WO2018081969A1 - 信息传输装置、方法以及通信*** - Google Patents

信息传输装置、方法以及通信*** Download PDF

Info

Publication number
WO2018081969A1
WO2018081969A1 PCT/CN2016/104437 CN2016104437W WO2018081969A1 WO 2018081969 A1 WO2018081969 A1 WO 2018081969A1 CN 2016104437 W CN2016104437 W CN 2016104437W WO 2018081969 A1 WO2018081969 A1 WO 2018081969A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
data
transmission
transmitting end
reference signal
Prior art date
Application number
PCT/CN2016/104437
Other languages
English (en)
French (fr)
Inventor
张健
郤伟
王昕�
周华
Original Assignee
富士通株式会社
张健
郤伟
王昕�
周华
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社, 张健, 郤伟, 王昕�, 周华 filed Critical 富士通株式会社
Priority to CN201680089561.0A priority Critical patent/CN109792722A/zh
Priority to PCT/CN2016/104437 priority patent/WO2018081969A1/zh
Publication of WO2018081969A1 publication Critical patent/WO2018081969A1/zh
Priority to US16/384,259 priority patent/US20190246424A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1671Details of the supervisory signal the supervisory signal being transmitted together with control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA

Definitions

  • the embodiments of the present invention relate to the field of communications technologies, and in particular, to an information transmission apparatus, method, and communication system.
  • the uplink data transmission of the user equipment needs to be scheduled by the base station.
  • the advantage is that the base station can schedule data of different user equipments to mutually orthogonal time-frequency resources, thereby completely avoiding users. Collisions between devices and the resulting interference.
  • a connection For scheduled transmission, a connection needs to be established with the base station before the user equipment initiates the actual data transmission.
  • FIG. 1 is a schematic diagram of scheduling transmission.
  • a user equipment sends a scheduling request (SR, Scheduling Request) to a base station, and then the base station sends an uplink scheduling signaling (UL grant) to the user equipment, and finally the user equipment follows the scheduling information.
  • SR scheduling request
  • UL grant uplink scheduling signaling
  • mMTC large-scale machine type communication
  • URLLC high-reliability low-latency communication
  • URLLC Ultra-Reliable
  • mMTC user equipment may be mainly based on bursty services, and use packet transmission, if the LTE-like is still carried out step by step before the packet data transmission Signaling interaction, it is likely that the signaling overhead occupies the majority of the data transmission, reducing the transmission efficiency; from another perspective, the connection establishment process before data transmission also brings an increase in delay, which The low latency goal required to reach URLLC is also a disadvantage.
  • Figure 2 is a schematic diagram of schedule-free transmission showing the main concepts of grant-free transmission.
  • the user equipment can initiate data transmission immediately without waiting for the base station to schedule, thereby reducing the signaling and delay overhead required for the user equipment to establish a connection with the base station.
  • grant-free transmission since no base station participates in scheduling, physical resource collisions between user equipments are often difficult to avoid, but through non-orthogonal techniques and In the use of multi-user receivers, successful demodulation of data for collision user equipment can still be achieved under certain conditions.
  • the inventor has found that when the unscheduled transmission is performed, if the receiving end cannot correctly obtain the data transmitted by the transmitting end, the identification information of the transmitting end cannot be obtained, and thus the non-acknowledgment (NACK) information cannot be fed back to the transmitting end, and cannot be exempted. Efficient data retransmissions are achieved with scheduled transmissions.
  • NACK non-acknowledgment
  • Embodiments of the present invention provide an information transmission apparatus, method, and communication system.
  • the NACK information can be fed back to the transmitting end based on the identification information of the transmitting end or the sequence information of the demodulation reference signal, and can be transmitted in the unscheduled manner. Enable efficient data retransmission in case.
  • an information transmission method which is applied to a receiving end, and the information transmission method includes:
  • the transmission information including the data sent by using the unscheduled manner; wherein the identifier information of the sending end is explicitly or implicitly carried in the transmission information;
  • an information transmission apparatus which is configured at a receiving end, and the information transmission apparatus includes:
  • a data receiving unit which receives transmission information including data sent by the transmitting end using a scheduling-free manner; wherein the identifier information of the transmitting end is explicitly or implicitly carried in the transmission information;
  • a data acquisition unit that demodulates and verifies the transmission information, and determines whether the identification information of the transmitting end and the data included in the transmission information are correctly obtained
  • An information feedback unit that uses identification information of the transmitting end or demodulation for demodulating the transmission information
  • the sequence information of the reference signal is used to feed back control information including acknowledgment or non-acknowledgement to the transmitting end.
  • an information transmission method which is applied to a transmitting end, where the information transmission method includes:
  • control information including acknowledgement or non-confirmation using feedback information of the transmitting end or sequence information of a demodulation reference signal for demodulating the transmission information.
  • an information transmission apparatus includes:
  • a data sending unit configured to send, by using a scheduling-free manner, transmission information including data to the receiving end; wherein the identifier information of the transmitting end is explicitly or implicitly carried in the transmission information;
  • an information receiving unit that receives, by the receiving end, control information including confirmation or non-confirmation using the identification information of the transmitting end or the sequence information of the demodulation reference signal used for demodulating the transmission information.
  • a communication system comprising:
  • a transmitting end comprising the information transmission device according to the fourth aspect
  • a receiving end comprising the information transmission device of the second aspect above.
  • the identifier information of the transmitting end is explicitly or implicitly carried in the transmission information; and the identifier information of the transmitting end or the sequence information of the DM-RS is used to feed back the ACK/NACK including the ACK/NACK to the transmitting end. Control information. Therefore, when performing the unscheduled transmission, the receiving end can feed back NACK information to the transmitting end based on the identification information of the transmitting end or the sequence information of the demodulation reference signal even if the data transmitted by the transmitting end cannot be correctly obtained. Efficient data retransmissions are achieved with scheduled transmissions.
  • Figure 1 is a schematic diagram of scheduled transmission
  • Embodiment 4 is a schematic diagram of an information transmission method according to Embodiment 1 of the present invention.
  • FIG. 5 is a schematic diagram of transmission information according to Embodiment 2 of the present invention.
  • FIG. 6 is a schematic diagram of an information transmission method according to Embodiment 2 of the present invention.
  • FIG. 7 is a schematic diagram of a retransmission collision in a schedule-free transmission
  • 8 is a schematic diagram of randomly selecting resources to retransmit data
  • FIG. 9 is a diagram showing an example of performing data retransmission according to Embodiment 2 of the present invention.
  • FIG. 10 is another exemplary diagram of performing data retransmission according to Embodiment 2 of the present invention.
  • FIG. 11 is another exemplary diagram of performing data retransmission according to Embodiment 2 of the present invention.
  • FIG. 12 is another exemplary diagram of performing data retransmission according to Embodiment 2 of the present invention.
  • FIG. 13 is another exemplary diagram of performing data retransmission according to Embodiment 2 of the present invention.
  • FIG. 17 is a diagram showing an example of performing data retransmission according to Embodiment 7 of the present invention.
  • Embodiment 8 of the present invention is a schematic diagram of an information transmission method according to Embodiment 8 of the present invention.
  • Figure 19 is a schematic diagram of an information transmission apparatus according to Embodiment 9 of the present invention.
  • Figure 20 is a schematic diagram of an information transmission apparatus according to Embodiment 10 of the present invention.
  • Figure 21 is a schematic diagram of a communication system according to Embodiment 11 of the present invention.
  • Figure 22 is a schematic diagram of a base station according to Embodiment 11 of the present invention.
  • Figure 23 is a schematic diagram of a user equipment according to Embodiment 11 of the present invention.
  • a base station may be referred to as an access point, a broadcast transmitter, a transmission and reception point (TRP), a Node B, an evolved Node B (eNB), and a Radio Remote Head Unit (RRH/RRU). Etc., and may include some or all of their functions.
  • TRP transmission and reception point
  • eNB evolved Node B
  • RRH/RRU Radio Remote Head Unit
  • Etc. and may include some or all of their functions.
  • the term “base station” will be used herein. Each base station provides communication coverage for a particular geographic area.
  • the term “cell” can refer to a base station and/or its coverage area, depending on the context in which the term is used.
  • a mobile station or device may be referred to as a "User Equipment” (UE).
  • UE User Equipment
  • a UE may be fixed or mobile and may also be referred to as a mobile station, terminal, access terminal, subscriber unit, station, and the like.
  • the user equipment can be a cellular telephone, a personal digital assistant (PDA), a wireless modem, a wireless communication device, a handheld device, a machine type communication device, a laptop computer, a cordless phone, and the like.
  • PDA personal digital assistant
  • FIG. 3 is another schematic diagram of the unscheduled transmission.
  • the base station may reserve and configure multiple time-frequency resources for the grant-free user equipment, and the grant-free transmission occurs inside each time-frequency resource, and the user equipment
  • the control signaling in each of the grant-free time-frequency resources such as a Physical Downlink Control Channel (PDCCH), may be received.
  • PDCH Physical Downlink Control Channel
  • each time-frequency resource used for grant-free transmission may be configured with a set of Demodulation Reference Signal (DM-RS) sequences, and may also be configured with a set of spreading sequence/codewords. / Interlaced pattern.
  • DM-RS Demodulation Reference Signal
  • the DM-RS is used for equivalent channel estimation, and the combination of the spreading sequence/codeword/interleaving pattern is to transform the data, and specifically may have different transform methods, such as spreading, constructing codewords, interleaving, etc.; Send data directly without using any transformations.
  • the total number of available DM-RS sequences is M
  • the total number of spreading sequences/codewords/interleaving patterns is N
  • the total number of user equipments that can be subjected to grant-free transmission is U.
  • a spreading sequence/codeword/interlace pattern can be uniquely associated. Which DM-RS sequence and associated spreading sequence/codeword/interlace pattern are used by the user equipment may be randomly selected by the user equipment, or may be determined by the base station. Pre-configured.
  • the base station can blindly check which user equipments have performed data transmission, that is, blindly check the activity of the user equipment. For example, if a certain DM-RS m is detected, the base station uses the DM-RS for channel estimation. It is also considered that the spreading sequence/codeword/interleaving pattern associated with the DM-RS is also received, and the user equipment data is demodulated under the premise.
  • Hybrid Automatic Repeat ReQuest is an important means to ensure reception performance.
  • the design of grant-free transmission should be able to achieve compatibility and support for HARQ retransmission.
  • retransmission can be roughly divided into two types: one is to retransmit the original data, that is, the retransmission is exactly the same as the initial transmission bit information, such as the hashase method in HARQ; the other is heavy A redundancy version is transmitted, and the bit information retransmitted at this time does not need to be the same as the initial transmission, such as incremental redundancy in HARQ.
  • the initial transmission bit information such as the hashase method in HARQ
  • the bit information retransmitted at this time does not need to be the same as the initial transmission, such as incremental redundancy in HARQ.
  • This application is designed to support HARQ in grant-free transmission, and provides a solution for efficiently implementing HARQ functions in grant-free transmission.
  • the following is an example in which a base station in a communication system is used as a receiving end and a user equipment is used as a transmitting end.
  • the present invention is not limited thereto.
  • the transmitting end and/or the receiving end may be other network devices.
  • the embodiment of the invention provides an information transmission method, which is applied to a receiving end.
  • FIG. 4 is a schematic diagram of an information transmission method according to an embodiment of the present invention. As shown in FIG. 4, the information transmission method includes:
  • Step 401 Receive transmission information including data sent by the sending end by using a scheduling mode, where the identifier information of the sending end is explicitly or implicitly carried in the transmission information.
  • Step 402 Perform demodulation and verification on the transmission information, and determine whether the identification information of the transmitting end and the data included in the transmission information are correctly obtained.
  • Step 403 using the identification information of the transmitting end or the sequence information of the demodulation reference signal used for demodulating the transmission information, and feeding back control information including confirmation or non-confirmation to the transmitting end.
  • the receiving end may be a macro base station (for example, an eNB), and the transmitting end is a user equipment; a macro cell (for example, a Macro cell) generated by the macro base station may provide a service for the user equipment.
  • the receiving end may be a micro base station, the transmitting end is a user equipment, or any device capable of receiving a signal of the base station; a micro cell generated by the micro base station (for example, a Pico cell or a Small cell) may provide services for the user equipment.
  • the sender and/or the receiver may also be other network devices.
  • the present invention is not limited thereto, and a specific scenario can be determined according to actual needs.
  • a base station is used as a receiving end and a user equipment is used as a transmitting end.
  • the range of the DM-RS is pre-configured; the user equipment can randomly select the DM-RS sequence.
  • the sequence number of the DM-RS may be pseudo-randomly determined based on the identification information of the transmitting end; wherein the DM-RS is determined by the number of sequences and the user-related value, the user-related value varies with the number of transmissions and the initial value is Identification information of the sender.
  • the DM-RS sequence can be selected by the following formula.
  • the UE ID is, for example, a Cell Radio Network Temporary Identifier (C-RNTI), a Temporary Mobile Subscribe Identity (TMSI), an International Mobile Subscriber Identity (IMSI), or other
  • C-RNTI Cell Radio Network Temporary Identifier
  • TMSI Temporary Mobile Subscribe Identity
  • IMSI International Mobile Subscriber Identity
  • one or more of a spreading sequence, a codeword, and an interleaving pattern may be determined according to the DM-RS, and according to one or more pairs of the spreading sequence, the codeword, and the interleaving pattern.
  • the transmission information is transformed.
  • the association between the DM-RS sequence and the spreading sequence/codeword/interlacing pattern(s) may be established first.
  • the user equipment u determines the DM-RS sequence number (DM-RS ID), according to the association between the DM-RS and the spreading sequence/codeword/interlace pattern, the spreading sequence/codeword/interleaving used can be determined accordingly.
  • Pattern number for example
  • N represents the total number of spread spectrum/codeword/interlace patterns available.
  • M the number of DM-RS sequences is more than the number N of spreading sequences/codewords/interleaving patterns, that is, M>N.
  • Table 1 lists the correspondence between DM-RS, spreading sequence/codeword/interleaving pattern and user equipment. example.
  • the base station After detecting a certain DM-RS, the base station still needs to determine which user equipment the DM-RS belongs to, that is, determine the UE ID.
  • the determination of the UE ID may be implemented by carrying the UE ID in the user equipment data, or may be determined by other methods, such as the method given in the following embodiments.
  • the identification information of the transmitting end is carried in the transmission information explicitly or implicitly.
  • the transmission information includes the data, identification information of the transmitting end, and a verification code generated by the data and the identification information; or the transmission information includes the data and generated by the data a first check code, identification information of the transmitting end, and a second check code generated by the identification information; or the transmission information includes the data and a check code generated by the data, wherein the The check code is scrambled by the identifier of the sender; or the transport information includes the data and a check code generated by the data, where the correspondence between the DM-RS and the identifier of the sender is It is predetermined.
  • control information including the ACK/NACK may be fed back to the transmitting end by using the identifier information of the transmitting end or the sequence information of the DM-RS for demodulating the transmission information.
  • the PDCCH check information (for example, cyclic redundancy) may be used by using the identifier information of the transmitting end or the sequence number of the DM-RS. Scrambling (CRC, Cyclic Redundancy Check)).
  • the PHH Physical Hybrid Automatic Repeat ReQuest Indicator Channel
  • the PHH can determine the logical resource location of the PHICH by using the sequence number of the DM-RS or the identification information of the transmitting end.
  • the receiving end may further receive the retransmission data sent by the sending end, where the resource that sends the retransmitted data is pseudo-randomly based on the sequence number of the DM-RS or the identification information of the sending end. It is determined.
  • the resource for transmitting the retransmitted data is determined by the number of retransmitted resources and the DM-RS correlation value, the DM-RS correlation value varies with the number of transmissions, and the initial value is the DM of the initial transmission of the transmission information.
  • the serial number of the RS is determined by the number of retransmitted resources and the DM-RS correlation value, the DM-RS correlation value varies with the number of transmissions, and the initial value is the DM of the initial transmission of the transmission information.
  • the serial number of the RS is a serial number of the RS.
  • the resource for transmitting the retransmission data is determined by the number of retransmission resources and the user correlation value, and the user correlation value varies with the number of transmissions and the initial value is the identification information of the sender.
  • the identifier information of the transmitting end is carried in the transmission information explicitly or implicitly; and the control information including the ACK/NACK is fed back to the transmitting end by using the identifier information of the transmitting end or the sequence information of the DM-RS. Therefore, when performing the unscheduled transmission, the receiving end can feed back NACK information to the transmitting end based on the identification information of the transmitting end or the sequence information of the demodulation reference signal even if the data transmitted by the transmitting end cannot be correctly obtained. Efficient data retransmissions are achieved with scheduled transmissions.
  • the embodiment of the invention provides an information transmission method, and the invention is further illustrated on the basis of the embodiment 1.
  • the embodiment is not limited to the DM-RS selection in the first embodiment, and is also applicable to the case where the user equipment randomly selects the DM-RS or the base station configures the DM-RS for the user equipment.
  • the transmission information includes data, identification information of the sender, and a check code generated by the data and the identifier information, and the same content as that of Embodiment 1 is not described herein.
  • FIG. 5 is a schematic diagram of transmission information according to an embodiment of the present invention.
  • a UE ID is transmitted by a user equipment to a base station as part of a data payload, and a CRC is jointly generated by a UE ID and data. If the CRC check is correct, the base station considers that both the UE ID and the data are correctly received. If the base station finds a CRC check error, it indicates that the UE ID and/or data has an error.
  • FIG. 6 is a schematic diagram of an information transmission method according to an embodiment of the present invention, and a base station and a user equipment are taken as an example for description. As shown in FIG. 6, the information transmission method includes:
  • Step 601 The user equipment sends the transmission information including the data to the base station by using a scheduling-free manner.
  • the identifier information of the sending end is explicitly carried in the transmission information, as shown in FIG. 5;
  • Step 602 The base station demodulates and verifies the transmission information, and determines whether the identification information of the sending end and the data are correctly obtained.
  • the base station may obtain sequence information of the DM-RS by blind detection, demodulate the transmission information according to the DM-RS, and verify the verification code to obtain the transmission. Identification information of the end and the data.
  • the base station Since the UE ID and the data jointly generate a CRC, when the CRC check is incorrect, the base station cannot distinguish whether it is a UE ID error or a data error, or both are wrong at the same time. This means that when the base station feeds back the NACK, since the base station cannot know the accurate UE ID in advance, the CRC of the PDCCH cannot be scrambled using the UE ID, that is, the user equipment whose data is initially transmitted cannot be addressed by the UE ID.
  • Step 603 The base station uses the sequence information of the DM-RS to scramble the CRC of the PDCCH.
  • Step 604 The base station feeds back a PDCCH including an ACK/NACK to the user equipment.
  • the CRC of the PDCCH may be scrambled using the DM-RS ID m, that is, the DM-RS ID is used instead of the UE ID to address the user equipment, and the ACK and NACK feedback may be scrambled by this form.
  • the PDCCH is notified to the user equipment.
  • the base station does not detect the existence of the user equipment. This situation typically occurs because the base station does not detect the DM-RS and/or the spreading sequence/codeword/interleaving pattern. In this case, the base station does not transmit any PDCCH scrambled by the DM-RS sequence number to the user equipment.
  • the user equipment will detect whether there is a PDCCH carrying ACK/NACK at a certain fixed moment after the transmission is initiated, that is, whether there is a PDCCH that is scrambled using the DM-RS ID used in the previous transmission.
  • the user equipment can detect which state is currently in the ACK, NACK, and missed detection by detecting the PDCCH. For example, when the user equipment detects the PDCCH that is scrambled by the DM-RS used for the last transmission, the user equipment knows whether it is currently in the ACK or NACK state according to a corresponding field in the PDCCH (for example, a New Data Indicator (NDI)); When the user equipment initiates data transmission but does not detect the PDCCH that is scrambled by the DM-RS used in the previous transmission, the user equipment judges that the current state is that the base station missed the data.
  • NDI New Data Indicator
  • User devices can take different follow-up actions according to different states, for example:
  • the user equipment After receiving the ACK, the user equipment can wait for new data transmission;
  • the user equipment may perform retransmission with a redundancy version to enable the base station to perform HARQ soft combining; since the PDCCH signaling is used to indicate the NACK and the retransmission is scheduled, a new PDCCH format may be defined by using the The corresponding field is added to configure the parameters used by the user equipment to retransmit, such as modulation mode, redundancy version (RV), DM-RS sequence, spreading sequence/codeword/interleaving pattern, retransmission time-frequency resource location, etc.
  • RV redundancy version
  • DM-RS sequence spreading sequence/codeword/interleaving pattern
  • retransmission time-frequency resource location etc.
  • the base station and the user equipment are taken as an example to illustrate how to notify the ACK/NACK in the unscheduled transmission through the PDCCH, but the present invention is not limited thereto.
  • the information transmission method may further include:
  • Step 605 The user equipment retransmits data to the base station by using the retransmission resource.
  • the retransmission resource may be a retransmission time, a retransmission frequency position, or a retransmitted time-frequency resource. If the retransmission resource is always defined at a fixed time-frequency position from the initial transmission or ACK/NACK, then one problem caused by the grant-free transmission is that the user equipment that collided in the initial transmission will also be retransmitted. Collisions always occur.
  • FIG. 7 is a schematic diagram of a retransmission collision in a non-scheduled transmission. As shown in FIG. 7, the user equipment 1 and the user equipment 2 always collide, which is disadvantageous for demodulating the user equipment data by the base station.
  • one method may be to configure the retransmission resource of the user equipment in the signaling that the base station notifies the user equipment NACK, in which case the user equipment retransmission will become a scheduling-based transmission. Collisions can therefore be avoided, but additional signaling overhead is required accordingly.
  • FIG. 8 is a schematic diagram of randomly selecting resources to retransmit data. As shown in FIG. 8, for the initial transmission of data packet #2, if an initial transmission of data packet #1 occurs and a retransmission of data packet #1 occurs. In the meantime, when the base station blindly detects the data packet #2, it will not be able to tell whether the data packet is a new initial transmission data or the retransmission data of the data packet #1 because the two data packets belong to the same user equipment. .
  • the resource for transmitting the retransmission data is pseudo-randomly determined based on the sequence number of the DM-RS.
  • the resource for transmitting the retransmission data is determined by the number of retransmission resources and the DM-RS correlation value, and the DM-RS correlation value varies with the number of transmissions and the initial value is the DM-RS of the transmission information that is initially transmitted. Sequence number.
  • retransmitting a resource can be determined by:
  • I k represents the retransmission resource number
  • R represents the total number of resources available for retransmission
  • the resource for the first retransmission is determined by Y 1
  • the resource for the second retransmission is determined by Y 2
  • the role of the recursive function is to change the Y k value of each retransmission, thereby bringing randomness to the selection of retransmission resources.
  • determining the retransmission resources of the user equipment by the pseudo-random method can homogenize the collision to a certain extent, alleviating and avoiding such concentrated and continuous collisions.
  • FIG. 9 is a diagram showing an example of performing data retransmission according to an embodiment of the present invention.
  • FIG. 10 is another exemplary diagram of performing data retransmission according to an embodiment of the present invention, and an example of determining a retransmission time by using a pseudo-random method. As shown in FIGS. 9 and 10, it is assumed that retransmission needs to be completed in an R subframe or a time slot. Although the initial transmission of the user equipment 1 and the user equipment 2 collides, the values of I k of the two user equipments are different (Y 1 1 mod R ⁇ Y 1 2 mod R, the superscript indicates the user equipment, the subscript indicates the number of retransmissions), and the user equipment 1 and the user equipment 2 no longer collide during the first retransmission.
  • FIG. 11 is another exemplary diagram of performing data retransmission according to an embodiment of the present invention
  • FIG. 12 is another exemplary diagram of performing data retransmission according to an embodiment of the present invention.
  • FIG. 13 is another exemplary diagram of performing data retransmission according to an embodiment of the present invention.
  • the retransmission resource is a time-frequency resource block as an example for illustration.
  • R represents the total number of time-frequency resource blocks, and it is assumed that retransmission needs to be completed within R time-frequency resource blocks.
  • Y k can make the initial transmission of the user equipment and each retransmission occur between different time-frequency resource blocks, thereby avoiding a continuous collision between user equipments.
  • the user equipment when the user equipment determines that it is in the missed detection state, the user equipment will repeatedly send the last transmission version (depending on the number of retransmissions of the user equipment, sometimes the initial transmission version, sometimes the corresponding transmission) Redundant version) data without new redundant version transfer. This is because the missed detection causes the base station to not retain the previous transmission information of the user equipment. Even if the base station receives the new redundancy version sent by the user equipment, the base station cannot use the incremental redundancy for soft combining, so the user equipment does not need to perform new Redundancy version retransmission. This is actually a new defined UE behavior for grant-free transport, unlike LTE. In LTE, when the user equipment initiates data transmission, there will be no ACK and NACK received.
  • the above description is mainly for the user equipment having only one HARQ process.
  • the user equipment is enabled with multiple HARQ processes, there may be physical resource collisions in the retransmission or initial transmission in different HARQ processes.
  • the retransmission of HARQ process 1 collides with the retransmission of HARQ process 2.
  • the user equipment When the user equipment needs to perform the initial transmission of the HARQ process #j and the retransmission of the HARQ process #k, the user equipment preferentially performs the retransmission of the HARQ process #k; that is, the priority of the retransmission is higher than that of the initial transmission.
  • the identifier information of the transmitting end is carried in the transmission information explicitly or implicitly; and the control information including the ACK/NACK is fed back to the transmitting end by using the identifier information of the transmitting end or the sequence information of the DM-RS. Therefore, when performing the unscheduled transmission, the receiving end can feed back NACK information to the transmitting end based on the identification information of the transmitting end or the sequence information of the demodulation reference signal even if the data transmitted by the transmitting end cannot be correctly obtained. Efficient data retransmissions are achieved with scheduled transmissions.
  • the embodiment of the invention provides an information transmission method, which is further explained on the basis of the embodiments 1 and 2.
  • the embodiment is not limited to the DM-RS selection in the first embodiment, and is also applicable to the case where the user equipment randomly selects the DM-RS or the base station configures the DM-RS for the user equipment.
  • the transmission information includes data, a first check code generated by the data, identification information of the transmitting end, and a second check code generated by the identification information, and the same content as in Embodiments 1 and 2 is not Let me repeat.
  • FIG. 14 is a schematic diagram of the transmission information according to the embodiment of the present invention.
  • the UE ID is transmitted by the user equipment to the base station as part of the data payload.
  • the embodiment transmits the data in the user equipment.
  • a CRC corresponding to the UE ID is added, which is used to check the UE ID. When the CRC is correct, it indicates that the UE ID is correctly restored; when the CRC check is incorrect, the UE ID is incorrect.
  • different channel coding and/or physical resources may be used, ie the transmission of the UE ID and the transmission of the data are independent of each other.
  • the following three states can be defined: MISS, ACK, and NACK.
  • MISS The MISS status includes the following three cases:
  • the base station misses the user equipment, that is, the base station does not detect the presence of the user equipment. This situation usually occurs because the base station does not detect the DM-RS and/or the spreading sequence/codeword/interleaving pattern, and the base station does not The user equipment feeds back any ACK/NACK information.
  • the UE ID receives an error but the data is received correctly. This situation occurs because the UE ID CRC check error, but the data CRC check is correct.
  • the base station Since the base station lacks the initial transmission information in the above case 1, the base station does not know the UE ID in case 2 or 3, which causes the base station to fail to perform HARQ combining, so that the three cases can be collectively classified into one state, that is, the MISS state.
  • the UE ID CRC and the data CRC are both verified correctly, and the base station has obtained the UE ID.
  • NACK The UE ID CRC check is correct, but the data CRC check is incorrect. At this time, the base station has obtained the UE ID, but the data reception of the user equipment has an error.
  • Embodiment 2 will be described below from the base station side and the user equipment side, respectively. Note that only differences from Embodiment 2 will be described here, and the same points as Embodiment 2 will not be described again.
  • the base station may use the PDCCH signaling to feed back ACK/NACK to the user equipment.
  • the base station When the base station is in the MISS state, the base station does not feed back any ACK/NACK information to the user equipment, that is, does not send the PDCCH; when in the ACK state, the base station feeds back the ACK information to the user equipment through the PDCCH, notifying the user equipment that the data has been correctly received, the PDCCH
  • the CRC may be scrambled using the UE ID; when in the NACK state, the base station uses the PDCCH signaling to feed back the NACK to the user equipment and schedule retransmission, and the CRC of the PDCCH may be scrambled using the UE ID.
  • the user equipment will detect whether there is a PDCCH carrying ACK/NACK at a certain fixed moment after the transmission is initiated, that is, whether there is a PDCCH that is scrambled using the UE ID.
  • the user equipment can detect which state of the MISS, ACK, and NACK is currently being detected by detecting the PDCCH.
  • the user equipment When the user equipment detects the PDCCH scrambled by using its own UE ID, the user equipment learns whether it is currently in the ACK or NACK state according to the corresponding field in the PDCCH (such as NDI); when the user equipment initiates data transmission, but does not detect the use itself When the UE ID scrambles the PDCCH, the user equipment judges the current state as MISS.
  • the UE ID scrambles the PDCCH
  • User devices can take different follow-up actions according to different states, for example:
  • the user equipment After receiving the ACK, the user equipment can wait for new data transmission;
  • the user equipment After receiving the NACK, the user equipment can perform retransmission with a redundancy version.
  • the UE ID may be used to determine the retransmission resource.
  • the initial value Y 1 UE ID
  • the other steps of determining the retransmission resource are the same as in the second embodiment.
  • the user equipment When the user equipment determines that it is in the MISS state, the user equipment will repeatedly send the last transmission version data (depending on the number of retransmissions of the user equipment, sometimes the initial transmission version, sometimes the corresponding redundancy version of the previous transmission) .
  • the identification information of the transmitting end is carried in the transmission information explicitly or implicitly; And using the identifier information of the transmitting end or the sequence information of the DM-RS, the control information including the ACK/NACK is fed back to the transmitting end. Therefore, when performing the unscheduled transmission, the receiving end can feed back NACK information to the transmitting end based on the identification information of the transmitting end or the sequence information of the demodulation reference signal even if the data transmitted by the transmitting end cannot be correctly obtained. Efficient data retransmissions are achieved with scheduled transmissions.
  • the embodiment of the invention provides an information transmission method, which is further explained on the basis of the embodiments 1 to 3.
  • the transmission information includes data and a verification code generated by the data, wherein the verification code is scrambled by the identification information of the transmitting end, and the same contents as those in Embodiments 1 to 3 are not described again. .
  • FIG. 15 is a schematic diagram of transmission information according to an embodiment of the present invention. As shown in FIG. 15, the UE ID is not transmitted in the data area, but the CRC is scrambled using the UE ID. This embodiment does not need to explicitly carry the UE ID in the data, but can also enable the base station to recover the UE ID.
  • the base station blindly detects the DM-RS, performs equivalent channel estimation for each detected DM-RS, and uses the result for the spreading sequence/codeword/interleaving associated with the DM-RS.
  • the demodulation of the pattern, and finally the CRC is descrambled using all possible UE IDs, and the UE ID that enables the CRC to be successfully descrambled corresponds to the user equipment currently performing data transmission.
  • the base station Since there is no UE ID and CRC matching, which is a CRC error, the base station is required to notify the user equipment to perform retransmission.
  • the CRC of the PDCCH may be scrambled using the DM-RS ID, which may be the same as in Embodiment 2.
  • the DM-RS ID is also used, which may be the same as Embodiment 2.
  • the identifier information of the transmitting end is carried in the transmission information explicitly or implicitly; and the control information including the ACK/NACK is fed back to the transmitting end by using the identifier information of the transmitting end or the sequence information of the DM-RS. Therefore, even when the unscheduled transmission is performed, the receiving end cannot correctly obtain the transmission of the transmitting end.
  • the data can also feed back NACK information to the transmitting end based on the identification information of the transmitting end or the sequence information of the demodulation reference signal, and can implement efficient data retransmission in the case of unscheduled transmission.
  • the embodiment of the invention provides an information transmission method, which is further explained on the basis of the embodiments 1 to 4.
  • the embodiment is not limited to the DM-RS selection in the first embodiment, and is also applicable to the case where the user equipment randomly selects the DM-RS or the base station configures the DM-RS for the user equipment.
  • the transmission information includes data and a verification code generated by the data, wherein the correspondence between the DM-RS and the identification information of the transmitting end is determined in advance, and the same contents as those in Embodiments 1 to 4 are not described again. .
  • FIG. 16 is a schematic diagram of transmission information according to an embodiment of the present invention.
  • the base station may determine the used DM-RS through blind detection, and then pass the DM.
  • the DM-RS may be in one-to-one correspondence with the UE ID.
  • the base station may configure the DM-RS used by the user equipment by using signaling, in some cases (such as the number of DM-RS sequences is greater than the number of user equipments).
  • the DM-RS sequences used by user equipments of different UE IDs can be made different.
  • the base station can determine and obtain the UE ID by blindly checking the DM-RS sequence, ACK/NACK feedback and determining retransmission resources can be performed using a method similar to that of Embodiment 3.
  • the base station when the base station misses the DM-RS, the base station does not use the PDCCH signaling to send the ACK/NACK to the user equipment; when the base station detects the CRC error, the base station uses the UE ID to scramble the CRC of the PDCCH, and uses the PDCCH to transmit the NACK. When the base station detects that the CRC is correct, the base station scrambles the CRC of the PDCCH using the UE ID, and transmits the ACK using the PDCCH.
  • the retransmission resource may be determined by using the UE ID, and the specific method is the same as that in Embodiment 3.
  • the CRC of the PDCCH can also be scrambled using the DM-RS ID, and thus the ACK/NACK feedback and the retransmission resource can be performed using a method similar to that of Embodiment 2.
  • the base station when the base station misses the DM-RS, the base station does not use the PDCCH signaling to send an ACK/NACK to the user equipment;
  • the base station When the base station detects a CRC error, the base station scrambles the CRC of the PDCCH using the DM-RS ID, and transmits the NACK using the PDCCH;
  • the base station detects that the CRC is correct, the base station uses the DM-RS ID to scramble the CRC of the PDCCH. And use the PDCCH to transmit an ACK.
  • the retransmission resource can be determined by using the DM-RS ID, and the specific method is the same as that in Embodiment 3.
  • the identifier information of the transmitting end is carried in the transmission information explicitly or implicitly; and the control information including the ACK/NACK is fed back to the transmitting end by using the identifier information of the transmitting end or the sequence information of the DM-RS. Therefore, when performing the unscheduled transmission, the receiving end can feed back NACK information to the transmitting end based on the identification information of the transmitting end or the sequence information of the demodulation reference signal even if the data transmitted by the transmitting end cannot be correctly obtained. Efficient data retransmissions are achieved with scheduled transmissions.
  • the embodiment of the invention provides an information transmission method, which is further explained on the basis of the embodiments 1 to 5. Different from the PDCCHs in the embodiments 2 to 5, the present embodiment uses the PHICH to perform ACK/NACK feedback, and the same contents as those in the first to fifth embodiments will not be described again.
  • the PHICH is used in the grant-free transmission, and the logical resource addressing mode needs to be modified.
  • the DM-RS ID and/or UE ID are used here to determine the logical resources of the PHICH.
  • the logical resource location of the PHICH is determined by the DM-RS ID m, that is, the logical resource is determined by:
  • the logical resource location of the PHICH is determined by the UE ID, that is, the logical location of the PHICH resource is determined using the following formula:
  • retransmission usually uses non-adaptive retransmission, that is, the modulation scheme, DM-RS sequence, spreading sequence/codeword/interleaving pattern used for retransmission are the same as the initial transmission.
  • the user equipment since the user equipment only outputs the binary judgment result, that is, the ACK or the NACK, the MIS or NACK is not known, and the user equipment cannot distinguish between the NACK and the MISS. In this case, the user equipment can always be made. Retransmit the initial version.
  • the embodiment of the invention provides an information transmission method, which is further explained on the basis of the embodiments 1 to 6.
  • Y 1 is determined at the time of initial transmission, and continues to be used for determining the subsequent weight. The location of the resource. If Y 1 is always taken to the same value, for example, the value is UE ID, it means that for a certain user equipment, the resources used for the kth retransmission are always the same.
  • This embodiment provides a method of further enhancing retransmission randomization.
  • the Y k value is determined at the k-1th transmission (the 0th transmission is defined as the initial transmission, and so on, the kth transmission corresponds to the kth retransmission), and for the kth retransmission, the weight is
  • the location of the resource is determined by Y k , where the definition of Y k is extended, and Y k is redefined as Y k,t , indicating that the k-1th transmission occurs at time t, and the time dimension is newly added.
  • the value range indicates the maximum value that t can take. For example, the largest subframe number in LTE is 9; the function g(.) indicates some recursive function transformation;
  • Z -1 is an initial value and can be equal to the UE ID or DM-RS ID.
  • the resources used for the kth transmission are still determined by the Y k,t corresponding to the previous transmission (ie, the k-1th transmission).
  • Y k,t of the present embodiment changes with time t, but in the foregoing embodiment 2 and embodiment 3, once the initial value Y 0 is determined, the subsequent Y k is correspondingly determine. Therefore, the present embodiment can provide a larger random selection space.
  • FIG. 17 is a diagram showing an example of performing data retransmission according to an embodiment of the present invention. As shown in FIG. 17, this embodiment can enhance randomization of retransmission.
  • An embodiment of the present invention provides an information transmission method, which is applied to a transmitting end, and the same content as Embodiments 1 to 7 will not be described again.
  • FIG. 18 is a schematic diagram of an information transmission method according to an embodiment of the present invention. As shown in FIG. 18, the information transmission method includes:
  • Step 1801 Send, by using a scheduling-free manner, transmission information including data to the receiving end, where the identifier information of the sending end is explicitly or implicitly carried in the transmission information.
  • Step 1802 Receive, by the receiving end, control information including acknowledgement or non-acknowledgment, using the identifier information of the transmitting end or the sequence information of the demodulation reference signal used for demodulating the transmission information.
  • the transmission information may include the data, the identification information of the transmitting end, and a verification code generated by the data and the identification information; or the transmission information may include the data and a first check code generated by the data, identification information of the transmitting end, and a second check code generated by the identification information; or the transmission information may include the data and generated by the data a check code, wherein the check code is scrambled by the identification information of the transmitting end; or the transmission information may include the data and a check code generated by the data, wherein the demodulation reference The correspondence between the signal and the identification information of the transmitting end is determined in advance.
  • the range of the DM-RS is pre-configured; and the sequence number of the DM-RS is pseudo-randomly determined based on the identification information of the transmitting end.
  • the DM-RS is determined by the number of sequences and the user-related value, and the user-related value varies with the number of transmissions and the initial value is the identification information of the transmitting end.
  • the data in the case that the control information including the NACK is received, or in the case where the control information including the ACK/NACK is not received, the data may be retransmitted to the receiving end; wherein the weight is transmitted
  • the data of the transmitted data is pseudo-randomly determined based on the sequence number of the DM-RS or the identification information of the transmitting end. set.
  • the resource for transmitting the retransmission data is determined by the number of retransmission resources and the DM-RS correlation value, and the DM-RS correlation value varies with the number of transmissions and the initial value is the DM-RS of the transmission information that is initially transmitted.
  • the resource for transmitting the retransmission data is determined by the number of retransmission resources and the user correlation value, and the user correlation value varies with the number of transmissions and the initial value is the identification information of the sender.
  • the identifier information of the transmitting end is carried in the transmission information explicitly or implicitly; and the control information including the ACK/NACK is fed back to the transmitting end by using the identifier information of the transmitting end or the sequence information of the DM-RS. Therefore, when performing the unscheduled transmission, the receiving end can feed back NACK information to the transmitting end based on the identification information of the transmitting end or the sequence information of the demodulation reference signal even if the data transmitted by the transmitting end cannot be correctly obtained. Efficient data retransmissions are achieved with scheduled transmissions.
  • the embodiment of the present invention provides an information transmission apparatus, which is configured on the receiving end, and the embodiment of the present invention corresponds to the information transmission methods of Embodiments 1 to 7, and the same content is not described herein again.
  • FIG. 19 is a schematic diagram of an information transmission apparatus according to an embodiment of the present invention. As shown in FIG. 19, the information transmission apparatus 1900 includes:
  • a data receiving unit 1901 which receives transmission information including data sent by the transmitting end using a scheduling-free manner; wherein the identifier information of the transmitting end is explicitly or implicitly carried in the transmission information;
  • a data obtaining unit 1902 which demodulates and verifies the transmission information, and determines whether the identification information of the transmitting end and the data included in the transmission information are correctly obtained;
  • the information feedback unit 1903 uses the identification information of the transmitting end or the sequence information of the demodulation reference signal for demodulating the transmission information to feed back control information including confirmation or non-confirmation to the transmitting end.
  • the transmission information may include the data, identification information of the transmitting end, and a verification code generated by the data and the identification information;
  • the data obtaining unit 1902 is further configured to: obtain sequence information of the demodulation reference signal by blind detection, demodulate the transmission information according to the demodulation reference signal, and verify the verification code. And obtaining identification information of the transmitting end and the data.
  • the transmission information may include the data and a number generated by the data a check code, identification information of the transmitting end, and a second check code generated by the identification information;
  • the data obtaining unit 1902 is further configured to: obtain sequence information of the demodulation reference signal by blind detection, and demodulate the transmission information according to the demodulation reference signal, and perform the first verification code Obtaining the data and verifying the second check code to obtain identification information of the transmitting end.
  • the transmission information may include the data and a verification code generated by the data, where the verification code is scrambled by the identification information of the transmitting end;
  • the data obtaining unit 1902 is further configured to: obtain sequence information of the demodulation reference signal by blind detection, demodulate the transmission information according to the demodulation reference signal, and determine a range of the identification information of the transmitting end. And performing the descrambling and verification on the check code by using all the identifier information in the range, determining the identifier information of the sending end according to the check result, and obtaining the data.
  • the transmission information includes the data and a check code generated by the data, where a correspondence between the demodulation reference signal and the identification information of the transmitting end is determined in advance;
  • the data obtaining unit 1902 is further configured to: obtain sequence information of the demodulation reference signal by blind detection, determine identifier information of the transmitting end according to the demodulation reference signal, and demodulate the transmission information, and The check code is verified to obtain the data.
  • the range of the demodulation reference signal is pre-configured; and the sequence number of the demodulation reference signal is pseudo-randomly determined based on the identification information of the transmitting end.
  • the demodulation reference signal of the transmission information may be determined by the number of sequences of the demodulation reference signal and the user correlation value, where the user correlation value varies with the number of transmissions and the initial value is the identification information of the transmitting end.
  • the data acquiring unit 1902 is further configured to: determine one or more of a spreading sequence, a codeword, and an interleaving pattern according to the demodulation reference signal, and according to the spreading sequence and the codeword.
  • the transmission information is transformed by one or more of the interleaving patterns.
  • the data receiving unit 1901 may be further configured to: receive retransmission data sent by the sending end, where the resource for transmitting the retransmitted data is based on a sequence number of the demodulation reference signal or the sending end
  • the identification information is pseudo-randomly determined.
  • the resource for transmitting the retransmitted data may be determined by the number of retransmitted resources and the demodulation reference signal correlation value, the demodulation reference signal correlation value varies with the number of transmissions, and the initial value is the initial transmission of the transmission information.
  • the sequence number of the demodulation reference signal may be determined by the number of retransmitted resources and the demodulation reference signal correlation value, the demodulation reference signal correlation value varies with the number of transmissions, and the initial value is the initial transmission of the transmission information.
  • the resource for transmitting the retransmission data may be determined by the number of retransmission resources and the user correlation value, where the user correlation value varies with the number of transmissions and the initial value is the identification information of the sending end.
  • control information including the acknowledgement or the non-acknowledgement may be carried on the PDCCH; the information feedback unit 1903 may use the identifier information of the sender or the sequence number of the demodulation reference signal of the transmission information to the PDCCH.
  • the verification information is scrambled.
  • control information including the acknowledgement or the non-acknowledgement may also be carried in the PHICH; the information feedback unit 1903 may further determine the PHICH by using the sequence number of the demodulation reference signal or the identifier information of the sender. Logical resource location.
  • the identifier information of the transmitting end is carried in the transmission information explicitly or implicitly; and the control information including the ACK/NACK is fed back to the transmitting end by using the identifier information of the transmitting end or the sequence information of the DM-RS. Therefore, when performing the unscheduled transmission, the receiving end can feed back NACK information to the transmitting end based on the identification information of the transmitting end or the sequence information of the demodulation reference signal even if the data transmitted by the transmitting end cannot be correctly obtained. Efficient data retransmissions are achieved with scheduled transmissions.
  • An embodiment of the present invention provides an information transmission apparatus, which is configured on a transmitting end, and the embodiment of the present invention corresponds to the information transmission method of Embodiment 8. The same content is not described herein again.
  • FIG. 20 is a schematic diagram of an information transmission apparatus according to an embodiment of the present invention. As shown in FIG. 20, the information transmission apparatus 2000 includes:
  • a data sending unit 2001 configured to send, by using a scheduling-free manner, transmission information including data to the receiving end, where the identifier information of the transmitting end is explicitly or implicitly carried in the transmission information;
  • the information receiving unit 2002 receives the control information including the acknowledgement or the non-acknowledgment fed back by the receiving end, and performs feedback by using the identifier information of the transmitting end or the sequence information of the demodulation reference signal for transmitting the transmission information.
  • the transmission information may include the data, the identification information of the transmitting end, and a verification code generated by the data and the identification information; or the transmission information may include the data and a first check code generated by the data, identification information of the transmitting end, and a second check code generated by the identification information; or the transmission information may include the data and generated by the data a check code, wherein the check code is scrambled by the identification information of the sending end; or the transmission information may include The data and the check code generated by the data, wherein the correspondence between the demodulation reference signal and the identification information of the transmitting end is predetermined.
  • the range of the demodulation reference signal is pre-configured; and the sequence number of the demodulation reference signal is pseudo-randomly determined based on the identification information of the transmitting end.
  • the demodulation reference signal of the transmission information may be determined by the number of sequences of the demodulation reference signal and the user correlation value, where the user correlation value varies with the number of transmissions and the initial value is the identification information of the transmitting end.
  • the data sending unit 2001 is further configured to: retransmit the specified redundancy version when receiving the control information including the non-acknowledgment, and receive neither the acknowledgement nor the non-confirmation control.
  • the same data as the previous transmission is transmitted to the receiving end; wherein the resource for transmitting the retransmitted data is pseudo-randomly and randomly based on the sequence number of the demodulation reference signal or the identification information of the transmitting end determine.
  • the resource for transmitting the retransmitted data may be determined by the number of retransmitted resources and the demodulation reference signal correlation value, the demodulation reference signal correlation value varies with the number of transmissions, and the initial value is the initial transmission of the transmission information.
  • the resource for transmitting the retransmission data may be determined by the number of retransmission resources and the user correlation value, where the user correlation value varies with the number of transmissions and the initial value is the identification information of the sending end.
  • the identifier information of the transmitting end is carried in the transmission information explicitly or implicitly; and the control information including the ACK/NACK is fed back to the transmitting end by using the identifier information of the transmitting end or the sequence information of the DM-RS. Therefore, when performing the unscheduled transmission, the receiving end can feed back NACK information to the transmitting end based on the identification information of the transmitting end or the sequence information of the demodulation reference signal even if the data transmitted by the transmitting end cannot be correctly obtained. Efficient data retransmissions are achieved with scheduled transmissions.
  • the embodiment of the present invention further provides a communication system, and the same contents as those of the embodiments 1 to 10 are not described herein.
  • the communication system may include:
  • a transmitting end which is configured with the information transmission device 2000 as described in Embodiment 10;
  • the receiving end is configured with the information transmission device 1900 as described in Embodiment 9.
  • the communication system 2100 may include a base station 2101 and a user equipment 2102.
  • the base station 2101 is provided with the information transmission device 1900 as described in the ninth embodiment
  • the user equipment 2102 is provided with the information transmission device 2000 as described in the tenth embodiment.
  • the embodiment of the present invention further provides a receiving end, which may be, for example, a base station, but the present invention is not limited thereto, and may be other network devices.
  • a receiving end which may be, for example, a base station, but the present invention is not limited thereto, and may be other network devices.
  • the following takes a base station as an example for description.
  • FIG. 22 is a schematic diagram showing the structure of a base station according to an embodiment of the present invention.
  • the base station 2200 can include a central processing unit (CPU) 200 and a memory 210; the memory 210 is coupled to the central processing unit 200.
  • the memory 210 can store various data; in addition, a program for information processing is stored, and the program is executed under the control of the central processing unit 200.
  • the central processing unit 200 can be configured to implement the functions of the information transmission device 1900.
  • the central processing unit 200 may be configured to perform control of receiving transmission information including data transmitted by the user equipment using a schedule-free manner; wherein the identification information of the user equipment is explicitly or implicitly carried in the Transmitting information, demodulating and verifying the transmission information, and determining whether the identification information of the user equipment and the data included in the transmission information are correctly obtained; using the identification information of the user equipment or Sequence information for demodulating the demodulation reference signal of the transmission information, and feeding back control information including confirmation or non-confirmation to the user equipment.
  • the base station 2200 may further include: a transceiver 220, an antenna 230, and the like; wherein the functions of the foregoing components are similar to those of the prior art, and are not described herein again. It should be noted that the base station 2200 also does not have to include all of the components shown in FIG. 22; in addition, the base station 2200 may also include components not shown in FIG. 22, and reference may be made to the prior art.
  • the embodiment of the present invention further provides a sending end, which may be, for example, a user equipment, but the present invention is not limited thereto, and may be other network devices.
  • a sending end which may be, for example, a user equipment, but the present invention is not limited thereto, and may be other network devices.
  • the following uses the user equipment as an example for description.
  • FIG. 23 is a schematic diagram of a user equipment according to an embodiment of the present invention.
  • the user device 2300 can include a central processing unit 100 and a memory 140; the memory 140 is coupled to the central processing unit 100.
  • the figure is exemplary; other types of structures may be used in addition to or in place of the structure to implement telecommunications functions or other functions.
  • the central processing unit 100 can be configured to implement the functions of the information transmission device 2000.
  • the central processing unit 100 can be configured to perform control of transmitting transmission information including data to the base station using a hands-free manner; wherein the identification information of the user equipment is explicitly or implicitly carried in the Transmitting information; receiving, by the base station, control information including acknowledgment or non-confirmation using the identification information of the user equipment or the sequence information of the demodulation reference signal used for demodulating the transmission information.
  • the user equipment 2300 may further include: a communication module 110, an input unit 120, a display 160, and a power source 170.
  • the functions of the above components are similar to those of the prior art, and are not described herein again. It should be noted that the user equipment 2300 does not have to include all the components shown in FIG. 23, and the above components are not required; in addition, the user equipment 2300 may further include components not shown in FIG. There are technologies.
  • the embodiment of the present invention further provides a computer readable program, wherein the program causes the receiving end or the base station to perform the information transmission methods described in Embodiments 1 to 7 when the program is executed in the receiving end or the base station.
  • the embodiment of the present invention further provides a storage medium storing a computer readable program, wherein the computer readable program causes a receiving end or a base station to perform the information transmission methods described in Embodiments 1 to 7.
  • the embodiment of the present invention further provides a computer readable program, wherein the program causes the transmitting end or the user equipment to perform the information transmission method described in Embodiment 8 when the program is executed in a transmitting end or a user equipment.
  • the embodiment of the present invention further provides a storage medium storing a computer readable program, wherein the computer readable program causes a transmitting end or a user equipment to perform the information transmission method described in Embodiment 8.
  • the above apparatus and method of the present invention may be implemented by hardware or by hardware in combination with software.
  • the present invention relates to a computer readable program that, when executed by a logic component, enables the logic component to implement the apparatus or components described above, or to cause the logic component to implement the various methods described above Or steps.
  • the present invention also relates to a storage medium for storing the above program, such as a hard disk, a magnetic disk, an optical disk, a DVD, a flash memory, or the like.
  • the method/apparatus described in connection with the embodiments of the invention may be embodied directly in hardware, a software module executed by a processor, or a combination of both.
  • one or more of the functional block diagrams shown in FIG. 19 and/or one or more combinations of functional block diagrams may correspond to a computer program.
  • Each software module of the process may also correspond to each hardware module.
  • These software modules may correspond to the respective steps shown in FIG. 4, respectively.
  • These hardware modules can be implemented, for example, by curing these software modules using a Field Programmable Gate Array (FPGA).
  • FPGA Field Programmable Gate Array
  • the software module can reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM, or any other form of storage medium known in the art.
  • a storage medium can be coupled to the processor to enable the processor to read information from, and write information to, the storage medium; or the storage medium can be an integral part of the processor.
  • Processor And the storage medium can be located in the ASIC.
  • the software module can be stored in the memory of the mobile terminal or in a memory card that can be inserted into the mobile terminal.
  • the software module can be stored in the MEGA-SIM card or a large-capacity flash memory device.
  • One or more of the functional blocks described in the figures and/or one or more combinations of functional blocks may be implemented as a general purpose processor, digital signal processor (DSP) for performing the functions described herein.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • One or more of the functional blocks described with respect to the figures and/or one or more combinations of functional blocks may also be implemented as a combination of computing devices, eg, a combination of a DSP and a microprocessor, multiple microprocessors One or more microprocessors in conjunction with DSP communication or any other such configuration.
  • a data retransmission device is disposed at a transmitting end, and the data retransmission device includes:
  • a data transmitting unit that transmits the transmission information including the data to the receiving end using a schedule-free manner
  • a data retransmission unit that retransmits the specified redundancy version upon receiving the non-acknowledgment control information; in the case where neither the acknowledgement nor the non-confirmation control information is received, the The receiving end sends the same data as the previous transmission.
  • the data retransmission apparatus according to supplementary note 1, wherein the resource for transmitting the retransmission data is pseudo-randomly determined based on a sequence number of the demodulation reference signal.
  • the data retransmission apparatus wherein the resource for transmitting the retransmitted data is determined by the number of retransmission resources and a demodulation reference signal correlation value, and the demodulation reference signal correlation value
  • the number of transmissions varies with the number of transmissions and the initial value is the sequence number of the demodulation reference signal from which the transmission information was originally transmitted.
  • the data retransmission apparatus according to supplementary note 1, wherein the resource for transmitting the retransmission data is pseudo-randomly determined based on the identification information of the transmitting end.
  • the data retransmission device wherein the resource for transmitting the retransmitted data is heavy
  • the number of the transmitted resources and the user-related value are determined, and the user-related value varies with the number of transmissions and the initial value is the identification information of the transmitting end.
  • the data retransmission apparatus according to supplementary note 1, wherein the resource for transmitting the retransmission data is pseudo-randomly determined based on a sequence number of the demodulation reference signal and a transmission timing.
  • the data retransmission apparatus according to supplementary note 1, wherein the resource for transmitting the retransmission data is pseudo-randomly determined based on the identification information of the transmitting end and the transmission timing.
  • Attachment 8 is a data retransmission device, configured on a receiving end, where the data retransmission device includes:
  • a data receiving unit that receives transmission information including data transmitted by the transmitting end using a schedule-free manner
  • a retransmission receiving unit that receives retransmission data transmitted by the transmitting end when receiving control information including non-acknowledgment or without receiving control information including confirmation or non-confirmation.
  • the data retransmission apparatus according to supplementary note 8, wherein the resource for transmitting the retransmission data is pseudo-randomly determined based on a sequence number of the demodulation reference signal.
  • the data retransmission apparatus wherein the resource for transmitting the retransmission data is determined by the number of retransmission resources and a demodulation reference signal correlation value, and the demodulation reference signal correlation value
  • the number of transmissions varies with the number of transmissions and the initial value is the sequence number of the demodulation reference signal from which the transmission information was originally transmitted.
  • the data retransmission apparatus according to supplementary note 8, wherein the resource for transmitting the retransmission data is pseudo-randomly determined based on the identification information of the transmitting end.
  • the data retransmission apparatus according to supplementary note 8, wherein the resource for transmitting the retransmission data is pseudo-randomly determined based on a sequence number of the demodulation reference signal and a transmission time.
  • the data retransmission apparatus according to supplementary note 8, wherein the resource for transmitting the retransmission data is pseudo-randomly determined based on the identification information of the transmitting end and the transmission timing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种信息传输装置、方法以及通信***。所述信息传输方法包括:接收发送端使用免调度方式发送的包含数据的传输信息;其中发送端的标识信息被显式地或隐式地承载在传输信息中;对传输信息进行解调和校验,并确定是否正确地获得数据以及发送端的标识信息;使用发送端的标识信息或者DM-RS的序列信息,向发送端反馈包含ACK/NACK的控制信息。由此,在进行免调度传输时,接收端即使不能正确地获得发送端传输的数据,也能基于发送端的标识信息或者DM-RS的序列信息反馈NACK信息,能够在免调度传输的情况下实现高效的数据重传。

Description

信息传输装置、方法以及通信*** 技术领域
本发明实施例涉及通信技术领域,特别涉及一种信息传输装置、方法以及通信***。
背景技术
在传统的长期演进(LTE,Long Term Evolution)***中,用户设备的上行数据传输需要得到基站调度,优点在于基站能够将不同用户设备的数据调度到相互正交的时频资源,从而完全避免用户设备间的碰撞和由此产生的干扰。
对于调度传输,在用户设备发起实际数据传输之前,需要与基站建立连接。
图1是调度传输的一示意图,如图1所示,用户设备向基站发起调度请求(SR,Scheduling Request),然后基站向用户设备发送上行调度信令(UL grant),最后用户设备按照调度信令进行上行数据传输。即在实际数据传输之前存在用户设备与基站间的信令交互开销,这对于有大量数据传输的用户设备而言是可以接受的。
但随着终端种类以及相应业务的日益多样化,例如第五代(5G)***需要满足的大规模机器类型通信(mMTC,massive Machine Type Communication)和高可靠低时延通信(URLLC,Ultra-Reliable and Low-Latency Communication)需求,高吞吐量不再是唯一的设计目标,mMTC用户设备可能主要以突发性业务为主,并且使用小包传输,如果在小包数据传输前仍按部就班地进行类似LTE的信令交互,那么很可能信令开销便占据了该次数据传输的绝大部分比例,降低了传输效率;从另一角度,数据传输前的连接建立过程也带来了时延增加,这对于达到URLLC所需要的低时延目标也是不利因素。
因此,免调度(Grant-free)传输作为一种新的数据信道传输方式得到了越来越多的关注与研究。
图2是免调度传输的一示意图,示出了grant-free传输的主要概念。当有数据到达用户设备时,用户设备可以立即发起数据传输,而不需要等待基站调度,因而减少了用户设备与基站建立连接所需的信令和时延开销。对于grant-free传输,由于没有基站参与调度,用户设备间的物理资源碰撞往往难以避免,但通过非正交技术以及先 进多用户接收机的使用,仍可以在一定条件下实现对于碰撞用户设备数据的成功解调。
应该注意,上面对技术背景的介绍只是为了方便对本发明的技术方案进行清楚、完整的说明,并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本发明的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。
发明内容
但是,发明人发现:在进行免调度传输时,如果接收端不能正确地获得发送端传输的数据,则无法获得发送端的标识信息,从而无法为发送端反馈非确认(NACK)信息,不能在免调度传输的情况下实现高效的数据重传。
本发明实施例提供一种信息传输装置、方法以及通信***。在进行免调度传输时,即使接收端不能正确地获得发送端传输的数据,也能基于所述发送端的标识信息或者解调参考信号的序列信息为发送端反馈NACK信息,能够在免调度传输的情况下实现高效的数据重传。
根据本发明实施例的第一个方面,提供一种信息传输方法,应用于接收端,所述信息传输方法包括:
接收发送端使用免调度方式发送的包含数据的传输信息;其中所述发送端的标识信息被显式地或隐式地承载在所述传输信息中;
对所述传输信息进行解调和校验,并确定是否正确地获得所述发送端的标识信息以及所述传输信息中包含的所述数据;
使用所述发送端的标识信息或者用于解调所述传输信息的解调参考信号的序列信息,向所述发送端反馈包含确认或非确认的控制信息。
根据本发明实施例的第二个方面,提供一种信息传输装置,配置于接收端,所述信息传输装置包括:
数据接收单元,其接收发送端使用免调度方式发送的包含数据的传输信息;其中所述发送端的标识信息被显式地或隐式地承载在所述传输信息中;
数据获取单元,其对所述传输信息进行解调和校验,并确定是否正确地获得所述发送端的标识信息以及所述传输信息中包含的所述数据;
信息反馈单元,其使用所述发送端的标识信息或者用于解调所述传输信息的解调 参考信号的序列信息,向所述发送端反馈包含确认或非确认的控制信息。
根据本发明实施例的第三个方面,提供一种信息传输方法,应用于发送端,所述信息传输方法包括:
使用免调度方式向接收端发送包含数据的传输信息;其中所述发送端的标识信息被显式地或隐式地承载在所述传输信息中;
接收所述接收端使用所述发送端的标识信息或者用于解调所述传输信息的解调参考信号的序列信息反馈的包括确认或非确认的控制信息。
根据本发明实施例的第四个方面,提供一种信息传输装置,配置于发送端,所述信息传输装置包括:
数据发送单元,其使用免调度方式向接收端发送包含数据的传输信息;其中所述发送端的标识信息被显式地或隐式地承载在所述传输信息中;
信息接收单元,其接收所述接收端使用所述发送端的标识信息或者用于解调所述传输信息的解调参考信号的序列信息反馈的包括确认或非确认的控制信息。
根据本发明实施例的第五个方面,提供一种通信***,所述通信***包括:
发送端,其包括如上第四方面所述的信息传输装置;以及
接收端,其包括如上第二方面所述的信息传输装置。
本发明实施例的有益效果在于:发送端的标识信息被显式地或隐式地承载在传输信息中;并且使用发送端的标识信息或者DM-RS的序列信息,向发送端反馈包含ACK/NACK的控制信息。由此,在进行免调度传输时,接收端即使不能正确地获得发送端传输的数据,也能基于所述发送端的标识信息或者解调参考信号的序列信息为发送端反馈NACK信息,能够在免调度传输的情况下实现高效的数据重传。
参照后文的说明和附图,详细公开了本发明的特定实施方式,指明了本发明的原理可以被采用的方式。应该理解,本发明的实施方式在范围上并不因而受到限制。在所附权利要求的精神和条款的范围内,本发明的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。
附图说明
在本发明实施例的一个附图或一种实施方式中描述的元素和特征可以与一个或更多个其它附图或实施方式中示出的元素和特征相结合。此外,在附图中,类似的标号表示几个附图中对应的部件,并可用于指示多于一种实施方式中使用的对应部件。
图1是调度传输的一示意图;
图2是免调度传输的一示意图;
图3是免调度传输的另一示意图;
图4是本发明实施例1的信息传输方法的一示意图;
图5是本发明实施例2的传输信息的一示意图;
图6是本发明实施例2的信息传输方法的一示意图;
图7是免调度传输时重传发生碰撞的一示意图;
图8是随机选择资源对数据进行重传的一示意图;
图9是本发明实施例2的进行数据重传的一示例图;
图10是本发明实施例2的进行数据重传的另一示例图;
图11是本发明实施例2的进行数据重传的另一示例图;
图12是本发明实施例2的进行数据重传的另一示例图;
图13是本发明实施例2的进行数据重传的另一示例图;
图14是本发明实施例3的传输信息的一示意图;
图15是本发明实施例4的传输信息的一示意图;
图16是本发明实施例5的传输信息的一示意图;
图17是本发明实施例7的进行数据重传的一示例图;
图18是本发明实施例8的信息传输方法的一示意图;
图19是本发明实施例9的信息传输装置的一示意图;
图20是本发明实施例10的信息传输装置的一示意图;
图21是本发明实施例11的通信***的一示意图;
图22是本发明实施例11的基站的一示意图;
图23是本发明实施例11的用户设备的一示意图。
具体实施方式
参照附图,通过下面的说明书,本发明的前述以及其它特征将变得明显。在说明书和附图中,具体公开了本发明的特定实施方式,其表明了其中可以采用本发明的原则的部分实施方式,应了解的是,本发明不限于所描述的实施方式,相反,本发明包括落入所附权利要求的范围内的全部修改、变型以及等同物。
在本申请中,基站可以被称为接入点、广播发射机、发送接收点(TRP)、节点B、演进节点B(eNB)、射频拉远单元(RRH/RRU,Remote Radio Head/Unit)等,并且可以包括它们的一些或所有功能。在文中将使用术语“基站”。每个基站对特定的地理区域提供通信覆盖。术语“小区”可以指的是基站和/或其覆盖区域,这取决于使用该术语的上下文。
在本申请中,移动站或设备可以被称为“用户设备”(UE,User Equipment)。UE可以是固定的或移动的,并且也可以称为移动台、终端、接入终端、用户单元、站等。用户设备可以是蜂窝电话、个人数字助理(PDA)、无线调制解调器、无线通信设备、手持设备、机器型通信设备、膝上型计算机、无绳电话等。
图3是免调度传输的另一示意图,如图3所示,基站可以为grant-free用户设备预留和配置多块时频资源,grant-free传输发生在每一块时频资源内部,用户设备可以接收每一块grant-free时频资源内的控制信令,例如物理下行控制信道(PDCCH,Physical Downlink Control Channel)等。
在本申请中,每一块用于grant-free传输的时频资源可以配置有一组解调参考信号(DM-RS,De-Modulation Reference Signal)序列,此外还可以配置有一组扩频序列/码字/交织图样。其中DM-RS用于等效信道估计,扩频序列/码字/交织图样的共同作用是对数据进行变换,具体可以有不同的变换方法,如扩频、构造码字、交织等;也可以不使用任何变换,直接发送数据。
假设可用的DM-RS序列总数为M,扩频序列/码字/交织图样总数为N,可进行grant-free传输的用户设备总数为U。对于某一用户u(u=1,2,…,U),当进行grant-free传输时,会使用某一扩频序列/码字/交织图样n(n=1,2,…,N)对数据进行变换后发送,同时发送某一DM-RS序列m(m=1,2,…,M)。对于任一DM-RS序列,可以唯一对应关联一个扩频序列/码字/交织图样。对于用户设备使用哪一个DM-RS序列以及关联的扩频序列/码字/交织图样,可以通过用户设备随机选择决定,或者可以由基站 预先配置。
在本申请中,基站可以盲检有哪些用户设备进行了数据传输,即盲检用户设备的活动性,例如某一DM-RS m被检测到,则基站会利用该DM-RS进行信道估计,并且认为与该DM-RS相关联的扩频序列/码字/交织图样也被接收到,在该前提假设下对用户设备数据进行解调。
另一方面,混合自动重传请求(HARQ,Hybrid Automatic Repeat ReQuest)是保证接收性能的重要手段,grant-free传输的设计应能够实现对HARQ重传功能的兼容与支持。
对于上行grant-free传输,重传大体可以分为两种类型:一种是重新传输原始数据,即重传与初传的比特信息完全相同,例如HARQ中的chase combining方式;另外一种是重传一个冗余版本,此时重传的比特信息不需要与初传相同,例如HARQ中的增量冗余(incremental redundancy)方式。对于在grant-free传输中引入HARQ,基站如何进行ACK/NACK通知以及HARQ时序如何确定等,都是需要设计解决的问题。
本申请针对在grant-free传输中支持HARQ进行设计,提供了能够在grant-free传输中高效实现HARQ功能的方案。以下以将通信***中的基站作为接收端、将用户设备作为发送端为例进行说明,但本发明不限于此,例如发送端和/或接收端还可以是其他的网络设备。
实施例1
本发明实施例提供一种信息传输方法,应用于接收端。
图4是本发明实施例的信息传输方法的一示意图,如图4所示,所述信息传输方法包括:
步骤401,接收发送端使用免调度方式发送的包含数据的传输信息;其中所述发送端的标识信息被显式地或隐式地承载在所述传输信息中;
步骤402,对所述传输信息进行解调和校验,并确定是否正确地获得所述发送端的标识信息以及所述传输信息中包含的所述数据;
步骤403,使用所述发送端的标识信息或者用于解调所述传输信息的解调参考信号的序列信息,向所述发送端反馈包含确认或非确认的控制信息。
在本实施例中,该接收端可以为宏基站(例如eNB),发送端为用户设备;该宏基站产生的宏小区(例如Macro cell)可以为该用户设备提供服务。或者,接收端也可以为微基站,发送端为用户设备,或者能够接收基站信号的任意设备;该微基站产生的微小区(例如Pico cell或Small cell)可以为该用户设备提供服务。或者,发送端和/或接收端也可以为其他网络设备。本发明不限于此,可以根据实际的需要确定具体的场景。
以下以将基站作为接收端、将用户设备作为发送端为例进行说明。
在本实施例中,DM-RS的范围被预先配置;用户设备可以随机选择DM-RS序列。DM-RS的序列编号可以基于发送端的标识信息而伪随机地被确定;其中,DM-RS由序列个数以及用户相关值确定,所述用户相关值随传输次数而变化且初始值为所述发送端的标识信息。
例如,对于用户设备u,可以通过下式对DM-RS序列进行选择。
mk=Xk modM,whereXk+1=f(Xk)
其中,mk用来标识在第k次传输时所选择的DM-RS序列;M表示可用的DM-RS总数;可以定义递归函数Xk+1=f(Xk),其中f(.)表示某种函数变换,例如可以重用用于确定PDCCH搜索空间的函数Xk+1=(A·Xk)modD,(D=65537,A=39827);k表示第k次传输,k=0,1,2,…,K;X0=UEID,其中UE ID表示用户设备的标识。
UE ID例如是小区无线网络临时标识(C-RNTI,Cell Radio Network Temporary Identifier)、临时移动用户识别码(TMSI,Temporary Mobile Subscribe Identity)、国际移动用户识别码(IMSI,International Mobile Subscribe Identity)或其他形式的ID,目的是为了区别不同的用户设备。
在本实施例中,可以根据DM-RS确定扩频序列、码字和交织图样中的一种或多种,并根据所述扩频序列、码字和交织图样中的一种或多种对所述传输信息进行变换。
其中,可以首先建立DM-RS序列与扩频序列/码字/交织图样(一种或多种)之间的关联。在用户设备u确定了DM-RS序列编号(DM-RS ID)后,根据DM-RS与扩频序列/码字/交织图样的关联,可以相应地确定所用的扩频序列/码字/交织图样编号,例如
nk=mk mod N
其中N表示可用的扩频序列/码字/交织图样总数。通常DM-RS序列数目M会多于扩频序列/码字/交织图样数目N,即M>N。
例如,假设N=4,M=8,U=16,使用上述方法可以获得下表1,表1中列出了DM-RS、扩频序列/码字/交织图样和用户设备的对应关系的例子。
表1
Figure PCTCN2016104437-appb-000001
由表1可以看到多个用户设备有可能选择同一DM-RS,因此基站在检测到某一DM-RS后,仍需判断该DM-RS属于哪一个用户设备,即确定UE ID。对UE ID的确定可以通过在用户设备数据中携带UE ID实现,也可以通过其他方法确定,例如后面实施例给出的方法。
在本实施例中,发送端的标识信息被显式地或隐式地承载在所述传输信息中。
例如,所述传输信息包括所述数据、所述发送端的标识信息以及由所述数据和所述标识信息生成的校验码;或者,所述传输信息包括所述数据以及由所述数据生成的第一校验码、所述发送端的标识信息以及由所述标识信息生成的第二校验码;或者,所述传输信息包括所述数据以及由所述数据生成的校验码,其中所述校验码被所述发送端的标识信息进行了加扰;或者,所述传输信息包括所述数据以及由所述数据生成的校验码,其中DM-RS与所述发送端的标识信息的对应关系被预先确定。
在本实施例中,可以使用发送端的标识信息或者用于解调传输信息的DM-RS的序列信息,向发送端反馈包含ACK/NACK的控制信息。
例如,如果包含ACK/NACK的控制信息承载于物理下行控制信道(PDCCH,Physical Downlink Control Channel),则可以使用发送端的标识信息或者DM-RS的序列编号对PDCCH的校验信息(例如循环冗余校验(CRC,Cyclic Redundancy Check))进行加扰。
再例如,如果包含ACK/NACK的控制信息承载于物理混合自动重传请求指示信 道(PHICH,Physical Hybrid Automatic Repeat ReQuest Indicator Channel),则可以使用DM-RS的序列编号或者发送端的标识信息确定所述PHICH的逻辑资源位置。
在本实施例中,接收端还可以接收所述发送端发送的重传数据,其中发送所述重传数据的资源基于所述DM-RS的序列编号或者所述发送端的标识信息而伪随机地被确定。
例如,发送所述重传数据的资源由重传资源的个数以及DM-RS相关值确定,所述DM-RS相关值随传输次数而变化且初始值为初传所述传输信息的DM-RS的序列编号。
再例如,发送所述重传数据的资源由重传资源的个数以及用户相关值确定,所述用户相关值随传输次数而变化且初始值为所述发送端的标识信息。
由此,可以为重传资源的选择带来随机性,降低重传数据发生碰撞的概率。
由上述实施例可知,发送端的标识信息被显式地或隐式地承载在传输信息中;并且使用发送端的标识信息或者DM-RS的序列信息,向发送端反馈包含ACK/NACK的控制信息。由此,在进行免调度传输时,接收端即使不能正确地获得发送端传输的数据,也能基于所述发送端的标识信息或者解调参考信号的序列信息为发送端反馈NACK信息,能够在免调度传输的情况下实现高效的数据重传。
实施例2
本发明实施例提供一种信息传输方法,在实施例1的基础上对本发明进行进一步说明。但本实施例不局限于实施例1的DM-RS选择,也适用于用户设备随机选择DM-RS或基站为用户设备配置DM-RS情形。本实施例中,传输信息包括数据、发送端的标识信息以及由所述数据和所述标识信息生成的校验码,与实施例1相同的内容不再赘述。
图5是本发明实施例的传输信息的一示意图,如图5所示,UE ID作为数据有效载荷的一部分由用户设备传输给基站,并且CRC由UE ID和数据共同生成。如果CRC校验正确,则基站认为UE ID和数据均正确接收。如果基站发现CRC校验错误,说明UE ID和/或数据发生错误。
图6是本发明实施例的信息传输方法的一示意图,以基站和用户设备为例进行说明。如图6所示,所述信息传输方法包括:
步骤601,用户设备使用免调度方式向基站发送包含数据的传输信息;
其中所述发送端的标识信息被显式地承载在所述传输信息中,如图5所示;
步骤602,基站对所述传输信息进行解调和校验,并确定是否正确地获得所述发送端的标识信息以及所述数据;
在本实施例中,基站可以通过盲检获得DM-RS的序列信息,并根据所述DM-RS对所述传输信息进行解调,以及对所述校验码进行校验而获得所述发送端的标识信息以及所述数据。
由于UE ID和数据共同生成CRC,当CRC校验错误时,基站无法分辨是UE ID错误还是数据错误,或者二者同时错误。这意味着当基站反馈NACK时,由于基站事先无法获知准确的UE ID,因此不能够使用UE ID对PDCCH的CRC进行加扰,即无法通过UE ID对数据初传错误的用户设备进行寻址。
步骤603,基站使用DM-RS的序列信息对PDCCH的CRC进行加扰;
步骤604,基站向用户设备反馈包含ACK/NACK的PDCCH。
在本实施例中,可以使用DM-RS ID m对PDCCH的CRC进行加扰,即使用DM-RS ID代替UE ID来寻址用户设备,ACK和NACK反馈均可以通过这种形式将加扰的PDCCH通知给用户设备。
此外,对于上行grant-free传输,还可能存在基站漏检(mis-detection)情况,即基站没有检测到该用户设备存在。该情况的出现通常是由于基站没有检测到DM-RS和/或扩频序列/码字/交织图案。在这种情况下,基站不会发送任何经过DM-RS序列编号加扰的PDCCH给用户设备。
对于用户设备来说,用户设备将在发起传输后的某一固定时刻检测是否存在携带ACK/NACK的PDCCH,即检测是否存在使用了上一次传输所用DM-RS ID加扰的PDCCH。
更具体地,用户设备通过对PDCCH的检测,可以获知当前处于ACK、NACK和漏检之中的哪一种状态。例如,当用户设备检测到上一次传输所用DM-RS加扰的PDCCH时,用户设备会根据PDCCH中的相应字段(例如新数据指示(NDI,New Data Indicator))获知当前处于ACK还是NACK状态;当用户设备发起过数据传输,但没有检测到上一次传输所用DM-RS加扰的PDCCH时,用户设备会将当前状态判为基站漏检了数据。
用户设备可以根据不同状态采取不同的后续行为,例如:
当收到ACK后,用户设备可以等待新数据传输;
当接收到NACK后,用户设备可以进行带有冗余版本的重传,使基站能够进行HARQ软合并;由于使用PDCCH信令指示NACK并调度重传,可以定义新的PDCCH format格式,通过在信令中增加相应字段来配置用户设备重传所使用的参数,例如调制方式、冗余版本(RV)、DM-RS序列、扩频序列/码字/交织图案、重传的时频资源位置等,从而可以实现自适应重传。如果从节省PDCCH信令开销角度考虑,可以省略以上其他字段,仅发送NACK,此时用户设备将仍然使用与上一次传输相同的参数进行重传,冗余版本的选择遵循与基站事先约定的规则,相当于是非自适应重传。
以上以基站和用户设备为例,通过PDCCH示意性说明了在免调度传输时如何对ACK/NACK进行通知,但本发明不限于此。以下示意性说明免调度传输时如何进行重传。
如图6所示,所述信息传输方法还可以包括:
步骤605,用户设备使用重传资源向基站重传数据。
在本实施例中,重传资源可以是重传时刻、重传频率位置或者重传的时频资源。如果将重传资源始终定义在距离初传或ACK/NACK某一固定的时频位置上,那么grant-free传输所带来的一个问题在于:初传发生碰撞的用户设备在重传时也将始终发生碰撞。
图7是免调度传输时重传发生碰撞的一示意图,如图7所示,用户设备1和用户设备2始终碰撞,不利于基站对用户设备数据的解调。
为了避免重传发生碰撞,一种方法可以是在基站通知用户设备NACK的信令中对用户设备的重传资源进行配置,在这种情况下,用户设备重传将变为基于调度的传输,因此可以避免碰撞,但相应地需要额外的信令开销。
另外,可以考虑使用随机方法确定重传资源,但也不能任由用户设备纯随机地选择重传资源,因为这样会使基站无法分辨初传和重传,从而无法进行HARQ合并。
图8是随机选择资源对数据进行重传的一示意图,如图8所示,对于数据包#2的初传,如果发生在数据包#1的初传和数据包#1的一次重传之间,那么基站在盲检到数据包#2时,会分辨不出该数据包是一个新的初传数据,还是数据包#1的重传数据,因为两个数据包同属于同一个用户设备。
在本实施例中,发送重传数据的资源基于DM-RS的序列编号而伪随机地被确定。例如,发送重传数据的资源由重传资源的个数以及DM-RS相关值确定,所述DM-RS相关值随传输次数而变化且初始值为初传所述传输信息的DM-RS的序列编号。
例如,重传资源可以由下式决定:
Ik=Yk mod R
Yk+1=f(Yk)
其中,Ik表示重传资源编号;R表示可用于重传的资源总数;可以定义递归函数Yk+1=f(Yk),其中f(.)表示某种函数变换;k表示第k次重传;Y1=m0,其中m0表示初传所使用的DM-RS ID。
因此用于第1次重传的资源由Y1决定,第2次重传的资源由Y2决定,以此类推。递归函数的作用在于使每次重传的Yk值都发生变化,从而为重传资源的选择带来随机性。
例如,可以重用决定PDCCH搜索空间的递归形式,即Yk+1=(A·Yk)mod D,其中D=max{DMRS ID}+1,即DM-RS ID的最大值加1,A值可以有多种选择。
由此,通过伪随机方法来决定用户设备的重传资源,能够在一定程度上将碰撞均匀化,缓解和避免这种集中和持续碰撞的情况发生。
图9是本发明实施例的进行数据重传的一示例图,图10是本发明实施例的进行数据重传的另一示例图,给出了利用伪随机方法确定重传时刻的示例。如图9和10所示,假设需要在R子帧或时隙内完成重传,尽管用户设备1和用户设备2的初传发生碰撞,但由于两个用户设备的Ik取值不同(Y1 1mod R≠Y1 2mod R,上标表示用户设备,下标表示重传次数),用户设备1和用户设备2在第一次重传时不再发生碰撞。
图11是本发明实施例的进行数据重传的另一示例图,图12是本发明实施例的进行数据重传的另一示例图。如图11和12所示,假设需要在R子帧或时隙内完成重传,两个用户设备的初传碰撞,如果Y1 1mod R=Y1 2mod R,则第一次重传仍然发生碰撞,但是如果Y2 1mod R≠Y2 2mod R,则能够在第二次重传时避免碰撞。
图13是本发明实施例的进行数据重传的另一示例图,以重传资源是时频资源块为例进行示意性说明。此时R表示时频资源块总数,假设重传需要在R个时频资源 块范围之内完成。如图13所示,利用Yk可以使用户设备的初传以及各次重传在不同的时频资源块间发生跳变,从而避免用户设备间持续碰撞情况发生。
在本实施例中,当用户设备判断自身处于漏检状态时,用户设备将重复发送上一次传输版本(依据用户设备所处重传次数不同,有时是初传版本,有时是上一次传输对应的冗余版本)数据,而不进行新的冗余版本传输。这是因为漏检使得基站没有保留用户设备的前次传输信息,基站即使接收到用户设备发送的新的冗余版本,也无法利用增量冗余进行软合并,因此用户设备没有必要进行新的冗余版本重传。这实际上属于为grant-free传输新定义的用户行为(UE behavior),与LTE不同。在LTE中,当用户设备发起数据传输后,不会有接收不到ACK和NACK的情况出现。
以上主要针对用户设备仅有一个HARQ进程(HARQ process)进行说明。当用户设备开启了多个HARQ process时,可能存在位于不同HARQ process中的重传或初传发生物理资源碰撞,例如HARQ process 1的重传与HARQ process 2的重传发生碰撞。
可以通过如下方法之一或组合来避免这一问题:
1.定义用户行为。当用户设备需要同时进行HARQ process#j的初传和HARQ process#k的重传时,用户设备优先进行HARQ process#k的重传;即重传的优先级高于初传。
2.将HARQ process ID用于重传资源的决定,即使用DM-RS ID和HARQ process ID共同决定重传,即令Y1=m0+HARQID,从而可以避免属于同一用户设备的不同HARQ process的重传发生碰撞。
3.通过基站调度。当基站判断某一用户设备在某一HARQ process尚未结束时,又发起了新的HARQ process传输,在DM-RS序列资源数目允许的条件下,为用户设备的不同HARQ process配置不同的DM-RS序列,这样可以允许不同HARQ process的重传使用不同的DM-RS序列,从而使基站能够分别实现解调。
由上述实施例可知,发送端的标识信息被显式地或隐式地承载在传输信息中;并且使用发送端的标识信息或者DM-RS的序列信息,向发送端反馈包含ACK/NACK的控制信息。由此,在进行免调度传输时,接收端即使不能正确地获得发送端传输的数据,也能基于所述发送端的标识信息或者解调参考信号的序列信息为发送端反馈NACK信息,能够在免调度传输的情况下实现高效的数据重传。
实施例3
本发明实施例提供一种信息传输方法,在实施例1和2的基础上对本发明进行进一步说明。但本实施例不局限于实施例1的DM-RS选择,也适用于用户设备随机选择DM-RS或基站为用户设备配置DM-RS情形。本实施例中,传输信息包括数据以及由所述数据生成的第一校验码、发送端的标识信息以及由所述标识信息生成的第二校验码,与实施例1和2相同的内容不再赘述。
图14是本发明实施例的传输信息的一示意图,如图14所示,UE ID作为数据有效载荷的一部分由用户设备传输给基站,相比实施例2,本实施例在用户设备传输数据中增加了一个与UE ID相对应的CRC,该CRC用来对UE ID进行校验。当该CRC正确时,说明UE ID得到了正确恢复;当该CRC校验错误时,说明UE ID错误。对于UE ID和其CRC的传输,可以使用与数据部分不同的信道编码和/或物理资源,即UE ID的传输与数据的传输相互独立。
在本实施例中,根据UE ID是否正确接收以及数据是否正确接收,可以定义以下三种状态:MISS、ACK和NACK。
MISS:MISS状态包含以下三种情况:
1.基站漏检用户设备,即基站没有检测到该用户设备存在,该情况的出现通常是由于基站没有检测到DM-RS和/或扩频序列/码字/交织图案,此时基站不向用户设备反馈任何ACK/NACK信息。
2.UE ID接收错误但数据接收正确。该情况的出现是由于UE ID CRC校验错误,但数据CRC校验正确。
3.UE ID接收错误同时数据接收错误。该情况的出现是由于UE ID CRC校验错误,同时数据CRC校验错误。
由于在上述情况1时基站缺少初传信息,在情况2或3时基站未知UE ID,这些情况均导致基站无法进行HARQ合并,所以可以将这三种情况统一归为一个状态,即MISS状态。
ACK:UE ID CRC和数据CRC均校验正确,此时基站已获得UE ID。
NACK:UE ID CRC校验正确,但数据CRC校验错误,此时基站已获得UE ID,但该用户设备的数据接收发生错误。
下面分别从基站侧和用户设备侧对本实施例进行说明。注意这里仅对与实施例2不同之处进行说明,与实施例2相同之处不再赘述。
在本实施例中,基站可以使用PDCCH信令反馈ACK/NACK给用户设备。
当基站处于MISS状态时,基站不向用户设备反馈任何ACK/NACK信息,即不发送PDCCH;当处于ACK状态时,基站通过PDCCH向用户设备反馈ACK信息,通知用户设备数据已正确接收,该PDCCH的CRC可以使用UE ID进行加扰;当处于NACK状态时,基站使用PDCCH信令向用户设备反馈NACK并调度重传,该PDCCH的CRC可以使用UE ID进行加扰。
在本实施例中,用户设备将在发起传输后的某一固定时刻检测是否存在携带ACK/NACK的PDCCH,即检测是否存在使用了UE ID加扰的PDCCH。用户设备通过对PDCCH的检测,可以获知当前处于MISS、ACK、NACK中的哪一种状态。
当用户设备检测到使用自身UE ID加扰的PDCCH时,用户设备会根据PDCCH中的相应字段(如NDI)获知当前处于ACK还是NACK状态;当用户设备发起过数据传输,但是没有检测到使用自身UE ID加扰的PDCCH时,用户设备会将当前状态判为MISS。
用户设备可以根据不同状态采取不同的后续行为,例如:
1.当收到ACK后,用户设备可以等待新数据传输;
2.当接收到NACK后,用户设备可以进行带有冗余版本的重传。
对于用户设备重传资源的确定,由于UE ID在基站侧已知,因此可以使用UE ID来确定重传资源,
例如,令初值Y1=UE ID,其他确定重传资源的步骤与实施例2相同。例如可以使用Yk+1=(A·Yk)mod D,其中D=max{UE ID}+1,UE ID的最大值加1,A值可以有多种选择。如果UE ID有16比特,那么可以重用PDCCH在定义搜索空间时使用的参数D=65537,A=39827。
3.当用户设备判断自身处于MISS状态时,用户设备将重复发送上一次传输版本数据(依据用户设备所处重传次数不同,有时是初传版本,有时是上一次传输对应的冗余版本)。
由上述实施例可知,发送端的标识信息被显式地或隐式地承载在传输信息中;并 且使用发送端的标识信息或者DM-RS的序列信息,向发送端反馈包含ACK/NACK的控制信息。由此,在进行免调度传输时,接收端即使不能正确地获得发送端传输的数据,也能基于所述发送端的标识信息或者解调参考信号的序列信息为发送端反馈NACK信息,能够在免调度传输的情况下实现高效的数据重传。
实施例4
本发明实施例提供一种信息传输方法,在实施例1至3的基础上对本发明进行进一步说明。本实施例中,传输信息包括数据以及由所述数据生成的校验码,其中所述校验码被所述发送端的标识信息进行了加扰,与实施例1至3相同的内容不再赘述。
图15是本发明实施例的传输信息的一示意图,如图15所示,UE ID不在数据区域传输,而是使用UE ID对CRC进行加扰。本实施例不需要在数据中显式地承载UE ID,但也能够使基站恢复出UE ID。
在本实施例中,基站盲检DM-RS,对于每一个检测到的DM-RS进行等效信道估计,将该结果用于对与该DM-RS相关联的扩频序列/码字/交织图案的解调,最后使用所有可能的UE ID对CRC进行解扰,能够使CRC成功解扰的UE ID即对应当前进行数据传输的用户设备。
本实施例对于UE ID的解扰需要穷举尝试所有可能选择当前DM-RS的UE ID,但这并不意味着会增加过多的复杂度。例如对于实施例1的DM-RS序列选择方法,每个DM-RS序列对应U/M个可能的UE ID,意味着只有小部分UE ID有使用该DM-RS的可能,因此CRC解扰尝试仅需在这一部分UE ID间进行即可,例如用户设备数是DM-RS序列数的10倍,即U/M=10,那么每个DM-RS仅需尝试10个UE ID的解扰匹配,而不是所有UE ID。
由于没有UE ID与CRC匹配情况,即为CRC错误,需基站通知用户设备执行重传。对于ACK、NACK的通知,可以使用DM-RS ID对PDCCH的CRC进行加扰,具体可以与实施例2相同。对于重传资源的确定,也使用DM-RS ID,具体可以与实施例2相同。
由上述实施例可知,发送端的标识信息被显式地或隐式地承载在传输信息中;并且使用发送端的标识信息或者DM-RS的序列信息,向发送端反馈包含ACK/NACK的控制信息。由此,在进行免调度传输时,接收端即使不能正确地获得发送端传输的 数据,也能基于所述发送端的标识信息或者解调参考信号的序列信息为发送端反馈NACK信息,能够在免调度传输的情况下实现高效的数据重传。
实施例5
本发明实施例提供一种信息传输方法,在实施例1至4的基础上对本发明进行进一步说明。但本实施例不局限于实施例1的DM-RS选择,也适用于用户设备随机选择DM-RS或基站为用户设备配置DM-RS情形。本实施例中,传输信息包括数据以及由所述数据生成的校验码,其中DM-RS与所述发送端的标识信息的对应关系被预先确定,与实施例1至4相同的内容不再赘述。
图16是本发明实施例的传输信息的一示意图,如图16所示,由于DM-RS与UE ID的对应关系被预先确定,基站可以通过盲检确定所使用的DM-RS,进而通过DM-RS和UE ID的对应关系来获知UE ID。因此,UE ID不需要在有效数据载荷中传输,即无需在上行数据传输中携带UE ID信息。
在本实施例中,DM-RS可以和UE ID一一对应,例如基站可以通过信令配置用户设备所使用的DM-RS,在某些情况下(如DM-RS序列数目多于用户设备数)能够使得不同UE ID的用户设备所使用的DM-RS序列不同。
由于基站可以通过盲检DM-RS序列来确定和获得UE ID,因此可以使用类似于实施例3的方法进行ACK/NACK反馈以及确定重传资源。
即当基站漏检DM-RS时,基站不使用PDCCH信令向用户设备发送ACK/NACK;当基站检测到CRC错误时,基站使用UE ID对PDCCH的CRC进行加扰,并使用该PDCCH传输NACK;当基站检测到CRC正确时,基站使用UE ID对PDCCH的CRC进行加扰,并使用该PDCCH传输ACK。
当用户设备发起了数据传输,但是没有接收到任何ACK/NACK指示时,用户设备将重传上一次传输版本,而不是传输新的冗余版本。可以使用UE ID对重传资源进行确定,具体方法同实施例3。
另外,由于DM-RS和UE ID存在对应关系,也可以使用DM-RS ID来加扰PDCCH的CRC,因而可以使用类似于实施例2的方法进行ACK/NACK反馈以及确定重传资源。
即当基站漏检DM-RS时,基站不使用PDCCH信令向用户设备发送ACK/NACK; 当基站检测到CRC错误时,基站使用DM-RS ID对PDCCH的CRC进行加扰,并使用该PDCCH传输NACK;当基站检测到CRC正确时,基站使用DM-RS ID对PDCCH的CRC进行加扰,并使用该PDCCH传输ACK。
当用户设备发起了数据传输,但是没有接收到任何ACK/NACK指示时,用户设备将重传上一次传输版本,而不是传输新的冗余版本。可以使用DM-RS ID对重传资源进行确定,具体方法同实施例3。
由上述实施例可知,发送端的标识信息被显式地或隐式地承载在传输信息中;并且使用发送端的标识信息或者DM-RS的序列信息,向发送端反馈包含ACK/NACK的控制信息。由此,在进行免调度传输时,接收端即使不能正确地获得发送端传输的数据,也能基于所述发送端的标识信息或者解调参考信号的序列信息为发送端反馈NACK信息,能够在免调度传输的情况下实现高效的数据重传。
实施例6
本发明实施例提供一种信息传输方法,在实施例1至5的基础上对本发明进行进一步说明。与实施例2至5使用PDCCH不同,本实施例使用PHICH进行ACK/NACK的反馈,与实施例1至5相同的内容不再赘述。
在本实施例中,在grant-free传输中使用PHICH,需要对逻辑资源寻址方式进行修改。这里利用DM-RS ID和/或UE ID来确定PHICH的逻辑资源。
例如,PHICH的逻辑资源位置由DM-RS ID m确定,即逻辑资源由下式决定:
Figure PCTCN2016104437-appb-000002
Figure PCTCN2016104437-appb-000003
或者,PHICH的逻辑资源位置由UE ID决定,即使用下式决定PHICH资源逻辑位置:
Figure PCTCN2016104437-appb-000004
Figure PCTCN2016104437-appb-000005
其中,上述符号的定义可以遵循LTE标准36.213。
Figure PCTCN2016104437-appb-000006
表示PHICH组编号,
Figure PCTCN2016104437-appb-000007
表示PHICH组内的正交序列编号,
Figure PCTCN2016104437-appb-000008
表示扩频因子大小。
由于PHICH仅携带ACK/NACK信息,因此重传通常使用非自适应重传,即重传所使用的调制方式、DM-RS序列、扩频序列/码字/交织图案等与初传相同。
另外,由于用户设备对PHCIH的检测仅输出二值判断结果,即ACK或NACK,而无法获知漏检MISS状态,因此用户设备将无法区分NACK和MISS,在这种情况下,可以让用户设备始终重传初传版本。
实施例7
本发明实施例提供一种信息传输方法,在实施例1至6的基础上对本发明进行进一步说明。
对于实施例2以及实施例3中的重传资源确定方式Ik=Yk mod R,Yk+1=f(Yk),Y1在初传时得到确定,并继续用于决定后续重传的资源位置。如果令Y1始终取同一值,例如取值为UE ID,则意味着对于某个用户设备,其第k次重传所使用的资源始终相同。
本实施例给出进一步增强重传随机化的方法。
Yk值在第k-1次传输时得到确定(这里定义第0次传输为初传,以此类推,第k次传输即对应第k次重传),对于第k次重传,其重传资源位置由Yk决定,这里对Yk的定义进行扩展,将Yk重定义为Yk,t,表示第k-1次传输发生在t时刻,新加入时间维度。
例如,定义Zt=g(Zt-1),其中t=0,1,2,...,T,t表示进行数据传输的时刻,例如LTE中的子帧;T用来限制t的取值范围,表示t能够取到的最大值,例如LTE中最大的子帧编号为9;函数g(.)表示某种递归函数变换;
例如,可以重用决定PDCCH搜索空间的递归形式,即Zt=(A·Zt-1)mod D,其中D=max{UE ID}+1或D=max{DMRS ID}+1,A值可以有多种选择。Z-1为初值,可以等于UE ID或者DM-RS ID。
对于发生在t时刻的第k-1次传输,计算Yk,t=Zt,之后使用Ik=Yk,t mod R来确定第k次传输的资源。这里第k次传输所使用的资源仍然由前一次传输(即第k-1次传输)所对应的Yk,t决定。
与之前实施例不同之处在于,本实施例的Yk,t随着t时刻不同而发生变化,而在前面实施例2和实施例3中,一旦初值Y0确定,后续Yk也相应确定。因此,本实施例能够提供更大的随机选择空间。
图17是本发明实施例的进行数据重传的一示例图,如图17所示,本实施例能够增强重传的随机化。
实施例8
本发明实施例提供一种信息传输方法,应用于发送端,与实施例1至7相同的内容不再赘述。
图18是本发明实施例的信息传输方法的一示意图,如图18所示,所述信息传输方法包括:
步骤1801,使用免调度方式向接收端发送包含数据的传输信息;其中所述发送端的标识信息被显式地或隐式地承载在所述传输信息中;
步骤1802,接收所述接收端使用发送端的标识信息或者用于解调所述传输信息的解调参考信号的序列信息反馈的包括确认或非确认的控制信息。
在本实施例中,所述传输信息可以包括所述数据、所述发送端的标识信息以及由所述数据和所述标识信息生成的校验码;或者,所述传输信息可以包括所述数据以及由所述数据生成的第一校验码、所述发送端的标识信息以及由所述标识信息生成的第二校验码;或者,所述传输信息可以包括所述数据以及由所述数据生成的校验码,其中所述校验码被所述发送端的标识信息进行了加扰;或者,所述传输信息可以包括所述数据以及由所述数据生成的校验码,其中所述解调参考信号与所述发送端的标识信息的对应关系被预先确定。
在本实施例中,所述DM-RS的范围被预先配置;并且所述DM-RS的序列编号基于所述发送端的标识信息而伪随机地被确定。
例如,所述DM-RS由序列个数以及用户相关值确定,所述用户相关值随传输次数而变化且初始值为所述发送端的标识信息。
在本实施例中,在接收到包括NACK的控制信息的情况下、或者在没有接收到包括ACK/NACK的控制信息的情况下,还可以向所述接收端重传数据;其中发送所述重传数据的资源基于DM-RS的序列编号或者所述发送端的标识信息而伪随机地被确 定。
例如,发送重传数据的资源由重传资源的个数以及DM-RS相关值确定,所述DM-RS相关值随传输次数而变化且初始值为初传所述传输信息的DM-RS的序列编号;
或者,发送所述重传数据的资源由重传资源的个数以及用户相关值确定,所述用户相关值随传输次数而变化且初始值为所述发送端的标识信息。
由上述实施例可知,发送端的标识信息被显式地或隐式地承载在传输信息中;并且使用发送端的标识信息或者DM-RS的序列信息,向发送端反馈包含ACK/NACK的控制信息。由此,在进行免调度传输时,接收端即使不能正确地获得发送端传输的数据,也能基于所述发送端的标识信息或者解调参考信号的序列信息为发送端反馈NACK信息,能够在免调度传输的情况下实现高效的数据重传。
实施例9
本发明实施例提供一种信息传输装置,配置于接收端,本发明实施例对应于实施例1至7的信息传输方法,相同的内容不再赘述。
图19是本发明实施例的信息传输装置的一示意图,如图19所示,信息传输装置1900包括:
数据接收单元1901,其接收发送端使用免调度方式发送的包含数据的传输信息;其中所述发送端的标识信息被显式地或隐式地承载在所述传输信息中;
数据获取单元1902,其对所述传输信息进行解调和校验,并确定是否正确地获得所述发送端的标识信息以及所述传输信息中包含的所述数据;
信息反馈单元1903,其使用所述发送端的标识信息或者用于解调所述传输信息的解调参考信号的序列信息,向所述发送端反馈包含确认或非确认的控制信息。
在一个实施方式中,所述传输信息可以包括所述数据、所述发送端的标识信息以及由所述数据和所述标识信息生成的校验码;
数据获取单元1902还可以用于:通过盲检获得所述解调参考信号的序列信息,并根据所述解调参考信号对所述传输信息进行解调,以及对所述校验码进行校验而获得所述发送端的标识信息以及所述数据。
在另一个实施方式中,所述传输信息可以包括所述数据以及由所述数据生成的第 一校验码、所述发送端的标识信息以及由所述标识信息生成的第二校验码;
数据获取单元1902还可以用于:通过盲检获得所述解调参考信号的序列信息,并根据所述解调参考信号对所述传输信息进行解调,并对所述第一校验码进行校验而获得所述数据以及对所述第二校验码进行校验而获得所述发送端的标识信息。
在另一个实施方式中,所述传输信息可以包括所述数据以及由所述数据生成的校验码,其中所述校验码被所述发送端的标识信息进行了加扰;
数据获取单元1902还可以用于:通过盲检获得所述解调参考信号的序列信息,并根据所述解调参考信号对所述传输信息进行解调,以及确定所述发送端的标识信息的范围并使用所述范围内的所有标识信息对所述校验码进行解扰及校验,根据校验结果确定所述发送端的标识信息并获得所述数据。
在另一个实施方式中,所述传输信息包括所述数据以及由所述数据生成的校验码,其中所述解调参考信号与所述发送端的标识信息的对应关系被预先确定;
数据获取单元1902还可以用于:通过盲检获得所述解调参考信号的序列信息,并根据所述解调参考信号确定所述发送端的标识信息并对所述传输信息进行解调,以及对所述校验码进行校验而获得所述数据。
在本实施例中,所述解调参考信号的范围被预先配置;并且所述解调参考信号的序列编号基于所述发送端的标识信息而伪随机地被确定。
其中,所述传输信息的解调参考信号可以由所述解调参考信号的序列个数以及用户相关值确定,所述用户相关值随传输次数而变化且初始值为所述发送端的标识信息。
在本实施例中,数据获取单元1902还可以用于:根据所述解调参考信号确定扩频序列、码字和交织图样中的一种或多种,并根据所述扩频序列、码字和交织图样中的一种或多种对所述传输信息进行变换。
在本实施例中,数据接收单元1901还可以用于:接收所述发送端发送的重传数据,其中发送所述重传数据的资源基于所述解调参考信号的序列编号或者所述发送端的标识信息而伪随机地被确定。
其中,发送所述重传数据的资源可以由重传资源的个数以及解调参考信号相关值确定,所述解调参考信号相关值随传输次数而变化且初始值为初传所述传输信息的解调参考信号的序列编号。
或者,发送所述重传数据的资源可以由重传资源的个数以及用户相关值确定,所述用户相关值随传输次数而变化且初始值为所述发送端的标识信息。
在本实施例中,所述包含确认或非确认的控制信息可以承载于PDCCH;信息反馈单元1903可以使用所述发送端的标识信息或者所述传输信息的解调参考信号的序列编号对所述PDCCH的校验信息进行加扰。
在本实施例中,所述包含确认或非确认的控制信息还可以承载于PHICH;信息反馈单元1903还可以使用所述解调参考信号的序列编号或者所述发送端的标识信息确定所述PHICH的逻辑资源位置。
由上述实施例可知,发送端的标识信息被显式地或隐式地承载在传输信息中;并且使用发送端的标识信息或者DM-RS的序列信息,向发送端反馈包含ACK/NACK的控制信息。由此,在进行免调度传输时,接收端即使不能正确地获得发送端传输的数据,也能基于所述发送端的标识信息或者解调参考信号的序列信息为发送端反馈NACK信息,能够在免调度传输的情况下实现高效的数据重传。
实施例10
本发明实施例提供一种信息传输装置,配置于发送端,本发明实施例对应于实施例8的信息传输方法,相同的内容不再赘述。
图20是本发明实施例的信息传输装置的一示意图,如图20所示,信息传输装置2000包括:
数据发送单元2001,其使用免调度方式向接收端发送包含数据的传输信息;其中所述发送端的标识信息被显式地或隐式地承载在所述传输信息中;
信息接收单元2002,其接收所述接收端反馈的包括确认或非确认的控制信息;其中使用所述发送端的标识信息或者用于发送所述传输信息的解调参考信号的序列信息进行反馈。
在本实施例中,所述传输信息可以包括所述数据、所述发送端的标识信息以及由所述数据和所述标识信息生成的校验码;或者,所述传输信息可以包括所述数据以及由所述数据生成的第一校验码、所述发送端的标识信息以及由所述标识信息生成的第二校验码;或者,所述传输信息可以包括所述数据以及由所述数据生成的校验码,其中所述校验码被所述发送端的标识信息进行了加扰;或者,所述传输信息可以包括所 述数据以及由所述数据生成的校验码,其中所述解调参考信号与所述发送端的标识信息的对应关系被预先确定。
在本实施例中,所述解调参考信号的范围被预先配置;并且所述解调参考信号的序列编号基于所述发送端的标识信息而伪随机地被确定。
其中,所述传输信息的解调参考信号可以由所述解调参考信号的序列个数以及用户相关值确定,所述用户相关值随传输次数而变化且初始值为所述发送端的标识信息。
在本实施例中,数据发送单元2001还可以用于:在接收到包括非确认的控制信息的情况下重传指定的冗余版本在既没有接收到包括确认又没有接收到包括非确认的控制信息的情况下,向所述接收端发送与前次传输相同的数据;其中发送所述重传数据的资源基于所述解调参考信号的序列编号或者所述发送端的标识信息而伪随机地被确定。
例如,发送所述重传数据的资源可以由重传资源的个数以及解调参考信号相关值确定,所述解调参考信号相关值随传输次数而变化且初始值为初传所述传输信息的解调参考信号的序列编号;
或者,发送所述重传数据的资源可以由重传资源的个数以及用户相关值确定,所述用户相关值随传输次数而变化且初始值为所述发送端的标识信息。
由上述实施例可知,发送端的标识信息被显式地或隐式地承载在传输信息中;并且使用发送端的标识信息或者DM-RS的序列信息,向发送端反馈包含ACK/NACK的控制信息。由此,在进行免调度传输时,接收端即使不能正确地获得发送端传输的数据,也能基于所述发送端的标识信息或者解调参考信号的序列信息为发送端反馈NACK信息,能够在免调度传输的情况下实现高效的数据重传。
实施例11
本发明实施例还提供一种通信***,与实施例1至10相同的内容不再赘述。
在本实施例中,通信***可以包括:
发送端,其配置有如实施例10所述的信息传输装置2000;
接收端,其配置有如实施例9所述的信息传输装置1900。
图21是本发明实施例的通信***的一示意图,示意性说明了以发送端为用户设 备以及以接收端为基站的情况,如图21所示,通信***2100可以包括基站2101和用户设备2102。其中,基站2101配置有如实施例9所述的信息传输装置1900,用户设备2102配置有如实施例10所述的信息传输装置2000。
本发明实施例还提供一种接收端,例如可以是基站,但本发明不限于此,还可以是其他的网络设备。以下以基站为例进行说明。
图22是本发明实施例的基站的构成示意图。如图22所示,基站2200可以包括:中央处理器(CPU)200和存储器210;存储器210耦合到中央处理器200。其中该存储器210可存储各种数据;此外还存储信息处理的程序,并且在中央处理器200的控制下执行该程序。
其中,中央处理器200可以被配置为实现信息传输装置1900的功能。
例如,中央处理器200可以被配置为进行如下的控制:接收用户设备使用免调度方式发送的包含数据的传输信息;其中所述用户设备的标识信息被显式地或隐式地承载在所述传输信息中;对所述传输信息进行解调和校验,并确定是否正确地获得所述用户设备的标识信息以及所述传输信息中包含的所述数据;使用所述用户设备的标识信息或者用于解调所述传输信息的解调参考信号的序列信息,向所述用户设备反馈包含确认或非确认的控制信息。
此外,如图22所示,基站2200还可以包括:收发机220和天线230等;其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,基站2200也并不是必须要包括图22中所示的所有部件;此外,基站2200还可以包括图22中没有示出的部件,可以参考现有技术。
本发明实施例还提供一种发送端,例如可以是用户设备,但本发明不限于此,还可以是其他的网络设备。以下以用户设备为例进行说明。
图23是本发明实施例的用户设备的示意图。如图23所示,该用户设备2300可以包括中央处理器100和存储器140;存储器140耦合到中央处理器100。值得注意的是,该图是示例性的;还可以使用其他类型的结构,来补充或代替该结构,以实现电信功能或其他功能。
其中,中央处理器100可以被配置为实现信息传输装置2000的功能。
例如,中央处理器100可以被配置为进行如下的控制:使用免调度方式向基站发送包含数据的传输信息;其中所述用户设备的标识信息被显式地或隐式地承载在所述 传输信息中;接收所述基站使用所述用户设备的标识信息或者用于解调所述传输信息的解调参考信号的序列信息反馈的包括确认或非确认的控制信息。
如图23所示,该用户设备2300还可以包括:通信模块110、输入单元120、显示器160、电源170。其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,用户设备2300也并不是必须要包括图23中所示的所有部件,上述部件并不是必需的;此外,用户设备2300还可以包括图23中没有示出的部件,可以参考现有技术。
本发明实施例还提供一种计算机可读程序,其中当在接收端中或基站执行所述程序时,所述程序使得所述接收端或基站执行实施例1至7所述的信息传输方法。
本发明实施例还提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得接收端或基站执行实施例1至7所述的信息传输方法。
本发明实施例还提供一种计算机可读程序,其中当在发送端或用户设备中执行所述程序时,所述程序使得所述发送端或用户设备执行实施例8所述的信息传输方法。
本发明实施例还提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得发送端或用户设备执行实施例8所述的信息传输方法。
本发明以上的装置和方法可以由硬件实现,也可以由硬件结合软件实现。本发明涉及这样的计算机可读程序,当该程序被逻辑部件所执行时,能够使该逻辑部件实现上文所述的装置或构成部件,或使该逻辑部件实现上文所述的各种方法或步骤。本发明还涉及用于存储以上程序的存储介质,如硬盘、磁盘、光盘、DVD、flash存储器等。
结合本发明实施例描述的方法/装置可直接体现为硬件、由处理器执行的软件模块或二者组合。例如,图19中所示的功能框图中的一个或多个和/或功能框图的一个或多个组合(例如,数据接收单元、数据获取单元和信息反馈单元等),既可以对应于计算机程序流程的各个软件模块,亦可以对应于各个硬件模块。这些软件模块,可以分别对应于图4所示的各个步骤。这些硬件模块例如可利用现场可编程门阵列(FPGA)将这些软件模块固化而实现。
软件模块可以位于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动磁盘、CD-ROM或者本领域已知的任何其它形式的存储介质。可以将一种存储介质耦接至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息;或者该存储介质可以是处理器的组成部分。处理器 和存储介质可以位于ASIC中。该软件模块可以存储在移动终端的存储器中,也可以存储在可***移动终端的存储卡中。例如,若设备(如移动终端)采用的是较大容量的MEGA-SIM卡或者大容量的闪存装置,则该软件模块可存储在该MEGA-SIM卡或者大容量的闪存装置中。
针对附图中描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,可以实现为用于执行本申请所描述功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件或者其任意适当组合。针对附图描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,还可以实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、与DSP通信结合的一个或多个微处理器或者任何其它这种配置。
以上结合具体的实施方式对本发明进行了描述,但本领域技术人员应该清楚,这些描述都是示例性的,并不是对本发明保护范围的限制。本领域技术人员可以根据本发明的精神和原理对本发明做出各种变型和修改,这些变型和修改也在本发明的范围内。
关于包括以上实施例的实施方式,还公开下述的附记:
附记1、一种数据重传装置,配置于发送端,所述数据重传装置包括:
数据发送单元,其使用免调度方式向接收端发送包含数据的传输信息;以及
数据重传单元,其在接收到包括非确认的控制信息的情况下重传指定的冗余版本;在既没有接收到包括确认又没有接收到包括非确认的控制信息的情况下,向所述接收端发送与前次传输相同的数据。
附记2、根据附记1所述的数据重传装置,其中,发送所述重传数据的资源基于解调参考信号的序列编号而伪随机地被确定。
附记3、根据附记2所述的数据重传装置,其中,发送所述重传数据的资源由重传资源的个数以及解调参考信号相关值确定,所述解调参考信号相关值随传输次数而变化且初始值为初传所述传输信息的解调参考信号的序列编号。
附记4、根据附记1所述的数据重传装置,其中,发送所述重传数据的资源基于所述发送端的标识信息而伪随机地被确定。
附记5、根据附记4所述的数据重传装置,其中,发送所述重传数据的资源由重 传资源的个数以及用户相关值确定,所述用户相关值随传输次数而变化且初始值为所述发送端的标识信息。
附记6、根据附记1所述的数据重传装置,其中,发送所述重传数据的资源基于解调参考信号的序列编号以及传输时刻而伪随机地被确定。
附记7、根据附记1所述的数据重传装置,其中,发送所述重传数据的资源基于所述发送端的标识信息以及传输时刻而伪随机地被确定。
附记8、一种数据重传装置,配置于接收端,所述数据重传装置包括:
数据接收单元,其接收发送端使用免调度方式发送的包含数据的传输信息;以及
重传接收单元,其接收所述发送端在接收到包括非确认的控制信息的情况下、或者在没有接收到包括确认或者非确认的控制信息的情况下发送的重传数据。
附记9、根据附记8所述的数据重传装置,其中,发送所述重传数据的资源基于解调参考信号的序列编号而伪随机地被确定。
附记10、根据附记9所述的数据重传装置,其中,发送所述重传数据的资源由重传资源的个数以及解调参考信号相关值确定,所述解调参考信号相关值随传输次数而变化且初始值为初传所述传输信息的解调参考信号的序列编号。
附记11、根据附记8所述的数据重传装置,其中,发送所述重传数据的资源基于所述发送端的标识信息而伪随机地被确定。
附记12、根据附记11所述的数据重传装置,其中,发送所述重传数据的资源由重传资源的个数以及用户相关值确定,所述用户相关值随传输次数而变化且初始值为所述发送端的标识信息。
附记13、根据附记8所述的数据重传装置,其中,发送所述重传数据的资源基于解调参考信号的序列编号以及传输时刻而伪随机地被确定。
附记14、根据附记8所述的数据重传装置,其中,发送所述重传数据的资源基于所述发送端的标识信息以及传输时刻而伪随机地被确定。

Claims (20)

  1. 一种信息传输装置,配置于接收端,所述信息传输装置包括:
    数据接收单元,其接收发送端使用免调度方式发送的包含数据的传输信息;其中所述发送端的标识信息被显式地或隐式地承载在所述传输信息中;
    数据获取单元,其对所述传输信息进行解调和校验,并确定是否正确地获得所述发送端的标识信息以及所述传输信息中包含的所述数据;
    信息反馈单元,其使用所述发送端的标识信息或者用于解调所述传输信息的解调参考信号的序列信息,向所述发送端反馈包含确认或非确认的控制信息。
  2. 根据权利要求1所述的信息传输装置,其中,所述传输信息包括所述数据、所述发送端的标识信息以及由所述数据和所述标识信息生成的校验码;
    所述数据获取单元还用于通过盲检获得所述解调参考信号的序列信息,并根据所述解调参考信号对所述传输信息进行解调,以及对所述校验码进行校验而获得所述发送端的标识信息以及所述数据。
  3. 根据权利要求1所述的信息传输装置,其中,所述传输信息包括所述数据以及由所述数据生成的第一校验码、所述发送端的标识信息以及由所述标识信息生成的第二校验码;
    所述数据获取单元还用于通过盲检获得所述解调参考信号的序列信息,并根据所述解调参考信号对所述传输信息进行解调,并对所述第一校验码进行校验而获得所述数据以及对所述第二校验码进行校验而获得所述发送端的标识信息。
  4. 根据权利要求1所述的信息传输装置,其中,所述传输信息包括所述数据以及由所述数据生成的校验码,其中所述校验码被所述发送端的标识信息进行了加扰;
    所述数据获取单元还用于通过盲检获得所述解调参考信号的序列信息,并根据所述解调参考信号对所述传输信息进行解调,以及确定所述发送端的标识信息的范围并使用所述范围内的所有标识信息对所述校验码进行解扰及校验,根据校验结果确定所述发送端的标识信息并获得所述数据。
  5. 根据权利要求1所述的信息传输装置,其中,所述传输信息包括所述数据以及由所述数据生成的校验码,其中所述解调参考信号与所述发送端的标识信息的对应关系被预先确定;
    所述数据获取单元还用于通过盲检获得所述解调参考信号的序列信息,并根据所述解调参考信号确定所述发送端的标识信息并对所述传输信息进行解调,以及对所述校验码进行校验而获得所述数据。
  6. 根据权利要求1所述的信息传输装置,其中,所述解调参考信号的范围被预先配置;并且所述解调参考信号的序列编号基于所述发送端的标识信息而伪随机地被确定。
  7. 根据权利要求6所述的信息传输装置,其中,所述传输信息的解调参考信号由所述解调参考信号的序列个数以及用户相关值确定,所述用户相关值随传输次数而变化且初始值为所述发送端的标识信息。
  8. 根据权利要求6所述的信息传输装置,其中,所述数据获取单元还用于根据所述解调参考信号确定扩频序列、码字和交织图样中的一种或多种,并根据所述扩频序列、码字和交织图样中的一种或多种对所述传输信息进行变换。
  9. 根据权利要求1所述的信息传输装置,其中,所述数据接收单元还用于接收所述发送端发送的重传数据,其中发送所述重传数据的资源基于所述解调参考信号的序列编号或者所述发送端的标识信息而伪随机地被确定。
  10. 根据权利要求9所述的信息传输装置,其中,发送所述重传数据的资源由重传资源的个数以及解调参考信号相关值确定,所述解调参考信号相关值随传输次数而变化且初始值为初传所述传输信息的解调参考信号的序列编号。
  11. 根据权利要求9所述的信息传输装置,其中,发送所述重传数据的资源由重传资源的个数以及用户相关值确定,所述用户相关值随传输次数而变化且初始值为所述发送端的标识信息。
  12. 根据权利要求1所述的信息传输装置,其中,所述包含确认或非确认的控制信息承载于物理下行控制信道;
    所述信息反馈单元使用所述发送端的标识信息或者所述传输信息的解调参考信号的序列编号对所述物理下行控制信道的校验信息进行加扰。
  13. 根据权利要求1所述的信息传输装置,其中,所述包含确认或非确认的控制信息承载于物理混合自动重传请求指示信道;
    所述信息反馈单元使用所述解调参考信号的序列编号或者所述发送端的标识信息确定所述物理混合自动重传请求指示信道的逻辑资源位置。
  14. 一种信息传输装置,配置于发送端,所述信息传输装置包括:
    数据发送单元,其使用免调度方式向接收端发送包含数据的传输信息;其中所述发送端的标识信息被显式地或隐式地承载在所述传输信息中;
    信息接收单元,其接收所述接收端使用所述发送端的标识信息或者用于解调所述传输信息的解调参考信号的序列信息反馈的包括确认或非确认的控制信息。
  15. 根据权利要求14所述的信息传输装置,其中,所述传输信息包括所述数据、所述发送端的标识信息以及由所述数据和所述标识信息生成的校验码;
    或者,所述传输信息包括所述数据以及由所述数据生成的第一校验码、所述发送端的标识信息以及由所述标识信息生成的第二校验码;
    或者,所述传输信息包括所述数据以及由所述数据生成的校验码,其中所述校验码被所述发送端的标识信息进行了加扰;
    或者,所述传输信息包括所述数据以及由所述数据生成的校验码,其中所述解调参考信号与所述发送端的标识信息的对应关系被预先确定。
  16. 根据权利要求14所述的信息传输装置,其中,所述解调参考信号的范围被预先配置;并且所述解调参考信号的序列编号基于所述发送端的标识信息而伪随机地被确定。
  17. 根据权利要求16所述的信息传输装置,其中,所述传输信息的解调参考信号由所述解调参考信号的序列个数以及用户相关值确定,所述用户相关值随传输次数而变化且初始值为所述发送端的标识信息。
  18. 根据权利要求14所述的信息传输装置,其中,所述数据发送单元还用于:在接收到包括非确认的控制信息的情况下重传指定的冗余版本;在既没有接收到包括确认又没有接收到包括非确认的控制信息的情况下,向所述接收端发送与前次传输相同的数据;
    其中发送所述重传数据的资源基于所述解调参考信号的序列编号或者所述发送端的标识信息而伪随机地被确定。
  19. 根据权利要求18所述的信息传输装置,其中,发送所述重传数据的资源由重传资源的个数以及解调参考信号相关值确定,所述解调参考信号相关值随传输次数而变化且初始值为初传所述传输信息的解调参考信号的序列编号;
    或者,发送所述重传数据的资源由重传资源的个数以及用户相关值确定,所述用 户相关值随传输次数而变化且初始值为所述发送端的标识信息。
  20. 一种通信***,所述通信***包括:
    发送端,其包括如权利要求14所述的信息传输装置;以及
    接收端,其包括如权利要求1所述的信息传输装置。
PCT/CN2016/104437 2016-11-03 2016-11-03 信息传输装置、方法以及通信*** WO2018081969A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680089561.0A CN109792722A (zh) 2016-11-03 2016-11-03 信息传输装置、方法以及通信***
PCT/CN2016/104437 WO2018081969A1 (zh) 2016-11-03 2016-11-03 信息传输装置、方法以及通信***
US16/384,259 US20190246424A1 (en) 2016-11-03 2019-04-15 Information Transmission Apparatus and Method and Communication System

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/104437 WO2018081969A1 (zh) 2016-11-03 2016-11-03 信息传输装置、方法以及通信***

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/384,259 Continuation US20190246424A1 (en) 2016-11-03 2019-04-15 Information Transmission Apparatus and Method and Communication System

Publications (1)

Publication Number Publication Date
WO2018081969A1 true WO2018081969A1 (zh) 2018-05-11

Family

ID=62076216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/104437 WO2018081969A1 (zh) 2016-11-03 2016-11-03 信息传输装置、方法以及通信***

Country Status (3)

Country Link
US (1) US20190246424A1 (zh)
CN (1) CN109792722A (zh)
WO (1) WO2018081969A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107666374A (zh) * 2016-07-27 2018-02-06 普天信息技术有限公司 一种sPUCCH的HARQ‑ACK信息的传输方法
CN108923890A (zh) * 2018-07-17 2018-11-30 北京北方烽火科技有限公司 一种数据传输方法、用户设备、基站及***
WO2020222613A1 (ko) * 2019-04-30 2020-11-05 엘지전자 주식회사 무선 통신 시스템에서 신호 송수신 방법
CN114145029A (zh) * 2020-07-03 2022-03-04 华为技术有限公司 一种通信方法及装置
CN115150033A (zh) * 2019-08-15 2022-10-04 瑞典爱立信有限公司 侧链路通信的确认反馈

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108259153B (zh) * 2018-01-12 2022-04-19 中兴通讯股份有限公司 一种数据传输方法及装置
CN113366896B (zh) * 2019-02-03 2022-11-04 华为技术有限公司 参考信号接收与发送方法、装置及***
WO2021090409A1 (ja) * 2019-11-06 2021-05-14 株式会社Nttドコモ 端末及び無線通信方法
CN113448747B (zh) * 2021-05-14 2024-04-26 中科可控信息产业有限公司 数据传输方法、装置、计算机设备和存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101547077A (zh) * 2008-03-24 2009-09-30 鼎桥通信技术有限公司 一种传输ack/nack信息的方法
CN102045722A (zh) * 2009-10-16 2011-05-04 大唐移动通信设备有限公司 一种进行物理层调整的方法、***和装置
CN102160318A (zh) * 2008-07-18 2011-08-17 捷讯研究有限公司 混合自动重传请求进程映射规则
CN104838713A (zh) * 2012-12-14 2015-08-12 华为技术有限公司 用于小业务传输的***和方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101547077A (zh) * 2008-03-24 2009-09-30 鼎桥通信技术有限公司 一种传输ack/nack信息的方法
CN102160318A (zh) * 2008-07-18 2011-08-17 捷讯研究有限公司 混合自动重传请求进程映射规则
CN102045722A (zh) * 2009-10-16 2011-05-04 大唐移动通信设备有限公司 一种进行物理层调整的方法、***和装置
CN104838713A (zh) * 2012-12-14 2015-08-12 华为技术有限公司 用于小业务传输的***和方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107666374A (zh) * 2016-07-27 2018-02-06 普天信息技术有限公司 一种sPUCCH的HARQ‑ACK信息的传输方法
CN108923890A (zh) * 2018-07-17 2018-11-30 北京北方烽火科技有限公司 一种数据传输方法、用户设备、基站及***
CN108923890B (zh) * 2018-07-17 2021-06-29 武汉虹信科技发展有限责任公司 一种数据传输方法、用户设备、基站及***
WO2020222613A1 (ko) * 2019-04-30 2020-11-05 엘지전자 주식회사 무선 통신 시스템에서 신호 송수신 방법
CN115150033A (zh) * 2019-08-15 2022-10-04 瑞典爱立信有限公司 侧链路通信的确认反馈
CN114145029A (zh) * 2020-07-03 2022-03-04 华为技术有限公司 一种通信方法及装置
CN114145029B (zh) * 2020-07-03 2024-04-12 华为技术有限公司 一种通信方法及装置

Also Published As

Publication number Publication date
US20190246424A1 (en) 2019-08-08
CN109792722A (zh) 2019-05-21

Similar Documents

Publication Publication Date Title
WO2018081969A1 (zh) 信息传输装置、方法以及通信***
US10609726B2 (en) Downlink and uplink transmissions for high reliability low latency communications systems
TWI696360B (zh) 反饋ack/nack信息的方法、終端設備和網絡側設備
US20170026940A1 (en) Control Messages in Wireless Communication
CN107872298B (zh) 免授权传输的方法、网络设备和终端设备
JP2014003627A (ja) 通信システムにおける方法及び装置
WO2016060598A1 (en) Harq feedback reporting based on mirrored information copied from resource-assignment message
CN107113114B (zh) 无线通信***中的方法和节点
EP3589050A1 (en) Method and apparatus for receiving and sending downlink control information
CN113169828B (zh) 蜂窝无线通信网络中的上行链路混合自动重传请求
WO2021087980A1 (en) Method and apparatus for determining one shot harq-ack codebook
WO2017050587A1 (en) Reduction of crc field in compact dci message on m-pdcch for low cost mtc devices
US10659198B2 (en) Puncture bundling of data for a first service in a transmission of a second service
US20190132106A1 (en) Uplink transmission method and apparatus
US8582506B2 (en) Method of transmitting and receiving HARQ feedback, and mobile station and base station apparatus using the same method
EP3211814B1 (en) Device and method of handling communication with another device
JP2020503776A (ja) 複数のキャリア上でデータを送信するための方法、端末装置、およびネットワーク装置
WO2018098675A1 (zh) 用于数据重传的装置、方法以及通信***
US10693614B2 (en) Data transmission method, terminal device, and network device
WO2019029213A1 (zh) 传输参数获取、数据传输方法和装置
US10555233B2 (en) Device and method of handling transmissions
WO2018201468A1 (zh) 反馈信息的发送和接收方法、装置以及通信***
CN114826521A (zh) 控制信息发送方法、接收方法、装置及存储介质
CN114614950A (zh) 混合自动重传请求反馈信息的发送方法、接收方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16920467

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16920467

Country of ref document: EP

Kind code of ref document: A1