WO2018082500A1 - 一种导频映射方法及装置 - Google Patents

一种导频映射方法及装置 Download PDF

Info

Publication number
WO2018082500A1
WO2018082500A1 PCT/CN2017/107859 CN2017107859W WO2018082500A1 WO 2018082500 A1 WO2018082500 A1 WO 2018082500A1 CN 2017107859 W CN2017107859 W CN 2017107859W WO 2018082500 A1 WO2018082500 A1 WO 2018082500A1
Authority
WO
WIPO (PCT)
Prior art keywords
dmrs
resource unit
mapping
different
data channel
Prior art date
Application number
PCT/CN2017/107859
Other languages
English (en)
French (fr)
Inventor
林祥利
潘学明
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Publication of WO2018082500A1 publication Critical patent/WO2018082500A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a pilot mapping method and apparatus.
  • TTI transmission time interval
  • sTTI Short Transmission Time Interval
  • each radio frame is composed of a subframe.
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • the frame structure shown in FIG. 1 may be adopted, and the frame structure shown in FIG. 1 may be referred to as a frame structure 1 (Frame).
  • Structure type 1, FS1 In FS1, on each carrier, one radio frame includes 10 1ms subframes, each subframe has two 0.5ms slots, and each slot is fixed by a fixed number of orthogonal frequency division multiplexing ( Orthogonal Frequency Division Multiplexing (OFDM) symbol composition.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the uplink transmission and the downlink transmission use different carrier frequencies, but use the same frame structure, that is, in the LTE FDD system, the TTI duration of the uplink transmission and the downlink transmission is 1 ms.
  • the frame structure shown in FIG. 2 may be employed, and the frame structure shown in FIG. 2 may be referred to as Frame Structure type 2 (FS2).
  • FS2 Frame Structure type 2
  • each 10ms radio frame is composed of two 5ms half frames, and each field contains five subframes with a duration of 1ms.
  • the subframes in the FS2 include a downlink subframe, an uplink subframe, and a special subframe, and each special subframe includes a Downlink Pilot Time Slot (DwPTS), a Guard Period (GP), and an uplink transmission slot.
  • DwPTS Downlink Pilot Time Slot
  • GP Guard Period
  • Uplink Pilot Time Slot, UpPTS is composed of three parts. Each field includes at least one downlink subframe and at least one uplink subframe, and at most one special subframe. In an LTE TDD system, uplink transmissions and downlink transmissions use different subframes or different time slots on the same frequency.
  • a typical working mode of sTTI transmission is to include multiple short TTI transmissions with a duration shorter than 1 ms in the subframe structure defined in the existing LTE mechanism.
  • the downlink transmission supports a short physical downlink shared channel (sPDSCH) and a short physical downlink control channel (sPDCCH).
  • the length of the sTTI can be 2 or 7 OFDM symbols (when However, it is not excluded that the number of other symbols does not exceed 14 or the time domain does not exceed 1 ms.
  • Multiple sPDSCHs, or multiple sPDCCHs, or multiple sPDSCHs and sPDCCH transmissions may be included in one subframe.
  • the control channel and the data channel of the sTTI exist, and the control channel and the data channel of the sTTI need to be based on Demodulation Reference Symbol (DMRS) demodulation.
  • DMRS Demodulation Reference Symbol
  • the traditional LTE system generally demodulates a physical control downlink control channel (PDCCH) based on a cell-specific reference signal (CRS), and the PDCCH is used to carry downlink control information, as above.
  • PDCCH physical control downlink control channel
  • CRS cell-specific reference signal
  • Line scheduling instructions, downlink data transmission indications, common control information, and the like There may be multiple PDCCHs in the control region of each downlink subframe, occupying 1 to 3 OFDM symbols. Therefore, in the current communication network using sTTI, there is no method for demodulating the control channel and the data channel of the sTTI based on the DMRS.
  • the embodiment of the invention provides a pilot mapping method and device, which allocates independent DMRS for the control channel and the data channel of the sTTI, so as to implement DMRS-based demodulation of the control channel and the data channel of the sTTII.
  • a pilot mapping method comprising:
  • the DMRS of the control channel is a first DMRS
  • the DMRS of the data channel is a second DMRS
  • the first DMRS and the second DMRS are independent of each other.
  • the independent demodulation of the control channel and the data channel based on DMRS in a short transmission time interval is realized, and the control is performed.
  • the DMRSs of the channel and data channel mapping are independent of each other, avoiding resource conflicts between the DMRS for data channel demodulation and the DMRS for control channel demodulation, thereby improving channel demodulation performance.
  • mapping the DMRS separately for the control channel and the data channel includes:
  • the second DMRS is mapped in a resource unit belonging to the data area.
  • mapping the DMRS separately for the control channel and the data channel includes:
  • the second DMRS is mapped.
  • the determining the reserved resource unit in the resource unit of the control area includes:
  • mapping the second DMRS includes:
  • the resource unit of the first DMRS mapping is different from the resource unit of the second DMRS mapping.
  • the port number corresponding to the first DMRS is different from the port number of the second DMRS.
  • the number and/or location of resource units mapping the first DMRS are different in different short transmission time intervals; and/or mapping in different short transmission time intervals The number and/or location of resource elements of the two DMRSs are different.
  • the number and location of resource elements mapping the first DMRS are the same in different short transmission time intervals; and/or mapping the second DMRS in different short transmission time intervals
  • the number and location of resource units are the same.
  • a pilot mapping apparatus has a function of implementing the pilot mapping method involved above, and the function may be implemented by hardware or by executing corresponding software by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the modules can be software and/or hardware.
  • the apparatus comprises:
  • a determining unit is configured to determine a control channel and a data channel to be demodulated within a short transmission time interval.
  • a processing unit configured to separately map a demodulation reference signal DMRS to the control channel and the data channel determined by the determining unit, where a DMRS of the control channel is a first DMRS, and a DMRS of the data channel is a second DMRS, and the first DMRS and the second DMRS are independent of each other.
  • the processing unit separately maps the DMRS for the control channel and the data channel in the following manner:
  • the processing unit separately maps the DMRS for the control channel and the data channel in the following manner:
  • mapping the first DMRS in a resource unit belonging to the control region determining a reserved resource unit in a resource unit of the control region, the reserved resource unit being different from a resource unit mapping the first DMRS; In the reserved resource unit, the second DMRS is mapped.
  • the processing unit is in a resource unit of the control area in the following manner Determine the reserved resource unit:
  • the processing unit maps, in the reserved resource unit, the second DMRS by: mapping, in the reserved resource unit, part of the second DMRS or all Said second DMRS.
  • the resource unit of the first DMRS mapping is different from the resource unit of the second DMRS mapping.
  • the processing unit is different from the port number of the first DMRS and the second DMRS respectively mapped by the control channel and the data channel.
  • the number and/or location of resource units mapping the first DMRS are different in different short transmission time intervals; and/or mapping in different short transmission time intervals The number and/or location of resource elements of the two DMRSs are different.
  • the number and location of resource elements mapping the first DMRS are the same in different short transmission time intervals; and/or mapping the second DMRS in different short transmission time intervals
  • the number and location of resource units are the same.
  • the pilot mapping apparatus may be implemented in a hardware form.
  • the pilot mapping apparatus includes a processor and a memory, and the processor is configured to support the pilot mapping apparatus to perform the foregoing.
  • the pilot mapping apparatus can also include a memory for coupling with a processor that holds the necessary program instructions and data.
  • the independent demodulation of the control channel and the data channel based on DMRS in a short transmission time interval is realized, and the control is performed.
  • the DMRSs of the channel and data channel mapping are independent of each other, avoiding resource conflicts between the DMRS for data channel demodulation and the DMRS for control channel demodulation, thereby improving channel demodulation performance.
  • 1 is a frame structure in an LTE system
  • FIG. 3 is a flowchart of mapping a DMRS to a control channel and a data channel in an sTTI according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of mapping DMRS to a control channel and a data channel in an sTTI according to an embodiment of the present invention. Another flow chart;
  • FIG. 5 is still another flowchart of mapping a DMRS to a control channel and a data channel in an sTTI according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of a DMRS resource mapping pattern of a data channel and a control channel according to an embodiment of the present invention
  • FIG. 7 is another schematic diagram of a DMRS resource mapping pattern of a data channel and a control channel according to an embodiment of the present invention.
  • FIG. 8 is still another schematic diagram of a DMRS resource mapping pattern of a data channel and a control channel according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a pilot mapping apparatus according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of still another pilot mapping apparatus according to an embodiment of the present invention.
  • the embodiment of the invention provides a pilot mapping method, which maps independent DMRSs for control channels and data channels in the sTTI to implement DMRS-based demodulation of control channels and data channels in the sTTI.
  • the pilot mapping method described in this embodiment of the present invention can be applied to an LTE system, or other wireless communication system adopting various radio access technologies, and can also be applied to a subsequent evolution system using an LTE system, such as a fifth generation 5G system. Wait.
  • LTE system or other wireless communication system adopting various radio access technologies
  • a subsequent evolution system using an LTE system such as a fifth generation 5G system. Wait.
  • LTE system such as a fifth generation 5G system.
  • Embodiments of the Invention may be a network device (for example, a base station).
  • FIG. 3 is a flowchart of a method for mapping a pilot according to an embodiment of the present invention. As shown in FIG. 3, the method includes:
  • S101 Determine a control channel and a data channel to be demodulated in the sTTI.
  • a control channel and a data channel to be demodulated may be determined by a network device (for example, a base station).
  • the length of the sTTI is 7 OFDM symbols in the LTE system
  • the control region and the data region exist in an sTTI having a length of 7 OFDM symbols
  • the resources of the control region are mainly used for transmitting the control channel and the data region.
  • the resources are mainly used to transmit data channels. Resources that are not used to transmit control channels in the control region can also be used to transport data channels.
  • a network device for example, a base station
  • the DMRS is mapped for the control channel and the data channel, respectively.
  • the DMRS mapped for the control channel is recorded as a first DMRS
  • the DMRS mapped for the data channel is recorded as a second DMRS
  • the first DMRS and the DMRS are The second DMRSs are independent of each other.
  • FIG. 4 is a flowchart of an implementation process for mapping a DMRS to the control channel and the data channel in an sTTI according to an embodiment of the present invention. As shown in FIG. 4, the method includes:
  • the above resource unit may be an OFDM symbol.
  • the following describes an example in which the resource unit is an OFDM symbol as an example.
  • the length of the sTTI is 7 OFDM symbols, and the control region and the data region exist in an sTTI having a length of 7 OFDM symbols.
  • the first DMRS of the control channel in the sTTI may be mapped to the resource unit of the control region, and the second DMRS of the data channel in the sTTI is mapped into the resource unit of the data region.
  • FIG. 5 is a flowchart of an implementation process of mapping a DMRS to the control channel and the data channel in an sTTI according to an embodiment of the present invention. As shown in FIG. 5, the method includes:
  • S301 Map the first DMRS in a resource unit belonging to the control area.
  • S302 Determine a reserved resource unit in a resource unit of the control area, where the reserved resource unit is different from a resource unit that maps the first DMRS.
  • the reserved resource unit may be determined in the resource unit of the control area according to a predetermined rule.
  • the reserved resource unit may be determined by one or several of the following ways.
  • the reserved resource unit determined in the resource unit of the control area is different from the resource list that maps the CRS.
  • the reserved resource unit determined in the resource unit of the control area in the embodiment of the present invention may be determined according to a resource element that is pre-mapped to the second DMRS, and the resource of the second DMRS is pre-mapped
  • the unit is determined to be a reserved resource unit.
  • the reserved resource unit determined in the resource unit of the control area in the embodiment of the present invention is not used to map the resource unit of the sPDCCH.
  • the number of reserved resource units determined in the embodiment of the present invention is not limited, and may be determined according to the specific mapping of the number of second DMRSs. In the embodiment of the present invention, a part of the second DMRS may be mapped in the reserved resource unit, or all the second DMRS may be mapped in the reserved resource unit.
  • the resource unit of the first DMRS mapping and the mapping of the second DMRS in the embodiment of the present invention is different.
  • the port number corresponding to the first DMRS in the embodiment of the present invention is different from the port number of the second DMRS.
  • the mapping of the first DMRS and the mapping of the second DMRS may be different.
  • the number of resource units of the first DMRS is mapped and/or Or the location can be different.
  • the number and/or location of resource elements mapping the second DMRS may also be different.
  • the patterns of mapping the first DMRS and mapping the second DMRS may be the same.
  • mapping the number of resource units of the first DMRS and The location can be the same.
  • the number and location of resource elements mapping the second DMRS may also be the same.
  • the control channel and the data channel are demodulated in the sTTI, independent demodulation of the control channel and the data channel based on DMRS in the sTTI is implemented, and the control channel and the data channel are mapped.
  • the DMRSs are independent of each other, avoiding resource conflicts between the DMRS for data channel demodulation and the DMRS for control channel demodulation, thereby improving channel demodulation performance.
  • the LTE system is taken as an example.
  • the sTTI is 7 OFDM symbols in length, and one radio bearer (Radio Bearer, RB) or 12 subcarriers is used as a unit in the frequency domain.
  • Radio Bearer Radio Bearer, RB
  • the legacy downlink control region (Legacy PDCCH) occupies the first two OFDM symbols of the subframe, and the Common Reference Signal (CRS) occupies four ports.
  • the common reference signal can also be referred to as a common pilot. It is assumed that the control region of the sTTI occupies the first two OFDM symbols except the legacy control region.
  • FIG. 6 is a schematic diagram of a resource mapping pattern mapping a first DMRS and a second DMRS in an embodiment of the present invention.
  • the first DMRS occupies the 2nd, 6th, and 12th subcarrier positions in the frequency domain.
  • the first DMRS occupies the 3rd and 4th OFDM symbol positions on the time domain on the first time slot.
  • the first DMRS occupies the first and second OFDM symbol positions on the time domain on the second time slot, and uses a port number that is completely different from the second DMRS for the data channel.
  • the second DMRS occupies the sixth and seventh OFDM symbol positions in the time domain within the sTTI.
  • the 2nd, 7th, and 12th subcarrier positions are occupied in the frequency domain.
  • the second DMRS occupies the 3rd, 4th, 6th, and 7th OFDM symbol positions in the time domain within the sTTI, and occupies the 2nd and 8th subcarrier positions in the frequency domain.
  • the reserved resource unit of the control region is used to map the DMRS of the data channel, and a port number that is completely different from the first DMRS for the control channel is used.
  • FIG. 7 is a diagram showing another resource mapping pattern mapping the first DMRS and the second DMRS in the embodiment of the present invention. intention.
  • the first DMRS occupies the 2nd, 7th, and 12th subcarrier positions in the frequency domain.
  • the first DMRS occupies the 3rd and 4th OFDM symbol positions on the time domain on the first time slot.
  • the first DMRS occupies the first and second OFDM symbol positions on the time domain on the second time slot, and uses a port number that is completely different from the second DMRS for the data channel.
  • the selected reserved resource unit in the sTTI control region of the first slot, is the 4th and 10th subcarrier positions in the frequency domain, and the 3rd and 4th OFDM symbol positions in the time domain.
  • the reserved resource unit is not selected in the sTTI control region of the second time slot.
  • the second DMRS occupies the 3rd, 4th, 6th, and 7th OFDM symbol positions in the time domain in the sTTI, in the frequency domain. Occupies the 4th, 10th subcarrier position.
  • the reserved resource unit of the control region is used to map the DMRS of the data channel, and a port number that is completely different from the first DMRS for the control channel is used.
  • FIG. 8 is a schematic diagram of still another resource mapping pattern mapping the first DMRS and the second DMRS in the embodiment of the present invention.
  • the first DMRS occupies the 2nd, 7th, and 12th subcarrier positions in the frequency domain.
  • the first DMRS occupies the 2nd and 3rd OFDM symbol positions on the time domain on the first time slot.
  • the first DMRS occupies the first and second OFDM symbol positions on the time domain on the second time slot, and uses a port number that is completely different from the second DMRS for the data channel.
  • the selected reserved resource unit in the sTTI control region of the first slot, is the 3rd and 9th subcarrier positions in the frequency domain, and the third OFDM symbol position in the time domain.
  • the reserved resource unit is not selected in the sTTI control region of the second time slot.
  • the second DMRS occupies the 3rd, 4th, 6th, and 7th OFDM symbol positions in the time domain in the sTTI, in the frequency domain. Occupies the 3rd and 9th subcarrier positions.
  • the reserved resource unit of the control region is used to map the second DMRS of the data channel, and a port number that is completely different from the first DMRS for the control channel is used.
  • a pilot mapping apparatus is further provided in the embodiment of the present invention.
  • the principle of solving the problem is similar to the functional method performed by the network device in the pilot mapping method shown in the foregoing embodiment and the accompanying drawings. Therefore, the implementation of the device can be referred to the implementation of the method, and the repeated description will not be repeated.
  • a pilot mapping apparatus comprising: a determining unit 101 and a processing unit 102.
  • the determining unit 101 is configured to determine a control channel and a data channel to be demodulated in the sTTI.
  • the processing unit 102 is configured to separately map the demodulation reference signal DMRS to the control channel and the data channel determined by the determining unit 101, where the DMRS of the control channel is a first DMRS, and the data channel
  • the DMRS is a second DMRS, and the first DMRS and the second DMRS are independent of each other.
  • the processing unit 102 specifically maps the DMRS to the control channel and the data channel in the sTTI in the following manner:
  • the processing unit 102 specifically maps the DMRS to the control channel and the data channel in the sTTI in the following manner:
  • mapping the first DMRS in a resource unit belonging to the control region determining a reserved resource unit in a resource unit of the control region, the reserved resource unit being different from a resource unit mapping the first DMRS; In the reserved resource unit, the second DMRS is mapped.
  • the processing unit 102 determines a reserved resource unit in a resource unit of the control area in the following manner:
  • the processing unit 102 maps the second DMRS in the reserved resource unit by mapping a part of the second DMRS or all the locations in the reserved resource unit. Said second DMRS.
  • the resource unit of the first DMRS mapping is different from the resource unit of the second DMRS mapping.
  • the processing unit 102 is different from the port number of the first DMRS and the second DMRS respectively mapped by the control channel and the data channel.
  • mapping resource elements of the second DMRS are different.
  • the number and location of resource units mapping the first DMRS are the same; and/or in different sTTIs, mapping the number of resource units of the second DMRS and Or the same location.
  • the pilot mapping device may be a network device
  • the hardware structure and processing of the pilot mapping device provided by the embodiment of the present invention are taken as an example of the following by using the pilot mapping device as a network device. The way to explain.
  • the pilot mapping apparatus includes a processor 1001 and a memory 1002.
  • the memory 1002 is configured to store program code executed by the processor 1001.
  • the processor 1001 is configured to call the program code stored in the memory 1002 to implement the following functions:
  • the DMRS of the control channel is a first DMRS
  • the DMRS of the data channel is a second DMRS
  • the first DMRS and the second DMRS are independent of each other.
  • the processor 1001 specifically maps the DMRS to the control channel and the data channel in the sTTI in the following manner:
  • the processor 1001 specifically maps the DMRS to the control channel and the data channel in the sTTI in the following manner:
  • mapping the first DMRS in a resource unit belonging to the control region determining a reserved resource unit in a resource unit of the control region, the reserved resource unit being different from a resource unit mapping the first DMRS; In the reserved resource unit, the second DMRS is mapped.
  • the processor 1001 determines a reserved resource unit in a resource unit of the control area in the following manner:
  • the processor 1001 maps the second DMRS in the reserved resource unit by mapping a part of the second DMRS or all the locations in the reserved resource unit. Said second DMRS.
  • the resource unit of the first DMRS mapping is different from the resource unit of the second DMRS mapping.
  • the first DMRS that the processor 1001 maps to the control channel and the data channel is different from the port number of the second DMRS.
  • mapping resource elements of the second DMRS are different.
  • the number and location of resource elements mapping the first DMRS are the same; and/or in different sTTIs, the number and or location of resource elements mapping the second DMRS are the same.
  • DMRSs are independent of each other, avoiding DMRS for data channel demodulation and for control channel demodulation Resource conflicts in the DMRS, thereby improving channel demodulation performance.
  • the network device is not limited to the above structure, for example, the network device may also include any number of transmitters, receivers, processors, controllers, memories, communication units, etc., and all networks that can implement the embodiments of the present invention The devices are all within the protection scope of the embodiments of the present invention.
  • pilot mapping apparatus and the network device may be used to implement the corresponding functions of the pilot mapping method in the foregoing method embodiments of the embodiments of the present invention, and thus the description of the embodiments of the present invention is not detailed enough.
  • description refer to the description of the related method embodiments, and details are not described herein again.
  • the processor involved in the foregoing embodiments of the present invention may be a central processing unit (CPU), a general-purpose processor, a digital signal processor (DSP), and an application specific integrated circuit (Application-Specific). Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA) or other programmable logic device, transistor logic device, hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

公开了一种导频映射方法及装置,确定短传输时间间隔内待进行解调的控制信道和数据信道,为短传输时间间隔内的所述控制信道和所述数据信道,分别映射解调参考信号DMRS,其中,所述控制信道的DMRS为第一DMRS,所述数据信道的DMRS为第二DMRS,且所述第一DMRS与所述第二DMRS彼此独立。通过本发明,为控制信道和数据信道分配独立的DMRS,进而实现控制信道和数据信道基于DMRS的解调。

Description

一种导频映射方法及装置
本申请要求在2016年11月04日提交中国专利局、申请号为201610974686.3、发明名称为“一种加入接入节点组的方法及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,尤其涉及一种导频映射方法及装置。
背景技术
随着移动通信业务需求的发展变化,未来移动通信***中对用户面时延性能提出了更高的要求。提高用户时延性能的主要方法之一是降低传输时间间隔(Transmission Time Interval,TTI)长度,引入短传输时间间隔(Short Transmission Time Interval,sTTI)。
通信网络中以无线帧(raido frame)为单位传输信号,每个无线帧由子帧(subframe)构成。例如,长期演进(Long Term Evolution,LTE)频分双工(Frequency Division Duplex,FDD)***中,可采用图1所示的帧结构,图1所示的帧结构可称为帧结构1(Frame Structure type 1,FS1)。FS1中,每个载波上,一个无线帧包括有10个1ms的子帧,每个子帧有2个0.5ms的时隙(slot),每个slot由固定个数的正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号组成。LTE FDD***中,上行传输和下行传输使用不同的载波频率,但是使用相同的帧结构,即在LTE FDD***中,上行传输和下行传输的TTI时长为1ms。再例如,LTE时分双工(Time Division Duplex,TDD)***中,可采用图2所示的帧结构,图2所示的帧结构可称为帧结构2(Frame Structure type 2,FS2)。FS2中,每个10ms的无线帧由两个5ms的半帧构成,每个半帧中包含5个时长为1ms的子帧。FS2中的子帧包括下行子帧、上行子帧和特殊子帧,每个特殊子帧由下行传输时隙(Downlink Pilot Time Slot,DwPTS)、保护间隔(Guard Period,GP)和上行传输时隙(Uplink Pilot Time Slot,UpPTS)三部分构成。每个半帧中包含至少1个下行子帧和至少1个上行子帧,以及至多1个特殊子帧。在LTE TDD***中,上行传输和下行传输使用相同的频率上的不同子帧或不同时隙。
引入sTTI的LTE网络中,sTTI传输一种比较典型的工作方式即在LTE现有机制中定义的子帧结构中包含多个时长短于1ms的短TTI传输。下行传输支持短物理下行共享信道(shortened Physical Downlink Shared Channel,sPDSCH)和短物理下行控制信道(shortened Physical Downlink Control Channel,sPDCCH)。sTTI的长度可以为2个或7个OFDM符号(当 然也不排除其他符号个数不超过14或时域长度不超过1ms的情况)。一个子帧中可以包含多个sPDSCH、或多个sPDCCH、或多个sPDSCH以及sPDCCH传输。即在现有LTE***中,当sTTI的长度为7个OFDM符号,即在时域上占用子帧的一个时隙时,存在sTTI的控制信道和数据信道,sTTI的控制信道和数据信道需要基于解调参考信号(Demodulation Reference Symbol,DMRS)解调。
然而,传统LTE***中一般基于小区专属导频信号(Cell-specific reference signals,CRS)对物理控制下行控制信道(Physical Downlink Control Channel,PDCCH)进行解调,PDCCH用来承载下行控制的信息,如上行调度指令、下行数据传输指示、公共控制信息等。每个下行子帧的控制区域内可以有多个PDCCH,占据1~3个OFDM符号。故,目前应用sTTI的通信网络中,并不存在基于DMRS对sTTI的控制信道和数据信道进行解调的方法。
发明内容
本发明实施例提供一种导频映射方法及装置,为sTTI的控制信道和数据信道分配独立的DMRS,以实现sTTII的控制信道和数据信道基于DMRS的解调。
第一方面,提供了一种导频映射方法,所述方法包括:
确定短传输时间间隔内待进行解调的控制信道和数据信道;
为所述控制信道和所述数据信道,分别映射解调参考信号DMRS;
其中,所述控制信道的DMRS为第一DMRS,所述数据信道的DMRS为第二DMRS,且所述第一DMRS与所述第二DMRS彼此独立。
本发明实施例中,通过为短传输时间间隔内待解调的控制信道和数据信道,分别映射彼此独立的DMRS,实现短传输时间间隔内控制信道和数据信道基于DMRS的独立解调,并且控制信道和数据信道映射的DMRS彼此独立,避免了用于数据信道解调的DMRS与用于控制信道解调的DMRS的资源冲突,进而提高信道解调性能。
一种可能的实施方式中,为所述控制信道和所述数据信道,分别映射DMRS,包括:
在属于控制区域的资源单元中,映射所述第一DMRS;
在属于数据区域的资源单元中,映射所述第二DMRS。
一种可能的实施方式中,为所述控制信道和所述数据信道,分别映射DMRS,包括:
在属于控制区域的资源单元中,映射所述第一DMRS;
在所述控制区域的资源单元中确定预留资源单元,所述预留资源单元不同于映射所述第一DMRS的资源单元;
在所述预留资源单元中,映射所述第二DMRS。
一种可能的实施方式中,所述在所述控制区域的资源单元中确定预留资源单元,包括:
在所述控制区域的资源单元中,确定不同于映射公共参考信号CRS资源单元的预留资源单元;和/或在所述控制区域的资源单元中,依据预映射所述第二DMRS的资源单元,确定预留资源单元。
一种可能的实施方式中,在所述预留资源单元中,映射所述第二DMRS,包括:
在所述预留资源单元中映射部分所述第二DMRS或全部所述第二DMRS。
一种可能的实施方式中,所述第一DMRS映射的资源单元和所述第二DMRS映射的资源单元不同。
一种可能的实施方式中,所述第一DMRS对应的端口号,与所述第二DMRS的端口号不同。
一种可能的实施方式中,在不同的短传输时间间隔中,映射所述第一DMRS的资源单元的数量和/或位置不同;和/或在不同的短传输时间间隔中,映射所述第二DMRS的资源单元的数量和/或位置不同。
一种可能的实施方式中,在不同的短传输时间间隔中,映射所述第一DMRS的资源单元的数量和位置相同;和/或在不同的短传输时间间隔中,映射所述第二DMRS的资源单元的数量和或位置相同。
第二方面,提供了一种导频映射装置,该导频映射装置具有实现上述涉及的导频映射方法的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。所述模块可以是软件和/或硬件。
采用集成单元的情况下,所述装置包括:
确定单元,用于确定短传输时间间隔内待进行解调的控制信道和数据信道。
处理单元,用于为所述确定单元确定的所述控制信道和所述数据信道,分别映射解调参考信号DMRS;其中,所述控制信道的DMRS为第一DMRS,所述数据信道的DMRS为第二DMRS,且所述第一DMRS与所述第二DMRS彼此独立。
一种可能的实施方式中,所述处理单元,采用如下方式为所述控制信道和所述数据信道,分别映射DMRS:
在属于控制区域的资源单元中,映射所述第一DMRS;在属于数据区域的资源单元中,映射所述第二DMRS。
一种可能的实施方式中,所述处理单元,采用如下方式为所述控制信道和所述数据信道,分别映射DMRS:
在属于控制区域的资源单元中,映射所述第一DMRS;在所述控制区域的资源单元中确定预留资源单元,所述预留资源单元不同于映射所述第一DMRS的资源单元;在所述预留资源单元中,映射所述第二DMRS。
一种可能的实施方式中,所述处理单元,采用如下方式在所述控制区域的资源单元中 确定预留资源单元:
在所述控制区域的资源单元中,确定不同于映射公共参考信号CRS资源单元的预留资源单元;和/或在所述控制区域的资源单元中,依据预映射所述第二DMRS的资源单元,确定预留资源单元。
一种可能的实施方式中,所述处理单元,采用如下方式在所述预留资源单元中,映射所述第二DMRS:在所述预留资源单元中映射部分所述第二DMRS或全部所述第二DMRS。
一种可能的实施方式中,所述第一DMRS映射的资源单元和所述第二DMRS映射的资源单元不同。
一种可能的实施方式中,所述处理单元为所述控制信道和所述数据信道分别映射的所述第一DMRS与所述第二DMRS的端口号不同。
一种可能的实施方式中,在不同的短传输时间间隔中,映射所述第一DMRS的资源单元的数量和/或位置不同;和/或在不同的短传输时间间隔中,映射所述第二DMRS的资源单元的数量和/或位置不同。
一种可能的实施方式中,在不同的短传输时间间隔中,映射所述第一DMRS的资源单元的数量和位置相同;和/或在不同的短传输时间间隔中,映射所述第二DMRS的资源单元的数量和或位置相同。
本发明实施例中,上述导频映射装置还可以采用硬件形式实现,在采用硬件形式时,所述导频映射装置包括处理器和存储器,所述处理器被配置为支持导频映射装置执行上述涉及的导频映射方法。所述导频映射装置还可以包括存储器,所述存储器用于与处理器耦合,其保存必要的程序指令和数据。
本发明实施例中,通过为短传输时间间隔内待解调的控制信道和数据信道,分别映射彼此独立的DMRS,实现短传输时间间隔内控制信道和数据信道基于DMRS的独立解调,并且控制信道和数据信道映射的DMRS彼此独立,避免了用于数据信道解调的DMRS与用于控制信道解调的DMRS的资源冲突,进而提高信道解调性能。
附图说明
图1为LTE***中的一种帧结构;
图2为LTE***中的另一种帧结构;
图3为本发明实施例提供的一种为sTTI内的控制信道和数据信道分别映射DMRS的一种流程图;
图4为本发明实施例提供的一种为sTTI内的控制信道和数据信道分别映射DMRS的 另一种流程图;
图5为本发明实施例提供的一种为sTTI内的控制信道和数据信道分别映射DMRS的又一种流程图;
图6为本发明实施例提供的数据信道和控制信道的DMRS资源映射图样的一种示意图;
图7为本发明实施例提供的数据信道和控制信道的DMRS资源映射图样的另一种示意图;
图8为本发明实施例提供的数据信道和控制信道的DMRS资源映射图样的又一种示意图;
图9为本发明实施例提供的一种导频映射装置的结构示意图;
图10为本发明实施例提供的又一种导频映射装置的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行详细地描述,显然,所描述的实施例仅仅是本发明一部分实施例,并不是全部的实施例。
本发明实施例提供一种导频映射方法,为sTTI内的控制信道和数据信道映射独立的DMRS,以实现sTTI内的控制信道和数据信道基于DMRS的解调。
本发明实施例以下将对本发明实施例提供的导频映射方法的实施过程进行详细说明。
本发明实施例描述的导频映射方法可以适用于LTE***,或其他采用各种无线接入技术的无线通信***,此外,还可以适用于使用LTE***后续的演进***,如第五代5G***等。为清楚起见,本发明实施例以下仅以LTE***为例进行说明。
本发明实施例以下实施例中涉及的执行主体可以是网络设备(例如,基站)。
图3为本发明实施例提供的一种导频映射方法的流程图,如图3所示,包括:
S101:确定sTTI内的待进行解调的控制信道和数据信道。
本发明实施例中可通过网络设备(例如,基站)来确定待进行解调的控制信道和数据信道。
本发明实施例中,在LTE***中sTTI的长度为7个OFDM符号,在一个长度为7个OFDM符号的sTTI中存在控制区域和数据区域,控制区域的资源主要用于传输控制信道,数据区域的资源主要用于传输数据信道。控制区域中未用于传输控制信道的资源也可以用于传输数据信道。
S102:为所述控制信道和所述数据信道,分别映射DMRS。
本发明实施例中,网络设备(例如,基站)在确定控制信道和数据信道需要进行解调 后,为所述控制信道和所述数据信道,分别映射DMRS。其中,为了方便区分,本发明实施例中,将为所述控制信道映射的DMRS记为第一DMRS,将为所述数据信道映射的DMRS记为第二DMRS,且所述第一DMRS与所述第二DMRS彼此独立。
本发明实施例以下将结合实际应用对上述实施例涉及的为sTTI内的所述控制信道和所述数据信道,分别映射DMRS的实施过程进行详细的说明。
图4为本发明实施例提供的一种为sTTI内的所述控制信道和所述数据信道分别映射DMRS的实施过程流程图,如图4所示,包括:
S201:在属于控制区域的资源单元中,映射所述第一DMRS。
S202:在属于数据区域的资源单元中,映射所述第二DMRS。
在LTE***中,上述资源单元可以是OFDM符号。本发明实施例以下以资源单元为OFDM符号为例进行说明。
在LTE***中sTTI的长度为7个OFDM符号,在一个长度为7个OFDM符号的sTTI中存在控制区域和数据区域。本发明实施例中,可将sTTI内控制信道的第一DMRS映射到控制区域的资源单元中,sTTI内数据信道的第二DMRS映射到数据区域的资源单元中。
图5为本发明实施例提供的另一种为sTTI内的所述控制信道和所述数据信道分别映射DMRS的实施过程流程图,如图5所示,包括:
S301:在属于控制区域的资源单元中,映射所述第一DMRS。
S302:在所述控制区域的资源单元中确定预留资源单元,所述预留资源单元不同于映射所述第一DMRS的资源单元。
本发明实施例中可按照预定的规则在控制区域的资源单元中确定预留资源单元。例如,可采用如下几种方式中的一种或几种确定预留资源单元。
可选的,本发明实施例中在所述控制区域的资源单元中确定的预留资源单元,不同于映射CRS的资源单。
可选的,本发明实施例中在所述控制区域的资源单元中确定的预留资源单元,可依据预映射所述第二DMRS的资源单元确定,将与预映射所述第二DMRS的资源单元确定为预留资源单元。
可选的,本发明实施例中在所述控制区域的资源单元中确定的预留资源单元,不用于映射sPDCCH的资源单元。
S303:在所述预留资源单元中,映射所述第二DMRS。
本发明实施例中确定的预留资源单元的数量不限定,可根据具体映射第二DMRS的数量确定。本发明实施例中可以在所述预留资源单元中映射部分所述第二DMRS,也可以在所述预留资源单元中映射全部所述第二DMRS。
可选的,本发明实施例中所述第一DMRS映射的资源单元和所述第二DMRS映射的 资源单元不同。
可选的,本发明实施例中所述第一DMRS对应的端口号,与所述第二DMRS的端口号不同。
可选的,本发明实施例中在不同的sTTI中,映射第一DMRS和映射第二DMRS的图样可不同,换言之,在不同的sTTI中,映射所述第一DMRS的资源单元的数量和/或位置可不同。在不同的sTTI中,映射所述第二DMRS的资源单元的数量和/或位置也可不同。
可选的,本发明实施例中在不同的sTTI中,映射第一DMRS和映射第二DMRS的图样也可相同,换言之,在不同的sTTI中,映射所述第一DMRS的资源单元的数量和位置可相同。在不同的sTTI中,映射所述第二DMRS的资源单元的数量和位置也可相同。
本发明实施例中,通过为sTTI内待解调的控制信道和数据信道,分别映射彼此独立的DMRS,实现sTTI内控制信道和数据信道基于DMRS的独立解调,并且控制信道和数据信道映射的DMRS彼此独立,避免了用于数据信道解调的DMRS与用于控制信道解调的DMRS的资源冲突,进而提高信道解调性能。
本发明实施例以下,结合实际应用对上述实施例中涉及的为sTTI内的所述控制信道和所述数据信道分别映射DMRS的实施过程进行详细说明。
本发明实施例中,以LTE***为例,sTTI长度为7个OFDM符号,频域上以1个无线承载(Radio Bearer,RB)或12个子载波为一个单元,为例进行说明。并假设传统下行控制区域(Legacy PDCCH)占据子帧的前两个OFDM符号,公共参考信号(Common Reference Signal,CRS)占用4个端口。公共参考信号也可称为公共导频。假设sTTI的控制区域占据除传统控制区域以外的前两个OFDM符号。
图6示出了本发明实施例中映射第一DMRS和第二DMRS的一种资源映射图样示意图。
如图6所示,用于解调sTTI内控制信道的第一DMRS资源映射图样中,在频域上第一DMRS占据第2、6、12个子载波位置。在第一个时隙上第一DMRS占据时域上第3、4个OFDM符号位置。在第二个时隙上第一DMRS占据时域上的第1、2个OFDM符号位置,并且使用完全不同于用于数据信道的第二DMRS的端口号。
如图6所示,用于解调sTTI内数据信道的第二DMRS的资源映射图样中,在第一个时隙,第二DMRS占据sTTI内时域上的第6、7个OFDM符号位置。频域上占据第2、7、12个子载波位置。在第二个时隙,第二DMRS占据sTTI内时域上的第3、4、6、7个OFDM符号位置,频域上占据第2、8个子载波位置。在第一个时隙,使用了控制区域的预留资源单元用于映射数据信道的DMRS,并且使用完全不同于用于控制信道的第一DMRS的端口号。
图7示出了本发明实施例中映射第一DMRS和第二DMRS的另一种资源映射图样示 意图。
如图7所示,用于解调sTTI内控制信道的第一DMRS资源映射图样中,在频域上第一DMRS占据第2、7、12个子载波位置。在第一个时隙上第一DMRS占据时域上第3、4个OFDM符号位置。在第二个时隙上第一DMRS占据时域上的第1、2个OFDM符号位置,并且使用完全不同于用于数据信道的第二DMRS的端口号。
图7中,在第一个时隙的sTTI控制区域中,选取的预留资源单元为频域上第4、10个子载波位置,时域上为第3、4个OFDM符号位置。第二个时隙的sTTI控制区域没有选取预留资源单元。
如图7所示,用于解调sTTI内数据信道的第二DMRS的资源映射图样中,第二DMRS占据sTTI内时域上的第3、4、6、7个OFDM符号位置,频域上占据第4、10个子载波位置。在第一个时隙,使用了控制区域的预留资源单元用于映射数据信道的DMRS,并且使用完全不同于用于控制信道的第一DMRS的端口号。
图8示出了本发明实施例中映射第一DMRS和第二DMRS的又一种资源映射图样示意图。
如图8所示,用于解调sTTI内控制信道的第一DMRS资源映射图样中,在频域上第一DMRS占据第2、7、12个子载波位置。在第一个时隙上第一DMRS占据时域上第2、3个OFDM符号位置。在第二个时隙上第一DMRS占据时域上的第1、2个OFDM符号位置,并且使用完全不同于用于数据信道的第二DMRS的端口号。
图8中,在第一个时隙的sTTI控制区域中,选取的预留资源单元为频域上第3、9个子载波位置,时域上为第3个OFDM符号位置。第二个时隙的sTTI控制区域没有选取预留资源单元。
如图8所示,用于解调sTTI内数据信道的第二DMRS的资源映射图样中,第二DMRS占据sTTI内时域上的第3、4、6、7个OFDM符号位置,频域上占据第3、9个子载波位置。在第一个时隙,使用了控制区域的预留资源单元用于映射数据信道的第二DMRS,并且使用完全不同于用于控制信道的第一DMRS的端口号。
基于同一发明构思,本发明实施例中还提供了一种导频映射装置,由于该装置解决问题的原理与上述实施例及附图所示的导频映射方法中网络设备执行的功能方法相似,因此该装置的实施可以参见方法的实施,重复之处不再赘述。
图9所示的实施例中,提供了一种导频映射装置,所述装置包括:确定单元101和处理单元102。
确定单元101,用于确定sTTI内待进行解调的控制信道和数据信道。
处理单元102,用于为所述确定单元101确定的所述控制信道和所述数据信道,分别映射解调参考信号DMRS;其中,所述控制信道的DMRS为第一DMRS,所述数据信道 的DMRS为第二DMRS,且所述第一DMRS与所述第二DMRS彼此独立。
一种可能的实施方式中,所述处理单元102具体采用如下方式为sTTI内的所述控制信道和所述数据信道,分别映射DMRS:
在属于控制区域的资源单元中,映射所述第一DMRS;在属于数据区域的资源单元中,映射所述第二DMRS。
一种可能的实施方式中,所述处理单元102具体采用如下方式为sTTI内的所述控制信道和所述数据信道,分别映射DMRS:
在属于控制区域的资源单元中,映射所述第一DMRS;在所述控制区域的资源单元中确定预留资源单元,所述预留资源单元不同于映射所述第一DMRS的资源单元;在所述预留资源单元中,映射所述第二DMRS。
一种可能的实施方式中,所述处理单元102,采用如下方式在所述控制区域的资源单元中确定预留资源单元:
在所述控制区域的资源单元中,确定不同于映射CRS资源单元的预留资源单元;和/或在所述控制区域的资源单元中,依据预映射所述第二DMRS的资源单元,确定预留资源单元。
一种可能的实施方式中,所述处理单元102采用如下方式在所述预留资源单元中,映射所述第二DMRS:在所述预留资源单元中映射部分所述第二DMRS或全部所述第二DMRS。
一种可能的实施方式中,所述第一DMRS映射的资源单元和所述第二DMRS映射的资源单元不同。
一种可能的实施方式中,所述处理单元102为所述控制信道和所述数据信道分别映射的所述第一DMRS与所述第二DMRS的端口号不同。
一种可能的实施方式中,在不同的sTTI中,映射所述第一DMRS的资源单元的数量和/或位置不同;和/或在不同的sTTI中,映射所述第二DMRS的资源单元的数量和/或位置不同。
一种可能的实施方式中,在不同的sTTI中,映射所述第一DMRS的资源单元的数量和位置相同;和/或在不同的sTTI中,映射所述第二DMRS的资源单元的数量和或位置相同。
在具体实施过程中所述导频映射装置可以为网络设备,本发明实施例以下以所述导频映射装置为网络设备为例对本发明实施例提供的所述导频映射装置的硬件结构、处理方式进行说明。
图10所示的示例中,所述导频映射装置包括:处理器1001和存储器1002。
存储器1002,用于存储处理器1001执行的程序代码。
处理器1001,用于调用存储器1002存储的程序代码实现如下功能:
为所述确定单元101确定的所述控制信道和所述数据信道,分别映射解调参考信号DMRS;其中,所述控制信道的DMRS为第一DMRS,所述数据信道的DMRS为第二DMRS,且所述第一DMRS与所述第二DMRS彼此独立。
一种可能的实施方式中,所述处理器1001具体采用如下方式为sTTI内的所述控制信道和所述数据信道,分别映射DMRS:
在属于控制区域的资源单元中,映射所述第一DMRS;在属于数据区域的资源单元中,映射所述第二DMRS。
一种可能的实施方式中,所述处理器1001具体采用如下方式为sTTI内的所述控制信道和所述数据信道,分别映射DMRS:
在属于控制区域的资源单元中,映射所述第一DMRS;在所述控制区域的资源单元中确定预留资源单元,所述预留资源单元不同于映射所述第一DMRS的资源单元;在所述预留资源单元中,映射所述第二DMRS。
一种可能的实施方式中,所述处理器1001,采用如下方式在所述控制区域的资源单元中确定预留资源单元:
在所述控制区域的资源单元中,确定不同于映射CRS资源单元的预留资源单元;和/或在所述控制区域的资源单元中,依据预映射所述第二DMRS的资源单元,确定预留资源单元。
一种可能的实施方式中,所述处理器1001采用如下方式在所述预留资源单元中,映射所述第二DMRS:在所述预留资源单元中映射部分所述第二DMRS或全部所述第二DMRS。
一种可能的实施方式中,所述第一DMRS映射的资源单元和所述第二DMRS映射的资源单元不同。
一种可能的实施方式中,所述处理器1001为所述控制信道和所述数据信道分别映射的所述第一DMRS与所述第二DMRS的端口号不同。
一种可能的实施方式中,在不同的sTTI中,映射所述第一DMRS的资源单元的数量和/或位置不同;和/或在不同的sTTI中,映射所述第二DMRS的资源单元的数量和/或位置不同。
在不同的sTTI中,映射所述第一DMRS的资源单元的数量和位置相同;和/或在不同的sTTI中,映射所述第二DMRS的资源单元的数量和或位置相同。
本发明实施例中,通过为sTTI内待解调的控制信道和数据信道,分别映射彼此独立的DMRS,实现sTTI内控制信道和数据信道基于DMRS的独立解调,并且控制信道和数据信道映射的DMRS彼此独立,避免了用于数据信道解调的DMRS与用于控制信道解调的 DMRS的资源冲突,进而提高信道解调性能。
可以理解的是,本发明实施例附图中仅仅示出了网络设备的简化设计。在实际应用中,网络设备并不限于上述结构,例如网络设备还可以包含任意数量的发射器,接收器,处理器,控制器,存储器,通信单元等,而所有可以实现本发明实施例的网络设备都在本发明实施例的保护范围之内。
进一步可以理解的是,本发明实施例涉及的导频映射装置和网络设备,可用于实现本发明实施例上述方法实施例中导频映射方法的相应功能,故对于本发明实施例描述不够详尽的地方,可参阅相关方法实施例的描述,本发明实施例在此不再赘述。
需要说明的是,本发明实施例上述涉及的处理器可以是中央处理器(Central Processing Unit,CPU),通用处理器,数字信号处理器(Digital Signal Processor,DSP),专用集成电路(Application-Specific Integrated Circuit,ASIC),现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。
本领域内的技术人员应明白,本发明的实施例可提供为方法、***、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(***)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他 可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明实施例进行各种改动和变型而不脱离本发明实施例的精神和范围。这样,倘若本发明实施例的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (18)

  1. 一种导频映射方法,其特征在于,包括:
    确定短传输时间间隔内待进行解调的控制信道和数据信道;
    为所述控制信道和所述数据信道,分别映射解调参考信号DMRS;
    其中,所述控制信道的DMRS为第一DMRS,所述数据信道的DMRS为第二DMRS,且所述第一DMRS与所述第二DMRS彼此独立。
  2. 如权利要求1所述的方法,其特征在于,为所述控制信道和所述数据信道,分别映射DMRS,包括:
    在属于控制区域的资源单元中,映射所述第一DMRS;
    在属于数据区域的资源单元中,映射所述第二DMRS。
  3. 如权利要求1所述的方法,其特征在于,为所述控制信道和所述数据信道,分别映射DMRS,包括:
    在属于控制区域的资源单元中,映射所述第一DMRS;
    在所述控制区域的资源单元中确定预留资源单元,所述预留资源单元不同于映射所述第一DMRS的资源单元;
    在所述预留资源单元中,映射所述第二DMRS。
  4. 如权利要求3所述的方法,其特征在于,所述在所述控制区域的资源单元中确定预留资源单元,包括:
    在所述控制区域的资源单元中,确定不同于映射公共参考信号CRS资源单元的预留资源单元;和/或
    在所述控制区域的资源单元中,依据预映射所述第二DMRS的资源单元,确定预留资源单元。
  5. 如权利要求3或4所述的方法,其特征在于,在所述预留资源单元中,映射所述第二DMRS,包括:
    在所述预留资源单元中映射部分所述第二DMRS或全部所述第二DMRS。
  6. 如权利要求1至5任一项所述的方法,其特征在于,所述第一DMRS映射的资源单元和所述第二DMRS映射的资源单元不同。
  7. 如权利要求1至6任一项所述的方法,其特征在于,所述第一DMRS对应的端口号,与所述第二DMRS的端口号不同。
  8. 如权利要求1至7任一项所述的方法,其特征在于,在不同的短传输时间间隔中,映射所述第一DMRS的资源单元的数量和/或位置不同;和/或
    在不同的短传输时间间隔中,映射所述第二DMRS的资源单元的数量和/或位置不同。
  9. 如权利要求1至7任一项所述的方法,其特征在于,在不同的短传输时间间隔中, 映射所述第一DMRS的资源单元的数量和位置相同;和/或
    在不同的短传输时间间隔中,映射所述第二DMRS的资源单元的数量和位置相同。
  10. 一种导频映射装置,其特征在于,包括:
    确定单元,用于确定短传输时间间隔内待进行解调的控制信道和数据信道;
    处理单元,用于为所述确定单元确定的所述控制信道和所述数据信道,分别映射解调参考信号DMRS;
    其中,所述控制信道的DMRS为第一DMRS,所述数据信道的DMRS为第二DMRS,且所述第一DMRS与所述第二DMRS彼此独立。
  11. 如权利要求10所述的装置,其特征在于,所述处理单元,采用如下方式为所述控制信道和所述数据信道,分别映射DMRS:
    在属于控制区域的资源单元中,映射所述第一DMRS;
    在属于数据区域的资源单元中,映射所述第二DMRS。
  12. 如权利要求10所述的装置,其特征在于,所述处理单元,采用如下方式为所述控制信道和所述数据信道,分别映射DMRS:
    在属于控制区域的资源单元中,映射所述第一DMRS;
    在所述控制区域的资源单元中确定预留资源单元,所述预留资源单元不同于映射所述第一DMRS的资源单元;
    在所述预留资源单元中,映射所述第二DMRS。
  13. 如权利要求12所述的装置,其特征在于,所述处理单元,采用如下方式在所述控制区域的资源单元中确定预留资源单元:
    在所述控制区域的资源单元中,确定不同于映射公共参考信号CRS资源单元的预留资源单元;和/或
    在所述控制区域的资源单元中,依据预映射所述第二DMRS的资源单元,确定预留资源单元。
  14. 如权利要求12或13所述的装置,其特征在于,所述处理单元,采用如下方式在所述预留资源单元中,映射所述第二DMRS:
    在所述预留资源单元中映射部分所述第二DMRS或全部所述第二DMRS。
  15. 如权利要求10至14任一项所述的装置,其特征在于,所述第一DMRS映射的资源单元和所述第二DMRS映射的资源单元不同。
  16. 如权利要求10至15任一项所述的装置,其特征在于,所述第一DMRS对应的端口号,与所述第二DMRS的端口号不同。
  17. 如权利要求10至16任一项所述的装置,其特征在于,在不同的短传输时间间隔中,映射所述第一DMRS的资源单元的数量和/或位置不同;和/或
    在不同的短传输时间间隔中,映射所述第二DMRS的资源单元的数量和/或位置不同。
  18. 如权利要求10至16任一项所述的装置,其特征在于,在不同的短传输时间间隔中,映射所述第一DMRS的资源单元的数量和位置相同;和/或
    在不同的短传输时间间隔中,映射所述第二DMRS的资源单元的数量和或位置相同。
PCT/CN2017/107859 2016-11-04 2017-10-26 一种导频映射方法及装置 WO2018082500A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610974686.3A CN108023713B (zh) 2016-11-04 2016-11-04 一种导频映射方法及装置
CN201610974686.3 2016-11-04

Publications (1)

Publication Number Publication Date
WO2018082500A1 true WO2018082500A1 (zh) 2018-05-11

Family

ID=62075662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/107859 WO2018082500A1 (zh) 2016-11-04 2017-10-26 一种导频映射方法及装置

Country Status (2)

Country Link
CN (1) CN108023713B (zh)
WO (1) WO2018082500A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021230997A1 (en) * 2020-05-12 2021-11-18 Qualcomm Incorporated Techniques for indicating time offsets in wireless communications

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021062815A1 (zh) * 2019-09-30 2021-04-08 华为技术有限公司 调制解调参考信号的配置信息获取方法、配置方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102215083A (zh) * 2010-04-08 2011-10-12 ***通信集团公司 一种无线通信方法、***和设备
CN105191461A (zh) * 2013-03-13 2015-12-23 华为技术有限公司 用于确定导频信号的***和方法
WO2016064059A1 (en) * 2014-10-21 2016-04-28 Lg Electronics Inc. Method for transmitting and receiving data in wireless communication system and apparatus for the same
WO2016148789A1 (en) * 2015-03-13 2016-09-22 Qualcomm Incorporated Dmrs based dl for low latency

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2493154A (en) * 2011-07-25 2013-01-30 Nec Corp Communicating control channel reference signal patterns in the control region of a sub-frame in a cellular communication system
CN102711253B (zh) * 2012-03-21 2015-02-18 电信科学技术研究院 E-pdcch的资源映射方法及装置
US9300373B2 (en) * 2012-06-19 2016-03-29 Telefonaktiebolaget L M Ericsson (Publ) Selection of precoding vectors in lean-carrier systems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102215083A (zh) * 2010-04-08 2011-10-12 ***通信集团公司 一种无线通信方法、***和设备
CN105191461A (zh) * 2013-03-13 2015-12-23 华为技术有限公司 用于确定导频信号的***和方法
WO2016064059A1 (en) * 2014-10-21 2016-04-28 Lg Electronics Inc. Method for transmitting and receiving data in wireless communication system and apparatus for the same
WO2016148789A1 (en) * 2015-03-13 2016-09-22 Qualcomm Incorporated Dmrs based dl for low latency

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021230997A1 (en) * 2020-05-12 2021-11-18 Qualcomm Incorporated Techniques for indicating time offsets in wireless communications
US11751155B2 (en) 2020-05-12 2023-09-05 Qualcomm Incorporated Techniques for indicating time offsets in wireless communications

Also Published As

Publication number Publication date
CN108023713B (zh) 2021-01-22
CN108023713A (zh) 2018-05-11

Similar Documents

Publication Publication Date Title
US10985886B2 (en) Downlink channel decoding method, downlink information transmission method, user equipment, and base station
US20120188955A1 (en) Methods and systems for transmitting sfbc signals with csi-rs transmission and related muting in lte-advance systems
EP2660994B1 (en) Method and device for allocating reference resource
WO2017181874A1 (zh) 数据传输的方法、设备和***
WO2017193831A1 (zh) 传输参数的配置方法及基站、信息传输方法及终端、存储介质
JP2015516128A (ja) 下り制御情報送信方法、検出方法、基地局及びユーザ機器
JP2017535126A (ja) 非権限周波数帯でのデータ伝送方法、ネットワーク機器、端末及びプログラム
JP7027532B2 (ja) ダウンリンクデータを送信するためのリソースを決定および構成する方法、端末および基地局
CN111867038B (zh) 一种通信方法及装置
US20230156798A1 (en) Transmission method and device
KR20180105683A (ko) 참고 신호 송신 방법, 장치 및 시스템
WO2020030253A1 (en) Reducing dci payload
WO2018082500A1 (zh) 一种导频映射方法及装置
CN108541397B (zh) 一种终端、基站和数据传输的方法
WO2016169479A1 (zh) 一种数据传输方法及设备
US9313006B2 (en) Methods and apparatus for resource element mapping
CN107659525B (zh) 下行导频信号发送方法及装置
WO2018188095A1 (zh) 一种通信方法及装置
WO2017049988A1 (zh) 一种数据发送、接收方法及装置
WO2017193395A1 (zh) 传输上行数据的方法、终端设备和网络侧设备
CN109845339B (zh) 传输信号的方法及设备
WO2018058988A1 (zh) 一种导频映射方法及装置
WO2020030255A1 (en) Reducing dmrs overhead
WO2019158036A1 (zh) 参考信号图样的确定方法及装置
WO2018201345A1 (zh) 下行控制信息传输方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17867199

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17867199

Country of ref document: EP

Kind code of ref document: A1