WO2018083028A1 - Tube sans soudure en acier au manganèse moyen et procédé de fabrication - Google Patents

Tube sans soudure en acier au manganèse moyen et procédé de fabrication Download PDF

Info

Publication number
WO2018083028A1
WO2018083028A1 PCT/EP2017/077608 EP2017077608W WO2018083028A1 WO 2018083028 A1 WO2018083028 A1 WO 2018083028A1 EP 2017077608 W EP2017077608 W EP 2017077608W WO 2018083028 A1 WO2018083028 A1 WO 2018083028A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
content
tube according
particularly preferably
temperature
Prior art date
Application number
PCT/EP2017/077608
Other languages
German (de)
English (en)
Inventor
Peter PALZER
Manuel Otto
Thomas Evertz
Original Assignee
Salzgitter Flachstahl Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Salzgitter Flachstahl Gmbh filed Critical Salzgitter Flachstahl Gmbh
Publication of WO2018083028A1 publication Critical patent/WO2018083028A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B19/00Tube-rolling by rollers arranged outside the work and having their axes not perpendicular to the axis of the work
    • B21B19/02Tube-rolling by rollers arranged outside the work and having their axes not perpendicular to the axis of the work the axes of the rollers being arranged essentially diagonally to the axis of the work, e.g. "cross" tube-rolling ; Diescher mills, Stiefel disc piercers or Stiefel rotary piercers
    • B21B19/06Rolling hollow basic material, e.g. Assel mills
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the invention relates to a seamless tube made of a medium manganese steel with advantageous mechanical properties and a method for its preparation.
  • the invention relates to a seamless tube of a
  • medium manganese steel which has a good combination of strength and elongation at break, good residual toughness and also a TRIP
  • TWIP TWinning Induced Plasticity
  • Seamlessly manufactured tubes made of a manganese-containing steel for airbags are known, for example, from the published patent application DE 100 22 462 A1.
  • the steel has a high strength in% by weight with the following alloy composition: about 0.07 to about 0.15 C, about 1 to about 2 Mn, less than about 0.02 P, less than about 0.015 S, about 0, From 5 to about 2.10 Cr, from about 0.2 to about 1.0 Ni, from about 0.2 to about 0.7 Mo, less than about 0.65 Cu, less than about 0.25 residual elements and the residual weight of the composition Fe. Nothing is revealed about a TRIP and / or TRIP effect.
  • German patent DE 39 35 965 C1 also discloses the use of a steel as a material for producing pipes for reinforcing motor vehicle doors.
  • the steel used has, in addition to iron and common impurities, the following composition in% by weight: C: 0.15 to 0.25; Mn: 3.4 to 6.1; Ni: 0 until 10; Cr: 0 to 1, 0; Mo: 0 to 1, 0; V: 0 to 0.15; P: max. 0.03; S: max. 0.03; Si: max. 0.6; AI: max. 0.05.
  • the following relationship must be satisfied for the sum of some of the alloying contents: Mn + Ni + Cr + Mo + 10x V> 4.5% by weight.
  • the published patent application WO 99/01585 discloses an austenitic lightweight structural steel with TRIP and TWIP properties, which besides iron and conventional
  • Steel accompanying elements in mass% contains: Si: 1 to 6, Al: 1 to 8, wherein Al + Si ⁇ 12 and Mn: 10 to 30.
  • a steel having this composition is particularly good cold formable and deep drawable and can be used for sheets for cryogen Containers or piping can be used.
  • Japanese Unexamined Patent Publication JP H 052 631 94 A describes a wear-resistant, double-walled steel pipe made of a high-manganese steel which, in addition to iron and unavoidable impurities, contains the following elements: C: 0.5 to 1.2%; Si: ⁇ 1%; Mn: 10 to 25%, N: ⁇ 0.3%; solved AI: ⁇ 1%.
  • TRIP steel Because of its high work hardening, the TRIP steel achieves high levels of uniform elongation and tensile strength. TRIP steels u. a. in structural, chassis and crash-relevant components of vehicles, as sheet metal blanks, as well as welded blanks. Disclosure DE 10 2008 020 757 A1 discloses, in addition to TRIP steels, also austenitic TWIP steels (Twinning Induced Plasticity), in which intense twinning takes place during plastic cold forming. This process solidifies the steel, whereby the solidification takes place even at low load (from 300 MPa) and the elongation at break is above 60%.
  • the TWIP steel has a carbon content of about 0.6% by weight.
  • the alloying elements used are Mn (25 to 30%), Al and Si (up to 2%).
  • the present invention based on the object to provide a seamless tube, which is inexpensive to produce and a good combination of properties of strength and elongation at break and a good Residual toughness and a TRIP and / or TWIP effect has. Furthermore, a method for producing such a tube should be specified.
  • According to the invention provides a seamless tube made of a
  • Elements Si, Cr, Ni, Nb, V, Ti, Mo, Sn, Cu, W, Co, Zr, Ta, Te, Sb, B, having a microstructure consisting of 10 to 90 vol% austenite, less than 40 vol% ferrite and / or bainite and balance martensite, an excellent combination of strength, elongation and toughness properties.
  • this manganese-containing medium manganese steel seamless tube (medium manganese steel or MMnS) based on the alloying elements C and Mn of the present invention is very inexpensive.
  • the steel advantageously has a TRI P / TW IP effect during deformation or deformation, which, in combination with the optionally alloyed elements, results in a very broad field of property combinations of the mechanical properties:
  • Tensile strength Rm 500-2,100 MPa Elongation at break A80:> 4 to 45%, whereby higher tensile strengths tend to be attributed to lower elongations at break and vice versa.
  • Rm of more than 800 to 900 MPa Rm x A80> 14400 to 50,000 MPa%
  • Rm of more than 900 to 1200 MPa Rm x A80> 13200 to 45000 MPa%
  • Rm of over 1200 to 1400 MPa Rm x A80> 1 1200 to 42000 MPa%
  • Rm of over 1400 to 1800 MPa Rm x A80> 10000 to 40000 MPa%
  • Isel rolling mill, continuous rolling mill, vocational rolling mill or a collision facility wherein optionally at least one or more rolling steps at a temperature of 60 ° C below the Ac3 temperature, preferably 60 ° C to 450 ° C, more preferably from 100 ° C to 350 ° C below preferably utilizing the TWIP effect, - Optional intermediate heating between the rolling steps to a temperature of 60 ° C to 1250 ° C
  • Hydroforming at room temperature or at a temperature between room temperature and below Ac3 temperature preferably at a temperature of 60 ° C to below Ac3 temperature, more preferably 60 ° C to 450 ° C and most preferably at a temperature of 100 to 350 ° C. .
  • the seamless tube can be manufactured, for example, with the following sequence: Production of a hollow block from a solid block, subsequent Elongieren (stretching) of the hollow block to a thick-walled front tube (billet) and then finish rolling the billet to a tube with the required final dimensions.
  • a solid block (round cast bar) is essentially understood to mean a continuous casting section produced by round continuous casting which already has a desired length.
  • the optional forming of the tube at a temperature of 60 ° C to below Ac3, preferably 60 ° C to 450 ° C and particularly preferably at a temperature of 100 to 350 ° C can be advantageous deformation twins in the material are introduced, whereby the strength, in particular the yield strength, increased and the Restumformlibrary largely retained.
  • a final deformation below 60 ° C causes a hardening of the tube by the TRIP effect, whereby the remoulding capacity decreases.
  • the manganese-containing steel according to the invention for seamless tubes as a substitute for high-alloy steels, especially Cr, CrNi, CrMn, CrMnNi, CrN, high Mn-containing steels, especially for the chemical industry, food industry, automotive industry, aerospace, sanitary applications, machinery - and plant construction, consumer goods industry, line and apparatus construction are used, whereby the seamless tubes produced can be produced more cheaply.
  • the optionally alloyed elements advantageously have the following contents in% by weight:
  • Si 0-6, preferably 0.05-3, particularly preferably 0.1-1.5
  • Ni 0-3, preferably 0.01-0.8, particularly preferably 0.01-0.5
  • Nb 0-1, preferably 0.005-0.4, more preferably 0.01-0.1 V: 0-1.5, preferably 0.005-0.6, particularly preferably 0.01-0.3
  • Mo 0-3, preferably 0.005-1.5, more preferably 0.01-0.5
  • Cu 0-3, preferably ⁇ 0.5, particularly preferably ⁇ 0.1
  • W 0-5, preferably 0.01-3, particularly preferably 0.2-1.5
  • Co 0-8, preferably 0.01-5, particularly preferably 0.3-2
  • Zr 0 - 0.5, preferably 0.005 - 0.3, particularly preferably 0.01 - 0.2
  • Ta 0 - 0.5, preferably 0.005 - 0.3, particularly preferably 0.01 - 0.1
  • Te 0 - 0.5, preferably 0.005 - 0.3, particularly preferably 0.01 - 0.1
  • the seamless tube according to the invention has a multi-phase structure consisting of 5 to 90% by volume austenite, less than 40% by volume ferrite and / or bainite and the remainder martensite.
  • Part of the martensite is present as tempered martensite and part of the austenite of up to 90% may be in the form of annealing or deformation twins.
  • the steel may optionally have both a TRIP and a TWIP effect, with one portion of the austenite remaining during a subsequent one
  • Deformation / FormingAmaking seamless pipe can transform into martensite.
  • Connections are versatile and complex. The following is intended to affect the effect of Alloy elements in the alloy according to the invention will be discussed in more detail. The following describes the positive effects of the alloying elements used according to the invention: Carbon C: C is required for the formation of carbides, stabilizes the austenite and increases the strength. Higher contents of C deteriorate the welding properties and lead to the deterioration of the elongation and toughness properties, therefore, a maximum content of less than 0.9% by weight is set. In order to achieve a fine precipitation of carbides, a minimum addition of 0.0005% by weight is required.
  • Mn stabilizes the austenite, increases strength and toughness, and optionally allows deformation-induced martensite and / or twin formation in the alloy of the present invention. Contents less than 4% by weight are not sufficient to stabilize the austenite and thus worsen the
  • Phosphorus P is a trace element or trace element from iron ore and is dissolved in the iron lattice as a substitution atom. Phosphor boosts
  • Solid solution solidifies the hardness and improves the hardenability.
  • it is usually attempted to lower the phosphorus content as much as possible, since it is highly susceptible to segregation, among other things, by its low diffusion rate and greatly reduces the toughness.
  • the addition of phosphorus to the grain boundaries can cause cracks along the grain boundaries during hot rolling.
  • phosphorus increases the transition temperature from tough to brittle behavior by up to 300 ° C.
  • Phosphorus content limited to values less than 0.1% by weight.
  • S S, like phosphorus, is bound as a trace or accessory element in iron ore or is cokeed through the blast furnace route entered. It is generally undesirable in steel, as it tends to segregate severely and has a strong embrittlement, which increases the elongation and elongation
  • the sulfur content is limited to values less than 0.1% by weight.
  • N is also a companion element of steelmaking. In the dissolved state, it improves the strength and toughness properties of steels containing more than or equal to 4% by weight of Mn. Low Mn-alloyed steels with less than 4% by weight Mn tend to have a strong aging effect in the presence of free nitrogen. The nitrogen diffuses even at low
  • Curing of the nitrogen in the form of nitrides is possible, for example, by alloying aluminum and / or titanium and Nb, V, B, aluminum nitrides in particular having a negative effect on the forming properties of the alloy according to the invention.
  • the nitrogen content is limited to less than 0.1% by weight.
  • Aluminum AI improves the strength and elongation properties, reduces the specific gravity and influences the conversion behavior of the
  • an Al content of 0.01 to 5% by weight is preferred in order to increase the strength while maintaining good elongation.
  • contents of> 0.5 to 3% by weight enable a particularly large product of strength and elongation at break.
  • Silicon Si hinders carbon diffusion, reduces specific gravity and increases strength and elongation and toughness properties. Contents of more than 6% by weight prevent further processing by cold rolling due to embrittlement of the material. Therefore, a maximum content of 6% by weight is set. Optionally, a content of 0.05 to 3% by weight Since contents in this range have a positive influence on the forming properties. Si contents of> 0.1 to 1.5% by weight have proven to be particularly advantageous for the forming and conversion properties.
  • Chromium Cr improves strength and reduces corrosion rate, retards ferrite and pearlite formation and forms carbides.
  • the maximum content is set at 6% by weight because higher contents result in deterioration in elongation properties and significantly higher costs.
  • a Cr content of 0.1 to 4% by weight is preferable to reduce the precipitation of crude Cr carbides.
  • contents of> 0.5 to 2.5% by weight have proven to be advantageous for the stabilization of austenite and the precipitation of fine Cr carbides.
  • Nickel Ni The optional addition of at least 0.01 weight percent nickel stabilizes the austenite, improves strength and toughness properties, and reduces carbide formation. Furthermore, even at low levels, Ni compensates for any negative effects of Cu during continuous casting.
  • the maximum content is set here for cost reasons to 3% by weight.
  • a maximum content of Ni of preferably 0.8 or especially preferably 0.5% by weight has proven to be particularly economical.
  • Niob Nb acts as a carbide former to fine grain, thereby improving strength, toughness, and elongation properties. Contents of Nb of more than 1% by weight give no further advantages, which is why a maximum content of 1% by weight is determined. Optionally, a minimum content of 0.005% by weight and a maximum content of 0.4% by weight, or particularly preferably a range of 0.01% to 0.1% by weight, is established in order to achieve the most efficient possible precipitation of fine carbides.
  • Vanadium V acts as a carbide-forming agent that refines grain, thereby improving its strength, toughness, and elongation properties. Levels of V of more than 1, 5% by weight give no further advantages, which is why a maximum content of 1, 5% by weight is set. Optionally, a minimum salary from 0.005% by weight and a maximum content of 0.6% by weight, respectively
  • Titanium Ti acts as a fine grain carbide former, enhancing its strength, toughness, and elongation properties. Furthermore, Ti reduces intergranular corrosion. Contents of Ti more than 1.5% by weight deteriorate the elongation properties, therefore, a maximum content of Ti of 1.5% by weight is determined.
  • a maximum content of Ti of 1.5% by weight is determined.
  • Mo acts as a carbide former, increasing strength and increasing resistance to hydrogen induced delayed cracking and cracking
  • Sn Sn increases strength but, similar to copper, accumulates at higher temperatures below the scale and grain boundaries. It leads by penetration into the grain boundaries to the formation of low-melting phases and associated with cracks in the structure and solder brittleness, which is why an optional
  • Copper Cu reduces the corrosion rate and increases the strength. Contents greater than 3% by weight deteriorate the manufacturability by forming low-melting phases during casting and hot rolling, and therefore a maximum content of 3% by weight is set to increase the strength. To improve the castability, a content of ⁇ 0.5% by weight, particularly preferably ⁇ 0.1% by weight is determined.
  • Tungsten W W acts as a carbide former and increases strength. Contents of W of more than 5% by weight deteriorate the elongation properties, therefore, one
  • Maximum content of 5% by weight W is determined.
  • Co increases the strength of the steel and stabilizes the austenite. Contents of more than 8% by weight deteriorate the elongation properties, which is why optionally a maximum content of 8% by weight is determined. Preferably, an optional minimum content of 0.01% by weight and a maximum content of 5% by weight, or particularly preferably a range of 0.3 to 2% by weight is provided which, in addition to the strength properties, in particular advantageously influences the austenite stability.
  • Zirconium Zr acts as a carbide former and improves strength. Contents of Zr of more than 0.5% by weight deteriorate the elongation properties, therefore, a
  • Tantalum Ta acts as a carbide-forming agent to refine grain, thereby improving strength, toughness and elongation properties. Contents of more than 0.5% by weight cause no further improvement in the properties.
  • a maximum content of 0.5% by weight is optionally set.
  • a minimum content of 0.005 and a maximum content of 0.3% by weight are determined, in which the grain refining can be advantageously effected.
  • a content of from 0.01% by weight to 0.1% by weight is particularly desirable.
  • Te improves corrosion resistance and mechanical properties as well as machinability. Furthermore, Te increases the strength of Manganese sulfides (MnS), which is thereby less strongly stretched in the rolling direction during hot and cold rolling. Contents above 0.5% by weight deteriorate the elongation and toughness properties, and therefore a maximum content of 0.5% by weight is determined. Optionally, a minimum content of 0.005% by weight and a maximum content of 0.3% by weight are determined, which advantageously improves mechanical properties and increases the strength of existing MnS. Furthermore, a minimum content of 0.01% by weight and a maximum content of 0.1% by weight are preferred, which allow an optimization of the mechanical properties while reducing the alloying costs.
  • MnS Manganese sulfides
  • Antimony Sb Sb delays carbon diffusion and carbide precipitation and deposits at grain boundaries. Contents above 0.5% by weight significantly reduce the elongation and toughness properties, therefore, a maximum content of 0.5% by weight is set. Optionally, a minimum content of 0.005% by weight and a maximum content of 0.06% by weight, or more preferably a range of 0.01 to 0.03% by weight is set to delay the excretion of undesirably coarse carbides.
  • the maximum content is set to 0.15% by weight.
  • a minimum content of 0.001% by weight and a maximum content of 0.08% by weight, or more preferably, a range of 0.002 to 0.01% by weight is set to make advantageous use of the strength-increasing effect of boron.
  • Ca is used to modify non-metallic oxide inclusions, which otherwise lead to unwanted failure of the alloy
  • Weight% Ca gives no further advantage in the inclusion modification, deteriorates the manufacturability and is due to the high vapor pressure of Ca avoid in molten steel. Therefore, an optional maximum content of 0.004% by weight is provided.
  • the seamless tube thus produced receives a surface refinement, for example by electrolytic galvanizing or hot-dip galvanizing and instead of galvanizing or additively a coating on an organic or inorganic basis.
  • the coating systems may be, for example, organic coatings, plastic coatings or lacquers or other inorganic coatings such as iron oxide layers.
  • the seamless tube according to the invention is also characterized by an increased resistance to delayed fracture and to hydrogen embrittlement. This is achieved mainly by a precipitation of molybdenum carbide, which acts as a hydrogen trap.
  • the steel has a high resistance to
  • Liquid metal embrittlement (LME) during welding Liquid metal embrittlement (LME) during welding.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

L'invention concerne un tube sans soudure fabriqué en acier au manganèse moyen, présentant un effet TRIP et/ou TWIP en cas de déformation, ayant la composition chimique suivante exprimée en % en poids : C : 0,0005 à 0,9 ; Mn : 4 à 10 ; Al : 0,01 à 10 ; P : < 0,1 ; S : <0,1 ; N : <0,1 ; sachant que Al + Mn > 6,15, de préférence > 6,50, le reste étant constitué de fer, y compris des éléments accompagnant inévitablement l'acier, avec éventuellement ajout par alliage au moins d'un des éléments suivants : Si,Cr, Ni, Nb, V, Ti, Mo, Sn, Cu, W, Co,Zr,Ta, Te, Sb, B,Ca, présentant une structure constituée de 5 à 90 % en volume d'austénite, moins de 40 % en volume de ferrite et/ou de bainite, le reste étant constitué de martensite. Ce tube fabriqué sans soudure est de fabrication économique et offre une bonne combinaison de propriétés en termes de solidité et d'allongement à la rupture ainsi qu'une bonne ténacité résiduelle tout comme un effet TRIP et/ou TWIP. L'invention concerne en outre un procédé de fabrication d'un tel tube.
PCT/EP2017/077608 2016-11-02 2017-10-27 Tube sans soudure en acier au manganèse moyen et procédé de fabrication WO2018083028A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016120894.9 2016-11-02
DE102016120894 2016-11-02

Publications (1)

Publication Number Publication Date
WO2018083028A1 true WO2018083028A1 (fr) 2018-05-11

Family

ID=60331576

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/EP2017/077608 WO2018083028A1 (fr) 2016-11-02 2017-10-27 Tube sans soudure en acier au manganèse moyen et procédé de fabrication
PCT/EP2017/077609 WO2018083029A1 (fr) 2016-11-02 2017-10-27 Tube fabriqué sans soudure et réalisé par formage à basse température en acier au manganèse moyen et procédé de fabrication

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/EP2017/077609 WO2018083029A1 (fr) 2016-11-02 2017-10-27 Tube fabriqué sans soudure et réalisé par formage à basse température en acier au manganèse moyen et procédé de fabrication

Country Status (1)

Country Link
WO (2) WO2018083028A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108998734A (zh) * 2018-08-23 2018-12-14 东北大学 一种超高强塑性冷轧Mn-Al系TRIP钢板及其快速退火制备方法
CN110408862A (zh) * 2019-08-19 2019-11-05 衡阳华菱钢管有限公司 无缝钢管、制造方法及其应用
CN112404163A (zh) * 2020-11-04 2021-02-26 太原科技大学 一种高性能难变形金属精密无缝管材制备方法
WO2021098208A1 (fr) * 2019-11-20 2021-05-27 南京钢铁股份有限公司 Acier d'épaisseur moyenne à teneur moyenne en manganèse de qualité 690 mpa ayant une résistance élevée et un faible rapport d'élasticité, et procédé de fabrication de celui-ci

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112662932B (zh) * 2019-10-15 2022-03-04 中国石油化工股份有限公司 一种twip钢及其制备方法
CN111074170A (zh) * 2019-12-27 2020-04-28 天津威尔朗科技有限公司 一种中锰高铬耐磨衬板及其生产工艺
CN113549745B (zh) * 2021-07-27 2022-09-13 内蒙古工业大学 一种低成本第三代汽车钢加工工艺

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3935965C1 (fr) 1989-10-26 1991-05-08 Mannesmann Ag, 4000 Duesseldorf, De
JPH05263194A (ja) 1992-03-19 1993-10-12 Sumitomo Metal Ind Ltd ボイラ用耐摩耗複層鋼管およびその製造方法
WO1999001585A1 (fr) 1997-07-01 1999-01-14 Georg Frommeyer Acier de construction leger et son utilisation
JPH1161254A (ja) * 1997-08-13 1999-03-05 Sumitomo Metal Ind Ltd 高強度高耐食継目無鋼管の製造方法
DE10022462A1 (de) 1999-05-12 2000-11-30 Trw Inc Nahtloses Qualitätsrohr mit hoher Festigkeit und geringem Kohlenstoffgehalt für einen Airbag
DE102005052178A1 (de) 2004-10-25 2006-04-27 V&M Deutschland Gmbh Verfahren zum Herstellen eines nahtlos warmgefertigten Stahlrohres
WO2007000156A1 (fr) * 2005-06-28 2007-01-04 Scheller Pjotr R Acier austenitique-martensitique a resistance elevee pour construction legere et son utilisation
DE102008020757A1 (de) 2007-04-30 2008-11-06 Volkswagen Ag Verfahren zur Umformung von Blechwerkstücken aus Eisen-Mangan-Stahl
EP2383353A2 (fr) * 2010-04-30 2011-11-02 ThyssenKrupp Steel Europe AG Acier à résistance élevée comprenant du Mn, produit plat en acier composé d'un tel acier et son procédé de fabrication
US20120070330A1 (en) * 2008-11-05 2012-03-22 Klaus Brokmeier High-strength steel sheet and the method for production therefor
DE102012013113A1 (de) 2012-06-22 2013-12-24 Salzgitter Flachstahl Gmbh Hochfester Mehrphasenstahl und Verfahren zur Herstellung eines Bandes aus diesem Stahl mit einer Mindestzugfestigkleit von 580MPa
EP2994548A1 (fr) * 2013-05-06 2016-03-16 Salzgitter Flachstahl GmbH Procédé de fabrication de pièces en acier léger

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3935965C1 (fr) 1989-10-26 1991-05-08 Mannesmann Ag, 4000 Duesseldorf, De
JPH05263194A (ja) 1992-03-19 1993-10-12 Sumitomo Metal Ind Ltd ボイラ用耐摩耗複層鋼管およびその製造方法
WO1999001585A1 (fr) 1997-07-01 1999-01-14 Georg Frommeyer Acier de construction leger et son utilisation
JPH1161254A (ja) * 1997-08-13 1999-03-05 Sumitomo Metal Ind Ltd 高強度高耐食継目無鋼管の製造方法
DE10022462A1 (de) 1999-05-12 2000-11-30 Trw Inc Nahtloses Qualitätsrohr mit hoher Festigkeit und geringem Kohlenstoffgehalt für einen Airbag
DE102005052178A1 (de) 2004-10-25 2006-04-27 V&M Deutschland Gmbh Verfahren zum Herstellen eines nahtlos warmgefertigten Stahlrohres
WO2007000156A1 (fr) * 2005-06-28 2007-01-04 Scheller Pjotr R Acier austenitique-martensitique a resistance elevee pour construction legere et son utilisation
DE102008020757A1 (de) 2007-04-30 2008-11-06 Volkswagen Ag Verfahren zur Umformung von Blechwerkstücken aus Eisen-Mangan-Stahl
US20120070330A1 (en) * 2008-11-05 2012-03-22 Klaus Brokmeier High-strength steel sheet and the method for production therefor
EP2383353A2 (fr) * 2010-04-30 2011-11-02 ThyssenKrupp Steel Europe AG Acier à résistance élevée comprenant du Mn, produit plat en acier composé d'un tel acier et son procédé de fabrication
DE102012013113A1 (de) 2012-06-22 2013-12-24 Salzgitter Flachstahl Gmbh Hochfester Mehrphasenstahl und Verfahren zur Herstellung eines Bandes aus diesem Stahl mit einer Mindestzugfestigkleit von 580MPa
EP2994548A1 (fr) * 2013-05-06 2016-03-16 Salzgitter Flachstahl GmbH Procédé de fabrication de pièces en acier léger

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108998734A (zh) * 2018-08-23 2018-12-14 东北大学 一种超高强塑性冷轧Mn-Al系TRIP钢板及其快速退火制备方法
CN110408862A (zh) * 2019-08-19 2019-11-05 衡阳华菱钢管有限公司 无缝钢管、制造方法及其应用
WO2021098208A1 (fr) * 2019-11-20 2021-05-27 南京钢铁股份有限公司 Acier d'épaisseur moyenne à teneur moyenne en manganèse de qualité 690 mpa ayant une résistance élevée et un faible rapport d'élasticité, et procédé de fabrication de celui-ci
CN112404163A (zh) * 2020-11-04 2021-02-26 太原科技大学 一种高性能难变形金属精密无缝管材制备方法
CN112404163B (zh) * 2020-11-04 2023-02-28 太原科技大学 一种高性能难变形金属精密无缝管材制备方法

Also Published As

Publication number Publication date
WO2018083029A1 (fr) 2018-05-11

Similar Documents

Publication Publication Date Title
WO2018083028A1 (fr) Tube sans soudure en acier au manganèse moyen et procédé de fabrication
EP3535431B1 (fr) Produit d&#39;acier à teneur en manganèse intermédiaire pour application à basse température et son procédé de fabrication
EP3504349B1 (fr) Procédé de fabrication d&#39;une bande d&#39;acier à résistance très élevée présentant des propriétés améliorées lors du traitement ultérieur et une telle bande d&#39;acier
EP3332046B1 (fr) Acier au manganèse à haute résistance contenant de l&#39;aluminium, procédé de fabrication d&#39;un produit plat en acier à partir de cet acier et produit plat en acier fabriqué d&#39;après celui-ci
EP3512967B1 (fr) Procédé pour la fabrication d&#39;une pièce façonnée en un produit plat en acier contenant du manganèse et pièce correspondante
EP3332047A1 (fr) Acier hautement résistant contenant du manganèse, utilisation de l&#39;acier pour des produits plats en acier laminés flexibles et procédé de fabrication et produit plat en acier le concernant
EP3512968B1 (fr) Procédé pour fabriquer un produit plat en acier à partir d&#39;un acier au manganèse et produit plat en acier résultant
DE102019104597A1 (de) Stahlprodukt aus manganhaltigem Leichtbaustahl mit hohem Energieaufnahmevermögen bei schlagartiger Beanspruchung und niedrigen Temperaturen und Verfahren zu seiner Herstellung
EP3724359A1 (fr) Produit plat en acier laminé à chaud, à rigidité élevée, doté d&#39;une résistance à la fissuration de bords élevée ainsi que d&#39;une capacité de durcissement à la cuisson élevée, procédé de fabrication d&#39;un tel produit plat en acier
EP3551776A1 (fr) Procédé de fabrication d&#39;une bande laminée à chaud ou à froid et/ou d&#39;un produit plat en acier laminé de manière flexible constitué par un acier contenant du manganèse, hautement solide et produit plat en acier ainsi obtenu
EP3430180B1 (fr) Procédé de fabrication d&#39;une pièce en acier façonnée à chaud
WO2018050634A1 (fr) Procédé pour la fabrication d&#39;une pièce façonnée à partir d&#39;un produit plat en acier à teneur moyenne en manganèse et pièce correspondante
DE102016115618A1 (de) Verfahren zur Herstellung eines höchstfesten Stahlbandes mit verbesserten Eigenschaften bei der Weiterverarbeitung und ein derartiges Stahlband
WO2017211952A1 (fr) Procédé de fabrication d&#39;une bande d&#39;acier laminée à froid présentant des propriétés trip à partir d&#39;un acier à résistance élevée contenant du manganèse
EP3749469B1 (fr) Procédé de fabrication d&#39;un élément structural par formage à chaud d&#39;un produit primaire en acier manganésifère et élément structural formé à chaud
EP3122910A2 (fr) Composants en alliage d&#39;acier et procédé de fabrication de composants à haute résistance
DE102016204194A1 (de) Federnde Bauteile aus einer Stahllegierung und Herstellungsverfahren
EP4022100A1 (fr) Matériau à base d&#39;acier conçu pour une pièce soumise à la torsion, procédé de production d&#39;une pièce soumise à la torsion à partir de ce matériau à base d&#39;acier, et pièce ainsi produite

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17798130

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17798130

Country of ref document: EP

Kind code of ref document: A1