WO2018079423A1 - 角形二次電池 - Google Patents

角形二次電池 Download PDF

Info

Publication number
WO2018079423A1
WO2018079423A1 PCT/JP2017/037928 JP2017037928W WO2018079423A1 WO 2018079423 A1 WO2018079423 A1 WO 2018079423A1 JP 2017037928 W JP2017037928 W JP 2017037928W WO 2018079423 A1 WO2018079423 A1 WO 2018079423A1
Authority
WO
WIPO (PCT)
Prior art keywords
current collector
region
negative electrode
positive electrode
sealing plate
Prior art date
Application number
PCT/JP2017/037928
Other languages
English (en)
French (fr)
Inventor
亮一 脇元
山田 博之
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to CN201780065630.9A priority Critical patent/CN109891635B/zh
Priority to JP2018547620A priority patent/JP7006613B2/ja
Priority to US16/342,733 priority patent/US11158902B2/en
Publication of WO2018079423A1 publication Critical patent/WO2018079423A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/176Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • H01M50/3425Non-re-sealable arrangements in the form of rupturable membranes or weakened parts, e.g. pierced with the aid of a sharp member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/533Electrode connections inside a battery casing characterised by the shape of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/54Connection of several leads or tabs of plate-like electrode stacks, e.g. electrode pole straps or bridges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/20Pressure-sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a prismatic secondary battery.
  • EV electric vehicles
  • HEV hybrid electric vehicles
  • PHEV hybrid electric vehicles
  • a battery case is configured by a bottomed cylindrical prismatic outer body having an opening and a sealing plate that seals the opening.
  • an electrode body composed of a positive electrode plate, a negative electrode plate, and a separator is accommodated together with an electrolytic solution.
  • a positive electrode terminal and a negative electrode terminal are attached to the sealing plate.
  • the positive electrode terminal is electrically connected to the positive electrode plate via the positive electrode current collector, and the negative electrode terminal is electrically connected to the negative electrode plate via the negative electrode current collector.
  • the positive electrode plate includes a metal positive electrode core and a positive electrode active material mixture layer formed on the surface of the positive electrode core. A part of the positive electrode core is formed with a positive electrode core exposed portion where the positive electrode active material mixture layer is not formed. A positive electrode current collector is connected to the positive electrode core exposed portion.
  • the negative electrode plate includes a metal negative electrode core and a negative electrode active material mixture layer formed on the surface of the negative electrode core. A negative electrode core exposed portion in which the negative electrode active material mixture layer is not formed is formed on a part of the negative electrode core. A negative electrode current collector is connected to the negative electrode core exposed portion.
  • Gas discharge valve that discharges the gas in the battery case to the outside of the battery case in the battery case of the prismatic secondary battery that breaks when the abnormality occurs in the square secondary battery and the pressure in the battery case exceeds a predetermined value Is provided.
  • the main object of the present invention is to provide a highly reliable prismatic secondary battery.
  • the prismatic secondary battery according to one aspect of the present invention is An electrode body including a positive electrode plate and a negative electrode plate; A rectangular exterior body that has an opening and accommodates the electrode body; A sealing plate having a gas discharge valve and sealing the opening; A current collecting member electrically connected to the positive electrode plate or the negative electrode plate and disposed in the rectangular exterior body, A metal shielding member is disposed at a position between the gas exhaust valve and the electrode body and facing the gas exhaust valve.
  • the shielding member does not need to directly face the gas discharge valve, and may face another member, for example, an insulating member.
  • a part of the current collecting member can be a shielding member. Thereby, it can suppress that hot melts, such as an electrode body, a spark, etc. spout out of a battery case from a gas discharge valve by a simpler method.
  • a shielding member made of a component different from the current collecting member can be connected to the battery inner surface of the sealing plate. Thereby, it can suppress more reliably that high temperature melts, such as an electrode body, a spark, etc. spout out of a battery case from a gas discharge valve.
  • a more reliable prismatic secondary battery can be provided.
  • FIG. 2 is a cross-sectional view taken along line II-II in FIG. It is a top view of the positive electrode plate which concerns on embodiment. It is a top view of the negative electrode plate which concerns on embodiment. It is a top view of the electrode body element which concerns on embodiment. It is a bottom view of the sealing board after attaching each component. It is sectional drawing of the VII-VII line in FIG.
  • FIG. 8 is an enlarged view of the vicinity of a first positive electrode current collector, a second positive electrode current collector, and a current interrupt mechanism in FIG. 7.
  • FIG. 8 is an enlarged view of the vicinity of a first negative electrode current collector and a second negative electrode current collector in FIG. 7.
  • the configuration of the prismatic secondary battery 20 according to the embodiment will be described below.
  • the present invention is not limited to the following embodiment.
  • FIG. 1 is a perspective view of a square secondary battery 20. 2 is a cross-sectional view taken along line II-II in FIG.
  • the rectangular secondary battery 20 includes a battery case 100 including a bottomed rectangular tube-shaped rectangular exterior body 1 having an opening and a sealing plate 2 that seals the opening of the rectangular exterior body 1.
  • the rectangular exterior body 1 and the sealing plate 2 are preferably made of metal, for example, preferably made of aluminum or an aluminum alloy.
  • a stacked electrode body 3 in which a plurality of positive plates and a plurality of negative plates are stacked via a separator is accommodated together with an electrolytic solution.
  • a resin insulating sheet 14 is disposed between the electrode body 3 and the rectangular exterior body 1.
  • a positive electrode tab 40 and a negative electrode tab 50 are provided at the end of the electrode body 3 on the sealing plate 2 side.
  • the positive electrode tab 40 is electrically connected to the positive electrode external terminal 7 through the second positive electrode current collector 6b and the first positive electrode current collector 6a.
  • the negative electrode tab 50 is electrically connected to the negative electrode external terminal 9 through the second negative electrode current collector 8b and the first negative electrode current collector 8a.
  • the first positive electrode current collector 6 a and the second positive electrode current collector 6 b constitute the positive electrode current collector 6.
  • the first negative electrode current collector 8 a and the second negative electrode current collector 8 b constitute the negative electrode current collector member 8.
  • the positive electrode current collection member 6 can also be made into one component.
  • the negative electrode current collection member 8 can also be made into one component.
  • the positive external terminal 7 is fixed to the sealing plate 2 via an external insulating member 11 made of resin.
  • the negative external terminal 9 is fixed to the sealing plate 2 via an external insulating member 13 made of resin.
  • the positive external terminal 7 is preferably made of metal, and more preferably made of aluminum or an aluminum alloy.
  • the negative electrode external terminal 9 is preferably made of metal, and more preferably made of copper or a copper alloy. Further, it is more preferable that the negative electrode external terminal 9 has a portion made of copper or a copper alloy on the inner side of the battery case 100 and has a portion made of aluminum or an aluminum alloy on the outer side of the battery case 100.
  • nickel plating etc. are given to the surface of the negative electrode external terminal 9.
  • the conductive path between the positive electrode plate and the positive electrode external terminal 7 is activated when the pressure in the battery case 100 exceeds a predetermined value, and interrupts the current path that interrupts the conductive path between the positive electrode plate and the positive electrode external terminal 7.
  • a mechanism 60 is preferably provided.
  • a current interruption mechanism may be provided in the conductive path between the negative electrode plate and the negative electrode external terminal 9.
  • the sealing plate 2 is provided with a gas discharge valve 17 that is broken when the pressure in the battery case 100 exceeds a predetermined value and discharges the gas in the battery case 100 to the outside of the battery case 100.
  • the gas discharge valve 17 is formed thinner than the other part of the sealing plate 2.
  • the gas discharge valve 17 can be formed by pressing the sealing plate 2.
  • a through hole for a gas discharge valve may be provided in the sealing plate 2 and the through hole may be closed with a thin valve to form the gas discharge valve 17.
  • the operating pressure of the gas discharge valve 17 is set to a value larger than the operating pressure of the current interrupt mechanism 60.
  • the sealing plate 2 is provided with an electrolyte injection hole 15. After the electrolytic solution is injected into the battery case 100 from the electrolytic solution injection hole 15, the electrolytic solution injection hole 15 is sealed with a sealing plug 16.
  • a positive electrode comprising lithium nickel cobalt manganese composite oxide as a positive electrode active material, polyvinylidene fluoride (PVdF) as a binder, a carbon material as a conductive agent, and N-methyl-2-pyrrolidone (NMP) as a dispersion medium
  • PVdF polyvinylidene fluoride
  • NMP N-methyl-2-pyrrolidone
  • FIG. 3 is a plan view of the positive electrode plate 4 produced by the above-described method.
  • the positive electrode plate 4 has a main body part in which a positive electrode active material mixture layer 4b is formed on both surfaces of a rectangular positive electrode core 4a.
  • the positive electrode core 4 a protrudes from the end side of the main body, and the protruding positive electrode core 4 a constitutes the positive electrode tab 40.
  • the positive electrode tab 40 may be a part of the positive electrode core body 4a as shown in FIG. 3, or other members may be connected to the positive electrode core body 4a to form the positive electrode tab 40.
  • the positive electrode protective layer 4d which has an electrical resistance larger than the electrical resistance of the positive electrode active material mixture layer 4b is provided in the part adjacent to the positive electrode active material mixture layer 4b in the positive electrode tab 40.
  • the positive electrode protective layer 4d preferably contains ceramic particles such as alumina, silica, zirconia, and a binder.
  • the positive electrode protective layer 4d further preferably includes conductive particles such as a carbon material.
  • a negative electrode slurry containing graphite as a negative electrode active material, styrene butadiene rubber (SBR) as a binder, carboxymethyl cellulose (CMC) as a thickener, and water is prepared.
  • This negative electrode slurry is applied on both sides of a rectangular copper foil having a thickness of 8 ⁇ m as a negative electrode core. And by drying this, the water in a negative electrode slurry is removed, and a negative electrode active material mixture layer is formed on a negative core. Thereafter, the negative electrode active material mixture layer is compressed so as to have a predetermined thickness.
  • the negative electrode plate thus obtained is cut into a predetermined shape.
  • FIG. 4 is a plan view of the negative electrode plate 5 produced by the above-described method.
  • the negative electrode plate 5 has a main body portion in which a negative electrode active material mixture layer 5b is formed on both surfaces of a rectangular negative electrode core 5a.
  • the negative electrode core 5 a protrudes from the end side of the main body, and the protruding negative electrode core 5 a constitutes the negative electrode tab 50.
  • the negative electrode tab 50 may be a part of the negative electrode core 5a as shown in FIG. 4, or other members may be connected to the negative electrode core 5a to form the negative electrode tab 50.
  • Electrode body elements Fifty positive electrode plates 4 and 51 negative electrode plates 5 are produced by the above-described method, and these are laminated through a polyolefin square separator to produce laminated electrode body elements (3a, 3b). As shown in FIG. 5, in the stacked electrode body elements (3a, 3b), the positive electrode tab 40 of each positive electrode plate 4 is stacked at one end, and the negative electrode tab 50 of each negative electrode plate 5 is stacked. It is produced as follows. Separators are disposed on both outer surfaces of the electrode body elements (3a, 3b), and can be fixed in a state where the electrode plates and the separators are laminated with a tape or the like. Alternatively, an adhesive layer may be provided on the separator so that the separator and the positive electrode plate 4 and the separator and the negative electrode plate 5 are bonded to each other.
  • the size of the separator in plan view is preferably the same as that of the negative electrode plate 5 or larger than that of the negative electrode plate 5.
  • the positive electrode plate 4 may be disposed between the two separators, and the periphery of the separator may be thermally welded, and then the positive electrode plate 4 and the negative electrode plate 5 may be laminated.
  • the positive electrode plate 4 and the negative electrode plate 5 can be laminated using a long separator while making the long separator into ninety-nine folds.
  • the positive electrode plate 4 and the negative electrode plate 5 can also be laminated
  • the tip of the positive electrode external terminal 7 is crimped onto the conductive member 61.
  • the positive electrode external terminal 7, the external insulating member 11, the sealing plate 2, the internal insulating member 10, and the conductive member 61 are fixed.
  • the crimped portion of the positive external terminal 7 and the conductive member 61 are preferably welded by laser welding or the like.
  • the inner side insulating member 10 and the outer side insulating member 11 are each made of resin.
  • the conductive member 61 has an opening on the electrode body 3 side.
  • the disc-shaped deformation plate 62 is disposed so as to close the opening of the conductive member 61, and the periphery of the deformation plate 62 is welded to the conductive member 61. As a result, the opening of the conductive member 61 is sealed by the deformation plate 62.
  • the conductive member 61 and the deformation plate 62 are preferably made of metal, and more preferably aluminum or an aluminum alloy.
  • a resin-made third insulating member 63 is disposed on the electrode body 3 side of the deformable plate 62.
  • the third insulating member 63 has a connecting portion, and it is preferable that this connecting portion is connected to the inner insulating member 10.
  • the third insulating member 63 is provided with a claw-like hook fixing portion
  • the conductive member 61 is provided with a flange portion, a concave portion or a convex portion
  • the third insulating member 63 is hooked and fixed with the flange portion, the concave portion. Or it is preferable to fix to a convex part.
  • the third insulating member 63 includes an insulating member first region 63x disposed below the deformation plate 62, and an insulating member second region 63y extending from the end of the insulating member first region 63x toward the sealing plate 2. It is preferable to have an insulating member third region 63z extending along the sealing plate 2 from the end of the insulating member second region 63y. In the insulating member third region 63z, an insulating member opening 63b is provided at a position facing the electrolyte solution injection hole 15 of the sealing plate 2. In addition, an insulating member protrusion 63c that protrudes toward the electrode body 3 is provided at the edge of the insulating member opening 63b.
  • the first positive electrode current collector 6 a is disposed on the electrode body 3 side of the third insulating member 63.
  • the first positive electrode current collector 6a has a fixing through hole.
  • the fixing protrusion of the third insulating member 63 is inserted into the fixing through hole of the first positive electrode current collector 6a, the diameter of the tip of the fixing protrusion is increased, and the third insulating member 63 and the first positive electrode current collector are expanded. 6a is fixed.
  • fixed part 70 is formed.
  • the fixing portion 70 is preferably provided at four locations so as to surround the connecting portion between the deformation plate 62 and the first positive electrode current collector 6 a.
  • the first positive electrode current collector 6a preferably has a thin portion 6c, and the thin plate portion 6c is preferably welded to the deformation plate 62. It is preferable that an opening is provided at the center of the thin portion 6c, and the edge of the opening is welded to the deformation plate 62. Moreover, it is more preferable to provide an annular notch portion in the thin portion 6 c so as to surround the connection portion between the first positive electrode current collector 6 a and the deformation plate 62.
  • the deformation plate 62 When the pressure in the battery case 100 becomes equal to or higher than a predetermined value, the deformation plate 62 is deformed so that the central portion of the deformation plate 62 moves upward (positive electrode external terminal 7 side). With the deformation of the deformation plate 62, the thin-walled portion 6c of the first positive electrode current collector 6a is broken. As a result, the conductive path between the positive electrode plate 4 and the positive electrode external terminal 7 is cut.
  • the positive electrode external terminal 7 is provided with a terminal through hole 7b, and a gas is allowed to flow into the current interrupting mechanism 60 through the terminal through hole 7b, so that a leak check can be performed at the connection portion between the conductive member 61 and the deformable plate 62. . Further, the deformable plate 62 and the first positive electrode current collector 6a can be welded and connected in a state where the deformable plate 62 is pressed against the first positive electrode current collector 6a by gas. Finally, the terminal through hole 7b is sealed by the terminal sealing member 7a.
  • the terminal sealing member 7a preferably includes a metal member 7x and a rubber member 7y.
  • the first positive electrode current collector 6a has current collector protrusions 6x on the surface on the electrode body 3 side.
  • a method of attaching the negative electrode external terminal 9 and the first negative electrode current collector 8a to the sealing plate 2 will be described with reference to FIG. 2, FIG. 6, FIG. 7, and FIG.
  • the outer insulating member 13 is disposed on the outer surface side of the negative electrode terminal mounting hole 2b provided in the sealing plate 2, and the inner insulating member 12 and the first negative electrode current collector 8a are disposed on the inner surface side of the negative electrode terminal mounting hole 2b.
  • the negative electrode external terminal 9 is inserted into the through hole of the external insulating member 13, the negative electrode terminal mounting hole 2b of the sealing plate 2, the through hole of the internal insulating member 12, and the through hole of the first negative electrode current collector 8a. insert.
  • the tip of the negative electrode external terminal 9 is crimped onto the first negative electrode current collector 8a.
  • the outer side insulating member 13, the sealing board 2, the inner side insulating member 12, and the 1st negative electrode collector 8a are fixed.
  • the crimped portion of the negative electrode external terminal 9 and the first negative electrode current collector 8a are preferably welded by laser welding or the like.
  • the inner side insulating member 12 and the outer side insulating member 13 are each made of resin.
  • FIG. 10 is a diagram illustrating a method for connecting the positive electrode tab 40 to the second positive electrode current collector 6b and a method for connecting the negative electrode tab 50 to the second negative electrode current collector 8b.
  • Two electrode body elements are produced by the above-described method, and are defined as a first electrode body element 3a and a second electrode body element 3b, respectively.
  • the first electrode body element 3a and the second electrode body element 3b may have the same configuration or different configurations.
  • the plurality of positive electrode tabs 40 of the first electrode body element 3a constitute a first positive electrode tab group 40a.
  • a plurality of negative electrode tabs 50 of the first electrode body element 3a constitute a first negative electrode tab group 50a.
  • a plurality of positive electrode tabs 40 of the second electrode body element 3b constitute a second positive electrode tab group 40b.
  • the plurality of negative electrode tabs 50 of the second electrode body element 3b constitute a second negative electrode tab group 50b.
  • the second positive electrode current collector 6b and the second negative electrode current collector 8b are arranged between the first electrode body element 3a and the second electrode body element 3b. Then, a first positive electrode tab group 40a composed of a plurality of stacked positive electrode tabs 40 protruding from the first electrode body element 3a is arranged on the second positive electrode current collector 6b, and the first electrode body element 3a A first negative electrode tab group 50a including a plurality of stacked negative electrode tabs 50 is disposed on the second negative electrode current collector 8b. Further, a second positive electrode tab group 40b composed of a plurality of stacked positive electrode tabs 40 protruding from the second electrode body element 3b is disposed on the second positive electrode current collector 6b, and the second electrode body element 3b.
  • a second negative electrode tab group 50b composed of a plurality of stacked negative electrode tabs 50 is arranged on the second negative electrode current collector 8b.
  • the first positive electrode tab group 40a and the second positive electrode tab group 40b are welded to the second positive electrode current collector 6b, respectively, to form a weld connection portion 90.
  • the first negative electrode tab group 50a and the second negative electrode tab group 50b are welded to the second negative electrode current collector 8b, respectively, to form a weld connection portion 90.
  • the welding connection can be performed as follows.
  • first positive electrode tab group 40a, second positive electrode tab group 40b, first negative electrode tab group 50a, second negative electrode tab group 50b and current collectors (second positive electrode current collectors) stacked from above and below by welding jigs. 6b, the second negative electrode current collector 8b) is sandwiched and welding is performed.
  • the welding method is preferably ultrasonic welding or resistance welding.
  • the laminated tab and the current collector are more securely welded.
  • ultrasonic welding or resistance welding is more reliable because welding can be performed while being sandwiched between a pair of welding jigs compared to laser welding or the like. A highly welded connection can be formed.
  • the pair of welding jigs are a pair of resistance welding electrodes in the case of resistance welding, and a horn and an anvil in the case of ultrasonic welding.
  • the tabs (first positive electrode tab group 40a, second positive electrode tab group 40b, first negative electrode tab group 50a, second negative electrode tab group 50b) and current collector (second positive electrode current collector 6b, second negative electrode current collector).
  • the connection of the bodies 8b) can also be connected by laser welding.
  • the first positive electrode tab group 40a of the first electrode body element 3a is connected to one side with respect to the central portion in the width direction of the second positive electrode current collector 6b.
  • the second positive electrode tab group 40b of the second electrode body element 3b is connected to the other side of the central portion in the width direction of the second positive electrode current collector 6b.
  • the first negative electrode tab group 50a of the second electrode body element 3b is connected to one side of the central portion in the width direction of the second negative electrode current collector 8b.
  • the second negative electrode tab group 50b of the second electrode body element 3b is connected to the other side of the center portion in the width direction of the second positive electrode current collector 6b.
  • the second positive electrode current collector 6b is provided with an opening 6z.
  • the opening 6z is disposed at a position corresponding to the electrolyte solution injection hole 15 provided in the sealing plate 2.
  • the first positive electrode tab group 40a of the first electrode body element 3a is connected to one side of the opening 6z in the width direction of the second positive electrode current collector 6b.
  • the second positive electrode tab group 40b of the second electrode body element 3b is connected to the other side of the opening 6z in the width direction of the second positive electrode current collector 6b.
  • the first positive electrode tab group 40a and the second positive electrode tab group 40b are viewed from the direction perpendicular to the sealing plate 2, the first positive electrode tab group 40a and the second positive electrode tab group 40b It is preferable that a portion disposed substantially parallel to the second positive electrode current collector 6b does not overlap with the opening 6z. Thereby, it can prevent that the 2nd positive electrode electrical power collector 6b thru
  • the first positive electrode current collector 6a is provided with a current collector protrusion 6x.
  • the second positive electrode current collector 6b is provided with a current collector opening 6y.
  • the current collector protrusion 6x of the first cathode current collector 6a is positioned in the current collector opening 6y of the second cathode current collector 6b, so that the second cathode current collector
  • the body 6 b is disposed on the third insulating member 63.
  • the edge part of the collector protrusion 6x of the 1st positive electrode collector 6a and the collector opening 6y of the 2nd positive electrode collector 6b is welded by irradiation of energy rays, such as a laser. Thereby, the 1st positive electrode collector 6a and the 2nd positive electrode collector 6b are connected.
  • a current collector first recess 6f is provided around the current collector opening 6y of the second positive electrode current collector 6b. That is, the current collector opening 6y is formed at the center of the current collector first recess 6f. In the first current collector recess 6f, the first positive electrode current collector 6a and the second positive electrode current collector 6b are connected by welding.
  • the second positive electrode current collector 6b has a current collector first region 6b1, a current collector second region 6b2, and a current collector third region 6b3.
  • a positive electrode tab 40 is connected to the current collector first region 6b1.
  • the first positive electrode current collector 6a is connected to the current collector third region 6b3.
  • the current collector second region 6b2 connects the current collector first region 6b1 and the current collector third region 6b3.
  • the distance between the sealing plate 2 and the current collector first region 6 b 1 is smaller than the distance between the sealing plate 2 and the current collector third region 6 b 3.
  • target holes 6e are provided on both sides of the current collector opening 6y.
  • the target hole 6e is preferably used as a target for image correction. It is preferable to detect an image of the target hole 6e, perform position correction, and irradiate energy rays along the shape of the current collector opening 6y.
  • the target hole 6e may be a recess instead of a through hole.
  • the area of the target hole 6e in plan view is preferably smaller than the area of the current collector opening 6y in plan view.
  • the current collector openings 6y and the target holes 6e are arranged on a straight line.
  • a current collector second recess 6w is formed on the surface of the first positive electrode current collector 6a facing the third insulating member 63 on the back side of the current collector protrusion 6x. This is preferable because it is easy to form a larger welded connection between the first positive electrode current collector 6a and the second positive electrode current collector 6b. Further, since the current collector second recess 6w is formed, when the first positive electrode current collector 6a and the second positive electrode current collector 6b are connected by welding, the third insulating member 63 is caused by heat during welding. It can be prevented from being damaged.
  • the lower end (electrode body 3 side) of the insulating member protrusion 63c of the third insulating member 63 is lower than the lower surface around the opening 6z (electrode) in the second positive electrode current collector 6b. It is preferable that it protrudes to the body 3 side. Thereby, it can prevent reliably that the sealing stopper 16 and the 2nd positive electrode collector 6b contact.
  • the insulating member protrusion 63c is preferably annular. However, the insulating member protrusion 63c does not necessarily have an annular shape, and may have a partially cut shape.
  • FIG. 11A is a top view of the second negative electrode current collector 8b
  • FIG. 11B is a cross-sectional view taken along line BB in FIG. 11A
  • FIG. 11C is a cross-sectional view of C in FIG.
  • FIG. 6 is a cross-sectional view taken along the line -C
  • (d) is a bottom view of the second negative electrode current collector 8b
  • (e) is a cross-sectional view taken along the line DD in (a).
  • the second negative electrode current collector 8b includes a current collector first region 8b1, a current collector second region 8b2, a current collector third region 8b3, a current collector fourth region 8b4, and a current collector. It has a fifth electric body region 8b5.
  • a negative electrode tab 50 is welded to the current collector first region 8b1.
  • the current collector second region 8 b 2 is disposed at a position facing the gas discharge valve 17.
  • the current collector third region 8b3 connects the current collector first region 8b1 and the current collector second region 8b2.
  • the current collector first region 8 b 1 and the current collector second region 8 b 2 are disposed substantially parallel to the sealing plate 2.
  • the inclinations of the current collector first region 8b1 and the current collector second region 8b2 with respect to the sealing plate 2 are in the range of ⁇ 15 ° to 15 °, respectively.
  • the distance between the sealing plate 2 and the current collector first region 8b1 is smaller than the distance between the sealing plate 2 and the current collector second region 8b2. That is, in the direction perpendicular to the sealing plate 2, the current collector first region 8 b 1 is positioned closer to the sealing plate 2 than the current collector second region 8 b 2.
  • the current collector third region 8 b 3 is disposed to be inclined with respect to the sealing plate 2.
  • a vent hole 8g is provided in the current collector third region 8b3.
  • the vent hole 8g connects the space between the gas discharge valve 17 and the current collector second region 8b2 and the space between the negative electrode current collector 8 and the electrode body 3. Therefore, the gas generated in the electrode body 3 can flow from the electrode body 3 side to the gas discharge valve 17 side through the vent hole 8g.
  • the vent hole 8g is preferably formed so as to straddle the current collector first region 8b1 and the current collector second region 8b2.
  • the first negative electrode current collector 8a is connected to the current collector fourth region 8b4.
  • the current collector fifth region 8b5 connects the current collector first region 8b1 and the current collector fourth region 8b4.
  • the current collector fourth region 8 b 4 is disposed substantially parallel to the sealing plate 2. In the direction perpendicular to the sealing plate 2, the distance between the sealing plate 2 and the current collector first region 8b1 is smaller than the distance between the sealing plate 2 and the current collector fourth region 8b4. In the direction perpendicular to the sealing plate 2, the distance between the sealing plate 2 and the current collector fourth region 8 b 4 is smaller than the distance between the sealing plate 2 and the current collector second region 8 b 2.
  • the second negative electrode current collector 8b can be connected to the negative electrode external terminal 9 without using the first negative electrode current collector 8a.
  • the negative electrode external terminal 9 can be connected to the current collector first region 8b1 without providing the current collector fourth region 8b4 and the current collector fifth region 8b5.
  • the current collector second region 8 b 2 corresponds to a metal shielding member disposed between the gas exhaust valve 17 and the electrode body 3 and facing the gas exhaust valve 17.
  • a shielding member wall portion 8h extending toward the sealing plate 2 is provided in the current collector second region 8b2 of the second negative electrode current collector 8b. Shielding member wall portions 8h are provided at both ends of the current collector second region 8b2 in the short direction of the sealing plate 2, respectively. If the current collector second region 8b2 is provided with the shielding member wall 8h, the current collector second region 8b2 moves toward the sealing plate 2 and the current collector second region 8b2 blocks the gas discharge valve 17. Can be prevented.
  • the second negative electrode current collector 8b is preferably formed by bending a single plate material. In this case, the shielding member wall 8h is formed so as to be bent from the end of the current collector second region 8b2.
  • Current collector opening 8y and current collector first recess 8f are provided in current collector fourth region 8b4 of second negative electrode current collector 8b.
  • the first negative electrode current collector 8a is provided with a current collector protrusion 8x.
  • the second negative electrode current collector 8b is provided with a current collector opening 8y.
  • the second negative electrode current collector 8b is formed such that the current collector protrusion 8x of the first negative electrode current collector 8a is positioned within the current collector opening 8y of the second negative electrode current collector 8b. Is disposed on the inner insulating member 12. And the edge part of the collector protrusion 8x of the 1st negative electrode collector 8a and the collector opening 8y of the 2nd negative electrode collector 8b is welded by irradiation of energy rays, such as a laser.
  • a current collector first recess 8f is provided around the current collector opening 8y of the second negative electrode current collector 8b. That is, the current collector opening 8y is formed at the center of the current collector first recess 8f.
  • the first negative electrode current collector 8a and the second negative electrode current collector 8b are connected by welding.
  • the second negative electrode current collector 8b is provided with a target hole 8e.
  • a current collector second recess 8w is formed on the back surface of the current collector projection 8x on the surface facing the inner insulating member 12 of the first negative electrode current collector 8a. This is preferable because it becomes easier to form a larger weld connection between the first negative electrode current collector 8a and the second negative electrode current collector 8b. Further, since the current collector second recess 8w is formed, when the first negative electrode current collector 8a and the second negative electrode current collector 8b are connected by welding, the internal insulating member 12 is caused by heat during welding. It can be prevented from being damaged.
  • the current collector protrusions 6x and the current collector protrusions 8x are each preferably non-circular, and preferably have a square shape, an elliptical shape, or a track shape.
  • first insulating member and second insulating member As described above, after the positive electrode tab 40 and the positive electrode external terminal 7 are electrically connected and the negative electrode tab 50 and the negative electrode external terminal 9 are electrically connected, the first insulating member and the second insulating member are connected. Is preferred.
  • FIG. 12 is a perspective view of the inner insulating member 12 and the second insulating member 80 as the first insulating member.
  • the inner insulating member 12 includes a first insulating member main body 12a that faces the inner surface of the sealing plate 2.
  • the first insulating member body 12a is preferably plate-shaped.
  • the first insulating member main body 12a has a through hole 12d, and the negative external terminal 9 is inserted into the through hole 12d.
  • a pair of first side walls 12 b projecting toward the electrode body 3 are provided at both ends of the first insulating member main body 12 a of the inner side insulating member 12 in the short direction.
  • Connection recesses 12e are provided on the outer surfaces of the pair of first side walls 12b.
  • a pair of second side walls 12 c that protrude toward the electrode body 3 are provided at both ends of the inner insulating member 12 in the longitudinal direction of the first insulating member main body 12 a.
  • an opening 12f is provided in the first insulating member main body 12a at a portion facing the gas exhaust valve 17.
  • the second insulating member 80 has a second insulating member main body portion 80a disposed so as to face the sealing plate 2.
  • the second insulating member main body 80 a is disposed between the sealing plate 2 and the electrode body 3.
  • the second insulating member main body 80a has a wide portion 80a1 at the center in the longitudinal direction of the sealing plate 2, and has narrow portions 80a2 having a width smaller than the width of the wide portion 80a1 on both sides of the wide portion 80a1.
  • a pair of side walls 80 b extending from the second insulating member main body 80 a toward the sealing plate 2 are provided at both ends of the wide portion 80 a 1 of the second insulating member main body 80 a.
  • a pair of connecting portions 80c extending from the second insulating member main body portion 80a toward the sealing plate 2 are provided at both ends of the wide portion 80a1 of the second insulating member main body portion 80a in the short direction of the sealing plate 2. ing.
  • the side wall 80b and the connection part 80c are provided in the longitudinal direction of the sealing board 2 at intervals.
  • the height of the side wall 80b (the length from the second insulating member main body 80a to the upper end of the side wall 80b) is the same as the height of the connecting part 80c (the length from the second insulating member main body 80a to the upper end of the connecting part 80c). A) can be larger.
  • the connecting portion 80c of the second insulating member 80 includes a vertical wall 80c1 extending from the second insulating member main body portion 80a of the second insulating member 80 toward the sealing plate 2, and an inner surface of the vertical wall 80c1 as the first insulating member.
  • a protrusion 80 c 2 protruding toward the inner insulating member 12 is provided.
  • this protrusion part 80c2 is fitted by the recessed part 12e for a connection of the inner side insulating member 12 as a 1st insulating member.
  • the inner insulating member 12 as the first insulating member and the second insulating member 80 are connected.
  • the recessed part for a connection is provided in the edge part by the side of the sealing board 2 of the 1st side wall 12b of the inner side insulating member 12 as a 1st insulating member, Between the inner side insulating member 12 and the sealing board 2 as a 1st insulating member The projecting portion 80c2 may be disposed on the surface.
  • the first negative electrode tab group 50a and the second negative electrode tab group 50b are bent. Thereby, the 1st electrode body element 3a and the 2nd electrode body element 3b are put together, and it is set as the one electrode body 3.
  • the first electrode body element 3a and the second electrode body element 3b are preferably combined together with a tape or the like. Or it is preferable to arrange
  • the electrode body 3 attached to the sealing plate 2 is covered with an insulating sheet 14 and inserted into the rectangular exterior body 1.
  • the insulating sheet 14 is preferably formed by bending a flat plate into a box shape or a bag shape.
  • the sealing board 2 and the square exterior body 1 are joined by laser welding etc., and the opening of the square exterior body 1 is sealed.
  • a non-aqueous electrolyte containing an electrolyte solvent and an electrolyte salt is injected into the battery case 100 from the electrolyte injection hole 15 provided in the sealing plate 2. Then, the electrolyte injection hole 15 is sealed with a sealing plug 16.
  • a second insulating member 80 is connected to the inner insulating member 12 as the first insulating member fixed to the sealing plate 2. Therefore, when the square secondary battery 20 is subjected to vibration or impact, the second insulating member 80 can be prevented from moving greatly in the battery case 100. Therefore, it is possible to reliably prevent an unexpected short circuit that may occur due to the displacement of the second insulating member 80. Alternatively, the second insulating member 80 can move inside the battery case 100 and the second insulating member 80 can be prevented from damaging the positive electrode tab 40 or the negative electrode tab 50.
  • One narrow portion 80a2 of the second insulating member 80 is disposed between the first positive electrode tab group 40a and the second positive electrode tab group 40b, and between the first negative electrode tab group 50a and the second negative electrode tab group 50b.
  • the other narrow portion 80a2 of the second insulating member 80 is preferably disposed.
  • the wide portion 80a1 of the second insulating member 80 is interposed between the first positive electrode tab group 40a and the second positive electrode tab group 40b, and the first negative electrode tab group 50a and the second negative electrode tab group 50b. Is preferably arranged. With such a configuration, it is possible to more reliably prevent the second insulating member 80 from damaging the tab.
  • the second insulating member 80 does not necessarily have a wide part and a narrow part.
  • a pair of side walls 80b extending from the second insulating member main body 80a toward the sealing plate 2 are provided at both ends of the wide portion 80a1 of the second insulating member main body 80a of the second insulating member 80 in the short direction of the sealing plate 2. Is provided.
  • the length of the side wall 80b is preferably shorter than the length of the second insulating member main body 80a.
  • a protrusion part can be provided in the side wall 80b, and it can also be set as the connection part connected with the inner side insulating member 12 as a 1st insulating member.
  • the inner insulating member 12 and the second insulating member 80 as the first insulating member are preferably made of resin.
  • resin for example, those made of polypropylene, polyethylene, perfluoroalkoxyalkane (PFA), polytetrafluoroethylene (PTFE), ethylene / tetrafluoroethylene copolymer (ETFE), or the like can be used.
  • FIG. 13 is a cross-sectional view along the short direction of the sealing plate 2 in the vicinity of the connecting portion between the first negative electrode tab group 50a and the second negative electrode tab group 50b and the second negative electrode current collector 8b.
  • the first negative electrode tab group 50a of the first electrode body element 3a and the second negative electrode tab group 50b of the second electrode body element 3b are welded to the second negative electrode current collector 8b, respectively. It is connected.
  • the narrow portion 80a2 of the second insulating member 80 is disposed between the first negative electrode tab group 50a and the second negative electrode tab group 50b.
  • the corner portion C facing the first negative electrode tab group 50a or the second negative electrode tab group 50b is preferably chamfered. Accordingly, the first negative electrode tab group 50a or the second negative electrode tab group 50b can be reliably prevented from being damaged by the narrow portion 80a2 of the second insulating member 80.
  • the second insulation is provided between the first positive electrode tab group 40a of the first electrode body element 3a and the second positive electrode tab group 40b of the second electrode body element 3b.
  • a narrow portion 80a2 of the member 80 is disposed.
  • the negative electrode current collector member 8 (the current collector of the second negative electrode current collector 8 b) is positioned between the gas discharge valve 17 and the electrode body 3 and facing the gas discharge valve 17.
  • the body second region 8b2) is arranged. Therefore, it is possible to suppress the high-temperature melt or spark generated in the electrode body 3 from being ejected from the gas discharge valve 17.
  • the 2nd negative electrode collector 8b consists of iron alloys, such as copper, copper alloy, nickel, a nickel alloy, iron, or stainless steel.
  • the distance between the sealing plate 2 and the current collector first region 8b1 is smaller than the distance between the sealing plate 2 and the current collector second region 8b2.
  • a space between the gas discharge valve 17 and the current collector second region 8b2 can be secured.
  • a negative electrode tab 50 connected to the current collector first region 8b1 is disposed in a space beside the current collector second region 8b2. For this reason, the space in the battery case 100 can be utilized more efficiently. Therefore, the secondary battery has a higher volumetric energy density and higher reliability.
  • FIG. 14 is a cross-sectional view taken along the short direction of the sealing plate 2 in the current collector second region 8b2 of the gas discharge valve 17 and the second negative electrode current collector 8b.
  • the current collector second region 8b2 is provided with a shielding member wall portion 8h extending from the current collector second region 8b2 toward the sealing plate 2. For this reason, it can prevent reliably that the collector 2nd area
  • the shielding member wall portion 8h is made of metal, the shielding member wall portion 8h is hardly melted even when the prismatic secondary battery 20 becomes high temperature.
  • the inner side insulating member 12 is arrange
  • the second negative electrode current collector 8b is provided with a vent hole 8g. Thereby, exhaust is performed more smoothly.
  • the position where the air hole 8g is arranged is provided at a position that does not overlap with the gas discharge valve 17 when the rectangular secondary battery 20 is viewed from the direction perpendicular to the sealing plate 2.
  • variety in the transversal direction of a sealing board is smaller than the width
  • variety in the transversal direction of the sealing board 2 becomes small is formed in the collector 2nd area
  • the 2nd insulating member 80 is not an essential structure, and the 2nd insulating member 80 does not need to be arrange
  • the insulating layer 91 can be formed by applying a resin to the current collector second region 8b2 or attaching an insulating tape.
  • the insulating member disposed between the current collector second region 8b2 of the second negative electrode current collector 8b and the sealing plate 2 is not a part of the inner insulating member 12, but is a separate part from the inner insulating member 12. It can also be.
  • the current collector second region 8b2 may be resin-molded so that the current collector second region 8b2 of the second negative electrode current collector 8b is disposed in the resin member.
  • FIG. 16 is a cross-sectional view of the vicinity of the sealing plate along the longitudinal direction of the sealing plate of the prismatic secondary battery 200 according to the modification.
  • An electrode body 103 including a positive electrode plate and a negative electrode plate is disposed in a rectangular exterior body 101 having an opening. The opening of the rectangular exterior body 101 is sealed by a sealing plate 102.
  • a battery case is constituted by the rectangular outer casing 101 and the sealing plate 102.
  • An insulating sheet 118 formed in a box shape is disposed between the rectangular exterior body 101 and the electrode body 103.
  • the rectangular outer casing 101 and the sealing plate 102 are preferably made of aluminum, an aluminum alloy, stainless steel, or the like.
  • the electrode body 103 can be configured as described above, for example.
  • the positive electrode tab 104 connected to the positive electrode plate is connected to the positive electrode external terminal 108 via the positive electrode current collecting member 106. Outside the battery case, the positive external conductive member 110 is connected to the positive external terminal 108. Between the sealing plate 102 and the positive electrode current collector 106, a resin-made inner insulating member 112 is disposed. Between the positive electrode external conductive member 110 and the sealing plate 2, an external insulating member 113 made of resin is disposed. The external insulating member 113 is provided with an opening 113a. A connection protrusion 110 a of the positive external conductive member 110 is disposed in the opening 113 a, and the connection protrusion 110 a of the positive external conductive member 110 is in contact with the sealing plate 102. For this reason, the sealing plate 102 is electrically connected to the positive electrode plate.
  • the negative electrode tab 105 connected to the negative electrode plate is connected to the negative electrode external terminal 109 via the negative electrode current collecting member 107.
  • a negative external conductive member 111 is connected to the negative external terminal 109.
  • an internal insulating member 114 made of resin is disposed between the sealing plate 102 and the negative electrode current collecting member 107.
  • a resin-made external insulating member 115 is disposed between the negative electrode external conductive member 111 and the sealing plate 2.
  • the sealing plate 102 is provided with a gas discharge valve 116 that breaks when the pressure in the battery case becomes equal to or higher than a predetermined value and discharges the gas in the battery case to the outside of the battery case. Further, the sealing plate 102 is provided with a deformation plate 117 that is deformed so as to be reversed when the pressure in the battery case becomes a predetermined pressure or more. By deforming the deformable plate 117, the deformable plate 117 comes into contact with the negative electrode external conductive member 111, and the positive and negative electrodes are short-circuited. With such a configuration, when the square secondary battery 200 is overcharged and the pressure in the battery case is increased, the positive and negative electrodes are short-circuited, and further progress of overcharge can be suppressed.
  • the energy in the electrode body 103 can be released.
  • the positive current collecting member 106 or the positive external conductive member 110 is provided with a fuse portion so that the fuse portion is blown by a short-circuit current. Note that the pressure in the battery case in which the positive and negative electrodes are short-circuited due to the deformation of the deformation plate 117 is set to a value lower than the pressure at which the gas discharge valve 17 breaks.
  • the sealing plate 102 is provided with an electrolyte injection hole 119. After injecting the electrolytic solution into the rectangular outer casing 101, the electrolytic solution injection hole 119 is sealed with the sealing plug 120.
  • a metal shielding member 130 is connected to the surface of the sealing plate 102 on the electrode body 103 side.
  • the shielding member 130 is disposed so as to face the gas exhaust valve 116 in the battery case. Thereby, it can suppress that the high temperature melt and spark which generate
  • the shielding member 130 is preferably made of copper, a copper alloy, nickel, a nickel alloy, an iron alloy such as iron or stainless steel, aluminum, an aluminum alloy, or the like. Further, the shielding member 130 is preferably made of a metal having a melting point higher than that of the metal constituting the sealing plate 102.
  • FIG. 17 is a perspective view of the shielding member 130.
  • the electrode body 103 side is shown as the upper side
  • the sealing plate 102 side is shown as the lower side.
  • the shielding member 130 includes a shielding member main body portion 130a, a leg portion 130b extending from the end of the shielding member main body portion 130a toward the sealing plate 102, and a shielding member connecting portion 130c provided on the distal end side of the leg portion 130b.
  • the shielding member main body 130a is disposed so as to face the gas discharge valve 116. Further, the shielding member connecting portion 130 c is connected to the sealing plate 102.
  • the shielding member main body 130a is arranged at a distance from the sealing plate 102 by the leg 130b.
  • the leg portions 130b are formed at four locations, and a gap 130d and a gap 130e are formed between the leg portions 130b.
  • a gap 130d is provided on each of the left and right sides, and a gap 130e is provided on each of the near side and the back side.
  • connection method of the shielding member 130 and the sealing plate 102 is not particularly limited.
  • it can be connected by welding, sticking with an adhesive, fitting, caulking, or the like.
  • FIG. 18 is a cross-sectional view along the longitudinal direction of the sealing plate 102 in the vicinity of the connection portion between the shielding member connecting portion 130 c of the shielding member 130 and the sealing plate 102.
  • FIG. 18 is a diagram showing an example in which the sealing plate 102 and the shielding member 130 are connected by welding.
  • a projection 102b is provided on the surface of the sealing plate 102 on the electrode body 103 side, and the shielding member connecting portion 130c of the shielding member 130 and the projection 102b can be welded and connected by a laser or the like.
  • the protrusion 102b is arrange
  • a plurality of protrusions 102 b are provided at positions where they contact each of the plurality of shielding member connecting portions 130 c of the shielding member 130.
  • FIG. 19 is a view showing a connection method between the shielding member 130 and the sealing plate 102 and is a view showing a surface of the sealing plate 102 on the electrode body 103 side.
  • a notch 130y is provided in the shielding member connecting portion 130c of the shielding member 130, and a protrusion 102c provided on the sealing plate 102 is fitted into the notch 130y so that the shielding member connecting portion 130c and the protrusion 102c are connected. Can be welded.
  • FIG. 20 is a diagram illustrating a connection method between the shielding member 130 and the sealing plate 102 and is a diagram illustrating a surface of the sealing plate 102 on the electrode body 103 side.
  • the opening 130z is provided in the shielding member connecting portion 130c of the shielding member 130
  • the projection 102c provided on the sealing plate 102 is disposed in the opening 130z
  • the shielding member connecting portion 130c and the projection 102c are connected by welding. be able to.
  • the protrusion 102c may be crimped and fixed on the shielding member connecting portion 130c instead of welding or in addition to welding.
  • the shielding member connecting portion 130c may be deformed and fixed to the protrusion 102c. Even if it is difficult to weld the shielding member 130 and the sealing plate 102, the shielding member 130 and the sealing plate 102 can be easily connected by the method of crimping the protrusion 102 c or the method of deforming the shielding member connecting portion 130 c. it can.
  • the shielding member may be shaped as shown in FIG.
  • FIG. 21 is a perspective view of the shielding member 230 and corresponds to FIG.
  • the shielding member main body 230a two leg portions 230b extend toward the sealing plate from both ends of the sealing plate in the short direction.
  • Each leg part 230b is provided with a shielding member connection part 230c, and the shielding member connection part 230c is connected to the sealing plate.
  • a gap 230d and a gap 230e are formed between the leg portions 230b.
  • FIG. 22 is a diagram showing the inner insulating member 114 on the negative electrode side.
  • 22A is a view showing a surface of the internal insulating member 114 on the electrode body 103 side
  • FIG. 22B is a cross-sectional view taken along line EE in FIG.
  • the inner insulating member 114 has an insulating member main body 114 a that is disposed along the inner surface of the sealing plate 102.
  • the insulating member main body 114a is provided with a terminal insertion hole 114b into which the negative external terminal 109 is inserted.
  • a through hole 114c is provided at a position facing the deformation plate 117 provided on the sealing plate 102.
  • the insulating member main body 114a is provided with a protruding portion 114d that protrudes toward the electrode body 103.
  • the position of the end of the protruding portion 114d on the electrode body 103 side is preferably located closer to the electrode body 103 than the end of the shielding member 130 on the electrode body 103 side. With such a configuration, it is possible to prevent the electrode body 103 from contacting the shielding member 130 even if the electrode body 103 moves to the sealing plate 102 side.
  • the protrusion 114d is preferably provided in the vicinity of the shielding member 130.
  • the protruding portion 114d of the inner insulating member 114 is not an essential configuration.
  • An insulating layer may be formed on the surface of the shielding member main body 130a of the shielding member 130 on the electrode body 103 side.
  • FIG. 23 is a diagram showing the internal insulating member 112 on the positive electrode side.
  • 23A is a view showing a surface of the inner insulating member 112 on the electrode body 103 side
  • FIG. 23B is a cross-sectional view taken along the line FF in FIG. 23A.
  • the inner insulating member 112 has an insulating member main body 112 a that is disposed along the inner surface of the sealing plate 102.
  • the insulating member main body 112a is provided with a terminal insertion hole 112b into which the positive external terminal 108 is inserted. Further, in the insulating member main body 112a, a through hole 112c is provided at a position facing the electrolyte solution injection hole 119 provided in the sealing plate 102.
  • the insulating member main body 112a is provided with a protruding portion 112d that protrudes toward the electrode body 103.
  • the position of the end portion of the protruding portion 112d on the electrode body 103 side is preferably located closer to the electrode body 103 than the end portion of the shielding member 130 on the electrode body 103 side. With such a configuration, it is possible to prevent the electrode body 103 from contacting the shielding member 130 even if the electrode body 103 moves to the sealing plate 102 side.
  • the protrusion 112d is preferably provided in the vicinity of the shielding member 130.
  • FIG. 24 is a cross-sectional view along the short direction of the sealing plate 102 of the prismatic secondary battery, the gas discharge valve 116, and the sealing member main body 330a of the shielding member according to another modification.
  • the cross section of the portion of the shielding member that faces the gas exhaust valve 116 can be V-shaped. With such a shape, gas can be discharged more smoothly.
  • the electrode body is a laminated electrode body having a plurality of positive electrode plates and a plurality of negative electrode plates, or the electrode body is a wound electrode body, and its winding axis is in a direction perpendicular to the sealing plate
  • the tip of the positive electrode plate, the tip of the negative electrode plate, and the tip of the separator are located on the sealing plate side in the electrode body.
  • the end portion on the sealing plate side of the separator protrudes toward the sealing plate 2 side rather than the end portion on the sealing plate side of the negative electrode active material mixture layer in the negative electrode plate.
  • the end portion on the sealing plate side of the separator protrudes toward the sealing plate side than the end portion on the sealing plate side of the positive electrode active material mixture layer in the positive electrode plate.
  • the positive electrode plate and the separator are bonded by an adhesive layer, and the negative electrode plate and the separator are bonded by an adhesive layer.
  • the electrode body 3 may be a single stacked electrode body.
  • the electrode body 3 may be a single wound electrode body in which a long positive electrode plate and a long negative electrode plate are wound via a separator.
  • the two electrode body elements 3a and 3b are not limited to laminated electrode bodies, but are wound electrode bodies in which a long positive electrode plate and a long negative electrode plate are wound via a separator. May be.
  • a wound electrode body may be used. Further, the direction of the wound electrode body arranged in the rectangular outer package is not particularly limited.
  • first insulating member and the second insulating member are connected has been described.
  • first insulating member and the second insulating member may not be connected.
  • second insulating member may not be used.
  • the volume energy density of the prismatic secondary battery is preferably 300 Wh / L or more.
  • the volume energy density of the prismatic secondary battery is obtained by (the output of the prismatic secondary battery [Wh] / the volume of the prismatic secondary battery [L]).
  • the battery capacity of a square secondary battery is 20 Ah or more, and it is more preferable that it is 30 Ah or more.
  • the present invention is particularly effective when the end portions of the positive electrode plate and the negative electrode plate are arranged on the sealing plate side.
  • SYMBOLS 20 Square secondary battery, 1 ... Square exterior body, 2 ... Sealing plate, 2a ... Positive electrode terminal attachment hole, 2b ... Negative electrode terminal attachment hole, 100 ... Battery case, 3 ... Electrode body, 3a ... 1st electrode body element, 3b ... 2nd electrode body element, 4 ... Positive electrode plate, 4a ... Positive electrode core body, 4b ... Positive electrode active material Mixture layer, 4d ... positive electrode protective layer, 40 ... positive electrode tab, 40a ... first positive electrode tab group, 40b ... second positive electrode tab group, 5 ... negative electrode plate, 5a ... Negative electrode core, 5b ... negative electrode active material mixture layer, 50 ... negative electrode tab, 50a ...
  • First negative electrode current collector 8x... Current collector protrusion, 8w ... current collector second recess, 8b.
  • Negative electrode current collector, 8b1 ... current collector first region, 8b2 ... current collector second region, 8b3 ... current collector third region, 8b4 ... current collector fourth region, 8b5 ... Current collector fifth region, 8e ... Target hole, 8f ... Current collector first recess, 8g ... Vent hole, 8h ... Shield member wall, 8i ... Constriction , 8y ... current collector Port, 9 ... negative electrode external terminal, 10 ... inner side insulating member, 11 ... outer side insulating member, 12 ... inner side insulating member, 12a ...
  • first insulating member main body 12b .. First side wall, 12c ... second side wall, 12d ... through hole, 12e ... connection recess, 12f ... opening, 13 ... external insulating member, 14 ... insulating sheet 15 ... Electrolyte injection hole, 16 ... Seal plug, 17 ... Gas discharge valve, 60 ... Current interruption mechanism, 61 ... Conductive member, 62 ... Deformation plate, 63 ... 3rd insulating member, 63b ... Insulating member opening, 63c ... Insulating member protrusion, 63x ... Insulating member 1st area
  • shielding member connecting part 130d ... gap, 130e ... gap, 130z ... opening, 230 ... shielding 230a ... shielding member main body, 230b ... leg member, 230c ... shielding member connecting part, 230d ... gap, 230e ... gap, 330a ... shielding member main body part

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)

Abstract

信頼性の高い角形二次電池を提供する。正極板と負極板を含む電極体(3)と、開口を有し電極体(3)を収容する角形外装体(1)と、角形外装体(1)の開口を封口する封口板(2)と、を備えた角形二次電池(20)であって、封口板(2)には角形外装体(1)内の圧力が所定値以上となった時に破断し角形外装体(1)内のガスを角形外装体(1)外に排出するガス排出弁(17)が設けられている。封口板(2)と電極体(3)の間であって、ガス排出弁(17)と対向する位置には、第2負極集電体(8b)の一部が遮蔽部材として配置されている。

Description

角形二次電池
 本発明は角形二次電池に関する。
 電気自動車(EV)やハイブリッド電気自動車(HEV、PHEV)等の駆動用電源において、アルカリ二次電池や非水電解質二次電池等の角形二次電池が使用されている。
 これらの角形二次電池では、開口を有する有底筒状の角形外装体と、その開口を封口する封口板により電池ケースが構成される。電池ケース内には、正極板、負極板及びセパレータからなる電極体が電解液と共に収容される。封口板には正極端子及び負極端子が取り付けられる。正極端子は正極集電体を介して正極板に電気的に接続され、負極端子は負極集電体を介して負極板に電気的に接続される。
 正極板は、金属製の正極芯体と、正極芯体表面に形成された正極活物質合剤層を含む。正極芯体の一部には正極活物質合剤層が形成されない正極芯体露出部が形成される。そして、この正極芯体露出部に正極集電体が接続される。また、負極板は金属製の負極芯体と、負極芯体表面に形成された負極活物質合剤層を含む。負極芯体の一部には負極活物質合剤層が形成されない負極芯体露出部が形成される。そして、この負極芯体露出部に負極集電体が接続される。
 角形二次電池の電池ケースには、角形二次電池に異常が生じ電池ケース内の圧力が所定値以上となった場合に破断し、電池ケース内のガスを電池ケース外に排出するガス排出弁が設けられている。
特開2015-149161号公報
 電池容量の大きい角形二次電池において、角形二次電池に異常が生じた場合、電池ケース内の圧力が上昇しガス排出弁が作動した際、高温の溶融物や火花等がガス排出弁から噴出する可能性がある。
 本発明は、信頼性の高い角形二次電池を提供することを主な目的とする。
 本発明の一様態の角形二次電池は、
 正極板と負極板を含む電極体と、
 開口を有し、前記電極体を収容する角形外装体と、
 ガス排出弁を備え前記開口を封口する封口板と、
 前記正極板又は前記負極板に電気的に接続され、前記角形外装体内に配置された集電部材と、を備え、
 前記ガス排出弁と前記電極体の間であって前記ガス排出弁と対向する位置に、金属製の遮蔽部材が配置されている。
 このような構成であると、角形二次電池に異常が生じガス排出弁が作動した際に、電極体等の高温の溶融物や火花等がガス排出弁から電池ケース外に噴出することを抑制できる。よって、より信頼性の高い角形二次電池となる。なお、遮蔽部材はガス排出弁と直接対向する必要はなく、他の部材、例えば絶縁部材等を介して対向していてもよい。
 集電部材の一部を遮蔽部材とすることができる。これにより、より簡単な方法で電極体等の高温の溶融物や火花等がガス排出弁から電池ケース外に噴出することを抑制できる。
 集電部材とは別の部品からなる遮蔽部材を封口板の電池内面に接続することができる。これにより、より確実に電極体等の高温の溶融物や火花等がガス排出弁から電池ケース外に噴出することを抑制できる。
 本発明によると、より信頼性の高い角形二次電池を提供できる。
実施形態に係る角形二次電池の斜視図である。 図1のII-II線の断面図である。 実施形態に係る正極板の平面図である。 実施形態に係る負極板の平面図である。 実施形態に係る電極体要素の平面図である。 各部品を取り付けた後の封口板の下面図である。 図6におけるVII-VII線の断面図である。 図7における第1正極集電体、第2正極集電体及び電流遮断機構の近傍の拡大図である。 図7における第1負極集電体及び第2負極集電体の近傍の拡大図である。 第2集電体にタブを接続する工程を示す図である。 第2負極集電体を示す図である。 第1絶縁部材及び第2絶縁部材の斜視図である。 負極タブと第2負極集電体の接続部近傍の封口板の短手方向に沿った断面図である。 ガス排出弁、第2負極集電体の集電体第2領域の封口板の短手方向に沿った断面図である。 変形例に係る角形二次電池のガス排出弁、第2負極集電体の集電体第2領域の封口板の短手方向に沿った断面図である。 変形例に係る角形二次電池の封口板近傍の断面図である。 変形例に係る角形二次電池の遮蔽部材の斜視図である。 変形例に係る角形二次電池の遮蔽部材と封口板の接続部の断面図である。 変形例に係る角形二次電池の遮蔽部材と封口板の接続部の平面図である。 変形例に係る角形二次電池の遮蔽部材と封口板の接続部の平面図である。 変形例に係る角形二次電池の角形二次電池の遮蔽部材の斜視図である。 変形例に係る角形二次電池の負極側の内側絶縁部材の平面図及び断面図である。 変形例に係る角形二次電池の正極側の内側絶縁部材の平面図及び断面図である。 変形例に係る角形二次電池の封口板及び遮蔽部材の断面図である。
 実施形態に係る角形二次電池20の構成を以下に説明する。なお、本発明は、以下の実施形態に限定されない。
 図1は角形二次電池20の斜視図である。図2は図1のII-II線の断面図である。図1及び図2に示すように角形二次電池20は、開口を有する有底角筒状の角形外装体1と、角形外装体1の開口を封口する封口板2からなる電池ケース100を備える。角形外装体1及び封口板2は、それぞれ金属製であることが好ましく、例えば、アルミニウム又はアルミニウム合金製とすることが好ましい。角形外装体1内には、複数の正極板と複数の負極板がセパレータを介して積層された積層型の電極体3が電解液と共に収容されている。電極体3と角形外装体1の間には樹脂製の絶縁シート14が配置されている。
 電極体3の封口板2側の端部には、正極タブ40及び負極タブ50が設けられている。正極タブ40は第2正極集電体6b及び第1正極集電体6aを介して正極外部端子7に電気的に接続されている。負極タブ50は第2負極集電体8b及び第1負極集電体8aを介して負極外部端子9に電気的に接続されている。ここで、第1正極集電体6a及び第2正極集電体6bが、正極集電部材6を構成している。また、第1負極集電体8a及び第2負極集電体8bが、負極集電部材8を構成している。なお、正極集電部材6を一つの部品とすることもできる。また、負極集電部材8を一つの部品とすることもできる。
 正極外部端子7は、樹脂製の外部側絶縁部材11を介して封口板2に固定されている。負極外部端子9は、樹脂製の外部側絶縁部材13を介して封口板2に固定されている。正極外部端子7は金属製であることが好ましく、アルミニウム又はアルミニウム合金製であることがより好ましい。負極外部端子9は金属製であることが好ましく、銅又は銅合金製であることがより好ましい。また、負極外部端子9は、電池ケース100の内部側に銅又は銅合金からなる部分を有し、電池ケース100の外部側にアルミニウム又はアルミニウム合金からなる部分を有することが更に好ましい。なお、負極外部端子9の表面にニッケルメッキ等が施されていることが好ましい。
 正極板と正極外部端子7の間の導電経路には、電池ケース100内の圧力が所定値以上となった際に作動し、正極板と正極外部端子7の間の導電経路を遮断する電流遮断機構60が設けられることが好ましい。なお、負極板と負極外部端子9の間の導電経路に電流遮断機構を設けてもよい。
 封口板2には電池ケース100内の圧力が所定値以上となった際に破断し、電池ケース100内のガスを電池ケース100外に排出するガス排出弁17が設けられている。ガス排出弁17は、封口板2における他の部分よりも薄肉に形成されている。なお、封口板2をプレス加工することによりガス排出弁17を形成することができる。また、封口板2にガス排出弁用の貫通孔を設け、この貫通孔を薄肉の弁で塞ぎガス排出弁17とすることもできる。なお、ガス排出弁17の作動圧は、電流遮断機構60の作動圧よりも大きい値に設定する。
 封口板2には電解液注液孔15が設けられている。電解液注液孔15から電池ケース100内に電解液を注液した後、電解液注液孔15は封止栓16により封止される。
 次に角形二次電池20の製造方法について説明する。
 [正極板の作製]
 正極活物質としてのリチウムニッケルコバルトマンガン複合酸化物、結着剤としてのポリフッ化ビニリデン(PVdF)、導電剤としての炭素材料、及び分散媒としてのN-メチル-2-ピロリドン(NMP)を含む正極スラリーを作製する。この正極スラリーを、正極芯体としての厚さ15μmの矩形状のアルミニウム箔の両面に塗布する。そして、これを乾燥させることにより、正極スラリー中のN-メチル-2-ピロリドンを取り除き、正極芯体上に正極活物質合剤層を形成する。その後、正極活物質合剤層を所定厚みになるように圧縮処理を行う。このようにして得られた正極板を所定の形状に切断する。
 図3は、上述の方法で作製した正極板4の平面図である。図3に示すように、正極板4は、矩形状の正極芯体4aの両面に正極活物質合剤層4bが形成された本体部を有する。本体部の端辺から正極芯体4aが突出しており、この突出した正極芯体4aが正極タブ40を構成する。なお、正極タブ40は、図3に示すように正極芯体4aの一部であっても良いし、他の部材を正極芯体4aに接続し、正極タブ40としてもよい。また、正極タブ40において正極活物質合剤層4bと隣接する部分には、正極活物質合剤層4bの電気抵抗よりも大きな電気抵抗を有する正極保護層4dが設けられることが好ましい。この正極保護層4dは、アルミナ、シリカ、ジルコニア等のセラミック粒子、及びバインダーを含むことが好ましい。また、正極保護層4dは、炭素材料等の導電性粒子を含むことが更に好ましい。
 [負極板の作製]
 負極活物質としての黒鉛、結着剤としてのスチレンブタジエンゴム(SBR)、増粘剤としてのカルボキシメチルセルロース(CMC)、及び水を含む負極スラリーを作製する。この負極スラリーを、負極芯体としての厚さ8μmの矩形状の銅箔の両面に塗布する。そして、これを乾燥させることにより、負極スラリー中の水を取り除き、負芯体上に負極活物質合剤層を形成する。その後、負極活物質合剤層を所定厚みになるように圧縮処理を行う。このようにして得られた負極板を所定の形状に切断する。
 図4は、上述の方法で作製した負極板5の平面図である。図4に示すように、負極板5は、矩形状の負極芯体5aの両面に負極活物質合剤層5bが形成された本体部を有する。本体部の端辺から負極芯体5aが突出しており、この突出した負極芯体5aが負極タブ50を構成する。なお、負極タブ50は、図4に示すように負極芯体5aの一部であっても良いし、他の部材を負極芯体5aに接続し、負極タブ50としてもよい。
 [電極体要素の作製]
 50枚の正極板4及び51枚の負極板5を上述の方法で作製し、これらをポリオレフィン製の方形状のセパレータを介して積層し積層型の電極体要素(3a、3b)を作製する。図5に示すように、積層型の電極体要素(3a、3b)は、一方の端部において、各正極板4の正極タブ40が積層され、各負極板5の負極タブ50が積層されるように作製される。電極体要素(3a、3b)の両外面にはセパレータが配置され、テープ等により各極板及びセパレータが積層された状態に固定することができる。あるいは、セパレータに接着層を設け、セパレータと正極板4、セパレータと負極板5がそれぞれ接着されるようにしてもよい。
 なお、セパレータの平面視の大きさは負極板5と同じ、あるいは負極板5よりも大きくすることが好ましい。2枚のセパレータの間に正極板4を配置し、セパレータの周縁を熱溶着した状態とした後、正極板4と負極板5を積層してもよい。なお、電極体要素(3a、3b)を作製するに当たり、長尺状のセパレータを用い、長尺状のセパレータを九十九折状にしながら正極板4及び負極板5を積層することもできる。また、長尺状のセパレータを用い、長尺状のセパレータを巻回しながら正極板4及び負極板5を積層することもできる。
 [封口板への各部品取り付け]
 図2、図6~図8を用いて、封口板2への正極外部端子7及び第1正極集電体6aの取り付け方法及び電流遮断機構60の構成を説明する。
 封口板2に設けられた正極端子取り付け孔2aの外面側に外部側絶縁部材11を配置し、正極端子取り付け孔2aの内面側に内部側絶縁部材10及びカップ形状を有する導電部材61を配置する。次に、正極外部端子7を、外部側絶縁部材11の貫通孔、封口板2の正極端子取り付け孔2a、内部側絶縁部材10の貫通孔及び導電部材61の貫通孔のそれぞれに挿入する。そして、正極外部端子7の先端を導電部材61上にカシメる。これにより、正極外部端子7、外部側絶縁部材11、封口板2、内部側絶縁部材10及び導電部材61が固定される。なお、正極外部端子7においてカシメられた部分と導電部材61はレーザ溶接等により溶接されることが好ましい。また、内部側絶縁部材10及び外部側絶縁部材11はそれぞれ樹脂製であることが好ましい。
 導電部材61は電極体3側に開口部を有する。円盤状の変形板62は、導電部材61の開口部を塞ぐように配置され、変形板62の周縁が導電部材61に溶接接続される。これにより、導電部材61の開口部が変形板62により密閉されている。なお、導電部材61及び変形板62はそれぞれ金属製であることが好ましく、アルミニウム又はアルミニウム合金であることがより好ましい。
 次に、変形板62の電極体3側に、樹脂製の第3絶縁部材63が配置される。第3絶縁部材63は接続部を有し、この接続部が内部側絶縁部材10に接続されることが好ましい。また、第3絶縁部材63に爪状の引っ掛け固定部を設け、導電部材61にフランジ部、凹部又は凸部を設け、第3絶縁部材63の引っ掛け固定部を、導電部材61にフランジ部、凹部又は凸部に固定することが好ましい。
 第3絶縁部材63の電極体3側の面には固定用突起が形成されている。また、第3絶縁部材63は、変形板62の下方に配置される絶縁部材第1領域63xと、絶縁部材第1領域63xにおける端部から封口板2に向かって延びる絶縁部材第2領域63yと、絶縁部材第2領域63yの端部から封口板2に沿って延びる絶縁部材第3領域63zを有することが好ましい。絶縁部材第3領域63zにおいて、封口板2の電解液注液孔15と対向する位置には、絶縁部材開口63bが設けられている。また、絶縁部材開口63bの縁部には、電極体3に向かって突出する絶縁部材突起63cが設けられている。
 次に、第1正極集電体6aを第3絶縁部材63の電極体3側に配置する。第1正極集電体6aは、固定用貫通孔を有する。そして、第3絶縁部材63の固定用突起を第1正極集電体6aの固定用貫通孔に挿入し、固定用突起の先端を拡径し、第3絶縁部材63と第1正極集電体6aを固定する。これにより固定部70が形成される。固定部70は、図6に示すように、変形板62と第1正極集電体6aの接続部を囲むように4箇所に設けられることが好ましい。
 その後、第3絶縁部材63に設けられた貫通孔を介して、変形板62と第1正極集電体6aが溶接接続される。なお、第1正極集電体6aは、薄肉部6cを有し、この薄肉部6cにおいて変形板62と溶接接続されることが好ましい。薄肉部6cの中央には開口が設けられ、この開口の縁部を変形板62と溶接接続することが好ましい。また、薄肉部6cには、第1正極集電体6aと変形板62の接続部を囲むように、環状のノッチ部を設けることがより好ましい。
 電池ケース100内の圧力が所定値以上となったとき、変形板62の中央部が上方(正極外部端子7側)に移動するように変形板62が変形する。この変形板62の変形に伴い、第1正極集電体6aの薄肉部6cが破断する。これにより、正極板4と正極外部端子7の導電経路が切断される。
 なお、正極外部端子7に端子貫通孔7bを設けておき、この端子貫通孔7bを通じて電流遮断機構60内部にガスを流し込み、導電部材61と変形板62の接続部のリークチェックを行うことができる。また、ガスにより変形板62を第1正極集電体6aに押し付けた状態で変形板62と第1正極集電体6aを溶接接続することもできる。最終的に端子貫通孔7bは、端子封止部材7aにより封止される。端子封止部材7aは、金属部材7xとゴム部材7yを有することが好ましい。
 第1正極集電体6aは、電極体3側の面に集電体突起6xを有する。
 図2、図6、図7、及び図9を用いて、封口板2への負極外部端子9及び第1負極集電体8aの取り付け方法を説明する。
 封口板2に設けられた負極端子取り付け孔2bの外面側に外部側絶縁部材13を配置し、負極端子取り付け孔2bの内面側に内部側絶縁部材12及び第1負極集電体8aを配置する。次に、負極外部端子9を、外部側絶縁部材13の貫通孔、封口板2の負極端子取り付け孔2b、内部側絶縁部材12の貫通孔及び第1負極集電体8aの貫通孔のそれぞれに挿入する。そして、負極外部端子9の先端を第1負極集電体8a上にカシメる。これにより、外部側絶縁部材13、封口板2、内部側絶縁部材12及び第1負極集電体8aが固定される。なお、負極外部端子9においてカシメられた部分と第1負極集電体8aはレーザ溶接等により溶接されることが好ましい。また、内部側絶縁部材12及び外部側絶縁部材13はそれぞれ樹脂製であることが好ましい。
 [第2集電体とタブの接続]
 図10は、第2正極集電体6bへの正極タブ40の接続方法、第2負極集電体8bへの負極タブ50の接続方法を示す図である。上述の方法で2つの電極体要素を作製し、それぞれ第1の電極体要素3a、第2の電極体要素3bとする。なお、第1の電極体要素3aと第2の電極体要素3bは全く同じ構成であってもよいし、異なる構成であってもよい。ここで、第1の電極体要素3aの複数枚の正極タブ40が第1正極タブ群40aを構成する。第1の電極体要素3aの複数枚の負極タブ50が第1負極タブ群50aを構成する。第2の電極体要素3bの複数枚の正極タブ40が第2正極タブ群40bを構成する。第2の電極体要素3bの複数枚の負極タブ50が第2負極タブ群50bを構成する。
 第1の電極体要素3aと第2の電極体要素3bの間に、第2正極集電体6bと第2負極集電体8bを配置する。そして、第1の電極体要素3aから突出する積層された複数枚の正極タブ40からなる第1正極タブ群40aを第2正極集電体6b上に配置し、第1の電極体要素3aから突出する積層された複数枚の負極タブ50からなる第1負極タブ群50aを第2負極集電体8b上に配置する。また、第2の電極体要素3bから突出する積層された複数枚の正極タブ40からなる第2正極タブ群40bを第2正極集電体6b上に配置し、第2の電極体要素3bから突出する積層された複数枚の負極タブ50からなる第2負極タブ群50bを第2負極集電体8b上に配置する。第1正極タブ群40a及び第2正極タブ群40bはそれぞれ第2正極集電体6bに溶接接続され溶接接続部90が形成される。第1負極タブ群50a及び第2負極タブ群50bはそれぞれ第2負極集電体8bに溶接接続され溶接接続部90が形成される。溶接接続は、次のように行うことができる。
 上下から溶接治具により積層されたタブ(第1正極タブ群40a、第2正極タブ群40b、第1負極タブ群50a、第2負極タブ群50b)と集電体(第2正極集電体6b、第2負極集電体8b)を挟み込み、溶接を行う。ここで溶接方法は、超音波溶接、あるいは抵抗溶接が好ましい。これにより、積層されたタブと集電体がより確実に溶接接続される。タブの積層数が多い場合、例えば積層数が20枚以上の場合、レーザ溶接等と比較し、一対の溶接治具により挟み込んだ状態で溶接を行えるため超音波溶接又は抵抗溶接の方がより信頼性の高い溶接接続部を形成することができる。なお、一対の溶接治具は、抵抗溶接の場合は一対の抵抗溶接用電極であり、超音波溶接の場合はホーン及びアンビルである。なお、タブ(第1正極タブ群40a、第2正極タブ群40b、第1負極タブ群50a、第2負極タブ群50b)と集電体(第2正極集電体6b、第2負極集電体8b)の接続は、レーザ溶接で接続することもできる。
 第1の電極体要素3aの第1正極タブ群40aは、第2正極集電体6bにおいて、第2正極集電体6bの幅方向における中央部よりも一方側に接続されている。第2の電極体要素3bの第2正極タブ群40bは、第2正極集電体6bにおいて、第2正極集電体6bの幅方向における中央部よりも他方側に接続されている。
 第2の電極体要素3bの第1負極タブ群50aは、第2負極集電体8bにおいて、第2負極集電体8bの幅方向における中央部よりも一方側に接続されている。第2の電極体要素3bの第2負極タブ群50bは、第2正極集電体6bにおいて、第2正極集電体6bの幅方向における中央部よりも他方側に接続されている。
 図10に示すように、第2正極集電体6bには開口部6zが設けられている。第2正極集電体6bを第1正極集電体6aに接続した後、開口部6zは封口板2に設けられた電解液注液孔15と対応する位置に配置される。そして、第1の電極体要素3aの第1正極タブ群40aは、第2正極集電体6bの幅方向において開口部6zよりも一方側に接続されている。また、第2の電極体要素3bの第2正極タブ群40bは、第2正極集電体6bの幅方向において開口部6zよりも他方側に接続されている。封口板2に対して垂直な方向から第2正極集電体6b、第1正極タブ群40a及び第2正極タブ群40bを見たとき、第1正極タブ群40a及び第2正極タブ群40bにおいて、第2正極集電体6bと略平行に配置される部分が、開口部6zと重ならないようにされることが好ましい。これにより、第2正極集電体6bないし第1正極タブ群40a、第2正極タブ群40bが電解液の注液を妨げることを防止できる。
 なお、封口板2に第1正極集電体6a及び第1負極集電体8aを固定する工程と、第2正極集電体6b及び第2負極集電体8bにそれぞれ正極タブ40及び負極タブ50を接続する工程は、いずれを先に行ってもよい。
 [第1正極集電体と第2正極集電体の接続]
 図6及び図7に示すように、第1正極集電体6aには、集電体突起6xが設けられている。そして、図10に示すように、第2正極集電体6bには集電体開口6yが設けられている。図7及び8に示すように、第1正極集電体6aの集電体突起6xが、第2正極集電体6bの集電体開口6y内に位置するようにして、第2正極集電体6bを第3絶縁部材63上に配置する。そして、第1正極集電体6aの集電体突起6xと第2正極集電体6bの集電体開口6yの縁部をレーザ等のエネルギー線の照射により溶接する。これにより、第1正極集電体6aと第2正極集電体6bが接続される。なお、第2正極集電体6bの集電体開口6yの周囲には集電体第1凹部6fが設けられている。即ち、集電体第1凹部6fの中央に、集電体開口6yが形成されている。集電体第1凹部6fにおいて、第1正極集電体6aと第2正極集電体6bが溶接接続されている。
 図8に示すように、第2正極集電体6bは、集電体第1領域6b1、集電体第2領域6b2、集電体第3領域6b3を有する。集電体第1領域6b1には、正極タブ40が接続される。集電体第3領域6b3には、第1正極集電体6aが接続される。集電体第2領域6b2は、集電体第1領域6b1と集電体第3領域6b3を繋ぐ。そして、封口板2に対して垂直な方向において、封口板2と集電体第1領域6b1の距離は、封口板2と集電体第3領域6b3の距離よりも小さい。このような構成であると、集電部が占めるスペースをより小さくでき、より体積エネルギー密度の高い角形二次電池となる。
 図10に示すように、第2正極集電体6bにおいて、集電体開口6yの両側にターゲット孔6eが設けられている。第1正極集電体6aと第2正極集電体6bをレーザ等のエネルギー線の照射により溶接する際、ターゲット孔6eを画像補正用のターゲットとすることが好ましい。ターゲット孔6eを画像検出し、位置補正を行い、集電体開口6yの形状に沿ってエネルギー線の照射を行うことが好ましい。なお、ターゲット孔6eは貫通孔とせず、凹部とすることもできる。なお、ターゲット孔6eの平面視における面積は、集電体開口6yの平面視における面積よりも小さいことが好ましい。また、第2正極集電体6bの幅方向において、直線上に集電体開口6yとターゲット孔6eが並ぶように配置することが好ましい。
 図8に示すように、第1正極集電体6aの第3絶縁部材63と対向する面であって、集電体突起6xの裏側には集電体第2凹部6wが形成されている。これにより、第1正極集電体6aと第2正極集電体6bの間により大きな溶接接続部を形成し易くなるため好ましい。また、集電体第2凹部6wが形成されていることにより、第1正極集電体6aと第2正極集電体6bを溶接接続する際に、溶接時の熱により第3絶縁部材63が損傷することを防止できる。
 図8に示すように、第3絶縁部材63の絶縁部材突起63cの下方(電極体3側)の先端が、第2正極集電体6bにおいて、開口部6zの周囲の下面よりも下方(電極体3側)に突出していることが好ましい。これにより、封止栓16と第2正極集電体6bが接触することを確実に防止できる。なお、絶縁部材突起63cは環状であることが好ましい。但し、絶縁部材突起63cは、必ずしも環状の必要はなく、一部切り欠かれた形状であってもよい。
 [第1負極集電体と第2負極集電体の接続]
 まず第2負極集電体8bの構成を、図11を用いて説明する。図11において、(a)は第2負極集電体8bの上面図であり、(b)は(a)におけるB-B線に沿った断面図であり、(c)は(a)におけるC-C線に沿った断面図であり、(d)は第2負極集電体8bの下面図であり、(e)は(a)におけるD-D線に沿った断面図である。
 図11に示すように、第2負極集電体8bは、集電体第1領域8b1、集電体第2領域8b2、集電体第3領域8b3、集電体第4領域8b4、及び集電体第5領域8b5を有する。
 集電体第1領域8b1には負極タブ50が溶接接続される。集電体第2領域8b2は、ガス排出弁17と対向する位置に配置される。集電体第3領域8b3は、集電体第1領域8b1と集電体第2領域8b2を繋ぐ。角形二次電池20において、集電体第1領域8b1及び集電体第2領域8b2は、封口板2に対して略平行に配置される。例えば、封口板2に対する集電体第1領域8b1及び集電体第2領域8b2の傾きを、それぞれ-15°~15°の範囲に入るようにすることが好ましい。封口板2に対して垂直な方向において、封口板2と集電体第1領域8b1の間の距離は、封口板2と集電体第2領域8b2の間の距離より小さい。即ち、封口板2に対して垂直な方向において、集電体第1領域8b1は集電体第2領域8b2よりも封口板2側に位置する。集電体第3領域8b3は、封口板2に対して傾斜して配置される。集電体第3領域8b3には通気孔8gが設けられている。通気孔8gは、ガス排出弁17と集電体第2領域8b2の間の空間と、負極集電部材8と電極体3の間の空間とを繋ぐ。よって、電極体3内で発生したガスが、通気孔8gを通じて電極体3側からガス排出弁17側に流れることができる。なお、通気孔8gは、集電体第1領域8b1及び集電体第2領域8b2に跨るように形成されることが好ましい。
 集電体第4領域8b4には、第1負極集電体8aが接続される。集電体第5領域8b5は、集電体第1領域8b1と集電体第4領域8b4を繋ぐ。角形二次電池20において、集電体第4領域8b4は、封口板2に対して略平行に配置される。封口板2に対して垂直な方向において、封口板2と集電体第1領域8b1の間の距離は、封口板2と集電体第4領域8b4の間の距離より小さい。また、封口板2に対して垂直な方向において、封口板2と集電体第4領域8b4の間の距離は、封口板2と集電体第2領域8b2の間の距離より小さい。
 なお、第1負極集電体8aを用いず、第2負極集電体8bを負極外部端子9に接続することができる。この場合は、集電体第4領域8b4及び集電体第5領域8b5を設けず、集電体第1領域8b1に負極外部端子9を接続することができる。
 集電体第2領域8b2は、ガス排出弁17と電極体3の間であってガス排出弁17と対向するに配置される金属製の遮蔽部材に相当する。
 第2負極集電体8bの集電体第2領域8b2には、封口板2に向かって延びる遮蔽部材壁部8hが設けられている。封口板2の短手方向における、集電体第2領域8b2の両端にそれぞれ遮蔽部材壁部8hが設けられている。集電体第2領域8b2に遮蔽部材壁部8hが設けられていると、集電体第2領域8b2が封口板2側に動き集電体第2領域8b2がガス排出弁17を塞ぐことを防止できる。なお、第2負極集電体8bは一枚の板材を折り曲げ加工したものであることが好ましい。この場合、遮蔽部材壁部8hは、集電体第2領域8b2の端部から折れ曲がるようにして形成される。
 第2負極集電体8bの集電体第4領域8b4には、集電体開口8y及び集電体第1凹部8fが設けられている。
 集電体第2領域8b2には、集電体第1領域8b1の厚みよりも、厚みの薄い領域が形成されている。これにより、遮蔽部となる集電体第2領域8b2が占める体積が低減されるため、より効果的にガスを排出することができる。
 図6及び図7に示すように、第1負極集電体8aには、集電体突起8xが設けられている。そして、図9及び図10に示すように、第2負極集電体8bには集電体開口8yが設けられている。図9に示すように、第1負極集電体8aの集電体突起8xが、第2負極集電体8bの集電体開口8y内に位置するようにして、第2負極集電体8bを内部側絶縁部材12上に配置する。そして、第1負極集電体8aの集電体突起8xと第2負極集電体8bの集電体開口8yの縁部をレーザ等のエネルギー線の照射により溶接する。これにより、第1負極集電体8aと第2負極集電体8bが接続される。なお、図10に示すように、第2負極集電体8bの集電体開口8yの周囲には集電体第1凹部8fが設けられている。即ち、集電体第1凹部8fの中央に、集電体開口8yが形成されている。集電体第1凹部8fにおいて、第1負極集電体8aと第2負極集電体8bが溶接接続されている。また、第2負極集電体8bには、第2正極集電体6bと同様にターゲット孔8eが設けられている。
 図9に示すように、第1負極集電体8aの内部側絶縁部材12と対向する面であって、集電体突起8xの裏側には集電体第2凹部8wが形成されている。これにより、第1負極集電体8aと第2負極集電体8bの間により大きな溶接接続部を形成し易くなるため好ましい。また、集電体第2凹部8wが形成されていることにより、第1負極集電体8aと第2負極集電体8bを溶接接続する際に、溶接時の熱により内部側絶縁部材12が損傷することを防止できる。
 なお、集電体突起6x及び集電体突起8xはそれぞれ非真円であることが好ましく、方形状、楕円状やトラック形状であることが好ましい。
 <第1絶縁部材と第2絶縁部材の接続>
 上述のように正極タブ40と正極外部端子7とを電気的に接続し、負極タブ50と負極外部端子9とを電気的に接続した後、第1絶縁部材と第2絶縁部材を接続することが好ましい。
 図12は、第1絶縁部材としての内部側絶縁部材12と第2絶縁部材80の斜視図である。内部側絶縁部材12は、封口板2の内面と対向する第1絶縁部材本体部12aを有する。第1絶縁部材本体部12aは板状であることが好ましい。第1絶縁部材本体部12aは、貫通孔12dを有し、この貫通孔12dに負極外部端子9が挿入される。内部側絶縁部材12の第1絶縁部材本体部12aの短手方向における両端には、電極体3に向かって突出する一対の第1側壁12bが設けられている。一対の第1側壁12bのそれぞれの外面には接続用凹部12eが設けられている。また、内部側絶縁部材12の第1絶縁部材本体部12aの長手方向における両端には、電極体3に向かって突出する一対の第2側壁12cが設けられている。第1絶縁部材本体部12aにおいて、ガス排出弁17と対向する部分には開口12fが設けられている。
 第2絶縁部材80は、封口板2と対向するように配置される第2絶縁部材本体部80aを有する。第2絶縁部材本体部80aは、封口板2と電極体3の間に配置される。第2絶縁部材本体部80aは、封口板2の長手方向において、中央に幅広部80a1を有し、幅広部80a1の両側には幅広部80a1の幅よりも幅が小さい幅狭部80a2を有する。封口板2の短手方向において、第2絶縁部材本体部80aの幅広部80a1の両端には、第2絶縁部材本体部80aから封口板2に向かって延びる一対の側壁80bが設けられている。また、封口板2の短手方向において、第2絶縁部材本体部80aの幅広部80a1の両端には、第2絶縁部材本体部80aから封口板2に向かって延びる一対の接続部80cが設けられている。なお、側壁80bと接続部80cは封口板2の長手方向において間隔をおいて設けられていることが好ましい。これにより、一対の接続部80cを容易に変形させることができるため、接続部80cを第1絶縁部材としての内部側絶縁部材12に接続する際、第2絶縁部材80が損傷・破損することを確実に防止できる。
 側壁80bの上端を封口板2の内面に接触されることが好ましい。なお、側壁80bの高さ(第2絶縁部材本体部80aから側壁80bの上端までの長さ)を、接続部80cの高さ(第2絶縁部材本体部80aから接続部80cの上端までの長さ)より大きくすることができる。
 第2絶縁部材80の接続部80cは、第2絶縁部材80の第2絶縁部材本体部80aから封口板2に向かって延びる縦壁80c1と、縦壁80c1の内側面から第1絶縁部材としての内部側絶縁部材12に向かって突出する突出部80c2を有する。そして、この突出部80c2が、第1絶縁部材としての内部側絶縁部材12の接続用凹部12eに嵌合される。これにより、第1絶縁部材としての内部側絶縁部材12と第2絶縁部材80が接続される。なお、第1絶縁部材としての内部側絶縁部材12の第1側壁12bの封口板2側の端部に接続用凹部を設け、第1絶縁部材としての内部側絶縁部材12と封口板2の間に突出部80c2が配置されるようにしてもよい。
 <電極体作製>
 図10における第1の電極体要素3aの上面と第2の電極体要素3bの上面とが直接ないし他の部材を介して接するように第1正極タブ群40a、第2正極タブ群40b、第1負極タブ群50a及び第2負極タブ群50bを湾曲させる。これにより、第1の電極体要素3aと第2の電極体要素3bを纏めて、一つの電極体3とする。なお、第1の電極体要素3aと第2の電極体要素3bを、テープ等により一つに纏めることが好ましい。あるいは、第1の電極体要素3aと第2の電極体要素3bを、箱状ないし袋状に成形した絶縁シート14内に配置して、一つに纏めることが好ましい。
 <角形二次電池の組み立て>
 封口板2に取り付けられた電極体3を絶縁シート14で覆い、角形外装体1に挿入する。なお、絶縁シート14は平板上のものを箱状ないし袋状に曲げ成形したものであることが好ましい。そして、封口板2と角形外装体1をレーザ溶接等により接合し、角形外装体1の開口を封口する。その後、電解質溶媒及び電解質塩を含有する非水電解液を封口板2に設けられた電解液注液孔15から電池ケース100に注液する。そして、電解液注液孔15を封止栓16で封止する。
 <角形二次電池20について>
 角形二次電池20においては、封口板2に固定された第1絶縁部材としての内部側絶縁部材12に、第2絶縁部材80が接続されている。したがって、角形二次電池20に振動や衝撃が加わった際に、第2絶縁部材80が電池ケース100内で大きく動くことを抑制できる。よって、第2絶縁部材80の位置ズレにより生じる可能性がある予期しない短絡を、確実に防止できる。あるいは、第2絶縁部材80が電池ケース100内部で動き、第2絶縁部材80が正極タブ40ないし負極タブ50を損傷させることを防止できる。
 なお、第1正極タブ群40aと第2正極タブ群40bの間に第2絶縁部材80の一方の幅狭部80a2が配置され、第1負極タブ群50aと第2負極タブ群50bの間に第2絶縁部材80の他方の幅狭部80a2が配置されることが好ましい。また、封口板2の長手方向において、第1正極タブ群40a及び第2正極タブ群40bと、第1負極タブ群50a及び第2負極タブ群50bの間に第2絶縁部材80の幅広部80a1が配置されることが好ましい。このような構成であると、第2絶縁部材80がタブを損傷させることをより確実に防止できる。なお、第2絶縁部材80は、必ずしも幅広部と幅狭部を有する必要はない。
 封口板2の短手方向において、第2絶縁部材80の第2絶縁部材本体部80aの幅広部80a1の両端には、第2絶縁部材本体部80aから封口板2に向かって延びる一対の側壁80bが設けられている。このような構成であると、第2絶縁部材80の第2絶縁部材本体部80aと封口板2の間にガスの流路を確実に確保できる。即ち、第2絶縁部材本体部80aがガス排出弁17を塞ぐことをより確実に防止できる。よって、第2絶縁部材80がガス排出弁17からのガス排出を阻害することを防止できる。また、第2絶縁部材80がガス弁に接触することを防止できる。
 封口板2の長手方向において、側壁80bの長さは、第2絶縁部材本体部80aの長さよりも短いことが好ましい。これにより、ガス排出弁17が作動したとき、電極体3内で発生したガスを電池ケース100の外部によりスムーズに排出できる。
 なお、側壁80bと接続部80cを別々に設ける必要はない。例えば、第2絶縁部材80において、側壁80bに突出部を設け、第1絶縁部材としての内部側絶縁部材12と接続される接続部とすることもできる。
 第1絶縁部材としての内部側絶縁部材12及び第2絶縁部材80は樹脂製であることが好ましく。例えば、ポリプロピレン、ポリエチレン、ペルフルオロアルコキシアルカン(PFA)、ポリテトラフルオロエチレン(PTFE)、又はエチレン・四フッ化エチレン共重合体(ETFE)等からなるものを用いることができる。
 図13は、第1負極タブ群50a及び第2負極タブ群50bと、第2負極集電体8bとの接続部近傍の封口板2の短手方向に沿った断面図である。図13に示すように、第1の電極体要素3aの第1負極タブ群50aと、第2の電極体要素3bの第2負極タブ群50bとが、それぞれ第2負極集電体8bに溶接接続されている。そして、第2絶縁部材80の幅狭部80a2が、第1負極タブ群50aと第2負極タブ群50bの間に配置されている。
 このような構成によると、第2負極集電体8bと第1負極タブ群50aの付け根部分の間、及び、第2負極集電体8bと第2負極タブ群50bの付け根部分の間に空間Sが確保できる。空間Sが、電極体3内で発生したガスのガス排出弁17への流路となる。このため上述の構成によると、角形二次電池に異常が生じた場合に、ガスをスムーズに電池ケース外に排出できるため、より信頼性の高い角形二次電池となる。
 第2絶縁部材80の幅狭部80a2において、第1負極タブ群50aないし第2負極タブ群50bと対向するコーナー部Cは面取りされていることが好ましい。これにより、第2絶縁部材80の幅狭部80a2により、第1負極タブ群50aないし第2負極タブ群50bが損傷することを確実に防止できる。
 なお、負極側と同様、正極側においても、第1の電極体要素3aの第1正極タブ群40aと、第2の電極体要素3bの第2正極タブ群40bとの間に、第2絶縁部材80の幅狭部80a2が配置される。これにより、第2正極集電体6bと第1正極タブ群40aの付け根部分の間、及び、第2正極集電体6bと第2正極タブ群40bの付け根部分の間に空間が確保できる。
 角形二次電池20においては、ガス排出弁17と電極体3の間であってガス排出弁17と対向する位置に、負極集電部材8の一部(第2負極集電体8bの集電体第2領域8b2)が配置されている。よって、電極体3で発生した高温の溶融物や火花等がガス排出弁17から噴出することを抑制できる。なお、第2負極集電体8bは、銅、銅合金、ニッケル、ニッケル合金、鉄、又はステンレス等の鉄合金等からなることが好ましい。
 また、封口板2に対して垂直な方向において、封口板2と集電体第1領域8b1の間の距離は、封口板2と集電体第2領域8b2の間の距離より小さい。このような構成であると、ガス排出弁17と集電体第2領域8b2の間のスペースを確保することができる。また、集電体第2領域8b2の横のスペースに、集電体第1領域8b1に接続される負極タブ50が配置される。このため、電池ケース100内のスペースをより効率的に活用できる。よって、より体積エネルギー密度が高く、且つ信頼性の高い二次電池となる。
 図14は、ガス排出弁17、第2負極集電体8bの集電体第2領域8b2の封口板2の短手方向に沿った断面図である。集電体第2領域8b2には、集電体第2領域8b2から封口板2に向かって延びる遮蔽部材壁部8hが設けられている。このため、集電体第2領域8b2がガス排出弁17側に移動し、集電体第2領域8b2がガス排出弁17を塞ぐことを確実に防止できる。また、遮蔽部材壁部8hが金属製であるため、角形二次電池20が高温となっても、遮蔽部材壁部8hが溶融し難い。なお、封口板2と遮蔽部材壁部8hの間には、内部側絶縁部材12が配置されている。これにより、遮蔽部材壁部8hが封口板2と直接接触することを防止できる。
 更に、第2負極集電体8bには、通気孔8gが設けられている。これにより、よりスムーズに排気が行われる。なお、通気孔8gが配置される位置は、角形二次電池20を封口板2に対して垂直方向から見たときに、ガス排出弁17と重ならない位置に設けることが好ましい。
 また、集電体第2領域8b2においてガス排出弁17と対向し遮蔽部材となる部分は、封口板の短手方向における幅が、集電体第1領域8b1の幅よりも小さいことが好ましい。これにより、角形二次電池20の内部抵抗を増加させることなく、二次電池の重量の増加を抑制できる。
 また、集電体第2領域8b2には、封口板2の短手方向における幅が小さくなるくびれ部8iが形成されていることが好ましい。くびれ部8iの両側に形成されたスリット状の隙間はガスの通路と成り得る。
 なお、第2絶縁部材80は必須の構成ではなく、第2絶縁部材80を配置しなくてもよい。このような場合、図15に示すように、第2負極集電体8bの集電体第2領域8b2の電極体3側の面には絶縁層91を設けることが好ましい。絶縁層91は、集電体第2領域8b2に樹脂を塗布したり、絶縁テープを貼付けたりして形成することができる。
 また、第2負極集電体8bの集電体第2領域8b2と封口板2の間に配置される絶縁部材を、内部側絶縁部材12の一部ではなく、内部側絶縁部材12と別部品とすることもできる。この場合、第2負極集電体8bの集電体第2領域8b2が樹脂部材中に配置されるように、集電体第2領域8b2を樹脂モールドしたものとすることもできる。
 ≪変形例≫
 図16は、変形例に係る角形二次電池200の封口板の長手方向に沿った封口板近傍
の断面図である。
 開口を有する角形外装体101内に正極板及び負極板を含む電極体103が配置されている。角形外装体101の開口は、封口板102により封口されている。角形外装体101と封口板102により電池ケースが構成されている。角形外装体101と電極体103の間には箱状に成型された絶縁シート118が配置されている。角形外装体101及び封口板102は、アルミニウム、アルミニウム合金、又はステンレス等から構成されることが好ましい。電極体103については、例えば上述の実施形態の構成とすることができる。
 正極板に接続された正極タブ104は、正極集電部材106を介して正極外部端子108に接続されている。電池ケース外において正極外部端子108には、正極外部導電部材110が接続されている。封口板102と正極集電部材106の間には樹脂製の内部側絶縁部材112が配置されている。正極外部導電部材110と封口板2の間には、樹脂製の外部側絶縁部材113が配置されている。
 外部側絶縁部材113には開口113aが設けられている。開口113a内には、正極外部導電部材110の接続突起110aが配置され、正極外部導電部材110の接続突起110aが封口板102と接している。このため、封口板102は正極板に電気的に接続されている。
 負極板に接続された負極タブ105は、負極集電部材107を介して負極外部端子109に接続されている。電池ケース外において負極外部端子109には、負極外部導電部材111が接続されている。封口板102と負極集電部材107の間には樹脂製の内部側絶縁部材114が配置されている。負極外部導電部材111と封口板2の間には、樹脂製の外部側絶縁部材115が配置されている。
 封口板102には、電池ケース内の圧力が所定以上となった時に破断し、電池ケース内のガスを電池ケース外に排出するガス排出弁116が設けられている。また、封口板102には、電池ケース内の圧力が所定以上となった時に反転するように変形する変形板117が設けられている。変形板117が変形することにより、変形板117が負極外部導電部材111と接触し、正負極が短絡する。
 このような構成を有すると、角形二次電池200が過充電状態なり電池ケース内の圧力が上昇した際、正負極が短絡し、更なる過充電の進行を抑制できる。あるいは、電極体103内のエネルギーを放出できる。なお、正極集電部材106ないし正極外部導電部材110にはヒューズ部を設け、短絡電流によりヒューズ部が溶断するようにすることがより好ましい。なお、変形板117の変形に伴う正負極の短絡が生じる電池ケース内の圧力は、ガス排出弁17が破断する圧力よりも低い値に設定する。
 封口板102には電解液注液孔119が設けられている。角形外装体101内に電解液を注液した後、電解液注液孔119は封止栓120により封口される。
 封口板102の電極体103側の面には、金属製の遮蔽部材130が接続されている。遮蔽部材130は、電池ケース内においてガス排出弁116と対向するように配置される。これにより、電極体3で発生した高温の溶融物や火花等がガス排出弁116から噴出することを抑制できる。なお、遮蔽部材130は、銅、銅合金、ニッケル、ニッケル合金、鉄、ステンレス等の鉄合金、アルミニウム、又はアルミニウム合金等からなることが好ましい。また、遮蔽部材130は、封口板102を構成する金属の融点よりも高い融点を有する金属からなることが好ましい。
 図17は遮蔽部材130の斜視図である。図17においては、電極体103側を上方、封口板102側を下方として記載している。
遮蔽部材130は、遮蔽部材本体部130a、遮蔽部材本体部130aの端部から封口板102に向かって延びる脚部130b、脚部130bの先端側に設けられた遮蔽部材接続部130cを有する。遮蔽部材本体部130aがガス排出弁116と対向するように配置される。また、遮蔽部材接続部130cが封口板102と接続される。脚部130bにより、遮蔽部材本体部130aが封口板102から間隔を置いて配置される。
 脚部130bは4箇所に形成され、脚部130b同士の間には隙間130d、隙間130eが形成される。なお、図17において、左側と右側にそれぞれ隙間130dが設けられ、手前側と奥側にそれぞれ隙間130eが設けられる。
 遮蔽部材130と封口板102の接続方法は特に限定されない。例えば、溶接、接着剤による貼付け、嵌合、あるいはカシメ等により接続することができる。
 図18は、遮蔽部材130の遮蔽部材接続部130cと封口板102の接続部近傍の封口板102の長手方向に沿った断面図である。また、図18は、封口板102と遮蔽部材130を溶接接続する例を示す図である。封口板102の電極体103側の面には、突起102bが設けられており、遮蔽部材130の遮蔽部材接続部130cと突起102bとをレーザ等により溶接接続することができる。なお、突起102bは、遮蔽部材130の遮蔽部材接続部130cにおいて、脚部130bが位置する側とは反対側の端部側に配置されることが好ましい。また、突起102bは、遮蔽部材130の複数の遮蔽部材接続部130cのそれぞれに当接する位置に複数設けられることが好ましい。
 図19は、遮蔽部材130と封口板102の接続方法を示す図であり、封口板102の電極体103側の面を示す図である。図19に示すように、遮蔽部材130の遮蔽部材接続部130cに切り欠き130yを設け、この切り欠き130yに封口板102に設けた突起102cを嵌合させ、遮蔽部材接続部130cと突起102cを溶接接続することができる。
 図20は、遮蔽部材130と封口板102の接続方法を示す図であり、封口板102の電極体103側の面を示す図である。図20に示すように、遮蔽部材130の遮蔽部材接続部130cに開口130zを設け、封口板102に設けた突起102cを開口130z内に配置し、遮蔽部材接続部130cと突起102cを溶接接続することができる。
 なお、図19又は図20に示した形態において、溶接に代えて、あるいは溶接に加えて、突起102cを遮蔽部材接続部130c上にカシメ固定してもよい。あるいは、遮蔽部材接続部130cを変形させ、突起102cに固定してもよい。
 突起102cをカシメる方法、あるいは遮蔽部材接続部130cを変形させる方法であれば、遮蔽部材130と封口板102の溶接が困難な場合であっても、遮蔽部材130と封口板102を容易に接続できる。
 遮蔽部材を図21に示す形状とすることもできる。図21は、遮蔽部材230の斜視図であり、図17に対応する図である。遮蔽部材本体部230aにおいて、封口板の短手方向の両端部からそれぞれ、二つの脚部230bが封口板側に延びている。脚部230bにはそれぞれ遮蔽部材接続部230cが設けられ、遮蔽部材接続部230cは封口板に接続される。また、脚部230b同士の間には、隙間230d、隙間230eが形成される。
 図22は、負極側の内部側絶縁部材114を示す図である。図22において、(a)は内部側絶縁部材114の電極体103側の面を示す図であり、(b)は(a)におけるE-E線に沿った断面図である。
 内部側絶縁部材114は、封口板102の内面に沿って配置される絶縁部材本体部114aを有する。絶縁部材本体部114aには、負極外部端子109が挿入される端子挿入穴114bが設けられている。また、絶縁部材本体部114aにおいて、封口板102に設けられた変形板117と対向する位置に貫通孔114cが設けられている。
 図16及び図22に示すように、絶縁部材本体部114aには、電極体103に向かって突出する突出部114dが設けられている。この突出部114dの電極体103側の端部の位置は、遮蔽部材130の電極体103側の端部よりも電極体103側に位置することが好ましい。このような構成であると、電極体103が封口板102側に移動したとしても、電極体103が遮蔽部材130と接触することを防止できる。なお、突出部114dは、遮蔽部材130の近傍に設けられることが好ましい。
 なお、内部側絶縁部材114の突出部114dは必須の構成ではない。遮蔽部材130の遮蔽部材本体部130aの電極体103側の面に絶縁層を形成することもできる。
 図23は、正極側の内部側絶縁部材112を示す図である。図23において、(a)は内部側絶縁部材112の電極体103側の面を示す図であり、(b)は(a)におけるF-F線に沿った断面図である。
 内部側絶縁部材112は、封口板102の内面に沿って配置される絶縁部材本体部112aを有する。絶縁部材本体部112aには、正極外部端子108が挿入される端子挿入穴112bが設けられている。また、絶縁部材本体部112aにおいて、封口板102に設けられた電解液注液孔119と対向する位置に貫通孔112cが設けられている。
 図16及び図23に示すように、絶縁部材本体部112aには、電極体103に向かって突出する突出部112dが設けられている。この突出部112dの電極体103側の端部の位置は、遮蔽部材130の電極体103側の端部よりも電極体103側に位置することが好ましい。このような構成であると、電極体103が封口板102側に移動したとしても、電極体103が遮蔽部材130と接触することを防止できる。なお、突出部112dは、遮蔽部材130の近傍に設けられることが好ましい。
 図24は他の変形例に係る角形二次電池の封口板102、ガス排出弁116、遮蔽部材の遮蔽部材本体部330aの封口板102の短手方向に沿った断面図である。図24に示すように、遮蔽部材においてガス排出弁116と対向する部分の断面をV字状とすることができる。このような形状であれば、よりスムーズにガスを排気することができる。
 <その他>
 電極体が複数枚の正極板及び複数枚の負極板を有する積層型電極体の場合や、電極体が巻回電極体であり、その巻回軸が封口板に対して垂直な方向になるように配置される場合、電極体において、正極板の先端部、負極板の先端部、及びセパレータの先端部が封口板側に位置することが好ましい。このような構成であると、封口板に電解液注液孔が設けられている場合、電極体への電解液の注液性が向上する。
 このような場合、負極板における負極活物質合剤層の封口板側の端部よりも、セパレータの封口板側の端部が、封口板2側に突出していることが好ましい。また、電極体において、正極板における正極活物質合剤層の封口板側の端部よりも、セパレータの封口板側の端部が、封口板側に突出していることが好ましい。また、正極板とセパレータが接着層により接着され、負極板とセパレータが接着層により接着されていることが好ましい。このような構成であると、第2絶縁部材に、正極活物質合剤層及び負極活物質合剤層が接触し正極活物質合剤層ないし負極活物質合剤層が損傷することを確実に防止できる。
 上述の実施形態においては、電極体3が二つの電極体要素3a、3bからなる例を示したが、これに限定されない。電極体3が一つの積層型電極体であってもよい。また、電極体3が、長尺状の正極板と長尺状の負極板をセパレータを介して巻回した一つの巻回型電極体であってもよい。また、二つの電極体要素3a、3bは、それぞれ積層型電極体に限定されず、長尺状の正極板と長尺状の負極板をセパレータを介して巻回した巻回型電極体であってもよい。
 上述の実施形態においては、積層型電極体を用いる例を示したが、巻回電極体を用いてもよい。また、角形外装体内の配置される巻回電極体の向きについても特に限定されない。
 上述の実施形態では第1絶縁部材と第2絶縁部材を接続する例を示したが、第1絶縁部材と第2絶縁部材を接続しなくてもよい。また、第2絶縁部材を用いなくてもよい。
 角形二次電池の体積エネルギー密度は、300Wh/L以上であることが好ましい。角形二次電池の体積エネルギー密度は、(角形二次電池の出力[Wh]/角形二次電池の体積[L])により求められる。
また、角形二次電池の電池容量は20Ah以上であることが好ましく、30Ah以上であることがより好ましい。
 本発明は、封口板側に、正極板及び負極板の端部が配置される場合、特に効果的である。
 20・・・角形二次電池、1・・・角形外装体、2・・・封口板、2a・・・正極端子取り付け孔、2b・・・負極端子取り付け孔、100・・・電池ケース、3・・・電極体、3a・・・第1の電極体要素、3b・・・第2の電極体要素、4・・・正極板、4a・・・正極芯体、4b・・・正極活物質合剤層、4d・・・正極保護層、40・・・正極タブ、40a・・・第1正極タブ群、40b・・・第2正極タブ群、5・・・負極板、5a・・・負極芯体、5b・・・負極活物質合剤層、50・・・負極タブ、50a・・・第1負極タブ群、50b・・・第2負極タブ群、6・・・正極集電部材、6a・・・第1正極集電体、6c・・・薄肉部、6x・・・集電体突起、6w・・・集電体第2凹部、6b・・・第2正極集電体、6b1・・・集電体第1領域、6b2・・・集電体第2領域、6b3・・・集電体第3領域、6e・・・ターゲット孔、6f・・・集電体第1凹部、6y・・・集電体開口、6z・・・開口部、7・・・正極外部端子、7a・・・端子封止部材、7x・・・金属部材、7y・・・ゴム部材、7b・・・端子貫通孔、8・・・負極集電部材、8a・・・第1負極集電体、8x・・・集電体突起、8w・・・集電体第2凹部、8b・・・第2負極集電体、8b1・・・集電体第1領域、8b2・・・集電体第2領域、8b3・・・集電体第3領域、8b4・・・集電体第4領域、8b5・・・集電体第5領域、8e・・・ターゲット孔、8f・・・集電体第1凹部、8g・・・通気孔、8h・・・遮蔽部材壁部、8i・・・くびれ部、8y・・・集電体開口、9・・・負極外部端子、10・・・内部側絶縁部材、11・・・外部側絶縁部材、12・・・内部側絶縁部材、12a・・・第1絶縁部材本体部、12b・・・第1側壁、12c・・・第2側壁、12d・・・貫通孔、12e・・・接続用凹部、12f・・・開口、13・・・外部側絶縁部材、14・・・絶縁シート、15・・・電解液注液孔、16・・・封止栓、17・・・ガス排出弁、60・・・電流遮断機構、61・・・導電部材、62・・・変形板、63・・・第3絶縁部材、63b・・・絶縁部材開口、63c・・・絶縁部材突起、63x・・・絶縁部材第1領域、63y・・・絶縁部材第2領域、63z・・・絶縁部材第3領域、70・・・固定部、80・・・第2絶縁部材、80a・・・第2絶縁部材本体部、80a1・・・幅広部、80a2・・・幅狭部、80b・・・側壁、80c・・・接続部、80c1・・・縦壁、80c2・・・突出部、90・・・溶接接続部、91・・・絶縁層、200・・・角形二次電池、101・・・角形外装体、102・・・封口板、102b・・・突起、102c・・・突起、103・・・電極体、104・・・正極タブ、105・・・負極タブ、106・・・正極集電部材、107・・・負極集電部材、108・・・正極外部端子、109・・・負極外部端子、110・・・正極外部導電部材、110a・・・接続突起、111・・・負極外部導電部材、112・・・内部側絶縁部材、112a・・絶縁部材本体部、112b・・・端子挿入穴、112c・・・貫通孔、112d・・・突出部、113・・・外部側絶縁部材、113a・・・開口、114・・・内部側絶縁部材、114a・・絶縁部材本体部、114b・・・端子挿入穴、114c・・・貫通孔、114d・・・突出部、115・・・外部側絶縁部材、116・・・ガス排出弁、117・・・変形板、118・・・絶縁シート、119・・・電解液注液孔、120・・・封止栓、130・・・遮蔽部材、130a・・・遮蔽部材本体部、130b・・・脚部、130c・・・遮蔽部材接続部、130d・・・隙間、130e・・・隙間、130z・・・開口、230・・・遮蔽部材、230a・・・遮蔽部材本体部、230b・・・脚部、230c・・・遮蔽部材接続部、230d・・・隙間、230e・・・隙間、330a・・・遮蔽部材本体部

Claims (8)

  1.  正極板と負極板を含む電極体と、
     開口を有し、前記電極体を収容する角形外装体と、
     ガス排出弁を備え前記開口を封口する封口板と、
     前記正極板又は前記負極板に電気的に接続され、前記角形外装体内に配置された集電部材と、を備え、
     前記ガス排出弁と前記電極体の間であって前記ガス排出弁と対向する位置に、金属製の遮蔽部材が配置された角形二次電池。
  2.  体積エネルギー密度が300Wh/L以上である請求項1に記載の角形二次電池。
  3.  前記遮蔽部材は、前記集電部材の一部である請求項1又は2に記載の角形二次電池。
  4.  前記正極板又は前記負極板はタブを有し、
     前記集電部材は、第1領域、第2領域及び第3領域を有し、
     前記タブは前記第1領域に接続され、
     前記第2領域は前記ガス排出弁と対向する位置に配置され、
     前記第3領域は前記第1領域と前記第2領域を繋ぎ、
     前記封口板に対して垂直な方向において、前記封口板と前記第1領域の間の距離が、前記封口板と前記第2領域の間の距離よりも小さい請求項3に記載の角形二次電池。
  5.  前記封口板の短手方向における前記第2領域の両端には、前記第2領域から前記封口板に向かって延びる一対の遮蔽部材壁部が設けられた請求項4に記載の角形二次電池。
  6.  前記集電部材には、前記ガス排出弁と前記第2領域の間の空間と、前記集電部材と前記電極体の間の空間を繋ぐ通気孔が形成された請求項4又は5に記載の角形二次電池。
  7.  前記封口板には端子が取り付けられ、
     前記集電部材は、第1集電体と第2集電体を含み、
     前記第2集電体が前記第1領域、前記第2領域及び前記第3領域を有し、
     前記第1集電体は、前記端子及び前記第2集電体に接続され、
     前記第2集電体は、さらに第4領域を有し、
     前記第4領域において前記第2集電体は前記第1集電体に接続された請求項4~6のいずれかに記載の角形二次電池。
  8.  前記封口板に対して垂直な方向において、前記封口板と前記第1領域の間の距離が、前記封口板と前記第4領域の間の距離よりも小さく、前記封口板と前記第4領域の間の距離が、前記封口板と前記第2領域の間の距離よりも小さい請求項4~7のいずれかに記載の角形二次電池。
PCT/JP2017/037928 2016-10-24 2017-10-20 角形二次電池 WO2018079423A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780065630.9A CN109891635B (zh) 2016-10-24 2017-10-20 方形二次电池
JP2018547620A JP7006613B2 (ja) 2016-10-24 2017-10-20 角形二次電池
US16/342,733 US11158902B2 (en) 2016-10-24 2017-10-20 Rectangular secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-207596 2016-10-24
JP2016207596 2016-10-24

Publications (1)

Publication Number Publication Date
WO2018079423A1 true WO2018079423A1 (ja) 2018-05-03

Family

ID=62024798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037928 WO2018079423A1 (ja) 2016-10-24 2017-10-20 角形二次電池

Country Status (4)

Country Link
US (1) US11158902B2 (ja)
JP (1) JP7006613B2 (ja)
CN (1) CN109891635B (ja)
WO (1) WO2018079423A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018235428A1 (ja) * 2017-06-23 2018-12-27 株式会社 豊田自動織機 蓄電装置
CN111082121A (zh) * 2018-10-18 2020-04-28 本田技研工业株式会社 蓄电单元及蓄电单元的制造方法
WO2021060006A1 (ja) * 2019-09-26 2021-04-01 三洋電機株式会社 二次電池

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6963964B2 (ja) * 2017-01-27 2021-11-10 株式会社Gsユアサ 破裂弁および蓄電素子
JP7301088B2 (ja) * 2021-03-31 2023-06-30 プライムプラネットエナジー&ソリューションズ株式会社 二次電池
US11870100B2 (en) 2021-09-24 2024-01-09 Apple Inc. Battery cells with tabs at right angles
WO2023048950A1 (en) * 2021-09-24 2023-03-30 Apple Inc. Battery cells with tabs at right angles
US11942661B2 (en) 2021-09-24 2024-03-26 Apple Inc. Battery cells with tabs at right angles
US11929522B2 (en) 2021-09-24 2024-03-12 Apple Inc. Battery cells with tabs at right angles

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03263754A (ja) * 1990-03-13 1991-11-25 Seiko Electronic Components Ltd 有機電解質電池
US20150147605A1 (en) * 2013-11-27 2015-05-28 Samsung Sdi Co., Ltd. Secondary battery
JP2015159087A (ja) * 2014-02-25 2015-09-03 株式会社豊田自動織機 蓄電装置
WO2017171002A1 (ja) * 2016-03-31 2017-10-05 株式会社 豊田自動織機 蓄電装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7052803B2 (en) * 2002-07-31 2006-05-30 Matsushita Electric Industrial Co., Ltd. Lithium rechargeable battery
US7601460B2 (en) * 2003-11-28 2009-10-13 Panasonic Corporation Prismatic battery and manufacturing method thereof
US20060240290A1 (en) * 2005-04-20 2006-10-26 Holman Richard K High rate pulsed battery
US20080318122A1 (en) * 2007-06-02 2008-12-25 Luying Sun Large format lithium-ion cell and its uses thereof
KR101030916B1 (ko) * 2009-04-21 2011-04-22 에스비리모티브 주식회사 이차 전지
JP4881409B2 (ja) 2009-06-04 2012-02-22 トヨタ自動車株式会社 密閉型電池
WO2013136444A1 (ja) * 2012-03-13 2013-09-19 株式会社 東芝 電池及び電池パック
KR101715963B1 (ko) * 2012-04-06 2017-03-27 삼성에스디아이 주식회사 이차 전지
JP6299243B2 (ja) 2014-02-05 2018-03-28 株式会社Gsユアサ 蓄電素子及び安全弁
KR102332447B1 (ko) * 2015-02-26 2021-11-26 삼성에스디아이 주식회사 이차 전지
CN105070860B (zh) * 2015-08-10 2017-12-08 北京飞行博达电子有限公司 一种可再充电的电池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03263754A (ja) * 1990-03-13 1991-11-25 Seiko Electronic Components Ltd 有機電解質電池
US20150147605A1 (en) * 2013-11-27 2015-05-28 Samsung Sdi Co., Ltd. Secondary battery
JP2015159087A (ja) * 2014-02-25 2015-09-03 株式会社豊田自動織機 蓄電装置
WO2017171002A1 (ja) * 2016-03-31 2017-10-05 株式会社 豊田自動織機 蓄電装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018235428A1 (ja) * 2017-06-23 2018-12-27 株式会社 豊田自動織機 蓄電装置
CN111082121A (zh) * 2018-10-18 2020-04-28 本田技研工业株式会社 蓄电单元及蓄电单元的制造方法
CN111082121B (zh) * 2018-10-18 2023-04-11 本田技研工业株式会社 蓄电单元及蓄电单元的制造方法
WO2021060006A1 (ja) * 2019-09-26 2021-04-01 三洋電機株式会社 二次電池

Also Published As

Publication number Publication date
JPWO2018079423A1 (ja) 2019-09-19
JP7006613B2 (ja) 2022-01-24
US20200052265A1 (en) 2020-02-13
CN109891635A (zh) 2019-06-14
CN109891635B (zh) 2022-02-18
US11158902B2 (en) 2021-10-26

Similar Documents

Publication Publication Date Title
WO2018079423A1 (ja) 角形二次電池
JP6981462B2 (ja) 角形二次電池
CN115663265A (zh) 方形二次电池
JP7355866B2 (ja) 二次電池
WO2018021372A1 (ja) 二次電池
WO2018062338A1 (ja) 角形二次電池及びその製造方法
WO2018021371A1 (ja) 二次電池の製造方法
CN110249453B (zh) 二次电池
CN110431689B (zh) 二次电池
JP6750438B2 (ja) 角形二次電池
JP6949181B2 (ja) 角形二次電池
JP7014171B2 (ja) 角形二次電池の製造方法
JP7036037B2 (ja) 二次電池及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17863552

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018547620

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17863552

Country of ref document: EP

Kind code of ref document: A1