WO2018079835A1 - Spectacle lens evaluation method, spectacle lens design method, spectacle lens manufacturing method, and spectacle lens evaluation device - Google Patents

Spectacle lens evaluation method, spectacle lens design method, spectacle lens manufacturing method, and spectacle lens evaluation device Download PDF

Info

Publication number
WO2018079835A1
WO2018079835A1 PCT/JP2017/039344 JP2017039344W WO2018079835A1 WO 2018079835 A1 WO2018079835 A1 WO 2018079835A1 JP 2017039344 W JP2017039344 W JP 2017039344W WO 2018079835 A1 WO2018079835 A1 WO 2018079835A1
Authority
WO
WIPO (PCT)
Prior art keywords
spectacle lens
adjustment
convergence
evaluation method
visual acuity
Prior art date
Application number
PCT/JP2017/039344
Other languages
French (fr)
Japanese (ja)
Inventor
成鎮 趙
Original Assignee
株式会社ニコン・エシロール
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン・エシロール filed Critical 株式会社ニコン・エシロール
Publication of WO2018079835A1 publication Critical patent/WO2018079835A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C13/00Assembling; Repairing; Cleaning
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]

Definitions

  • the present invention relates to a spectacle lens evaluation method, a spectacle lens design method, a spectacle lens manufacturing method, and a spectacle lens evaluation apparatus.
  • the spectacle lens evaluation method calculates the visual acuity for an object in a predetermined distance and a predetermined direction when viewed through the spectacle lens based on the convergence adjustment, Evaluating the spectacle lens based on the calculated visual acuity.
  • the spectacle lens design method designs the spectacle lens using the visual acuity calculated by the spectacle lens evaluation method of the first aspect or a parameter calculated from the visual acuity as an evaluation function.
  • a method for manufacturing a spectacle lens includes: designing the spectacle lens by the design method of the second aspect; manufacturing the spectacle lens designed by the design method; including.
  • the spectacle lens evaluation device calculates a visual acuity for an object in a predetermined distance and a predetermined direction when viewed through the spectacle lens based on the convergence adjustment;
  • An evaluation unit that evaluates the spectacle lens based on the calculated visual acuity.
  • FIG. 1 It is a conceptual diagram for demonstrating the evaluation method of the spectacle lens of one Embodiment. It is a conceptual diagram for demonstrating a congestion stimulus and a congestion response. It is a figure which shows the structure of the spectacle lens manufacturing system in the evaluation method of the spectacle lens of one Embodiment. It is a flowchart which shows the flow of the manufacturing method of the spectacle lens containing the evaluation method of the spectacle lens of one Embodiment. It is a flowchart which shows the process of the spectacle lens evaluation part in the evaluation method of the spectacle lens of one Embodiment. It is a figure which shows an example of the calculation model in the evaluation method of the spectacle lens of one Embodiment. FIG.
  • FIG. 7A is a graph showing a change in accommodation response for each age without near vision correction
  • FIG. 7B shows a change in accommodation response for each age with near vision correction. It is a graph. It is a figure which shows an example of the calculation model in the evaluation method of the spectacle lens of one Embodiment.
  • the spectacle lens evaluation method of this embodiment calculates an adjustment response in binocular vision based on the adjustment (Accommodation) and convergence (Vergence) of the spectacle lens wearer, and determines the visual acuity based on the adjustment response.
  • a diopter hereinafter referred to as “D”
  • reference numerals for example, 9L, 9R, etc.
  • reference numerals in the drawings including symbols such as L, R, etc. corresponding to the left and right are numbers with L and R omitted (for example, 9) and are limited to the left and right. Indicates no reference.
  • FIG. 1 is a schematic diagram for explaining a spectacle lens evaluation method of the present embodiment.
  • the left eye 9L and the right eye 9R of the wearer are trying to focus on the point of interest 6 of the object 5 through the spectacle lenses 7L and 7R, respectively.
  • the distance from the point of interest 6 to the eyeball 9 is referred to as an adjustment stimulus AS.
  • the distance of the adjustment stimulus AS or the like may be defined by the refractive power of the eye necessary for focusing on the object.
  • the distance is expressed in units of diopters.
  • the regulatory stimulus AS is defined by the distance between the attention point 6 and the cornea front surface of the eyeball 9.
  • the attention point 6 and the rotation center point or retina of the eyeball 9 or a specific reference point of the eye optical system may be defined by the distance to etc.
  • the positional relationship between the eyeball 9, the spectacle lens 7, the object 5 and the like may be determined by three-dimensional coordinates.
  • the center (center) of a line connecting the front cornea of the left eyeball 9L and the front cornea of the right eyeball 9R can be set as the origin of the three-dimensional coordinates.
  • the direction of the line connecting the front surfaces of the left and right corneas can be the X axis
  • the horizontal direction orthogonal to the X axis can be the Y axis
  • the direction orthogonal to the X axis and the Y axis can be the Z axis.
  • the coordinate system may be set in the same manner as described above based on a line connecting the rotation center points 99 of the left and right eyeballs 9, a line connecting the apexes of the left and right retinas, and the like. Any reference point in the coordinate system can be set as the origin.
  • the method for setting the coordinate system is not particularly limited as long as desired calculation can be realized.
  • the distance and the direction can be determined based on the set three-dimensional coordinates.
  • the wearer changes or equalizes the thicknesses of the crystalline lenses 8L and 8R to change the optical characteristics such as the focal length of the eye optical system inside the eyeball 9, thereby focusing on the attention point 6. Try to match.
  • the change due to this adjustment is schematically shown by a bidirectional arrow 92 inside the eyeball 9.
  • FIG. 1 an example of rotation due to convergence is schematically shown by a bidirectional curved arrow 91 on the front surface of the eyeball 9.
  • a stimulus that causes congestion is referred to as a congestion stimulus VS described in detail later.
  • the adjustment stimulus AS and the convergence stimulus VS cause a change in the focus position of the eye optical system and the rotation of the eyeball 9, and the wearer focuses on the gazing point 60.
  • a light beam that forms an image on the eyeball 9 from the gazing point 60 is schematically shown by a one-dot chain line.
  • the distance from the gazing point 60 to the eyeball 9 is referred to as an adjustment response AR
  • the difference in distance between the adjustment stimulus AS and the adjustment response AR is referred to as an adjustment error AE.
  • FIG. 2 is a schematic diagram for explaining the congestion stimulus VS and the congestion response VR.
  • the convergence stimulus VS includes a straight line corresponding to the direction of the line of sight before passing through the spectacle lens 7L when the left eyeball 9L completely matches the attention point 6 of the object 5 through the spectacle lens 7L, and the right eyeball.
  • 9R is represented by an angle formed by a straight line corresponding to the direction of the line of sight before passing through the spectacle lens 7R when the convergence is completely matched with the attention point 6 of the object 5 through the spectacle lens 7R. Therefore, in order to make the explanation easy to understand in FIG.
  • the convergence stimulus VS is shown as an angle between two straight lines connecting the eyeball rotation center points 99L and 99R and the point of interest 6, but in the eyeglass lenses 7L and 7R, In reality, the intersection of the straight lines corresponding to the direction of the line of sight when the convergence of the eyes to the attention point 6 completely coincides with the attention point 6 can be shifted from the attention point 6 by the prism or the like.
  • the convergence response VR includes a straight line extending in the direction of the line of sight before passing through the spectacle lens 7L of the left eye 9L and the direction of the line of sight before passing through the spectacle lens 7R of the right eye 9R when the gazing point 60 is congested. It is expressed as an angle formed by a straight line extending to Therefore, in FIG. 2, for easy understanding, a straight line connecting the eyeball rotation center point 99L of the left eye 9L and the gazing point 60 and a straight line connecting the eyeball rotation center point 99R of the right eye 9R and the gazing point 60 are formed.
  • the congestion error VE is represented by a difference between the congestion stimulus VS and the congestion response VR.
  • the vergence stimulus VS and the vergence response VR are converted into meter angle units determined by the distance or the reciprocal of the optical path length, etc., which are known to those skilled in the art, as appropriate for the convenience of calculation. Perform the calculation process in the method.
  • an index relating to congestion such as the convergence error VE is calculated by appropriately converting into a unit of meter angle.
  • the regulation response AR and the congestion response VR are determined while the regulation and the convergence are linked to the regulation stimulus AS and the congestion stimulus VS by the attention point 6 and influence each other.
  • the convergence that occurs when the adjustment stimulus is applied is the accommodation convergence, and the adjustment that occurs when the convergence stimulus is applied is the convergence adjustment.
  • the spectacle lens evaluation method of this embodiment calculates an adjustment response AR, an adjustment error AE, and the like based on a model that takes into account the mutual effects of adjustment and convergence, and calculates visual acuity based on the adjustment response AR. To do.
  • FIG. 3 shows a spectacle lens manufacturing system 100 including a spectacle lens evaluation device 10 which is a main body for executing the spectacle lens evaluation method of the present embodiment.
  • the spectacle lens manufacturing system 100 includes a spectacle lens evaluation device 10, a processing machine control device 101, and a spectacle lens processing machine 102.
  • the spectacle lens evaluation device 10 includes an input unit 11, a display unit 12, a communication unit 13, a storage unit 14, and a control unit 20.
  • the control unit 20 of the spectacle lens evaluation apparatus 10 includes a spectacle lens design unit 21 and a spectacle lens evaluation unit 22.
  • the spectacle lens evaluation unit 22 includes a stimulus calculation unit 23, an adjustment response calculation unit 24, and a visual acuity calculation unit 25.
  • the arrows in the figure indicate the flow of spectacle lens design data.
  • the input unit 11 is composed of an input device such as a keyboard, and is data relating to adjustment / congestion such as age of the wearer, prescription data, frame shape, congestion adjustment and adjustment congestion necessary for processing in the control unit 20 described later.
  • the input of input data etc. is received.
  • the input unit 11 outputs input data to the control unit 20 and also outputs and stores the input data in a storage unit 14 described later. Note that a configuration in which the communication unit 13 described later receives input data and outputs the input data to the control unit 20 can also be adopted.
  • the display unit 12 is configured by a device capable of displaying an image such as a liquid crystal monitor, and various numerical values such as input prescription data, evaluation results of the spectacle lens 7, and design data of the spectacle lens 7 based on the evaluation result. Etc. are displayed.
  • the communication unit 13 is configured by a communication device capable of communicating via the Internet or the like, and transmits the evaluation result of the spectacle lens 7 obtained by the processing of the control unit 20, the design data of the spectacle lens 7 based on the evaluation result, Send and receive necessary data as appropriate.
  • the storage unit 14 is configured by a non-volatile storage medium such as a memory or a hard disk.
  • the storage unit 14 exchanges data with the control unit 20, and the input data received by the input unit 11 and the spectacle lens 7 obtained by the processing of the control unit 20.
  • Various data such as the evaluation result and design data of the spectacle lens 7 based on the evaluation result are stored.
  • the control unit 20 is configured by a CPU or the like, functions as a main body for controlling the spectacle lens evaluation device 10, and executes a program mounted in a non-volatile memory arranged in the storage unit 14 or the control unit 20. Thus, various processing including spectacle lens evaluation processing is performed.
  • Each function of the control unit 20 may be distributed and arranged in a plurality of devices, and may be configured to perform processing as a single system as a whole while communicating information between the devices.
  • the spectacle lens design unit 21 designs the spectacle lens 7 based on prescription data input from the input unit 11 and / or an evaluation result of the spectacle lens evaluation unit 22 described later. A part or all of the design of the spectacle lens 7 may be performed in a design apparatus outside the spectacle lens evaluation apparatus 10. Moreover, the kind of spectacle lens 7 is not specifically limited, It can set to spectacle lenses of arbitrary types, such as a progressive-power lens.
  • the spectacle lens evaluation unit 22 calculates an adjustment response AR or the like when the wearer views the object 5 in a predetermined distance and a predetermined direction through the spectacle lens 7, and calculates visual acuity based on the adjustment response AR. .
  • the stimulus calculation unit 23 calculates the adjustment stimulus AS and the convergence stimulus VS by the object 5.
  • the adjustment response calculation unit 24 calculates an adjustment response AR, an adjustment error AE, a congestion response VR, a congestion error VE, and the like based on a model that takes into account the mutual effects of the wearer's adjustment and congestion.
  • the visual acuity calculation unit 25 calculates visual acuity when the wearer views an object in a predetermined distance and a predetermined direction through the spectacle lens 7. The calculation process of the spectacle lens evaluation unit 22 will be described in detail below.
  • the processing machine control device 101 controls the spectacle lens processing machine 102 based on the design data of the spectacle lens 7 transmitted from the spectacle lens evaluation device 10.
  • the eyeglass lens processing machine 102 manufactures the eyeglass lens 7 under the control of the processing machine control device 101.
  • FIG. 4 is a flowchart showing the flow of the spectacle lens design method and spectacle lens manufacturing method including the spectacle lens evaluation method of the present embodiment.
  • the input unit 11 receives inputs such as the wearer's age, prescription data and frame shape of the eyeglass lens 7, and data related to adjustment / congestion.
  • the prescription data includes the spherical power, astigmatism power, and astigmatic axis of the prescribed spectacle lens 7, the interpupillary distance of the wearer, and the like. If the prescribed spectacle lens is a progressive power lens, the prescription data further includes addition power and the like. .
  • the input prescription data is output to the spectacle lens design unit 21 of the control unit 20.
  • step S1001 ends, the process proceeds to step S1003.
  • the spectacle lens design unit 21 provisionally designs the spectacle lens 7 based on the input prescription data, frame shape, and the like.
  • the spectacle lens design unit 21 determines the shape and refractive index of the spectacle lens 7, the refractive index, the frequency distribution on the object side surface and the eyeball side surface, and the like based on the spherical power, astigmatism power and astigmatic axis of the prescription data, the interpupillary distance of the wearer, and the like. Determine the point aberration distribution.
  • step S1003 ends, the process proceeds to step S1005.
  • step S1005 the spectacle lens 7 provisionally designed in step S1003 is evaluated by visual acuity based on the wearer's adjustment and convergence. Step S1005 will be described later based on the flowchart of FIG. When step S1005 ends, the process proceeds to step S1007.
  • step S1007 the control unit 20 determines whether or not the evaluation of the temporarily designed spectacle lens 7 is equal to or higher than a predetermined reference.
  • the control unit 20 incorporates the visual acuity calculated in step S1005 into a function (evaluation function) for evaluating the spectacle lens in the process of optimizing the spectacle lens, and uses this evaluation function to evaluate and design the spectacle lens. Do.
  • the control unit 20 makes a positive determination in step S1007 and proceeds to step S1009.
  • the control unit 20 makes a negative determination in step S1007 and returns to step S1003 to perform redesign.
  • the predetermined condition is, for example, a value of visual acuity for a distance and / or direction that a wearer often sees daily and an average value of the visual acuity of 0.8 or 1.0 or more, Set as appropriate.
  • a determination as to whether or not the wearer or the salesperson of the eyeglass lens store will redesign is input, and according to the determination
  • the controller 20 may determine whether to redesign.
  • step S1009 the spectacle lens design unit 21 sets the temporarily designed spectacle lens 7 as a design-completed product or performs fine final adjustment as appropriate to complete the design of the spectacle lens 7, and the spectacle lens processing machine 102 The designed spectacle lens 7 is manufactured.
  • FIG. 5 is a flowchart showing the process flow of step S1005 in the flowchart of FIG.
  • step S2001 the stimulus calculation unit 23 calculates the position of the temporarily designed spectacle lens 7 when the wearer wears the spectacle lens 7.
  • the stimulus calculation unit 23 uses the general or statistical average data based on a general difference in the shape of the eye part depending on the age and race of the wearer, and the eyeball 9 and the spectacle lens of the wearer. 7 is set, and a relative three-dimensional positional relationship between the spectacle lens 7 and the eyeball 9 of the wearer is determined.
  • step S2003 the shape data regarding the wearer's eyeball 9 and its periphery are measured and input to the spectacle lens evaluation apparatus 10, the stimulus calculation unit 23 uses the shape data to compare the spectacle lens 7 and the wearer's eyeball 9 relative to each other. A typical three-dimensional positional relationship may be determined.
  • step S2003 the stimulus calculation unit 23 calculates an adjustment stimulus AS when the wearer views an object in a predetermined distance and a predetermined direction.
  • the stimulus calculation unit 23 calculates the position on the lens surface of the binocular spectacle lens 7 through which the line of sight passes when the wearer views an object in a predetermined direction at a predetermined distance.
  • the line-of-sight passing position on the lens may be calculated for the time being under simplified conditions such as not considering the adjustment error AE.
  • the stimulus calculation unit 23 calculates the adjustment stimulus AS as a distance to the object, calculates the optical path to the object 5 from the refractive power of the lens at the passing position of the line of sight, and appropriately selects the adjustment stimulus AS from the optical path. It can be corrected.
  • the stimulus calculation unit 23 calculates the convergence stimulus VS from the inter-pupil distance in the optical path and prescription data.
  • the stimulus calculation unit 23 sets the adjustment stimulus AS by taking a value such as an arithmetic average of the adjustment stimulus corresponding to each distance.
  • step S2003 ends, the process proceeds to step S2005.
  • the stimulus calculation unit 23 may take a weighted average of the adjustment stimuli AS corresponding to each distance.
  • the stimulus calculation unit 23 changes the weight on the left and right according to the horizontal position of the object 5, that is, the position in the direction connecting both eyes, or the angle between the position of the object 5 and the straight line connecting the eyeball and the front direction of the eyeball.
  • the weighted average may be taken.
  • the stimulus calculation unit 23 can be set, for example, such that the weight value corresponding to the right eye increases and the weight value corresponding to the left eye decreases as the object 5 moves to the right eye side. Further, the stimulus calculation unit 23 can add a higher weight value to the adjustment stimulus AS on the dominant eye side than on the non-dominant side.
  • step S2005 the adjustment response calculation unit 22 calculates an adjustment response AR using a feedback model based on the optical characteristics of the portion of the spectacle lens 7 through which the line of sight passes and the data relating to the adjustment / congestion of the wearer.
  • the adjustment response calculation unit 22 calculates the adjustment response AR based on a nonlinear static model of the visual system.
  • a nonlinear static model of the visual system For details of nonlinear static models, see the well-known literature ("Quantitative Analysis of the Accommodative Convergence to Accommodation Ratio: Linear and Nonlinear Static Models '' IEEE TRANSACITONS ON BIOMEDICAL ENGINEERING, 306-316, Vol.44, No.4, 1997. Refer to).
  • FIG. 6 is a conceptual diagram for explaining the nonlinear static model.
  • the feedback circuit diagram 200 of the nonlinear static model includes an adjustment-side feedback circuit (left part in FIG. 6) and a congestion-side feedback circuit (right part in FIG. 6).
  • the adjustment-side feedback circuit determines the difference between the input adjustment stimulus AS and the fed back adjustment response AR (corresponding to the adjustment error AE), the adjustment-side threshold operator 35a, the adjustment-side control gain 32a, and the adjustment tension 36a. And calculation using the input 37va from the congestion side, and the result is fed back as an adjustment response AR.
  • the congestion-side feedback circuit calculates a difference between the input congestion stimulus VS and the fed back congestion response VR (corresponding to the congestion error VE), a congestion-side threshold operator 35v, a congestion-side control gain 32v, and tension congestion.
  • the calculation using 36v and the input 37av from the adjusting side is performed, and the result is fed back as the congestion response VR.
  • the adjustment feedback circuit and the convergence feedback circuit are adjusted to each other by the congestion adjustment 38va and the adjustment congestion 38av, and the adjustment response AR and the congestion response VR taking into consideration the adjustment and the congestion are calculated.
  • the convergence adjustment operator 33va multiplies the output of the convergence side control gain 32v by a parameter proportional to the convergence adjustment 38va and outputs the result to the adjustment side.
  • the adjustability congestion operator 33av multiplies the output of the adjustment side control gain 32a by a parameter proportional to the adjustability congestion 38av and outputs the result to the congestion side.
  • the adjustment-side threshold operator 35a When the control stimulus AS is input, the difference between the control stimulus AS and the control response AR is obtained, and the control error AE is output.
  • the adjustment-side threshold operator 35a outputs 0 when the magnitude of the adjustment error AE is smaller than the threshold value AT, and in other cases, the adjustment-side threshold operator 35a has a value, for example, in a monotonically increasing relationship according to the magnitude of the adjustment error AE. Is output.
  • the threshold value AT is determined based on the depth of focus of the eye. Hereinafter, it is assumed that the adjustment-side threshold operator 35a outputs AE-AT when AE> AT and AE + AT when AE ⁇ AT, with the threshold value AT being a positive value.
  • the adjustment-side control gain 32a is a gain with respect to the adjustment error AE, and increases the output of the adjustment-side threshold operator 35a to a predetermined several times to several tens of times and outputs it.
  • the output of the adjustment side control gain 32a is obtained by adding the input 37va from the convergence side and the adjustment tension 36a and returning the calculation result as an adjustment response AR to the input on the adjustment side.
  • the adjustment tension 36a (hereinafter also referred to as TA) corresponds to an adjustment amount when there is no visual stimulus.
  • the congestion-side threshold operator 35v outputs 0 when the magnitude of the congestion error VE is smaller than the threshold VT, and otherwise, for example, a value in a monotonically increasing relationship according to the magnitude of the congestion error VE. Is output.
  • the threshold value VT is determined based on the fusion limit value. In the following, it is assumed that the threshold value VT is a positive value, and the congestion-side threshold operator 35v outputs VE ⁇ VT when VE> VT, and VE + VT when VE ⁇ VT.
  • the congestion side control gain 32v is a gain with respect to the congestion error, and increases the output of the congestion side threshold operator 35v to a predetermined several tens to several hundreds of times and outputs it.
  • the output of the congestion side control gain 32v is obtained by adding the input 37av from the adjustment side and the tension congestion 36v, and returning the calculation result to the congestion side input as a congestion response VR.
  • the tension congestion 36v (hereinafter also referred to as TV) corresponds to the amount of congestion when there is no visual stimulus.
  • the adjustment error AE at this time is expressed by the following equation (1).
  • the adjustment-side control gain 32a is AG
  • the convergence-side control gain 32v is VG
  • the convergence adjustment 38va is AC / A.
  • the symbol “ ⁇ ” is based on the fact that the adjustment error AE is classified depending on whether the adjustment side threshold operator 35a is on the plus side or the minus side.
  • the congestion response VE in the equation (1) is expressed by the following equation (2). ...
  • the adjustability congestion 38av is CA / C.
  • the symbol “ ⁇ ” is classified according to whether the congestion error VE is positive or negative of the convergence threshold operator 35v.
  • the adjustment error AE and the convergence error VE are obtained by appropriately dividing the simultaneous equations of the above equations (1) and (2) into cases.
  • a known value based on an actual measurement value or age of a spectacle lens wearer can be used.
  • FIG. 7 is a graph showing the relationship between the regulatory stimulus AS (horizontal axis) and the regulatory response AR (vertical axis).
  • the adjustment stimulus AS on the horizontal axis corresponds to the actual distance to the object
  • the solid line indicates the case where the adjustment stimulus AS and the adjustment response AR match.
  • FIG. 7A shows a case where near vision correction is not performed. As the age of the subject increases to 40 years old, 50 years old, and 60 years old, the difference between the regulatory stimulus AS and the regulatory response AR becomes larger. This indicates that the object cannot be focused.
  • FIG. 7B shows a case where near vision correction of 2.00 D is performed, and the refractive power of the lens is added to the value on the vertical axis. It can be confirmed that the distance between the control stimulus AS and the control response AR is reduced by the near vision correction, and the easy-to-see distance is changed.
  • step S2005 is ended, and the process proceeds to step S2007.
  • the stimulus calculation unit 23 calculates the position where the line of sight passes through the spectacle lens 7 of the wearer when viewing the target object again, and the adjustment response AR again. Etc., and may be optimized recursively.
  • the visual acuity calculation unit 25 calculates visual acuity when viewing the target object 5 at a predetermined position by the ray tracing method using the spectacle lens model and the eyeball model based on the calculated adjustment response AR. For example, the visual acuity calculation unit 25 calculates the point image intensity on the retina from one point of the visual acuity calculation pattern (eg, Landolt ring or striped pattern) at the predetermined position from the adjustment response AR, the spectacle lens model, and the eyeball model. The distribution is calculated by ray tracing. Then, convolution integration between the point image intensity distribution and the pattern for visual acuity calculation is performed to obtain a retinal image.
  • the visual acuity calculation unit 25 calculates visual acuity when viewing the target object 5 at a predetermined position by the ray tracing method using the spectacle lens model and the eyeball model based on the calculated adjustment response AR. For example, the visual acuity calculation unit 25 calculates the point image intensity on the retina from one point of the visual a
  • the visual acuity calculation unit 25 compares the contrast of the obtained retinal image with a known contrast sensitivity to determine whether it can be identified by the size of the pattern, and calculates visual acuity from the determination result. Since the point image intensity distribution on the retina changes depending on the value of the adjustment response AR, it is possible to calculate the visual acuity in consideration of the adjustment power during binocular vision.
  • step S2007 ends, the process proceeds to step S2009.
  • step S2009 if the visual acuity calculation unit 25 has calculated visual acuity when looking at an object in all desired distances and desired directions, an affirmative determination is made in step S2009 and the process proceeds to step S2011. In other cases, the visual acuity calculation unit 25 makes a negative determination in step S2009 and returns to step S2003.
  • step S2011 the visual acuity calculation unit 25 calculates a parameter for evaluating the temporarily designed spectacle lens 7 based on the calculated visual acuity.
  • the visual acuity calculation unit 25 uses, for example, the area on the lens surface of the spectacle lens 7 in which the visual acuity is in a certain range, among the visual acuities projected and distributed at positions where the line of sight on the spectacle lens passes, as an evaluation parameter. can do.
  • step S2011 ends, the process proceeds to step S1007.
  • the following operational effects can be obtained.
  • the visual acuity with respect to the object 5 in a predetermined distance and in a predetermined direction when viewed through the spectacle lens 7 is changed by adjustment due to convergence and change in convergence by adjustment. Based on and. Thereby, taking into consideration adjustment and convergence, an accurate visual acuity value when the wearer wears the spectacle lens 7 can be obtained.
  • the adjustment change due to the convergence uses the convergence adjustment 38va, and the change in the convergence due to the adjustment uses the adjustment convergence 38av.
  • the value of visual acuity can be efficiently obtained based on the model 200 using the correlation between the adjustment and the convergence.
  • the accommodation vergence 38av and the vergence adjustment 38va can use actual values of the spectacle lens 7 wearer or numerical values based on the age of the wearer. Thereby, the value of visual acuity can be obtained using the values of the adjustability convergence 38av and the convergence adjustment 38va suitable for the wearer.
  • the visual acuity is calculated based on the adjustment-side control gain 32a, the convergence-side control gain 32v, the adjustment tension 36a, or the tension convergence 36v, and the adjustment-side control gain 32a, As the convergence-side control gain 32v, the adjustment tension 36a, and the tension convergence 36v, an actual measurement value of the wearer of the spectacle lens 7 or a numerical value based on the age of the wearer is used. Thereby, the value of visual acuity can be obtained using the constants of the model used for the evaluation of the spectacle lens suitable for the wearer.
  • the spectacle lens evaluation method of the present embodiment based on the non-linear static model in which the adjustment response AR is derived based on the difference between the adjustment response AR and the adjustment stimulus AS and the convergence adjustment 38 va.
  • An adjustment response AR with respect to the object 5 in a predetermined distance and a predetermined direction when viewed through the spectacle lens 7 is calculated, and binocular visual acuity is calculated based on the calculated adjustment response AR.
  • the visual acuity with respect to the object of various distances and directions when the wearer wears the spectacle lens 7 can be calculated based on the influence on the adjustment of the convergence.
  • the congestion is based on a non-linear static model in which the congestion response VR is derived based on the difference between the congestion response VR and the congestion stimulus VS and the adjustable congestion 38av.
  • the change in the regulatory response AR due to the sexual regulation 38va is calculated.
  • the visual acuity can be accurately calculated in consideration of the influence of the adjustment on the congestion and the influence on the adjustment of the congestion.
  • the adjustment stimulus AS and the distance between the pupils of the wearer of the spectacle lens 7, the predetermined distance, the predetermined direction, and the shape and refractive index of the spectacle lens 7 The convergence stimulus VS is calculated, and the binocular visual acuity is calculated by ray tracing from the calculated adjustment response AR. Thereby, the visual acuity with respect to the object of various distances and directions can be calculated.
  • binocular visual acuity is calculated based on the position of the spectacle lens 7 when the wearer of the spectacle lens 7 wears it. Thereby, the visual acuity can be calculated more accurately based on the position where the spectacle lens 7 of the wearer is worn.
  • the adjustment response AR and the like are calculated using a nonlinear static model related to vision.
  • the adjustment response AR or the like may be calculated using a linear static model or the like other than the nonlinear static model. Thereby, it is possible to appropriately calculate the visual acuity according to the calculation amount and the characteristics of the model.
  • FIG. 8 is a feedback circuit diagram 300 of the linear static model.
  • the adjustment-side threshold operator 35a and the convergence-side threshold operator 35v are omitted. Thereby, it is not necessary to set the threshold value AT and the threshold value VT, and the amount of calculation can be reduced.
  • the same parts as those in the feedback circuit diagram 200 of the nonlinear static model in the linear static model feedback circuit diagram 300 are referred to by the same reference numerals, and the description thereof will be omitted.
  • the present invention is not limited to the contents of the above embodiment.
  • Other embodiments conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Ophthalmology & Optometry (AREA)
  • Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Eyeglasses (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

A spectacle lens evaluation method includes calculating, on the basis of convergence accommodation, visual acuity relative to an object at a prescribed distance in a prescribed direction when viewed through spectacle lenses, and evaluating spectacle lenses on the basis of the visual acuity thus calculated.

Description

眼鏡レンズの評価方法、眼鏡レンズの設計方法、眼鏡レンズの製造方法および眼鏡レンズ評価装置Spectacle lens evaluation method, spectacle lens design method, spectacle lens manufacturing method, and spectacle lens evaluation apparatus
 本発明は、眼鏡レンズの評価方法、眼鏡レンズの設計方法、眼鏡レンズの製造方法および眼鏡レンズ評価装置に関する。 The present invention relates to a spectacle lens evaluation method, a spectacle lens design method, a spectacle lens manufacturing method, and a spectacle lens evaluation apparatus.
 眼鏡レンズを装用した状態での両眼視機能を評価する評価関数を用いて眼鏡レンズを設計することが知られている(特許文献1参照)。しかしながら両眼視の評価の設計への反映にはさらなる提案があることが望ましい。 It is known to design a spectacle lens using an evaluation function for evaluating the binocular vision function with the spectacle lens worn (see Patent Document 1). However, it is desirable to have further proposals for reflecting the binocular evaluation in the design.
国際公開第2012/014810号International Publication No. 2012/014810
 本発明の第1の態様によると、眼鏡レンズの評価方法は、眼鏡レンズを通して見た場合の、所定の距離、所定の方向の対象物に対する視力を、輻輳性調節に基づいて算出することと、算出された前記視力に基づいて前記眼鏡レンズを評価することとを含む。
 本発明の第2の態様によると、眼鏡レンズの設計方法は、第1の態様の眼鏡レンズの評価方法により算出された前記視力または前記視力から算出されたパラメータを評価関数として眼鏡レンズを設計する。
 本発明の第3の態様によると、眼鏡レンズの製造方法は、第2の態様の設計方法により前記眼鏡レンズを設計することと、前記設計方法により設計された前記眼鏡レンズを製造することと、を含む。
 本発明の第4の態様によると、眼鏡レンズ評価装置は、眼鏡レンズを通して見た場合の、所定の距離、所定の方向の対象物に対する視力を、輻輳性調節に基づいて算出する算出部と、算出された前記視力に基づいて前記眼鏡レンズを評価する評価部とを備える。
According to the first aspect of the present invention, the spectacle lens evaluation method calculates the visual acuity for an object in a predetermined distance and a predetermined direction when viewed through the spectacle lens based on the convergence adjustment, Evaluating the spectacle lens based on the calculated visual acuity.
According to the second aspect of the present invention, the spectacle lens design method designs the spectacle lens using the visual acuity calculated by the spectacle lens evaluation method of the first aspect or a parameter calculated from the visual acuity as an evaluation function. .
According to a third aspect of the present invention, a method for manufacturing a spectacle lens includes: designing the spectacle lens by the design method of the second aspect; manufacturing the spectacle lens designed by the design method; including.
According to the fourth aspect of the present invention, the spectacle lens evaluation device calculates a visual acuity for an object in a predetermined distance and a predetermined direction when viewed through the spectacle lens based on the convergence adjustment; An evaluation unit that evaluates the spectacle lens based on the calculated visual acuity.
一実施形態の眼鏡レンズの評価方法を説明するための概念図である。It is a conceptual diagram for demonstrating the evaluation method of the spectacle lens of one Embodiment. 輻輳刺激と輻輳応答を説明するための概念図である。It is a conceptual diagram for demonstrating a congestion stimulus and a congestion response. 一実施形態の眼鏡レンズの評価方法における眼鏡レンズ製造システムの構成を示す図である。It is a figure which shows the structure of the spectacle lens manufacturing system in the evaluation method of the spectacle lens of one Embodiment. 一実施形態の眼鏡レンズの評価方法を含む眼鏡レンズの製造方法の流れを示すフローチャートである。It is a flowchart which shows the flow of the manufacturing method of the spectacle lens containing the evaluation method of the spectacle lens of one Embodiment. 一実施形態の眼鏡レンズの評価方法における眼鏡レンズ評価部の処理を示すフローチャートである。It is a flowchart which shows the process of the spectacle lens evaluation part in the evaluation method of the spectacle lens of one Embodiment. 一実施形態の眼鏡レンズの評価方法における計算モデルの一例を示す図である。It is a figure which shows an example of the calculation model in the evaluation method of the spectacle lens of one Embodiment. 図7(a)は近方視力矯正無しの場合の年齢ごとの調節応答の変化を示すグラフであり、図7(b)は近方視力矯正有りの場合の年齢ごとの調節応答の変化を示すグラフである。FIG. 7A is a graph showing a change in accommodation response for each age without near vision correction, and FIG. 7B shows a change in accommodation response for each age with near vision correction. It is a graph. 一実施形態の眼鏡レンズの評価方法における計算モデルの一例を示す図である。It is a figure which shows an example of the calculation model in the evaluation method of the spectacle lens of one Embodiment.
 以下では、適宜図面を参照しながら、一実施形態の眼鏡レンズの評価方法、眼鏡レンズの設計方法、眼鏡レンズの製造方法等について説明する。本実施形態の眼鏡レンズの評価方法は、眼鏡レンズの装用者の調節(Accommodation)および輻輳(Vergence)に基づいて、両眼視における調節応答等を算出し、当該調節応答に基づいて視力を決定するものである。本実施形態では、特に指定の無い限り、屈折力の単位としてディオプタ(以下、「D」と記載)を用いる。また、左、右に対応するL,R等の記号を含んだ図面中の参照符号(例えば、9L,9R等)については、L,Rを省略した番号(例えば、9)で左右の限定の無い参照を示す。 Hereinafter, a spectacle lens evaluation method, a spectacle lens design method, a spectacle lens manufacturing method, and the like according to an embodiment will be described with reference to the drawings as appropriate. The spectacle lens evaluation method of this embodiment calculates an adjustment response in binocular vision based on the adjustment (Accommodation) and convergence (Vergence) of the spectacle lens wearer, and determines the visual acuity based on the adjustment response. To do. In the present embodiment, a diopter (hereinafter referred to as “D”) is used as a unit of refractive power unless otherwise specified. Further, reference numerals (for example, 9L, 9R, etc.) in the drawings including symbols such as L, R, etc. corresponding to the left and right are numbers with L and R omitted (for example, 9) and are limited to the left and right. Indicates no reference.
 図1は、本実施形態の眼鏡レンズの評価方法を説明するための概略図である。図1の概略図において、装用者の左眼9Lと右眼9Rは、それぞれ眼鏡レンズ7L,7Rを通して、対象物5の注目点6に焦点を合わせようとしている。このとき、注目点6と眼球9までの距離を、調節刺激ASと呼ぶ。ここで、眼鏡レンズ7の屈折力を考慮し、対象に対して焦点を合わせるために必要な眼の屈折力で調節刺激AS等の距離を定義してもよい。本実施形態では特に言及の無い限り、距離は単位をディオプタとして表現する。
 なお、図1では、調節刺激ASを注目点6と眼球9の角膜前面との距離で定義したが、注目点6と、眼球9の回旋中心点もしくは網膜、または眼光学系の特定の基準点等との距離で定義してもよい。また、計算処理のためのモデルの構築にあたっては、三次元座標により眼球9、眼鏡レンズ7、対象物5等の位置関係を決定してもよい。座標系の例として、左の眼球9Lの角膜前面と右の眼球9Rの角膜前面とを結ぶ線の中心(中央)を三次元座標の原点とすることができる。この場合、左右の角膜前面を結ぶ線の方向をX軸、X軸に直交する水平方向をY軸、X軸およびY軸に直交する方向をZ軸とすることができる。あるいは、左右の眼球9の回旋中心点99を結ぶ線や、左右の網膜の頂点を結ぶ線等に基づいて上記と同様に座標系を設定してもよい。座標系の任意の基準点を原点に設定することができる。座標系の設定の方法は、所望の計算を実現することができれば特に限定されない。設定された三次元座標に基づいて、距離や方向を決定することができる。
FIG. 1 is a schematic diagram for explaining a spectacle lens evaluation method of the present embodiment. In the schematic diagram of FIG. 1, the left eye 9L and the right eye 9R of the wearer are trying to focus on the point of interest 6 of the object 5 through the spectacle lenses 7L and 7R, respectively. At this time, the distance from the point of interest 6 to the eyeball 9 is referred to as an adjustment stimulus AS. Here, considering the refractive power of the spectacle lens 7, the distance of the adjustment stimulus AS or the like may be defined by the refractive power of the eye necessary for focusing on the object. In this embodiment, unless otherwise specified, the distance is expressed in units of diopters.
In FIG. 1, the regulatory stimulus AS is defined by the distance between the attention point 6 and the cornea front surface of the eyeball 9. However, the attention point 6 and the rotation center point or retina of the eyeball 9 or a specific reference point of the eye optical system It may be defined by the distance to etc. In constructing a model for calculation processing, the positional relationship between the eyeball 9, the spectacle lens 7, the object 5 and the like may be determined by three-dimensional coordinates. As an example of the coordinate system, the center (center) of a line connecting the front cornea of the left eyeball 9L and the front cornea of the right eyeball 9R can be set as the origin of the three-dimensional coordinates. In this case, the direction of the line connecting the front surfaces of the left and right corneas can be the X axis, the horizontal direction orthogonal to the X axis can be the Y axis, and the direction orthogonal to the X axis and the Y axis can be the Z axis. Alternatively, the coordinate system may be set in the same manner as described above based on a line connecting the rotation center points 99 of the left and right eyeballs 9, a line connecting the apexes of the left and right retinas, and the like. Any reference point in the coordinate system can be set as the origin. The method for setting the coordinate system is not particularly limited as long as desired calculation can be realized. The distance and the direction can be determined based on the set three-dimensional coordinates.
 調節刺激ASにより、装用者は水晶体8L,8Rの厚さを変化させたり等しくしたりして、眼球9の内部の眼光学系の焦点距離等の光学特性を変化させ、注目点6に焦点を合わせようとする。この調節による変化を、眼球9の内部の双方向矢印92で模式的に示した。 By the adjustment stimulus AS, the wearer changes or equalizes the thicknesses of the crystalline lenses 8L and 8R to change the optical characteristics such as the focal length of the eye optical system inside the eyeball 9, thereby focusing on the attention point 6. Try to match. The change due to this adjustment is schematically shown by a bidirectional arrow 92 inside the eyeball 9.
 一方、対象物5の注目点6に焦点を合わせるために、装用者は、左眼の眼球9Lと右眼の眼球9Rを注目点6の方向に回転させるための輻輳を行う。図1には、輻輳による回転の一例を、眼球9の前面の双方向曲線矢印91で模式的に示した。輻輳を引き起こす刺激を、後に詳述する輻輳刺激VSと呼ぶ。 On the other hand, in order to focus on the attention point 6 of the object 5, the wearer performs convergence for rotating the left eyeball 9L and the right eyeball 9R in the direction of the attention point 6. In FIG. 1, an example of rotation due to convergence is schematically shown by a bidirectional curved arrow 91 on the front surface of the eyeball 9. A stimulus that causes congestion is referred to as a congestion stimulus VS described in detail later.
 調節刺激ASと輻輳刺激VSとにより眼光学系の焦点位置の変化と眼球9の回転が引き起こされ、装用者は、注視点60に焦点を合わせることになる。図1には、注視点60から眼球9に結像する光束を一点鎖線で模式的に示した。このとき、注視点60から眼球9までの距離を調節応答ARと呼び、調節刺激ASと調節応答ARとの距離の差を調節誤差AEと呼ぶ。 The adjustment stimulus AS and the convergence stimulus VS cause a change in the focus position of the eye optical system and the rotation of the eyeball 9, and the wearer focuses on the gazing point 60. In FIG. 1, a light beam that forms an image on the eyeball 9 from the gazing point 60 is schematically shown by a one-dot chain line. At this time, the distance from the gazing point 60 to the eyeball 9 is referred to as an adjustment response AR, and the difference in distance between the adjustment stimulus AS and the adjustment response AR is referred to as an adjustment error AE.
 図2は、輻輳刺激VSと輻輳応答VRとを説明するための概略図である。輻輳刺激VSは、左の眼球9Lが眼鏡レンズ7Lを通して対象物5の注目点6に輻輳を完全に一致させたときの眼鏡レンズ7Lを通る前の視線の方向に対応する直線と、右の眼球9Rが眼鏡レンズ7Rを通して対象物5の注目点6に輻輳を完全に一致させたときの眼鏡レンズ7Rを通る前の視線の方向に対応する直線とがなす角度で表される。従って、図2では説明をわかりやすくするため輻輳刺激VSは眼球回旋中心点99L、99Rと注目点6とを結んだ二直線の間の角度として示されているが、眼鏡レンズ7L,7Rでのプリズム等により実際には、両眼が注目点6に輻輳を完全に一致させた場合の視線の方向に対応する直線の交点は注目点6からずれ得ることになる。 FIG. 2 is a schematic diagram for explaining the congestion stimulus VS and the congestion response VR. The convergence stimulus VS includes a straight line corresponding to the direction of the line of sight before passing through the spectacle lens 7L when the left eyeball 9L completely matches the attention point 6 of the object 5 through the spectacle lens 7L, and the right eyeball. 9R is represented by an angle formed by a straight line corresponding to the direction of the line of sight before passing through the spectacle lens 7R when the convergence is completely matched with the attention point 6 of the object 5 through the spectacle lens 7R. Therefore, in order to make the explanation easy to understand in FIG. 2, the convergence stimulus VS is shown as an angle between two straight lines connecting the eyeball rotation center points 99L and 99R and the point of interest 6, but in the eyeglass lenses 7L and 7R, In reality, the intersection of the straight lines corresponding to the direction of the line of sight when the convergence of the eyes to the attention point 6 completely coincides with the attention point 6 can be shifted from the attention point 6 by the prism or the like.
 輻輳応答VRは、注視点60に輻輳が合っているときの、左眼9Lの眼鏡レンズ7Lを通る前の視線の方向に伸びる直線と、右眼9Rの眼鏡レンズ7Rを通る前の視線の方向に伸びる直線がなす角度で表される。従って、図2では説明をわかりやすくするため左眼9Lの眼球回旋中心点99Lと注視点60とを結ぶ直線、および、右眼9Rの眼球回旋中心点99Rと注視点60とを結ぶ直線がなす角度として示されているが、眼鏡レンズ7L,7Rでのプリズム等により実際には、両眼の視線の方向に対応する直線の交点は注視点60からずれ得ることになる。輻輳誤差VEは、輻輳刺激VSと輻輳応答VRとの差で表される。輻輳刺激VSおよび輻輳応答VRは、計算の便宜に合わせて適宜、当業者に公知の、距離または光路長の逆数等で定まるメーター角の単位等に換算して、本実施形態の眼鏡レンズの評価方法における計算処理を行う。輻輳誤差VE等の輻輳に関する指標についても同様に、適宜メーター角の単位に換算して計算処理を行うことにする。 The convergence response VR includes a straight line extending in the direction of the line of sight before passing through the spectacle lens 7L of the left eye 9L and the direction of the line of sight before passing through the spectacle lens 7R of the right eye 9R when the gazing point 60 is congested. It is expressed as an angle formed by a straight line extending to Therefore, in FIG. 2, for easy understanding, a straight line connecting the eyeball rotation center point 99L of the left eye 9L and the gazing point 60 and a straight line connecting the eyeball rotation center point 99R of the right eye 9R and the gazing point 60 are formed. Although shown as an angle, the intersection of straight lines corresponding to the direction of the line of sight of both eyes can actually deviate from the gazing point 60 due to the prisms or the like in the spectacle lenses 7L and 7R. The congestion error VE is represented by a difference between the congestion stimulus VS and the congestion response VR. The vergence stimulus VS and the vergence response VR are converted into meter angle units determined by the distance or the reciprocal of the optical path length, etc., which are known to those skilled in the art, as appropriate for the convenience of calculation. Perform the calculation process in the method. Similarly, an index relating to congestion such as the convergence error VE is calculated by appropriately converting into a unit of meter angle.
 注目点6による調節刺激ASと輻輳刺激VSに対し、調節と輻輳は、連動し、互いに影響を及ぼしつつ調節応答ARおよび輻輳応答VRが定まる。調節刺激を与えたときに生じる輻輳が調節性輻輳であり、輻輳刺激を与えたときに生じる調節が輻輳性調節である。本実施形態の眼鏡レンズの評価方法は、調節と輻輳の相互の影響を考慮に入れたモデルに基づいて、調節応答ARや調節誤差AE等を算出し、当該調節応答ARに基づいて視力を算出する。 The regulation response AR and the congestion response VR are determined while the regulation and the convergence are linked to the regulation stimulus AS and the congestion stimulus VS by the attention point 6 and influence each other. The convergence that occurs when the adjustment stimulus is applied is the accommodation convergence, and the adjustment that occurs when the convergence stimulus is applied is the convergence adjustment. The spectacle lens evaluation method of this embodiment calculates an adjustment response AR, an adjustment error AE, and the like based on a model that takes into account the mutual effects of adjustment and convergence, and calculates visual acuity based on the adjustment response AR. To do.
 図3は、本実施形態の眼鏡レンズの評価方法を実行する主体となる眼鏡レンズ評価装置10を含む眼鏡レンズ製造システム100を示したものである。眼鏡レンズ製造システム100は、眼鏡レンズ評価装置10と、加工機制御装置101と、眼鏡レンズ加工機102とを備える。眼鏡レンズ評価装置10は、入力部11と、表示部12と、通信部13と、記憶部14と、制御部20とを備える。眼鏡レンズ評価装置10の制御部20は、眼鏡レンズ設計部21と、眼鏡レンズ評価部22とを備える。眼鏡レンズ評価部22は、刺激算出部23と、調節応答算出部24と、視力算出部25とを備える。図中の矢印は、眼鏡レンズ設計データの流れを示す。 FIG. 3 shows a spectacle lens manufacturing system 100 including a spectacle lens evaluation device 10 which is a main body for executing the spectacle lens evaluation method of the present embodiment. The spectacle lens manufacturing system 100 includes a spectacle lens evaluation device 10, a processing machine control device 101, and a spectacle lens processing machine 102. The spectacle lens evaluation device 10 includes an input unit 11, a display unit 12, a communication unit 13, a storage unit 14, and a control unit 20. The control unit 20 of the spectacle lens evaluation apparatus 10 includes a spectacle lens design unit 21 and a spectacle lens evaluation unit 22. The spectacle lens evaluation unit 22 includes a stimulus calculation unit 23, an adjustment response calculation unit 24, and a visual acuity calculation unit 25. The arrows in the figure indicate the flow of spectacle lens design data.
 入力部11は、キーボード等の入力装置により構成され、後述の制御部20での処理に必要な装用者の年齢、処方データ、フレーム形状、輻輳性調節や調節性輻輳等の調節・輻輳に関するデータ等の入力データ等の入力を受け付ける。入力部11は、入力データを制御部20に出力すると共に、後述の記憶部14に出力して記憶させたりする。
 なお、後述の通信部13が入力データを受信し、制御部20に出力する構成にすることもできる。
The input unit 11 is composed of an input device such as a keyboard, and is data relating to adjustment / congestion such as age of the wearer, prescription data, frame shape, congestion adjustment and adjustment congestion necessary for processing in the control unit 20 described later. The input of input data etc. is received. The input unit 11 outputs input data to the control unit 20 and also outputs and stores the input data in a storage unit 14 described later.
Note that a configuration in which the communication unit 13 described later receives input data and outputs the input data to the control unit 20 can also be adopted.
 表示部12は、液晶モニタ等の画像等を表示可能な装置により構成され、入力された処方データ等の各種数値や、眼鏡レンズ7の評価結果、当該評価結果に基づいた眼鏡レンズ7の設計データ等を表示する。通信部13は、インターネット等により通信可能な通信装置により構成され、制御部20の処理により得られた眼鏡レンズ7の評価結果、当該評価結果に基づいた眼鏡レンズ7の設計データを送信したり、適宜必要なデータを送受信する。 The display unit 12 is configured by a device capable of displaying an image such as a liquid crystal monitor, and various numerical values such as input prescription data, evaluation results of the spectacle lens 7, and design data of the spectacle lens 7 based on the evaluation result. Etc. are displayed. The communication unit 13 is configured by a communication device capable of communicating via the Internet or the like, and transmits the evaluation result of the spectacle lens 7 obtained by the processing of the control unit 20, the design data of the spectacle lens 7 based on the evaluation result, Send and receive necessary data as appropriate.
 記憶部14は、メモリやハードディスク等の不揮発性の記憶媒体で構成され、制御部20とデータを授受し、入力部11が受け付けた入力データや制御部20の処理により得られた眼鏡レンズ7の評価結果、当該評価結果に基づいた眼鏡レンズ7の設計データ等の各種データを記憶する。 The storage unit 14 is configured by a non-volatile storage medium such as a memory or a hard disk. The storage unit 14 exchanges data with the control unit 20, and the input data received by the input unit 11 and the spectacle lens 7 obtained by the processing of the control unit 20. Various data such as the evaluation result and design data of the spectacle lens 7 based on the evaluation result are stored.
 制御部20は、CPU等により構成され、眼鏡レンズ評価装置10を制御する動作の主体として機能し、記憶部14または制御部20に配置された不揮発性メモリに搭載されているプログラムを実行することにより、眼鏡レンズの評価処理を含む各種処理を行う。
 なお、制御部20の各機能は、複数の装置に分散されて配置され、装置間で情報を通信しながら全体で一つのシステムとして処理を行うように構成してもよい。
The control unit 20 is configured by a CPU or the like, functions as a main body for controlling the spectacle lens evaluation device 10, and executes a program mounted in a non-volatile memory arranged in the storage unit 14 or the control unit 20. Thus, various processing including spectacle lens evaluation processing is performed.
Each function of the control unit 20 may be distributed and arranged in a plurality of devices, and may be configured to perform processing as a single system as a whole while communicating information between the devices.
 眼鏡レンズ設計部21は、入力部11から入力された処方データおよび/または後述の眼鏡レンズ評価部22の評価結果等に基づいて、眼鏡レンズ7の設計を行う。
 なお、眼鏡レンズ7の設計の一部または全部は、眼鏡レンズ評価装置10の外部の設計装置において行う構成にしてもよい。また、眼鏡レンズ7の種類は特に限定されず、累進屈折力レンズ等、任意の種類の眼鏡レンズに設定することができる。
The spectacle lens design unit 21 designs the spectacle lens 7 based on prescription data input from the input unit 11 and / or an evaluation result of the spectacle lens evaluation unit 22 described later.
A part or all of the design of the spectacle lens 7 may be performed in a design apparatus outside the spectacle lens evaluation apparatus 10. Moreover, the kind of spectacle lens 7 is not specifically limited, It can set to spectacle lenses of arbitrary types, such as a progressive-power lens.
 眼鏡レンズ評価部22は、装用者が眼鏡レンズ7を通して所定の距離、所定の方向の対象物5を見た際の、調節応答AR等を算出し、当該調節応答ARに基づいて視力を算出する。刺激算出部23は、当該対象物5による調節刺激ASおよび輻輳刺激VSを算出する。調節応答算出部24は、装用者の調節と輻輳の相互の影響を考慮に入れたモデルに基づいて、調節応答AR、調節誤差AE、輻輳応答VRおよび輻輳誤差VE等を算出する。視力算出部25は、算出された調節応答ARに基づいて、装用者が当該眼鏡レンズ7を通して所定の距離、所定の方向の対象物を見た際の視力を算出する。眼鏡レンズ評価部22の計算処理については、以下に詳述する。 The spectacle lens evaluation unit 22 calculates an adjustment response AR or the like when the wearer views the object 5 in a predetermined distance and a predetermined direction through the spectacle lens 7, and calculates visual acuity based on the adjustment response AR. . The stimulus calculation unit 23 calculates the adjustment stimulus AS and the convergence stimulus VS by the object 5. The adjustment response calculation unit 24 calculates an adjustment response AR, an adjustment error AE, a congestion response VR, a congestion error VE, and the like based on a model that takes into account the mutual effects of the wearer's adjustment and congestion. Based on the calculated adjustment response AR, the visual acuity calculation unit 25 calculates visual acuity when the wearer views an object in a predetermined distance and a predetermined direction through the spectacle lens 7. The calculation process of the spectacle lens evaluation unit 22 will be described in detail below.
 加工機制御装置101は、眼鏡レンズ評価装置10から送信された眼鏡レンズ7の設計データに基づいて、眼鏡レンズ加工機102を制御する。眼鏡レンズ加工機102は、加工機制御装置101の制御により眼鏡レンズ7を製造する。 The processing machine control device 101 controls the spectacle lens processing machine 102 based on the design data of the spectacle lens 7 transmitted from the spectacle lens evaluation device 10. The eyeglass lens processing machine 102 manufactures the eyeglass lens 7 under the control of the processing machine control device 101.
 図4は、本実施形態の眼鏡レンズの評価方法を含む眼鏡レンズの設計方法および眼鏡レンズの製造方法の流れを示すフローチャートである。ステップS1001において、入力部11は、装用者の年齢、眼鏡レンズ7の処方データおよびフレーム形状、調節・輻輳に関するデータ等の入力を受け付ける。処方データは、処方された眼鏡レンズ7の球面度数、乱視度数および乱視軸や、装用者の瞳孔間距離等を備え、処方された眼鏡レンズが累進屈折力レンズであればさらに加入度等を備える。入力された処方データは、制御部20の眼鏡レンズ設計部21に出力される。ステップS1001が終了すると、ステップS1003に進む。 FIG. 4 is a flowchart showing the flow of the spectacle lens design method and spectacle lens manufacturing method including the spectacle lens evaluation method of the present embodiment. In step S <b> 1001, the input unit 11 receives inputs such as the wearer's age, prescription data and frame shape of the eyeglass lens 7, and data related to adjustment / congestion. The prescription data includes the spherical power, astigmatism power, and astigmatic axis of the prescribed spectacle lens 7, the interpupillary distance of the wearer, and the like. If the prescribed spectacle lens is a progressive power lens, the prescription data further includes addition power and the like. . The input prescription data is output to the spectacle lens design unit 21 of the control unit 20. When step S1001 ends, the process proceeds to step S1003.
 ステップS1003において、眼鏡レンズ設計部21は、入力された処方データやフレーム形状等に基づいて、眼鏡レンズ7を仮設計する。眼鏡レンズ設計部21は、処方データの球面度数、乱視度数および乱視軸や、装用者の瞳孔間距離等に基づいて、眼鏡レンズ7の形状、屈折率、物体側面および眼球側面の度数分布や非点収差分布を決定する。ステップS1003が終了したら、ステップS1005に進む。 In step S1003, the spectacle lens design unit 21 provisionally designs the spectacle lens 7 based on the input prescription data, frame shape, and the like. The spectacle lens design unit 21 determines the shape and refractive index of the spectacle lens 7, the refractive index, the frequency distribution on the object side surface and the eyeball side surface, and the like based on the spherical power, astigmatism power and astigmatic axis of the prescription data, the interpupillary distance of the wearer, and the like. Determine the point aberration distribution. When step S1003 ends, the process proceeds to step S1005.
 ステップS1005において、ステップS1003において仮設計された眼鏡レンズ7を、装用者の調節と輻輳とに基づいた視力により評価する。ステップS1005については、図5のフローチャートに基づいて後述する。ステップS1005が終了したら、ステップS1007に進む。 In step S1005, the spectacle lens 7 provisionally designed in step S1003 is evaluated by visual acuity based on the wearer's adjustment and convergence. Step S1005 will be described later based on the flowchart of FIG. When step S1005 ends, the process proceeds to step S1007.
 ステップS1007において、制御部20は、仮設計された眼鏡レンズ7の評価が所定の基準以上であるか否かを判定する。制御部20は、ステップS1005で算出された視力を、眼鏡レンズの最適化設計の過程で眼鏡レンズを評価する関数(評価関数)に取り入れて、この評価関数を用いて眼鏡レンズの評価、設計を行う。制御部20は、当該視力の値、または当該視力に基づいて導出されたパラメータが所定の条件を満たしている場合、ステップS1007を肯定判定し、ステップS1009に進む。制御部20は、上記所定の条件が満たされていない場合、ステップS1007を否定判定してステップS1003に戻って再設計を行う。ここで、上記所定の条件とは、例えば、装用者が日常的によく見る距離および/または方向についての視力の値やその平均が0.8や1.0以上の視力の値をとる等、適宜設定される。
 なお、表示部12に表示された視力の分布等の眼鏡レンズ7の評価結果に基づいて、装用者や眼鏡レンズ販売店の販売員が再設計するか否かの判断を入力し、当該判断に従って、制御部20が再設計するか否かを判定する構成にしてもよい。
In step S1007, the control unit 20 determines whether or not the evaluation of the temporarily designed spectacle lens 7 is equal to or higher than a predetermined reference. The control unit 20 incorporates the visual acuity calculated in step S1005 into a function (evaluation function) for evaluating the spectacle lens in the process of optimizing the spectacle lens, and uses this evaluation function to evaluate and design the spectacle lens. Do. When the value of the visual acuity or the parameter derived based on the visual acuity satisfies a predetermined condition, the control unit 20 makes a positive determination in step S1007 and proceeds to step S1009. When the predetermined condition is not satisfied, the control unit 20 makes a negative determination in step S1007 and returns to step S1003 to perform redesign. Here, the predetermined condition is, for example, a value of visual acuity for a distance and / or direction that a wearer often sees daily and an average value of the visual acuity of 0.8 or 1.0 or more, Set as appropriate.
In addition, based on the evaluation result of the eyeglass lens 7 such as the distribution of visual acuity displayed on the display unit 12, a determination as to whether or not the wearer or the salesperson of the eyeglass lens store will redesign is input, and according to the determination The controller 20 may determine whether to redesign.
 ステップS1009において、眼鏡レンズ設計部21は、仮設計された眼鏡レンズ7を設計完了品とするか、適宜微細な最終調整を行い、眼鏡レンズ7の設計を完了し、眼鏡レンズ加工機102は、設計された眼鏡レンズ7を製造する。 In step S1009, the spectacle lens design unit 21 sets the temporarily designed spectacle lens 7 as a design-completed product or performs fine final adjustment as appropriate to complete the design of the spectacle lens 7, and the spectacle lens processing machine 102 The designed spectacle lens 7 is manufactured.
 図5は、図4のフローチャートにおけるステップS1005の処理の流れを示すフローチャートである。 FIG. 5 is a flowchart showing the process flow of step S1005 in the flowchart of FIG.
 ステップS2001において、刺激算出部23は、装用者が眼鏡レンズ7を装用している際の、仮設計された眼鏡レンズ7の位置を算出する。刺激算出部23は、装用者の年齢や人種による眼部の形状の一般的な違い等から、一般的な、または統計的に平均的なデータを用いて、装用者の眼球9と眼鏡レンズ7との距離等を設定し、眼鏡レンズ7と装用者の眼球9との相対的な三次元の位置関係を決定する。ステップS2001が終了したら、ステップS2003に進む。
 なお、装用者の眼球9やその周辺に関する形状データが実測され眼鏡レンズ評価装置10に入力された場合、刺激算出部23は当該形状データを用いて眼鏡レンズ7と装用者の眼球9との相対的な三次元の位置関係を決定してもよい。
In step S2001, the stimulus calculation unit 23 calculates the position of the temporarily designed spectacle lens 7 when the wearer wears the spectacle lens 7. The stimulus calculation unit 23 uses the general or statistical average data based on a general difference in the shape of the eye part depending on the age and race of the wearer, and the eyeball 9 and the spectacle lens of the wearer. 7 is set, and a relative three-dimensional positional relationship between the spectacle lens 7 and the eyeball 9 of the wearer is determined. When step S2001 ends, the process proceeds to step S2003.
In addition, when the shape data regarding the wearer's eyeball 9 and its periphery are measured and input to the spectacle lens evaluation apparatus 10, the stimulus calculation unit 23 uses the shape data to compare the spectacle lens 7 and the wearer's eyeball 9 relative to each other. A typical three-dimensional positional relationship may be determined.
 ステップS2003において、刺激算出部23は、装用者が所定の距離、所定の方向にある対象物を見る際の調節刺激ASを算出する。刺激算出部23は、装用者が所定の距離、所定の方向にある対象物を見る際に視線が通過する両眼の眼鏡レンズ7のレンズ面上の位置を算出する。ここでは、調節誤差AEを考慮しない等の簡略化した条件でひとまずレンズ上の視線の通過位置を算出すればよい。刺激算出部23は、対象物までの距離として調節刺激ASを算出するとともに、当該視線の通過位置におけるレンズの屈折力等から、対象物5への光路を算出し、光路から調節刺激ASを適宜補正することができる。刺激算出部23は、光路と処方データにおける瞳孔間距離から輻輳刺激VSを算出する。刺激算出部23は、左眼と右眼とで対象物までの距離が異なる場合は、それぞれの距離に対応する調節刺激の算術平均等の値をとって調節刺激ASを設定する。ステップS2003が終了したら、ステップS2005に進む。
 なお、刺激算出部23は、左眼と右眼とで対象物までの距離が異なる場合、それぞれの距離に対応する調節刺激ASの重み付け平均をとってもよい。刺激算出部23は、対象物5の水平方向の位置、つまり両眼球を結ぶ方向の位置、または対象物5の位置と眼球を結ぶ直線と眼球の正面方向とがなす角度により左右の重みを変えて重み付け平均をとってもよい。刺激算出部23は、例えば、対象物5が右眼側に行くほど右眼に対応する加重値が上がり、左眼に対応する加重値が下がるように設定することができる。さらに、刺激算出部23は、利き目の側の調節刺激ASに利き目でない側より高い加重値を加えることができる。
In step S2003, the stimulus calculation unit 23 calculates an adjustment stimulus AS when the wearer views an object in a predetermined distance and a predetermined direction. The stimulus calculation unit 23 calculates the position on the lens surface of the binocular spectacle lens 7 through which the line of sight passes when the wearer views an object in a predetermined direction at a predetermined distance. Here, the line-of-sight passing position on the lens may be calculated for the time being under simplified conditions such as not considering the adjustment error AE. The stimulus calculation unit 23 calculates the adjustment stimulus AS as a distance to the object, calculates the optical path to the object 5 from the refractive power of the lens at the passing position of the line of sight, and appropriately selects the adjustment stimulus AS from the optical path. It can be corrected. The stimulus calculation unit 23 calculates the convergence stimulus VS from the inter-pupil distance in the optical path and prescription data. When the distance to the object is different between the left eye and the right eye, the stimulus calculation unit 23 sets the adjustment stimulus AS by taking a value such as an arithmetic average of the adjustment stimulus corresponding to each distance. When step S2003 ends, the process proceeds to step S2005.
Note that when the distance to the object is different between the left eye and the right eye, the stimulus calculation unit 23 may take a weighted average of the adjustment stimuli AS corresponding to each distance. The stimulus calculation unit 23 changes the weight on the left and right according to the horizontal position of the object 5, that is, the position in the direction connecting both eyes, or the angle between the position of the object 5 and the straight line connecting the eyeball and the front direction of the eyeball. The weighted average may be taken. The stimulus calculation unit 23 can be set, for example, such that the weight value corresponding to the right eye increases and the weight value corresponding to the left eye decreases as the object 5 moves to the right eye side. Further, the stimulus calculation unit 23 can add a higher weight value to the adjustment stimulus AS on the dominant eye side than on the non-dominant side.
 ステップS2005において、調節応答算出部22は、視線が通過する眼鏡レンズ7の部分の光学特性と、装用者の調節・輻輳に関するデータに基づいて、フィードバックモデルにより調節応答ARを算出する。本実施形態では、調節応答算出部22は、視覚系の非線形静的モデルに基づいて、調節応答ARを算出する。非線形静的モデルの詳細については、公知の文献(”Quantitative Analysis of the Accommodative Convergence to Accommodation Ratio: Linear and Nonlinear Static Models” IEEE TRANSACITONS ON BIOMEDICAL ENGINEERING, 306-316,Vol.44, No.4, 1997年)を参照されたい。 In step S2005, the adjustment response calculation unit 22 calculates an adjustment response AR using a feedback model based on the optical characteristics of the portion of the spectacle lens 7 through which the line of sight passes and the data relating to the adjustment / congestion of the wearer. In the present embodiment, the adjustment response calculation unit 22 calculates the adjustment response AR based on a nonlinear static model of the visual system. For details of nonlinear static models, see the well-known literature ("Quantitative Analysis of the Accommodative Convergence to Accommodation Ratio: Linear and Nonlinear Static Models '' IEEE TRANSACITONS ON BIOMEDICAL ENGINEERING, 306-316, Vol.44, No.4, 1997. Refer to).
 図6は、非線形静的モデルを説明するための概念図である。非線形静的モデルのフィードバック回路図200は、調節側フィードバック回路(図6左部)と、輻輳側フィードバック回路(図6右部)とを備える。調節側フィードバック回路は、入力される調節刺激ASとフィードバックされた調節応答ARとの差(調節誤差AEに相当する)に、調節側閾値演算子35aと、調節側コントロールゲイン32aと、調節緊張36aと、輻輳側からの入力37vaとを用いた演算を行い、結果を調節応答ARとしてフィードバックさせる。輻輳側フィードバック回路は、入力される輻輳刺激VSとフィードバックされた輻輳応答VRとの差(輻輳誤差VEに相当する)に、輻輳側閾値演算子35vと、輻輳側コントロールゲイン32vと、緊張性輻輳36vと、調節側からの入力37avとを用いた演算を行い、結果を輻輳応答VRとしてフィードバックさせる。 FIG. 6 is a conceptual diagram for explaining the nonlinear static model. The feedback circuit diagram 200 of the nonlinear static model includes an adjustment-side feedback circuit (left part in FIG. 6) and a congestion-side feedback circuit (right part in FIG. 6). The adjustment-side feedback circuit determines the difference between the input adjustment stimulus AS and the fed back adjustment response AR (corresponding to the adjustment error AE), the adjustment-side threshold operator 35a, the adjustment-side control gain 32a, and the adjustment tension 36a. And calculation using the input 37va from the congestion side, and the result is fed back as an adjustment response AR. The congestion-side feedback circuit calculates a difference between the input congestion stimulus VS and the fed back congestion response VR (corresponding to the congestion error VE), a congestion-side threshold operator 35v, a congestion-side control gain 32v, and tension congestion. The calculation using 36v and the input 37av from the adjusting side is performed, and the result is fed back as the congestion response VR.
 非線形静的モデルでは、輻輳性調節38vaと調節性輻輳38avにより、調節性フィードバック回路と輻輳性フィードバック回路が互いに調節され、調節と輻輳とを考慮に入れた調節応答ARおよび輻輳応答VRが算出される。輻輳性調節演算子33vaは、輻輳側コントロールゲイン32vの出力に、輻輳性調節38vaに比例するパラメータを乗じて調節側に出力する。調節性輻輳演算子33avは、調節側コントロールゲイン32aの出力に、調節性輻輳38avに比例するパラメータを乗じて輻輳側に出力する。 In the nonlinear static model, the adjustment feedback circuit and the convergence feedback circuit are adjusted to each other by the congestion adjustment 38va and the adjustment congestion 38av, and the adjustment response AR and the congestion response VR taking into consideration the adjustment and the congestion are calculated. The The convergence adjustment operator 33va multiplies the output of the convergence side control gain 32v by a parameter proportional to the convergence adjustment 38va and outputs the result to the adjustment side. The adjustability congestion operator 33av multiplies the output of the adjustment side control gain 32a by a parameter proportional to the adjustability congestion 38av and outputs the result to the congestion side.
 調節刺激ASが入力されていると、調節刺激ASと調節応答ARとの差が求められ、調節誤差AEが出力される。調節側閾値演算子35aは、調節誤差AEの大きさが閾値ATよりも小さい場合、0を出力し、それ以外の場合は、調節誤差AEの大きさに応じて、例えば単調増加の関係で値を出力する。閾値ATは、眼の焦点深度に基づいて定まる。以下では、調節側閾値演算子35aは、閾値ATを正の値として、AE>ATのときAE-AT、AE<-ATのときAE+ATが出力されるものとする。 When the control stimulus AS is input, the difference between the control stimulus AS and the control response AR is obtained, and the control error AE is output. The adjustment-side threshold operator 35a outputs 0 when the magnitude of the adjustment error AE is smaller than the threshold value AT, and in other cases, the adjustment-side threshold operator 35a has a value, for example, in a monotonically increasing relationship according to the magnitude of the adjustment error AE. Is output. The threshold value AT is determined based on the depth of focus of the eye. Hereinafter, it is assumed that the adjustment-side threshold operator 35a outputs AE-AT when AE> AT and AE + AT when AE <−AT, with the threshold value AT being a positive value.
 調節側コントロールゲイン32aは、調節誤差AEに対するゲインで、調節側閾値演算子35aの出力を所定の数倍~数十倍等に高めて出力する。調節側コントロールゲイン32aの出力は、輻輳側からの入力37vaと調節緊張36aとが加算され、計算結果が調節応答ARとして調節側の入力に戻される。調節緊張36a(以下、TAとも呼ぶ)は、視覚刺激が無い時の調節量に相当する。 The adjustment-side control gain 32a is a gain with respect to the adjustment error AE, and increases the output of the adjustment-side threshold operator 35a to a predetermined several times to several tens of times and outputs it. The output of the adjustment side control gain 32a is obtained by adding the input 37va from the convergence side and the adjustment tension 36a and returning the calculation result as an adjustment response AR to the input on the adjustment side. The adjustment tension 36a (hereinafter also referred to as TA) corresponds to an adjustment amount when there is no visual stimulus.
 輻輳刺激VSが入力されていると、輻輳刺激VSと輻輳応答VRとの差が求められ、輻輳誤差VEが出力される。輻輳側閾値演算子35vは、輻輳誤差VEの大きさが閾値VTよりも小さい場合、0を出力し、それ以外の場合は、輻輳誤差VEの大きさに応じて、例えば単調増加の関係で値を出力する。閾値VTは、融像限界値に基づいて定まる。以下では、閾値VTを正の値として、輻輳側閾値演算子35vは、VE>VTのときVE-VT、VE<-VTのときVE+VTを出力するものとする。 When the congestion stimulus VS is input, the difference between the congestion stimulus VS and the congestion response VR is obtained, and a congestion error VE is output. The congestion-side threshold operator 35v outputs 0 when the magnitude of the congestion error VE is smaller than the threshold VT, and otherwise, for example, a value in a monotonically increasing relationship according to the magnitude of the congestion error VE. Is output. The threshold value VT is determined based on the fusion limit value. In the following, it is assumed that the threshold value VT is a positive value, and the congestion-side threshold operator 35v outputs VE−VT when VE> VT, and VE + VT when VE <−VT.
 輻輳側コントロールゲイン32vは、輻輳誤差に対するゲインで、輻輳側閾値演算子35vの出力を所定の数十倍~数百倍等に高めて出力する。輻輳側コントロールゲイン32vの出力は、調節側からの入力37avと緊張性輻輳36vとが加算され、計算結果が輻輳応答VRとして輻輳側の入力に戻される。緊張性輻輳36v(以下、TVとも呼ぶ)は、視覚刺激が無い場合の輻輳量に相当する。 The congestion side control gain 32v is a gain with respect to the congestion error, and increases the output of the congestion side threshold operator 35v to a predetermined several tens to several hundreds of times and outputs it. The output of the congestion side control gain 32v is obtained by adding the input 37av from the adjustment side and the tension congestion 36v, and returning the calculation result to the congestion side input as a congestion response VR. The tension congestion 36v (hereinafter also referred to as TV) corresponds to the amount of congestion when there is no visual stimulus.
 それぞれ調節側の入力および輻輳側の入力にフィードバックされた調節応答ARおよび輻輳応答VRが、最初に調節側の入力および輻輳側の入力に入力されたときの調節応答ARおよび輻輳応答VRと等しければフィードバック回路は安定する。このときの調節誤差AEは以下の式(1)で表される。
Figure JPOXMLDOC01-appb-M000001

・・・(1)
ここで、調節側コントロールゲイン32aをAG、輻輳側コントロールゲイン32vをVG、輻輳性調節38vaをAC/Aとした。±の記号は調節誤差AEが調節側閾値演算子35aのプラス側かマイナス側かにより場合分けされることによるものである。式(1)中の輻輳応答VEは、以下の式(2)で表される。
Figure JPOXMLDOC01-appb-M000002

・・・(2)
 ここで、調節性輻輳38avをCA/Cとした。±の記号は輻輳誤差VEが輻輳側閾値演算子35vのプラス側かマイナス側かにより場合分けされることによる。上述の式(1)と式(2)の連立方程式から適宜場合分けをして計算し調節誤差AEおよび輻輳誤差VEが求まる。調節応答ARおよび輻輳応答VRは、それぞれAE=AS-AR、VE=VS-VRの式より算出できる。
If the adjustment response AR and the congestion response VR fed back to the input on the adjustment side and the input on the congestion side are equal to the adjustment response AR and the congestion response VR when they are first input to the input on the adjustment side and the input on the congestion side, respectively The feedback circuit is stable. The adjustment error AE at this time is expressed by the following equation (1).
Figure JPOXMLDOC01-appb-M000001

... (1)
Here, the adjustment-side control gain 32a is AG, the convergence-side control gain 32v is VG, and the convergence adjustment 38va is AC / A. The symbol “±” is based on the fact that the adjustment error AE is classified depending on whether the adjustment side threshold operator 35a is on the plus side or the minus side. The congestion response VE in the equation (1) is expressed by the following equation (2).
Figure JPOXMLDOC01-appb-M000002

... (2)
Here, the adjustability congestion 38av is CA / C. The symbol “±” is classified according to whether the congestion error VE is positive or negative of the convergence threshold operator 35v. The adjustment error AE and the convergence error VE are obtained by appropriately dividing the simultaneous equations of the above equations (1) and (2) into cases. The adjustment response AR and the congestion response VR can be calculated from the equations AE = AS−AR and VE = VS−VR, respectively.
 非線形静的モデルにおける、調節性輻輳38av、輻輳性調節38va、調節緊張TA、緊張性輻輳TV、調節側コントロールゲイン32a、輻輳側コントロールゲイン32v、調節側閾値演算子35aの閾値ATおよび輻輳側閾値演算子35vの閾値VT等の各定数は、眼鏡レンズの装用者の実測値または年齢に基づいた公知の値を用いることができる。 Adjustable congestion 38av, convergence adjustment 38va, adjustment tension TA, tension congestion TV, adjustment-side control gain 32a, convergence-side control gain 32v, adjustment-side threshold operator 35a threshold AT and convergence-side threshold in the non-linear static model For each constant such as the threshold value VT of the operator 35v, a known value based on an actual measurement value or age of a spectacle lens wearer can be used.
 図7は、調節刺激AS(横軸)と調節応答AR(縦軸)との関係をグラフにより示した図である。図7では、横軸の調節刺激ASは対象物までの実際の距離に対応し、実線は調節刺激ASと調節応答ARとが一致している場合を示す。図7(a)は近方視力矯正をしない場合であり、被験者の年齢が40歳、50歳、60歳と上がるにつれ、調節刺激ASと調節応答ARとの差が大きくなると共に、近距離の対象物に対して焦点が合わせられなくなっていることを示している。図7(b)は、2.00Dの近方視力矯正をした場合であり、縦軸の値にはレンズの屈折力が加えられている。近方視力矯正により調節刺激ASと調節応答ARとの差が小さくなり見やすい距離が変化していることが確認できる。 FIG. 7 is a graph showing the relationship between the regulatory stimulus AS (horizontal axis) and the regulatory response AR (vertical axis). In FIG. 7, the adjustment stimulus AS on the horizontal axis corresponds to the actual distance to the object, and the solid line indicates the case where the adjustment stimulus AS and the adjustment response AR match. FIG. 7A shows a case where near vision correction is not performed. As the age of the subject increases to 40 years old, 50 years old, and 60 years old, the difference between the regulatory stimulus AS and the regulatory response AR becomes larger. This indicates that the object cannot be focused. FIG. 7B shows a case where near vision correction of 2.00 D is performed, and the refractive power of the lens is added to the value on the vertical axis. It can be confirmed that the distance between the control stimulus AS and the control response AR is reduced by the near vision correction, and the easy-to-see distance is changed.
 調節応答算出部24が、調節応答ARおよび調節誤差AE等を算出したら、ステップS2005を終了しステップS2007に進む。
 なお、得られた調節応答ARおよび輻輳応答VRを利用し、刺激算出部23が再び当該対象物を見る際の装用者の眼鏡レンズ7において視線が通過する位置を算出して、再度調節応答AR等を算出する構成にし、再帰的に最適化を行ってもよい。
When the adjustment response calculation unit 24 calculates the adjustment response AR, the adjustment error AE, and the like, step S2005 is ended, and the process proceeds to step S2007.
Note that, using the obtained adjustment response AR and the convergence response VR, the stimulus calculation unit 23 calculates the position where the line of sight passes through the spectacle lens 7 of the wearer when viewing the target object again, and the adjustment response AR again. Etc., and may be optimized recursively.
 ステップS2007において、視力算出部25は、算出された調節応答ARに基づき、眼鏡レンズモデルおよび眼球モデルを用いて光線追跡法により所定位置にある対象物5を見る際の視力を算出する。例えば、視力算出部25は、調節応答AR、眼鏡レンズモデルおよび眼球モデルから、上記所定位置にある視力計算用のパターン(例えば、ランドルト環または縞模様等)の一点からの網膜上の点像強度分布を光線追跡により計算する。そして、点像強度分布と視力計算用のパターンとの畳み込み積分を行い、網膜像を求める。視力算出部25は、得られた網膜像のコントラストを公知のコントラスト感度と比較することで、パターンの大きさによって識別可能かを判断し、判断結果から視力を計算する。調節応答ARの値によって網膜上の点像強度分布が変化するため、両眼視時の調節力を考慮した視力を計算することができる。ステップS2007が終了したら、ステップS2009に進む。 In step S2007, the visual acuity calculation unit 25 calculates visual acuity when viewing the target object 5 at a predetermined position by the ray tracing method using the spectacle lens model and the eyeball model based on the calculated adjustment response AR. For example, the visual acuity calculation unit 25 calculates the point image intensity on the retina from one point of the visual acuity calculation pattern (eg, Landolt ring or striped pattern) at the predetermined position from the adjustment response AR, the spectacle lens model, and the eyeball model. The distribution is calculated by ray tracing. Then, convolution integration between the point image intensity distribution and the pattern for visual acuity calculation is performed to obtain a retinal image. The visual acuity calculation unit 25 compares the contrast of the obtained retinal image with a known contrast sensitivity to determine whether it can be identified by the size of the pattern, and calculates visual acuity from the determination result. Since the point image intensity distribution on the retina changes depending on the value of the adjustment response AR, it is possible to calculate the visual acuity in consideration of the adjustment power during binocular vision. When step S2007 ends, the process proceeds to step S2009.
 ステップS2009において、視力算出部25は、全ての所望の距離、所望の方向にある対象物を見る際の視力を算出していた場合、ステップS2009を肯定判定してステップS2011に進む。視力算出部25は、それ以外の場合は、ステップS2009を否定判定してステップS2003に戻る。 In step S2009, if the visual acuity calculation unit 25 has calculated visual acuity when looking at an object in all desired distances and desired directions, an affirmative determination is made in step S2009 and the process proceeds to step S2011. In other cases, the visual acuity calculation unit 25 makes a negative determination in step S2009 and returns to step S2003.
 ステップS2011において、視力算出部25は、算出した視力に基づいて、仮設計された眼鏡レンズ7を評価するパラメータを算出する。視力算出部25は、例えば、眼鏡レンズ上の視線が通過する位置に投影して分布させた視力のうちで、視力が一定の範囲になる眼鏡レンズ7のレンズ面上の面積等を評価パラメータにすることができる。ステップS2011が終了したら、ステップS1007に進む。 In step S2011, the visual acuity calculation unit 25 calculates a parameter for evaluating the temporarily designed spectacle lens 7 based on the calculated visual acuity. The visual acuity calculation unit 25 uses, for example, the area on the lens surface of the spectacle lens 7 in which the visual acuity is in a certain range, among the visual acuities projected and distributed at positions where the line of sight on the spectacle lens passes, as an evaluation parameter. can do. When step S2011 ends, the process proceeds to step S1007.
 上述の実施の形態によれば、次の作用効果が得られる。
(1)本実施形態の眼鏡レンズの評価方法では、眼鏡レンズ7を通して見た場合の、所定の距離、所定の方向の対象物5に対する視力を、輻輳による調節の変化と、調節による輻輳の変化とに基づいて算出する。これにより、調節と輻輳とを考慮に入れ、装用者が眼鏡レンズ7を装用した場合の正確な視力の値を得ることができる。
According to the above-described embodiment, the following operational effects can be obtained.
(1) In the spectacle lens evaluation method of the present embodiment, the visual acuity with respect to the object 5 in a predetermined distance and in a predetermined direction when viewed through the spectacle lens 7 is changed by adjustment due to convergence and change in convergence by adjustment. Based on and. Thereby, taking into consideration adjustment and convergence, an accurate visual acuity value when the wearer wears the spectacle lens 7 can be obtained.
(2)本実施形態の眼鏡レンズの評価方法では、輻輳による調節の変化は輻輳性調節38vaを用い、調節による輻輳の変化は調節性輻輳38avを用いる。これにより、調節と輻輳の相互関係を利用したモデル200に基づいて効率的に視力の値を得ることができる。 (2) In the spectacle lens evaluation method of the present embodiment, the adjustment change due to the convergence uses the convergence adjustment 38va, and the change in the convergence due to the adjustment uses the adjustment convergence 38av. Thereby, the value of visual acuity can be efficiently obtained based on the model 200 using the correlation between the adjustment and the convergence.
(3)本実施形態の眼鏡レンズの評価方法では、調節性輻輳38avおよび輻輳性調節38vaは、眼鏡レンズ7の装用者の実測値または装用者の年齢に基づいた数値を用いることができる。これにより、装用者に適合した調節性輻輳38avおよび輻輳性調節38vaの値を用いて視力の値を得ることができる。 (3) In the spectacle lens evaluation method of the present embodiment, the accommodation vergence 38av and the vergence adjustment 38va can use actual values of the spectacle lens 7 wearer or numerical values based on the age of the wearer. Thereby, the value of visual acuity can be obtained using the values of the adjustability convergence 38av and the convergence adjustment 38va suitable for the wearer.
(4)本実施形態の眼鏡レンズの評価方法では、調節側コントロールゲイン32a、輻輳側コントロールゲイン32v、調節緊張36a、または緊張性輻輳36vに基づいて、視力を算出し、調節側コントロールゲイン32a、輻輳側コントロールゲイン32v、調節緊張36a、および緊張性輻輳36vは、眼鏡レンズ7の装用者の実測値または装用者の年齢に基づいた数値を用いる。これにより、装用者に適合した、眼鏡レンズの評価に用いたモデルの定数を用いて視力の値を得ることができる。 (4) In the eyeglass lens evaluation method of the present embodiment, the visual acuity is calculated based on the adjustment-side control gain 32a, the convergence-side control gain 32v, the adjustment tension 36a, or the tension convergence 36v, and the adjustment-side control gain 32a, As the convergence-side control gain 32v, the adjustment tension 36a, and the tension convergence 36v, an actual measurement value of the wearer of the spectacle lens 7 or a numerical value based on the age of the wearer is used. Thereby, the value of visual acuity can be obtained using the constants of the model used for the evaluation of the spectacle lens suitable for the wearer.
(5)本実施形態の眼鏡レンズの評価方法では、調節応答ARと調節刺激ASとの差、および、輻輳性調節38vaに基づいて、調節応答ARが誘導される非線形静的モデルに基づいて、眼鏡レンズ7を通して見た場合の、所定の距離、所定の方向の対象物5に対する調節応答ARを算出し、算出された調節応答ARに基づいて両眼視視力を算出する。これにより、輻輳の調節への影響に基づいて、装用者が眼鏡レンズ7を装用した場合の様々な距離や方向の対象物に対する視力を算出することができる。 (5) In the spectacle lens evaluation method of the present embodiment, based on the non-linear static model in which the adjustment response AR is derived based on the difference between the adjustment response AR and the adjustment stimulus AS and the convergence adjustment 38 va. An adjustment response AR with respect to the object 5 in a predetermined distance and a predetermined direction when viewed through the spectacle lens 7 is calculated, and binocular visual acuity is calculated based on the calculated adjustment response AR. Thereby, the visual acuity with respect to the object of various distances and directions when the wearer wears the spectacle lens 7 can be calculated based on the influence on the adjustment of the convergence.
(6)本実施形態の眼鏡レンズの評価方法では、輻輳応答VRと輻輳刺激VSとの差、および、調節性輻輳38avに基づき、輻輳応答VRが誘導される非線形静的モデルに基づいて、輻輳性調節38vaによる調節応答ARの変化を算出する。これにより、調節の輻輳への影響と、輻輳の調節への影響を考慮して正確に視力を算出することができる。 (6) In the eyeglass lens evaluation method of the present embodiment, the congestion is based on a non-linear static model in which the congestion response VR is derived based on the difference between the congestion response VR and the congestion stimulus VS and the adjustable congestion 38av. The change in the regulatory response AR due to the sexual regulation 38va is calculated. Thereby, the visual acuity can be accurately calculated in consideration of the influence of the adjustment on the congestion and the influence on the adjustment of the congestion.
(7)本実施形態の眼鏡レンズの評価方法において、眼鏡レンズ7の装用者の瞳孔間距離と、所定の距離と、所定の方向と、眼鏡レンズ7の形状および屈折率とから調節刺激ASおよび輻輳刺激VSを算出し、算出された調節応答ARから、光線追跡により両眼視視力を算出する。これにより、様々な距離や方向の対象物に対する視力を算出することができる。 (7) In the spectacle lens evaluation method of this embodiment, the adjustment stimulus AS and the distance between the pupils of the wearer of the spectacle lens 7, the predetermined distance, the predetermined direction, and the shape and refractive index of the spectacle lens 7 The convergence stimulus VS is calculated, and the binocular visual acuity is calculated by ray tracing from the calculated adjustment response AR. Thereby, the visual acuity with respect to the object of various distances and directions can be calculated.
(8)本実施形態の眼鏡レンズの評価方法において、眼鏡レンズ7の装用者が装用した際の眼鏡レンズ7の位置に基づいて、両眼視視力を算出する。これにより、装用者の眼鏡レンズ7の装用する位置に基づいて、より正確に視力を算出することができる。 (8) In the spectacle lens evaluation method of the present embodiment, binocular visual acuity is calculated based on the position of the spectacle lens 7 when the wearer of the spectacle lens 7 wears it. Thereby, the visual acuity can be calculated more accurately based on the position where the spectacle lens 7 of the wearer is worn.
 次のような変形も本発明の範囲内であり、上述の実施形態と組み合わせることが可能である。
(変形例1)
 上述の実施形態においては、図6で示されたように、視覚に関する非線形静的モデルを用いて調節応答AR等を算出する構成とした。しかし、非線形静的モデル以外の、線形静的モデル等を用いて調節応答AR等を算出する構成としてもよい。これにより、計算量やモデルの特性に応じて、適切に視力を算出することができる。
The following modifications are also within the scope of the present invention, and can be combined with the above-described embodiment.
(Modification 1)
In the above-described embodiment, as shown in FIG. 6, the adjustment response AR and the like are calculated using a nonlinear static model related to vision. However, the adjustment response AR or the like may be calculated using a linear static model or the like other than the nonlinear static model. Thereby, it is possible to appropriately calculate the visual acuity according to the calculation amount and the characteristics of the model.
 図8は、線形静的モデルのフィードバック回路図300である。線形静的モデルでは、非線形静的モデルのフィードバック回路図200(図6参照)と異なり、調節側閾値演算子35aおよび輻輳側閾値演算子35vが省略されている。これにより、閾値ATおよび閾値VTを設定する必要が無く、演算量を減らすことができる。線形静的モデルのフィードバック回路図300の非線形静的モデルのフィードバック回路図200と同一の部分は同一の符号で参照し、説明を省略する。 FIG. 8 is a feedback circuit diagram 300 of the linear static model. In the linear static model, unlike the feedback circuit diagram 200 (see FIG. 6) of the nonlinear static model, the adjustment-side threshold operator 35a and the convergence-side threshold operator 35v are omitted. Thereby, it is not necessary to set the threshold value AT and the threshold value VT, and the amount of calculation can be reduced. The same parts as those in the feedback circuit diagram 200 of the nonlinear static model in the linear static model feedback circuit diagram 300 are referred to by the same reference numerals, and the description thereof will be omitted.
 本発明は上記実施形態の内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。 The present invention is not limited to the contents of the above embodiment. Other embodiments conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention.
 次の優先権基礎出願の開示内容は引用文としてここに組み込まれる。
 日本国特許出願2016年第213630号(2016年10月31日出願)
The disclosure of the following priority application is hereby incorporated by reference.
Japanese Patent Application No. 216630 in 2016 (filed on October 31, 2016)
 6…注目点、7,7L,7R…眼鏡レンズ、9,9L,9R…眼球、10…眼鏡レンズ評価装置、20…制御部、21…眼鏡レンズ設計部、22…眼鏡レンズ評価部、23…刺激算出部、24…調節応答算出部、25…視力算出部、60…注視点、200…非線形静的モデル、300…線形静的モデル。 6 ... attention point, 7, 7L, 7R ... spectacle lens, 9, 9L, 9R ... eyeball, 10 ... spectacle lens evaluation device, 20 ... control unit, 21 ... spectacle lens design unit, 22 ... spectacle lens evaluation unit, 23 ... Stimulus calculation unit, 24 ... adjustment response calculation unit, 25 ... visual acuity calculation unit, 60 ... gaze point, 200 ... nonlinear static model, 300 ... linear static model.

Claims (12)

  1.  眼鏡レンズを通して見た場合の、所定の距離、所定の方向の対象物に対する視力を、輻輳性調節に基づいて算出することと、
     算出された前記視力に基づいて前記眼鏡レンズを評価することと
    を含む眼鏡レンズの評価方法。
    Calculating a visual acuity for an object in a predetermined distance and a predetermined direction when viewed through a spectacle lens based on convergence adjustment;
    Evaluating the spectacle lens based on the calculated visual acuity.
  2.  請求項1に記載の眼鏡レンズの評価方法において、
     前記視力を前記輻輳性調節および調節性輻輳に基づいて算出する眼鏡レンズの評価方法。
    In the spectacle lens evaluation method according to claim 1,
    A spectacle lens evaluation method for calculating the visual acuity based on the convergence adjustment and the accommodation convergence.
  3.  請求項1または2に記載の眼鏡レンズの評価方法において、
     前記輻輳性調節は、前記眼鏡レンズの装用者の実測値または前記装用者の年齢に基づいた数値を用いる眼鏡レンズの評価方法。
    The spectacle lens evaluation method according to claim 1 or 2,
    The vergence adjustment is a spectacle lens evaluation method using a measured value of the spectacle lens wearer or a numerical value based on the age of the wearer.
  4.  請求項2に記載の眼鏡レンズの評価方法において、
     前記調節性輻輳は、前記眼鏡レンズの装用者の実測値または前記装用者の年齢に基づいた数値を用いる眼鏡レンズの評価方法。
    In the spectacle lens evaluation method according to claim 2,
    The accommodation convergence is a spectacle lens evaluation method using an actual measurement value of the spectacle lens wearer or a numerical value based on the age of the wearer.
  5.  請求項1から4までのいずれか一項に記載の眼鏡レンズの評価方法において、
     調節側コントロールゲイン、輻輳側コントロールゲイン、調節緊張、または緊張性輻輳に基づいて、前記視力を算出し、
     前記調節側コントロールゲイン、前記輻輳側コントロールゲイン、前記調節緊張、および前記緊張性輻輳は、前記眼鏡レンズの装用者の実測値または前記装用者の年齢に基づいた数値を用いる眼鏡レンズの評価方法。
    In the evaluation method of the spectacle lens according to any one of claims 1 to 4,
    Based on the adjustment side control gain, the convergence side control gain, the adjustment tension, or the tension convergence, the visual acuity is calculated,
    The adjustment-side control gain, the convergence-side control gain, the adjustment tension, and the tension convergence are eyeglass lens evaluation methods using measured values of the eyeglass lens wearer or numerical values based on the age of the wearer.
  6.  請求項1から5までのいずれか一項に記載の眼鏡レンズの評価方法において、
     調節応答と調節刺激との差、および、前記輻輳性調節に基づき、前記調節応答が誘導されるフィードバック調節モデルに基づいて、前記眼鏡レンズを通して見た場合の、所定の距離、所定の方向の対象物に対する前記調節応答を算出し、
     算出された前記調節応答に基づいて前記視力を算出する眼鏡レンズの評価方法。
    In the evaluation method of the spectacle lens according to any one of claims 1 to 5,
    Based on a difference between an adjustment response and an adjustment stimulus and a feedback adjustment model in which the adjustment response is induced based on the convergence adjustment, an object in a predetermined distance and a predetermined direction when viewed through the spectacle lens Calculating the regulatory response to the object,
    A spectacle lens evaluation method for calculating the visual acuity based on the calculated adjustment response.
  7.  請求項6に記載の眼鏡レンズの評価方法において、
     輻輳応答と輻輳刺激との差、および、調節性輻輳に基づき、前記輻輳応答が誘導されるフィードバック輻輳モデルに基づいて、前記調節応答を算出する眼鏡レンズの評価方法。
    The spectacle lens evaluation method according to claim 6,
    A spectacle lens evaluation method for calculating the accommodation response based on a feedback congestion model from which the congestion response is derived based on a difference between a convergence response and a congestion stimulus and accommodation congestion.
  8.  請求項7に記載の眼鏡レンズの評価方法において、
     前記眼鏡レンズの装用者の瞳孔間距離と、前記距離と、前記方向と、前記眼鏡レンズの形状および屈折率とから前記調節刺激および前記輻輳刺激を算出し、
     算出された前記調節応答から、光線追跡により前記視力を算出する眼鏡レンズの評価方法。
    The spectacle lens evaluation method according to claim 7,
    Calculating the accommodation stimulus and the convergence stimulus from the interpupillary distance of the spectacle lens wearer, the distance, the direction, and the shape and refractive index of the spectacle lens;
    A spectacle lens evaluation method for calculating the visual acuity by ray tracing from the calculated adjustment response.
  9.  請求項1から8までのいずれか一項に記載の眼鏡レンズの評価方法において、
     前記眼鏡レンズの装用者が装用した際の前記眼鏡レンズの位置に基づいて、前記視力を算出する眼鏡レンズの評価方法。
    In the spectacle lens evaluation method according to any one of claims 1 to 8,
    A spectacle lens evaluation method for calculating the visual acuity based on a position of the spectacle lens when the spectacle lens wearer wears the spectacle lens.
  10.  請求項1から9までのいずれか一項に記載の眼鏡レンズの評価方法により算出された前記視力または前記視力から算出されたパラメータを評価関数として眼鏡レンズを設計する眼鏡レンズの設計方法。 A spectacle lens design method for designing a spectacle lens using the eyesight calculated by the spectacle lens evaluation method according to claim 1 or a parameter calculated from the eyesight as an evaluation function.
  11.  請求項10に記載の設計方法により前記眼鏡レンズを設計することと、
    前記設計方法により設計された前記眼鏡レンズを製造することと、を含む眼鏡レンズの製造方法。
    Designing the spectacle lens by the design method according to claim 10;
    Manufacturing the spectacle lens designed by the design method.
  12.  眼鏡レンズを通して見た場合の、所定の距離、所定の方向の対象物に対する視力を、輻輳性調節に基づいて算出する算出部と、
     算出された前記視力に基づいて前記眼鏡レンズを評価する評価部と
    を備える眼鏡レンズ評価装置。
    A calculation unit that calculates a visual acuity with respect to an object in a predetermined distance and a predetermined direction when viewed through the spectacle lens based on the convergence adjustment;
    An eyeglass lens evaluation apparatus comprising: an evaluation unit that evaluates the eyeglass lens based on the calculated visual acuity.
PCT/JP2017/039344 2016-10-31 2017-10-31 Spectacle lens evaluation method, spectacle lens design method, spectacle lens manufacturing method, and spectacle lens evaluation device WO2018079835A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016213630A JP2020003510A (en) 2016-10-31 2016-10-31 Method of evaluating spectacle lenses, method of designing spectacle lenses, and method of fabricating spectacle lenses
JP2016-213630 2016-10-31

Publications (1)

Publication Number Publication Date
WO2018079835A1 true WO2018079835A1 (en) 2018-05-03

Family

ID=62024932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/039344 WO2018079835A1 (en) 2016-10-31 2017-10-31 Spectacle lens evaluation method, spectacle lens design method, spectacle lens manufacturing method, and spectacle lens evaluation device

Country Status (2)

Country Link
JP (1) JP2020003510A (en)
WO (1) WO2018079835A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020156664A (en) * 2019-03-26 2020-10-01 株式会社トプコン Ophthalmologic apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11309114A (en) * 1998-04-28 1999-11-09 Canon Inc Optometer device
JP2005021181A (en) * 2003-06-30 2005-01-27 Nidek Co Ltd Ocular accommodation measuring apparatus
WO2012014810A1 (en) * 2010-07-27 2012-02-02 Hoya株式会社 Eyeglass lens evaluation method, eyeglass lens design method, eyeglass lens manufacturing method, eyeglass lens manufacturing system, and eyeglass lens
WO2015150432A1 (en) * 2014-04-03 2015-10-08 Essilor International (Compagnie Generale D'optique) Method for producing a customized progressive ophthalmic lens

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11309114A (en) * 1998-04-28 1999-11-09 Canon Inc Optometer device
JP2005021181A (en) * 2003-06-30 2005-01-27 Nidek Co Ltd Ocular accommodation measuring apparatus
WO2012014810A1 (en) * 2010-07-27 2012-02-02 Hoya株式会社 Eyeglass lens evaluation method, eyeglass lens design method, eyeglass lens manufacturing method, eyeglass lens manufacturing system, and eyeglass lens
WO2015150432A1 (en) * 2014-04-03 2015-10-08 Essilor International (Compagnie Generale D'optique) Method for producing a customized progressive ophthalmic lens

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YAGO, KEIKO: "Basis and Practice of Accommodation", JAPANESE ASSOCIATION OF CERTIFIED ORTHOPTISTS, vol. 20, 1992, pages 4 - 10 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020156664A (en) * 2019-03-26 2020-10-01 株式会社トプコン Ophthalmologic apparatus
JP7265903B2 (en) 2019-03-26 2023-04-27 株式会社トプコン ophthalmic equipment

Also Published As

Publication number Publication date
JP2020003510A (en) 2020-01-09

Similar Documents

Publication Publication Date Title
JP5997351B2 (en) Manufacturing method of spectacle lens
US10203519B2 (en) Systems and methods for augmented reality
JP6920287B2 (en) A method for determining the three-dimensional performance of an ophthalmic lens and a related calculation method for an ophthalmic lens.
JP6043731B2 (en) Method for determining the target optical function
EP2959339B1 (en) Method of manufacturing a pair of progressive ophthalmic lenses
US9740024B2 (en) Pair of progressive ophthamlic lenses
JP2015108852A (en) Flexible varifocal lens optimizer
EP3271779A1 (en) A method for determining an ophthalmic lens having unwanted astigmatism
US9759931B2 (en) Pair of progressive ophthalmic lenses
US20170261767A1 (en) Optical visual aid with additional astigmatism
US10261340B2 (en) Method for producing a customized progressive ophthalmic lens
JP2017511509A (en) Method for calculating an optical system of a progressive addition ophthalmic lens configured to output an auxiliary image
CN106132283B (en) Method for augmented reality
WO2018079835A1 (en) Spectacle lens evaluation method, spectacle lens design method, spectacle lens manufacturing method, and spectacle lens evaluation device
JP7055097B2 (en) Progressive power lenses for emmetropic and presbyopia wearers and how to provide such lenses
JP2024505850A (en) Device and method for automatically evaluating visual equipment
JP2013076933A (en) Progressive refractive power lens and manufacturing method for progressive refractive power lens
US20190137784A1 (en) Method for providing an ophthalmic lens to a wearer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17864708

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17864708

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP