WO2018082288A1 - 一种修复电池的方法及装置 - Google Patents

一种修复电池的方法及装置 Download PDF

Info

Publication number
WO2018082288A1
WO2018082288A1 PCT/CN2017/085976 CN2017085976W WO2018082288A1 WO 2018082288 A1 WO2018082288 A1 WO 2018082288A1 CN 2017085976 W CN2017085976 W CN 2017085976W WO 2018082288 A1 WO2018082288 A1 WO 2018082288A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
mode
failure mode
strategy
preset
Prior art date
Application number
PCT/CN2017/085976
Other languages
English (en)
French (fr)
Inventor
乐斌
许玉琴
叶利强
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17866460.3A priority Critical patent/EP3528334B1/en
Publication of WO2018082288A1 publication Critical patent/WO2018082288A1/zh
Priority to US16/405,613 priority patent/US11374265B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4242Regeneration of electrolyte or reactants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/446Initial charging measures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/12Construction or manufacture
    • H01M10/121Valve regulated lead acid batteries [VRLA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to the field of batteries, and in particular, to a method and apparatus for repairing a battery.
  • Valve Regulated Lead Acid Battery is a sealed structure. It does not leak acid or acid mist during normal use and will not corrode equipment. Therefore, it is widely used in uninterruptible power systems (Uninterruptible). Power System (UPS), communication backup power supply, and industrial energy storage systems.
  • UPS Power System
  • VRLA The service life of VRLA depends on the environment and method of use. If it is used under unsuitable conditions, VRLA will be invalidated, which will greatly shorten its service life.
  • the capacity of the VRLA When the VRLA fails, the capacity of the VRLA will decrease. In this case, part of the capacity of the VRLA can be restored by repairing the VRLA.
  • VRLA is generally repaired by a special instrument (for example, a lead-acid battery repair instrument). These instruments can only repair a single mode one by one when repairing the battery, and for all the batteries. All failure modes are fixed by a fixed repair process, and the repair effect is poor.
  • Embodiments of the present invention provide a method and apparatus for repairing a battery to improve the effect of battery repair.
  • a method for repairing a battery comprising: determining, by a power supply system, a failure mode of the battery according to a battery abuse record or a performance parameter of the battery, the abuse record including a usage record of a situation in which a preset use range of the battery performance parameter is exceeded
  • the performance parameter of the battery is used to characterize the performance of the battery;
  • the power system determines the power restoration strategy for repairing the battery according to the failure mode of the battery, wherein when the failure mode of the battery is the water loss mode, the grid corrosion mode and the thermal runaway mode
  • At least one of the power repair strategies is: reduce the battery float voltage to charge the battery or reduce the average charge voltage to charge the battery or initiate intermittent charging to charge the battery, and increase the battery cooling measures; when the battery When the failure mode is at least one of an internal short circuit mode, a backward single mode, and a vulcanization mode, the power restoration strategy is: performing a first preset time length of the battery by using a preset voltage and a preset
  • the method provided by the first aspect after determining the failure mode of the battery, further determining the battery
  • the power repair strategy, for various failure modes and combinations thereof, the present invention can improve the service life of the battery through targeted repair of the battery, and can improve the efficiency of battery repair.
  • the power restoration strategy is: the first repair strategy is used to repair the battery, and after the battery is fully charged, the second repair strategy is used to repair the battery, and after the second repair strategy is used to repair the battery, the first repair strategy is adopted.
  • the battery is repaired, wherein the first failure mode group includes a water loss mode, a grid corrosion mode, and a thermal runaway mode, and the second failure mode group includes an inner short circuit mode, a backward single mode, and a vulcanization mode, and the first repair strategy is: Reducing the battery float voltage to charge the battery or lower the charge voltage to charge the battery or initiate intermittent charging to charge the battery; the second repair strategy is to use the preset voltage and the preset current to perform the second preset time length on the battery. Charging and causing the temperature of the battery to be less than or equal to a first predetermined threshold, the preset voltage being greater than or equal to the charging standard of the battery , Or equal to the charging current is greater than a predetermined standard current of the battery.
  • the first aspect and the first possible implementation manner of the first aspect can simultaneously repair a plurality of failure modes by using a unified power restoration strategy, thereby improving battery repair efficiency.
  • the power system determines a failure mode of the battery according to a performance parameter of the battery, including: the power system acquires performance parameters of the battery At least one set of test results, one set of test results corresponding to one test time point; the power system determines the failure mode of the battery based on at least one set of test results.
  • the power system determines a failure mode of the battery according to the at least one set of test results, including: determining, by the power system, at least one set of test results and presets The matching degree of the preset condition corresponding to each failure mode in the failure mode group; the power system determines the failure mode corresponding to the preset condition that the matching degree of the test result is greater than or equal to the second preset threshold is the failure of the battery mode.
  • the power supply system performs the battery according to the power restoration strategy After the repair, the method further includes: obtaining, by the power system, a value of the performance parameter of the battery after the third preset time length; the power system determining whether the power restoration strategy is valid according to the value of the performance parameter of the battery; if yes, the power system continues to adopt the power restoration The strategy repairs the battery until the repair is completed; if not, the power system reacquires multiple sets of test results of the battery performance parameters and re-determines the battery failure mode according to the multiple sets of test results, and one set of test results corresponds to one test time point.
  • the fourth possible implementation of the first aspect may be due to the fact that the failure mode of the battery may change during the repair process or the at least one set of test results described above causes a large test error due to external reasons, thereby making the determined failure mode inaccurate.
  • After the third preset period of time for repairing the battery it is determined whether the power restoration strategy is valid, so that the power restoration strategy can be adjusted in time to improve the accuracy of the repair.
  • the power system determines whether the power restoration strategy is valid according to the value of the performance parameter of the battery, including: When the effect mode is one or more of the water loss mode, the grid corrosion mode and the thermal runaway mode, the performance parameter of the battery is the value of the float current of the battery, and if the value of the float current of the battery is less than at least one When the average value of the floating charge current in the test result is determined, the power system determines that the power repair strategy is effective.
  • the power system determines that the power repair strategy is invalid; when the battery failure mode is the internal short circuit mode, the backward single mode, and the sulfide mode
  • the performance parameter of the battery is the temperature rise value and the capacity value of the battery. If the temperature rise value of the battery is less than the average value of the temperature rise in at least one set of test results, and/or, the capacity value of the battery is greater than When the average of the capacity in at least one set of test results, the power system determines that the power repair strategy is valid, otherwise, the power system determines that the power repair strategy is invalid.
  • the battery includes a battery pack and/or a battery A battery pack includes at least 2 battery cells.
  • the performance parameter of the battery includes: a charging voltage of the battery, and a battery At least one of a discharge voltage, a charging current of the battery, a discharge current of the battery, an internal resistance of the battery, a temperature of the battery, an accumulated discharge amount of the battery, and a capacity of the battery.
  • a power supply system including: a first determining unit, configured to determine a failure mode of the battery according to a battery abuse record or a performance parameter of the battery, where the abuse record includes a situation in which a preset use interval of the battery performance parameter is exceeded The usage record, the performance parameter of the battery is used to characterize the performance of the battery; the second determining unit is configured to determine a power restoration strategy for repairing the battery according to the failure mode of the battery, wherein when the failure mode of the battery is the water loss mode, the board In at least one of the gate corrosion mode and the thermal runaway mode, the power supply repair strategy is: reducing the battery float voltage to charge the battery or lowering the average charge voltage to charge the battery or initiate intermittent charging to charge the battery and increase The cooling mechanism of the battery; when the failure mode of the battery is at least one of an internal short circuit mode, a backward single mode, and a vulcanization mode, the power restoration strategy is: when the battery is fully charged, the preset voltage and the preset
  • the battery is charged for a first preset time length and causes the temperature of the battery to be less than or equal to the first preset Value greater than or equal to a predetermined voltage battery charging standard voltage, the current is greater than or equal to the predetermined charging standard current of the battery; repair unit configured to repair the battery power source according to the selected repair strategies.
  • the unit in the power supply system provided by the second aspect is used to perform the method provided by the first aspect. Therefore, the beneficial effects of the power system can be seen in the beneficial effects of the method, and details are not described herein again.
  • the power restoration strategy is: the first repair strategy is used to repair the battery, and after the battery is fully charged, the second repair strategy is used to repair the battery, and after the second repair strategy is used to repair the battery, the first repair strategy is adopted.
  • the battery is repaired, wherein the first failure mode group includes a water loss mode, a grid corrosion mode, and a thermal runaway mode, and the second failure mode group includes an inner short circuit mode, a backward single mode, and a vulcanization mode, and the first repair strategy is: Reducing the battery float voltage to charge the battery or lower the charge voltage to charge the battery or initiate intermittent charging to charge the battery; the second repair strategy is to use the preset voltage and the preset current to perform the second preset time length on the battery. Charging And the temperature of the battery is less than or equal to a first preset threshold, the preset voltage is greater than or equal to a charging standard voltage of the battery, and the preset current is greater than or equal to a charging standard current of the battery.
  • the second aspect and the second possible implementation manner of the second aspect can simultaneously repair a plurality of failure modes by using a unified power restoration strategy, thereby improving battery repair efficiency.
  • the power system further includes an acquiring unit: an acquiring unit, configured to acquire at least one set of test results of performance parameters of the battery The set of test results corresponds to a test time point; the first determining unit is specifically configured to determine a failure mode of the battery according to at least one set of test results.
  • the first determining unit is specifically configured to: determine each of the at least one set of test results and each of the preset failure mode groups a matching degree of the corresponding preset condition; determining a failure mode corresponding to the preset condition that the matching degree of the at least one test result is greater than or equal to the second preset threshold is a failure mode of the battery.
  • the acquiring unit is further configured to obtain a value of a performance parameter of the battery after the third preset time length;
  • the method further includes determining, by the determining unit, whether the power restoration strategy is valid according to the value of the performance parameter of the battery; if yes, the repairing unit continues to repair the battery by using the power restoration strategy until the repair is completed; if not, the acquiring unit reacquires the performance parameter of the battery.
  • the plurality of sets of test results, the first determining unit is further configured to re-determine the failure mode of the battery according to the plurality of sets of test results, and one set of test results corresponds to one test time point.
  • the fourth possible implementation of the second aspect may be due to the fact that the failure mode of the battery may change during the repair process or the at least one set of test results described above causes a large test error due to external reasons, thereby making the determined failure mode inaccurate.
  • After the third preset period of time for repairing the battery it is determined whether the power restoration strategy is valid, so that the power restoration strategy can be adjusted in time to improve the accuracy of the repair.
  • the determining unit is specifically configured to: when the failure mode is one of a water loss mode, a grid corrosion mode, and a thermal runaway mode Or more than one, the value of the performance parameter of the battery is the value of the float current of the battery.
  • the performance parameter of the battery is the temperature rise value and the capacity value of the battery, if The temperature rise value of the battery is less than the average value of the temperature rise in at least one set of test results, and/or, when the capacity value of the battery is greater than the average value of the capacity in at least one set of test results, determining that the power repair strategy is effective, otherwise, determining the power supply The repair strategy is invalid.
  • the battery in combination with the second aspect, the first possible implementation manner of the second aspect, and the fifth possible implementation manner, in a sixth possible implementation manner, includes a battery pack and/or a battery unit, and a battery The battery pack includes at least two battery cells.
  • the performance parameter of the battery includes: charging of the battery At least one of an electric voltage, a discharge voltage of the battery, a charging current of the battery, a discharge current of the battery, an internal resistance of the battery, a temperature of the battery, a cumulative discharge amount of the battery, and a capacity of the battery.
  • a power supply system comprising: a memory for storing code, and a processor for performing, according to the code, the following action: determining a failure mode of the battery according to a battery abuse record or a performance parameter of the battery,
  • the abuse record includes a usage record for a situation in which the battery usage parameter exceeds the preset usage interval, the battery performance parameter is used to characterize the performance of the battery, and the power repair strategy for repairing the battery is determined according to the failure mode of the battery, wherein when the battery fails
  • the power restoration strategy is: reducing the battery float voltage to charge the battery or lowering the average charging voltage to charge the battery or initiate intermittent charging.
  • the battery is charged and the battery cooling measures are increased; when the battery failure mode is at least one of an internal short circuit mode, a backward single mode, and a vulcanization mode, the power restoration strategy is: when the battery is fully charged, the pre-use is adopted. Setting the voltage and the preset current to charge the battery for the first preset time length So that the battery temperature is less than or equal to a first predetermined threshold value, a predetermined voltage is equal to or greater than the charging standard voltage of the battery, current is greater than or equal to the predetermined charging standard current of the battery; repair the battery power supply in accordance with the selected repair strategies.
  • the device in the power supply system provided by the third aspect is used to perform the method provided in the first aspect. Therefore, the beneficial effects of the power system can be seen in the beneficial effects of the method, and details are not described herein again.
  • the power restoration strategy is: the first repair strategy is used to repair the battery, and after the battery is fully charged, the second repair strategy is used to repair the battery, and after the second repair strategy is used to repair the battery, the first repair strategy is adopted.
  • the battery is repaired, wherein the first failure mode group includes a water loss mode, a grid corrosion mode, and a thermal runaway mode, and the second failure mode group includes an inner short circuit mode, a backward single mode, and a vulcanization mode, and the first repair strategy is: Reducing the battery float voltage to charge the battery or lower the charge voltage to charge the battery or initiate intermittent charging to charge the battery; the second repair strategy is to use the preset voltage and the preset current to perform the second preset time length on the battery. Charging and causing the temperature of the battery to be less than or equal to a first predetermined threshold, the preset voltage being greater than or equal to the charging standard of the battery , Or equal to the charging current is greater than a predetermined standard current of the battery.
  • the third aspect and the first possible implementation manner of the third aspect can simultaneously repair a plurality of failure modes by using a unified power restoration strategy, thereby improving battery repair efficiency.
  • the processor is specifically configured to: obtain at least one set of test results of a performance parameter of the battery, and a set of test results Corresponding to a test time point; determining the failure mode of the battery based on at least one set of test results.
  • the processor is specifically configured to: determine, at least one set of test results, corresponding to each of the preset failure mode groups The matching degree of the preset condition; determining the failure mode corresponding to the preset condition that the matching degree of the at least one test result is greater than or equal to the second preset threshold is the failure mode of the battery.
  • the processor is specifically configured to: After the length of time, obtain the value of the performance parameter of the battery; determine whether the power restoration strategy is valid according to the value of the performance parameter of the battery; if yes, continue to use the power restoration strategy to repair the battery until the repair is completed; if not, re-acquire the performance parameters of the battery Multiple sets of test results and re-determination of battery failure mode based on multiple sets of test results, one set of test results corresponding to one test time point.
  • the fourth possible implementation of the third aspect may be due to the fact that the failure mode of the battery may change during the repair process or the at least one set of test results described above causes a large test error due to external factors, thereby making the determined failure mode inaccurate.
  • After the third preset period of time for repairing the battery it is determined whether the power restoration strategy is valid, so that the power restoration strategy can be adjusted in time to improve the accuracy of the repair.
  • the processor is specifically configured to: when the failure mode is one of a water loss mode, a grid corrosion mode, and a thermal runaway mode Or more than one, the value of the performance parameter of the battery is the value of the float current of the battery.
  • the performance parameter of the battery is the temperature rise value and the capacity value of the battery, if The temperature rise value of the battery is less than the average value of the temperature rise in at least one set of test results, and/or, when the capacity value of the battery is greater than the average value of the capacity in at least one set of test results, determining that the power repair strategy is effective, otherwise, determining the power supply The repair strategy is invalid.
  • the battery in combination with the third aspect, the first possible implementation manner of the third aspect, and the fifth possible implementation manner, in a sixth possible implementation manner, includes a battery pack and/or a battery unit, and a battery The battery pack includes at least two battery cells.
  • the performance parameter of the battery includes: a charging voltage of the battery, and a battery At least one of a discharge voltage, a charging current of the battery, a discharge current of the battery, an internal resistance of the battery, a temperature of the battery, an accumulated discharge amount of the battery, and a capacity of the battery.
  • FIG. 1 is a schematic diagram of power supply for a communication system provided by a power supply according to an embodiment of the present invention
  • FIG. 2 is a flowchart of a method for repairing a battery according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a battery pack according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a pulse having a square wave shape according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a power supply system according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of still another power supply system according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of still another power supply system according to an embodiment of the present invention.
  • a schematic diagram of power supply for a communication system includes a power system, a backup power source, a communication device, and other devices.
  • One end of the power system is connected to the mains, and the other end is connected to the backup power source, the communication device, and other devices. Connection, backup power is connected to communication equipment and other equipment.
  • a backup power supply In the field of communication, in order to prevent the communication equipment from working properly when the power grid of the communication equipment is in power failure, a backup power supply is generally provided (the standby power supply is generally composed of a plurality of battery cells connected in series), and when the power grid is normally powered, the standby power supply is idle.
  • the backup power supply supplies power to the communication device and other devices, and when the standby power source is in an idle state, the power grid can charge the backup power source.
  • the specific process for the grid to charge the backup power source is: the mains (usually 220V AC) enters the power system, the power system converts the AC power into DC power, and then reduces the voltage to the distribution voltage to supply power to the communication equipment, backup power, and other equipment.
  • the power system may include a controller, a processor, and the like for controlling a charging voltage, a charging current, and the like for charging the backup power source.
  • the embodiment of the invention provides a method for repairing a battery. As shown in FIG. 2, the method includes:
  • the power system determines a failure mode of the battery according to a battery abuse record or a performance parameter of the battery.
  • the abuse record includes a usage record of a situation exceeding a preset usage interval of the battery performance parameter, and the performance parameter of the battery is used to characterize the performance of the battery.
  • the battery comprises a battery pack and/or a battery cell, and one battery pack comprises at least 2 battery cells. Since the battery cell has limited ability to output voltage and current, in general, the battery cells are used in the form of a battery pack. As an example, as shown in FIG. 3, one battery pack may be composed of several battery cells. Obtained by series.
  • the battery cell may specifically be a lead-acid battery, a lithium battery, or the like.
  • the lead-acid battery may specifically be VRLA.
  • the performance parameters of the battery include: a charging voltage of the battery, a discharging voltage of the battery, a charging current of the battery, a discharging current of the battery, an internal resistance of the battery, a temperature of the battery, a cumulative discharge amount of the battery, and a capacity of the battery. at least one. It should be noted that, for the battery pack and the battery cells constituting the battery pack, the cumulative discharge amount of the battery pack is the same as the cumulative discharge amount of the battery cells.
  • failure mode of the battery pack may be the same as or different from the failure mode of the battery cell.
  • the vulcanization mode refers to a failure mode in which the negative electrode plate of the battery forms coarse crystals of lead sulfate, thereby causing a decrease in battery capacity.
  • the battery when the battery is in an under-charged state for a long period of time, the battery may be vulcanized;
  • the water loss mode refers to a failure mode in which the internal moisture of the battery is rapidly lost, resulting in a decrease in battery capacity. Specifically, when the battery is in a high temperature environment for a long period of time and/or a state in which the battery is charged with a high voltage for a long period of time, the battery may be lost. water.
  • the grid corrosion mode refers to a failure mode in which the grid of the battery is corroded, resulting in a decrease in battery capacity. Specifically, when the grid of the battery is in a high temperature and high pressure floating condition for a long time, the grid of the battery may be corroded;
  • the active material shedding mode refers to a failure mode in which the active material of the positive and negative plates of the battery falls off, thereby causing a decrease in battery capacity. Specifically, when the battery is subjected to long-term cyclic charging and discharging, the positive and negative electrodes of the battery are caused. The plate repeatedly expands and contracts, thereby causing the active material of the positive and negative plates to fall off;
  • the thermal runaway mode refers to a failure mode in which the battery temperature is too high to cause the battery to expand. Specifically, when the battery is floated in a high temperature environment, when the current and the battery temperature form a positive feedback with each other, that is, the battery temperature becomes high, resulting in a decrease in the internal resistance of the battery. , in turn, the floating charge flow is increased, the temperature of the battery is higher, and the vicious cycle causes the battery temperature to be too high, which may cause the battery to be in a thermal runaway mode;
  • the internal short-circuit mode refers to a failure mode in which the battery capacity is decreased due to impurities or dendrites existing inside the battery, thereby causing a slight or severe short-circuit inside the battery.
  • the self-discharge of the battery is large, and thus Cause the battery voltage to be low;
  • the backward single mode refers to a failure mode in which a single battery rapidly fails to cause a decrease in the capacity of the battery, and the cause may be that the battery is defective.
  • the step 201 may include: 11) the power system acquiring at least one set of test results of the performance parameter of the battery, and one set of test results corresponding to one test time point; The power system determines the failure mode of the battery based on at least one set of test results.
  • the performance parameters of the battery include the internal resistance of the battery and the temperature of the battery
  • five sets of test results can be tested at five test time points, wherein the first set of test results includes A 1 and B 1 , the second The group test results include A 2 and B 2 , the third group test results include A 3 and B 3 , the fourth group test results include A 4 and B 4 , and the fifth group test results include A 5 and B 5 , as shown in the table. 1.
  • the current of the battery continues to rise, the temperature of the battery continues to rise and exceeds a certain value (the setting of the value is related to the type of the battery), and within the battery
  • the resistance continues to decrease, it is determined that the failure mode of the battery is the thermal runaway mode.
  • Step 12) The specific implementation may include: determining, by the power system, a matching degree between the at least one set of test results and the preset condition corresponding to each of the preset failure mode groups; the power system matching with the at least one set of test results is greater than The failure mode corresponding to the preset condition equal to the second preset threshold is determined as the failure mode of the battery.
  • the preset failure mode group may include multiple of the following failure modes: a vulcanization mode, a water loss mode, a grid corrosion mode, an active material shedding mode, a thermal runaway mode, and an internal Short-circuit mode and backward single mode; when the battery is a battery pack, the preset failure mode group can include multiple of the following failure modes: vulcanization mode, water loss mode, grid corrosion mode, active material shedding mode, and thermal runaway mode.
  • At least one of a model matching algorithm, a neural network algorithm, an echo state network algorithm, and a vector machine algorithm may be used to calculate a matching degree of at least one set of test results and a preset condition corresponding to each failure mode.
  • the setting of the second preset threshold may be determined according to an actual application scenario.
  • the second preset threshold may be 80% or 70%.
  • the 48v battery pack consisting of 24 battery cells commonly used in the communication field is taken as an example, and the preset conditions corresponding to each failure mode can be seen in Table 2.
  • the temperature rise of the battery refers to the battery temperature minus the ambient temperature of the environment in which the battery is located.
  • the abuse record is used to record the number and time of abuse of the battery such as over-discharge, over-charging, and over-temperature. According to the abuse record, it can be determined whether the battery failure mode is the vulcanization mode or the water loss mode. Specifically, for the battery pack: when the battery pack is accumulated When there is more than 5 over-discharges, it is determined that the failure mode of the battery pack is the vulcanization mode. When the accumulated time of the battery pack is greater than or equal to 65 ° C for more than 100 h or the accumulated voltage of the battery pack is greater than or equal to 57 V, the cumulative time exceeds 100 h. , to determine the failure mode of the battery pack is the water loss mode.
  • the battery cell When the battery cell accumulates more than 5 times of over-discharge, determine the failure mode of the battery cell as the vulcanization mode. When the battery cell temperature is greater than or equal to 65 ° C, the accumulated time exceeds 100 h or the battery cell When the accumulated voltage of the charging voltage greater than or equal to 2.4V exceeds 100h, it is determined that the failure mode of the battery cell is the water loss mode.
  • the battery performance parameter preset usage range is preset when manufacturing the battery.
  • the battery pack when the discharge voltage of the battery pack is lower than 20V, the battery pack is considered to be over-discharged, and when the discharge voltage of the battery cell is lower than 0.83V, the battery cell is considered to be over-discharged.
  • the power system determines a power restoration strategy for repairing the battery according to a failure mode of the battery, wherein when the failure mode of the battery is at least one of a water loss mode, a grid corrosion mode, and a thermal runaway mode, the power restoration strategy is : Reduce the battery float voltage to charge the battery or reduce the average charge voltage to charge the battery or start intermittent charging to charge the battery, and increase the battery cooling measures; when the battery failure mode is the internal short circuit mode, backward monomer In at least one of the mode and the vulcanization mode, the power repair strategy is: when the battery is fully charged, the battery is charged for the first preset time length by using the preset voltage and the preset current, and the battery temperature is less than or equal to The first preset threshold, the preset voltage is greater than or equal to the charging standard voltage of the battery, and the preset current is greater than or equal to the charging standard current of the battery.
  • the battery in addition to repairing the battery by the power supply system, the battery can be repaired by using an external repair device other than the power supply system.
  • the backup power supply in the communication system shown in FIG. 1, the backup power supply is also restored. It can be connected to an external repair device that is used to externally repair the battery with an external repair strategy.
  • the external repair strategy may adopt a method in the prior art.
  • the failure mode of the battery is the vulcanization mode
  • the negative plate of the battery forms coarse crystals of lead sulfate.
  • the battery can be charged by the pulse of the square wave as shown in FIG. Resonate with the crystal to break up the crystals of lead sulfate, allowing it to re-engage in the reaction inside the battery.
  • the waveform of the pulse for charging the battery may also be a triangular wave and a harmonic, etc., which is merely exemplified in FIG.
  • the power restoration strategy corresponding to each failure mode may be as follows (it is to be noted that, here is merely an exemplary description, and the specific power restoration strategy may be different depending on the working environment of the battery):
  • the power supply repair strategy corresponding to the vulcanization mode according to the type of battery (different types of different voltages), the degree of vulcanization (can be determined according to the internal resistance of the battery, the greater the internal resistance of the battery, the higher the degree of vulcanization), etc., when the battery is fully charged
  • the battery charging voltage and the charging current are raised, and the battery is charged for a first predetermined length of time to crush a part of the lead sulfate crystals, and the temperature of the battery is monitored in real time, so that the temperature of the battery is within a reasonable range (for example, Less than 45 ° C) to prevent battery failure in other modes.
  • the charging voltage for charging the battery is greater than or equal to the charging standard voltage of the battery
  • the charging current for charging the battery is greater than or equal to the charging standard current of the battery.
  • the power recovery strategy corresponding to the water loss mode the higher the charging voltage of the battery, the more water is electrolyzed inside the battery. Therefore, the battery float voltage or the average charging voltage can be reduced according to the battery type; The more water is lost, therefore, intermittent charging can be used to shorten the charging time of the battery, increase the system cooling measures to reduce the battery temperature, or activate the battery for water replenishment if the battery has a water replenishment system.
  • the power supply repair strategy corresponding to the grid corrosion mode is mainly because the battery is in a state of high temperature or high voltage charging, therefore, the battery float voltage or the average charging voltage can be reduced or the intermittent charging can be started. Reduce battery current, increase system cooling, and control battery charging voltage and temperature.
  • the power recovery strategy corresponding to the active material shedding mode minimize the discharge depth of the battery and the number of cycles of charge and discharge, or cut off some unimportant loads to reduce the battery discharge current and slow down the battery discharge speed.
  • the power recovery strategy corresponding to the thermal runaway mode according to the battery type, reduce the battery float voltage or the average charging voltage or start the intermittent charging, shorten the charging time of the battery, and increase the system cooling measures to reduce the battery temperature.
  • the power supply repair strategy corresponding to the internal short circuit mode (or the backward single mode): forced equalization of the battery start. If the battery has an equalization system, the short circuit battery (or the backward unit) is fixedly balanced, and the alarm is required to be replaced by the operation and maintenance personnel.
  • the battery repairing method may be repaired by using a power restoration strategy corresponding to the failure mode.
  • the power restoration corresponding to each failure mode may be adopted.
  • the strategy is to repair the battery in turn.
  • a unified power restoration strategy can be used to simultaneously repair multiple failure modes. Specifically, as shown in Table 4, Table 4 lists when there are multiple failure modes of the battery. A power repair strategy that fixes multiple failure modes simultaneously.
  • the second preset time length is less than the first preset time length.
  • the second preset time length may be half of the first preset time length.
  • the first preset threshold may be set according to an actual application scenario.
  • the first preset threshold may be 45 ° C.
  • the repair efficiency can be improved by adopting a unified power restoration strategy for multiple failure modes and simultaneously repairing.
  • the charge and discharge management system of the battery is mostly performed by a predetermined constant voltage current limit or the like, and only the basic function of charging and discharging the battery in a normal environment is satisfied, and the charge and discharge management system cannot be adjusted according to the change of the battery. Therefore, the service life of the battery is reduced.
  • the battery repair life is repaired by using a power repair strategy, and the service life of the battery can be prolonged.
  • the power system repairs the battery according to the selected power restoration strategy.
  • the battery repairing method can be repaired by using a power restoration strategy corresponding to the failure mode.
  • the power restoration corresponding to each failure mode can be used.
  • the strategy is to repair the battery in turn.
  • a unified power restoration strategy can be used to simultaneously repair multiple failure modes.
  • the power system acquires a value of a performance parameter of the battery after a third preset time length.
  • the third preset time length may be set according to an actual application scenario, and the third preset time length is less than a total length of time for repairing the battery.
  • the power system determines whether the power restoration strategy is valid according to the value of the performance parameter of the battery.
  • the power system continues to use the power repair strategy to repair the battery until the repair is completed; if not, the power system re-acquires multiple sets of test results of the battery performance parameters and re-determines the battery failure mode based on the multiple sets of test results, a set of test results Corresponds to a test time point.
  • the battery may be repaired because the failure mode of the battery may change during the repair process or at least one of the above test results may cause a test error due to external factors, thereby making the determined failure mode inaccurate.
  • the power restoration strategy After the third preset time period, it is determined whether the power restoration strategy is valid, so that the power restoration strategy can be adjusted in time to improve the accuracy of the repair.
  • the step 205 may include: when the failure mode is one or more of a water loss mode, a grid corrosion mode, and a thermal runaway mode, the performance parameter value of the battery is a float current of the battery.
  • the value of the battery if the value of the float current of the battery is less than the average value of the float current in at least one of the test results, the power system determines that the power repair strategy is valid; otherwise, the power system determines that the power repair strategy is invalid; when the battery fails mode
  • the performance parameter of the battery is the temperature rise value and the capacity value of the battery, and if the temperature rise value of the battery is less than the temperature in at least one set of test results
  • the value of the performance parameter of the battery may also be the battery when the battery is charged.
  • the charging voltage and the cut-off voltage of the battery if the battery charging voltage when the power system is charging the battery is greater than the average value of the battery charging voltage when the battery is charged in at least one set of test results, and/or, the cut-off voltage of the battery is greater than at least one group
  • the power supply repair strategy can also be considered effective.
  • the value of the performance parameter of the battery may be a single value or an average of multiple values of the obtained performance parameter.
  • different failure modes determine whether the power restoration strategy is effective. See Table 5.
  • the active substance shedding mode cannot determine if the repair is effective. Therefore, when the failure mode is only the active substance In the fall mode, steps 204 and 205 are not performed.
  • steps 204 and 205 since steps 204 and 205 are performed, the repair of the battery forms a closed loop repair mode, and thus the problem of increasing battery loss due to the deviation of the determined failure mode can be prevented.
  • the method provided by the embodiment of the present invention further determines the power restoration strategy of the battery after determining the failure mode of the battery, and can improve the service life of the battery by specifically repairing the battery, and may also generate multiple failures.
  • the battery of the mode is repaired to improve the efficiency of battery repair.
  • the embodiment of the invention further provides a power system 50, as shown in FIG. 5, comprising:
  • the first determining unit 501 is configured to determine a failure mode of the battery according to the abuse record of the battery or the performance parameter of the battery, where the abuse record includes a usage record of a situation exceeding a preset use interval of the battery performance parameter, and the performance parameter of the battery is used to characterize the battery Performance
  • a second determining unit 502 configured to determine, according to a failure mode of the battery, a power restoration strategy for repairing the battery, wherein when the failure mode of the battery is at least one of a water loss mode, a grid corrosion mode, and a thermal runaway mode,
  • the power repair strategy is: reduce the battery float voltage to charge the battery or reduce the average charge voltage to charge the battery or start intermittent charging to charge the battery, and increase the battery cooling measures; when the battery failure mode is the internal short circuit mode
  • the power restoration strategy is: when the battery is fully charged, the battery is charged for the first preset time length by using the preset voltage and the preset current, and the battery is made The temperature is less than or equal to the first preset threshold, the preset voltage is greater than or equal to the charging standard voltage of the battery, and the preset current is greater than or equal to the charging standard current of the battery;
  • the repairing unit 503 is configured to repair the battery according to the selected power restoration strategy.
  • the power restoration strategy is: adopting a first repair strategy pair
  • the battery is repaired, and after the battery is fully charged, the second repair strategy is used to repair the battery.
  • the first repair strategy is used to repair the battery, wherein the first failure mode is used.
  • the group includes a water loss mode, a grid corrosion mode and a thermal runaway mode
  • the second failure mode group includes an inner short circuit mode, a backward single mode, and a vulcanization mode.
  • the first repair strategy is: reducing the battery float voltage to charge or lower the battery.
  • the charging voltage is used to charge the battery or initiate intermittent charging to charge the battery;
  • the second repair strategy is to charge the battery for a second preset time length by using a preset voltage and a preset current, and make the temperature of the battery less than or equal to the first a preset threshold, the preset voltage is greater than or equal to the charging standard voltage of the battery, and the preset current is greater than or equal to the charging of the battery Reference current.
  • the power system 50 further includes an obtaining unit 504:
  • the obtaining unit 504 is configured to obtain at least one set of test results of performance parameters of the battery, where the set of test results corresponds to one test time point;
  • the first determining unit 501 is specifically configured to determine a failure mode of the battery according to the at least one set of test results.
  • the first determining unit 501 is specifically configured to:
  • the failure mode corresponding to the preset condition that the at least one set of test result matching degree is greater than or equal to the second preset threshold is determined as the failure mode of the battery.
  • the obtaining unit 504 is further configured to obtain a value of a performance parameter of the battery after the third preset time length;
  • the power system 50 further includes a determining unit 505, configured to determine, according to the value of the performance parameter of the battery, whether the power restoration strategy is valid;
  • the repair unit 503 continues to repair the battery using the power repair strategy until the repair is completed;
  • the obtaining unit 504 re-acquires the plurality of sets of test results of the performance parameters of the battery
  • the first determining unit 501 is further configured to re-determine the failure mode of the battery according to the plurality of sets of test results, and the set of test results corresponds to one test time point.
  • the determining unit 505 is specifically configured to:
  • the performance parameter value of the battery is a value of a float current of the battery, and if the value of the float current of the battery is less than at least When the average value of the floating charge current in a set of test results is determined, the power restoration strategy is determined to be effective; otherwise, the power restoration strategy is determined to be invalid;
  • the performance parameter of the battery is a temperature rise value and a capacity value of the battery, if the temperature rise value of the battery is less than at least one group. The average value of the temperature rise in the test result, and/or when the capacity value of the battery is greater than the average of the capacity in at least one of the test results, determines that the power repair strategy is valid, otherwise, the power repair strategy is determined to be invalid.
  • the battery comprises a battery pack and/or a battery cell, and one battery pack comprises at least 2 battery cells.
  • the performance parameters of the battery include: a charging voltage of the battery, a discharging voltage of the battery, a charging current of the battery, a discharging current of the battery, an internal resistance of the battery, a temperature of the battery, a cumulative discharge amount of the battery, and a capacity of the battery. at least one.
  • the various units in the power supply system 50 provided by the embodiment of the present invention are used to perform the foregoing method. Therefore, the beneficial effects of the power system 50 can be seen in the beneficial effects of the foregoing method, and details are not described herein again.
  • the embodiment of the present invention further provides a power system 70, as shown in FIG. 7, comprising: a memory 701 for storing code, and a processor 702 for executing the method shown in FIG. 2 according to the code. .
  • the functional units in the power system may be embedded in the hardware of the power system or in the form of software, or may be stored in the processor of the power system in a software manner, so that the processor calls the execution of each unit. Operation.
  • the processor may be a central processing unit (CPU), a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), and field programmable. Field Programmable Gate Array (FPGA) or other programmable logic device, transistor logic device, hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor can also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the steps of the method described in connection with the present disclosure may be implemented in a hardware, or may be implemented by a processor executing software instructions.
  • the software instructions may be composed of corresponding software modules, which may be stored in a random access memory (RAM), a flash memory, a read only memory (ROM), and an erasable memory.
  • RAM random access memory
  • ROM read only memory
  • EPROM Erasable Programmable ROM
  • EEPROM Electrically Erasable Programmable Read Only Memory
  • Register Hard Disk
  • Mobile Hard Disk CD-ROM
  • An exemplary storage medium is coupled to the processor to enable the processor to read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC.
  • the various devices in the power supply system 70 provided by the embodiments of the present invention are used to perform the foregoing methods. Therefore, the beneficial effects of the power system 70 can be seen in the beneficial effects of the foregoing methods, and details are not described herein again.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the modules is only a logical function division.
  • there may be another division manner for example, multiple modules or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • each functional module in each embodiment of the present application may be integrated into one processing module, or each module may exist physically separately, or two or more modules may be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

本发明实施例公开了一种修复电池的方法及装置,涉及电池领域,用以提高电池修复的效果。该方法包括:电源***根据电池的滥用记录或者电池的性能参数确定电池的失效模式,滥用记录包括对超出电池性能参数预设使用区间的情形的使用记录,电池的性能参数用于表征电池的性能;电源***根据电池的失效模式确定对电池进行修复的电源修复策略;电源***根据所选择的电源修复策略对电池进行修复。该方法可以对失效的电池进行修复。

Description

一种修复电池的方法及装置
本申请要求于2016年11月7日提交中国专利局、申请号为201610975840.9、发明名称为“一种修复电池的方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及电池领域,尤其涉及一种修复电池的方法及装置。
背景技术
阀控式密封铅酸电池(Valve Regulated Lead Acid Battery,简称VRLA)为密封结构,正常使用时不会出现漏酸或排酸雾现象从而不会腐蚀设备,因此广泛应用于不间断电源***(Uninterruptible Power System,简称UPS)、通信备用电源以及工业储能***中。
VRLA的使用寿命十分依赖使用环境及使用方法,在不适合的条件下使用,会使得VRLA失效,从而大大缩短其使用寿命。当VRLA失效时,会使得VRLA的容量下降,该情况下,可以通过对VRLA进行修复,恢复VRLA的部分容量。目前当VRLA失效时,一般通过专门的仪器(例如,铅酸电池修复仪)对VRLA进行修复,这些仪器在对电池进行修复时,只能对单一的模式逐个进行修复,而且对所有的电池的所有的失效模式都是采用固定的修复流程去修复,修复效果较差。
发明内容
本发明的实施例提供了一种修复电池的方法及装置,用以提高电池修复的效果。
为达到上述目的,本发明的实施例采用如下技术方案:
第一方面,提供了一种修复电池的方法,包括:电源***根据电池的滥用记录或者电池的性能参数确定电池的失效模式,滥用记录包括对超出电池性能参数预设使用区间的情形的使用记录,电池的性能参数用于表征电池的性能;电源***根据电池的失效模式确定对电池进行修复的电源修复策略,其中,当电池的失效模式为失水模式、板栅腐蚀模式和热失控模式中的至少一种时,电源修复策略为:降低电池浮充电压对电池进行充电或降低均充电压对电池进行充电或启动间歇式充电对电池进行充电,并加大电池的制冷措施;当电池的失效模式为内短路模式、落后单体模式和硫化模式中的至少一种时,电源修复策略为:在电池满电状态下,采用预设电压和预设电流对电池进行第一预设时间长度的充电并使得电池的温度小于或等于第一预设阈值,预设电压大于或等于电池的充电标准电压,预设电流大于或等于电池的充电标准电流;电源***根据所选择的电源修复策略对电池进行修复。
第一方面提供的方法,在确定电池的失效模式之后,进一步确定电池的 电源修复策略,对于存在的各种失效模式及其组合,本发明通过有针对性的对电池进行修复,能够提高电池的使用寿命,可以提高电池修复的效率。
结合第一方面,在第一种可能的实现方式中,当电池的失效模式为第一失效模式组中的至少一种失效模式和第二失效模式组中的至少一种失效模式的组合时,电源修复策略为:采用第一修复策略对电池进行修复,并在电池满电后,采用第二修复策略对电池进行修复,在采用第二修复策略对电池进行修复后,再采用第一修复策略对电池进行修复,其中,第一失效模式组包括失水模式、板栅腐蚀模式和热失控模式,第二失效模式组包括内短路模式、落后单体模式和硫化模式,第一修复策略为:降低电池浮充电压对电池进行充电或降低均充电压对电池进行充电或启动间歇式充电对电池进行充电;第二修复策略为采用预设电压和预设电流对电池进行第二预设时间长度的充电并使得电池的温度小于或等于第一预设阈值,预设电压大于或等于电池的充电标准电压,预设电流大于或等于电池的充电标准电流。
当电池的失效模式有多种时,第一方面和第一方面的第一种可能的实现方式,可以对多种失效模式采用统一的电源修复策略同时进行修复,能够提高电池修复效率。
结合第一方面或第一方面的第一种可能的实现方式,在第二种可能的实现方式中,电源***根据电池的性能参数确定电池的失效模式,包括:电源***获取电池的性能参数的至少一组测试结果,一组测试结果对应一个测试时间点;电源***根据至少一组测试结果确定电池的失效模式。
结合第一方面的第二种可能的实现方式,在第三种可能的实现方式中,电源***根据至少一组测试结果确定电池的失效模式,包括:电源***确定至少一组测试结果与预设失效模式组中的每种失效模式对应的预设条件的匹配度;电源***将与至少一组测试结果匹配度大于或等于第二预设阈值的预设条件对应的失效模式确定为电池的失效模式。
结合第一方面、第一方面的第一种可能的实现方式至第三种可能的实现方式中的任一种,在第四种可能的实现方式中,在电源***根据电源修复策略对电池进行修复之后,该方法还包括:电源***在第三预设时间长度后获取电池的性能参数的值;电源***根据电池的性能参数的值判断电源修复策略是否有效;若是,电源***继续采用电源修复策略对电池进行修复直至修复完成;若否,电源***重新获取电池的性能参数的多组测试结果并根据多组测试结果重新确定电池的失效模式,一组测试结果对应一个测试时间点。
由于电池在修复的过程中失效模式可能发生改变或者上述的至少一组测试结果由于外界原因导致测试误差较大从而使得确定的失效模式不准确,第一方面的第四种可能的实现方式,可以在对电池进行修复的第三预设时间段之后,确定电源修复策略是否有效,从而可以及时的调整电源修复策略,提高修复的准确性。
结合第一方面的第四种可能的实现方式,在第五种可能的实现方式中,电源***根据电池的性能参数的值判断电源修复策略是否有效,包括:当失 效模式为失水模式、板栅腐蚀模式和热失控模式中的一种或多种时,电池的性能参数的值为电池的浮充电流的值,若电池的浮充电流的值小于至少一组测试结果中的浮充电流的平均值时,电源***确定电源修复策略有效,否则,电源***确定电源修复策略无效;当电池的失效模式为内短路模式、落后单体模式和硫化模式中的一种或多种时,电池的性能参数的值为电池的温升值和容量值,若电池的温升值小于至少一组测试结果中的温升的平均值,和/或,电池的容量值大于至少一组测试结果中的容量的平均值时,电源***确定电源修复策略有效,否则,电源***确定电源修复策略无效。
结合第一方面、第一方面的第一种可能的实现方式至第五种可能的实现方式中的任一种,在第六种可能的实现方式中,电池包括电池组和/或电池单体,一个电池组包括至少2块电池单体。
结合第一方面、第一方面的第一种可能的实现方式至第六种可能的实现方式任一种,在第七种可能的实现方式中,电池的性能参数包括:电池的充电电压、电池的放电电压、电池的充电电流、电池的放电电流、电池的内阻、电池的温度、电池的累计放电量和电池的容量中的至少一个。
第二方面,提供了一种电源***,包括:第一确定单元,用于根据电池的滥用记录或者电池的性能参数确定电池的失效模式,滥用记录包括对超出电池性能参数预设使用区间的情形的使用记录,电池的性能参数用于表征电池的性能;第二确定单元,用于根据电池的失效模式确定对电池进行修复的电源修复策略,其中,当电池的失效模式为失水模式、板栅腐蚀模式和热失控模式中的至少一种时,电源修复策略为:降低电池浮充电压对电池进行充电或降低均充电压对电池进行充电或启动间歇式充电对电池进行充电,并加大电池的制冷措施;当电池的失效模式为内短路模式、落后单体模式和硫化模式中的至少一种时,电源修复策略为:在电池满电状态下,采用预设电压和预设电流对电池进行第一预设时间长度的充电并使得电池的温度小于或等于第一预设阈值,预设电压大于或等于电池的充电标准电压,预设电流大于或等于电池的充电标准电流;修复单元,用于根据所选择的电源修复策略对电池进行修复。
第二方面提供的电源***中的各个单元用于执行第一方面提供的方法,因此,该电源***的有益效果可以参见该方法的有益效果,在此不再赘述。
结合第二方面,在第一种可能的实现方式中,当电池的失效模式为第一失效模式组中的至少一种失效模式和第二失效模式组中的至少一种失效模式的组合时,电源修复策略为:采用第一修复策略对电池进行修复,并在电池满电后,采用第二修复策略对电池进行修复,在采用第二修复策略对电池进行修复后,再采用第一修复策略对电池进行修复,其中,第一失效模式组包括失水模式、板栅腐蚀模式和热失控模式,第二失效模式组包括内短路模式、落后单体模式和硫化模式,第一修复策略为:降低电池浮充电压对电池进行充电或降低均充电压对电池进行充电或启动间歇式充电对电池进行充电;第二修复策略为采用预设电压和预设电流对电池进行第二预设时间长度的充电 并使得电池的温度小于或等于第一预设阈值,预设电压大于或等于电池的充电标准电压,预设电流大于或等于电池的充电标准电流。
当电池的失效模式有多种时,第二方面和第二方面的第二种可能的实现方式,可以对多种失效模式采用统一的电源修复策略同时进行修复,能够提高电池修复效率。
结合第二方面或第二方面的第一种可能的实现方式,在第二种可能的实现方式中,电源***还包括获取单元:获取单元,用于获取电池的性能参数的至少一组测试结果,一组测试结果对应一个测试时间点;第一确定单元,具体用于根据至少一组测试结果确定电池的失效模式。
结合第二方面的第二种可能的实现方式,在第三种可能的实现方式中,第一确定单元,具体用于:确定至少一组测试结果与预设失效模式组中的每种失效模式对应的预设条件的匹配度;将与至少一组测试结果匹配度大于或等于第二预设阈值的预设条件对应的失效模式确定为电池的失效模式。
结合第二方面的第三种可能的实现方式任一种,在第四种可能的实现方式中,获取单元,还用于在第三预设时间长度后获取电池的性能参数的值;电源***还包括判断单元,用于根据电池的性能参数的值判断电源修复策略是否有效;若是,修复单元继续采用电源修复策略对电池进行修复直至修复完成;若否,获取单元重新获取电池的性能参数的多组测试结果,第一确定单元还用于根据多组测试结果重新确定电池的失效模式,一组测试结果对应一个测试时间点。
由于电池在修复的过程中失效模式可能发生改变或者上述的至少一组测试结果由于外界原因导致测试误差较大从而使得确定的失效模式不准确,第二方面的第四种可能的实现方式,可以在对电池进行修复的第三预设时间段之后,确定电源修复策略是否有效,从而可以及时的调整电源修复策略,提高修复的准确性。
结合第二方面的第四种可能的实现方式,在第五种可能的实现方式中,判断单元,具体用于:当失效模式为失水模式、板栅腐蚀模式和热失控模式中的一种或多种时,电池的性能参数的值为电池的浮充电流的值,若电池的浮充电流的值小于至少一组测试结果中的浮充电流的平均值时,确定电源修复策略有效,否则,确定电源修复策略无效;当电池的失效模式为内短路模式、落后单体模式和硫化模式中的一种或多种时,电池的性能参数的值为电池的温升值和容量值,若电池的温升值小于至少一组测试结果中的温升的平均值,和/或,电池的容量值大于至少一组测试结果中的容量的平均值时,确定电源修复策略有效,否则,确定电源修复策略无效。
结合第二方面、第二方面的第一种可能的实现方式至第五种可能的实现方式任一种,在第六种可能的实现方式中,电池包括电池组和/或电池单体,一个电池组包括至少2块电池单体。
结合第二方面、第二方面的第一种可能的实现方式至第六种可能的实现方式任一种,在第七种可能的实现方式中,电池的性能参数包括:电池的充 电电压、电池的放电电压、电池的充电电流、电池的放电电流、电池的内阻、电池的温度、电池的累计放电量和电池的容量中的至少一个。
第三方面,提供了一种电源***,包括:存储器和处理器,存储器用于存储代码,处理器用于根据该代码执行以下动作:根据电池的滥用记录或者电池的性能参数确定电池的失效模式,滥用记录包括对超出电池性能参数预设使用区间的情形的使用记录,电池的性能参数用于表征电池的性能;根据电池的失效模式确定对电池进行修复的电源修复策略,其中,当电池的失效模式为失水模式、板栅腐蚀模式和热失控模式中的至少一种时,电源修复策略为:降低电池浮充电压对电池进行充电或降低均充电压对电池进行充电或启动间歇式充电对电池进行充电,并加大电池的制冷措施;当电池的失效模式为内短路模式、落后单体模式和硫化模式中的至少一种时,电源修复策略为:在电池满电状态下,采用预设电压和预设电流对电池进行第一预设时间长度的充电并使得电池的温度小于或等于第一预设阈值,预设电压大于或等于电池的充电标准电压,预设电流大于或等于电池的充电标准电流;根据所选择的电源修复策略对电池进行修复。
第三方面提供的电源***中的各个器件用于执行第一方面提供的方法,因此,该电源***的有益效果可以参见该方法的有益效果,在此不再赘述。
结合第三方面,在第一种可能的实现方式中,当电池的失效模式为第一失效模式组中的至少一种失效模式和第二失效模式组中的至少一种失效模式的组合时,电源修复策略为:采用第一修复策略对电池进行修复,并在电池满电后,采用第二修复策略对电池进行修复,在采用第二修复策略对电池进行修复后,再采用第一修复策略对电池进行修复,其中,第一失效模式组包括失水模式、板栅腐蚀模式和热失控模式,第二失效模式组包括内短路模式、落后单体模式和硫化模式,第一修复策略为:降低电池浮充电压对电池进行充电或降低均充电压对电池进行充电或启动间歇式充电对电池进行充电;第二修复策略为采用预设电压和预设电流对电池进行第二预设时间长度的充电并使得电池的温度小于或等于第一预设阈值,预设电压大于或等于电池的充电标准电压,预设电流大于或等于电池的充电标准电流。
当电池的失效模式有多种时,第三方面和第三方面的第一种可能的实现方式,可以对多种失效模式采用统一的电源修复策略同时进行修复,能够提高电池修复效率。
结合第三方面或第三方面的第一种可能的实现方式,在第二种可能的实现方式中,处理器,具体用于:获取电池的性能参数的至少一组测试结果,一组测试结果对应一个测试时间点;根据至少一组测试结果确定电池的失效模式。
结合第三方面的第二种可能的实现方式,在第三种可能的实现方式中,处理器,具体用于:确定至少一组测试结果与预设失效模式组中的每种失效模式对应的预设条件的匹配度;将与至少一组测试结果匹配度大于或等于第二预设阈值的预设条件对应的失效模式确定为电池的失效模式。
结合第三方面、第三方面的第一种可能的实现方式至第三种可能的实现方式任一种,在第四种可能的实现方式中,处理器,具体用于:在第三预设时间长度后获取电池的性能参数的值;根据电池的性能参数的值判断电源修复策略是否有效;若是,继续采用电源修复策略对电池进行修复直至修复完成;若否,重新获取电池的性能参数的多组测试结果并根据多组测试结果重新确定电池的失效模式,一组测试结果对应一个测试时间点。
由于电池在修复的过程中失效模式可能发生改变或者上述的至少一组测试结果由于外界原因导致测试误差较大从而使得确定的失效模式不准确,第三方面的第四种可能的实现方式,可以在对电池进行修复的第三预设时间段之后,确定电源修复策略是否有效,从而可以及时的调整电源修复策略,提高修复的准确性。
结合第三方面的第四种可能的实现方式,在第五种可能的实现方式中,处理器,具体用于:当失效模式为失水模式、板栅腐蚀模式和热失控模式中的一种或多种时,电池的性能参数的值为电池的浮充电流的值,若电池的浮充电流的值小于至少一组测试结果中的浮充电流的平均值时,确定电源修复策略有效,否则,确定电源修复策略无效;当电池的失效模式为内短路模式、落后单体模式和硫化模式中的一种或多种时,电池的性能参数的值为电池的温升值和容量值,若电池的温升值小于至少一组测试结果中的温升的平均值,和/或,电池的容量值大于至少一组测试结果中的容量的平均值时,确定电源修复策略有效,否则,确定电源修复策略无效。
结合第三方面、第三方面的第一种可能的实现方式至第五种可能的实现方式任一种,在第六种可能的实现方式中,电池包括电池组和/或电池单体,一个电池组包括至少2块电池单体。
结合第三方面、第三方面的第一种可能的实现方式至第六种可能的实现方式任一种,在第七种可能的实现方式中,电池的性能参数包括:电池的充电电压、电池的放电电压、电池的充电电流、电池的放电电流、电池的内阻、电池的温度、电池的累计放电量和电池的容量中的至少一个。
附图说明
图1为本发明实施例提供的市电为通信***供电的示意图;
图2为本发明实施例提供的一种修复电池的方法的流程图;
图3为本发明实施例提供的一种电池组的组成示意图;
图4为本发明实施例提供的一种波形为方波的脉冲的示意图;
图5为本发明实施例提供的一种电源***的组成示意图;
图6为本发明实施例提供的又一种电源***的组成示意图;
图7为本发明实施例提供的又一种电源***的组成示意图。
具体实施方式
为了便于理解本发明,首先对本发明实施例提供的方法应用的***做简要说明,需要说明的是,这里仅仅以该方法应用在通信***中为例进行说明, 并不限定本发明实施例提供的方法仅可以应用在通信***中。
如图1所示,为市电为通信***供电的示意图,通信***包括电源***、备用电源、通信设备以及其他设备,电源***一端与市电连接,另一端与备用电源、通信设备以及其他设备连接,备用电源与通信设备以及其他设备连接。
在通信领域中,为了防止通信设备所在城市电网停电时通信设备无法正常工作,一般会设置备用电源(备用电源一般由多块电池单体串联组成),当电网正常供电时,备用电源处于空闲状态,当电网停电时,备用电源为通信设备以及其他设备供电,在备用电源处于空闲状态时,电网可以为备用电源充电。电网为备用电源充电的具体过程为:市电(一般为220V的交流电)进入电源***,电源***将交流电转换为直流电,再将电压降为配电电压后为通信设备、备用电源以及其他设备供电,其中,电源***内可以包括控制器及处理器等,用于控制为备用电源充电的充电电压、充电电流等。
本发明实施例提供了一种修复电池的方法,如图2所示,该方法包括:
201、电源***根据电池的滥用记录或者电池的性能参数确定电池的失效模式,滥用记录包括对超出电池性能参数预设使用区间的情形的使用记录,电池的性能参数用于表征电池的性能。
可选的,电池包括电池组和/或电池单体,一个电池组包括至少2块电池单体。由于电池单体输出电压和电流的能力有限,因此,一般情况下,电池单体都是以电池组的形式使用,示例性的,如图3所示,一个电池组可以由若干个电池单体通过串联得到。
其中,电池单体具体可以为铅酸电池和锂电池等,例如,铅酸电池具体可以为VRLA。
可选的,电池的性能参数包括:电池的充电电压、电池的放电电压、电池的充电电流、电池的放电电流、电池的内阻、电池的温度、电池的累计放电量和电池的容量中的至少一个。需要说明的是,对于电池组和组成该电池组的电池单体来说,电池组的累计放电量与电池单体的累计放电量是相同的。
需要说明的是,电池组的失效模式与电池单体的失效模式可能相同,也可能不同。
具体的,硫化模式是指电池的负极板形成粗大的硫酸铅结晶,从而导致电池容量下降的失效模式,具体的,当电池长期处于欠电状态时,可能使得电池硫化;
失水模式是指电池内部水份快速损失,从而导致电池容量下降的失效模式,具体的,当电池长期处在高温环境下和/或长期采用高压对电池进行充电的状态下,可能使得电池失水。
板栅腐蚀模式是指电池的板栅被腐蚀,从而导致电池容量下降的失效模式,具体的,当电池的板栅长期处于高温高压浮充的情况下,可能使得电池的板栅被腐蚀;
活性物质脱落模式是指电池的正负极板活性物质脱落,从而导致电池容量下降的失效模式,具体的,当电池在经过长期循环充放电的情况下,使得电池的正负极 板反复膨胀收缩,从而导致正负极板活性物质脱落;
热失控模式是指电池温度过高导致电池膨胀的失效模式,具体的,当电池在高温环境下浮充时,电流和电池温度互相形成正反馈时,即电池温度变高,导致电池内阻减小,进而使得浮充电流增大,电池的温度更高,这样恶性的循环,会使得电池温度过高,从而可能使得电池处于热失控模式;
内短路模式是指由于电池内部存在的杂质或枝晶使得电池内部轻微或严重短路、从而使得电池容量下降的失效模式,当电池处于内短路模式的失效模式时,电池的自放电大,从而会导致电池的电压低;
落后单体模式是指单只电池快速失效而导致该电池的容量降低的失效模式,产生原因有可能为电池为残次品。
当根据电池的性能参数确定电池的失效模式时,步骤201在具体实现时,可以包括:11)电源***获取电池的性能参数的至少一组测试结果,一组测试结果对应一个测试时间点;12)电源***根据至少一组测试结果确定电池的失效模式。
示例性的,当电池的性能参数包括电池的内阻和电池的温度时,在5个测试时间点可以测试得到5组测试结果,其中,第1组测试结果包括A1和B1,第2组测试结果包括A2和B2,第3组测试结果包括A3和B3,第4组测试结果包括A4和B4,第5组测试结果包括A5和B5,具体可参见表1。
表1
Figure PCTCN2017085976-appb-000001
示例性的,当根据至少一组测试结果确定电池处于浮充状态、电池的电流持续上升、电池的温度持续上升并超过一定的值(该值的设定和电池的种类有关)、且电池内阻持续下降时,确定电池的失效模式为热失控模式。
需要说明的是,根据至少一组测试结果也可能得出电池并未失效的结果。
步骤12)具体实现时可以包括:电源***确定至少一组测试结果与预设失效模式组中的每种失效模式对应的预设条件的匹配度;电源***将与至少一组测试结果匹配度大于或等于第二预设阈值的预设条件对应的失效模式确定为电池的失效模式。
可选的,当电池为电池单体时,预设失效模式组中可以包括以下失效模式中的多种:硫化模式、失水模式、板栅腐蚀模式、活性物质脱落模式、热失控模式、内短路模式以及落后单体模式;当电池为电池组时,预设失效模式组中可以包括以下失效模式中的多种:硫化模式、失水模式、板栅腐蚀模式、活性物质脱落模式以及热失控模式。
具体的,可以采用模型匹配算法、神经网络算法、回声状态网络算法和向量机算法中的至少一种算法计算至少一组测试结果与每种失效模式对应的预设条件的匹配度。
第二预设阈值的设置可以根据实际的应用场景进行确定,例如,第二预设阈值可以为80%或70%。
具体的,以下以通信领域中常用的由24节电池单体组成的48v电池组为例,每种失效模式对应的预设条件可参见表2。
表2
Figure PCTCN2017085976-appb-000002
Figure PCTCN2017085976-appb-000003
其中,电池的温升是指电池温度减去电池所处环境的环境温度。
滥用记录用于记录电池过放电、过充电、温度过高等滥用的次数及时间等,根据滥用记录可以确定电池的失效模式为硫化模式还是失水模式,具体的,针对电池组:当电池组累计出现5次以上的过放电时,确定电池组的失效模式为硫化模式,当电池组的温度大于或等于65℃的累计时间超过100h或者电池组的充电电压大于或等于57V的累计时间超过100h时,确定电池组的失效模式为失水模式。针对电池单体:当电池单体累计出现5次以上的过放电时,确定电池单体的失效模式为硫化模式,当电池单体的温度大于或等于65℃的累计时间超过100h或者电池单体的充电电压大于或等于2.4V的累计时间超过100h时,确定电池单体的失效模式为失水模式。电池性能参数预设使用区间在制造电池时预先设定。
其中,当电池组的放电电压低于20V时,认为电池组过放电,当电池单体的放点电压低于0.83V时,认为电池单体过放电。
202、电源***根据电池的失效模式确定对电池进行修复的电源修复策略,其中,当电池的失效模式为失水模式、板栅腐蚀模式和热失控模式中的至少一种时,电源修复策略为:降低电池浮充电压对电池进行充电或降低均充电压对电池进行充电或启动间歇式充电对电池进行充电,并加大电池的制冷措施;当电池的失效模式为内短路模式、落后单体模式和硫化模式中的至少一种时,电源修复策略为:在电池满电状态下,采用预设电压和预设电流对电池进行第一预设时间长度的充电并使得电池的温度小于或等于第一预设阈值,预设电压大于或等于电池的充电标准电压,预设电流大于或等于电池的充电标准电流。
需要说明的是,除了采用电源***对电池进行修复之外,还可以采用除电源***之外的外部修复设备对电池进行修复,该情况下,在图1所示的通信***中,备用电源还可以与外部修复设备连接,外部修复设备用于采用外部修复策略对电池进行外部修复。
具体的,在确定失效模式之后,外部修复策略可以采用现有技术中的方法。例如,当电池的失效模式为硫化模式时,电池的负极板形成粗大的硫酸铅结晶,该情况下,可以采用如图4所示的波形为方波的脉冲对电池进行充电,通过谐波振动和晶体共振从而击碎硫酸铅结晶,使其重新参与电池内部的反应。当然,对电池进行充电的脉冲的波形还可以为三角波和符合谐波等,图4中仅仅为示例性说明。
其中,每种失效模式对应的电源修复策略可以如下(需要说明的是,这里仅仅是示例性说明,具体的电源修复策略可能由于电池的工作环境的不同有所不同):
硫化模式对应的电源修复策略:根据电池类型(类型不同,提升的电压不同)、硫化程度(可以根据电池的内阻确定,电池的内阻越大,硫化程度越高)等,在电池满电情况下,提升电池充电电压和充电电流,对电池进行第一预设时间长度的充电,以便击碎部分硫酸铅结晶,并实时监测电池的温度,使得电池的温度在合理的范围内(例如,小于45℃),防止电池产生其他模式的失效。一般情况下,对电池充电的充电电压大于或等于电池的充电标准电压,对电池充电的充电电流大于或等于电池的充电标准电流。
失水模式对应的电源修复策略:由于电池的充电电压越高,电池内部电解的水越多,因此,可以根据电池类型,降低电池浮充电压或均充电压;由于电池的温度越高,电池的失水越多,因此,可以采用间歇式充电,缩短电池的充电时间,加大***制冷措施,以便降低电池温度;或者,电池若存在补水***,则激活电池进行水分补充。
板栅腐蚀模式对应的电源修复策略:由于导致电池处于板栅腐蚀模式的原因主要是电池处于高温或高压充电的状态下,因此,可以通过降低电池浮充电压或均充电压或启动间歇式充电、降低电池电流、加大***制冷措施,控制电池的充电电压和温度。
活性物质脱落模式对应的电源修复策略:尽量减少电池的放电深度和循环充放电的次数,或切断部分不重要的负载以便降低电池放电电流,减缓电池放电速度。
热失控模式对应的电源修复策略:根据电池类型,降低电池浮充电压或均充电压或启动间歇式充电,缩短电池的充电时间,加大***制冷措施,以便降低电池温度。
内短路模式(或落后单体模式)对应的电源修复策略:对电池启动强制均充,若电池存在均衡***则对短路电池(或落后单体)定点均衡,同时上告告警要求运维人员更换。
具体的,电源修复策略与失效模式的对应关系可参见表3。
表3
Figure PCTCN2017085976-appb-000004
Figure PCTCN2017085976-appb-000005
Figure PCTCN2017085976-appb-000006
具体的,当电池的失效模式仅仅有一种时,可以采用与该种失效模式对应的电源修复策略对电池进行修复,当电池的失效模式有多种时,可以采用每种失效模式对应的电源修复策略依次对电池进行修复,另外,还可以采用统一的电源修复策略对多种失效模式同时进行修复,具体的,如表4所示,表4列出了当电池的失效模式有多种时,对多种失效模式同时进行修复的电源修复策略。
表4
Figure PCTCN2017085976-appb-000007
Figure PCTCN2017085976-appb-000008
其中,第二预设时间长度小于第一预设时间长度,示例性的,第二预设时间长度可以为第一预设时间长度的一半。第一预设阈值可以根据实际的应用场景进行设置,示例性的,第一预设阈值可以为45℃。
该方法中,通过对多种失效模式采用统一的电源修复策略同时进行修复,可以提高修复效率。
现有技术中,电池的充放电管理制度多以预定的恒压限流等方式进行,仅满足了电池在通常环境下充放电的基本功能,无法根据电池的变化对充放电管理制度进行调整,从而降低了电池的使用寿命,本发明实施例中通过采用电源修复策略对电池失效时进行修复,可以延长电池的使用使用寿命。
203、电源***根据所选择的电源修复策略对电池进行修复。
有益效果:当电池的失效模式仅仅有一种时,可以采用与该种失效模式对应的电源修复策略对电池进行修复,当电池的失效模式有多种时,可以采用每种失效模式对应的电源修复策略依次对电池进行修复,另外,还可以采用统一的电源修复策略对多种失效模式同时进行修复。
可选地,204、电源***在第三预设时间长度后获取电池的性能参数的值。
其中,第三预设时间长度可以根据实际的应用场景进行设置,第三预设时间长度小于对电池进行修复的总时间长度。
205、电源***根据电池的性能参数的值判断电源修复策略是否有效。
若是,电源***继续采用电源修复策略对电池进行修复直至修复完成;若否,电源***重新获取电池的性能参数的多组测试结果并根据多组测试结果重新确定电池的失效模式,一组测试结果对应一个测试时间点。
需要说明的是,由于电池在修复的过程中失效模式可能发生改变或者上述的至少一组测试结果由于外界原因导致测试误差较大从而使得确定的失效模式不准确,因此,可以在对电池进行修复的第三预设时间段之后,确定电源修复策略是否有效,从而可以及时的调整电源修复策略,提高修复的准确性。
可选的,步骤205在具体实现时可以包括:当失效模式为失水模式、板栅腐蚀模式和热失控模式中的一种或多种时,电池的性能参数的值为电池的浮充电流的值,若电池的浮充电流的值小于至少一组测试结果中的浮充电流的平均值时,电源***确定电源修复策略有效,否则,电源***确定电源修复策略无效;当电池的失效模式为内短路模式、落后单体模式和硫化模式中的一种或多种时,电池的性能参数的值为电池的温升值和容量值,若电池的温升值小于至少一组测试结果中的温升的平均值,和/或,电池的容量值大于至少一组测试结果中的容量的平均值时,电源***确定电源修复策略有效,否则,电源***确定电源修复策略无效。
另外,当电池为电池单体时,电池的性能参数的值还可以为电池充电时的电池 充电电压和电池的截止电压,若电源***为电池充电时的电池充电电压大于至少一组测试结果中的电池充电时的电池充电电压的平均值,和/或,电池的截止电压大于至少一组测试结果中的电池的截止电压的平均值时,也可以认为电源修复策略有效。
其中,电池的性能参数的值可以为单个值也可以为获取到的性能参数的多个值的平均值。示例性的,不同的失效模式确定电源修复策略是否有效的方法可以参见表5。
表5
Figure PCTCN2017085976-appb-000009
活性物质脱落模式无法确定修复是否有效。因此,当失效模式仅为活性物质脱 落模式时,不执行步骤204和205。
本发明实施例中由于执行了步骤204和205,从而使得对电池的修复形成闭环修复模式,进而可以防止由于确定的失效模式的偏差可能导致的增加电池损耗的问题。
本发明实施例提供的方法,在确定电池的失效模式之后,进一步确定电池的电源修复策略,通过有针对性的对电池进行修复,能够提高电池的使用寿命,由于还可以对产生了多种失效模式的电池进行修复,可以提高电池修复的效率。
本发明实施例还提供了一种电源***50,如图5所示,包括:
第一确定单元501,用于根据电池的滥用记录或者电池的性能参数确定电池的失效模式,滥用记录包括对超出电池性能参数预设使用区间的情形的使用记录,电池的性能参数用于表征电池的性能;
第二确定单元502,用于根据电池的失效模式确定对电池进行修复的电源修复策略,其中,当电池的失效模式为失水模式、板栅腐蚀模式和热失控模式中的至少一种时,电源修复策略为:降低电池浮充电压对电池进行充电或降低均充电压对电池进行充电或启动间歇式充电对电池进行充电,并加大电池的制冷措施;当电池的失效模式为内短路模式、落后单体模式和硫化模式中的至少一种时,电源修复策略为:在电池满电状态下,采用预设电压和预设电流对电池进行第一预设时间长度的充电并使得电池的温度小于或等于第一预设阈值,预设电压大于或等于电池的充电标准电压,预设电流大于或等于电池的充电标准电流;
修复单元503,用于根据所选择的电源修复策略对电池进行修复。
可选的,当电池的失效模式为第一失效模式组中的至少一种失效模式和第二失效模式组中的至少一种失效模式的组合时,电源修复策略为:采用第一修复策略对电池进行修复,并在电池满电后,采用第二修复策略对电池进行修复,在采用第二修复策略对电池进行修复后,再采用第一修复策略对电池进行修复,其中,第一失效模式组包括失水模式、板栅腐蚀模式和热失控模式,第二失效模式组包括内短路模式、落后单体模式和硫化模式,第一修复策略为:降低电池浮充电压对电池进行充电或降低均充电压对电池进行充电或启动间歇式充电对电池进行充电;第二修复策略为采用预设电压和预设电流对电池进行第二预设时间长度的充电并使得电池的温度小于或等于第一预设阈值,预设电压大于或等于电池的充电标准电压,预设电流大于或等于电池的充电标准电流。
可选的,如图6所示,电源***50还包括获取单元504:
获取单元504,用于获取电池的性能参数的至少一组测试结果,一组测试结果对应一个测试时间点;
第一确定单元501,具体用于根据至少一组测试结果确定电池的失效模式。
可选的,第一确定单元501,具体用于:
确定至少一组测试结果与预设失效模式组中的每种失效模式对应的预设条件的匹配度;
将与至少一组测试结果匹配度大于或等于第二预设阈值的预设条件对应的失效模式确定为电池的失效模式。
可选的,获取单元504,还用于在第三预设时间长度后获取电池的性能参数的值;
如图6所示,电源***50还包括判断单元505,用于根据电池的性能参数的值判断电源修复策略是否有效;
若是,修复单元503继续采用电源修复策略对电池进行修复直至修复完成;
若否,获取单元504重新获取电池的性能参数的多组测试结果,第一确定单元501还用于根据多组测试结果重新确定电池的失效模式,一组测试结果对应一个测试时间点。
可选的,判断单元505,具体用于:
当失效模式为失水模式、板栅腐蚀模式和热失控模式中的一种或多种时,电池的性能参数的值为电池的浮充电流的值,若电池的浮充电流的值小于至少一组测试结果中的浮充电流的平均值时,确定电源修复策略有效,否则,确定电源修复策略无效;
当电池的失效模式为内短路模式、落后单体模式和硫化模式中的一种或多种时,电池的性能参数的值为电池的温升值和容量值,若电池的温升值小于至少一组测试结果中的温升的平均值,和/或,电池的容量值大于至少一组测试结果中的容量的平均值时,确定电源修复策略有效,否则,确定电源修复策略无效。
可选的,电池包括电池组和/或电池单体,一个电池组包括至少2块电池单体。
可选的,电池的性能参数包括:电池的充电电压、电池的放电电压、电池的充电电流、电池的放电电流、电池的内阻、电池的温度、电池的累计放电量和电池的容量中的至少一个。
本发明实施例提供的电源***50中的各个单元用于执行上述方法,因此,该电源***50的有益效果可以参见上述方法的有益效果,在此不再赘述。
本发明实施例还提供了一种电源***70,如图7所示,包括:存储器701和处理器702,存储器701用于存储代码,处理器702用于根据该代码执行图2所示的方法。
其中,电源***中的各个功能单元可以以硬件形式内嵌于或独立于电源***的处理器中,也可以以软件形式存储于电源***的处理器中,以便于处理器调用执行以上各个单元对应的操作。上述处理器可以为中央处理器(Central Processing Unit,简称CPU)、通用处理器、数字信号处理器(Digital Signal Processor,简称DSP)、特定集成电路(Application Specific Integrated Circuit,简称ASIC)、现场可编程门阵列(Field Programmable Gate Array,简称FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。
结合本发明公开内容所描述的方法的步骤可以以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(Random Access Memory,简称RAM)、闪存、只读存储器(Read Only Memory,简称ROM)、可擦除 可编程只读存储器(Erasable Programmable ROM,简称EPROM)、电可擦可编程只读存储器(Electrically EPROM,简称EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。
本发明实施例提供的电源***70中的各个器件用于执行上述方法,因此,该电源***70的有益效果可以参见上述方法的有益效果,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。
另外,在本申请各个实施例中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (24)

  1. 一种修复电池的方法,其特征在于,包括:
    电源***根据所述电池的滥用记录或者所述电池的性能参数确定所述电池的失效模式,所述滥用记录包括对超出所述电池性能参数预设使用区间的情形的使用记录,所述电池的性能参数用于表征所述电池的性能;
    所述电源***根据所述电池的失效模式确定对所述电池进行修复的电源修复策略,其中,当所述电池的失效模式为失水模式、板栅腐蚀模式和热失控模式中的至少一种时,所述电源修复策略为:降低所述电池浮充电压对所述电池进行充电或降低均充电压对所述电池进行充电或启动间歇式充电对所述电池进行充电,并加大所述电池的制冷措施;当所述电池的失效模式为内短路模式、落后单体模式和硫化模式中的至少一种时,所述电源修复策略为:在所述电池满电状态下,采用预设电压和预设电流对所述电池进行第一预设时间长度的充电并使得所述电池的温度小于或等于第一预设阈值,所述预设电压大于或等于所述电池的充电标准电压,所述预设电流大于或等于所述电池的充电标准电流;
    所述电源***根据所选择的电源修复策略对所述电池进行修复。
  2. 根据权利要求1所述的方法,其特征在于,当所述电池的失效模式为第一失效模式组中的至少一种失效模式和第二失效模式组中的至少一种失效模式的组合时,所述电源修复策略为:采用第一修复策略对所述电池进行修复,并在所述电池满电后,采用第二修复策略对所述电池进行修复,在采用所述第二修复策略对所述电池进行修复后,再采用所述第一修复策略对所述电池进行修复,其中,所述第一失效模式组包括失水模式、板栅腐蚀模式和热失控模式,所述第二失效模式组包括内短路模式、落后单体模式和硫化模式,所述第一修复策略为:降低所述电池浮充电压对所述电池进行充电或降低均充电压对所述电池进行充电或启动间歇式充电对所述电池进行充电;所述第二修复策略为采用预设电压和预设电流对所述电池进行第二预设时间长度的充电并使得所述电池的温度小于或等于第一预设阈值,所述预设电压大于或等于所述电池的充电标准电压,所述预设电流大于或等于所述电池的充电标准电流。
  3. 根据权利要求1或2所述的方法,其特征在于,电源***根据所述电池的性能参数确定所述电池的失效模式,包括:
    所述电源***获取所述电池的性能参数的至少一组测试结果,一组测试结果对应一个测试时间点;
    所述电源***根据所述至少一组测试结果确定所述电池的失效模式。
  4. 根据权利要求3所述的方法,其特征在于,所述电源***根据所述至少一组测试结果确定所述电池的失效模式,包括:
    所述电源***确定所述至少一组测试结果与预设失效模式组中的每种失效模式对应的预设条件的匹配度;
    所述电源***将与所述至少一组测试结果匹配度大于或等于第二预设阈值的预设条件对应的失效模式确定为所述电池的失效模式。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,在所述电源***根据所述电源修复策略对所述电池进行修复之后,所述方法还包括:
    所述电源***在第三预设时间长度后获取所述电池的性能参数的值;
    所述电源***根据所述电池的性能参数的值判断所述电源修复策略是否有效;
    若是,所述电源***继续采用所述电源修复策略对所述电池进行修复直至修复完成;
    若否,所述电源***重新获取所述电池的性能参数的多组测试结果并根据所述多组测试结果重新确定所述电池的失效模式,一组测试结果对应一个测试时间点。
  6. 根据权利要求5所述的方法,其特征在于,所述电源***根据所述电池的性能参数的值判断所述电源修复策略是否有效,包括:
    当所述失效模式为失水模式、板栅腐蚀模式和热失控模式中的一种或多种时,所述电池的性能参数的值为所述电池的浮充电流的值,若所述电池的浮充电流的值小于所述至少一组测试结果中的浮充电流的平均值时,所述电源***确定所述电源修复策略有效,否则,所述电源***确定所述电源修复策略无效;
    当所述电池的失效模式为内短路模式、落后单体模式和硫化模式中的一种或多种时,所述电池的性能参数的值为所述电池的温升值和容量值,若所述电池的温升值小于所述至少一组测试结果中的温升的平均值,和/或,所述电池的容量值大于所述至少一组测试结果中的容量的平均值时,所述电源***确定所述电源修复策略有效,否则,所述电源***确定所述电源修复策略无效。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述电池包括电池组和/或电池单体,一个所述电池组包括至少2块电池单体。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述电池的性能参数包括:所述电池的充电电压、所述电池的放电电压、所述电池的充电电流、所述电池的放电电流、所述电池的内阻、所述电池的温度、所述电池的累计放电量和所述电池的容量中的至少一个。
  9. 一种电源***,其特征在于,包括:
    第一确定单元,用于根据所述电池的滥用记录或者所述电池的性能参数确定所述电池的失效模式,所述滥用记录包括对超出所述电池性能参数预设使用区间的情形的使用记录,所述电池的性能参数用于表征所述电池的性能;
    第二确定单元,用于根据所述电池的失效模式确定对所述电池进行修复的电源修复策略,其中,当所述电池的失效模式为失水模式、板栅腐蚀模式和热失控模式中的至少一种时,所述电源修复策略为:降低所述电池浮充电压对所述电池进行充电或降低均充电压对所述电池进行充电或启动间歇式充电对所述电池进行充电,并加大所述电池的制冷措施;当所述电池的失效模式为内短路模式、落后单体模式和硫化模式中的至少一种时,所述电源修复策略为:在所述电池满电状态下,采用预设电压和预设电流对所述电池进行第一预设时间长度的充电并使得所述电池的温度小于或等于第一预设阈值,所述预设电压大于或等于所述电池的充电标准电压,所述预设电流大于或等于所述电池的充电标准电流;
    修复单元,用于根据所选择的电源修复策略对所述电池进行修复。
  10. 根据权利要求9所述的电源***,其特征在于,当所述电池的失效模式为第一失效模式组中的至少一种失效模式和第二失效模式组中的至少一种失效模式的组合 时,所述电源修复策略为:采用第一修复策略对所述电池进行修复,并在所述电池满电后,采用第二修复策略对所述电池进行修复,在采用所述第二修复策略对所述电池进行修复后,再采用所述第一修复策略对所述电池进行修复,其中,所述第一失效模式组包括失水模式、板栅腐蚀模式和热失控模式,所述第二失效模式组包括内短路模式、落后单体模式和硫化模式,所述第一修复策略为:降低所述电池浮充电压对所述电池进行充电或降低均充电压对所述电池进行充电或启动间歇式充电对所述电池进行充电;所述第二修复策略为采用预设电压和预设电流对所述电池进行第二预设时间长度的充电并使得所述电池的温度小于或等于第一预设阈值,所述预设电压大于或等于所述电池的充电标准电压,所述预设电流大于或等于所述电池的充电标准电流。
  11. 根据权利要求9或10所述的电源***,其特征在于,所述电源***还包括获取单元:
    所述获取单元,用于获取所述电池的性能参数的至少一组测试结果,一组测试结果对应一个测试时间点;
    所述第一确定单元,具体用于根据所述至少一组测试结果确定所述电池的失效模式。
  12. 根据权利要求11所述的电源***,其特征在于,所述第一确定单元,具体用于:
    确定所述至少一组测试结果与预设失效模式组中的每种失效模式对应的预设条件的匹配度;
    将与所述至少一组测试结果匹配度大于或等于第二预设阈值的预设条件对应的失效模式确定为所述电池的失效模式。
  13. 根据权利要求12所述的电源***,其特征在于,
    所述获取单元,还用于在第三预设时间长度后获取所述电池的性能参数的值;
    所述电源***还包括判断单元,用于根据所述电池的性能参数的值判断所述电源修复策略是否有效;
    若是,所述修复单元继续采用所述电源修复策略对所述电池进行修复直至修复完成;
    若否,所述获取单元重新获取所述电池的性能参数的多组测试结果,所述第一确定单元还用于根据所述多组测试结果重新确定所述电池的失效模式,一组测试结果对应一个测试时间点。
  14. 根据权利要求13所述的电源***,其特征在于,所述判断单元,具体用于:
    当所述失效模式为失水模式、板栅腐蚀模式和热失控模式中的一种或多种时,所述电池的性能参数的值为所述电池的浮充电流的值,若所述电池的浮充电流的值小于所述至少一组测试结果中的浮充电流的平均值时,确定所述电源修复策略有效,否则,确定所述电源修复策略无效;
    当所述电池的失效模式为内短路模式、落后单体模式和硫化模式中的一种或多种时,所述电池的性能参数的值为所述电池的温升值和容量值,若所述电池的温升值小于所述至少一组测试结果中的温升的平均值,和/或,所述电池的容量值大于所述至少一组测试结果中的容量的平均值时,确定所述电源修复策略有效,否则,确定所述电 源修复策略无效。
  15. 根据权利要求9-14任一项所述的电源***,其特征在于,所述电池包括电池组和/或电池单体,一个所述电池组包括至少2块电池单体。
  16. 根据权利要求9-15任一项所述的电源***,其特征在于,所述电池的性能参数包括:所述电池的充电电压、所述电池的放电电压、所述电池的充电电流、所述电池的放电电流、所述电池的内阻、所述电池的温度、所述电池的累计放电量和所述电池的容量中的至少一个。
  17. 一种电源***,其特征在于,包括:存储器和处理器,所述存储器用于存储代码,所述处理器用于根据该代码执行以下动作:
    根据所述电池的滥用记录或者所述电池的性能参数确定所述电池的失效模式,所述滥用记录包括对超出所述电池性能参数预设使用区间的情形的使用记录,所述电池的性能参数用于表征所述电池的性能;
    根据所述电池的失效模式确定对所述电池进行修复的电源修复策略,其中,当所述电池的失效模式为失水模式、板栅腐蚀模式和热失控模式中的至少一种时,所述电源修复策略为:降低所述电池浮充电压对所述电池进行充电或降低均充电压对所述电池进行充电或启动间歇式充电对所述电池进行充电,并加大所述电池的制冷措施;当所述电池的失效模式为内短路模式、落后单体模式和硫化模式中的至少一种时,所述电源修复策略为:在所述电池满电状态下,采用预设电压和预设电流对所述电池进行第一预设时间长度的充电并使得所述电池的温度小于或等于第一预设阈值,所述预设电压大于或等于所述电池的充电标准电压,所述预设电流大于或等于所述电池的充电标准电流;
    根据所选择的电源修复策略对所述电池进行修复。
  18. 根据权利要求17所述的电源***,其特征在于,
    当所述电池的失效模式为第一失效模式组中的至少一种失效模式和第二失效模式组中的至少一种失效模式的组合时,所述电源修复策略为:采用第一修复策略对所述电池进行修复,并在所述电池满电后,采用第二修复策略对所述电池进行修复,在采用所述第二修复策略对所述电池进行修复后,再采用所述第一修复策略对所述电池进行修复,其中,所述第一失效模式组包括失水模式、板栅腐蚀模式和热失控模式,所述第二失效模式组包括内短路模式、落后单体模式和硫化模式,所述第一修复策略为:降低所述电池浮充电压对所述电池进行充电或降低均充电压对所述电池进行充电或启动间歇式充电对所述电池进行充电;所述第二修复策略为采用预设电压和预设电流对所述电池进行第二预设时间长度的充电并使得所述电池的温度小于或等于第一预设阈值,所述预设电压大于或等于所述电池的充电标准电压,所述预设电流大于或等于所述电池的充电标准电流。
  19. 根据权利要求17或18所述的电源***,其特征在于,所述处理器,具体用于:
    获取所述电池的性能参数的至少一组测试结果,一组测试结果对应一个测试时间点;
    根据所述至少一组测试结果确定所述电池的失效模式。
  20. 根据权利要求19所述的电源***,其特征在于,所述处理器,具体用于:
    确定所述至少一组测试结果与预设失效模式组中的每种失效模式对应的预设条件的匹配度;
    将与所述至少一组测试结果匹配度大于或等于第二预设阈值的预设条件对应的失效模式确定为所述电池的失效模式。
  21. 根据权利要求17-20所述的电源***,其特征在于,所述处理器,具体用于:
    在第三预设时间长度后获取所述电池的性能参数的值;
    根据所述电池的性能参数的值判断所述电源修复策略是否有效;
    若是,继续采用所述电源修复策略对所述电池进行修复直至修复完成;
    若否,重新获取所述电池的性能参数的多组测试结果并根据所述多组测试结果重新确定所述电池的失效模式,一组测试结果对应一个测试时间点。
  22. 根据权利要求21所述的电源***,其特征在于,所述处理器,具体用于:
    当所述失效模式为失水模式、板栅腐蚀模式和热失控模式中的一种或多种时,所述电池的性能参数的值为所述电池的浮充电流的值,若所述电池的浮充电流的值小于所述至少一组测试结果中的浮充电流的平均值时,确定所述电源修复策略有效,否则,确定所述电源修复策略无效;
    当所述电池的失效模式为内短路模式、落后单体模式和硫化模式中的一种或多种时,所述电池的性能参数的值为所述电池的温升值和容量值,若所述电池的温升值小于所述至少一组测试结果中的温升的平均值,和/或,所述电池的容量值大于所述至少一组测试结果中的容量的平均值时,确定所述电源修复策略有效,否则,确定所述电源修复策略无效。
  23. 根据权利要求17-22任一项所述的电源***,其特征在于,所述电池包括电池组和/或电池单体,一个所述电池组包括至少2块电池单体。
  24. 根据权利要求17-23任一项所述的电源***,其特征在于,所述电池的性能参数包括:所述电池的充电电压、所述电池的放电电压、所述电池的充电电流、所述电池的放电电流、所述电池的内阻、所述电池的温度、所述电池的累计放电量和所述电池的容量中的至少一个。
PCT/CN2017/085976 2016-11-07 2017-05-25 一种修复电池的方法及装置 WO2018082288A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17866460.3A EP3528334B1 (en) 2016-11-07 2017-05-25 Method and apparatus for battery restoration
US16/405,613 US11374265B2 (en) 2016-11-07 2019-05-07 Battery repair method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610975840.9A CN106505260B (zh) 2016-11-07 2016-11-07 一种修复电池的方法及装置
CN201610975840.9 2016-11-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/405,613 Continuation US11374265B2 (en) 2016-11-07 2019-05-07 Battery repair method and apparatus

Publications (1)

Publication Number Publication Date
WO2018082288A1 true WO2018082288A1 (zh) 2018-05-11

Family

ID=58323145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/085976 WO2018082288A1 (zh) 2016-11-07 2017-05-25 一种修复电池的方法及装置

Country Status (4)

Country Link
US (1) US11374265B2 (zh)
EP (1) EP3528334B1 (zh)
CN (1) CN106505260B (zh)
WO (1) WO2018082288A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112003352A (zh) * 2020-09-09 2020-11-27 南京鼎尔特科技有限公司 一种基于pwm放电的铅酸蓄电池在线弱均衡维护***

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106505260B (zh) * 2016-11-07 2019-02-19 华为技术有限公司 一种修复电池的方法及装置
US10945306B2 (en) * 2018-09-07 2021-03-09 Daniel Urban Wireless device powered by a city device and a method of providing wireless cellular and internet services
CN109888414B (zh) * 2018-12-20 2021-11-26 深圳云动未来科技有限公司 动力电池的管理方法、装置和***
CN111181226A (zh) * 2020-02-28 2020-05-19 湘投云储科技有限公司 一种储能***及其控制方法
CN112103579B (zh) * 2020-08-07 2021-10-22 天能电池集团股份有限公司 一种铅蓄电池内化成工艺
CN112701370B (zh) * 2021-01-14 2022-04-08 湖南机动车检测技术有限公司 激活磷酸铁锂梯次电池容量的方法
TWI755343B (zh) * 2021-07-19 2022-02-11 廣達電腦股份有限公司 智慧電池裝置及其電子裝置
CN113839106A (zh) * 2021-09-22 2021-12-24 国网山东省电力公司莱芜供电公司 电池修复管理***
CN116742166A (zh) * 2023-06-08 2023-09-12 深圳市朗大科技有限公司 一种动力电池修复方法及***

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101894981A (zh) * 2010-05-28 2010-11-24 深圳市金一泰实业有限公司 铅酸电池组智能监测修复控制方法及***
CN103579693A (zh) * 2012-07-24 2014-02-12 美国能源有限公司 一种蓄电池远程控制修复***及其修复方法
CN103579691A (zh) * 2012-07-24 2014-02-12 南京捷翔能源科技有限公司 一种蓄电池的修复***及其修复方法
CN106505260A (zh) * 2016-11-07 2017-03-15 华为技术有限公司 一种修复电池的方法及装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5918186A (en) * 1996-10-15 1999-06-29 Ericsson Inc. Rechargeable battery enabling reduction of battery overheating probability during charging
CN101067644B (zh) 2007-04-20 2010-05-26 杭州高特电子设备有限公司 蓄电池性能分析专家诊断方法
CN101635470B (zh) 2009-08-19 2012-01-25 王广生 一种节电型蓄电池快速充电器及智能化充电方法
CN103401031B (zh) * 2010-01-05 2015-07-29 ***通信集团甘肃有限公司 蓄电池故障监控维护的方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101894981A (zh) * 2010-05-28 2010-11-24 深圳市金一泰实业有限公司 铅酸电池组智能监测修复控制方法及***
CN103579693A (zh) * 2012-07-24 2014-02-12 美国能源有限公司 一种蓄电池远程控制修复***及其修复方法
CN103579691A (zh) * 2012-07-24 2014-02-12 南京捷翔能源科技有限公司 一种蓄电池的修复***及其修复方法
CN106505260A (zh) * 2016-11-07 2017-03-15 华为技术有限公司 一种修复电池的方法及装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112003352A (zh) * 2020-09-09 2020-11-27 南京鼎尔特科技有限公司 一种基于pwm放电的铅酸蓄电池在线弱均衡维护***

Also Published As

Publication number Publication date
US11374265B2 (en) 2022-06-28
EP3528334A1 (en) 2019-08-21
EP3528334A4 (en) 2020-03-18
EP3528334B1 (en) 2020-10-28
CN106505260B (zh) 2019-02-19
US20190267675A1 (en) 2019-08-29
CN106505260A (zh) 2017-03-15

Similar Documents

Publication Publication Date Title
WO2018082288A1 (zh) 一种修复电池的方法及装置
TWI467887B (zh) 電池管理系統、方法及其非瞬態電腦可讀媒體
US20210351446A1 (en) Charging method, electronic apparatus, and storage medium
WO2011157116A1 (zh) 锂电模块并联使用方法及***
WO2020000618A1 (zh) 变电站直流供电***和蓄电控制方法
WO2020199539A1 (zh) 锂电池充放电控制方法及供电***
WO2021043225A1 (zh) 一种充电控制方法及充电控制装置
WO2019019561A1 (zh) 一种服务器供电***的检测维护方法和检测维护装置
JP2015010962A (ja) 蓄電池の劣化判定方法および蓄電池の劣化判定装置
US20230344260A1 (en) Battery charging method, electric device, and storage medium
CN105599620A (zh) 一种基于锂离子电容器的汽车启动电源装置及其启动控制方法
CN204721069U (zh) 一种能够防止蓄电池热失控的充电装置
CN117007988A (zh) 动力电池放电功率测试方法、装置、电子设备及存储介质
WO2022267029A1 (zh) 电化学装置管理方法、电子设备、充电装置及存储介质
CN115360791A (zh) 一种锂电池组均流控制***
CN114552711A (zh) 一种电芯控制方法、装置和bms设备
CN107364539A (zh) 一种高效能电动车即用式免维护铅酸蓄电池***
CN107123835A (zh) 一种铅酸蓄电池脱硫的电化学方法及***
TWM550930U (zh) 儲能系統
KR20210098215A (ko) 배터리 충방전 제어 장치 및 방법
CN108128186B (zh) 一种铅酸动力电池管理***及其控制方法
EP2658074B1 (en) Discharge controller
CN202218007U (zh) 一种动力锂离子电池的保护电路
CN218385365U (zh) 一种铅酸电池新旧混用平衡电路结构
TWI786863B (zh) 電池健康管理方法及電池健康管理裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17866460

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017866460

Country of ref document: EP

Effective date: 20190515