WO2018083895A1 - 投射型表示装置および投射型表示装置の制御方法 - Google Patents

投射型表示装置および投射型表示装置の制御方法 Download PDF

Info

Publication number
WO2018083895A1
WO2018083895A1 PCT/JP2017/033504 JP2017033504W WO2018083895A1 WO 2018083895 A1 WO2018083895 A1 WO 2018083895A1 JP 2017033504 W JP2017033504 W JP 2017033504W WO 2018083895 A1 WO2018083895 A1 WO 2018083895A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
unit
emitted
light source
display device
Prior art date
Application number
PCT/JP2017/033504
Other languages
English (en)
French (fr)
Inventor
一賢 池浦
弘行 目黒
肥田 正信
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to JP2018548581A priority Critical patent/JPWO2018083895A1/ja
Priority to US16/334,988 priority patent/US10785460B2/en
Publication of WO2018083895A1 publication Critical patent/WO2018083895A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3158Modulator illumination systems for controlling the spectrum
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/3111Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying the colours sequentially, e.g. by using sequentially activated light sources
    • H04N9/3114Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying the colours sequentially, e.g. by using sequentially activated light sources by using a sequential colour filter producing one colour at a time
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/007Optical devices or arrangements for the control of light using movable or deformable optical elements the movable or deformable optical element controlling the colour, i.e. a spectral characteristic, of the light
    • G02B26/008Optical devices or arrangements for the control of light using movable or deformable optical elements the movable or deformable optical element controlling the colour, i.e. a spectral characteristic, of the light in the form of devices for effecting sequential colour changes, e.g. colour wheels
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/3105Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying all colours simultaneously, e.g. by using two or more electronic spatial light modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/312Driving therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3155Modulator illumination systems for controlling the light source
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3161Modulator illumination systems using laser light sources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3164Modulator illumination systems using multiple light sources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3179Video signal processing therefor
    • H04N9/3182Colour adjustment, e.g. white balance, shading or gamut
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30168Image quality inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection

Definitions

  • the present disclosure relates to, for example, a projection display device including a phosphor wheel that converts excitation light into fluorescence and a control method thereof.
  • the device is installed.
  • the illumination device includes an excitation light source that emits excitation light that excites a phosphor, a fluorescent disk (phosphor wheel) on which a phosphor (phosphor layer) that converts excitation light into fluorescence is formed, and It has.
  • the phosphor wheel is driven to rotate by a motor when the phosphor layer is irradiated with excitation light.
  • a projection display device includes a light source unit, a disk-shaped member including a wavelength conversion layer that converts light emitted from the light source unit into light having a wavelength region different from the wavelength region of the emitted light, and a circle Projection unit having a wavelength conversion unit having a motor unit that rotates a plate-like member, and a spatial modulation element that generates image light by modulating light from the light source unit and the wavelength conversion unit based on the input image signal And a control unit that controls the intensity of the emitted light emitted from the light source unit and the number of rotations of the disk-shaped member in a state where the image light is generated by the spatial modulation element.
  • the control method of the projection display device includes: wavelength conversion of emitted light emitted from the light source unit into light having a wavelength range different from the wavelength range of the emitted light in the wavelength conversion layer;
  • the emitted light is modulated by the spatial modulation element based on the input image signal to generate image light, and the disk-shaped member including the wavelength conversion layer is rotated by the motor unit.
  • the intensity of the emitted light and the number of rotations of the disk-shaped member are controlled.
  • the intensity of the emitted light emitted from the light source unit in a state where the image light is generated by the spatial modulation element and
  • the number of rotations of the disk-shaped member is changed according to a change in the intensity of the emitted light emitted from the light source unit. Is possible.
  • the projection display device of one embodiment of the present disclosure in a state where image light is generated by the spatial modulation element, the emission light emitted from the light source unit Since the control unit for controlling the rotation speed of the disk-shaped member constituting the intensity and wavelength conversion section is provided, the rotation speed of the disk-shaped member is changed according to the change in the intensity of the emitted light emitted from the light source section. Can be changed. Therefore, noise can be reduced.
  • Embodiment an example of a projection display device having a plurality of control modes
  • Configuration of projection display device 1-2 Control method of projection display device 1-3.
  • Action / Effect Modification 2-1 Modification 1 (Example of a projection display device that automatically adjusts the intensity of the excitation light EL1 and the rotation speed of the phosphor wheel 11) 2-2.
  • Modification Example 2 Example of Projection Display Device Using Transmission Type Spatial Modulation Element
  • FIG. 1 is a block diagram showing a display system of a projection display device (projection display device 1) according to an embodiment of the present disclosure.
  • FIG. 2 illustrates an example of the configuration of the optical system of the projection display device 1 of the present disclosure.
  • FIG. 3 shows an example of the configuration of the light source optical system 10 shown in FIG.
  • the projection display device 1 is a projection display device that projects an image (image light) onto a screen 600 (projection surface) such as a wall surface, and includes a light source optical system 10, an image generation system 20, and a projection optical system. 30, and a control unit 50 that controls driving of the projection unit 40.
  • the “image” includes a still image and a moving image.
  • the display system of the projection display device 1 includes the projection unit 40 and the control unit 50, and the control unit 50 includes, for example, a signal processing unit 51 and a projection.
  • a mode selection unit 52 and a storage unit 53 are included.
  • the light source optical system 10 constituting the projection unit 40 includes a light source unit 12 and a phosphor wheel 11, and further includes a light source driving unit 122 and a motor driving unit 115 that drive the light source unit 12 and the phosphor wheel 11. .
  • a signal input from the outside for example, a user
  • the intensity of the excitation light (emitted light) emitted from the light source unit 12 by the control unit 50 and the rotational speed of the phosphor wheel 11 (wavelength conversion unit) (specifically, for example, the rotational speed of the motor unit 114). Control is possible. Specifically, in the projection display device 1, the control unit 50 rotates the phosphor wheel 11 (the rotation number of the motor unit 114) according to the intensity of the excitation light emitted from the light source unit 12 during image projection. Can be controlled.
  • FIG. 2 illustrates a reflective 3LCD projector (projection display device 1) that performs light modulation using a reflective liquid crystal panel (LCD, liquid crystal panels 222A, 222B, and 222C).
  • the projection unit 40 of the projection display device 1 includes the light source optical system 10, the image generation system 20 including the illumination optical system 21 and the image generation unit 22, and the projection optical system 30. It is configured to include.
  • the projection display device 1 of the present disclosure can also be applied to a projector using a transmissive liquid crystal panel, a digital micro-mirror device (DMD), or the like instead of the reflective liquid crystal panel. .
  • DMD digital micro-mirror device
  • the light source optical system 10 includes a phosphor wheel 11 (wavelength conversion unit), a light source unit 12 that emits excitation light or laser light, lenses 13 to 16, a dichroic mirror 17, and a reflection mirror. 18 and a diffusion plate 19.
  • the phosphor wheel 11 is rotatably supported by an axis J114.
  • the diffusion plate 19 is rotatably supported by the axis J119.
  • the light source unit 12 includes a first laser group 12A and a second laser group 12B.
  • the first laser group 12A includes a semiconductor laser element 121A that oscillates excitation light (for example, wavelength 445 nm or 455 nm), and the second laser group 12B includes a semiconductor laser element 121B that oscillates blue laser light (for example, wavelength 465 nm).
  • excitation light oscillated from the first laser group 12A is EL1
  • blue laser light oscillated from the second laser group 12B (hereinafter simply referred to as blue light) is EL2.
  • FIG. 4A shows a planar configuration of the phosphor wheel 11
  • FIG. 4B shows a cross-sectional configuration of the phosphor wheel 11 taken along the line II shown in FIG. 4A.
  • the phosphor wheel 11 is, for example, a reflective light-emitting element.
  • the disk-shaped plate member 111 disk-shaped member
  • the reflective layer 113 and the phosphor layer 112 Wavelength conversion layer
  • the plate-like member 111 is connected to the motor unit 114 via the rotating shaft 114a, and is fixed by, for example, a fixed hub 114b.
  • the plate-like member 111 can be rotated by, for example, an arrow C direction around the axis J114 passing through the center O of the plate-like member 111 by the motor unit 114.
  • the plate-like member 111 functions as a substrate that supports the phosphor layer 112 and the reflective layer 113 and also functions as a heat dissipation member.
  • a material having high thermal conductivity and excellent affinity with the phosphor layer 112 and the reflective layer 113 is preferable.
  • inorganic materials such as a metal material and a ceramic material, are mentioned, for example.
  • the phosphor layer 112 is excited by light (excitation light EL1) irradiated from the light source unit 12 (specifically, the first laser group 12A) and has a wavelength range different from the wavelength range of the light. (Fluorescence FL) is emitted.
  • the phosphor layer 112 includes a fluorescent material that emits fluorescence when excited by blue laser light having a center wavelength of about 445 nm.
  • the blue laser light emitted from the light source unit 12 is converted into, for example, yellow fluorescence.
  • a YAG (yttrium, aluminum, garnet) phosphor is used as the phosphor contained in the phosphor layer 112.
  • the kind of fluorescent substance, the wavelength range of the excited light, and the wavelength range of the visible light generated by excitation are not limited.
  • the reflection layer 113 functions to reflect the excitation light EL1 irradiated from the light source unit 12 and the fluorescence FL from the phosphor layer 112 in the incident direction of the excitation light EL1, and to increase the light emission efficiency in the phosphor wheel 11. is there.
  • the reflective layer 113 is formed on the plate-like member 111 and is formed of, for example, a dielectric multilayer film or a metal film containing a metal element such as Al (aluminum), Ag (silver), or Ti (titanium). ing. Note that the reflective layer 113 may be omitted if the plate-like member 111 is made of a light-reflective material.
  • the phosphor wheel 11 is arranged so that the excitation light EL1 that has passed through the first laser group 12A through the lens 13, the dichroic mirror 17, and the lens 14 in this order enters the phosphor layer 112.
  • the fluorescence FL converted by the phosphor layer 112 is reflected by the reflection layer 113 toward the light source unit 12 and reflected by the dichroic mirror 17 toward the lens 15.
  • the fluorescent light FL reflected by the dichroic mirror 17 passes through the lens 15 and goes to the outside, that is, toward the illumination optical system 21 of the image generation system 20.
  • the diffusion plate 19 diffuses the laser beam EL2 that has passed through the reflection mirror 18 from the second laser group 12B.
  • the laser light EL2 diffused by the diffusion plate 19 passes through the lens 16 and the dichroic mirror 17, and then passes through the lens 15 together with the fluorescent light FL to go to the outside, that is, the illumination optical system 21.
  • the arrangement of the members constituting the light source optical system 10 is not limited to the configuration shown in FIG.
  • the phosphor layer 112, the lens 121, the quarter wavelength plate 123, and the polarization beam splitter 124 are emitted in this order from the phosphor layer 112. It is good also as a structure arrange
  • the light source unit 12 is disposed in a direction orthogonal to the optical path A of the fluorescence FL and at a position facing one light incident surface of the polarization beam splitter 124.
  • FIG. 4A, FIG. 4B, and FIG. 5 show the reflective phosphor wheel 11 as an example.
  • the present invention is not limited to this, and a transmissive phosphor wheel 11 may be used.
  • FIG. 6 shows an arrangement example of each member when a transmission type phosphor wheel is used.
  • the transmissive phosphor wheel 11 for example, the light source unit 12, the phosphor layer 112, and the condenser lens 125 are arranged in this order on the optical path A of the excitation light EL emitted from the light source unit 12, for example.
  • the fluorescence FL emitted from the phosphor layer 112 passes through the condenser lens 125 and travels toward the illumination optical system 21 of the image generation system 20.
  • the illumination optical system 21 includes, for example, a fly-eye lens 211 (211A, 211B), a polarization conversion element 212, a lens 213, dichroic mirrors 214A and 214B, and reflection mirrors 215A and 215B from a position close to the light source optical system 10.
  • the fly-eye lens 211 (211A, 211B) is for homogenizing the illuminance distribution of white light from the lens 15 of the light source optical system 10.
  • the polarization conversion element 212 functions to align the polarization axis of incident light in a predetermined direction. For example, light other than P-polarized light is converted to P-polarized light.
  • the lens 213 collects the light from the polarization conversion element 212 toward the dichroic mirrors 214A and 214B.
  • the dichroic mirrors 214A and 214B selectively reflect light in a predetermined wavelength region and selectively transmit light in other wavelength regions.
  • the dichroic mirror 214A mainly reflects red light in the direction of the reflection mirror 215A.
  • the dichroic mirror 214B mainly reflects blue light in the direction of the reflection mirror 215B. Therefore, green light mainly passes through both the dichroic mirrors 214A and 214B and travels toward the reflective polarizing plate 221C (described later) of the image generation unit 22.
  • the reflection mirror 215A reflects the light (mainly red light) from the dichroic mirror 2141 toward the lens 216A
  • the reflection mirror 215B reflects the light (mainly blue light) from the dichroic mirror 214 toward the lens 216B.
  • the lens 216 ⁇ / b> A transmits the light (mainly red light) from the reflection mirror 215 ⁇ / b> A and collects it on the dichroic mirror 217.
  • the lens 216 ⁇ / b> B transmits light (mainly blue light) from the reflection mirror 215 ⁇ / b> B and collects it on the dichroic mirror 217.
  • the dichroic mirror 217 selectively reflects green light and selectively transmits light in other wavelength ranges.
  • the red light component of the light from the lens 216A is transmitted.
  • the green light component is included in the light from the lens 216A, the green light component is reflected toward the polarizing plate 218C.
  • the polarizing plates 218A to 218C include a polarizer having a polarization axis in a predetermined direction. For example, when the light is converted to P-polarized light by the polarization conversion element 212, the polarizing plates 218A to 218C transmit P-polarized light and reflect S-polarized light.
  • the image generation unit 22 includes reflective polarizing plates 221A to 221C, reflective liquid crystal panels 222A to 222C (spatial modulation elements), and a dichroic prism 223.
  • Reflective polarizing plates 221A to 221C transmit light having the same polarization axis as that of the polarized light from polarizing plates 218A to 218C (for example, P-polarized light), and transmit light having other polarization axes (S-polarized light). It is a reflection.
  • the reflective polarizing plate 221A transmits the P-polarized red light from the polarizing plate 218A in the direction of the reflective liquid crystal panel 222A.
  • the reflective polarizing plate 221B transmits the P-polarized blue light from the polarizing plate 218B in the direction of the reflective liquid crystal panel 222B.
  • the reflective polarizing plate 221C transmits the P-polarized green light from the polarizing plate 218C in the direction of the reflective liquid crystal panel 222C. Further, the P-polarized green light that has passed through both the dichroic mirrors 214A and 214B and entered the reflective polarizing plate 221C passes through the reflective polarizing plate 221C as it is and enters the dichroic prism 223. Further, the reflective polarizing plate 221A reflects the S-polarized red light from the reflective liquid crystal panel 222A so as to enter the dichroic prism 223.
  • the reflective polarizing plate 221 ⁇ / b> B reflects S-polarized blue light from the reflective liquid crystal panel 222 ⁇ / b> B and makes it incident on the dichroic prism 223.
  • the reflective polarizing plate 221 ⁇ / b> C reflects the S-polarized green light from the reflective liquid crystal panel 222 ⁇ / b> C so as to enter the dichroic prism 223.
  • the reflective liquid crystal panels 222A to 222C perform spatial modulation of red light, blue light, or green light, respectively.
  • the dichroic prism 223 combines incident red light, blue light, and green light and emits them toward the projection optical system 30.
  • the projection optical system 30 includes lenses L311 to L315 and a mirror M300.
  • the projection optical system 30 enlarges the emitted light from the image generation unit 22 and projects it onto the screen 600 or the like.
  • FIG. 1 is a diagrammatic representation of the projection display device 1
  • the motor units 114 and 119 are driven, and the phosphor wheel 11 and the diffusion plate 19 are rotated. After that, the excitation light EL1 and the laser light EL2 are oscillated from the first laser group 12A and the second laser group 12B in the light source unit 12, respectively.
  • the excitation light EL1 is oscillated from the first laser group 12A, passes through the lens 13, the dichroic mirror 17, and the lens 14 in order, and is then irradiated onto the phosphor layer 112 of the phosphor wheel 11.
  • the phosphor layer 112 of the phosphor wheel 11 absorbs a part of the excitation light EL1 and converts it into fluorescent light FL1 that is yellow light, and emits it toward the lens 14.
  • the fluorescent light FL1 is reflected by the dichroic mirror 17 and then passes through the lens 15 toward the illumination optical system 21.
  • the laser beam EL2 is oscillated from the second laser group 12B, passes through the reflection mirror 18, and is irradiated to the diffusion plate 19.
  • the diffusion plate 19 diffuses the laser light EL ⁇ b> 2 and emits it toward the lens 16.
  • the laser beam EL2 passes through the dichroic mirror 17 and then passes through the lens 15 toward the illumination optical system 21.
  • the light source optical system 10 causes the illumination optical system 21 to enter white light obtained by combining the fluorescent light FL (FL1) that is yellow light and the blue laser light (EL2).
  • the white light Lw from the light source optical system 10 sequentially passes through the fly-eye lens 211 (211A, 211B), the polarization conversion element 212, and the lens 213, and then reaches the dichroic mirrors 214A, 214.
  • the red light Lr is mainly reflected by the dichroic mirror 214A, and the red light Lr is sequentially transmitted through the reflection mirror 215A, the lens 216A, the dichroic mirror 217, the polarizing plate 218A, and the reflective polarizing plate 221A to the reflective liquid crystal panel 222A. To reach.
  • the red light Lr is spatially modulated by the reflective liquid crystal panel 222A, then reflected by the reflective polarizing plate 221A and incident on the dichroic prism 223.
  • the green light component (Lg) When the green light component (Lg) is included in the light reflected to the reflection mirror 250A by the dichroic mirror 214A, the green light component (Lg) is reflected by the dichroic mirror 217 and is applied to the polarizing plate 218C and the reflective polarization. The light sequentially passes through the plate 221C and reaches the reflective liquid crystal panel 222C.
  • the dichroic mirror 214B mainly reflects the blue light Lb and enters the dichroic prism 223 through a similar process.
  • the green light Lg that has passed through the dichroic mirrors 214A and 214 also enters the dichroic prism 223.
  • the red light Lr, the blue light Lb, and the green light Lg incident on the dichroic prism 223 are combined and then emitted toward the projection optical system 30 as image light.
  • the projection optical system 30 enlarges the image light from the image generation unit 22 and projects it onto the screen 600 or the like.
  • the control unit 50 includes, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like (all not shown).
  • the CPU reads the control program stored in the ROM, expands it in the RAM, and executes the steps of the program on the RAM.
  • the control unit 50 controls the overall operation of the projection display device 1 by executing a program by the CPU.
  • the control unit 50 further includes a signal processing unit 51.
  • a signal processing unit 51 For example, an image signal from an external device such as a computer, a DVD player, or a TV tuner is input to the signal processing unit 51.
  • the signal processing unit 51 performs image resizing, gamma adjustment, color adjustment, and the like by, for example, characteristic correction and amplification of the image signal, and decomposes the image signal into R, G, and B image data. Further, the signal processing unit 51 generates a light modulation signal for driving the reflective liquid crystal panels 222A to 222C for each color light, and transmits the light modulation signal to a drive unit (not shown) of the image generation unit 22.
  • the signal processing unit 51 generates a signal (hereinafter referred to as a drive current setting signal) for setting the drive current of the light source unit 12 (particularly, the first laser group 12 ⁇ / b> A), and supplies the light source drive unit 122 with the signal. Supply.
  • the light source driving unit 122 drives the first laser group 12A and the second laser group 12B constituting the light source unit 12 based on the driving current setting signal, and emits the excitation light EL1 and the laser light EL2, respectively.
  • the signal processing unit 51 generates a signal for setting the rotation speed of the motor unit 114 (hereinafter referred to as a rotation control signal) and supplies the signal to the motor driving unit 115.
  • the motor driving unit 115 may supply the rotation signal of the motor unit 114 to the signal processing unit 51.
  • the signal processing unit 51 can detect the rotation number of the motor unit 114 (the rotation number of the phosphor wheel 11), and to the light source unit 12 according to the detected rotation signal of the motor unit 114.
  • the input power of the light source unit 12 (in particular, the first laser group 12A) can be adjusted as appropriate. Therefore, for example, when the motor unit 114 becomes difficult to rotate at high speed due to deterioration over time, the output of the light source unit 12 can be automatically reduced to prevent the phosphor wheel 11 from being burned out.
  • control unit 50 further includes a projection mode selection unit 52 and a storage unit 53.
  • the projection mode selection unit 52 receives, for example, a selection signal for selecting one of a plurality of projection modes (control modes) described later by the user.
  • the projection mode selection unit 52 generates a signal that designates one of the projection modes (hereinafter, a projection mode designation signal) and supplies the signal to the signal processing unit 51.
  • the storage unit 53 stores, for example, a lookup table in which the rotation speed of the phosphor wheel 11 is associated with the luminance of the excitation light EL1 emitted from the light source unit 12 (the output value and intensity of the light source unit 12).
  • FIG. 7A to 7D show an example of the profile of the lookup table.
  • the horizontal axis represents the output value (luminance) of the light source unit 12, and the vertical axis represents the number of rotations of the phosphor wheel 11.
  • the output value corresponds to, for example, a PWM (pulse width modulation) duty ratio or a current value.
  • the wheel rotation speed may change stepwise according to the intensity of the excitation light EL1, or as shown in FIG.
  • FIG. 7B it is proportional to the intensity of the excitation light EL1. Then, it may change continuously.
  • FIG. 7C FIG. 7A and FIG. 7B may be combined, and when the wheel rotation speed changes, it may change continuously according to the intensity of the excitation light EL1 for a certain period.
  • FIG. 7D you may change exponentially according to the intensity
  • the storage unit 53 uses a relational expression (for example, a relationship using a sigmoid function, a step function, a monotonically increasing function, etc.) for calculating the number of rotations of the phosphor wheel 11 with respect to the intensity of the excitation light EL1 emitted from the light source unit 12.
  • a relational expression for example, a relationship using a sigmoid function, a step function, a monotonically increasing function, etc.
  • image light is generated by the liquid crystal panels 222A to 222C, specifically, a state in which an image is projected from the projection unit 40 onto the screen 600 (during image projection). ),
  • the intensity of the excitation light EL1 emitted from the light source unit 12 and the rotation speed of the phosphor wheel 11 can be controlled. Varies in conjunction with the intensity of the excitation light EL1.
  • the projection display device 1 includes the projection unit 40 having the phosphor wheel 11 and the light source unit 12 and the control unit 50 as described above.
  • the control unit 50 can arbitrarily control the number of rotations of the motor unit 114 that rotates the phosphor wheel 11 according to the intensity of the excitation light EL1 emitted from the first laser group 12A at the time of image projection. Yes. Specifically, the control unit 50 increases the number of rotations of the motor unit 114 in accordance with an increase in the intensity of the excitation light EL1 emitted from the first laser group 12A, and is emitted from the first laser group 12A. The rotational speed of the motor unit 114 is decreased according to the decrease in the intensity of the excitation light EL1.
  • the fluctuation range for example, intensity 1500 to 3000 lumens
  • the rotational speed 2500 to 4000 rpm is divided into a plurality of sections (control sections), and the control unit 50 generates excitation light EL1 emitted from the first laser group 12A according to the control sections (control mode).
  • the strength of the motor and the number of rotations of the motor unit 114 are controlled.
  • the control section for the intensity of the excitation light EL1 emitted from the light source section 12 and the rotational speed of the phosphor wheel 11 is, for example, three sections (section A, section A, Divided into compartment B and compartment C).
  • the section B is an intermediate output section in which the intensity of the excitation light EL1 and the rotation speed of the motor unit are medium (for example, the intensity is 2000 to 2500 lumens and the rotation speed is 3000 to 3500 rpm) within the above-described fluctuation range.
  • This is a projection mode (balance priority mode) that achieves both quiet performance.
  • Section A is a low-output section (for example, an intensity of 1500 to 2000 lumens and a rotational speed of 2500 to 3000 rpm) in which the intensity of the excitation light EL1 is lower than that of the intermediate output section and the rotational speed of the motor unit is low, and quiet performance is prioritized.
  • Projection mode (silence priority mode).
  • the section C is a high output section (for example, intensity 2500 to 3000 lumens, rotation speed 3500 to 4000 rpm) in which the intensity of the excitation light EL1 is higher than that of the intermediate output section and the number of rotations of the motor unit is large, and priority is given to luminance.
  • This is a projection mode (luminance priority mode).
  • the projection display apparatus 1 has a plurality of projection modes in which the intensity of the excitation light EL1 and the rotation speed of the motor unit 114 vary within different ranges.
  • Each projection mode can be arbitrarily manually selected by the user, and a projection mode selection signal (projection mode designation signal) selected by the user is supplied from the projection mode selection unit 52 to the signal processing unit 51.
  • the signal processing unit 51 the intensity of the excitation light EL1 emitted from the light source unit 12 corresponding to the projection mode designation signal and the rotation speed of the motor unit 114 are referred from the storage unit 53, and the light source driving unit 122 and the motor driving unit 115 are referred to.
  • a drive current setting signal and a rotation control signal are supplied respectively.
  • the projection type display apparatus 1 of this Embodiment can reduce the vibration sound of the fluorescent substance wheel 11 and the drive sound of the motor part 114 according to a condition, and can improve quiet performance.
  • FIG. 8 shows an example of a control flow in the display system of the projection display device 1 according to the present embodiment.
  • the projection display device 1 is turned on (step S101). Subsequently, a selection signal is input from the outside (for example, a user), and a projection mode is selected (step S102). Thus, the projection mode selection unit 52 generates a projection mode designation signal and supplies it to the signal processing unit 51.
  • the signal processing unit 51 refers to the lookup table stored in the storage unit 53 based on the projection mode designation signal (step S103), and selects a corresponding control section in the lookup table (step S104). . Finally, control signals for the control sections corresponding to the light source driving unit 122 and the motor driving unit 115 are supplied (step S105). As a result, the light source driving unit 122 and the motor driving unit 115 execute a predetermined projection mode.
  • a phosphor wheel having an excitation light source (light source unit) that emits excitation light and a phosphor layer that receives the excitation light and emits light having a wavelength different from that of the excitation light.
  • a light source device including a (light converting unit) is used.
  • the phosphor wheel is driven to rotate by a motor when the phosphor layer is irradiated with excitation light.
  • the drive sound (vibration sound) of this phosphor wheel is in the audible region.
  • the vibration sound of the phosphor wheel is recognized as noise by the user, it is required to reduce the vibration sound of the phosphor wheel during image projection.
  • the projection type display apparatus 1 of this Embodiment in the state in which the image is projected from the projection part 40, it inject
  • the intensity of the excitation light EL1 and the rotation speed of the phosphor wheel 11 (specifically, the rotation speed of the motor unit 114) can be controlled, and the rotation speed of the motor unit 114 varies according to the intensity of the excitation light EL1. .
  • control unit 50 that controls the light source driving unit 122 that drives the first laser group 12A and the motor driving unit 115 that drives the motor unit 114 that rotates the phosphor wheel 11 during image projection. I tried to provide it.
  • the control unit 50 generates a drive current setting signal for setting the drive current of the first laser group 12A based on a control signal input from the outside and a rotation control signal for setting the number of rotations of the motor unit 114 to drive the light source. To the unit 122 and the motor drive unit 115, respectively.
  • the control signals input from the outside differ from each other in the intensity of the excitation light EL1 emitted from the first laser group 12A and the number of rotations of the motor unit 114 that rotates the phosphor wheel 11 (the number of rotations of the phosphor wheel 11).
  • the projection mode designation signal designates three projection modes.
  • the projection display device 1 it is possible to reduce the vibration sound of the phosphor wheel 11 and the driving sound of the motor unit 114, which are the main causes of noise, according to the situation. Performance can be improved.
  • FIG. 9 is a block diagram illustrating a display system of the projection display device 2 according to a modification example of the present disclosure.
  • the projection display device 2 according to this modification is obtained by adding an image information analysis unit 511 to the display system shown in the above embodiment, for example, in the signal processing unit 51 instead of the projection mode selection unit 52. It is.
  • the image information analysis unit 511 acquires image information, for example, image brightness and histogram from an image signal input from the outside, and analyzes this to determine a dimming value (for example, the output of the light source unit 12). To do. Based on the light control value obtained by the image information analysis unit 511, the signal processing unit 51 refers to, for example, a lookup table stored in the storage unit 53, and determines the corresponding wheel rotation speed. The signal processing unit 51 generates a driving current setting signal for setting the driving current of the first laser group 12A and a rotation control signal for setting the number of rotations of the motor unit 114, and sends them to the light source driving unit 122 and the motor driving unit 115. Supply each.
  • the intensity of the excitation light EL1 emitted from the light source unit 12 and the rotational speed of the motor unit 114 at the time of image projection are controlled.
  • the present invention is not limited to this, and it is also possible to perform it automatically.
  • FIG. 10 illustrates an example of a configuration of an optical system of the projection display device 3 according to a modification example of the present disclosure.
  • the projection display device 3 is a schematic diagram showing an example of the configuration of a transmissive 3LCD projector that performs light modulation with a transmissive liquid crystal panel (LCD, liquid crystal panels 724R, 724G, and 724B).
  • the projection display device 3 in this modification includes, for example, a light source optical system 10, an image generation system 70 having an illumination optical system 71 and an image generation unit 72, and a projection optical system 80.
  • the light source optical system 10 has the same configuration as that of the above embodiment, and the description thereof is omitted in this modification.
  • the illumination optical system 71 includes, for example, an integrator element 713, a polarization conversion element 714, and a condenser lens 715.
  • the integrator element 713 includes a first fly-eye lens 711 having a plurality of microlenses arranged two-dimensionally, and a second flyeye having a plurality of microlenses arranged so as to correspond to each of the microlenses.
  • An eye lens 712 is included.
  • Light (parallel light) incident on the integrator element 713 from the light source optical system 10 is divided into a plurality of light beams by the microlens of the first fly-eye lens 711, and is respectively applied to the corresponding microlens in the second fly-eye lens 712. Imaged.
  • Each of the microlenses of the second fly-eye lens 712 functions as a secondary light source and irradiates the polarization conversion element 714 with incident light as a plurality of parallel lights with uniform brightness.
  • the integrator element 713 has a function of adjusting the incident light irradiated from the light source optical system 10 to the polarization conversion element 714 to a uniform luminance distribution as a whole.
  • the polarization conversion element 714 has a function of aligning the polarization state of incident light incident through the integrator element 713 and the like.
  • the polarization conversion element 714 emits outgoing light including blue light Lb, green light Lg, and red light Lr via, for example, the lens 15 disposed on the outgoing side of the light source optical system 10.
  • the illumination optical system 71 further includes a dichroic mirror 716 and a dichroic mirror 717, a mirror 718, a mirror 719 and a mirror 720, a relay lens 721 and a relay lens 722, a field lens 723R, a field lens 723G and a field lens 723B, and an image generation unit 72.
  • Liquid crystal panels 724R, 710G and 710B, and a dichroic prism 730 Liquid crystal panels 724R, 710G and 710B, and a dichroic prism 730.
  • the dichroic mirror 716 and the dichroic mirror 717 have a property of selectively reflecting color light in a predetermined wavelength region and transmitting light in other wavelength regions.
  • the dichroic mirror 716 selectively reflects the red light Lr.
  • the dichroic mirror 717 selectively reflects the green light Lg out of the green light Lg and the blue light Lb transmitted through the dichroic mirror 716.
  • the remaining blue light Lb passes through the dichroic mirror 717. Thereby, the light (white light Lw) emitted from the light source optical system 10 is separated into a plurality of color lights of different colors.
  • the separated red light Lr is reflected by the mirror 718, is collimated by passing through the field lens 723R, and then enters the liquid crystal panel 724R for modulating red light.
  • the green light Lg is collimated by passing through the field lens 723G, and then enters the liquid crystal panel 724G for green light modulation.
  • the blue light Lb is reflected by the mirror 719 through the relay lens 721, and further reflected by the mirror 720 through the relay lens 722.
  • the blue light Lb reflected by the mirror 720 is collimated by passing through the field lens 723B, and then enters the liquid crystal panel 724B for modulating the blue light Lb.
  • the liquid crystal panels 724R, 724G, and 724B are electrically connected to a signal source (not shown) (for example, a PC) that supplies an image signal including image information.
  • the liquid crystal panels 724R, 724G, and 724B modulate incident light for each pixel based on the supplied image signals of each color, and generate a red image, a green image, and a blue image, respectively.
  • the modulated light of each color (formed image) enters the dichroic prism 730 and is synthesized.
  • the dichroic prism 730 superimposes and synthesizes light of each color incident from three directions and emits the light toward the projection optical system 80.
  • the projection optical system 80 includes a plurality of lenses 810 and the like, and irradiates a screen (not shown) with light synthesized by the dichroic prism 730. Thereby, a full-color image is displayed.
  • the present disclosure has been described with the embodiment and the modification.
  • the present disclosure is not limited to the above-described embodiment and the like, and various modifications are possible.
  • the intensity of the excitation light EL1 emitted from the first laser group 12A in the light source unit 12 has been described.
  • the intensity of the blue laser light (laser light EL2) oscillated from the second laser group 12B may be simultaneously controlled using the method of the embodiment and the first modification.
  • the projection display device 2 including the image information analysis unit 511 is described instead of the projection mode selection unit 52.
  • the projection mode selection unit 52 and the image information analysis unit 511 are both provided. May be.
  • each optical system has been specifically described. However, it is not necessary to provide all the constituent elements, and other constituent elements may be further provided.
  • a light source unit a disk-shaped member including a wavelength conversion layer that converts light emitted from the light source unit into light having a wavelength range different from the wavelength range of the emitted light, and a motor unit that rotates the disk-shaped member.
  • a projection unit including a wavelength conversion unit, and a spatial modulation element that generates image light by modulating light from the light source unit and the wavelength conversion unit based on an input image signal;
  • a projection display device comprising: a control unit that controls the intensity of the emitted light emitted from the light source unit and the number of rotations of the disk-shaped member in a state where image light is generated by the spatial modulation element.
  • the said display part is a projection type display apparatus as described in said (1) which controls the rotation speed of the said disk-shaped member according to the intensity
  • the said control part controls the rotation speed of the said disk-shaped member in steps according to the intensity
  • the control unit increases the number of rotations of the disk-shaped member in accordance with an increase in the intensity of the emitted light emitted from the light source unit, and decreases the intensity of the emitted light emitted from the light source unit.
  • the projection display device according to any one of (1) to (3), wherein the number of rotations of the disk-shaped member is decreased accordingly.
  • the control unit has a plurality of control modes, The plurality of control modes have any one of the above (1) to (4), which has a relationship between the intensity of the emitted light emitted from the different light source units and the rotational speed of the disk-shaped member.
  • (6) The projection display device according to (5), wherein the control unit executes one control mode selected from the plurality of control modes.
  • the control unit has a first control mode, a second control mode, and a third control mode as the plurality of control modes,
  • the intensity of the emitted light emitted from the light source unit is lower than that in the second control mode, and the number of rotations of the disk-shaped member is small.
  • the intensity of the emitted light emitted from the light source unit is higher than that in the second control mode, and the number of rotations of the disk-shaped member is higher.
  • Projection type display device (8) The projection display device according to any one of (5) to (7), wherein the plurality of control modes can be manually switched.
  • the projection display device according to (6) or (7), wherein the one control mode among the plurality of control modes is selected according to a selection signal input from the outside.
  • the projection display device according to any one of (1) to (9), further including an image information analysis unit that analyzes image information of an input image signal.
  • the said control part controls the intensity
  • the projection display device according to (10) or (11), wherein the image information analysis unit acquires at least one of luminance and histogram from the input image signal.
  • the projection display apparatus wherein the image information analysis unit analyzes the acquired luminance or the histogram to determine a dimming value.
  • the control unit includes any one of (1) to (13) including a storage unit that defines a relationship between the intensity of the emitted light emitted from the light source unit and the rotational speed of the disk-shaped member.
  • the emitted light emitted from the light source unit is wavelength-converted into light in a wavelength region different from the wavelength region of the emitted light in the wavelength conversion layer, The emitted light having undergone wavelength conversion is modulated by a spatial modulation element based on the input image signal, thereby generating image light,
  • the disk-shaped member including the wavelength conversion layer is rotated by a motor unit, and in the state where the image light is generated in the spatial modulation element, the intensity of the emitted light and the number of rotations of the disk-shaped member A control method for a projection display device.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Projection Apparatus (AREA)
  • Transforming Electric Information Into Light Information (AREA)

Abstract

本開示の一実施形態の投射型表示装置は、光源部と、光源部からの出射光を出射光の波長域とは異なる波長域の光に変換する波長変換層を含む円板状部材および円板状部材を回転させるモータ部を有する波長変換部と、入力された画像信号に基づいて光源部および波長変換部からの光を変調することにより画像光を生成する空間変調素子とを有する投射部と、空間変調素子によって画像光が生成されている状態において、光源部から射出される出射光の強度および円板状部材の回転数を制御する制御部とを備える。

Description

投射型表示装置および投射型表示装置の制御方法
 本開示は、例えば、励起光を蛍光に変換する蛍光体ホイールを備えた投射型表示装置およびその制御方法に関する。
 パーソナルコンピュータの画面やビデオ画像等をスクリーンに投射する投射型表示装置(プロジェクタ)には、発光ダイオード(LED)やレーザダイオード(LD)、または、有機EL等の半導体発光素子を光源として用いた光源装置が搭載されている。
 このうち、光源としてLEDやLDを光源装置としては、LEDやLDからの光を蛍光体に照射することにより、蛍光としての白色光を取り出す照明装置が提案されている(例えば、特許文献1参照)。この照明装置(光源装置)は、蛍光体を励起させる励起光を射出する励起光源と、励起光を蛍光に変換する蛍光体(蛍光体層)が形成された蛍光円板(蛍光体ホイール)とを備えている。このような光源装置では、蛍光体層への励起光の照射の際、モータによって蛍光体ホイールを回転駆動させる。
特開2013-97229号公報
 ところで、近年、家庭用プロジェクタが普及してきており、投射時における騒音の低減が求められている。
 騒音を低減させることが可能な投射型表示装置および投射型表示装置の制御方法を提供することが望ましい。
 本開示の一実施形態の投射型表示装置は、光源部と、光源部からの出射光を出射光の波長域とは異なる波長域の光に変換する波長変換層を含む円板状部材および円板状部材を回転させるモータ部を有する波長変換部と、入力された画像信号に基づいて光源部および波長変換部からの光を変調することにより画像光を生成する空間変調素子とを有する投射部と、空間変調素子によって画像光が生成されている状態において、光源部から射出される出射光の強度および円板状部材の回転数を制御する制御部とを備えたものである。
 本開示の一実施の形態の投射型表示装置の制御方法は、光源部から射出された出射光を、波長変換層において出射光の波長域とは異なる波長域の光に波長変換し、波長変換した出射光を、入力された画像信号に基づいて空間変調素子において変調することにより、画像光を生成し、波長変換層を含む円板状部材をモータ部によって回転させると共に、空間変調素子において画像光が生成されている状態において、出射光の強度と、円板状部材の回転数とをそれぞれ制御する。
 本開示の一実施形態の投射型表示装置および一実施形態の投射型表示装置の制御方法では、空間変調素子によって画像光が生成されている状態において、光源部から射出される出射光の強度および波長変換部を構成する円板状部材の回転数を制御する制御部を備えることにより、光源部から射出される出射光の強度の変化に応じて、円板状部材の回転数を変化させることが可能となる。
 本開示の一実施形態の投射型表示装置および一実施形態の投射型表示装置の制御方法によれば、空間変調素子によって画像光が生成されている状態において、光源部から射出される出射光の強度および波長変換部を構成する円板状部材の回転数を制御する制御部を設けるようにしたので、光源部から射出される出射光の強度の変化に応じて、円板状部材の回転数を変化させることができる。よって、騒音を低減することが可能となる。
 なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれの効果であってもよい。
本開示の一実施の形態に係る投射型表示装置の表示システムを表すブロック図である。 本開示の一実施の形態に係る投射型表示装置の光学系の構成の一例を表す概略図である。 図2に示した光源光学系の構成例を表す概略図である。 蛍光体ホイールの平面模式図である。 図4Aに示した蛍光体ホイールの断面模式図である。 反射型蛍光体ホイールを用いる場合の光源光学系の構成を表す模式図である。 透過型蛍光体ホイールを用いる場合の光源光学系の構成を表す模式図である。 励起光源出力値とホイール回転数との関係を表すルックアップテーブルのプロファイルの一例である。 励起光源出力値とホイール回転数との関係を表すルックアップテーブルのプロファイルの他の例である。 励起光源出力値とホイール回転数との関係を表すルックアップテーブルのプロファイルの他の例である。 励起光源出力値とホイール回転数との関係を表すルックアップテーブルのプロファイルの他の例である。 起動から励起光源出力値制御区間適用までの流れを表す図である。 本開示の変形例1に係る投射型表示装置の表示システムを表すブロック図である。 本開示の変形例2に係る投射型表示装置の光学系の構成の一例を表す概略図である。
 以下、本開示の実施の形態について、図面を参照して詳細に説明する。以下の説明は本開示の一具体例であって、本開示は以下の態様に限定されるものではない。また、本開示は、各図に示す各構成要素の配置や寸法、寸法比などについても、それらに限定されるものではない。なお、説明は以下の順序で行う。
 1.実施の形態(複数の制御モードを有する投射型表示装置の例)
  1-1.投射型表示装置の構成
  1-2.投射型表示装置の制御方法
  1-3.作用・効果
 2.変形例
  2-1.変形例1(励起光EL1の強度および蛍光体ホイール11の回転数の調整を自動で行う投射型表示装置の例)
  2-2.変形例2(透過型の空間変調素子を用いた投射型表示装置の例)
<1.実施の形態>
 図1は、本開示の一実施の形態に係る投射型表示装置(投射型表示装置1)の表示システムをブロック図で表わしたものである。図2は、本開示の投射型表示装置1の光学系の構成の一例を表わしたものである。図3は、図2に示した光源光学系10の構成の一例を表したものである。この投射型表示装置1は、壁面等のスクリーン600(投射面)に対して画像(画像光)を投射する投射型表示装置であり、光源光学系10と、画像生成システム20と、投射光学系30とを有する投射部40と、投射部40の駆動を制御する制御部50とから構成されている。なお、ここで「画像」とは、静止画および動画を含むものである。
 本実施の形態の投射型表示装置1の表示システムは、図1に示したように、上記投射部40と、制御部50とを有し、制御部50は、例えば、信号処理部51、投射モード選択部52および記憶部53を含んで構成されている。投射部40を構成する光源光学系10は、光源部12と、蛍光体ホイール11とを有し、さらに、光源部12および蛍光体ホイール11を駆動させる光源駆動部122およびモータ駆動部115を有する。本実施の形態の投射型表示装置1では、詳細は後述するが、空間変調素子によって画像光が生成されている状態(画像投射時)において、外部(例えば、ユーザ)から入力される信号を基に、制御部50が光源部12から射出される励起光(出射光)の強度および蛍光体ホイール11(波長変換部)の回転数(具体的には、例えば、モータ部114の回転数)を制御可能となっている。具体的には、投射型表示装置1では、画像投射時に制御部50が、光源部12から射出される励起光の強度に応じて、蛍光体ホイール11の回転数(モータ部114の回転数)を制御可能となっている。
(1-1.投射型表示装置の構成)
 図2では、反射型の液晶パネル(LCD、液晶パネル222A,222B,222C)により光変調を行う反射型3LCD方式のプロジェクタ(投射型表示装置1)を例示している。本実施の形態の投射型表示装置1の投射部40は、上記のように、光源光学系10と、照明光学系21および画像生成部22を有する画像生成システム20と、投射光学系30とを含んで構成されている。なお、本開示の投射型表示装置1は、反射型液晶パネルの代わりに、透過型液晶パネルやデジタル・マイクロミラー・デバイス(DMD:Digital Micro-mirror Device)等を用いたプロジェクタにも適用され得る。透過型液晶パネルを用いたプロジェクタについては、後述する変形例にて説明する。
 光源光学系10は、図3に示したように、蛍光体ホイール11(波長変換部)と、励起光またはレーザ光を発する光源部12と、レンズ13~16と、ダイクロイックミラー17と、反射ミラー18と、拡散板19とを有する。蛍光体ホイール11は、軸J114により回転可能に支持されている。拡散板19は、軸J119により回転可能に支持されている。光源部12は、第1のレーザ群12Aと第2のレーザ群12Bとを有する。第1のレーザ群12Aは励起光(例えば、波長445nmまたは455nm)を発振する半導体レーザ素子121Aが、第2のレーザ群12Bは青色レーザ光(例えば、波長465nm)を発振する半導体レーザ素子121Bが複数配列されたものである。ここでは便宜上、第1のレーザ群12Aから発振される励起光をEL1とし、第2のレーザ群12Bから発振される青色レーザ光(以下、単に青色光とする)をEL2とする。
 図4Aは、蛍光体ホイール11の平面構成を表したものであり、図4Bは、図4Aに示したI-I線における蛍光体ホイール11の断面構成を表したものである。この蛍光体ホイール11は、例えば反射型の発光素子であり、例えば円盤形状の板状部材111(円板状部材)上に、例えば周方向に沿って、例えば反射層113および蛍光体層112(波長変換層)がこの順に設けられている。板状部材111は、回転軸114aを介してモータ部114に接続されており、例えば固定ハブ114bによって固定されている。板状部材111は、モータ部114によって、板状部材111の中心Oを通る軸J114を中心に、例えば矢印C方向に回転可能となっている。
 板状部材111は、蛍光体層112および反射層113を支持する基板として機能すると共に、放熱部材としても機能するものである。板状部材111の構成材料としては、例えば、熱伝導率の高く、蛍光体層112や反射層113との親和性に優れるものが好ましい。具体的には、例えば、金属材料やセラミックス材料等の無機材料が挙げられる。
 蛍光体層112は、光源部12(具体的には、第1のレーザ群12A)から照射される光(励起光EL1)によって励起されて、その光の波長域とは異なる波長域を有する蛍光(蛍光FL)を発するものである。蛍光体層112は、約445nmの中心波長を持つ青色レーザ光によって励起されて蛍光を発する蛍光物質を含んでおり、光源部12から照射される青色レーザ光を、例えば黄色の蛍光に変換して出射する。蛍光体層112に含まれる蛍光物質としては、例えば、YAG(イットリウム・アルミニウム・ガーネット)系蛍光体が用いられる。なお、蛍光物質の種類、励起される光の波長域、および励起により発生される可視光の波長域は限定されない。
 反射層113は、光源部12から照射される励起光EL1や蛍光体層112からの蛍光FLを励起光EL1の入射方向に反射し、蛍光体ホイール11における発光効率を高めるように機能するものである。反射層113は、板状部材111上に形成されており、例えば誘電体多層膜のほか、Al(アルミニウム),Ag(銀)もしくはTi(チタン)等の金属元素を含む金属膜等により形成されている。なお、反射層113は、板状部材111が光反射性を有する材料によって構成されている場合には省略してもかまわない。
 蛍光体ホイール11は、第1のレーザ群12Aからレンズ13と、ダイクロイックミラー17と、レンズ14とを順に透過した励起光EL1が蛍光体層112に入射されるように配置されている。蛍光体層112で変換された蛍光FLは、反射層113において光源部12側に反射され、ダイクロイックミラー17でレンズ15方向に反射される。ダイクロイックミラー17で反射された蛍光FLは、レンズ15を透過して外部、即ち、画像生成システム20の照明光学系21へ向かうようになっている。
 拡散板19は、第2のレーザ群12Bから反射ミラー18を経由したレーザ光EL2を拡散させるものである。拡散板19で拡散されたレーザ光EL2は、レンズ16およびダイクロイックミラー17を透過したのち、蛍光FLと共に、レンズ15を透過して外部、即ち、照明光学系21へ向かうようになっている。
 なお、光源光学系10を構成する各部材の配置は、図3に示した構成に限定されない。例えば、図5に示したように、蛍光体ホイール11側から、蛍光体層112、レンズ121、1/4波長板123および偏光ビームスプリッタ124が、この順に、蛍光体層112から射出される蛍光FLの光路A上に配置された構成としてもよい。この場合、光源部12は、蛍光FLの光路Aと直交する方向、且つ、偏光ビームスプリッタ124の1つの光入射面に対向する位置に配置される。
 更に、図3,図4A,図4Bおよび図5では、反射型の蛍光体ホイール11を例に示したが、これに限らず、透過型の蛍光体ホイール11を用いてもよい。図6は、透過型の蛍光体ホイールを用いた場合の各部材の配置例を表したものである。透過型の蛍光体ホイール11を用いる場合には、例えば、光源部12、蛍光体層112、集光レンズ125がこの順に、例えば光源部12から照射される励起光ELの光路A上に配置される。図6では、蛍光体層112から射出される蛍光FLは、集光レンズ125を透過して、画像生成システム20の照明光学系21へ向かうようになっている。
 照明光学系21は、例えば、光源光学系10に近い位置からフライアイレンズ211(211A,211B)と、偏光変換素子212と、レンズ213と、ダイクロイックミラー214A,214Bと、反射ミラー215A,215Bと、レンズ216A,216Bと、ダイクロイックミラー217と、偏光板218A~218Cとを有している。
 フライアイレンズ211(211A,211B)は、光源光学系10のレンズ15からの白色光の照度分布の均質化を図るものである。偏光変換素子212は、入射光の偏光軸を所定方向に揃えるように機能するものである。例えば、P偏光以外の光をP偏光に変換する。レンズ213は、偏光変換素子212からの光をダイクロイックミラー214A,214Bへ向けて集光する。ダイクロイックミラー214A,214Bは、所定の波長域の光を選択的に反射し、それ以外の波長域の光を選択的に透過させるものである。例えば、ダイクロイックミラー214Aは、主に赤色光を反射ミラー215Aの方向へ反射させる。また、ダイクロイックミラー214Bは、主に青色光を反射ミラー215Bの方向へ反射させる。したがって、主に緑色光がダイクロイックミラー214A,214Bの双方を透過し、画像生成部22の反射型偏光板221C(後出)へ向かうこととなる。反射ミラー215Aは、ダイクロイックミラー2141からの光(主に赤色光)をレンズ216Aに向けて反射し、反射ミラー215Bは、ダイクロイックミラー214からの光(主に青色光)をレンズ216Bに向けて反射する。レンズ216Aは、反射ミラー215Aからの光(主に赤色光)を透過し、ダイクロイックミラー217へ集光させる。レンズ216Bは、反射ミラー215Bからの光(主に青色光)を透過し、ダイクロイックミラー217へ集光させる。ダイクロイックミラー217は、緑色光を選択的に反射すると共にそれ以外の波長域の光を選択的に透過するものである。ここでは、レンズ216Aからの光のうち赤色光成分を透過する。レンズ216Aからの光に緑色光成分が含まれる場合、その緑色光成分を偏光板218Cへ向けて反射する。偏光板218A~218Cは、所定方向の偏光軸を有する偏光子を含んでいる。例えば、偏光変換素子212においてP偏光に変換されている場合、偏光板218A~218CはP偏光の光を透過し、S偏光の光を反射する。
 画像生成部22は、反射型偏光板221A~221Cと、反射型の液晶パネル222A~222C(空間変調素子)と、ダイクロイックプリズム223とを有する。
 反射型偏光板221A~221Cは、それぞれ、偏光板218A~218Cからの偏光光の偏光軸と同じ偏光軸の光(例えばP偏光)を透過し、それ以外の偏光軸の光(S偏光)を反射するものである。具体的には、反射型偏光板221Aは、偏光板218AからのP偏光の赤色光を反射型の液晶パネル222Aの方向へ透過させる。反射型偏光板221Bは、偏光板218BからのP偏光の青色光を反射型の液晶パネル222Bの方向へ透過させる。反射型偏光板221Cは、偏光板218CからのP偏光の緑色光を反射型の液晶パネル222Cの方向へ透過させる。また、ダイクロイックミラー214A,214Bの双方を透過して反射型偏光板221Cに入射したP偏光の緑色光は、そのまま反射型偏光板221Cを透過してダイクロイックプリズム223に入射する。更に、反射型偏光板221Aは、反射型の液晶パネル222AからのS偏光の赤色光を反射してダイクロイックプリズム223に入射させる。反射型偏光板221Bは、反射型の液晶パネル222BからのS偏光の青色光を反射してダイクロイックプリズム223に入射させる。反射型偏光板221Cは、反射型の液晶パネル222CからのS偏光の緑色光を反射してダイクロイックプリズム223に入射させる。
 反射型の液晶パネル222A~222Cは、それぞれ、赤色光、青色光または緑色光の空間変調を行うものである。
 ダイクロイックプリズム223は、入射される赤色光、青色光および緑色光を合成し、投射光学系30へ向けて射出するものである。
 投射光学系30は、レンズL311~L315と、ミラーM300とを有する。投射光学系30は、画像生成部22からの出射光を拡大してスクリーン600等へ投射する。
 続いて、図1,図2および図3を参照して、投射型表示装置1の動作について説明する。
 まず、光源光学系10において、モータ部114,119が駆動し、蛍光体ホイール11および拡散板19が回転する。そののち、光源部12における第1のレーザ群12Aおよび第2のレーザ群12Bから励起光EL1およびレーザ光EL2がそれぞれ発振される。
 励起光EL1は、第1のレーザ群12Aから発振され、レンズ13とダイクロイックミラー17とレンズ14とを順に透過したのち、蛍光体ホイール11の蛍光体層112に照射される。蛍光体ホイール11の蛍光体層112は励起光EL1の一部を吸収し、黄色光である蛍光FL1に変換し、これをレンズ14へ向けて発する。蛍光FL1はダイクロイックミラー17により反射されたのち、レンズ15を透過して照明光学系21へ向かう。
 レーザ光EL2は、第2のレーザ群12Bから発振され、反射ミラー18を経由したのち、拡散板19に照射される。拡散板19は、レーザ光EL2を拡散して、レンズ16へ向けて発する。レーザ光EL2はダイクロイックミラー17を透過したのち、レンズ15を透過して照明光学系21へ向かう。
 このようにして、光源光学系10は、黄色光である蛍光FL(FL1)と、青色のレーザ光(EL2)とを合成した白色光を照明光学系21へ入射させる。
 光源光学系10からの白色光Lwは、フライアイレンズ211(211A,211B)と、偏光変換素子212と、レンズ213とを順次透過したのち、ダイクロイックミラー214A,214に到達する。
 ダイクロイックミラー214Aにより主に赤色光Lrが反射され、この赤色光Lrは反射ミラー215A、レンズ216A、ダイクロイックミラー217、偏光板218Aおよび反射型偏光板221Aを順次透過し、反射型の液晶パネル222Aへ到達する。この赤色光Lrは反射型の液晶パネル222Aにおいて空間変調されたのち、反射型偏光板221Aにおいて反射されてダイクロイックプリズム223に入射する。なお、ダイクロイックミラー214Aにより反射ミラー250Aへ反射された光に緑色光成分(Lg)が含まれる場合には、その緑色光成分(Lg)はダイクロイックミラー217により反射されて偏光板218Cおよび反射型偏光板221Cを順次透過し、反射型の液晶パネル222Cへ到達する。ダイクロイックミラー214Bでは主に青色光Lbが反射され、同様の過程を経てダイクロイックプリズム223に入射する。ダイクロイックミラー214A,214を透過した緑色光Lgもまたダイクロイックプリズム223に入射する。
 ダイクロイックプリズム223に入射した赤色光Lr、青色光Lbおよび緑色光Lgは、合成されたのち画像光として投射光学系30へ向けて射出される。投射光学系30は、画像生成部22からの画像光を拡大してスクリーン600等へ投射する。
 制御部50は、例えば、CPU(Central Processing Unit)、ROM(Read Only Memory)およびRAM(Random Access Memory)等を含んで構成されている(いずれも図示せず)。CPUは、ROMに記憶された制御プログラムを読み出してRAMに展開し、このRAM上のプログラムのステップを実行する。制御部50は、このCPUによるプログラム実行によって、投射型表示装置1全体の動作を制御する。
 制御部50は、さらに信号処理部51を有する。信号処理部51には、例えばコンピュータ、DVDプレーヤ、TVチューナ等の外部機器からの画像信号が入力される。信号処理部51は、例えば、画像信号の特性補正、増幅等により、画像のリサイズ、ガンマ調整、色調整等を行うと共に、画像信号をR,G,Bの各画像データに分解する。また、信号処理部51は、各色光用の反射型の液晶パネル222A~222Cを駆動するための光変調信号を生成し、画像生成部22の駆動部(図示せず)に送信する。
 本実施の形態の信号処理部51は、光源部12(特に、第1のレーザ群12A)の駆動電流を設定するための信号(以下、駆動電流設定信号)を生成し、光源駆動部122に供給する。光源駆動部122は、駆動電流設定信号に基づいて光源部12を構成する第1のレーザ群12Aおよび第2のレーザ群12Bを駆動し、励起光EL1およびレーザ光EL2をそれぞれ射出させる。更に、信号処理部51は、モータ部114の回転数を設定するための信号(以下、回転制御信号)を生成し、モータ駆動部115に供給する。
 なお、モータ駆動部115は、モータ部114の回転信号を信号処理部51に供給するようにしてもよい。これにより、信号処理部51は、モータ部114の回転数(蛍光体ホイール11の回転数)を検出することができ、検出したモータ部114の回転数の回転信号に応じて、光源部12への投入電力を制御し、光源部12(特に、第1のレーザ群12A)の出力を適宜調整することができるようになる。よって、例えば、モータ部114が経年劣化によって高速回転が困難となった場合に、自動で光源部12の出力を低下させ、蛍光体ホイール11の焼損等を防ぐことが可能となる。
 本実施の形態では、制御部50は、さらに、投射モード選択部52および記憶部53を有する。
 投射モード選択部52には、例えばユーザによって後述する複数の投射モード(制御モード)のいずれかを選択する選択信号が入力される。投射モード選択部52は、投射モードのいずれかを指定する信号(以下、投射モード指定信号)を生成し、信号処理部51に供給する。
 記憶部53には、例えば、光源部12から射出される励起光EL1の輝度(光源部12の出力値,強度)に対して蛍光体ホイール11の回転数が対応付けられたルックアップテーブルが格納されている。図7A~図7Dは、そのルックアップテーブルのプロファイルの一例を表したものである。横軸は、光源部12の出力値(輝度)を表したものであり、縦軸は、蛍光体ホイール11の回転数を表している。なお、出力値は、例えばPWM(pulse width modulation)デューティ比や電流値に相当する。ホイール回転数は、図7Aに示したように、励起光EL1の強度に応じて段階的に変化するようになっていてもよいし、図7Bに示したように、励起光EL1の強度に比例して連続的に変化するようになっていてもよい。あるいは、図7Cに示したように、図7Aおよび図7Bを組み合わせ、ホイール回転数の変化時に、一定期間、励起光EL1の強度に応じて連続的に変化するようになっていてもよい。また、7Dに示したように、励起光EL1の強度に応じて指数対数的に変化するようになっていてもよい。
 あるいは、記憶部53には、光源部12から射出される励起光EL1の強度に対する蛍光体ホイール11の回転数を算出する関係式(例えば、シグモイド関数、ステップ関数、単調増加関数等を用いた関係式)が格納されていてもよい。
(1-2.投射型表示装置の制御方法)
 次に、投射型表示装置1の制御方法について説明する。
 本実施の形態の投射型表示装置1は、液晶パネル222A~222Cによって画像光が生成されている状態、具体的には、投射部40からスクリーン600に画像が投射されている状態(画像投射時)において、光源部12から射出される励起光EL1の強度および蛍光体ホイール11の回転数(具体的には、モータ部114の回転数)を制御可能となっており、モータ部114の回転数は、励起光EL1の強度に連動して変動するようになっている。
 投射型表示装置1は、上記のように、蛍光体ホイール11および光源部12を有する投射部40と、制御部50とを備えている。制御部50は、画像投射時において、任意に第1のレーザ群12Aから射出される励起光EL1の強度に応じて、蛍光体ホイール11を回転させるモータ部114の回転数を制御可能となっている。具体的には、制御部50は、第1のレーザ群12Aから射出される励起光EL1の強度の上昇に応じてモータ部114の回転数を増加させ、第1のレーザ群12Aから射出される励起光EL1の強度の低下に応じてモータ部114の回転数を減少させる。
 本実施の形態では、第1のレーザ群12Aから射出される励起光EL1の強度および蛍光体ホイール11の回転数(例えば、モータ部114の回転数)の変動範囲(例えば、強度1500~3000ルーメン、回転数2500~4000rpm)が複数の区画(制御区画)に分けられており、制御部50は、その制御区画(制御モード)に応じて、第1のレーザ群12Aから射出される励起光EL1の強度およびモータ部114の回転数を制御するようになっている。
 光源部12から射出される励起光EL1の強度および蛍光体ホイール11の回転数(モータ部114の回転数)の制御区画は、例えば、図7Aに示したように、3つの区画(区画A,区画Bおよび区画C)に分けられる。ここで、区画Bは、上記変動範囲内において励起光EL1の強度およびモータ部の回転数が中程度(例えば、強度2000~2500ルーメン、回転数3000~3500rpm)の中間出力区画であり、輝度と静粛性能とを両立した投射モード(バランス優先モード)である。区画Aは、中間出力区画よりも励起光EL1の強度が低く且つ、モータ部の回転数が少ない低出力区画(例えば、強度1500~2000ルーメン、回転数2500~3000rpm)であり、静粛性能を優先した投射モード(静粛性優先モード)である。区画Cは、中間出力区画よりも励起光EL1の強度が高く且つ、モータ部の回転数が多い高出力区画(例えば、強度2500~3000ルーメン、回転数3500~4000rpm)であり、輝度を優先した投射モード(輝度優先モード)である。このように、本実施の形態の投射型表示装置1は、励起光EL1の強度およびモータ部114の回転数が互いに異なる範囲内で変動する複数の投射モードを有する。
 各投射モードはユーザが任意に手動で選択できるようになっており、ユーザが選択した投射モードの選択信号(投射モード指定信号)が投射モード選択部52から信号処理部51に供給される。信号処理部51では、その投射モード指定信号に応じた光源部12から射出される励起光EL1の強度およびモータ部114の回転数を記憶部53から参照し、光源駆動部122およびモータ駆動部115に、それぞれ、駆動電流設定信号および回転制御信号を供給する。これにより、本実施の形態の投射型表示装置1は、状況に応じて、蛍光体ホイール11の振動音やモータ部114の駆動音を低減し、静粛性能を向上させることができる。
 図8は、本実施の形態における投射型表示装置1の表示システムにおける制御フローの一例を表したものである。
 まず、投射型表示装置1の電源をオン状態にする(ステップS101)。続いて、外部(例えば、ユーザ)から選択信号が入力され、投射モードが選択される(ステップS102)。これにより、投射モード選択部52は、投射モード指定信号を生成し、信号処理部51に供給する。
 次に、信号処理部51は、投射モード指定信号に基づいて記憶部53に格納されたルックアップテーブルを参照し(ステップS103)、ルックアップテーブル内の対応する制御区画を選択する(ステップS104)。最後に、光源駆動部122およびモータ駆動部115に対応する制御区画の制御信号を供給する(ステップS105)。これにより、光源駆動部122およびモータ駆動部115では、所定の投射モードが実行される。
(1-3.作用・効果)
 前述したように、投射型表示装置(プロジェクタ)では、励起光を射出する励起用光源(光源部)と、励起光を受けて励起光とは異なる波長光を発する蛍光体層を有する蛍光体ホイール(光変換部)とを備えた光源装置が用いられている。このような光源装置では、蛍光体層への励起光の照射の際、モータによって蛍光体ホイールを回転駆動させている。この蛍光体ホイールの駆動音(振動音)は可聴領域にある。家庭用のプロジェクタでは、この蛍光体ホイールの振動音がユーザに騒音としてとらえられるため、画像投射時における蛍光体ホイールの振動音の低下が求められている。
 これに対して、本実施の形態の投射型表示装置1では、投射部40から画像が投射されている状態において、光源部12(具体的には、第1のレーザ群12A)から射出される励起光EL1の強度および蛍光体ホイール11の回転数(具体的には、モータ部114の回転数)を制御可能とし、励起光EL1の強度に応じてモータ部114の回転数が変動するようした。
 具体的には、画像投射時において、第1のレーザ群12Aを駆動する光源駆動部122と、蛍光体ホイール11を回転させるモータ部114を駆動するモータ駆動部115とを制御する制御部50を設けるようにした。制御部50は、外部から入力される制御信号に基づく第1のレーザ群12Aの駆動電流を設定する駆動電流設定信号およびモータ部114の回転数を設定する回転制御信号をそれぞれ生成し、光源駆動部122およびモータ駆動部115にそれぞれ供給する。外部から入力される制御信号は、第1のレーザ群12Aから射出される励起光EL1の強度および蛍光体ホイール11を回転させるモータ部114の回転数(蛍光体ホイール11の回転数)が互いに異なる、例えば3つの投射モードを指定する投射モード指定信号である。
 以上により、本実施の形態の投射型表示装置1では、状況に応じて、騒音の主な原因である蛍光体ホイール11の振動音やモータ部114の駆動音を低減させることが可能となり、静粛性能を向上させることができる。
<2.変形例>
 次に、上記実施の形態に係る変形例(変形例1,2)ついて説明する。以下では、上記実施の形態と同様の構成要素については同一の符号を付し、適宜その説明を省略する。
(2-1.変形例1)
 図9は、本開示の変形例に係る投射型表示装置2の表示システムをブロック図で表したものである。本変形例の投射型表示装置2は、上記実施の形態において示した表示システムに対して、投射モード選択部52の代わりに、例えば信号処理部51内に、画像情報解析部511を追加したものである。
 画像情報解析部511は、例えば、外部から入力される画像信号から画像情報、例えば、画像の輝度やヒストグラムを取得し、これを解析して調光値(例えば、光源部12の出力)を決定する。信号処理部51は、画像情報解析部511で得られた調光値を基に、記憶部53に格納された、例えばルックアップテーブルを参照し、対応するホイール回転数を決定する。信号処理部51は、第1のレーザ群12Aの駆動電流を設定する駆動電流設定信号およびモータ部114の回転数を設定する回転制御信号をそれぞれ生成し、光源駆動部122およびモータ駆動部115にそれぞれ供給する。
 このように、上記実施の形態では、例えばユーザが投射モードを選択することで、画像投射時における光源部12から射出される励起光EL1の強度およびモータ部114の回転数お制御がおこなわれる場合を説明したがこれに限らず、自動で行うことも可能である。
(2-2.変形例2)
 図10は、本開示の変形例に係る投射型表示装置3の光学系の構成の一例を表わしたものである。この投射型表示装置3は、透過型の液晶パネル(LCD、液晶パネル724R,724G,724B)により光変調を行う透過型3LCD方式のプロジェクタの構成の一例を表した概略図である。本変形例における投射型表示装置3は、例えば、光源光学系10と、照明光学系71および画像生成部72を有する画像生成システム70と、投射光学系80とを含んで構成されている。なお、光源光学系10は、上記実施の形態と同様の構成を有するものであり、本変形例ではその説明を省略する。
 照明光学系71は、例えば、インテグレータ素子713と、偏光変換素子714と、集光レンズ715とを有する。インテグレータ素子713は、二次元に配列された複数のマイクロレンズを有する第1のフライアイレンズ711およびその各マイクロレンズに1つずつ対応するように配列された複数のマイクロレンズを有する第2のフライアイレンズ712を含んでいる。
 光源光学系10からインテグレータ素子713に入射する光(平行光)は、第1のフライアイレンズ711のマイクロレンズによって複数の光束に分割され、第2のフライアイレンズ712における対応するマイクロレンズにそれぞれ結像される。第2のフライアイレンズ712のマイクロレンズのそれぞれが、二次光源として機能し、輝度が揃った複数の平行光を、偏光変換素子714に入射光として照射する。
 インテグレータ素子713は、全体として、光源光学系10から偏光変換素子714に照射される入射光を、均一な輝度分布に整える機能を有する。
 偏光変換素子714は、インテグレータ素子713等を介して入射する入射光の偏光状態を揃える機能を有する。この偏光変換素子714は、例えば、光源光学系10の出射側に配置されたレンズ15等を介して、青色光Lb、緑色光Lgおよび赤色光Lrを含む出射光を出射する。
 照明光学系71は、さらに、ダイクロイックミラー716およびダイクロイックミラー717、ミラー718、ミラー719およびミラー720、リレーレンズ721およびリレーレンズ722、フィールドレンズ723R、フィールドレンズ723Gおよびフィールドレンズ723B、画像生成部72としての液晶パネル724R、710Gおよび710B、ダイクロイックプリズム730を含んでいる。
 ダイクロイックミラー716およびダイクロイックミラー717は、所定の波長域の色光を選択的に反射し、それ以外の波長域の光を透過させる性質を有する。例えば、ダイクロイックミラー716は、赤色光Lrを選択的に反射する。ダイクロイックミラー717は、ダイクロイックミラー716を透過した緑色光Lgおよび青色光Lbのうち、緑色光Lgを選択的に反射する。残る青色光Lbが、ダイクロイックミラー717を透過する。これにより、光源光学系10から出射された光(白色光Lw)が、異なる色の複数の色光に分離される。
 分離された赤色光Lrは、ミラー718により反射され、フィールドレンズ723Rを通ることによって平行化された後、赤色光の変調用の液晶パネル724Rに入射する。緑色光Lgは、フィールドレンズ723Gを通ることによって平行化された後、緑色光の変調用の液晶パネル724Gに入射する。青色光Lbは、リレーレンズ721を通ってミラー719により反射され、さらにリレーレンズ722を通ってミラー720により反射される。ミラー720により反射された青色光Lbは、フィールドレンズ723Bを通ることによって平行化された後、青色光Lbの変調用の液晶パネル724Bに入射する。
 液晶パネル724R、724Gおよび724Bは、画像情報を含んだ画像信号を供給する図示しない信号源(例えば、PC等)と電気的に接続されている。液晶パネル724R、724Gおよび724Bは、供給される各色の画像信号に基づき、入射光を画素毎に変調し、それぞれ赤色画像、緑色画像および青色画像を生成する。変調された各色の光(形成された画像)は、ダイクロイックプリズム730に入射して合成される。ダイクロイックプリズム730は、3つの方向から入射した各色の光を重ね合わせて合成し、投射光学系80に向けて出射する。
 投射光学系80は、複数のレンズ810等を有し、ダイクロイックプリズム730によって合成された光を図示しないスクリーンに照射する。これにより、フルカラーの画像が表示される。
 以上、実施の形態および変形例を挙げて本開示を説明したが、本開示は上記実施の形態等に限定されるものではなく、種々変形が可能である。例えば、上記実施の形態および変形例1では、光源部12のうち、第1のレーザ群12Aから射出される励起光EL1の強度を制御する例を示したが、これに限らず、上記実施の形態および変形例1の方法を用いて、第2のレーザ群12Bから発振される青色レーザ光(レーザ光EL2)の強度も同時に制御するようにしてもよい。
 また、変形例1では、投射モード選択部52に替えて、画像情報解析部511を備えた投射型表示装置2について説明したが、投射モード選択部52と画像情報解析部511とを両方備えていてもよい。
 更に、上記実施の形態では、各光学系の構成要素を具体的に挙げて説明したが、全ての構成要素を備える必要はなく、また、他の構成要素を更に備えていてもよい。
 なお、本開示は以下のような構成を取ることも可能である。
(1)
 光源部と、前記光源部からの出射光を前記出射光の波長域とは異なる波長域の光に変換する波長変換層を含む円板状部材および前記円板状部材を回転させるモータ部を有する波長変換部と、入力された画像信号に基づいて前記光源部および前記波長変換部からの光を変調することにより画像光を生成する空間変調素子とを有する投射部と、
 前記空間変調素子によって画像光が生成されている状態において、前記光源部から射出される前記出射光の強度および前記円板状部材の回転数を制御する制御部と
 を備えた投射型表示装置。
(2)
 前記制御部は、前記光源部から射出される前記出射光の強度に応じて、前記円板状部材の回転数を制御する、前記(1)に記載の投射型表示装置。
(3)
 前記制御部は、前記光源部から射出される前記出射光の強度に応じて、前記円板状部材の回転数を段階的に制御する、前記(1)または(2)に記載の投射型表示装置。
(4)
 前記制御部は、前記光源部から射出される前記出射光の強度の上昇に応じて、前記円板状部材の回転数を増加させ、前記光源部から射出される前記出射光の強度の低下に応じて、前記円板状部材の回転数を減少させる、前記(1)乃至(3)のうちのいずれかに記載の投射型表示装置。
(5)
 前記制御部は複数の制御モードを有し、
 前記複数の制御モードは、互いに異なる前記光源部から射出される前記出射光の強度と、前記円板状部材の回転数との関係を有する、前記(1)乃至(4)のうちのいずれかに記載の投射型表示装置。
(6)
 前記制御部では、前記複数の制御モードのうちの選択された一の制御モードが実行される、前記(5)に記載の投射型表示装置。
(7)
 前記制御部は前記複数の制御モードとして、第1の制御モード、第2の制御モードおよび第3の制御モードを有し、
 前記第1の制御モードは、前記第2の制御モードよりも前記光源部から射出される前記出射光の強度が低く且つ、前記円板状部材の回転数が少なく、
 前記第3の制御モードは、前記第2の制御モードよりも前記光源部から射出される前記出射光の強度が高く且つ、前記円板状部材の回転数が多い、前記(5)または(6)に記載の投射型表示装置。
(8)
 前記複数の制御モードは、手動で切り替え可能となっている、前記(5)乃至(7)のうちのいずれかに記載の投射型表示装置。
(9)
 前記複数の制御モードのうちの前記一の制御モードは、外部から入力された選択信号に従って選択される、前記(6)または(7)に記載の投射型表示装置。
(10)
 入力された画像信号の画像情報を解析する画像情報解析部を備える、前記(1)乃至(9)のうちのいずれかに記載の投射型表示装置。
(11)
 前記制御部は、前記画像情報解析部で得られた情報に基づいて、前記光源部から射出される前記出射光の強度および前記円板状部材の回転数を制御する、前記(10)に記載の投射型表示装置。
(12)
 前記画像情報解析部は、前記入力された画像信号から輝度およびヒストグラムの少なくとも一方を取得する、前記(10)または(11)に記載の投射型表示装置。
(13)
 前記画像情報解析部は、取得した前記輝度または前記ヒストグラムを解析し、調光値を決定する、前記(12)に記載の投射型表示装置。
(14)
 前記制御部は、前記光源部から射出される前記出射光の強度と前記円板状部材の回転数との関係を規定する記憶部を備える、前記(1)乃至(13)のうちのいずれかに記載の投射型表示装置。
(15)
 前記記憶部には、ルックアップテーブルまたは前記光源部から射出される前記出射光の強度および前記円板状部材の回転数を算出する関係式が格納されている、前記(14)に記載の投射型表示装置。
(16)
 前記投射部は、前記空間変調素子からの光を投射する投射光学系をさらに備える、前記(1)乃至(15)のうちのいずれかに記載の投射型表示装置。
(17)
 光源部から射出された出射光を、波長変換層において前記出射光の波長域とは異なる波長域の光に波長変換し、
 波長変換した前記出射光を、入力された画像信号に基づいて空間変調素子において変調することにより、画像光を生成し、
 前記波長変換層を含む円板状部材をモータ部によって回転させると共に、前記空間変調素子において前記画像光が生成されている状態において、前記出射光の強度と、前記円板状部材の回転数とをそれぞれ制御する
 投射型表示装置の制御方法。
 本出願は、日本国特許庁において2016年11月2日に出願された日本特許出願番号2016-215338号を基礎として優先権を主張するものであり、この出願の全ての内容を参照によって本出願に援用する。
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。

Claims (17)

  1.  光源部と、前記光源部からの出射光を前記出射光の波長域とは異なる波長域の光に変換する波長変換層を含む円板状部材および前記円板状部材を回転させるモータ部を有する波長変換部と、入力された画像信号に基づいて前記光源部および前記波長変換部からの光を変調することにより画像光を生成する空間変調素子とを有する投射部と、
     前記空間変調素子によって画像光が生成されている状態において、前記光源部から射出される前記出射光の強度および前記円板状部材の回転数を制御する制御部と
     を備えた投射型表示装置。
  2.  前記制御部は、前記光源部から射出される前記出射光の強度に応じて、前記円板状部材の回転数を制御する、請求項1に記載の投射型表示装置。
  3.  前記制御部は、前記光源部から射出される前記出射光の強度に応じて、前記円板状部材の回転数を段階的に制御する、請求項1に記載の投射型表示装置。
  4.  前記制御部は、前記光源部から射出される前記出射光の強度の上昇に応じて、前記円板状部材の回転数を増加させ、前記光源部から射出される前記出射光の強度の低下に応じて、前記円板状部材の回転数を減少させる、請求項1に記載の投射型表示装置。
  5.  前記制御部は複数の制御モードを有し、
     前記複数の制御モードは、互いに異なる前記光源部から射出される前記出射光の強度と、前記円板状部材の回転数との関係を有する、請求項1に記載の投射型表示装置。
  6.  前記制御部では、前記複数の制御モードのうちの選択された一の制御モードが実行される、請求項5に記載の投射型表示装置。
  7.  前記制御部は前記複数の制御モードとして、第1の制御モード、第2の制御モードおよび第3の制御モードを有し、
     前記第1の制御モードは、前記第2の制御モードよりも前記光源部から射出される前記出射光の強度が低く且つ、前記円板状部材の回転数が少なく、
     前記第3の制御モードは、前記第2の制御モードよりも前記光源部から射出される前記出射光の強度が高く且つ、前記円板状部材の回転数が多い、請求項5に記載の投射型表示装置。
  8.  前記複数の制御モードは、手動で切り替え可能となっている、請求項5に記載の投射型表示装置。
  9.  前記複数の制御モードのうちの前記一の制御モードは、外部から入力された選択信号に従って選択される、請求項6に記載の投射型表示装置。
  10.  前記制御部は、入力された画像信号の画像情報を解析する画像情報解析部を備える、請求項1に記載の投射型表示装置。
  11.  前記制御部は、前記画像情報解析部で得られた情報に基づいて、前記光源部から射出される前記出射光の強度および前記円板状部材の回転数を制御する、請求項10に記載の投射型表示装置。
  12.  前記画像情報解析部は、前記入力された画像信号から輝度およびヒストグラムの少なくとも一方を取得する、請求項10に記載の投射型表示装置。
  13.  前記画像情報解析部は、取得した前記輝度または前記ヒストグラムを解析し、調光値を決定する、請求項12に記載の投射型表示装置。
  14.  前記制御部は、前記光源部から射出される前記出射光の強度と前記円板状部材の回転数との関係を規定する記憶部を備える、請求項1に記載の投射型表示装置。
  15.  前記記憶部には、ルックアップテーブルまたは前記光源部から射出される前記出射光の強度および前記円板状部材の回転数を算出する関係式が格納されている、請求項14に記載の投射型表示装置。
  16.  前記投射部は、前記空間変調素子からの光を投射する投射光学系をさらに備える、請求項1に記載の投射型表示装置。
  17.  光源部から射出された出射光を、波長変換層において前記出射光の波長域とは異なる波長域の光に波長変換し、
     波長変換した前記出射光を、入力された画像信号に基づいて空間変調素子において変調することにより、画像光を生成し、
     前記波長変換層を含む円板状部材をモータ部によって回転させると共に、前記空間変調素子において前記画像光が生成されている状態において、前記出射光の強度と、前記円板状部材の回転数とをそれぞれ制御する
     投射型表示装置の制御方法。
PCT/JP2017/033504 2016-11-02 2017-09-15 投射型表示装置および投射型表示装置の制御方法 WO2018083895A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018548581A JPWO2018083895A1 (ja) 2016-11-02 2017-09-15 投射型表示装置および投射型表示装置の制御方法
US16/334,988 US10785460B2 (en) 2016-11-02 2017-09-15 Projection display apparatus and method of controlling projection display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-215338 2016-11-02
JP2016215338 2016-11-02

Publications (1)

Publication Number Publication Date
WO2018083895A1 true WO2018083895A1 (ja) 2018-05-11

Family

ID=62076879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/033504 WO2018083895A1 (ja) 2016-11-02 2017-09-15 投射型表示装置および投射型表示装置の制御方法

Country Status (3)

Country Link
US (1) US10785460B2 (ja)
JP (1) JPWO2018083895A1 (ja)
WO (1) WO2018083895A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111624838A (zh) * 2019-02-28 2020-09-04 中强光电股份有限公司 投影***以及投影***的驱动方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111752079B (zh) * 2019-03-28 2022-05-06 中强光电股份有限公司 波长转换装置及投影机
WO2021215386A1 (ja) * 2020-04-23 2021-10-28 パナソニックIpマネジメント株式会社 波長変換複合部材並びにそれを用いた発光装置及び電子機器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011216294A (ja) * 2010-03-31 2011-10-27 Casio Computer Co Ltd 光源装置及びプロジェクタ
JP2011215332A (ja) * 2010-03-31 2011-10-27 Casio Computer Co Ltd 光源ユニット及びプロジェクタ
US20130063704A1 (en) * 2011-09-09 2013-03-14 Appotronics Corporation Limited Method and apparatus of white balance adjustment
US20130083299A1 (en) * 2011-09-30 2013-04-04 Coretronic Corporation Projector and light source controlling method thereof
JP2015119312A (ja) * 2013-12-18 2015-06-25 セイコーエプソン株式会社 プロジェクター、及び、プロジェクターの制御方法
JP2016186556A (ja) * 2015-03-27 2016-10-27 セイコーエプソン株式会社 画像表示装置、及び、画像表示装置の制御方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5799756B2 (ja) 2011-11-02 2015-10-28 セイコーエプソン株式会社 プロジェクター
JP6399612B2 (ja) * 2014-05-28 2018-10-03 Necディスプレイソリューションズ株式会社 光源装置、投写型表示装置、および光源制御方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011216294A (ja) * 2010-03-31 2011-10-27 Casio Computer Co Ltd 光源装置及びプロジェクタ
JP2011215332A (ja) * 2010-03-31 2011-10-27 Casio Computer Co Ltd 光源ユニット及びプロジェクタ
US20130063704A1 (en) * 2011-09-09 2013-03-14 Appotronics Corporation Limited Method and apparatus of white balance adjustment
US20130083299A1 (en) * 2011-09-30 2013-04-04 Coretronic Corporation Projector and light source controlling method thereof
JP2015119312A (ja) * 2013-12-18 2015-06-25 セイコーエプソン株式会社 プロジェクター、及び、プロジェクターの制御方法
JP2016186556A (ja) * 2015-03-27 2016-10-27 セイコーエプソン株式会社 画像表示装置、及び、画像表示装置の制御方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111624838A (zh) * 2019-02-28 2020-09-04 中强光电股份有限公司 投影***以及投影***的驱动方法

Also Published As

Publication number Publication date
JPWO2018083895A1 (ja) 2019-09-19
US20190268576A1 (en) 2019-08-29
US10785460B2 (en) 2020-09-22

Similar Documents

Publication Publication Date Title
JP5799756B2 (ja) プロジェクター
JP6383937B2 (ja) 光源装置および投写型映像表示装置
JP5874058B2 (ja) 光源装置および投写型表示装置
JP5870259B2 (ja) 照明装置および該照明装置を備える投射型表示装置
JP5987368B2 (ja) 照明装置および投射装置
JP4924677B2 (ja) 光源装置、投影装置及び投影方法
JP5770433B2 (ja) 光源装置及び画像投影装置
KR101228006B1 (ko) 광원 장치 및 프로젝터
JP6452172B2 (ja) 照明装置、ホイール劣化検出方法及びプロジェクタ
JP2018136506A (ja) 照明装置、画像投射装置
US20130083294A1 (en) Illumination system and projection apparatus
JP6406736B2 (ja) プロジェクタおよび画像表示方法
WO2018083895A1 (ja) 投射型表示装置および投射型表示装置の制御方法
JP6908036B2 (ja) 光源装置及び投影表示装置
WO2017203782A1 (ja) 光源装置及び投影表示装置
JP2014142524A (ja) 光源装置および投写型映像表示装置
JP2018013541A (ja) 投写型映像表示装置
JP7282575B2 (ja) 光源装置および画像投射装置
JP2017161627A (ja) プロジェクター及びその照明光学系の制御方法
JP6353583B2 (ja) 光源装置及び画像投影装置
JP2020013160A (ja) 光源装置及び画像投影装置
JP6070793B2 (ja) プロジェクターの制御方法およびプロジェクター
US11726396B2 (en) Light source device and projection-type display apparatus
WO2022034793A1 (ja) 照明装置および照明装置の制御方法ならびに投射型表示装置
JP2018124389A (ja) プロジェクター及びプロジェクターの制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17867644

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018548581

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17867644

Country of ref document: EP

Kind code of ref document: A1