの分解斜視図。FIG. 8 is an exploded perspective view of the rotor and stator of FIG. 7. 図8のロータの一部を示す平面図。The top view which shows a part of rotor of FIG. 図8のステータコアの一部を示す平面図。The top view which shows a part of stator core of FIG. 図7のモータにおけるコギングトルクを説明するためのグラフ。The graph for demonstrating the cogging torque in the motor of FIG. 変形例のロータの一部を示す平面図。The top view which shows a part of rotor of a modification. 変形例のステータコアの一部を示す平面図。The top view which shows a part of stator core of a modification. 変形例のステータコアの一部を示す平面図。The top view which shows a part of stator core of a modification. 変形例のステータコアの一部を示す平面図。The top view which shows a part of stator core of a modification. 変形例におけるモータの断面図。Sectional drawing of the motor in a modification. (a)(b)変形例におけるステータとロータとの関係を示す平面図。(A) (b) The top view which shows the relationship between the stator and rotor in a modification. (a)(b)変形例におけるステータとロータとの関係を示す平面図。(A) (b) The top view which shows the relationship between the stator and rotor in a modification. (a)(b)変形例におけるステータとロータとの関係を示す平面図。(A) (b) The top view which shows the relationship between the stator and rotor in a modification. 変形例のロータの平面図。The top view of the rotor of a modification. 変形例のロータの平面図。The top view of the rotor of a modification. 変形例のロータの平面図。The top view of the rotor of a modification. 冷却水循環装置を示す模式図。The schematic diagram which shows a cooling water circulation apparatus. 電動ブレーキ装置を示す模式図。The schematic diagram which shows an electric brake device. 電動ブレーキ装置を示す模式図。The schematic diagram which shows an electric brake device. 電動コンプレッサを示す模式図。The schematic diagram which shows an electric compressor. (a)第1実施形態におけるコイルの結線態様を示す電気回路図、(b)変形例におけるコイルの結線態様を示す電気回路図。(A) The electric circuit diagram which shows the connection aspect of the coil in 1st Embodiment, (b) The electric circuit diagram which shows the connection aspect of the coil in a modification. 第1実施形態における各コイルの平面図。The top view of each coil in 1st Embodiment. 変形例における各コイルの平面図。The top view of each coil in a modification. 第2実施形態におけるコイルの引き出し線の位置を説明するための模式図。The schematic diagram for demonstrating the position of the lead wire of the coil in 2nd Embodiment. 変形例におけるコイルの引き出し線の位置を説明するための模式図。The schematic diagram for demonstrating the position of the lead wire of the coil in a modification.
 (第1実施形態)
 以下、車両用モータの取付構造及び車載機器の第1実施形態について説明する。本実施形態では、車載機器の一例として内燃機関のバルブタイミング可変装置を対象としている。なお、図面では、説明の便宜上、構成の一部を誇張又は簡略化して示す場合がある。また、各部分の寸法比率についても、実際と異なる場合がある。
(First embodiment)
A vehicle motor mounting structure and a first embodiment of an in-vehicle device will be described below. In the present embodiment, a variable valve timing device for an internal combustion engine is targeted as an example of on-vehicle equipment. Note that in the drawings, for convenience of explanation, some components may be exaggerated or simplified. Further, the dimensional ratio of each part may be different from the actual one.
 図1に示すように、車両の内燃機関10に搭載されるバルブタイミング可変装置11は、モータ12を備え、該モータ12の駆動に基づき、内燃機関10におけるクランクシャフト(図示略)に対するカムシャフト13の相対回転位相を調整するものである。より詳しくは、モータ12の回転軸14は、エンジンバルブ(図示略)を開閉するカムシャフト13に対して調整機構15を介して連結されている。そして、モータ12から出力される回転トルクにて作動された調整機構15がカムシャフト13を作動させてエンジンバルブを開閉するタイミングが調整されるようになっている。 As shown in FIG. 1, a variable valve timing device 11 mounted on an internal combustion engine 10 of a vehicle includes a motor 12, and a camshaft 13 with respect to a crankshaft (not shown) in the internal combustion engine 10 based on driving of the motor 12. This adjusts the relative rotational phase. More specifically, the rotating shaft 14 of the motor 12 is connected via an adjusting mechanism 15 to a camshaft 13 that opens and closes an engine valve (not shown). The timing at which the adjusting mechanism 15 operated by the rotational torque output from the motor 12 operates the camshaft 13 to open and close the engine valve is adjusted.
 内燃機関10が車両に搭載された状態において、モータ12は、その回転軸14の軸線L方向(以下では、モータ12の軸方向、又は、単に軸方向という)が鉛直方向X(車両上下方向)に対して垂直となるように、内燃機関10に取り付けられている。換言すると、内燃機関10の車両搭載状態において、モータ12の軸方向は水平方向と平行をなしている。また、モータ12の軸方向は、内燃機関10のピストン16の往復移動方向に対しても垂直をなしている。更に、モータ12の軸方向は、車両の前後方向(図1における紙面直交方向)に対しても垂直をなしている。つまり、モータ12の軸方向は、車幅方向と平行をなしている。 In a state in which the internal combustion engine 10 is mounted on a vehicle, the motor 12 has an axis L direction (hereinafter, referred to as an axial direction of the motor 12 or simply referred to as an axial direction) of the rotating shaft 14 in a vertical direction X (vehicle up-down direction). It is attached to the internal combustion engine 10 so as to be perpendicular to. In other words, in the vehicle mounted state of the internal combustion engine 10, the axial direction of the motor 12 is parallel to the horizontal direction. Further, the axial direction of the motor 12 is also perpendicular to the reciprocating direction of the piston 16 of the internal combustion engine 10. Furthermore, the axial direction of the motor 12 is also perpendicular to the front-rear direction of the vehicle (the direction perpendicular to the plane of FIG. 1). That is, the axial direction of the motor 12 is parallel to the vehicle width direction.
 図2に示すように、モータ12は、モータケース21と、モータケース21に収容されたロータ22及びステータ23と、ステータ23と電気的に接続された駆動回路24とを備えている。モータ12は、ロータ22とステータ23とが軸方向に対向する構成、つまり、軸方向においてロータ22とステータ23との間にエアギャップGを有するアキシャルギャップ型のブラシレスモータである。 As shown in FIG. 2, the motor 12 includes a motor case 21, a rotor 22 and a stator 23 housed in the motor case 21, and a drive circuit 24 electrically connected to the stator 23. The motor 12 is a configuration in which the rotor 22 and the stator 23 face each other in the axial direction, that is, an axial gap type brushless motor having an air gap G between the rotor 22 and the stator 23 in the axial direction.
 モータケース21は、有底筒状をなすヨークハウジング25と、ヨークハウジング25の開口側端部を閉塞する態様で、該ヨークハウジング25に固定されたエンドフレーム26とを備えている。なお、本実施形態では、ロータ22の回転軸14は、エンドフレーム26から外部に突出しており、該突出部分が前記調整機構15と連結される出力部として構成される。つまり、エンドフレーム26は、モータケース21の出力側を構成している。そして、エンドフレーム26がバルブタイミング可変装置11のハウジング(内燃機関10のハウジング)に対して当接する態様で、当該ハウジングにモータケース21が固定されるようになっている(図1参照)。 The motor case 21 includes a yoke housing 25 having a bottomed cylindrical shape, and an end frame 26 fixed to the yoke housing 25 so as to close the opening side end of the yoke housing 25. In this embodiment, the rotating shaft 14 of the rotor 22 protrudes from the end frame 26 to the outside, and the protruding portion is configured as an output unit connected to the adjustment mechanism 15. That is, the end frame 26 constitutes the output side of the motor case 21. The motor case 21 is fixed to the housing in such a manner that the end frame 26 abuts against the housing of the variable valve timing device 11 (housing of the internal combustion engine 10) (see FIG. 1).
 図2及び図3に示すように、ロータ22は、前記回転軸14が中央部に固定された円盤状のロータコア31と、ロータコア31の軸方向一端面に設けられた複数の磁石32を備えている。ロータ22の回転軸14は、ヨークハウジング25とエンドフレーム26の各々に設けられた軸受33によって回転可能に支持されている。ロータコア31は、回転軸14に対して垂直に設けられている。また、ロータコア31と回転軸14とは、一体回転可能となるように互いに固定されている。 As shown in FIGS. 2 and 3, the rotor 22 includes a disk-shaped rotor core 31 in which the rotating shaft 14 is fixed at the center, and a plurality of magnets 32 provided on one end surface in the axial direction of the rotor core 31. Yes. The rotating shaft 14 of the rotor 22 is rotatably supported by bearings 33 provided on the yoke housing 25 and the end frame 26, respectively. The rotor core 31 is provided perpendicular to the rotating shaft 14. The rotor core 31 and the rotating shaft 14 are fixed to each other so as to be integrally rotatable.
 ロータ22の各磁石32は、ロータコア31の軸方向のステータ23寄りの端面に周方向に沿って並設されている。各磁石32におけるステータ23との対向面(軸方向のステータ23寄りの端面)は、回転軸14の軸線Lに対して垂直をなす平面状をなしている。各磁石32は、各磁石32の軸方向端面に磁極が現れるように、軸方向に磁化されている。本実施形態では、8個の磁石32がロータ22に備えられ、ステータ23との対向面に現れる磁極がN極である磁石32と、ステータ23との対向面に現れる磁極がS極である磁石32とが、周方向等間隔に交互に配置されている。つまり、ロータ22は8極で構成されている。なお、本実施形態のロータ22の磁極の数は、2m×n(m,nは自然数)となっている。本実施形態では、m=2、n=4であることから、ロータ22の磁極の数は「8」となっている。 The magnets 32 of the rotor 22 are juxtaposed along the circumferential direction on the end surface of the rotor core 31 near the stator 23 in the axial direction. The surface of each magnet 32 facing the stator 23 (the end surface near the stator 23 in the axial direction) has a planar shape perpendicular to the axis L of the rotating shaft 14. Each magnet 32 is magnetized in the axial direction so that a magnetic pole appears on the axial end face of each magnet 32. In the present embodiment, eight magnets 32 are provided in the rotor 22, the magnet 32 whose magnetic pole appearing on the surface facing the stator 23 is an N pole, and the magnet whose magnetic pole appearing on the surface facing the stator 23 is an S pole. 32 are alternately arranged at equal intervals in the circumferential direction. That is, the rotor 22 is composed of 8 poles. Note that the number of magnetic poles of the rotor 22 of the present embodiment is 2m × n (m and n are natural numbers). In this embodiment, since m = 2 and n = 4, the number of magnetic poles of the rotor 22 is “8”.
 図4に示すように、各磁石32は、軸方向から見て扇状をなしている。また、各磁石32は、周方向において間隔を空けて配置されている。周方向に隣り合う磁石32の間の部位(磁石間部位34)は、径方向において一定、すなわち同幅をなしている。また、各磁石間部位34の周方向中心線は、回転軸14の軸線Lと交差するように構成されている。 As shown in FIG. 4, each magnet 32 has a fan shape when viewed from the axial direction. Moreover, each magnet 32 is arrange | positioned at intervals in the circumferential direction. The part (magnet part 34) between the magnets 32 adjacent to each other in the circumferential direction is constant in the radial direction, that is, has the same width. Further, the center line in the circumferential direction of each inter-magnet portion 34 is configured to intersect the axis L of the rotating shaft 14.
 各磁石32における軸方向のステータ23寄りの端面(ステータ23との対向面)には、一対の溝部35が凹設されている。各溝部35は、磁石32の径方向の内側端部から外側端部にかけて、径方向に沿って直線状に形成されている。詳しくは、溝部35の周方向中心線C1は、回転軸14の軸線Lと交差するように構成され、溝部35は、周方向中心線C1に沿った同一幅を有する直線状に形成されている。 A pair of groove portions 35 are recessed in the end surface of each magnet 32 near the stator 23 in the axial direction (the surface facing the stator 23). Each groove portion 35 is formed linearly along the radial direction from the radially inner end to the outer end of the magnet 32. Specifically, the circumferential center line C1 of the groove 35 is configured to intersect the axis L of the rotating shaft 14, and the groove 35 is formed in a straight line having the same width along the circumferential center line C1. .
 次に、一対の溝部35の形成位置について説明する。
 磁石32に設けられた一対の溝部35は、該一対の溝部35の各々の周方向中心線C1が磁石32の磁極中心線P(磁石32の周方向中心線)からそれぞれ時計回り方向及び反時計回り方向に同角度(角度θ)だけずれるように設けられている。つまり、一対の溝部35は、磁石32の磁極中心線Pに対して線対称となる位置に設けられている。
Next, the formation position of a pair of groove part 35 is demonstrated.
In the pair of grooves 35 provided in the magnet 32, the circumferential center line C1 of each of the pair of grooves 35 is clockwise and counterclockwise from the magnetic pole center line P of the magnet 32 (the circumferential center line of the magnet 32), respectively. It is provided so as to be shifted by the same angle (angle θ) in the rotation direction. That is, the pair of groove portions 35 are provided at positions that are axisymmetric with respect to the magnetic pole center line P of the magnet 32.
 また、一対の溝部35の磁極中心線Pを基準とした形成位置(角度θ)は、コギングトルクの周期(角度φ)に基づいて、以下の演算式を使って決定される。
 θ=(1/2+n)・φ
 なお、nは整数であって、本実施形態ではn=0としている。
Further, the formation position (angle θ) of the pair of groove portions 35 with respect to the magnetic pole center line P is determined based on the period of cogging torque (angle φ) using the following arithmetic expression.
θ = (1/2 + n) · φ
Note that n is an integer, and n = 0 in this embodiment.
 コギングトルクの周期φは、一般に、360度を、ロータ22の磁極数とステータ23の後述するティース44の数(スロット数)の最小公倍数で割った値である。つまり、本実施形態では、ロータ22の磁極数は8、ティース44の数は12であることから、最小公倍数は24となる。つまり、コギングトルクの周期φは、15(=360/24)度となる。従って、角度θは、7.5(=15/2)度、つまり、コギングトルクの周期φの半周期となる。また、回転軸14の軸線Lを中心として、一対の溝部35の各周方向中心線C1がなす角度は、コギングトルクの周期φ(=15度)と一致する。 The period φ of the cogging torque is generally a value obtained by dividing 360 degrees by the least common multiple of the number of magnetic poles of the rotor 22 and the number of teeth 44 (number of slots) described later of the stator 23. That is, in the present embodiment, the number of magnetic poles of the rotor 22 is 8 and the number of teeth 44 is 12, so the least common multiple is 24. That is, the period φ of the cogging torque is 15 (= 360/24) degrees. Accordingly, the angle θ is 7.5 (= 15/2) degrees, that is, a half cycle of the cycle φ of the cogging torque. Further, the angle formed by each circumferential center line C1 of the pair of groove portions 35 around the axis L of the rotating shaft 14 coincides with the cogging torque period φ (= 15 degrees).
 なお、磁石32は、溝部35の形成の容易さを考慮して、ボンド磁石(プラスチックマグネットやゴムマグネット等)で構成されることが好ましいが、ボンド磁石以外の例えば焼結磁石等で構成することも可能である。磁石32をボンド磁石とする場合には、例えばサマリウム鉄窒素(SmFeN)系磁石、サマリウムコバルト(SmCo)系磁石、ネオジム磁石等の希土類磁石で構成されることが好ましい。また、磁石32を焼結磁石とする場合には、例えばフェライト磁石、サマリウムコバルト(SmCo)磁石、ネオジム磁石等で構成されることが好ましい。 The magnet 32 is preferably composed of a bonded magnet (plastic magnet, rubber magnet, etc.) in consideration of the ease of forming the groove 35, but is composed of, for example, a sintered magnet other than the bonded magnet. Is also possible. When the magnet 32 is a bonded magnet, it is preferably composed of a rare earth magnet such as a samarium iron nitrogen (SmFeN) magnet, a samarium cobalt (SmCo) magnet, or a neodymium magnet. Further, when the magnet 32 is a sintered magnet, it is preferably composed of, for example, a ferrite magnet, a samarium cobalt (SmCo) magnet, a neodymium magnet, or the like.
 図2及び図3に示すように、ステータ23は、モータケース21に支持された円環状のステータコア41と、ステータコア41に巻装された複数のコイル42とを備えている。なお、本実施形態では、ステータコア41は、モータケース21におけるヨークハウジング25の内側に固定されている。 2 and 3, the stator 23 includes an annular stator core 41 supported by the motor case 21, and a plurality of coils 42 wound around the stator core 41. In the present embodiment, the stator core 41 is fixed inside the yoke housing 25 in the motor case 21.
 ステータコア41は、磁性粉体をプレス成形してなる圧粉磁心にて構成されている。ステータコア41は、円環板状をなしバックヨークとして機能するベース部43と、ベース部43からロータ22に向けて軸方向に突出する12個のティース44とを有する。ベース部43は、ヨークハウジング25の底部25aの内面に固定されている。 The stator core 41 is composed of a dust core formed by press-molding magnetic powder. The stator core 41 has a base portion 43 that has an annular plate shape and functions as a back yoke, and twelve teeth 44 that protrude in the axial direction from the base portion 43 toward the rotor 22. The base portion 43 is fixed to the inner surface of the bottom portion 25 a of the yoke housing 25.
 12個のティース44は、周方向に等角度間隔(本実施形態では30度間隔)に設けられている。ティース44は、軸方向から見た形状が略扇状をなし軸方向に所定高さで突出した柱状をなしており、12個のティース44は全て同じ形状をなしている。各ティース44の軸方向先端面(軸方向のロータ22寄りの端面)は、回転軸14の軸線Lに対して垂直な平面状をなし、該軸方向先端面は、ロータ22の磁石32に対しエアギャップGを介して軸方向に対向する。また、周方向に隣り合うティース44同士は周方向に離間しており、この隙間がコイル42を通すスロット45となる。各スロット45は、それぞれ径方向に同幅をなしている。つまり、周方向に対向する一対のティース44の周方向側面44a同士は平行をなしている。 The twelve teeth 44 are provided at equiangular intervals in the circumferential direction (30-degree intervals in the present embodiment). The teeth 44 have a substantially fan shape when viewed from the axial direction, and have a columnar shape protruding at a predetermined height in the axial direction. All twelve teeth 44 have the same shape. The axial front end surface of each tooth 44 (the end surface near the rotor 22 in the axial direction) has a planar shape perpendicular to the axis L of the rotating shaft 14, and the axial front end surface corresponds to the magnet 32 of the rotor 22. It faces in the axial direction through the air gap G. Further, the teeth 44 adjacent to each other in the circumferential direction are separated from each other in the circumferential direction, and this gap serves as a slot 45 through which the coil 42 passes. Each slot 45 has the same width in the radial direction. That is, the circumferential side surfaces 44a of the pair of teeth 44 facing each other in the circumferential direction are parallel to each other.
 図3に示すように、ベース部43の外径は、各ティース44の径方向の外側端部44bの径よりも大きく設定されている。そして、ベース部43の外周縁部には、複数の切り欠き部46が周方向において互いに間隔を空けて設けられている。本実施形態では、各切り欠き部46の個数は、スロット45の個数(つまり、ティース44の個数)と同数に設定され、各切り欠き部46は、各スロット45の径方向外側に設けられるとともに、周方向において各スロット45と同幅をなしている。 As shown in FIG. 3, the outer diameter of the base portion 43 is set to be larger than the diameter of the outer end portion 44 b in the radial direction of each tooth 44. A plurality of notches 46 are provided on the outer peripheral edge of the base portion 43 at intervals in the circumferential direction. In the present embodiment, the number of each notch 46 is set to be equal to the number of slots 45 (that is, the number of teeth 44), and each notch 46 is provided on the radially outer side of each slot 45. The same width as each slot 45 in the circumferential direction.
 また、ベース部43の外周縁部における各切り欠き部46の周方向間の部位(切り欠き部46が形成されていない部位)は、径方向外側に突出する凸部47となる。各凸部47は、各ティース44の径方向外側に設けられている。また、ティース44の周方向両側面44aと、該ティース44の径方向外側に位置する凸部47の周方向両端部とは、軸方向から見て、同一直線上に並ぶように構成されている。なお、ベース部43の外周端部(つまり、各凸部47の径方向先端部)は、ヨークハウジング25の内周面と径方向に当接されている(図2参照)。 Further, a portion between the notches 46 in the circumferential direction on the outer peripheral edge portion of the base portion 43 (a portion where the notches 46 are not formed) is a convex portion 47 protruding outward in the radial direction. Each convex portion 47 is provided on the radially outer side of each tooth 44. Further, both side surfaces 44a in the circumferential direction of the teeth 44 and both ends in the circumferential direction of the convex portions 47 located on the radially outer side of the teeth 44 are configured to be aligned on the same straight line when viewed from the axial direction. . The outer peripheral end portion of the base portion 43 (that is, the radial front end portion of each convex portion 47) is in contact with the inner peripheral surface of the yoke housing 25 in the radial direction (see FIG. 2).
 なお、本実施形態のステータコア41では、ベース部43の内周縁部43aがティース44の内側端部44cよりも径方向外側に後退させて構成されている。なお、ティース44の内側端部44cがベース部43の内周縁部43aより突出する部分は、ベース部43の裏面まで軸方向に延出して裏面と面一となっている。 In addition, in the stator core 41 of this embodiment, the inner peripheral edge 43a of the base part 43 is configured to recede radially outward from the inner end 44c of the teeth 44. In addition, the portion where the inner end portion 44 c of the tooth 44 protrudes from the inner peripheral edge 43 a of the base portion 43 extends in the axial direction to the back surface of the base portion 43 and is flush with the back surface.
 図2及び図3に示すように、各ティース44には、コイル42が集中巻にて巻回されている。12個のコイル42は、U相、V相、W相の三相コイルからなる。なお、コイル42のティース44への装着状態において、各凸部47の径方向外側端部は、コイル42の外側端部よりも径方向外側に位置している。 As shown in FIGS. 2 and 3, a coil 42 is wound around each tooth 44 by concentrated winding. The twelve coils 42 are three-phase coils of U phase, V phase, and W phase. In the state where the coil 42 is mounted on the tooth 44, the radially outer end of each convex portion 47 is positioned more radially outward than the outer end of the coil 42.
 一部のコイル42からは、該コイル42を構成する導線の端部である引き出し線48aが引き出されている。引き出し線48aは、切り欠き部46を通ってベース部43の裏面(ティース44とは反対側)に引き出される。更に、引き出し線48aは、図2に示すように、ヨークハウジング25の底部25aに形成された挿通孔(図示略)を通ってヨークハウジング25の外部に引き出されるとともに、底部25aの軸方向外側面に固定された駆動回路24と接続されている。なお、引き出し線48aの形成態様(引き出し線48aの数や、どのコイル42から引き出すか等)は、コイル42の巻線態様に応じて適宜決定される。 A lead wire 48a which is an end portion of a conducting wire constituting the coil 42 is drawn out from some of the coils 42. The lead wire 48 a is drawn out to the back surface (the side opposite to the teeth 44) of the base portion 43 through the notch portion 46. Further, as shown in FIG. 2, the lead wire 48a is drawn out of the yoke housing 25 through an insertion hole (not shown) formed in the bottom portion 25a of the yoke housing 25, and the axially outer side surface of the bottom portion 25a. The drive circuit 24 is fixed to the drive circuit 24. Note that the form of the lead lines 48a (the number of the lead lines 48a, which coil 42 to draw from, etc.) is appropriately determined according to the winding form of the coils 42.
 例えば、図28に示すように、三相に分類される各コイル42が、時計回り方向に順に、U1、V1、W1、U2、V2、W2、U3、V3、W3、U4、V4、W4とされ、各ティース44にそれぞれ集中巻きにて同一方向に巻装されている。各相で見ると、U相コイルU1~U4は周方向等間隔(90°間隔)に配置されている。同様に、V相コイルV1~V4は、周方向等間隔(90°間隔)に配置されている。また、同様に、W相コイルW1~W4は、周方向等間隔(90°間隔)に配置されている。 For example, as shown in FIG. 28, the coils 42 classified into three phases are arranged in the clockwise direction in the order of U1, V1, W1, U2, V2, W2, U3, V3, W3, U4, V4, W4. Each of the teeth 44 is wound in the same direction by concentrated winding. When viewed in each phase, the U-phase coils U1 to U4 are arranged at equal intervals in the circumferential direction (90 ° intervals). Similarly, the V-phase coils V1 to V4 are arranged at equal intervals in the circumferential direction (90 ° intervals). Similarly, the W-phase coils W1 to W4 are arranged at equal circumferential intervals (90 ° intervals).
 図27(a)に示すように、コイル42は各相毎に直列的に繋がっている。つまり、U相コイルU1~U4、V相コイルV1~V4、及びW相コイルW1~W4はそれぞれ直列回路を構成している。なお、本実施形態では、U相コイルU1~U4の直列回路、V相コイルV1~V4の直列回路、及びW相コイルW1~W4の直列回路がスター結線されている。 As shown in FIG. 27A, the coils 42 are connected in series for each phase. That is, U-phase coils U1 to U4, V-phase coils V1 to V4, and W-phase coils W1 to W4 each form a series circuit. In this embodiment, a series circuit of U-phase coils U1 to U4, a series circuit of V-phase coils V1 to V4, and a series circuit of W-phase coils W1 to W4 are star-connected.
 また、U相コイルU1~U4において、巻き始めのU相コイルU1から巻き終わりのU相コイルU4まで連続的に巻線されている。つまり、図28に示すように、U相コイルU1から巻き始めの引き出し線48a(巻き始め線Us)が引き出され、U相コイルU4から巻き終わりの引き出し線48a(巻き終わり線Ue)が引き出されている。この巻線態様はV相コイルV1~V4及びW相コイルW1~W4においても同様である。つまり、V相コイルV1から巻き始め線Vsが引き出され、V相コイルV4から巻き終わり線Veが引き出されている。また、W相コイルW1から巻き始め線Wsが引き出され、W相コイルW4から巻き終わり線Weが引き出されている。 Further, in the U-phase coils U1 to U4, winding is continuously performed from the U-phase coil U1 at the start of winding to the U-phase coil U4 at the end of winding. That is, as shown in FIG. 28, the winding start lead wire 48a (winding start wire Us) is drawn from the U phase coil U1, and the winding end lead wire 48a (winding end wire Ue) is drawn from the U phase coil U4. ing. This winding mode is the same for the V-phase coils V1 to V4 and the W-phase coils W1 to W4. That is, the winding start line Vs is drawn from the V-phase coil V1, and the winding end line Ve is drawn from the V-phase coil V4. Further, a winding start line Ws is drawn from the W-phase coil W1, and a winding end line We is drawn from the W-phase coil W4.
 各引き出し線48a(各巻き始め線Us,Vs,Ws及び各巻き終わり線Ue,Ve,We)は、軸方向に沿って引き出されるとともに、周方向に互いに一定の間隔(本実施形態では30°)を空けて配置されている。また、各引き出し線48a(各巻き始め線Us,Vs,Ws及び各巻き終わり線Ue,Ve,We)は、上記したように、それぞれ対応する切り欠き部46を通ってベース部43の裏面(ティース44とは反対側)に引き出される。そして、各巻き始め線Us,Vs,Wsは、前記挿通孔を通ってヨークハウジング25の外部に引き出されるとともに、底部25aの軸方向外側面に固定された駆動回路24と接続されて電源と電気的に接続されることとなる。また、各巻き終わり線Ue,Ve,Weは、互いに電気的に接続されている(図27(a)参照)。 Each lead line 48a (each winding start line Us, Vs, Ws and each winding end line Ue, Ve, We) is drawn out along the axial direction and at a constant interval in the circumferential direction (30 ° in this embodiment). ). In addition, as described above, each lead line 48a (each winding start line Us, Vs, Ws and each winding end line Ue, Ve, We) passes through the corresponding notch 46 and the back surface ( Pulled to the opposite side of the teeth 44). Each winding start line Us, Vs, Ws is drawn out of the yoke housing 25 through the insertion hole, and connected to the drive circuit 24 fixed to the outer surface in the axial direction of the bottom portion 25a to be electrically connected to the power source. Will be connected. Further, the winding end lines Ue, Ve, We are electrically connected to each other (see FIG. 27A).
 なお、上記の巻線態様は一例であり、上記のようなスター結線に限らず、例えばデルタ結線に変更してもよい。また、上記の引き出し線48aの数は一例であり、コイル42の巻線態様に応じて適宜変更されるものである。 In addition, said winding aspect is an example, You may change to not only the above star connection but a delta connection, for example. The number of the lead wires 48a is an example, and may be changed as appropriate according to the winding mode of the coil 42.
 次に、第1実施形態の作用について説明する。
 駆動回路24から各コイル42に三相駆動電流が供給されると、ステータ23にて回転磁界が発生し、該回転磁界に応じてロータ22が回転駆動される。駆動回路24は、各コイル42に供給する三相駆動電流を制御して、ロータ22の回転駆動を制御する。そして、コイル42への給電を停止すると、回転磁界が消失してロータ22は回転を停止する。このとき、ロータ22は、ステータ23に対して磁気的に最も安定した状態となる角度位置で停止する。
Next, the operation of the first embodiment will be described.
When a three-phase drive current is supplied from the drive circuit 24 to each coil 42, a rotating magnetic field is generated in the stator 23, and the rotor 22 is rotationally driven according to the rotating magnetic field. The drive circuit 24 controls the rotational drive of the rotor 22 by controlling the three-phase drive current supplied to each coil 42. When power supply to the coil 42 is stopped, the rotating magnetic field disappears and the rotor 22 stops rotating. At this time, the rotor 22 stops at an angular position at which the stator 23 is magnetically most stable.
 ここで、上記したように、ロータ22の磁石32には、磁極中心線Pから周方向両側に角度θ(=7.5度)だけずれた位置に一対の溝部35が設けられている。そして、一対の溝部35の各周方向中心線C1がなす角度は、コギングトルクの周期φ(=15度)と一致している。このため、図5に示すように、溝部35が無い場合のコギングトルクTaと、溝部コギングトルクTb(1つの溝部35によるコギングトルク)とが同相となる。これにより、コギングトルクTaに溝部コギングトルクTbが重畳されて、合成コギングトルクTcが増大されるようになっている。 Here, as described above, the magnet 32 of the rotor 22 is provided with a pair of groove portions 35 at positions shifted from the magnetic pole center line P by an angle θ (= 7.5 degrees) on both sides in the circumferential direction. The angle formed by each circumferential center line C1 of the pair of groove portions 35 coincides with the period φ (= 15 degrees) of the cogging torque. Therefore, as shown in FIG. 5, the cogging torque Ta when there is no groove 35 and the groove cogging torque Tb (cogging torque by one groove 35) are in phase. As a result, the groove cogging torque Tb is superimposed on the cogging torque Ta to increase the combined cogging torque Tc.
 次に、第1実施形態の有利な効果を記載する。
 (1)モータ12は、軸方向に互いに対向するロータ22とステータ23とを含むアキシャルギャップ型のモータである。アキシャルギャップ型のモータは、同出力のラジアルギャップ型のモータ(ロータとステータとが径方向に対向する構成のモータ)と比べて軸方向に小型化することができる。すなわち、車載機器の1つであるバルブタイミング可変装置11のモータ12に、軸方向の小型化に有利なアキシャルギャップ型のモータを用いることで、バルブタイミング可変装置11(内燃機関10)からのモータ12の突出を抑えた構成とすることが可能となる。これにより、モータ12の振動が抑制され、その結果、異音等の発生を抑制することが可能となる。
Next, advantageous effects of the first embodiment will be described.
(1) The motor 12 is an axial gap type motor including a rotor 22 and a stator 23 facing each other in the axial direction. The axial gap type motor can be made smaller in the axial direction than a radial gap type motor having the same output (a motor having a configuration in which the rotor and the stator are opposed in the radial direction). That is, by using an axial gap type motor that is advantageous for downsizing in the axial direction as the motor 12 of the valve timing variable device 11 that is one of the in-vehicle devices, the motor from the valve timing variable device 11 (internal combustion engine 10). It becomes possible to set it as the structure which suppressed 12 protrusion. As a result, the vibration of the motor 12 is suppressed, and as a result, the occurrence of abnormal noise or the like can be suppressed.
 また、モータ12は、その軸方向が鉛直方向Xに対して垂直となるようにバルブタイミング可変装置11に取り付けられる。一般に、走行時には内燃機関10を含む車体全体が主に鉛直方向Xに振動する。ここで、モータ12のロータ22及びステータ23は、鉛直方向Xに対する垂直方向(すなわち、水平方向)に対向するため、車両走行時の鉛直方向Xの振動がロータ22とステータ23の間隔(エアギャップG)に影響を与えない。これにより、エアギャップGの変動によって生じうるモータ12の出力特性の変動を抑えることができ、その結果、モータ12を備えたバルブタイミング可変装置11の信頼性の向上に寄与できる。 The motor 12 is attached to the valve timing variable device 11 so that its axial direction is perpendicular to the vertical direction X. In general, the entire vehicle body including the internal combustion engine 10 vibrates mainly in the vertical direction X during traveling. Here, since the rotor 22 and the stator 23 of the motor 12 face each other in the vertical direction (that is, the horizontal direction) with respect to the vertical direction X, vibrations in the vertical direction X when the vehicle travels cause an interval between the rotor 22 and the stator 23 (air gap). G) is not affected. Thereby, the fluctuation | variation of the output characteristic of the motor 12 which may arise by the fluctuation | variation of the air gap G can be suppressed, As a result, it can contribute to the improvement of the reliability of the valve timing variable apparatus 11 provided with the motor 12.
 (2)アキシャルギャップ型のモータ12の軸方向が、車両の前後方向に対しても垂直をなしている。つまり、モータ12のロータ22とステータ23とが、車両の前後方向に対する垂直方向(すなわち、車幅方向)に対向するため、車両の前後方向の振動がロータ22とステータ23の間隔(エアギャップG)に影響を与えない。これにより、エアギャップGの変動によって生じうるモータ12の出力特性の変動をより抑えることができ、その結果、モータ12を備えたバルブタイミング可変装置11の信頼性の向上に更に寄与できる。 (2) The axial direction of the axial gap type motor 12 is also perpendicular to the longitudinal direction of the vehicle. That is, since the rotor 22 of the motor 12 and the stator 23 face each other in the direction perpendicular to the vehicle front-rear direction (that is, the vehicle width direction), vibration in the vehicle front-rear direction causes an interval between the rotor 22 and the stator 23 (air gap G). ) Is not affected. Thereby, the fluctuation | variation of the output characteristic of the motor 12 which may arise by the fluctuation | variation of the air gap G can be suppressed more, and, as a result, it can contribute further to the improvement of the reliability of the valve timing variable apparatus 11 provided with the motor 12.
 (3)アキシャルギャップ型のモータ12の軸方向は、内燃機関10の主な振動源であるピストン16の往復移動方向に対しても垂直をなしている。このため、内燃機関10で発生する振動が、モータ12のエアギャップGに与える影響を小さく抑えることができ、その結果、モータ12を備えたバルブタイミング可変装置11の信頼性をより一層向上させることができる。 (3) The axial direction of the axial gap type motor 12 is also perpendicular to the reciprocating direction of the piston 16 which is the main vibration source of the internal combustion engine 10. For this reason, the influence which the vibration which generate | occur | produces in the internal combustion engine 10 has on the air gap G of the motor 12 can be restrained small, As a result, the reliability of the valve timing variable apparatus 11 provided with the motor 12 can be improved further. Can do.
 (4)ロータ22は、ステータ23と対向する対向面を有している。詳細には、ロータ22の磁石32はステータ23と対向する対向面を有している。対向面には、モータ12に発生するコギングトルク(合成コギングトルクTc)を調整するための、径方向に沿って延びる溝部35が設けられる。従って、溝部35の構成により、モータを搭載する車載機器に応じてコギングトルクを調整することができる。 (4) The rotor 22 has a facing surface that faces the stator 23. Specifically, the magnet 32 of the rotor 22 has a facing surface that faces the stator 23. A groove 35 extending along the radial direction for adjusting cogging torque (synthetic cogging torque Tc) generated in the motor 12 is provided on the facing surface. Therefore, the cogging torque can be adjusted according to the in-vehicle device on which the motor is mounted by the configuration of the groove portion 35.
 本実施形態のように、バルブタイミング可変装置11のモータ12の場合には、非通電時においてロータ22の位置を保持する機能を必要とするため、非通電時のコギングトルクによってロータ22の位置を保持させることが好ましい。従って、本実施形態では、コギングトルクを増大させるべく、溝部35の形成位置をコギングトルクの周期(角度φ)に基づいて設定している。これにより、コギングトルクによる非通電時のロータ22の位置保持をより確実に行うことができる。 In the case of the motor 12 of the variable valve timing device 11 as in the present embodiment, since the function of holding the position of the rotor 22 when not energized is required, the position of the rotor 22 is adjusted by the cogging torque when not energized. It is preferable to hold. Therefore, in this embodiment, in order to increase the cogging torque, the formation position of the groove 35 is set based on the period (angle φ) of the cogging torque. As a result, the position of the rotor 22 during non-energization by cogging torque can be more reliably performed.
 (5)ステータコア41は、円環板状をなすベース部43と、該ベース部43の一面から軸方向に突出し、周方向に沿って並設された複数のティース44とを備える。ベース部43の外周縁部(各凸部47の径方向外側端部)は、径方向において、各ティース44の外側端部44bよりも外側に位置するため、ベース部43の外周部分を十分外側に延出させることができ、それにより、ベース部43における磁路の減少を抑えることができる。 (5) The stator core 41 includes a base portion 43 having an annular plate shape, and a plurality of teeth 44 protruding in an axial direction from one surface of the base portion 43 and arranged in parallel along the circumferential direction. Since the outer peripheral edge portion (the radially outer end portion of each convex portion 47) of the base portion 43 is positioned outside the outer end portion 44b of each tooth 44 in the radial direction, the outer peripheral portion of the base portion 43 is sufficiently outside. Accordingly, a decrease in the magnetic path in the base portion 43 can be suppressed.
 そして、このように、ベース部43の外周縁部を外側に延出させた上で、該外周縁部には、径方向内側に窪む凹状をなす切り欠き部46が設けられる。このため、上記のようにベース部43における磁路の減少を極力抑制しつつも、ベース部43(ステータコア41)の軸方向における投影面積の増加を抑えることができる。ステータコア41を圧粉磁心(磁性粉体のプレス成形)で構成する場合、ステータコア41の軸方向の投影面積が大きくなると、大型のプレス機が必要となり、製造コストが増加してしまう。このため、ステータコア41の軸方向における投影面積の増加を抑えることで、製造コストの増加を抑えることが可能となる。 In this way, after the outer peripheral edge of the base portion 43 is extended outward, the outer peripheral edge is provided with a notch 46 having a concave shape recessed radially inward. For this reason, while suppressing the reduction | decrease of the magnetic path in the base part 43 as much as possible, the increase in the projection area in the axial direction of the base part 43 (stator core 41) can be suppressed. When the stator core 41 is formed of a powder magnetic core (magnetic powder press molding), if the projected area in the axial direction of the stator core 41 is increased, a large press is required, resulting in an increase in manufacturing cost. For this reason, it is possible to suppress an increase in manufacturing cost by suppressing an increase in the projected area in the axial direction of the stator core 41.
 (6)コイル42から引き出された引き出し線48aが、ベース部43の切り欠き部46に挿通される。これにより、径方向において、ステータコア41の体格内に引き出し線48aを収めることができ、その結果、モータ12の径方向への大型化を抑制できる。 (6) The lead wire 48 a drawn out from the coil 42 is inserted into the cutout portion 46 of the base portion 43. Thereby, the lead wire 48a can be accommodated in the physique of the stator core 41 in the radial direction, and as a result, the increase in size of the motor 12 in the radial direction can be suppressed.
 (7)モータ12の出力側がバルブタイミング可変装置11(内燃機関10)に固定され、駆動回路24はモータケース21の反出力側に設けられる。これにより、駆動回路24に対する内燃機関10からの熱の影響を抑制できる。 (7) The output side of the motor 12 is fixed to the valve timing variable device 11 (internal combustion engine 10), and the drive circuit 24 is provided on the non-output side of the motor case 21. Thereby, the influence of the heat from the internal combustion engine 10 with respect to the drive circuit 24 can be suppressed.
 (第2実施形態)
 以下、車両用モータの取付構造及び車載機器の第2実施形態について説明する。本実施形態では、車載機器の一例として電動パワーステアリング装置を対象としている。なお、図面では、説明の便宜上、構成の一部を誇張又は簡略化して示す場合がある。また、各部分の寸法比率についても、実際と異なる場合がある。また、本実施形態では、上記第1実施形態と同一の構成や対応する構成には同一の符号を付してその説明を省略する。
(Second Embodiment)
Hereinafter, the mounting structure of the vehicle motor and the second embodiment of the in-vehicle device will be described. In the present embodiment, an electric power steering device is targeted as an example of an in-vehicle device. Note that in the drawings, for convenience of explanation, some components may be exaggerated or simplified. Further, the dimensional ratio of each part may be different from the actual one. In this embodiment, the same reference numerals are given to the same or corresponding components as those in the first embodiment, and the description thereof is omitted.
 図6に示すように、本実施形態の電動パワーステアリング装置50は、コラムアシスト型である。電動パワーステアリング装置50は、ステアリングホイール51が連結されるステアリングシャフト52と、ステアリングシャフト52に対して減速機構53を介して連結されるモータ54とを備えている。モータ54は、減速機構53に設けられたトルクセンサ(図示略)により検出される操舵トルクや車速等に応じて制御され、運転者のステアリングホイール51の操作に対してパワーアシストを行う。 As shown in FIG. 6, the electric power steering apparatus 50 of this embodiment is a column assist type. The electric power steering device 50 includes a steering shaft 52 to which a steering wheel 51 is connected, and a motor 54 connected to the steering shaft 52 via a speed reduction mechanism 53. The motor 54 is controlled according to a steering torque, a vehicle speed, and the like detected by a torque sensor (not shown) provided in the speed reduction mechanism 53, and performs power assist for the driver's operation of the steering wheel 51.
 電動パワーステアリング装置50が車両に搭載された状態において、モータ54は、その軸方向(軸線L方向)が鉛直方向Xに対して垂直となるように、電動パワーステアリング装置50に取り付けられている。換言すると、電動パワーステアリング装置50の車両搭載状態において、モータ54の軸方向は水平方向と平行をなしている。更に、モータ54の軸方向は、車両の前後方向に対しても垂直をなしている。つまり、モータ54の軸方向は、車幅方向と平行をなしている。 In a state where the electric power steering device 50 is mounted on the vehicle, the motor 54 is attached to the electric power steering device 50 so that its axial direction (axis L direction) is perpendicular to the vertical direction X. In other words, when the electric power steering device 50 is mounted on the vehicle, the axial direction of the motor 54 is parallel to the horizontal direction. Furthermore, the axial direction of the motor 54 is also perpendicular to the longitudinal direction of the vehicle. That is, the axial direction of the motor 54 is parallel to the vehicle width direction.
 図7に示すように、モータ54は、回転軸14を有するロータ55と、ロータ55に対して軸方向の両側に配置された一対のステータ(第1ステータ56及び第2ステータ57)とを備えたアキシャルギャップ型のブラシレスモータである。ロータ55及び第1及び第2ステータ56,57は、モータケース21内に収容されている。また、モータ54は、モータケース21の軸方向両側に設けられた一対の駆動回路(第1駆動回路58及び第2駆動回路59)を備えている。第1及び第2駆動回路58,59は、第1及び第2ステータ56,57とそれぞれ電気的に接続されている。なお、本実施形態では、ロータ55の回転軸14は、エンドフレーム26及び第2駆動回路59を軸方向に貫通して外部に突出しており、該突出部分が前記減速機構53と連結される出力部として構成される。 As shown in FIG. 7, the motor 54 includes a rotor 55 having a rotating shaft 14 and a pair of stators (first stator 56 and second stator 57) disposed on both sides in the axial direction with respect to the rotor 55. This is an axial gap type brushless motor. The rotor 55 and the first and second stators 56 and 57 are accommodated in the motor case 21. The motor 54 includes a pair of drive circuits (a first drive circuit 58 and a second drive circuit 59) provided on both sides of the motor case 21 in the axial direction. The first and second drive circuits 58 and 59 are electrically connected to the first and second stators 56 and 57, respectively. In the present embodiment, the rotating shaft 14 of the rotor 55 penetrates the end frame 26 and the second drive circuit 59 in the axial direction and protrudes to the outside, and the protruding portion is connected to the speed reduction mechanism 53. Configured as part.
 図7及び図8に示すように、ロータ55は、回転軸14が中央部に固定された円盤状のロータコア61と、ロータコア61の軸方向の両端面にそれぞれ固定された第1磁石(第1磁極部)62及び第2磁石(第2磁極部)63とを備えている。ロータコア61は、回転軸14に対して垂直に設けられている。また、ロータコア61と回転軸14とは、一体回転可能となるように互いに固定されている。第1及び第2磁石62,63はそれぞれ、軸線Lを中心とする円環状をなし、軸方向に磁化された1つの磁石である。 As shown in FIGS. 7 and 8, the rotor 55 includes a disk-shaped rotor core 61 in which the rotation shaft 14 is fixed at the center portion, and first magnets (first electrodes fixed to both end surfaces in the axial direction of the rotor core 61. A magnetic pole part) 62 and a second magnet (second magnetic pole part) 63. The rotor core 61 is provided perpendicular to the rotating shaft 14. The rotor core 61 and the rotating shaft 14 are fixed to each other so as to be integrally rotatable. Each of the first and second magnets 62 and 63 is a single magnet having an annular shape centered on the axis L and magnetized in the axial direction.
 図9に示すように、ロータコア61の軸方向の一端面に固定された第1磁石62は、N極とS極とが周方向に交互に設定されており、周方向に8個の磁極を有している。第1磁石62の8個の磁極は、周方向に等角度間隔に設けられている。なお、本実施形態のロータ55の磁極の数は、2m×n(m,nは自然数)となっている。本実施形態では、m=2、n=4であることから、ロータ55の磁極の数は「8」となっている。 As shown in FIG. 9, the first magnet 62 fixed to one end surface of the rotor core 61 in the axial direction has N poles and S poles alternately set in the circumferential direction, and has eight magnetic poles in the circumferential direction. Have. The eight magnetic poles of the first magnet 62 are provided at equiangular intervals in the circumferential direction. Note that the number of magnetic poles of the rotor 55 of the present embodiment is 2m × n (m and n are natural numbers). In this embodiment, since m = 2 and n = 4, the number of magnetic poles of the rotor 55 is “8”.
 また、第1磁石62における軸方向の第1ステータ56寄りの端面(第1ステータ56との対向面)には、径方向に沿って延びる溝部64が第1磁石62の各磁極に対応して複数設けられている。各溝部64は、第1磁石62の内周端部から外周端部にかけて、径方向に沿って直線状に形成されている。また、各溝部64は、第1磁石62の各磁極の周方向中心(磁極中心C2)に沿って設けられ、前記磁極中心C2を中心とする所定幅を有している。 In addition, on the end surface of the first magnet 62 near the first stator 56 in the axial direction (the surface facing the first stator 56), a groove portion 64 extending along the radial direction corresponds to each magnetic pole of the first magnet 62. A plurality are provided. Each groove portion 64 is formed linearly along the radial direction from the inner peripheral end portion to the outer peripheral end portion of the first magnet 62. Each groove portion 64 is provided along the circumferential center (magnetic pole center C2) of each magnetic pole of the first magnet 62, and has a predetermined width centered on the magnetic pole center C2.
 図8に示すように、ロータコア61の軸方向の他端面に固定された第2磁石63は、前記第1磁石62と同様の構成であり、第2磁石63は、周方向に等角度間隔に設定された8個の磁極を有する。この第2磁石63は、第1磁石62に対して磁極1つ分だけ周方向にずれるようにロータコア61に固定されている。そのため、軸方向に重なる第1磁石62の各磁極と第2磁石63の各磁極は、互いに異なる磁極(N極とS極)となっている。 As shown in FIG. 8, the second magnet 63 fixed to the other end surface of the rotor core 61 in the axial direction has the same configuration as the first magnet 62, and the second magnet 63 is equiangularly spaced in the circumferential direction. It has 8 set magnetic poles. The second magnet 63 is fixed to the rotor core 61 so as to be displaced in the circumferential direction by one magnetic pole with respect to the first magnet 62. Therefore, the magnetic poles of the first magnet 62 and the magnetic poles of the second magnet 63 that overlap in the axial direction are different from each other (N pole and S pole).
 ロータ55の軸方向両側に配置された第1及び第2ステータ56,57はそれぞれ、上記第1実施形態のステータ23と同様の構成を有している。詳細には、図7及び図8に示すように、ロータ55の軸方向両側に配置された第1及び第2ステータ56,57は、互いに同一構成をなしている。各ステータ56,57は、モータケース21に支持された円環状のステータコア41と、ステータコア41に巻装された複数のコイル42a,42bとを備えている。なお、第1ステータ56のコイルを第1コイル42aとし、第2ステータ57のコイルを第2コイル42bとしている。 The first and second stators 56 and 57 disposed on both sides in the axial direction of the rotor 55 have the same configuration as the stator 23 of the first embodiment. Specifically, as shown in FIGS. 7 and 8, the first and second stators 56 and 57 arranged on both sides in the axial direction of the rotor 55 have the same configuration. Each of the stators 56 and 57 includes an annular stator core 41 supported by the motor case 21 and a plurality of coils 42 a and 42 b wound around the stator core 41. The coil of the first stator 56 is the first coil 42a, and the coil of the second stator 57 is the second coil 42b.
 ステータコア41は、磁性粉体をプレス成形してなる圧粉磁心にて構成されている。ステータコア41は、円環板状をなしバックヨークとして機能するベース部43と、ベース部43からロータ55に向けて軸方向に突出する12個のティース44とを有する。 The stator core 41 is composed of a dust core formed by press-molding magnetic powder. The stator core 41 has a base portion 43 that has an annular plate shape and functions as a back yoke, and twelve teeth 44 that protrude in the axial direction from the base portion 43 toward the rotor 55.
 図8及び図11に示すように、12個のティース44は、周方向に等角度間隔(本実施形態では30度間隔)に設けられている。ティース44は、軸方向から見た形状が略扇状をなし軸方向に所定高さで突出した柱状をなしており、12個のティース44は全て同じ形状をなしている。各ティース44の軸方向先端面(軸方向のロータ55寄りの端面)は、回転軸14の軸線Lに対して垂直な平面状をなしている。また、周方向に隣り合うティース44同士は周方向に離間しており、この隙間がコイル42a,42bを通すスロット45となる。各スロット45は、それぞれ径方向に同幅をなしている。つまり、周方向に対向する一対のティース44の周方向側面44a同士は平行をなしている。 8 and 11, the twelve teeth 44 are provided at equiangular intervals in the circumferential direction (30-degree intervals in the present embodiment). The teeth 44 have a substantially fan shape when viewed from the axial direction, and have a columnar shape protruding at a predetermined height in the axial direction. All twelve teeth 44 have the same shape. The front end surface in the axial direction of each tooth 44 (the end surface near the axial rotor 55) has a planar shape perpendicular to the axis L of the rotating shaft 14. Moreover, the teeth 44 adjacent to each other in the circumferential direction are separated from each other in the circumferential direction, and this gap becomes a slot 45 through which the coils 42a and 42b are passed. Each slot 45 has the same width in the radial direction. That is, the circumferential side surfaces 44a of the pair of teeth 44 facing each other in the circumferential direction are parallel to each other.
 ベース部43の外径は、各ティース44の径方向の外側端部44bの径よりも大きく設定されている。そして、ベース部43の外周縁部には、複数の切り欠き部46が周方向において互いに間隔を空けて設けられている。本実施形態では、各切り欠き部46の個数は、スロット45の個数(つまり、ティース44の個数)と同数に設定され、各切り欠き部46は、各スロット45の径方向外側に設けられるとともに、周方向において各スロット45と同幅をなしている。 The outer diameter of the base portion 43 is set to be larger than the diameter of the outer end portion 44b in the radial direction of each tooth 44. A plurality of notches 46 are provided on the outer peripheral edge of the base portion 43 at intervals in the circumferential direction. In the present embodiment, the number of each notch 46 is set to be equal to the number of slots 45 (that is, the number of teeth 44), and each notch 46 is provided on the radially outer side of each slot 45. The same width as each slot 45 in the circumferential direction.
 また、ベース部43の外周縁部における各切り欠き部46の周方向間の部位(切り欠き部46が形成されていない部位)は、径方向外側に突出する凸部47となる。各凸部47は、各ティース44の径方向外側に設けられている。また、ティース44の周方向両側面44aと、該ティース44の径方向外側に位置する凸部47の周方向両端部とは、軸方向から見て、同一直線上に並ぶように構成されている。なお、ベース部43の外周端部(つまり、各凸部47の径方向先端部)は、ヨークハウジング25の内周面と径方向に当接されている(図7参照)。 Further, a portion between the notches 46 in the circumferential direction on the outer peripheral edge portion of the base portion 43 (a portion where the notches 46 are not formed) is a convex portion 47 protruding outward in the radial direction. Each convex portion 47 is provided on the radially outer side of each tooth 44. Further, both side surfaces 44a in the circumferential direction of the teeth 44 and both ends in the circumferential direction of the convex portions 47 located on the radially outer side of the teeth 44 are configured to be aligned on the same straight line when viewed from the axial direction. . Note that the outer peripheral end portion of the base portion 43 (that is, the radial tip portion of each convex portion 47) is in contact with the inner peripheral surface of the yoke housing 25 in the radial direction (see FIG. 7).
 本実施形態のステータコア41では、ベース部43の内周縁部43aがティース44の内側端部44cよりも径方向外側に後退させて構成され、その後退部分は、径方向外側に窪む切り欠き部43bを構成している(図10参照)。なお、ティース44の内側端部44cがベース部43の内周縁部43aより突出する部分は、ベース部43の裏面側まで軸方向に延出して裏面と面一となっている。 In the stator core 41 of the present embodiment, the inner peripheral edge portion 43a of the base portion 43 is configured to recede radially outward from the inner end portion 44c of the teeth 44, and the retracted portion is a notch portion that is recessed radially outward. 43b (see FIG. 10). In addition, the portion where the inner end portion 44 c of the tooth 44 projects from the inner peripheral edge 43 a of the base portion 43 extends in the axial direction to the back surface side of the base portion 43 and is flush with the back surface.
 図7及び図8に示すように、各ステータ56,57において、各ティース44には、コイル42a,42bが集中巻にて巻回されている。それぞれ12個のコイル42a,42bは、U相、V相、W相の三相コイルからなる。なお、コイル42a,42bのティース44への装着状態において、各凸部47の径方向外側端部は、コイル42a,42bの外側端部よりも径方向外側に位置している。 7 and 8, in each of the stators 56 and 57, coils 42a and 42b are wound around the teeth 44 by concentrated winding. The twelve coils 42a and 42b are each composed of a U-phase, V-phase, and W-phase three-phase coil. When the coils 42a and 42b are attached to the teeth 44, the radially outer ends of the convex portions 47 are positioned more radially outward than the outer ends of the coils 42a and 42b.
 第1ステータ56と第2ステータ57とは、互いのティース44が軸方向に向かい合うように配置され、それらの間に、ロータコア61及び第1及び第2磁石62,63が配置されている。つまり、第1ステータ56の各ティース44及び第1コイル42aは、ロータ55の第1磁石62と軸方向に対向するように構成されている。同様に、第2ステータ57の各ティース44及び第2コイル42bは、ロータ55の第2磁石63と軸方向に対向するように構成されている。なお、第1ステータ56は、ヨークハウジング25の底部25aの内面に固定され、第2ステータ57は、エンドフレーム26の軸方向内側面に固定されている。また、第1ステータ56の各コイル42aと第2ステータ57の各コイル42bとは、周方向において互いにずれなく(一方の軸方向への投影が他方と重なるように)構成されている。 The first stator 56 and the second stator 57 are arranged such that their teeth 44 face each other in the axial direction, and the rotor core 61 and the first and second magnets 62 and 63 are arranged therebetween. That is, each tooth 44 and the first coil 42 a of the first stator 56 are configured to face the first magnet 62 of the rotor 55 in the axial direction. Similarly, each tooth 44 and the second coil 42b of the second stator 57 are configured to face the second magnet 63 of the rotor 55 in the axial direction. The first stator 56 is fixed to the inner surface of the bottom portion 25 a of the yoke housing 25, and the second stator 57 is fixed to the inner side surface in the axial direction of the end frame 26. Further, the coils 42a of the first stator 56 and the coils 42b of the second stator 57 are configured so as not to deviate from each other in the circumferential direction (so that projection in one axial direction overlaps the other).
 図7に示すように、第1駆動回路58は、モータケース21の反出力側に設けられ、第2駆動回路59は、モータケース21の出力側に設けられている。詳しくは、第1駆動回路58は、ヨークハウジング25の底部25aの軸方向外側面に固定されている。また、第2駆動回路59は、エンドフレーム26の軸方向外側面に固定されている。なお、本実施形態では、ロータ55の回転軸14は、エンドフレーム26及び第2駆動回路59を軸方向に貫通して外部に突出しており、該突出部分が前記減速機構53と連結される出力部として構成される。 As shown in FIG. 7, the first drive circuit 58 is provided on the non-output side of the motor case 21, and the second drive circuit 59 is provided on the output side of the motor case 21. Specifically, the first drive circuit 58 is fixed to the outer surface in the axial direction of the bottom 25 a of the yoke housing 25. The second drive circuit 59 is fixed to the outer side surface of the end frame 26 in the axial direction. In the present embodiment, the rotating shaft 14 of the rotor 55 penetrates the end frame 26 and the second drive circuit 59 in the axial direction and protrudes to the outside, and the protruding portion is connected to the speed reduction mechanism 53. Configured as part.
 第1ステータ56の一部の第1コイル42aからは、該第1コイル42aを構成する導線の端部である引き出し線48aが軸方向に引き出されている。引き出し線48aは、第1ステータ56において、ステータコア41の切り欠き部46を通ってベース部43の裏面(ティース44とは反対側)に引き出される。更に、引き出し線48aは、ヨークハウジング25の底部25aに形成された挿通孔(図示略)を通ってヨークハウジング25の外部に引き出されて、第1駆動回路58と接続されている。 A lead wire 48a, which is an end portion of a conducting wire constituting the first coil 42a, is drawn out from a part of the first coil 42a of the first stator 56 in the axial direction. In the first stator 56, the lead line 48 a passes through the notch portion 46 of the stator core 41 and is drawn to the back surface of the base portion 43 (on the side opposite to the teeth 44). Further, the lead wire 48 a is drawn out of the yoke housing 25 through an insertion hole (not shown) formed in the bottom portion 25 a of the yoke housing 25, and is connected to the first drive circuit 58.
 同様に、第2ステータ57の一部の第2コイル42bからは、該第2コイル42bを構成する導線の端部である引き出し線48bが軸方向に引き出されている。引き出し線48bは、第2ステータ57において、ステータコア41の切り欠き部46を通ってベース部43の裏面(ティース44とは反対側)に引き出される。更に、引き出し線48bは、エンドフレーム26に形成された挿通孔(図示略)を通ってモータケース21の外部に引き出されて、第2駆動回路59と接続されている。なお、上記の各引き出し線48a,48bの形成態様(各引き出し線48a,48bの数や、どのコイル42a,42bから引き出すか等)は、コイル42a,42bの巻線態様に応じて適宜決定される。 Similarly, from a part of the second coil 42b of the second stator 57, a lead wire 48b which is an end portion of a conducting wire constituting the second coil 42b is drawn out in the axial direction. In the second stator 57, the lead wire 48 b passes through the notch portion 46 of the stator core 41 and is drawn to the back surface of the base portion 43 (the side opposite to the teeth 44). Further, the lead wire 48 b is drawn out of the motor case 21 through an insertion hole (not shown) formed in the end frame 26 and connected to the second drive circuit 59. Note that the formation mode of each of the lead wires 48a and 48b (the number of the lead wires 48a and 48b, the coil 42a and 42b to be drawn from, etc.) is appropriately determined according to the winding mode of the coils 42a and 42b. The
 このように、第1ステータ56及び第1駆動回路58の系統と、第2ステータ57及び第2駆動回路59の系統とは、互いに電気的に分かれて構成されている。そして、第1駆動回路58は、第1ステータ57の各第1コイル42aに供給する三相駆動電流を制御し、第2駆動回路59は、第2ステータ57の各第2コイル42bに供給する三相駆動電流を制御する。 Thus, the system of the first stator 56 and the first drive circuit 58 and the system of the second stator 57 and the second drive circuit 59 are configured to be electrically separated from each other. The first drive circuit 58 controls the three-phase drive current supplied to the first coils 42 a of the first stator 57, and the second drive circuit 59 supplies the second coils 42 b of the second stator 57. Control three-phase drive current.
 第1及び第2ステータ56,57のコイル42a,42bの巻線態様は、上記第1実施形態と同様である。具体的には、図8及び図30に示すように、第1ステータ56において、周方向に隣接して並ぶ6つのコイル42aからそれぞれ引き出し線48aが引き出されている。6本の第1引き出し線48aは、周方向に互いに一定の間隔(本実施形態では30°)を空けて配置されている。 The winding modes of the coils 42a and 42b of the first and second stators 56 and 57 are the same as those in the first embodiment. Specifically, as shown in FIGS. 8 and 30, in the first stator 56, lead wires 48 a are drawn from six coils 42 a that are arranged adjacent to each other in the circumferential direction. The six first lead lines 48a are arranged at a constant interval (30 ° in the present embodiment) with respect to each other in the circumferential direction.
 同様に、第2ステータ57において、周方向に隣接して並ぶ6つのコイル42bからそれぞれ引き出し線48bが引き出されている。6本の第2引き出し線48bは、周方向に互いに一定の間隔(本実施形態では30°)を空けて配置されている。 Similarly, in the second stator 57, lead wires 48b are drawn from six coils 42b arranged adjacent to each other in the circumferential direction. The six second lead lines 48b are arranged at a constant interval (30 ° in the present embodiment) with respect to each other in the circumferential direction.
 6本の第1引き出し線48aは、6本の第2引き出し線48bのそれぞれに対し、回転軸14の軸線L方向視で該軸線Lを中心とした180°対向位置に配置されている。換言すると、それぞれ対応する第1引き出し線48aと第2引き出し線48bとが、軸線L方向視において、軸線Lを挟む位置で該軸線Lと直交する直線L1と重なる位置に配置されている。このような構成によって、全ての第1引き出し線48aが、第2引き出し線48bと軸方向に重ならないように構成されている。更に言えば、各第1引き出し線48aと各第2引き出し線48bを合わせた計12本の引き出し線は、周方向において等間隔(30°間隔)で配置されている。 The six first lead lines 48a are arranged at positions opposed to each of the six second lead lines 48b at 180 ° with the axis L as the center when viewed in the direction of the axis L of the rotary shaft 14. In other words, the corresponding first lead line 48a and second lead line 48b are arranged at positions overlapping the straight line L1 orthogonal to the axis L at a position sandwiching the axis L when viewed in the direction of the axis L. With such a configuration, all the first lead lines 48a are configured not to overlap the second lead lines 48b in the axial direction. More specifically, a total of 12 lead lines including the first lead lines 48a and the second lead lines 48b are arranged at equal intervals (30 ° intervals) in the circumferential direction.
 また、本実施形態では、各第1引き出し線48aと各第2引き出し線48bとは径方向位置(軸線Lからの寸法)が同位置に設定されている。つまり、各第1引き出し線48aと各第2引き出し線48bとは、軸線Lに対して点対称となるように配置されている。 Further, in the present embodiment, each first lead line 48a and each second lead line 48b are set at the same radial position (dimension from the axis L). That is, the first lead lines 48a and the second lead lines 48b are arranged so as to be point-symmetric with respect to the axis L.
 次に、第2実施形態の作用について説明する。
 第1駆動回路58から第1ステータ56の各コイル42aに三相駆動電流が供給されると、第1ステータ56にて回転磁界が発生する。また、第2駆動回路59から第2ステータ57の各コイル42bに三相駆動電流が供給されると、第2ステータ57にて回転磁界が発生する。そして、第1及び第2ステータ56,57にて発生された回転磁界に応じてロータ55が回転駆動される。
Next, the operation of the second embodiment will be described.
When a three-phase drive current is supplied from the first drive circuit 58 to each coil 42 a of the first stator 56, a rotating magnetic field is generated in the first stator 56. When a three-phase drive current is supplied from the second drive circuit 59 to each coil 42 b of the second stator 57, a rotating magnetic field is generated in the second stator 57. Then, the rotor 55 is rotationally driven according to the rotating magnetic field generated by the first and second stators 56 and 57.
 ここで、上記のように、ロータ55の第1及び第2磁石62,63の各磁極中心C2には前記溝部64が設けられている。このため、図11に示すように、溝部64が無い場合のコギングトルクTaと、溝部コギングトルクTd(溝部64によるコギングトルク)とが逆位相(位相差180度)となる。これにより、コギングトルクTa及び溝部コギングトルクTdを合成した合成コギングトルクTeは、コギングトルクTaから溝部コギングトルクTdの分だけ差し引かれ、合成コギングトルクTeが減少されるようになっている。 Here, as described above, the groove portion 64 is provided in each magnetic pole center C2 of the first and second magnets 62 and 63 of the rotor 55. For this reason, as shown in FIG. 11, the cogging torque Ta when there is no groove 64 and the groove cogging torque Td (cogging torque by the groove 64) are in opposite phases (phase difference 180 degrees). As a result, the combined cogging torque Te obtained by combining the cogging torque Ta and the groove cogging torque Td is subtracted from the cogging torque Ta by the amount of the groove cogging torque Td, so that the combined cogging torque Te is reduced.
 第2実施形態によれば、上記第1実施形態の効果(1),(2),(3),(5)と同様の効果が得られるとともに、それらに加えて以下の効果を奏する。
 (8)モータ54は、ロータ55の軸方向両側に設けられた一対のステータ(第1及び第2ステータ56,57)を備える。また、モータ54は、第1ステータ56のコイル42aと接続され、該コイル42aに供給する駆動電流を制御するための第1駆動回路58と、第2ステータ57のコイル42bと接続され、該コイル42bに供給する駆動電流を制御するための第2駆動回路59とを備える。この構成によれば、第1ステータ56及び第1駆動回路58の系統と、第2ステータ57及び第2駆動回路59の系統とが互いに電気的に分かれて構成され、更に、それら2系統のコイル42a,42b同士が、ロータ55を隔てて分かれて構成される。このため、一方の系統の故障によりその系統のコイル42a(42b)が発熱したとき、その熱が他方の系統のコイル42b(42a)に影響を与えることを極力抑えることができ、それにより、冗長性の向上を図ることができる。
According to the second embodiment, the same effects as the effects (1), (2), (3), and (5) of the first embodiment can be obtained, and in addition, the following effects can be obtained.
(8) The motor 54 includes a pair of stators (first and second stators 56 and 57) provided on both axial sides of the rotor 55. The motor 54 is connected to the coil 42a of the first stator 56, and is connected to the first drive circuit 58 for controlling the drive current supplied to the coil 42a and the coil 42b of the second stator 57. And a second drive circuit 59 for controlling the drive current supplied to 42b. According to this configuration, the system of the first stator 56 and the first drive circuit 58 and the system of the second stator 57 and the second drive circuit 59 are configured to be electrically separated from each other. 42 a and 42 b are separated from each other by the rotor 55. For this reason, when the coil 42a (42b) of the one system generates heat due to the failure of one system, it is possible to suppress the heat from affecting the coil 42b (42a) of the other system as much as possible. It is possible to improve the performance.
 (9)第1及び第2ステータ56,57の各ベース部43の外周縁部には、径方向に窪む凹状をなす切り欠き部46が設けられ、該切り欠き部46に、コイル42a,42bを構成する素線等のモータ構成部品の配置が可能となる。つまり、モータ構成部品の配置の自由度が高くなってその配置を効率的に行うことが可能となり、ステータ56,57の小型化、ひいてはモータ54の小型化が図れる。 (9) On the outer peripheral edge portion of each base portion 43 of the first and second stators 56 and 57, there is provided a notch portion 46 having a concave shape that is recessed in the radial direction, and the notches 46 are provided with coils 42a, Arrangement of motor components such as the strands constituting 42b becomes possible. That is, the degree of freedom of arrangement of the motor components is increased, and the arrangement can be performed efficiently, and the stators 56 and 57 can be downsized, and the motor 54 can be downsized.
 また、第2実施形態では、第1及び第2ステータ56,57の各ベース部43の内周縁部にも、切り欠き部43bが設けられ、該切り欠き部43bにコイル42a,42bを構成する素線等のモータ構成部品の配置が可能となっており、ステータ56,57の小型化、ひいてはモータ54の小型化に寄与できる。 In the second embodiment, notch portions 43b are also provided on the inner peripheral edge portions of the base portions 43 of the first and second stators 56 and 57, and coils 42a and 42b are formed in the notch portions 43b. Arrangement of motor components such as strands is possible, which can contribute to the miniaturization of the stators 56 and 57 and the miniaturization of the motor 54.
 (10)第1コイル42aから引き出された引き出し線48a、及び第2コイル42bから引き出された引き出し線48bは、それぞれ対応するステータ56,57におけるベース部43の切り欠き部46に挿通される。これにより、径方向において、ステータコア41の体格内に引き出し線48a,48bを収めることができ、その結果、モータ54の径方向への大型化を抑制できる。 (10) The lead wire 48a drawn from the first coil 42a and the lead wire 48b drawn from the second coil 42b are inserted into the cutout portions 46 of the base portions 43 of the corresponding stators 56 and 57, respectively. Thereby, the lead wires 48a and 48b can be accommodated in the physique of the stator core 41 in the radial direction, and as a result, the increase in size of the motor 54 in the radial direction can be suppressed.
 (10)ロータ55の第1磁石62における第1ステータ56との対向面、及び第2磁石63における第2ステータ57との対向面にはそれぞれ、モータ54に発生するコギングトルク(合成コギングトルクTe)を調整するための、径方向に沿って延びる溝部64が設けられる。従って、溝部64の構成により、モータを搭載する車載機器に応じてコギングトルクを調整することができる。 (10) Cogging torque (synthetic cogging torque Te) generated in the motor 54 is respectively provided on the surface of the first magnet 62 of the rotor 55 facing the first stator 56 and the surface of the second magnet 63 facing the second stator 57. ) Is provided to extend along the radial direction. Therefore, the cogging torque can be adjusted according to the in-vehicle device on which the motor is mounted by the configuration of the groove portion 64.
 本実施形態の電動パワーステアリング装置50のモータ54のように、非通電時のロータ55の位置を保持する機能を特に必要としない場合には、コギングトルクを減少させてモータ54の低振動化、ひいては低騒音化を図ることが好ましい。従って、本実施形態では、溝部64を第1及び第2磁石62,63の各磁極中心C2に設定することで、コギングトルク(合成コギングトルクTe)の低減を図っている。 In the case where the function of maintaining the position of the rotor 55 when not energized is not particularly required like the motor 54 of the electric power steering apparatus 50 of the present embodiment, the cogging torque is reduced to reduce the vibration of the motor 54. As a result, it is preferable to reduce noise. Therefore, in this embodiment, the cogging torque (synthetic cogging torque Te) is reduced by setting the groove portion 64 to each magnetic pole center C2 of the first and second magnets 62 and 63.
 (11)モータ54は、ロータ55と第1及び第2ステータ56,57とが軸方向に対向するアキシャルギャップ型のモータであり、その軸方向が鉛直方向Xに対して垂直となるように電動パワーステアリング装置50に取り付けられる。一般に、走行時には電動パワーステアリング装置50を含む車体全体が主に鉛直方向Xに振動する。ここで、モータ54のロータ55と各ステータ56,57とは、鉛直方向Xに対する垂直方向(すなわち、水平方向)に対向するため、車両走行時の鉛直方向Xの振動がロータ55と各ステータ56,57との間隔(エアギャップ)に影響を与えない。これにより、エアギャップの変動によって生じうるモータ54の出力特性の変動を抑えることができ、その結果、モータ54を備えた電動パワーステアリング装置50の信頼性の向上に寄与できる。 (11) The motor 54 is an axial gap type motor in which the rotor 55 and the first and second stators 56 and 57 face each other in the axial direction, and is electrically driven so that the axial direction is perpendicular to the vertical direction X. It is attached to the power steering device 50. In general, the entire vehicle body including the electric power steering device 50 vibrates mainly in the vertical direction X during traveling. Here, since the rotor 55 of the motor 54 and each of the stators 56 and 57 face each other in the vertical direction (that is, the horizontal direction) with respect to the vertical direction X, the vibration in the vertical direction X when the vehicle travels causes the rotor 55 and each stator 56 to vibrate. , 57 (air gap) is not affected. Thereby, the fluctuation | variation of the output characteristic of the motor 54 which may arise by the fluctuation | variation of an air gap can be suppressed, As a result, it can contribute to the improvement of the reliability of the electric power steering apparatus 50 provided with the motor 54.
 また、本実施形態では、第1及び第2ステータ56,57における全ての引き出し線48a,48b(の少なくとも根元部位)が周方向において等間隔に配置されるため、軸線L周りの構造的バランス(重量バランス)を良好にすることが可能となり、その結果、共振などによって生じるモータ54の振動を好適に抑制することが可能となる。これにより、ロータ55と第1及び第2ステータ56,57とのエアギャップの変動がより好適に抑制され、ひいては、電動パワーステアリング装置50の信頼性のより一層の向上に寄与できる。 In the present embodiment, since all the lead wires 48a and 48b (at least the root portions thereof) in the first and second stators 56 and 57 are arranged at equal intervals in the circumferential direction, a structural balance around the axis L ( (Weight balance) can be improved, and as a result, vibration of the motor 54 caused by resonance or the like can be suitably suppressed. Thereby, the fluctuation | variation of the air gap of the rotor 55 and the 1st and 2nd stators 56 and 57 is suppressed more suitably, and can contribute to the further improvement of the reliability of the electric power steering apparatus 50 by extension.
 また、本実施形態では、第1引き出し線48a(の少なくとも根元位置)と第2引き出し線48b(の少なくとも根元位置)とが、回転軸14の軸線L(モータ54の回転軸線)を中心とした180°対向位置に配置される。この構成によれば、軸線L周りの構造的バランス(重量バランス)を更に良好にすることが可能となり、その結果、共振などによって生じるモータの振動をより好適に抑制することが可能となる。これにより、ロータとステータとのエアギャップの変動がより好適に抑制され、ひいては、車載機器の信頼性のより一層の向上に寄与できる。また、本実施形態では、第1引き出し線48aと第2引き出し線48bとは径方向位置(軸線Lからの寸法)が同位置に設定されるため、軸線L周りの構造的バランス(重量バランス)をより良好とすることができる。 In the present embodiment, the first lead wire 48a (at least the root position) and the second lead wire 48b (at least the root position) are centered on the axis L (rotation axis of the motor 54) of the rotary shaft 14. It is arranged at a 180 ° facing position. According to this configuration, it is possible to further improve the structural balance (weight balance) around the axis L, and as a result, it is possible to more suitably suppress the vibration of the motor caused by resonance or the like. Thereby, the fluctuation | variation of the air gap of a rotor and a stator is suppressed more suitably, and can contribute to the further improvement of the reliability of vehicle equipment by extension. Further, in the present embodiment, the first lead wire 48a and the second lead wire 48b are set at the same radial position (dimension from the axis L), so that the structural balance around the axis L (weight balance). Can be made better.
 なお、第1及び第2実施形態は、以下のように変更してもよい。
 ・図12に示すロータ70は、回転軸14が中央部に固定された円盤状のロータコア71と、ロータコア71の軸方向端面に設けられた磁石群72とを備えている。磁石群72は、周方向において等間隔に並設された複数(同例では8個)の磁石73を備えている。
Note that the first and second embodiments may be modified as follows.
The rotor 70 shown in FIG. 12 includes a disk-shaped rotor core 71 in which the rotation shaft 14 is fixed at the center, and a magnet group 72 provided on the end surface of the rotor core 71 in the axial direction. The magnet group 72 includes a plurality (eight in this example) of magnets 73 arranged in parallel at equal intervals in the circumferential direction.
 ロータコア71の軸方向の一端面に固定された磁石群72の各磁石73は、軸方向から見て扇状をなしている。また、各磁石73は、周方向において間隔を空けて配置され、周方向に隣り合う磁石73の間の部位(磁石間部位74)は、径方向において同幅をなしている。また、各磁石間部位74の周方向中心線は、回転軸14の軸線Lと交差するように構成されている。なお、磁石間部位74は空隙であってもよく、また、磁石間部位74にロータコア71の一部が入り込む構成であってもよい。 Each magnet 73 of the magnet group 72 fixed to one end surface of the rotor core 71 in the axial direction has a fan shape when viewed from the axial direction. Moreover, each magnet 73 is arrange | positioned at intervals in the circumferential direction, and the site | part (inter-magnet site | part 74) between the magnets 73 adjacent to the circumferential direction has comprised the same width | variety in radial direction. Further, the center line in the circumferential direction of each inter-magnet portion 74 is configured to intersect the axis L of the rotating shaft 14. Note that the inter-magnet part 74 may be a gap, or a part of the rotor core 71 may enter the inter-magnet part 74.
 各磁石73は、周方向中心を境として、軸方向端面に異なる2つの磁極(N極及びS極)が現れるように軸方向に磁化されている。そして、各磁石73のN極及びS極の各々が、磁石間部位74を挟んで周方向に隣接するように構成されている。これにより、磁石73において、周方向に隣接する一対のN極が磁石群72の1つのN極を構成し、同様に、周方向に隣接する一対のS極が磁石群72の1つのS極を構成する。また、磁石群72のN極とS極とは周方向に等角度間隔に交互に設定され、磁石群72の極数は磁石73と同数(つまり8極)で構成される。また、各磁石間部位74は、磁石群72の各磁極の周方向中心(磁極中心C3)に位置する。 Each magnet 73 is magnetized in the axial direction so that two different magnetic poles (N pole and S pole) appear on the axial end face with the circumferential center as a boundary. Each of the N poles and the S poles of each magnet 73 is configured to be adjacent in the circumferential direction with the inter-magnet portion 74 interposed therebetween. Thereby, in the magnet 73, a pair of N poles adjacent in the circumferential direction constitutes one N pole of the magnet group 72, and similarly, a pair of S poles adjacent in the circumferential direction is one S pole of the magnet group 72. Configure. The N poles and S poles of the magnet group 72 are alternately set at equal angular intervals in the circumferential direction, and the number of poles of the magnet group 72 is the same as that of the magnets 73 (that is, 8 poles). Each inter-magnet portion 74 is located at the circumferential center (magnetic pole center C3) of each magnetic pole of the magnet group 72.
 このような構成によれば、磁石群72の各磁極中心C3に各磁石間部位74が位置するため、該磁石間部位74が上記第2実施形態の溝部64と同様に作用して、コギングトルクを低減することができる。また、同構成では、磁石73に溝部を設けずともコギングトルクの調整を図ることができ、磁石73の製造が容易となる。詳細には、この構成によれば、周方向に隣り合う一対の磁石73の同一極を、ロータ70の1つの磁極として捉えたとき、該ロータ70の磁極内に磁石間部位74が配置されることとなる。このため、磁石間部位74の位置や幅等の構成を調整することで、モータを搭載する車載機器に応じてコギングトルクを調整することができる。このため、成形形状に制約の多い焼結磁石等を用いる場合に特に効果的である。なお、ロータ70の製造に際し、予め着磁した各磁石73をロータコア71に固定してもよく、また、未着磁の各磁石73をロータコア71に固定した後、該各磁石73に対する着磁を行ってもよい。 According to such a configuration, since each inter-magnet portion 74 is located at each magnetic pole center C3 of the magnet group 72, the inter-magnet portion 74 acts in the same manner as the groove portion 64 of the second embodiment, and the cogging torque. Can be reduced. Further, in this configuration, the cogging torque can be adjusted without providing the magnet 73 with a groove, and the magnet 73 can be easily manufactured. Specifically, according to this configuration, when the same pole of a pair of magnets 73 adjacent in the circumferential direction is regarded as one magnetic pole of the rotor 70, the inter-magnet portion 74 is disposed in the magnetic pole of the rotor 70. It will be. For this reason, the cogging torque can be adjusted according to the in-vehicle device on which the motor is mounted by adjusting the configuration such as the position and width of the inter-magnet portion 74. For this reason, it is particularly effective when a sintered magnet or the like with many restrictions on the shape of the shape is used. In manufacturing the rotor 70, each magnet 73 magnetized in advance may be fixed to the rotor core 71. Further, after fixing each non-magnetized magnet 73 to the rotor core 71, the magnet 73 is magnetized. You may go.
 なお、図12の例では、磁石間部位74を磁石群72の磁極中心C3に配置することで、コギングトルクを低減しているが、特にこれに限定されるものではない。例えば、磁石間部位74を磁極中心C3から周方向にずらすことで、コギングトルクを増大させてもよい。この場合、磁石間部位74の位置の設定態様は、上記第1実施形態の溝部35の位置の設定態様と同様とされることが好ましい。 In the example of FIG. 12, the cogging torque is reduced by disposing the inter-magnet portion 74 at the magnetic pole center C3 of the magnet group 72, but is not particularly limited thereto. For example, the cogging torque may be increased by shifting the inter-magnet portion 74 from the magnetic pole center C3 in the circumferential direction. In this case, it is preferable that the setting manner of the position of the inter-magnet portion 74 is the same as the setting manner of the position of the groove portion 35 of the first embodiment.
 ・ステータコア41において、各切り欠き部46は、各スロット45の径方向外側に設けられたが、これ以外に例えば、図13に示すように、各切り欠き部46を各ティース44の径方向外側に設けてもよい。この場合、各切り欠き部46の周方向間に位置するベース部43の各凸部47は、各スロット45の径方向外側に設けられている。 In the stator core 41, each notch 46 is provided on the radially outer side of each slot 45. In addition to this, for example, as shown in FIG. May be provided. In this case, each convex portion 47 of the base portion 43 located between the circumferential directions of the notches 46 is provided on the radially outer side of each slot 45.
 ・切り欠き部46の形成位置は、ベース部43の外周縁部に限定されるものではなく、ベース部43の内周縁部に設けてもよい。
 例えば、図14に示す構成では、ベース部43の内径(内周縁部43aの径)は、各ティース44の径方向の内側端部44cの径よりも小さく設定されている。そして、ベース部43の内周縁部43aには、複数の切り欠き部65が周方向において互いに間隔を空けて設けられている。同構成では、各切り欠き部65の個数は、スロット45の個数(つまり、ティース44の個数)と同数に設定され、各切り欠き部65は、各スロット45の径方向内側に設けられている。また、ベース部43の内周縁部43aにおける各切り欠き部65の周方向間の部位(切り欠き部65が形成されていない部位)は、径方向内側に突出する凸部66となる。各凸部66は、各ティース44の径方向内側に設けられている。
The formation position of the notch 46 is not limited to the outer peripheral edge of the base 43, and may be provided on the inner peripheral edge of the base 43.
For example, in the configuration shown in FIG. 14, the inner diameter of the base portion 43 (the diameter of the inner peripheral edge portion 43 a) is set smaller than the diameter of the inner end portion 44 c in the radial direction of each tooth 44. A plurality of cutout portions 65 are provided in the inner peripheral edge portion 43a of the base portion 43 at intervals in the circumferential direction. In the same configuration, the number of each notch portion 65 is set to be equal to the number of slots 45 (that is, the number of teeth 44), and each notch portion 65 is provided on the radially inner side of each slot 45. . Moreover, the part between the circumferential directions of each notch part 65 (part in which the notch part 65 is not formed) in the inner peripheral edge part 43a of the base part 43 becomes a convex part 66 projecting radially inward. Each convex portion 66 is provided on the radially inner side of each tooth 44.
 同構成によっても、第1実施形態の(5)及び第2実施形態の(9)と略同様の効果を得ることができる。なお、図14に示す構成から変更して、例えば、図15に示すように、各切り欠き部65を各ティース44の径方向内側に設けてもよい。 Even with this configuration, it is possible to obtain substantially the same effects as (5) of the first embodiment and (9) of the second embodiment. 14 may be changed, and for example, as shown in FIG. 15, each notch portion 65 may be provided on the radially inner side of each tooth 44.
 ・第2実施形態では、ベース部43の内周縁部43aがティース44の内側端部44cよりも径方向外側に後退させることで、各ティース44間に切り欠き部43bを構成しているが、これに限らず、ベース部43の内周縁部43aを、ティース44の内側端部44cよりも径方向内側に設定して、切り欠き部43bが存在しない構成としてもよい。また、ベース部43の外周縁部の各切り欠き部46を省略した構成としてもよい。 -In 2nd Embodiment, although the inner peripheral edge part 43a of the base part 43 retreats to radial direction outer side rather than the inner side edge part 44c of the teeth 44, although the notch part 43b is comprised between each teeth 44, Not only this but the inner peripheral edge part 43a of the base part 43 is good also as a structure which sets to the radial inside rather than the inner side edge part 44c of the teeth 44, and the notch part 43b does not exist. Moreover, it is good also as a structure which abbreviate | omitted each notch 46 of the outer periphery part of the base part 43. FIG.
 ・ステータコア41において、各切り欠き部46の個数は、スロット45の個数と同数に設定されたが、必ずしもスロット45の個数と同数である必要はなく、適宜変更してもよい。 In the stator core 41, the number of the notches 46 is set to be the same as the number of the slots 45, but is not necessarily the same as the number of the slots 45, and may be changed as appropriate.
 ・第1及び第2実施形態では、コイル42a,42bの引き出し線48a,48bは軸方向に引き出されるが、これに特に限定されるものではない。例えば、第2実施形態の変形例として、図16に示す構成では、第1及び第2ステータ56,57のコイル42a,42bから径方向外側に引き出し線48a,48bが引き出されるとともに、モータケース21(例えばヨークハウジング25)の周壁に形成した挿通孔(図示略)に各引き出し線48a、48bが径方向に挿通されている。そして、第1コイル42aの引き出し線48aは、第1駆動回路58においてモータケース21の周壁の外周側まで延長された接続部58aと接続されている。同様に、第2コイル42bの引き出し線48bは、第2駆動回路59においてモータケース21の周壁の外周側まで延長された接続部59aと接続されている。なお、このような引き出し線48a,48bの接続態様は、上記第1実施形態にも適用可能である。 In the first and second embodiments, the lead lines 48a and 48b of the coils 42a and 42b are drawn in the axial direction, but the present invention is not particularly limited thereto. For example, as a modification of the second embodiment, in the configuration shown in FIG. 16, the lead wires 48 a and 48 b are drawn radially outward from the coils 42 a and 42 b of the first and second stators 56 and 57, and the motor case 21. The lead wires 48a and 48b are inserted in the radial direction through insertion holes (not shown) formed in the peripheral wall (for example, the yoke housing 25). The lead wire 48 a of the first coil 42 a is connected to a connection portion 58 a that extends to the outer peripheral side of the peripheral wall of the motor case 21 in the first drive circuit 58. Similarly, the lead wire 48 b of the second coil 42 b is connected to a connection portion 59 a that extends to the outer peripheral side of the peripheral wall of the motor case 21 in the second drive circuit 59. Note that such a connection mode of the lead lines 48a and 48b is also applicable to the first embodiment.
 ・上記第1実施形態では、図4に示すように、軸方向視において、磁石32の周方向端部32aがティース44の周方向側面44aと重なる状態で、磁石32の周方向端部32aがティース44の周方向側面44aに対して周方向に傾斜している。このため、ロータ22の周方向における磁界変化が緩やかとなる所謂スキュー効果が生まれ、それにより、コギングトルクが減少する。磁石32の周方向端部32aとティース44の周方向側面44aとが周方向に傾斜する理由としては、周方向に隣り合うコイル42同士の間隔を狭めて、スロット45内のデッドスペースを少なくするために、ティース44の周方向間のスロット45が、径方向において同一幅で構成されるためである。 In the first embodiment, as shown in FIG. 4, the circumferential end 32 a of the magnet 32 overlaps with the circumferential side surface 44 a of the tooth 44 when viewed in the axial direction. The teeth 44 are inclined in the circumferential direction with respect to the circumferential side surface 44a. For this reason, a so-called skew effect is produced in which the magnetic field change in the circumferential direction of the rotor 22 is gradual, thereby reducing the cogging torque. The reason why the circumferential end 32a of the magnet 32 and the circumferential side surface 44a of the teeth 44 are inclined in the circumferential direction is to reduce the dead space in the slot 45 by narrowing the interval between the coils 42 adjacent in the circumferential direction. Therefore, the slots 45 between the circumferential directions of the teeth 44 are configured with the same width in the radial direction.
 そして、上記第1実施形態のバルブタイミング可変装置11のモータ12のように、大きなコギングトルクを必要とする場合には、例えば図17~図19に示すような、上記スキュー効果の発生を抑えた構成を採用することが好ましい。 When a large cogging torque is required like the motor 12 of the variable valve timing device 11 of the first embodiment, the occurrence of the skew effect as shown in FIGS. 17 to 19 is suppressed. It is preferable to adopt a configuration.
 図17(a),(b)に示す構成では、磁石32の軸方向視における形状が、スロット45と同一形状をなしている。すなわち、磁石32の周方向両端部32aは、軸方向から見て互いに平行な直線状をなし、該周方向両端部32aの全体が、周方向に向かい合うティース44の各周方向側面44aとそれぞれ重なる。これにより、ティース44に対するロータ22の周方向の磁界変化が急峻となってスキュー効果が抑えられるため、コギングトルクの減少を抑制できる。 17 (a) and 17 (b), the magnet 32 has the same shape as the slot 45 when viewed in the axial direction. That is, both end portions 32a in the circumferential direction of the magnet 32 are linearly parallel to each other when viewed from the axial direction, and the entire end portions 32a in the circumferential direction respectively overlap the circumferential side surfaces 44a of the teeth 44 facing in the circumferential direction. . As a result, the magnetic field change in the circumferential direction of the rotor 22 with respect to the teeth 44 is steep and the skew effect is suppressed, so that the reduction in cogging torque can be suppressed.
 また、図18(a),(b)に示す構成では、軸方向視において、磁石32の形状は、周方向に隣り合う一対のティース44及びそれらの間のスロット45を合わせた形状に対応している。すなわち、軸方向視において、磁石32の周方向一端部32xの全体は、周方向に隣り合う一対のティース44(ティース44x及びティース44y)における、一方のティース44xの反ティース44y寄りの周方向側面44aと重なる。また、軸方向視において、磁石32の周方向他端部32yの全体は、他方のティース44yの反ティース44x寄りの周方向側面44aと重なる。これにより、ティース44に対するロータ22の周方向の磁界変化が急峻となってスキュー効果が抑えられるため、コギングトルクの減少を抑制できる。また、同図の例では、図17の例に比べて磁石32の面積を広くとることができるため、出力の低下を抑制できる。 In the configuration shown in FIGS. 18A and 18B, the shape of the magnet 32 corresponds to the shape of a pair of teeth 44 adjacent in the circumferential direction and the slot 45 between them when viewed in the axial direction. ing. That is, when viewed in the axial direction, the entire circumferential end portion 32x of the magnet 32 is a circumferential side surface of the pair of teeth 44 (the teeth 44x and the teeth 44y) adjacent to each other in the circumferential direction near the counter teeth 44y of one tooth 44x. 44a. In addition, when viewed in the axial direction, the whole circumferential other end portion 32y of the magnet 32 overlaps with the circumferential side surface 44a near the counter teeth 44x of the other tooth 44y. As a result, the magnetic field change in the circumferential direction of the rotor 22 with respect to the teeth 44 is steep and the skew effect is suppressed, so that the reduction in cogging torque can be suppressed. Moreover, in the example of the same figure, since the area of the magnet 32 can be taken larger compared with the example of FIG. 17, the fall of an output can be suppressed.
 また、図19(a),(b)に示す構成では、軸方向視において、磁石32の形状は、1つのティース44xと該ティース44xと隣接するスロット45xとを合わせた形状に対応している。すなわち、軸方向視において、磁石32の周方向一端部32xの全体は、ティース44xの隣のティース44yにおけるスロット45x寄りの周方向側面44aと重なる。また、軸方向視において、磁石32の周方向他端部32yの全体は、ティース44xの反スロット45x寄りの周方向側面44aと重なる。これにより、ティース44に対するロータ22の周方向の磁界変化が急峻となってスキュー効果が抑えられるため、コギングトルクの減少を抑制できる。また、同図の例では、図17の例に比べて磁石32の面積を広くとることができるため、出力の低下を抑制できる。 In the configuration shown in FIGS. 19A and 19B, the shape of the magnet 32 corresponds to the shape of one tooth 44x and the slot 45x adjacent to the tooth 44x when viewed in the axial direction. . That is, when viewed in the axial direction, the entire circumferential end portion 32x of the magnet 32 overlaps with the circumferential side surface 44a near the slot 45x in the tooth 44y adjacent to the tooth 44x. Further, when viewed in the axial direction, the entire circumferential other end 32y of the magnet 32 overlaps with the circumferential side surface 44a of the teeth 44x near the anti-slot 45x. As a result, the magnetic field change in the circumferential direction of the rotor 22 with respect to the teeth 44 is steep and the skew effect is suppressed, so that the reduction in cogging torque can be suppressed. Moreover, in the example of the same figure, since the area of the magnet 32 can be taken larger compared with the example of FIG. 17, the fall of an output can be suppressed.
 なお、上記した図17の例において、図20に示すように、各磁石32の周方向間に、周方向に磁化された補助磁石81をそれぞれ設けてもよい。なお、補助磁石81は、その周方向端部の磁極が隣接する磁石32と同極となるように周方向に磁化されている。 In the example of FIG. 17 described above, auxiliary magnets 81 magnetized in the circumferential direction may be provided between the circumferential directions of the magnets 32 as shown in FIG. The auxiliary magnet 81 is magnetized in the circumferential direction so that the magnetic pole at its circumferential end is the same as the adjacent magnet 32.
 また、上記した図18の例においても同様に、図21に示すように、各磁石32の周方向間に、周方向に磁化された補助磁石81をそれぞれ設けてもよい。
 また、上記した図19の例においても同様に、図22に示すように、各磁石32の周方向間に、周方向に磁化された補助磁石81をそれぞれ設けてもよい。
Similarly, in the above-described example of FIG. 18, as shown in FIG. 21, auxiliary magnets 81 magnetized in the circumferential direction may be provided between the circumferential directions of the respective magnets 32.
Similarly, in the example of FIG. 19, the auxiliary magnets 81 magnetized in the circumferential direction may be provided between the circumferential directions of the magnets 32 as shown in FIG.
 上記の図20~図22の構成によれば、補助磁石81の磁力によって出力を補うことができ、磁石32の周方向の端部形状を調整したことによる出力の減少を抑制することができる。 20 to 22, the output can be supplemented by the magnetic force of the auxiliary magnet 81, and the decrease in the output due to the adjustment of the shape of the end of the magnet 32 in the circumferential direction can be suppressed.
 ・上記第1実施形態では、ステータ23はヨークハウジング25の底部25aに固定され、ステータ23とエンドフレーム26との軸方向間にロータ22が配置されているが、これに限らず、ステータ23をエンドフレーム26の内側面に固定し、ステータ23とヨークハウジング25の底部25aとの軸方向間にロータ22を配置してもよい。 In the first embodiment, the stator 23 is fixed to the bottom 25a of the yoke housing 25, and the rotor 22 is disposed between the stator 23 and the end frame 26 in the axial direction. The rotor 22 may be arranged between the stator 23 and the bottom portion 25a of the yoke housing 25 while being fixed to the inner surface of the end frame 26.
 ・上記第1実施形態では、1つの磁石32につき溝部35を一対設けているが、これに限らず、一対の溝部35のいずれか一方のみを設けてもよい。
 ・上記第1実施形態では、ロータ22は、磁極毎で個々に分離した複数の磁石32を備えるが、これに限らず、周方向において交互にN極・S極を有する円環状の1つの磁石を備えてもよい。
In the first embodiment, a pair of groove portions 35 are provided for one magnet 32. However, the present invention is not limited thereto, and only one of the pair of groove portions 35 may be provided.
In the first embodiment, the rotor 22 includes a plurality of magnets 32 that are individually separated for each magnetic pole. However, the present invention is not limited to this, and an annular magnet having N and S poles alternately in the circumferential direction. May be provided.
 ・第1及び第2実施形態において、溝部35,64の周方向の幅、軸方向の深さ及び径方向の長さの少なくとも1つを調整することで、溝部コギングトルクTb,Tdを調整してもよい。なお、溝部35,64の周方向の幅を広くすることで、コギングトルクは増大し、溝部35,64の周方向の幅を狭くすることで、コギングトルクは減少する。また、溝部35,64の軸方向の深さを深くすることで、コギングトルクは増大し、溝部35,64の軸方向の深さを浅くすることで、コギングトルクは減少する。また、溝部35,64の径方向の長さを長くすることで、コギングトルクは増大し、溝部35,64の径方向の長さを短くすることで、コギングトルクは減少する。 In the first and second embodiments, the groove cogging torques Tb and Td are adjusted by adjusting at least one of the circumferential width, the axial depth, and the radial length of the grooves 35 and 64. May be. The cogging torque is increased by increasing the circumferential width of the grooves 35 and 64, and the cogging torque is decreased by decreasing the circumferential width of the grooves 35 and 64. Further, the cogging torque is increased by increasing the axial depth of the grooves 35 and 64, and the cogging torque is decreased by decreasing the axial depth of the grooves 35 and 64. Further, the cogging torque is increased by increasing the radial length of the groove portions 35 and 64, and the cogging torque is decreased by decreasing the radial length of the groove portions 35 and 64.
 ・第1及び第2実施形態では、溝部35,64がロータ22,55に設けられたが、これに限らず、溝部をステータ23,56,57(詳しくは、ティース44におけるロータとの軸方向対向面)に設けてもよい。 -In 1st and 2nd embodiment, although the groove parts 35 and 64 were provided in the rotors 22 and 55, it is not restricted to this, A groove part is made into stators 23, 56, and 57 (specifically, axial direction with the rotor in the teeth 44) You may provide in an opposing surface.
 ・ステータコア41は圧粉磁心以外に、例えば電磁鋼板の積層、又は、電磁鋼板の積層と圧粉磁心の組み合わせ等により作製してもよい。
 ・第1及び第2実施形態では、駆動回路24,58,59をモータケース21の外側に設けたが、これに限らず、駆動回路24,58,59をモータケース21内に設けてもよい。
The stator core 41 may be manufactured by, for example, lamination of electromagnetic steel sheets or a combination of lamination of electromagnetic steel sheets and a dust core other than the dust core.
In the first and second embodiments, the drive circuits 24, 58, 59 are provided outside the motor case 21, but the present invention is not limited to this, and the drive circuits 24, 58, 59 may be provided in the motor case 21. .
 ・第1及び第2実施形態では、エンドフレーム26がモータケース21の出力側を構成しているが、これに限らず、エンドフレーム26がモータケース21の反出力側を構成してもよい。 In the first and second embodiments, the end frame 26 constitutes the output side of the motor case 21, but the present invention is not limited to this, and the end frame 26 may constitute the opposite output side of the motor case 21.
 ・ロータ22,55の極数、及びステータ23,56,57のスロット数は、第1及び第2実施形態のスロット数に限定されるものではなく、適宜変更してもよい。モータのコギングトルクを増大させることが望ましい場合(例えば、バルブタイミング可変装置や内燃機関の冷却水循環装置のモータの場合)、ロータの極数とステータのスロット数の比を、8:12で構成することが好ましい。また、電動パワーステアリング装置や電動ブレーキ装置などに用いられるモータのように、コギングトルクを減少させることが望ましい場合(非通電時のロータの位置を保持する機能を必要としない場合)、ロータの極数とステータのスロット数の比を、10:12や14:12で構成することが好ましい。 The number of poles of the rotors 22 and 55 and the number of slots of the stators 23, 56, and 57 are not limited to the number of slots in the first and second embodiments, and may be changed as appropriate. When it is desirable to increase the cogging torque of the motor (for example, in the case of a motor of a variable valve timing device or a cooling water circulation device of an internal combustion engine), the ratio of the number of rotor poles to the number of stator slots is configured as 8:12. It is preferable. Also, when it is desirable to reduce cogging torque, such as motors used in electric power steering devices and electric brake devices (when the function of maintaining the position of the rotor when de-energized is not required), the poles of the rotor The ratio of the number of slots to the number of slots in the stator is preferably 10:12 or 14:12.
 ・上記第1実施形態のモータ12では、ロータ22の軸方向一側のみにステータ23が配置される所謂シングルギャップ型で構成したが、これに限らず、第2実施形態のようなダブルギャップ型で構成してもよい。 The motor 12 according to the first embodiment is configured as a so-called single gap type in which the stator 23 is arranged only on one side of the rotor 22 in the axial direction. However, the present invention is not limited to this and is a double gap type as in the second embodiment. You may comprise.
 ・上記第2実施形態のモータ54では、ロータ55の軸方向両側に第1及び第2ステータ56,57を配置したダブルギャップ型で構成したが、これに限らず、第1実施形態のようなシングルギャップ型で構成してもよい。 The motor 54 of the second embodiment is configured as a double gap type in which the first and second stators 56 and 57 are arranged on both sides in the axial direction of the rotor 55. However, the present invention is not limited to this, as in the first embodiment. A single gap type may be used.
 ・第1及び第2実施形態では、本発明をブラシレスモータに適用したが、これ以外に例えば、本発明を直流モータに適用してもよい。
 ・上記第2実施形態では、コラムアシスト型の電動パワーステアリング装置50に本発明を適用したが、これ以外に例えば、ラックアシスト型又はピニオンアシスト型の電動パワーステアリング装置に本発明を適用してもよい。
In the first and second embodiments, the present invention is applied to a brushless motor. However, for example, the present invention may be applied to a DC motor.
In the second embodiment, the present invention is applied to the column assist type electric power steering apparatus 50. However, the present invention may be applied to, for example, a rack assist type or pinion assist type electric power steering apparatus. Good.
 また、車載機器の例として、上記第1実施形態ではバルブタイミング可変装置を挙げ、上記第2実施形態では電動パワーステアリング装置を挙げたが、これ以外に例えば、パワーウインド装置やワイパ装置等の車両の補機に本発明を適用してもよい。また、車載機器としては補機に限定されるものではなく、車載機器における車両の走行駆動力を生成する主機に本発明を適用してもよい。また、例えば、内燃機関10の圧縮比可変装置90に本発明を適用してもよい(図1参照)。車載機器としての圧縮比可変装置90は、モータの駆動に基づき、例えば、ピストン16の上死点の位置を可変させることで、内燃機関10における圧縮比を可変する。この圧縮比可変装置90のモータには、第1実施形態のモータ12又は第2実施形態のモータ54と同様の構成のものが用いられる。そして、圧縮比可変装置90のモータにおいても、上記第1実施形態のモータ12と同様の態様、つまり、モータの軸方向が、鉛直方向X、ピストン16の往復移動方向、及び車両の前後方向と垂直をなすように取り付けられることが好ましい。 In addition, as examples of in-vehicle devices, the valve timing variable device is exemplified in the first embodiment, and the electric power steering device is exemplified in the second embodiment. However, for example, vehicles such as a power window device and a wiper device are used. The present invention may be applied to other auxiliary machines. Further, the in-vehicle device is not limited to an auxiliary machine, and the present invention may be applied to a main machine that generates a driving force of a vehicle in the in-vehicle device. Further, for example, the present invention may be applied to the compression ratio variable device 90 of the internal combustion engine 10 (see FIG. 1). The compression ratio varying device 90 as the in-vehicle device varies the compression ratio in the internal combustion engine 10 by varying the position of the top dead center of the piston 16 based on the driving of the motor, for example. As the motor of the variable compression ratio device 90, a motor having the same configuration as the motor 12 of the first embodiment or the motor 54 of the second embodiment is used. Also in the motor of the variable compression ratio device 90, the same aspect as the motor 12 of the first embodiment, that is, the axial direction of the motor is the vertical direction X, the reciprocating movement direction of the piston 16, and the longitudinal direction of the vehicle. It is preferable that they are attached so as to be vertical.
 また、例えば、図23に示すような、内燃機関10の冷却水循環装置91(ウォーターポンプ)に本発明を適用してもよい。車載機器としての冷却水循環装置91は、内燃機関10とラジエータ92とに亘る循環経路Rにおいて冷却水を循環させる装置であり、モータの駆動によって作動される。この冷却水循環装置91のモータには、第1実施形態のモータ12又は第2実施形態のモータ54と同様の構成のものが用いられる。そして、冷却水循環装置91のモータにおいても、上記第1実施形態のモータ12と同様の態様、つまり、モータの軸方向が、鉛直方向X、ピストン16の往復移動方向、及び車両の前後方向と垂直をなすように取り付けられることが好ましい。なお、冷却水循環装置91は、内燃機関10内の循環経路に設けられてもよく、また、内燃機関10とラジエータ92との間の管路に設けられてもよい。 Further, for example, the present invention may be applied to a cooling water circulation device 91 (water pump) of the internal combustion engine 10 as shown in FIG. A cooling water circulation device 91 as an in-vehicle device is a device that circulates cooling water in a circulation path R extending between the internal combustion engine 10 and the radiator 92, and is operated by driving of a motor. As the motor of the cooling water circulation device 91, a motor having the same configuration as the motor 12 of the first embodiment or the motor 54 of the second embodiment is used. Also in the motor of the cooling water circulation device 91, the same aspect as the motor 12 of the first embodiment, that is, the axial direction of the motor is perpendicular to the vertical direction X, the reciprocating movement direction of the piston 16, and the longitudinal direction of the vehicle. It is preferable to be attached so as to form The cooling water circulation device 91 may be provided in a circulation path in the internal combustion engine 10, or may be provided in a pipe line between the internal combustion engine 10 and the radiator 92.
 また、例えば、図24に示すような、車輪94に対して制動力を発生させるための電動ブレーキ装置93に本発明を適用してもよい。車載機器としての電動ブレーキ装置93は、車輪94と一体回転する回転体に対して、摩擦部材がモータ駆動によって押し付けられることによって、車輪94に制動力を生じさせるようになっている。なお、電動ブレーキ装置93は、ディスク型、ドラム型のいずれであってもよい。また、電動ブレーキ装置93は、車両のフットブレーキやパーキングブレーキ、又はそれらを兼用するブレーキ装置のいずれであってもよい。電動ブレーキ装置93のモータには、第1実施形態のモータ12又は第2実施形態のモータ54と同様の構成のものが用いられる。そして、電動ブレーキ装置93のモータにおいても、上記第2実施形態のモータ54と同様の態様、つまり、モータの軸方向が、鉛直方向X及び車両の前後方向と垂直をなすように取り付けられることが好ましい。 Further, for example, the present invention may be applied to an electric brake device 93 for generating a braking force for the wheel 94 as shown in FIG. The electric brake device 93 as an in-vehicle device is configured to generate a braking force on the wheel 94 by pressing the friction member against the rotating body that rotates integrally with the wheel 94 by driving the motor. The electric brake device 93 may be either a disk type or a drum type. Moreover, the electric brake device 93 may be any of a foot brake and a parking brake of a vehicle, or a brake device that also uses them. As the motor of the electric brake device 93, a motor having the same configuration as the motor 12 of the first embodiment or the motor 54 of the second embodiment is used. The motor of the electric brake device 93 can also be attached in the same manner as the motor 54 of the second embodiment, that is, so that the axial direction of the motor is perpendicular to the vertical direction X and the longitudinal direction of the vehicle. preferable.
 なお、適用可能な電動ブレーキ装置としては、図24に示したような電子機械式ブレーキ装置(EMB:Electro-Mechanical Brake)だけでなく、他のタイプの電動ブレーキ装置も挙げられる。例えば、図25に示すような、電子液圧式の電動ブレーキ装置95(EHB:Electro-Hydraulic Brake)に適用してもよい。車載機器としての電動ブレーキ装置95は、モータ96aとポンプユニット96bとを有する油圧アクチュエータ96を備え、該油圧アクチュエータ96の駆動に基づいて生成される油圧(液圧)によってブレーキ機構97を動作させて車輪に制動力を生じさせるようになっている。このモータ96aにおいても、第1実施形態のモータ12又は第2実施形態のモータ54と同様の構成のモータが用いられ、上記第2実施形態のモータ54と同様の態様、つまり、モータの軸方向が、鉛直方向X及び車両の前後方向と垂直をなすように取り付けられることが好ましい。 In addition, as an applicable electric brake device, not only an electromechanical brake device (EMB: Electro-Mechanical Brake) as shown in FIG. 24 but also other types of electric brake devices can be cited. For example, the present invention may be applied to an electrohydraulic electric brake device 95 (EHB: Electro-Hydraulic Brake) as shown in FIG. An electric brake device 95 as an in-vehicle device includes a hydraulic actuator 96 having a motor 96a and a pump unit 96b. A braking force is generated on the wheels. Also in this motor 96a, a motor having the same configuration as the motor 12 of the first embodiment or the motor 54 of the second embodiment is used, and the same mode as the motor 54 of the second embodiment, that is, the axial direction of the motor. However, it is preferable to attach so that it may become perpendicular | vertical with the vertical direction X and the front-back direction of a vehicle.
 また、例えば、図26に示すような、車両用空調装置などに用いられる電動コンプレッサ98に本発明を適用してもよい。車載機器としての電動コンプレッサ98は、モータ98aと、該モータ98aの駆動によって動作するスクロールコンプレッサ98bとを備えている。このモータ98aにおいても、第1実施形態のモータ12又は第2実施形態のモータ54と同様の構成のモータが用いられ、上記第2実施形態のモータ54と同様の態様、つまり、モータの軸方向が、鉛直方向X及び車両の前後方向と垂直をなすように取り付けられることが好ましい。 Further, for example, the present invention may be applied to an electric compressor 98 used in a vehicle air conditioner as shown in FIG. An electric compressor 98 as an in-vehicle device includes a motor 98a and a scroll compressor 98b that operates by driving the motor 98a. Also in this motor 98a, a motor having the same configuration as the motor 12 of the first embodiment or the motor 54 of the second embodiment is used, and the same mode as the motor 54 of the second embodiment, that is, the axial direction of the motor. However, it is preferable to attach so that it may become perpendicular | vertical with the vertical direction X and the front-back direction of a vehicle.
 ・上記第1実施形態におけるコイル42の巻線態様を、図27(b)及び図29に示すように変更してもよい。図29に示すコイル42の巻線態様では、時計回り方向に順に、U1、バーU1、バーV1、V1、W1、バーW1、バーU2、U2、V2、バーV2、バーW2、W2とされている。なお、正巻きで構成されるU相コイルU1,U2、V相コイルV1,V2、W相コイルW1,W2に対し、U相コイルバーU1,バーU2、V相コイルバーV1,バーV2、W相コイルバーW1,バーW2は逆巻きで構成される。 The winding mode of the coil 42 in the first embodiment may be changed as shown in FIGS. In the winding mode of the coil 42 shown in FIG. 29, U1, bar U1, bar V1, V1, W1, bar W1, bar U2, U2, V2, bar V2, bar W2, W2 are sequentially arranged in the clockwise direction. Yes. In addition, U phase coil bar U1, bar U2, V phase coil bar V1, bar V2, W phase coil bar for U phase coils U1, U2, V phase coils V1, V2 and W phase coils W1, W2 constituted by positive windings. W1 and bar W2 are constituted by reverse winding.
 U相コイルU1,バーU1は周方向に隣り合う配置とされる(つまり、周方向に隣り合うティース44に巻回される)。同様に、U相コイルU2,バーU2は周方向に隣り合う配置とされる。また、U相コイルU1,バーU2は互いに180°対向位置に配置され、U相コイルU2,バーU1は互いに180°対向位置に配置される。これは他相(V相及びW相)においても同様である。 The U-phase coil U1 and the bar U1 are arranged adjacent to each other in the circumferential direction (that is, wound around the teeth 44 adjacent in the circumferential direction). Similarly, the U-phase coil U2 and the bar U2 are arranged adjacent to each other in the circumferential direction. U-phase coil U1 and bar U2 are arranged at positions that oppose each other by 180 °, and U-phase coil U2 and bar U1 are arranged at positions that oppose each other by 180 °. The same applies to the other phases (V phase and W phase).
 U相コイルU1,バーU1は、巻き始め線Us1から巻き終わり線Ue1まで連続的に巻線されている。つまり、U相コイルU1とU相コイルバーU1とは直列回路を構成している。同様に、U相コイルU2,バーU2は、巻き始め線Us2から巻き終わり線Ue2まで連続的に巻線されて直列回路を構成している。そして、U相コイルU1,バーU1の直列回路とU相コイルU2,バーU2の直列回路とは、並列接続されている(図27(b)参照)。 The U-phase coil U1 and the bar U1 are continuously wound from the winding start line Us1 to the winding end line Ue1. That is, the U-phase coil U1 and the U-phase coil bar U1 constitute a series circuit. Similarly, the U-phase coil U2 and the bar U2 are continuously wound from the winding start line Us2 to the winding end line Ue2 to form a series circuit. The series circuit of the U-phase coil U1 and the bar U1 and the series circuit of the U-phase coil U2 and the bar U2 are connected in parallel (see FIG. 27B).
 このU相の巻線態様は、他相(V相及びW相)においても同様である。つまり、V相コイルV1,バーV1のペア、及びV相コイルV2,バーV2のペアはそれぞれ、巻き始め線Vs1,Vs2から巻き終わり線Ve1,Ve2まで連続的に巻線されて直列回路を構成している。そして、V相コイルV1,バーV1の直列回路とV相コイルV2,バーV2の直列回路とは、並列接続されている(図27(b)参照)。 The winding mode of the U phase is the same in the other phases (V phase and W phase). That is, the pair of V-phase coil V1 and bar V1 and the pair of V-phase coil V2 and bar V2 are respectively wound continuously from winding start lines Vs1 and Vs2 to winding end lines Ve1 and Ve2 to form a series circuit. is doing. The series circuit of the V-phase coils V1 and V1 and the series circuit of the V-phase coils V2 and V2 are connected in parallel (see FIG. 27B).
 また、W相コイルW1,バーW1のペア、及びW相コイルW2,バーW2のペアはそれぞれ、巻き始め線Ws1,Ws2から巻き終わり線We1,We2まで連続的に巻線されて直列回路を構成している。そして、W相コイルW1,バーW1の直列回路とW相コイルW2,バーW2の直列回路とは、並列接続されている(図27(b)参照)。 The pair of W-phase coil W1 and bar W1 and the pair of W-phase coil W2 and bar W2 are respectively wound continuously from winding start lines Ws1 and Ws2 to winding end lines We1 and We2 to form a series circuit. is doing. The series circuit of the W-phase coils W1 and W1 and the series circuit of the W-phase coils W2 and W2 are connected in parallel (see FIG. 27B).
 図29に示すように、巻き始め線Us1,Us2,Vs1,Vs2,Ws1,Ws2はそれぞれ、周方向等間隔に配置されたコイル42(本例では1つおきのコイル42)から軸方向に沿って引き出されている。そして、各巻き始め線Us1,Us2,Vs1,Vs2,Ws1,Ws2は、周方向等間隔(本例では60°間隔)に配置されている。また、各巻き始め線Us1,Us2,Vs1,Vs2,Ws1,Ws2の径方向位置(回転軸14の軸線Lからの寸法)は互いに同位置に設定されている。 As shown in FIG. 29, the winding start lines Us1, Us2, Vs1, Vs2, Ws1, and Ws2 are axially provided from coils 42 (every other coil 42 in this example) arranged at equal intervals in the circumferential direction. It has been pulled out. Then, the winding start lines Us1, Us2, Vs1, Vs2, Ws1, and Ws2 are arranged at equal intervals in the circumferential direction (60 ° intervals in this example). Further, the radial positions (dimensions from the axis L of the rotating shaft 14) of the winding start lines Us1, Us2, Vs1, Vs2, Ws1, and Ws2 are set at the same position.
 そして、各巻き始め線Us1,Us2,Vs1,Vs2,Ws1,Ws2は、それぞれ対応する切り欠き部46を通ってベース部43の裏面(ティース44とは反対側)に引き出されて、駆動回路24と接続されるようになっている。また、各巻き終わり線Ue1,Ue2,Ve1,Ve2,We1,We2は、互いに電気的に接続される。 Then, the winding start lines Us1, Us2, Vs1, Vs2, Ws1, and Ws2 are drawn out to the back surface (the side opposite to the teeth 44) of the base portion 43 through the corresponding cutout portions 46, respectively, and the drive circuit 24. To be connected. Further, the winding end lines Ue1, Ue2, Ve1, Ve2, We1, We2 are electrically connected to each other.
 なお、上記の巻線態様は一例であり、巻き始め線と巻き終わり線とが反対の巻線態様であってもよい。また、上記の巻線態様の場合、ロータ22の極数は10極もしくは14極で構成することが好ましい。 In addition, said winding aspect is an example and the winding aspect in which a winding start line and a winding end line are opposite may be sufficient. Further, in the case of the winding mode described above, the number of poles of the rotor 22 is preferably 10 poles or 14 poles.
 上記のような構成によれば、ステータ23の複数の引き出し線(各巻き始め線Us1,Us2,Vs1,Vs2,Ws1,Ws2)が周方向において等間隔に配置される。このため、軸線L周りの構造的バランス(重量バランス)を良好にすることが可能となり、その結果、共振などによって生じるモータ12の振動を好適に抑制することが可能となる。これにより、ロータ22とステータ23とのエアギャップの変動がより好適に抑制され、ひいては、車載機器の信頼性のより一層の向上に寄与できる。 According to the configuration as described above, the plurality of lead wires (each winding start line Us1, Us2, Vs1, Vs2, Ws1, Ws2) of the stator 23 are arranged at equal intervals in the circumferential direction. For this reason, it is possible to improve the structural balance (weight balance) around the axis L, and as a result, it is possible to suitably suppress vibration of the motor 12 caused by resonance or the like. Thereby, the fluctuation | variation of the air gap of the rotor 22 and the stator 23 is suppressed more suitably, and can contribute to the further improvement of the reliability of a vehicle equipment by extension.
 ・上記第2実施形態における第1ステータ56では、周方向に隣接して並ぶ複数(6つ)のコイル42aに第1引き出し線48aを設けている。同様に、第2ステータ57では、周方向に隣接して並ぶ複数(6つ)のコイル42bに第2引き出し線48bを設けているが、これに特に限定されるものではなく、適宜変更してもよい。 In the first stator 56 in the second embodiment, the first lead wires 48a are provided in a plurality (six) of coils 42a arranged adjacent to each other in the circumferential direction. Similarly, in the second stator 57, a plurality of (six) coils 42b arranged adjacent to each other in the circumferential direction are provided with the second lead wires 48b. However, the present invention is not particularly limited to this, and can be changed as appropriate. Also good.
 例えば、図31に示す構成では、第1ステータ56において、周方向に1つおきのコイル42aに第1引き出し線48aが設けられ、6本の第1引き出し線48aが周方向等間隔(60°間隔)に配置されている。また、第2ステータ57においても同様に、周方向に1つおきのコイル42bに第2引き出し線48bが設けられ、6本の第2引き出し線48bが周方向等間隔(60°間隔)に配置されている。そして、第1引き出し線48aと第2引き出し線48bとは、軸線L方向視において、周方向等間隔に交互に配置されている。なお、同図に示す第1及び第2ステータ56,57における第1及び第2引き出し線48a,48bの構成は、例えば、図29に示す巻線態様を適用することで実現できる。 For example, in the configuration shown in FIG. 31, in the first stator 56, every other coil 42a in the circumferential direction is provided with the first lead wires 48a, and the six first lead wires 48a are arranged at equal intervals in the circumferential direction (60 °). Are arranged at intervals). Similarly, in the second stator 57, the second lead wires 48b are provided in every other coil 42b in the circumferential direction, and the six second lead wires 48b are arranged at equal intervals in the circumferential direction (60 ° intervals). Has been. The first lead lines 48a and the second lead lines 48b are alternately arranged at equal intervals in the circumferential direction when viewed in the direction of the axis L. The configuration of the first and second lead wires 48a and 48b in the first and second stators 56 and 57 shown in the figure can be realized by applying the winding mode shown in FIG. 29, for example.
 図31に示すような構成によっても、上記第2実施形態と同様に、第1及び第2ステータ56,57における全ての引き出し線48a,48b(の少なくとも根元部位)が周方向において等間隔に配置される。このため、軸線L周りの構造的バランス(重量バランス)を良好にすることが可能となり、その結果、共振などによって生じるモータ54の振動を好適に抑制することが可能となる。 Also in the configuration as shown in FIG. 31, as in the second embodiment, all the lead lines 48a and 48b (at least the root portions thereof) in the first and second stators 56 and 57 are arranged at equal intervals in the circumferential direction. Is done. For this reason, it is possible to improve the structural balance (weight balance) around the axis L, and as a result, it is possible to suitably suppress vibration of the motor 54 caused by resonance or the like.
 また、本構成では、第1引き出し線48aと第2引き出し線48bとが、軸線L方向視において、周方向に交互に並ぶ配置とされている。つまり、第1引き出し線48aと第2引き出し線48bとが軸方向において重ならない構成とされている。このため、第1引き出し線48aと第2引き出し線48bとが軸方向において重なる構成に比べて、モータ54の構造的バランス(重量バランス)がより良好となり、その結果、共振などによって生じるモータの振動をより好適に抑制することが可能となる。 Further, in this configuration, the first lead lines 48a and the second lead lines 48b are arranged alternately in the circumferential direction when viewed in the direction of the axis L. That is, the first lead line 48a and the second lead line 48b are configured not to overlap in the axial direction. Therefore, the structural balance (weight balance) of the motor 54 becomes better than the configuration in which the first lead wire 48a and the second lead wire 48b overlap in the axial direction, and as a result, the vibration of the motor caused by resonance or the like. Can be more suitably suppressed.
 なお、上記第2実施形態における第1及び第2ステータ56,57の引き出し線48a,48bの数は一例であり、コイル42a,42bの巻線態様に応じて適宜変更されるものである。 Note that the number of the lead wires 48a and 48b of the first and second stators 56 and 57 in the second embodiment is merely an example, and is appropriately changed according to the winding mode of the coils 42a and 42b.
 ・第1及び第2実施形態並びに各変形例は適宜組み合わせてもよい。
 次に、上記各実施形態及び変形例から把握できる技術的思想を以下に追記する。
 (A)ロータの磁極部とステータのティースとが軸方向に対向するアキシャルギャップ型のモータであって、
 軸方向端面に磁極部を有する前記ロータと、
 板状のベース部及び複数のティースを含むステータコアと、複数のコイルと、を含む前記ステータであって、前記複数のティースは前記ベース部の一面から軸方向に突出するとともに周方向に沿って並設されており、前記複数のコイルの各々は前記ティースに巻回されている前記ステータと、を備え、
 軸方向視において、前記ロータの磁極部の周方向一端部の全体が前記ティースの周方向一端部と重なるモータ。
-You may combine 1st and 2nd embodiment and each modification suitably.
Next, technical ideas that can be grasped from the above embodiments and modifications will be described below.
(A) An axial gap type motor in which the magnetic pole portion of the rotor and the teeth of the stator face each other in the axial direction,
The rotor having a magnetic pole portion on an axial end face;
A stator including a plate-shaped base portion and a stator core including a plurality of teeth, and a plurality of coils, wherein the plurality of teeth protrude in an axial direction from one surface of the base portion and are aligned in a circumferential direction. Each of the plurality of coils includes the stator wound around the teeth,
A motor in which one end in the circumferential direction of the magnetic pole portion of the rotor overlaps with one end in the circumferential direction of the teeth when viewed in the axial direction.
 この構成によれば、ティースに対するロータの周方向の磁界変化が急峻となってスキュー効果が抑えられるため、コギングトルクの減少を抑制できる。
 (B)前記第1引き出し線は複数の第1引き出し線のうちの一つであり、
 前記第2引き出し線は複数の第2引き出し線のうちの一つであり、
 前記第1引き出し線及び前記第2引き出し線は互いに同数設けられ、
 前記各第1引き出し線と前記各第2引き出し線とは、それぞれ対応する1つ同士でモータの回転軸線を中心とした180°対向位置に配置されている車両用モータの取付構造。
According to this configuration, the change in the magnetic field in the circumferential direction of the rotor with respect to the teeth becomes steep and the skew effect is suppressed, so that a reduction in cogging torque can be suppressed.
(B) The first lead line is one of a plurality of first lead lines,
The second lead line is one of a plurality of second lead lines;
The same number of the first lead lines and the second lead lines are provided,
Each of the first lead lines and the second lead lines is a vehicle motor mounting structure that is disposed at a position opposite to each other at 180 ° centering on the rotation axis of the motor.
 この構成によれば、モータの回転軸線周りの構造的バランス(重量バランス)をより一層良好にすることが可能となり、その結果、共振などによって生じるモータの振動をより好適に抑制することが可能となる。 According to this configuration, it is possible to further improve the structural balance (weight balance) around the rotation axis of the motor, and as a result, it is possible to more suitably suppress the vibration of the motor caused by resonance or the like. Become.

Claims (22)

  1.  車載機器に取り付けられる車両用モータの取付構造であって、
     軸方向に互いに対向するロータとステータとを含むアキシャルギャップ型のモータを備え、
     前記モータは、前記軸方向が鉛直方向に対して垂直となる態様で前記車載機器に取り付けられる車両用モータの取付構造。
    A mounting structure for a vehicle motor to be mounted on an in-vehicle device,
    An axial gap type motor including a rotor and a stator facing each other in the axial direction;
    The motor has a vehicle motor mounting structure that is mounted on the in-vehicle device such that the axial direction is perpendicular to the vertical direction.
  2.  請求項1に記載の車両用モータの取付構造において、
     前記モータの前記軸方向が、車両の前後方向に対して垂直をなしている車両用モータの取付構造。
    The vehicle motor mounting structure according to claim 1,
    A vehicle motor mounting structure in which the axial direction of the motor is perpendicular to the longitudinal direction of the vehicle.
  3.  請求項1又は2に記載の車両用モータの取付構造において、
     前記車載機器は、内燃機関のバルブタイミング可変装置である車両用モータの取付構造。
    In the vehicle motor mounting structure according to claim 1 or 2,
    The in-vehicle device has a vehicle motor mounting structure that is a variable valve timing device for an internal combustion engine.
  4.  請求項1又は2に記載の車両用モータの取付構造において、
     前記車載機器は、内燃機関の圧縮比可変装置である車両用モータの取付構造。
    In the vehicle motor mounting structure according to claim 1 or 2,
    The in-vehicle device has a vehicle motor mounting structure that is a variable compression ratio device for an internal combustion engine.
  5.  請求項1又は2に記載の車両用モータの取付構造において、
     前記車載機器は、内燃機関の冷却水循環装置である車両用モータの取付構造。
    In the vehicle motor mounting structure according to claim 1 or 2,
    The in-vehicle device is a mounting structure for a vehicle motor that is a cooling water circulation device for an internal combustion engine.
  6.  請求項3~5のいずれか1項に記載の車両用モータの取付構造において、
     前記モータの前記軸方向が、前記内燃機関のピストンの往復移動方向に対して垂直をなしている車両用モータの取付構造。
    In the vehicle motor mounting structure according to any one of claims 3 to 5,
    A vehicle motor mounting structure in which the axial direction of the motor is perpendicular to a reciprocating direction of a piston of the internal combustion engine.
  7.  請求項1又は2に記載の車両用モータの取付構造において、
     前記車載機器は、電動パワーステアリング装置である車両用モータの取付構造。
    In the vehicle motor mounting structure according to claim 1 or 2,
    The in-vehicle device has a vehicle motor mounting structure that is an electric power steering device.
  8.  請求項1又は2に記載の車両用モータの取付構造において、
     前記車載機器は、電動ブレーキ装置である車両用モータの取付構造。
    In the vehicle motor mounting structure according to claim 1 or 2,
    The on-vehicle device has a vehicle motor mounting structure that is an electric brake device.
  9.  請求項1又は2に記載の車両用モータの取付構造において、
     前記車載機器は、電動コンプレッサである車両用モータの取付構造。
    In the vehicle motor mounting structure according to claim 1 or 2,
    The in-vehicle device has a vehicle motor mounting structure which is an electric compressor.
  10.  請求項1~9のいずれか1項に記載の車両用モータの取付構造において、
     前記ロータ及び前記ステータは、互いに対向する対向面をそれぞれ有しており、
     前記対向面の少なくとも一方には、前記モータに発生するコギングトルクを調整するための、径方向に沿って延びる溝部が設けられている車両用モータの取付構造。
    The vehicle motor mounting structure according to any one of claims 1 to 9,
    The rotor and the stator each have opposing surfaces facing each other,
    A vehicle motor mounting structure in which at least one of the opposing surfaces is provided with a groove extending along a radial direction for adjusting cogging torque generated in the motor.
  11.  請求項1~10のいずれか1項に記載の車両用モータの取付構造において、
     前記ロータは、周方向に沿って互いに間隔を空けて並設され前記ステータと軸方向に対向する複数の磁石と、隣り合う磁石の間に位置する磁石間部位とを備え、
     前記複数の磁石の各々は、軸方向一端面と、該軸方向一端面に現れて周方向に並ぶ複数の磁極とを有し、
     前記複数の磁石の各々は、周方向に隣り合う磁石の同極の磁極同士が、前記磁石間部位を挟んで周方向に隣り合うように構成されている車両用モータの取付構造。
    The vehicle motor mounting structure according to any one of claims 1 to 10,
    The rotor includes a plurality of magnets arranged in parallel with each other along the circumferential direction and facing the stator in the axial direction, and an inter-magnet portion located between adjacent magnets,
    Each of the plurality of magnets has an axial end surface, and a plurality of magnetic poles appearing on the axial end surface and arranged in the circumferential direction,
    Each of the plurality of magnets is a vehicle motor mounting structure configured such that magnetic poles of the same polarity of magnets adjacent in the circumferential direction are adjacent in the circumferential direction with the portion between the magnets interposed therebetween.
  12.  請求項1~11のいずれか1項に記載の車両用モータの取付構造において、
     前記ステータは、円環板状をなすベース部と該ベース部の一面から軸方向に突出するとともに周方向に沿って並設された複数のティースとを含むステータコアと、前記複数のティースの各々に巻回されたコイルとを備え、
     前記ベース部の外周縁部は、径方向において前記ティースの外側端部よりも外側に位置し、
     前記ベース部の外周縁部には、径方向内側に窪む凹状をなす切り欠き部が設けられている車両用モータの取付構造。
    The vehicle motor mounting structure according to any one of claims 1 to 11,
    The stator includes a stator core including a base portion having an annular plate shape, a plurality of teeth protruding in an axial direction from one surface of the base portion and arranged in parallel along the circumferential direction, and each of the plurality of teeth. A wound coil,
    The outer peripheral edge portion of the base portion is located outside the outer end portion of the teeth in the radial direction,
    A mounting structure for a motor for a vehicle, wherein the outer peripheral edge portion of the base portion is provided with a notched portion having a concave shape recessed radially inward.
  13.  請求項12に記載の車両用モータの取付構造において、
     前記コイルから引き出された引き出し線が、前記切り欠き部に挿通されている車両用モータの取付構造。
    In the vehicle motor mounting structure according to claim 12,
    A vehicle motor mounting structure in which a lead wire drawn out from the coil is inserted into the notch.
  14.  請求項1~11のいずれか1項に記載の車両用モータの取付構造において、
     前記ステータは複数のコイルを有しており、
     前記複数のコイルから引き出された複数の引き出し線が、周方向において等間隔に配置されている車両用モータの取付構造。
    The vehicle motor mounting structure according to any one of claims 1 to 11,
    The stator has a plurality of coils,
    A vehicle motor mounting structure in which a plurality of lead wires led out from the plurality of coils are arranged at equal intervals in the circumferential direction.
  15.  請求項1~14のいずれか1項に記載の車両用モータの取付構造において、
     前記ステータは、第1ステータ及び第2ステータのうちの一方であり、
     前記第1ステータ及び第2ステータは前記ロータの軸方向両側にそれぞれ設けられており、
     前記モータは、第1駆動回路と第2駆動回路とを含んでおり、
     前記第1駆動回路は、前記第1ステータのコイルと接続され、該コイルに供給する駆動電流を制御し、
     前記第2駆動回路は、前記第2ステータのコイルと接続され、該コイルに供給する駆動電流を制御する車両用モータの取付構造。
    The vehicle motor mounting structure according to any one of claims 1 to 14,
    The stator is one of a first stator and a second stator;
    The first stator and the second stator are respectively provided on both axial sides of the rotor,
    The motor includes a first drive circuit and a second drive circuit,
    The first drive circuit is connected to a coil of the first stator and controls a drive current supplied to the coil;
    The second drive circuit is connected to a coil of the second stator, and has a vehicle motor mounting structure that controls a drive current supplied to the coil.
  16.  請求項15に記載の車両用モータの取付構造において、
     前記第1ステータのコイルは第1引き出し線を有しており、
     前記第2ステータのコイルは第2引き出し線を有しており、
     前記第1引き出し線と前記第2引き出し線とは、前記モータの回転軸線を中心とした180°対向位置に配置されている車両用モータの取付構造。
    The vehicle motor mounting structure according to claim 15,
    The coil of the first stator has a first lead wire;
    The coil of the second stator has a second lead wire;
    The vehicle motor mounting structure in which the first lead wire and the second lead wire are arranged at 180 ° facing positions around the rotation axis of the motor.
  17.  請求項1~16のいずれか1項に記載の車両用モータの取付構造を備える車載機器。 An in-vehicle device comprising the vehicle motor mounting structure according to any one of claims 1 to 16.
  18.  請求項1に記載の車両用モータの取付構造に適用されるブラシレスモータであって、該モータは、
     軸方向一端面に第1磁極部を有し、軸方向他端面に第2磁極部を有するロータと、
     前記第1磁極部と軸方向に対向する第1コイルを有する第1ステータと、
     前記第2磁極部と軸方向に対向する第2コイルを有する第2ステータと、
     前記第1コイルと接続され、該第1コイルに供給する駆動電流を制御するための第1駆動回路と、
     前記第2コイルと接続され、該第2コイルに供給する駆動電流を制御するための第2駆動回路と
    を備えているブラシレスモータ。
    A brushless motor applied to the vehicle motor mounting structure according to claim 1, wherein the motor is
    A rotor having a first magnetic pole portion on one axial end surface and a second magnetic pole portion on the other axial end surface;
    A first stator having a first coil facing the first magnetic pole portion in the axial direction;
    A second stator having a second coil facing the second magnetic pole portion in the axial direction;
    A first drive circuit connected to the first coil for controlling a drive current supplied to the first coil;
    A brushless motor comprising a second drive circuit connected to the second coil and controlling a drive current supplied to the second coil.
  19.  請求項18に記載のブラシレスモータにおいて、
     前記第1及び第2ステータの各々は、円環板状をなすベース部と、該ベース部の一面から軸方向に突出するとともに周方向に沿って並設された複数のティースと、を有するステータコアを含んでおり、
     前記第1ステータの前記複数のティースには、前記第1コイルがそれぞれ巻回され、
     前記第2ステータの前記複数のティースには、前記第2コイルがそれぞれ巻回され、
     前記第1ステータの前記ベース部の内周縁部、前記第1ステータの前記ベース部の外周縁部、前記第2ステータの前記ベース部の内周縁部、前記第2ステータの前記ベース部の外周縁部のうちの少なくとも1つには、径方向に窪む凹状をなす切り欠き部が設けられているブラシレスモータ。
    The brushless motor according to claim 18,
    Each of the first and second stators includes a base portion having an annular plate shape, and a plurality of teeth protruding in an axial direction from one surface of the base portion and arranged in parallel along the circumferential direction. Contains
    The first coils are wound around the plurality of teeth of the first stator,
    The second coils are wound around the plurality of teeth of the second stator,
    An inner peripheral edge of the base portion of the first stator, an outer peripheral edge of the base portion of the first stator, an inner peripheral edge of the base portion of the second stator, and an outer peripheral edge of the base portion of the second stator A brushless motor in which at least one of the portions is provided with a notched portion having a concave shape that is recessed in the radial direction.
  20.  請求項19に記載のブラシレスモータにおいて、
     前記コイルから引き出された引き出し線が、前記切り欠き部に挿通されているブラシレスモータ。
    The brushless motor according to claim 19,
    A brushless motor in which a lead wire drawn out from the coil is inserted into the notch.
  21.  請求項18~20のいずれか1項に記載のブラシレスモータにおいて、
     前記ロータは、前記第1及び第2ステータに対向する対向面を有しており、
     前記第1及び第2ステータは、前記ロータに対向する対向面を有しており、
     前記ロータの対向面及び前記第1及び第2ステータの対向面のうちの少なくとも1つには、ブラシレスモータに発生するコギングトルクを調整するための、径方向に沿って延びる溝部が設けられているブラシレスモータ。
    The brushless motor according to any one of claims 18 to 20,
    The rotor has a facing surface facing the first and second stators;
    The first and second stators have opposing surfaces facing the rotor,
    At least one of the opposed surface of the rotor and the opposed surfaces of the first and second stators is provided with a groove extending along the radial direction for adjusting cogging torque generated in the brushless motor. Brushless motor.
  22.  請求項18~21のいずれか1項に記載のブラシレスモータにおいて、
     前記ロータの第1及び第2磁極部の少なくとも一方は、周方向に沿って互いに間隔を空けて並設された複数の磁石と、隣り合う磁石の間に位置する磁石間部位とを備え、
     前記複数の磁石の各々は、軸方向一端面と、該軸方向一端面に現れて周方向に並ぶ複数の磁極とを有し、
     前記複数の磁石の各々は、周方向に隣り合う磁石の同極の磁極同士が、前記磁石間部位を挟んで周方向に隣り合うように構成されているブラシレスモータ。
    The brushless motor according to any one of claims 18 to 21,
    At least one of the first and second magnetic pole portions of the rotor includes a plurality of magnets arranged in parallel with each other along the circumferential direction, and an inter-magnet portion positioned between adjacent magnets,
    Each of the plurality of magnets has an axial end surface, and a plurality of magnetic poles appearing on the axial end surface and arranged in the circumferential direction,
    Each of the plurality of magnets is a brushless motor configured such that magnetic poles of the same polarity of magnets adjacent in the circumferential direction are adjacent in the circumferential direction with the portion between the magnets interposed therebetween.
PCT/JP2017/039098 2016-11-07 2017-10-30 Attachment structure for vehicle motor, in-vehicle equipment, and brushless motor WO2018084108A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/332,295 US11649742B2 (en) 2016-11-07 2017-10-30 Attachment structure for vehicle motor, in-vehicle equipment, and brushless motor
CN201780066776.5A CN109923774A (en) 2016-11-07 2017-10-30 Mounting structure, mobile unit and the brushless motor of vehicula motor
DE112017005600.4T DE112017005600T5 (en) 2016-11-07 2017-10-30 Mounting structure for a vehicle engine, equipment in a vehicle, and brushless motor

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2016-217248 2016-11-07
JP2016217249A JP6740865B2 (en) 2016-11-07 2016-11-07 Brushless motor
JP2016-217249 2016-11-07
JP2016217248 2016-11-07
JP2017194384A JP2018082610A (en) 2016-11-07 2017-10-04 Vehicle motor attachment structure and on-vehicle device
JP2017-194384 2017-10-04

Publications (1)

Publication Number Publication Date
WO2018084108A1 true WO2018084108A1 (en) 2018-05-11

Family

ID=62075791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/039098 WO2018084108A1 (en) 2016-11-07 2017-10-30 Attachment structure for vehicle motor, in-vehicle equipment, and brushless motor

Country Status (1)

Country Link
WO (1) WO2018084108A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022230540A1 (en) * 2021-04-28 2022-11-03 株式会社デンソー Direct-current motor

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007113537A (en) * 2005-10-24 2007-05-10 Toyota Motor Corp Variable valve timing controller for internal combustion engine and internal combustion engine provided with variable valve timing controller
JP2008163904A (en) * 2006-12-28 2008-07-17 Mitsubishi Motors Corp Cooling system and noise reducing method of cooling system
JP2008211892A (en) * 2007-02-26 2008-09-11 Daikin Ind Ltd Axial gap type rotating electric machine
JP2009299566A (en) * 2008-06-12 2009-12-24 Toyota Motor Corp Compression ratio control device and compression ratio control method
JP2011024291A (en) * 2009-07-13 2011-02-03 Asmo Co Ltd Stator core and axial gap motor
JP2011083056A (en) * 2009-10-02 2011-04-21 Jtekt Corp Axial gap motor and electric power steering device
JP2012239315A (en) * 2011-05-12 2012-12-06 Suzuki Motor Corp Axial gap motor
JP2013135541A (en) * 2011-12-27 2013-07-08 Hitachi Industrial Equipment Systems Co Ltd Axial gap rotary electric machine
JP2014155373A (en) * 2013-02-12 2014-08-25 Denso Corp Multi-gap rotary electric machine
WO2016111328A1 (en) * 2015-01-08 2016-07-14 Ntn株式会社 Vehicle control device
JP2016131444A (en) * 2015-01-14 2016-07-21 株式会社日立製作所 Permanent magnet synchronous motor, winding-switching motor drive unit, and refrigeration air-conditioning apparatus using the same, electric vehicle

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007113537A (en) * 2005-10-24 2007-05-10 Toyota Motor Corp Variable valve timing controller for internal combustion engine and internal combustion engine provided with variable valve timing controller
JP2008163904A (en) * 2006-12-28 2008-07-17 Mitsubishi Motors Corp Cooling system and noise reducing method of cooling system
JP2008211892A (en) * 2007-02-26 2008-09-11 Daikin Ind Ltd Axial gap type rotating electric machine
JP2009299566A (en) * 2008-06-12 2009-12-24 Toyota Motor Corp Compression ratio control device and compression ratio control method
JP2011024291A (en) * 2009-07-13 2011-02-03 Asmo Co Ltd Stator core and axial gap motor
JP2011083056A (en) * 2009-10-02 2011-04-21 Jtekt Corp Axial gap motor and electric power steering device
JP2012239315A (en) * 2011-05-12 2012-12-06 Suzuki Motor Corp Axial gap motor
JP2013135541A (en) * 2011-12-27 2013-07-08 Hitachi Industrial Equipment Systems Co Ltd Axial gap rotary electric machine
JP2014155373A (en) * 2013-02-12 2014-08-25 Denso Corp Multi-gap rotary electric machine
WO2016111328A1 (en) * 2015-01-08 2016-07-14 Ntn株式会社 Vehicle control device
JP2016131444A (en) * 2015-01-14 2016-07-21 株式会社日立製作所 Permanent magnet synchronous motor, winding-switching motor drive unit, and refrigeration air-conditioning apparatus using the same, electric vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022230540A1 (en) * 2021-04-28 2022-11-03 株式会社デンソー Direct-current motor

Similar Documents

Publication Publication Date Title
US11649742B2 (en) Attachment structure for vehicle motor, in-vehicle equipment, and brushless motor
JP2018082610A (en) Vehicle motor attachment structure and on-vehicle device
WO2011019069A1 (en) Dynamo-electric machine for use in vehicles
JP2016063728A (en) Brushless motor
JP5798072B2 (en) Rotating machine
KR20070119055A (en) Motor
JP2009207333A (en) Motor having lundell-type rotor
JP2014068495A (en) Rotary electric machine and electrically driven power steering device using the same
JP6158022B2 (en) Rotating electric machine and vehicle
JP5920637B2 (en) Rotating electrical machine rotor
WO2015151344A1 (en) Permanent magnet brushless motor
WO2016060232A1 (en) Double stator-type rotary machine
JP6740865B2 (en) Brushless motor
JP3655205B2 (en) Rotating electric machine and electric vehicle using the same
JP7205146B2 (en) Rotating electric machine, control device, vehicle system, maintenance method for rotating electric machine
WO2018084108A1 (en) Attachment structure for vehicle motor, in-vehicle equipment, and brushless motor
JP2007215397A (en) Motor and device mounted therewith
JP2001268866A (en) Rotating electric machine for vehicle
WO2017212575A1 (en) Permanent magnet motor
WO2019198462A1 (en) Motor and brushless wiper motor
JP2017112778A (en) Permanent magnet synchronous motor
JP4212983B2 (en) Rotating electric machine
JP2019047630A (en) Rotary electric machine
JP2015186322A (en) brushless motor
JP7193422B2 (en) Rotating electric machine and manufacturing method of rotating electric machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17867670

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17867670

Country of ref document: EP

Kind code of ref document: A1