WO2018079076A1 - Rubber damper member and torsional damper - Google Patents

Rubber damper member and torsional damper Download PDF

Info

Publication number
WO2018079076A1
WO2018079076A1 PCT/JP2017/031723 JP2017031723W WO2018079076A1 WO 2018079076 A1 WO2018079076 A1 WO 2018079076A1 JP 2017031723 W JP2017031723 W JP 2017031723W WO 2018079076 A1 WO2018079076 A1 WO 2018079076A1
Authority
WO
WIPO (PCT)
Prior art keywords
damper
rubber member
tan
torsional
damper rubber
Prior art date
Application number
PCT/JP2017/031723
Other languages
French (fr)
Japanese (ja)
Inventor
勇人 片貝
田部井 賢
輝 安藤
宇朗 千葉
Original Assignee
株式会社フコク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フコク filed Critical 株式会社フコク
Priority to KR1020197010927A priority Critical patent/KR20190075916A/en
Publication of WO2018079076A1 publication Critical patent/WO2018079076A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/121Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon using springs as elastic members, e.g. metallic springs
    • F16F15/124Elastomeric springs
    • F16F15/126Elastomeric springs consisting of at least one annular element surrounding the axis of rotation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L91/00Compositions of oils, fats or waxes; Compositions of derivatives thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/32Properties characterising the ingredient of the composition containing low molecular weight liquid component
    • C08L2207/322Liquid component is processing oil

Definitions

  • the present invention relates to a damper rubber member suitable for use in a torsional damper that is mounted on a rotating shaft such as a crankshaft or a camshaft of a vehicle engine and absorbs torsional vibration of the rotating shaft, and a torsional damper using the damper rubber member.
  • a torsional damper that transmits the rotation of a rotating shaft such as a crankshaft or a camshaft of a vehicle engine to a driven device has a hub attached to the rotating shaft and an inertia ring arranged radially outward of the hub.
  • a rubber member is interposed in the gap between the outer peripheral surface of the hub and the inner peripheral surface of the inertia ring. This rubber member serves to reduce the torsional vibration of the rotating shaft that occurs during traveling of the vehicle, prevent the rotating shaft from being damaged, and reduce engine vibration noise and vibration.
  • Patent Document 1 discloses a rubber member for a damper obtained by crosslinking a rubber composition containing ethylene / propylene rubber and having a loss coefficient (tan ⁇ ) at ⁇ 40 ° C. to 150 ° C. exceeding 0.35.
  • Patent Document 2 vulcanizes a rubber member whose main material is ethylene / propylene / diene rubber (EPDM) and whose temperature coefficient of loss factor is set within 15% per 50 ° C. temperature change.
  • EPDM ethylene / propylene / diene rubber
  • a bonded rubber damper device is disclosed.
  • Patent Document 3 discloses an EPDM composition for a torsional damper that is cross-linked to a hub and an inertia ring of a torsional damper and exhibits excellent heat resistance even in a high temperature atmosphere of about 120 ° C to 140 ° C.
  • JP 2007-009073 A Japanese Patent Laid-Open No. 11-210832 Japanese Patent No. 4140415
  • the rubber member applied to the torsional damper has a high loss factor (tan ⁇ ) at a standard temperature (also referred to as a use standard temperature) at the time of actual use of the torsional damper, and also has a loss factor (tan ⁇ ) at a high temperature side. It is necessary to design so that there is little decline.
  • An object of the present invention is to provide a damper rubber member having a large loss coefficient at a standard operating temperature and a small loss coefficient at a high temperature side, and a torsional damper using the same.
  • Another object of the present invention is to provide a damper rubber member exhibiting excellent torsional vibration reduction characteristics from a low temperature region to a high temperature region, and a torsional damper using the same.
  • the damper rubber member of the present invention is a damper rubber member used for a torsional damper, and has a loss coefficient (tan ⁇ i) at a working standard temperature of 0.33 or more in a state before being mounted on the torsional damper,
  • the loss coefficient ratio (tan ⁇ h / tan ⁇ i) between the loss coefficient (tan ⁇ h) and the loss coefficient (tan ⁇ i) at the use standard temperature is 0.86 or more
  • the storage elastic modulus (E′pl) at the low temperature side use temperature The ratio (E′pl / E′pi) to the storage elastic modulus (E′pi) at the use standard temperature is 6.9 or less.
  • the torsional damper of the present invention includes a damper hub that is attached to a rotating shaft and rotates integrally with the rotating shaft, and an inertia ring that is attached to the damper hub via a rubber member, and the damper hub and the inertia
  • the damper rubber member interposed between the ring has a loss coefficient (tan ⁇ pi) at the use standard surface temperature of 0.27 or more, a loss coefficient (tan ⁇ pi) at the use surface temperature on the high temperature side, and a loss at the use standard surface temperature.
  • the loss factor ratio (tan ⁇ ph / tan ⁇ pi) to the coefficient (tan ⁇ pi) is 0.62 or more.
  • FIG. 2 It is a perspective view which shows the torsional damper which is one embodiment of this invention. It is a partially broken perspective view of the torsional damper shown in FIG. It is a partially broken perspective view which shows the assembly method of the torsional damper shown in FIG. 2 is a graph showing the relationship between the amount of carbon black contained in the damper rubber composition constituting the damper rubber member of the torsional damper shown in FIG. 1 and the loss coefficient (tan ⁇ ). It is a graph which shows the optimal range of the iodine adsorption amount and DBP oil absorption amount of carbon black contained in the rubber composition which comprises the damper rubber member of the torsional damper shown in FIG.
  • FIG. 1 is a perspective view showing a torsional damper according to an embodiment of the present invention
  • FIG. 2 is a partially broken perspective view of the torsional damper shown in FIG.
  • the torsional damper 10 of the present embodiment is attached to the tip of a crankshaft of an automobile engine, and is used to transmit the rotation of the crankshaft to a driven device such as an alternator or a power steering.
  • a damper hub 11, an inertia ring 12, and an annular damper rubber member 13 are provided.
  • the damper hub 11 has a disk portion 11a extending in the radial direction and a boss portion 11b integrally provided at the central portion in the radial direction.
  • the boss portion 11b is fastened to the tip of the crankshaft and is centered on the central axis C. Driven by rotation.
  • the damper hub 11 is made of cast iron such as FC250 and FCD450.
  • the inertia ring 12 is disposed radially outward of the damper hub 11, and a pulley groove 12a on which the belt is engaged is provided on the outer peripheral surface of the inertia ring 12 to constitute a power transmission pulley.
  • the inertia ring 12 is made of cast iron such as FC250.
  • An annular damper rubber member 13 interposed between the damper hub 11 and the inertia ring 12 is formed in a gap between the outer peripheral surface coaxial with the central axis C of the damper hub 11 and the inner peripheral surface of the inertia ring 12 facing the outer peripheral surface. It is inserted and the torsional vibration of the crankshaft generated during the running of the automobile is reduced to prevent breakage, and the noise and vibration of engine vibration are reduced.
  • the damper rubber member 13 used in the torsional damper 10 of the present embodiment has a loss coefficient (tan ⁇ i) of 0.33 or more at the standard operating temperature before being attached to the torsional damper 10 and is used on the high temperature side.
  • the loss coefficient ratio (tan ⁇ h / tan ⁇ i) between the loss coefficient at temperature (tan ⁇ h) and the loss coefficient at the use standard temperature (tan ⁇ i) is 0.86 or more
  • the storage elastic modulus (E′pl) at the low temperature side use temperature is 0.86 or more
  • the ratio (E'pl / E'pi) to the storage elastic modulus (E'pi) at the use standard temperature is 6.9 or less.
  • the use standard temperature means a standard temperature at the time of actual use.
  • the measured temperature of the damper rubber member 13 at 60 ° C., and when the damper rubber member 13 is attached to the torsional damper 10 The surface measurement temperature of the damper rubber member 13 at 60 ° C. ⁇ 5 ° C. can be mentioned.
  • the high temperature side use temperature means the temperature assumed at the time of actual use.
  • the damper rubber member 13 is measured at 120 ° C., and the damper rubber member 13 is attached to the torsional damper 10.
  • the surface measurement temperature of the damper rubber member 13 at 120 ° C. ⁇ 5 ° C. may be mentioned.
  • the low temperature side use temperature is a standard temperature at the time of actual use in a cold region.
  • the measurement temperature of the damper rubber member 13 at ⁇ 30 ° C., and the damper rubber member 13 is attached to the torsional damper 10.
  • the surface measurement temperature of the damper rubber member 13 at ⁇ 30 ° C. ⁇ 5 ° C. can be mentioned.
  • the loss factor ratio is an index representing the temperature dependence of the loss factor (tan ⁇ ), and is a loss between the loss factor (tan ⁇ h) at the use temperature on the high temperature side and the loss factor (tan ⁇ i) at the use standard temperature.
  • a large coefficient ratio (tan ⁇ h / tan ⁇ i) (close to 1) means that the temperature dependence of the loss coefficient (tan ⁇ ) in the temperature range from the use standard temperature to the high temperature side use temperature is small, in other words, the loss coefficient accompanying the temperature change. This means that the decrease in (tan ⁇ ) is small.
  • the storage elastic modulus ratio represents the degree of change in the storage elastic modulus from the low temperature range to the normal use temperature. The smaller the storage elastic modulus ratio (for example, 6.9 or less), the lower the vibration reduction performance. Can be maintained.
  • the damper rubber member 13 of the present embodiment having the characteristics as described above has 100 parts by weight or more of carbon black and 50 parts by weight or more of process oil with respect to 100 parts by weight of ethylene / propylene / diene terpolymer (EPDM). It is obtained by vulcanizing and molding a damper rubber composition having a polymer fraction of EPDM of 20 wt% or more and 40 wt% or less into a predetermined shape (cylindrical in this example) by a conventional method. .
  • the larger the iodine adsorption amount of the carbon black the smaller the particle size of the carbon black and the larger the loss factor of the damper rubber composition.
  • the larger the DBP (plasticizer: Dibutyl phthalate) oil absorption the larger the carbon black structure and the higher the conductivity, so when the damper rubber member is mounted on the torsional damper, Damper charging can be prevented and durability can be improved.
  • the iodine adsorption amount and the DBP oil absorption amount as described later, it is preferable to use carbon black in which the iodine adsorption amount and the DBP oil absorption amount are in a predetermined range (see FIG. 5).
  • the ratio of the modulus at 300% elongation (Mpa) to the modulus at 50% elongation (Mpa) (modulus at 300% elongation / 50%) It is desirable that the elongation modulus is relatively large (for example, 7.2 or more).
  • the ratio of the modulus at 300% elongation (Mpa) to the modulus at 50% elongation (Mpa) (modulus at 300% elongation / modulus at 50% elongation) is less than 7.2, an external force was applied. In some cases, the distortion of the damper rubber member increases, and the damper rubber member may be damaged during durability.
  • the damper rubber composition contains a peroxide, a co-crosslinking agent and the like as a vulcanizing agent.
  • Triallyl isocyanate Ethylene glycol dimethacrylate, Trimethylolpropane trimethacrylate, Triallyl cyanurate, Quinonedioxime, 1,2-polybutadiene, Etc. can be used.
  • the damper rubber composition contains known rubber additives (process oil (mineral oil), plasticizer, zinc white, zinc stearate, anti-aging agent, etc.).
  • the boss portion 11b of the damper hub 11 has a vertical direction as shown in FIG.
  • the damper hub 11 and the inertia ring 12 are arranged on a support base (not shown) so that the outer peripheral surface of the damper hub 11 and the inner peripheral surface of the inertia ring 12 are pressed using a press-fitting jig such as a press. It is manufactured by press-fitting the damper rubber member 13 into the gap portion 14. The part thus manufactured is called a press-fit type torsional damper.
  • the pressure when the damper rubber member 13 is press-fitted into the gap portion 14 between the damper hub 11 and the inertia ring 12 is preferably set so that the compression rate of the damper rubber member 13 is 10% or more and 50% or less.
  • the compression rate of the damper rubber member 13 is less than 10%, the slip torque of the torsional damper 10 does not become a desired value, and power is hardly transmitted to the belt.
  • a compression ratio greater than 50% is not preferable because stress concentration occurs in the damper rubber member 13 and durability is deteriorated.
  • the compression rate of the damper rubber member 13 is more preferably 10% or more and less than 30%. If the compression rate is within this range, generation of rubber wear powder due to friction with the inertia ring 12 or the damper hub 11 can be suppressed particularly in the durability test, and good durability can be obtained. Further, the press-fitting property is good, and stable dimensional accuracy can be realized.
  • a vulcanization adhesion method As a manufacturing method of the torsional damper 10, there is a vulcanization adhesion method in which a damper rubber composition constituting the damper rubber member 13 is injected into the gap portion 14 between the damper hub 11 and the inertia ring 12 and heated in addition to the above-described press-fitting method. . Parts manufactured by the vulcanization adhesion method are called vulcanization adhesion type torsional dampers.
  • the original characteristics of the damper rubber member are easily exhibited as compared with the press-fitting method, but an adhesion failure is likely to occur, and adjustment for increasing the adhesion force with the damper hub 11 and the inertia ring 12 is necessary.
  • the damper rubber member 13 is compressed, so that the original characteristics of the damper rubber composition are sacrificed somewhat, but there is an advantage that adhesion failure can be reduced by a simple process of press-fitting.
  • the dough was wound around a 6-inch roll with a roll interval of 4 mm, and as a peroxide, 3.5 parts by weight of 2,5-dimethyl-2,5-di (tert-butylperoxy) hexane, and a co-crosslinking agent As described above, 2 parts by weight of trimethylolpropane trimethacrylate was kneaded, turned back and forth three times each, then rounded five times, and then formed into a sheet.
  • damper rubber members (test pieces) of Examples 2 to 11 and Comparative Example 1 shown in Tables 1 and 2 were prepared in the same manner as described above except that the composition ratio of the damper rubber composition was changed.
  • carbon black 1 in which the iodine adsorption amount and the DBP oil absorption amount are in the ranges shown in FIG. 5 was used, but in Example 8, carbon black 2, In Example 9, carbon black 3 was used, and in Example 10, carbon black 4 was used.
  • the damper rubber compositions before vulcanization used in Examples 1 to 11 and Comparative Example 1 are referred to as Compositions 1 to 11 and Comparative Composition 1, respectively.
  • the damper rubber members formed from the compositions 1 to 11 and the comparative composition 1 are referred to as test pieces 1 to 11 and comparative test piece 1.
  • Measuring instrument Ueshima Seisakusho Viscoelastic Analyzer YR-7130 Deformation method: Tensile frequency: 100Hz Amplitude: ⁇ 1% Preload: 480mN Test piece shape: strip-shaped piece of 20 mm (grip interval) ⁇ 4 mm (width) ⁇ 2 mm (thickness) taken from a vulcanized sheet-like rubber member
  • An annular damper rubber member (see damper rubber member 13 in FIG. 3) having the same composition as that of the damper rubber member (test piece 1 to test piece 11, comparative test piece 1) is produced, and a compression ratio of 10 is formed in the gap between the hub and the inertia ring.
  • a torsional damper was manufactured by press-fitting at ⁇ 50%.
  • an annular damper rubber member 13 was produced using the above compositions 1 to 11 and comparative composition 1, and press-fitted to produce a torsional damper.
  • Tables 1 and 2 as Examples 1a to 11a and Comparative Example 1a, press-fit type torsional dampers using Compositions 1 to 11 and Comparative Composition 1 were evaluated.
  • the ratio (tan ⁇ ph / tan ⁇ pi) and low temperature property (-30 ° C / 60 ° C Fn ratio) were measured by a resonance sweep method (natural frequency measurement) using a high frequency vibration tester.
  • the low temperature property (-30 ° C / 60 ° C Fn ratio) is the ratio of the natural frequency at -30 ° to the natural frequency at 60 ° C, which affects the torsional vibration characteristics at low temperatures.
  • Example 1a to Example 11a, Comparative Example 1a were evaluated for the crank torsion reduction effect and durability according to the following measurement method and measurement conditions.
  • “ ⁇ (circle)” is more effective than Comparative Example 1a
  • “ ⁇ (double circle)” is more effective than Comparative Example 1a. did.
  • “ ⁇ (X)” indicates that the rubber was damaged before the specified number of times
  • “ ⁇ (triangle)” indicates that the rubber surface was uneven after the specified number of times.
  • the damper rubber composition before the vulcanization of the above-mentioned damper rubber member test pieces (Examples 1 to 11 and Comparative Example 1) is injected into the gap between the damper hub and the inertia ring together with the vulcanizing agent and heated by a vulcanization adhesion method.
  • a national damper was produced.
  • the torsional damper was manufactured by injecting and heating the above compositions 1 to 11 and comparative composition 1 into the gap between the damper hub and the inertia ring.
  • Tables 1 and 2 as Examples 1b to 11b and Comparative Example 1b, vulcanized adhesive type torsional dampers using Compositions 1 to 11 and Comparative Composition 1 were evaluated.
  • the damper rubber member of the torsional damper (Example 1b to Example 11b, Comparative Example 1b) formed by bonding in the gap between the damper hub and the inertia ring by the same method as that used for the evaluation of the press-fitting type torsional damper.
  • the loss coefficient (tan ⁇ pi) at a surface temperature of 60 ° C., the loss coefficient (tan ⁇ ph) and the loss factor ratio (tan ⁇ ph / tan ⁇ pi) at a surface temperature of 120 ° C. were measured, and the crank twist reduction effect and durability were evaluated. .
  • the crank twist reduction effect and durability were evaluated in the same manner as in the case of the press-fit type torsional damper.
  • the crank twist reduction effect was evaluated as compared with Comparative Example 1b. The results are shown in Tables 1 and 2.
  • the press-fitting type torsional dampers of Examples 1a to 11a were more effective in reducing crank twist than the press-fitting type torsional damper of Comparative Example 1a.
  • the vulcanized adhesive type torsional dampers of Examples 1b to 11b were also more effective in reducing crank twist than Comparative Example 1b. That is, in the torsional dampers of Comparative Examples 1a and 1b, the loss coefficient at 60 ° C. is less than 0.33, and the effect of reducing the crank twist is from Examples 1a to 11a and Examples 1b to 11b. It was inferior.
  • the loss coefficient of the original damper rubber member damper rubber member test piece, Slightly lower than in Examples 1 to 11.
  • the loss factor at the surface temperature of the damper rubber member at 60 ° C. is both in the press-fit type and the vulcanized adhesive type. It was found to be 0.27 or more and to exhibit excellent torsional vibration reduction characteristics.
  • the loss coefficient (tan ⁇ pi) at the surface temperature of the damper rubber member at 60 ° C.
  • the loss factor (tan ⁇ ph) and loss factor ratio (tan ⁇ ph / tan ⁇ pi) at a temperature of 120 ° C. were 0.62 or more, and it was found that excellent torsional vibration reduction characteristics were exhibited even in a high temperature region.
  • Comparative Example 1a As shown in Tables 1 and 2, in both the press-fitting type torsional dampers (Examples 1a to 11a) and the vulcanized adhesive type torsional dampers (Examples 1b to 11b), Comparative Example 1a The durability was higher than 1b.
  • the ratio of the modulus at the time of 300% elongation and the modulus at the time of 50% elongation of the comparative test piece 1 is less than 7.2, and from the test pieces 1 to 11 of Examples 1 to 11 The ratio was low.
  • the durability is the modulus at 300% elongation and the modulus at 50% elongation. The larger both, the better the durability.
  • a damper rubber member having a ratio of a modulus at 300% elongation to a modulus at 50% elongation of 7.2 or more and a modulus at 300% elongation of 9.0 or more is used for the torsional damper.
  • the ratio of the modulus at 300% elongation to the modulus at 50% elongation is more preferably 9.6 or more.
  • the modulus at 300% elongation and the modulus at 50% elongation it is more preferable that the modulus at 300% elongation is 13.2 or more and the modulus at 50% elongation is 1.32 or more.
  • the damper rubber members of Examples 1 to 11 have a ratio (E′pl / E) of the storage elastic modulus (E′pl) at the low temperature use temperature of the damper rubber member and the storage elastic modulus (E′pi) at the standard use temperature. E′pi) is 6.9 or less. On the other hand, in the damper rubber member of Comparative Example 1, the ratio (E′pl / E′pi) exceeded 6.9, and the storage elastic modulus was inferior to that of Examples 1 to 11.
  • the ethylene weight ratio in the EPDM polymer of Composition 1 to Composition 11 is 58%, whereas the ethylene weight ratio in the EPDM polymer of Comparative Composition 1 is 62%.
  • the ratio (E'pl / E'pi) between the storage elastic modulus (E'pl) and the storage elastic modulus (E'pi) increases and the low temperature characteristics deteriorate. To do.
  • the ratio (E'pl / E'pi) between the storage elastic modulus (E'pl) at the use temperature of the damper rubber member at the low temperature side and the storage elastic modulus (E'pi) at the use standard temperature is 6
  • the damper rubber members of Examples 1 to 11 that are .9 or less exhibit excellent storage elastic modulus even in a low temperature region, and can maintain vibration reduction performance even at a low temperature. It has been found that incorporating such a damper rubber member into the torsional damper improves the low temperature property (-30 ° C / 60 ° C Fn ratio) of the torsional damper.
  • the loss coefficient at 60 ° C. is 0.33 or more, and the loss coefficient ratio between the loss coefficient at 120 ° C. and the loss coefficient at 60 ° C. is 0. It exhibits excellent characteristics of 86 or more. And even when these damper rubber members were incorporated in a torsional damper, excellent torsional vibration reduction characteristics and durability were exhibited from a low temperature region to a high temperature region.
  • EPDM was used as a polymer.
  • the 1st grade whose ethylene weight ratio is 55% or less, and the oil extended grade whose oil-extended oil amount is 40 parts by weight or more were mixed to obtain an ethylene weight ratio of 58%.
  • the oil addition amount (process oil amount) of the damper rubber composition is an amount obtained by subtracting the oil contained in the oil-extended grade polymer.
  • the relationship between the weight parts of the first grade (1G), the oil extended grade (OG), and the amount of process oil (PO) is as follows.
  • the addition amount (parts by weight) of the first grade (1G) is A
  • the addition amount (parts by weight) B of the oil-extended grade (OG) is (100 ⁇ A) ⁇ D / 100.
  • D is the total number of parts by weight of the polymer and the oil-extended oil when the oil-extended grade EPDM polymer used is 100 parts by weight.
  • the amount (parts by weight) of process oil added when oil-extended grade (OG) is used is (process oil addition amount when oil-extended EPDM is not used) ⁇ (A + B ⁇ 100).
  • the process oil is preferably 50 parts by weight or more.
  • the EPDM polymer weight ratio (also referred to as polymer fraction) is preferably 20% or more and 40% or less. If the weight ratio of the EPDM polymer is less than 20%, the rubber composition becomes more sticky and the kneading processability in production deteriorates. On the other hand, when the EPDM polymer weight ratio is larger than 40%, the loss factor decreases.
  • EPDM polymer weight ratio [%] EPDM polymer parts by weight / total parts by weight ⁇ 100.
  • carbon black having an iodine adsorption amount of 70 mg / g to 185 mg / g and a DBP oil absorption of 40 ml / 100 g to 120 ml / 100 g.
  • Example 1 it is more preferable to use carbon 1, carbon 2, and carbon 3 as shown in Example 2, Example 3, Example 4, Example 8, and Example 9.
  • carbon black having an iodine adsorption amount of 80 mg / g or more and 185 mg / g or less and a DBP oil absorption amount of 75 ml / 100 g or more and 112 ml / 100 g or less.
  • the numerical value of iodine adsorption amount and DBP oil absorption amount of FIG. 5 shows a center value, and each has an allowable range of ⁇ 7 mg / g (ml / 100 g).
  • a peroxide As the vulcanizing agent, a peroxide, a co-crosslinking agent and the like are added.
  • a damper rubber member is formed by addition of a vulcanizing agent and a crosslinking reaction by heating.
  • the damper rubber member and the torsional damper of the present invention have been described in detail above, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention.
  • the torsional damper of the present invention can be applied to reduce torsional vibrations not only in the crankshaft but also in various rotating shafts such as an engine camshaft, and no pulley groove is formed on the outer peripheral surface.
  • the present invention can also be applied to a torsional damper having a type of inertia ring or a torsional damper having a hub not provided with a boss portion.

Abstract

Provided are: a rubber damper member with high loss factor at standard use temperature and small reduction of the loss factor from low temperature to high temperature, and a torsional damper with said rubber damper member. A rubber damper member 13 installed between a hub 11 and an inertia ring 12 of a torsional damper 10 has: a loss factor (tan δi) of at least 0.33 at standard use temperature in the state prior to installation in the torsional damper 10; a loss factor ratio (tan δh/tan δi) of the loss factor (tan δh) at a higher use temperature to the loss factor (tan δi) at standard use temperature of at least 0.86; and a ratio (E'pl/E'pi) of the storage modulus (E'pl) at a lower use temperature to the storage modulus (E'pi) at standard use temperature of 6.9 or less.

Description

ダンパゴム部材およびトーショナルダンパDamper rubber member and torsional damper
 本発明は、車両のエンジンのクランクシャフトやカムシャフトなどの回転軸に装着されて該回転軸の捩り振動を吸収するトーショナルダンパに用いて好適なダンパゴム部材およびそれを用いたトーショナルダンパに関する。 The present invention relates to a damper rubber member suitable for use in a torsional damper that is mounted on a rotating shaft such as a crankshaft or a camshaft of a vehicle engine and absorbs torsional vibration of the rotating shaft, and a torsional damper using the damper rubber member.
 車両のエンジンのクランクシャフトやカムシャフトなどの回転軸の回転を被駆動機器に伝達するトーショナルダンパは、回転軸に取り付けられるハブと、ハブの径方向外方に配置される慣性リングとを有し、ハブの外周面と慣性リングの内周面との間隙部にはゴム部材が介在している。このゴム部材は、車両の走行中に発生する回転軸の捩り振動を低減させて回転軸の破損を防止し、エンジン振動の騒音や振動を低減する役割をする。 A torsional damper that transmits the rotation of a rotating shaft such as a crankshaft or a camshaft of a vehicle engine to a driven device has a hub attached to the rotating shaft and an inertia ring arranged radially outward of the hub. A rubber member is interposed in the gap between the outer peripheral surface of the hub and the inner peripheral surface of the inertia ring. This rubber member serves to reduce the torsional vibration of the rotating shaft that occurs during traveling of the vehicle, prevent the rotating shaft from being damaged, and reduce engine vibration noise and vibration.
 特許文献1には、エチレン・プロピレンゴムを含むゴム組成物を架橋して得られ、-40℃~150℃における損失係数(tanδ)が0.35を超えるダンパ用ゴム部材が開示されている。 Patent Document 1 discloses a rubber member for a damper obtained by crosslinking a rubber composition containing ethylene / propylene rubber and having a loss coefficient (tan δ) at −40 ° C. to 150 ° C. exceeding 0.35.
 特許文献2には、エチレン・プロピレン・ジエンゴム(EPDM)を主材料とし、損失係数の温度依存性が50℃の温度変化あたり15%以内の変化率となるように設定されたゴム部材を加硫接着したラバーダンパ装置が開示されている。 Patent Document 2 vulcanizes a rubber member whose main material is ethylene / propylene / diene rubber (EPDM) and whose temperature coefficient of loss factor is set within 15% per 50 ° C. temperature change. A bonded rubber damper device is disclosed.
 特許文献3には、トーショナルダンパのハブと慣性リングとに架橋され、約120℃~140℃の高温雰囲気でも優れた耐熱性を示すトーショナルダンパ用EPDM組成物が開示されている。 Patent Document 3 discloses an EPDM composition for a torsional damper that is cross-linked to a hub and an inertia ring of a torsional damper and exhibits excellent heat resistance even in a high temperature atmosphere of about 120 ° C to 140 ° C.
特開2007-009073号公報JP 2007-009073 A 特開平11-210832号公報Japanese Patent Laid-Open No. 11-210832 特許第4140415号明細書Japanese Patent No. 4140415
 トーショナルダンパに適用されるゴム部材は、トーショナルダンパの実使用時の標準的な温度(使用標準温度ともいう)における損失係数(tanδ)が高く、且つ高温側においても損失係数(tanδ)の低下が少ないように設計する必要がある。 The rubber member applied to the torsional damper has a high loss factor (tan δ) at a standard temperature (also referred to as a use standard temperature) at the time of actual use of the torsional damper, and also has a loss factor (tan δ) at a high temperature side. It is necessary to design so that there is little decline.
 しかしながら、従来のこの種のダンパゴム部材は、使用標準温度における損失係数(tanδ)を高く設計すると、高温側における損失係数(tanδ)の低下が顕著になり、高温使用時においてトーショナルダンパの捩り振動低減効果が充分に得られなくなるという問題があった。 However, if this type of conventional damper rubber member is designed to have a high loss factor (tan δ) at the standard operating temperature, the loss factor (tan δ) at the high temperature side will be significantly reduced, and the torsional vibration of the torsional damper during high temperature use There was a problem that the reduction effect could not be obtained sufficiently.
 本発明の目的は、使用標準温度における損失係数が大きく、且つ高温側における損失係数の低下が少ないダンパゴム部材およびそれを用いたトーショナルダンパを提供することにある。 An object of the present invention is to provide a damper rubber member having a large loss coefficient at a standard operating temperature and a small loss coefficient at a high temperature side, and a torsional damper using the same.
 本発明の他の目的は、低温領域から高温領域に亘って優れた捩り振動低減特性を示すダンパゴム部材およびそれを用いたトーショナルダンパを提供することにある。 Another object of the present invention is to provide a damper rubber member exhibiting excellent torsional vibration reduction characteristics from a low temperature region to a high temperature region, and a torsional damper using the same.
 本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、次のとおりである。 Of the inventions disclosed in this application, the outline of typical ones will be briefly described as follows.
 本発明のダンパゴム部材は、トーショナルダンパに用いられるダンパゴム部材であって、前記トーショナルダンパに装着前の状態において、使用標準温度における損失係数(tanδi)が0.33以上で、高温側使用温度における損失係数(tanδh)と前記使用標準温度における損失係数(tanδi)との損失係数比(tanδh/tanδi)が0.86以上であり、低温側使用温度における貯蔵弾性率(E’pl)と、前記使用標準温度における貯蔵弾性率(E’pi)との比(E’pl/E’pi)が6.9以下である。 The damper rubber member of the present invention is a damper rubber member used for a torsional damper, and has a loss coefficient (tan δi) at a working standard temperature of 0.33 or more in a state before being mounted on the torsional damper, The loss coefficient ratio (tan δh / tan δi) between the loss coefficient (tan δh) and the loss coefficient (tan δi) at the use standard temperature is 0.86 or more, and the storage elastic modulus (E′pl) at the low temperature side use temperature, The ratio (E′pl / E′pi) to the storage elastic modulus (E′pi) at the use standard temperature is 6.9 or less.
 本発明のトーショナルダンパは、回転軸に取り付けられ、前記回転軸と一体的に回転するダンパハブと、前記ダンパハブにゴム部材を介して装着された慣性リングと、を有し、前記ダンパハブと前記慣性リングとの間に介在された前記ダンパゴム部材は、使用標準表面温度での損失係数(tanδpi)が0.27以上で、高温側使用表面温度における損失係数(tanδpi)と前記使用標準表面温度における損失係数(tanδpi)との損失係数比(tanδph/tanδpi)が0.62以上である。 The torsional damper of the present invention includes a damper hub that is attached to a rotating shaft and rotates integrally with the rotating shaft, and an inertia ring that is attached to the damper hub via a rubber member, and the damper hub and the inertia The damper rubber member interposed between the ring has a loss coefficient (tan δpi) at the use standard surface temperature of 0.27 or more, a loss coefficient (tan δpi) at the use surface temperature on the high temperature side, and a loss at the use standard surface temperature. The loss factor ratio (tan δph / tan δpi) to the coefficient (tan δpi) is 0.62 or more.
 本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば以下の通りである。 Among the inventions disclosed in the present application, effects obtained by typical ones will be briefly described as follows.
 本発明によれば、使用標準温度における損失係数が大きく、且つ高温側における損失係数の低下が少ないダンパゴム部材およびそれを用いたトーショナルダンパを提供することができる。 According to the present invention, it is possible to provide a damper rubber member having a large loss coefficient at the standard operating temperature and a small loss coefficient on the high temperature side, and a torsional damper using the same.
 本発明によれば、低温領域から高温領域に亘って優れた捩り振動低減特性を示すダンパゴム部材およびそれを用いたトーショナルダンパを提供することができる。 According to the present invention, it is possible to provide a damper rubber member exhibiting excellent torsional vibration reduction characteristics from a low temperature region to a high temperature region, and a torsional damper using the same.
本発明の一実施の形態であるトーショナルダンパを示す斜視図である。It is a perspective view which shows the torsional damper which is one embodiment of this invention. 図1に示すトーショナルダンパの一部破断斜視図である。It is a partially broken perspective view of the torsional damper shown in FIG. 図1に示すトーショナルダンパの組み立て方法を示す一部破断斜視図である。It is a partially broken perspective view which shows the assembly method of the torsional damper shown in FIG. 図1に示すトーショナルダンパのダンパゴム部材を構成するダンパゴム組成物に含まれるカーボンブラックの量と損失係数(tanδ)との関係を示すグラフである。2 is a graph showing the relationship between the amount of carbon black contained in the damper rubber composition constituting the damper rubber member of the torsional damper shown in FIG. 1 and the loss coefficient (tan δ). 図1に示すトーショナルダンパのダンパゴム部材を構成するゴム組成物に含まれるカーボンブラックのヨウ素吸着量およびDBP吸油量の最適範囲を示すグラフである。It is a graph which shows the optimal range of the iodine adsorption amount and DBP oil absorption amount of carbon black contained in the rubber composition which comprises the damper rubber member of the torsional damper shown in FIG.
 以下、本発明の実施の形態を図面に基づいて詳細に説明する。図1は、本発明の一実施の形態であるトーショナルダンパを示す斜視図であり、図2は、図1に示すトーショナルダンパの一部破断斜視図である。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a perspective view showing a torsional damper according to an embodiment of the present invention, and FIG. 2 is a partially broken perspective view of the torsional damper shown in FIG.
 本実施の形態のトーショナルダンパ10は、自動車のエンジンのクランクシャフトの先端に装着され、当該クランクシャフトの回転をオルタネータやパワーステアリングなどの被駆動機器に伝達するために使用されるものであり、ダンパハブ11と、慣性リング12と、環状のダンパゴム部材13とを備える。 The torsional damper 10 of the present embodiment is attached to the tip of a crankshaft of an automobile engine, and is used to transmit the rotation of the crankshaft to a driven device such as an alternator or a power steering. A damper hub 11, an inertia ring 12, and an annular damper rubber member 13 are provided.
 ダンパハブ11は、径方向に伸びるディスク部11aと、その径方向中央部に一体に設けられたボス部11bとを有し、ボス部11bがクランクシャフトの先端に締結されて中心軸Cを中心に回転駆動される。ダンパハブ11は、FC250、FCD450などの鋳鉄からなる。 The damper hub 11 has a disk portion 11a extending in the radial direction and a boss portion 11b integrally provided at the central portion in the radial direction. The boss portion 11b is fastened to the tip of the crankshaft and is centered on the central axis C. Driven by rotation. The damper hub 11 is made of cast iron such as FC250 and FCD450.
 慣性リング12は、ダンパハブ11の径方向外方に配置されており、その外周面にベルトが掛かるプーリ溝12aが設けられて動力伝達用のプーリを構成している。慣性リング12は、FC250などの鋳鉄からなる。 The inertia ring 12 is disposed radially outward of the damper hub 11, and a pulley groove 12a on which the belt is engaged is provided on the outer peripheral surface of the inertia ring 12 to constitute a power transmission pulley. The inertia ring 12 is made of cast iron such as FC250.
 ダンパハブ11と慣性リング12との間に介在する環状のダンパゴム部材13は、ダンパハブ11の中心軸Cに同軸の外周面と、この外周面に対向する慣性リング12の内周面との間隙部に挿入され、自動車の走行中に発生するクランクシャフトの捩り振動を低減させて破損を防止し、エンジン振動の騒音や振動を低減する。 An annular damper rubber member 13 interposed between the damper hub 11 and the inertia ring 12 is formed in a gap between the outer peripheral surface coaxial with the central axis C of the damper hub 11 and the inner peripheral surface of the inertia ring 12 facing the outer peripheral surface. It is inserted and the torsional vibration of the crankshaft generated during the running of the automobile is reduced to prevent breakage, and the noise and vibration of engine vibration are reduced.
 本実施の形態のトーショナルダンパ10に使用されるダンパゴム部材13は、トーショナルダンパ10に装着される前の状態において、使用標準温度における損失係数(tanδi)が0.33以上で、高温側使用温度における損失係数(tanδh)と上記使用標準温度における損失係数(tanδi)との損失係数比(tanδh/tanδi)が0.86以上であり、低温側使用温度における貯蔵弾性率(E’pl)と、上記使用標準温度における貯蔵弾性率(E’pi)との比(E’pl/E’pi)が6.9以下である、という特性を有する。 The damper rubber member 13 used in the torsional damper 10 of the present embodiment has a loss coefficient (tan δi) of 0.33 or more at the standard operating temperature before being attached to the torsional damper 10 and is used on the high temperature side. The loss coefficient ratio (tan δh / tan δi) between the loss coefficient at temperature (tan δh) and the loss coefficient at the use standard temperature (tan δi) is 0.86 or more, and the storage elastic modulus (E′pl) at the low temperature side use temperature is The ratio (E'pl / E'pi) to the storage elastic modulus (E'pi) at the use standard temperature is 6.9 or less.
 ここで、使用標準温度とは実使用時の標準的な温度を意味し、代表的な例としては60℃におけるダンパゴム部材13の測定温度、ダンパゴム部材13をトーショナルダンパ10に装着した場合には、60℃±5℃におけるダンパゴム部材13の表面測定温度が挙げられる。また、高温側使用温度とは実使用時に想定される温度を意味し、代表的な例としては120℃におけるダンパゴム部材13の測定温度、ダンパゴム部材13をトーショナルダンパ10に装着した場合には、120℃±5℃におけるダンパゴム部材13の表面測定温度が挙げられる。さらに、低温側使用温度とは寒冷地における実使用時の標準的な温度であり、代表的な例としては-30℃におけるダンパゴム部材13の測定温度、ダンパゴム部材13をトーショナルダンパ10に装着した場合には、-30℃±5℃におけるダンパゴム部材13の表面測定温度が挙げられる。 Here, the use standard temperature means a standard temperature at the time of actual use. As a typical example, the measured temperature of the damper rubber member 13 at 60 ° C., and when the damper rubber member 13 is attached to the torsional damper 10 The surface measurement temperature of the damper rubber member 13 at 60 ° C. ± 5 ° C. can be mentioned. Moreover, the high temperature side use temperature means the temperature assumed at the time of actual use. As a typical example, when the damper rubber member 13 is measured at 120 ° C., and the damper rubber member 13 is attached to the torsional damper 10, The surface measurement temperature of the damper rubber member 13 at 120 ° C. ± 5 ° C. may be mentioned. Further, the low temperature side use temperature is a standard temperature at the time of actual use in a cold region. As a typical example, the measurement temperature of the damper rubber member 13 at −30 ° C., and the damper rubber member 13 is attached to the torsional damper 10. In this case, the surface measurement temperature of the damper rubber member 13 at −30 ° C. ± 5 ° C. can be mentioned.
 損失係数(tanδ、損失正接ともいう)は、ダンパゴム部材13の動的粘弾性(=損失弾性率/貯蔵弾性率から測定される数値であり、この数値が大きいほど、ダンパゴム部材の振動低減性能が高いことを意味する。また、損失係数比は損失係数(tanδ)の温度依存性を表す指標であり、高温側使用温度における損失係数(tanδh)と使用標準温度における損失係数(tanδi)との損失係数比(tanδh/tanδi)が大きい(1に近い)ことは、使用標準温度から高温側使用温度までの温度範囲における損失係数(tanδ)の温度依存性が小さい、言い換えると温度変化に伴う損失係数(tanδ)の低下が少ないことを意味する。 The loss coefficient (tan δ, also referred to as loss tangent) is a numerical value measured from the dynamic viscoelasticity (= loss elastic modulus / storage elastic modulus) of the damper rubber member 13, and the larger this value, the more the vibration reducing performance of the damper rubber member. The loss factor ratio is an index representing the temperature dependence of the loss factor (tan δ), and is a loss between the loss factor (tan δh) at the use temperature on the high temperature side and the loss factor (tan δi) at the use standard temperature. A large coefficient ratio (tan δh / tan δi) (close to 1) means that the temperature dependence of the loss coefficient (tan δ) in the temperature range from the use standard temperature to the high temperature side use temperature is small, in other words, the loss coefficient accompanying the temperature change. This means that the decrease in (tan δ) is small.
 さらに、貯蔵弾性率比は、低温領域~通常使用温度までの貯蔵弾性率の変化の度合いを表すものであり、貯蔵弾性率比が小さい(例えば、6.9以下)ほど低温での振動低減性能が維持できることを意味する。 Furthermore, the storage elastic modulus ratio represents the degree of change in the storage elastic modulus from the low temperature range to the normal use temperature. The smaller the storage elastic modulus ratio (for example, 6.9 or less), the lower the vibration reduction performance. Can be maintained.
 上記のような特性を有する本実施の形態のダンパゴム部材13は、エチレン・プロピレン・ジエン三元コポリマー(EPDM)100重量部に対して、カーボンブラック100重量部以上、プロセスオイル50重量部以上がそれぞれ添加され、且つ上記EPDMのポリマー分率が20重量%以上40重量%以下であるダンパゴム組成物を常法により所定形状(本例では円筒形)に加硫成形することによって得られたものである。 The damper rubber member 13 of the present embodiment having the characteristics as described above has 100 parts by weight or more of carbon black and 50 parts by weight or more of process oil with respect to 100 parts by weight of ethylene / propylene / diene terpolymer (EPDM). It is obtained by vulcanizing and molding a damper rubber composition having a polymer fraction of EPDM of 20 wt% or more and 40 wt% or less into a predetermined shape (cylindrical in this example) by a conventional method. .
 ダンパゴム組成物中のカーボンブラック量とダンパゴム部材の損失係数(tanδ)との間には相関関係があり、図4に示すように、カーボンブラック量の増加に比例して損失係数(tanδ)も大きくなる。従って、ダンパゴム組成物にはEPDM100重量部に対してカーボンブラック100重量部以上を添加することが好ましい。 There is a correlation between the amount of carbon black in the damper rubber composition and the loss coefficient (tan δ) of the damper rubber member. As shown in FIG. 4, the loss coefficient (tan δ) increases in proportion to the increase in the amount of carbon black. Become. Therefore, it is preferable to add 100 parts by weight or more of carbon black to 100 parts by weight of EPDM in the damper rubber composition.
 また、カーボンブラックの粒径とダンパゴム組成物の損失係数(tanδ)との間にも相関関係があり、カーボンブラックの粒径が小さいほど、損失係数が大きくなる。 There is also a correlation between the carbon black particle size and the loss coefficient (tan δ) of the damper rubber composition. The smaller the carbon black particle size, the larger the loss coefficient.
 換言すると、カーボンブラックのヨウ素吸着量が多いほど、カーボンブラックの粒径が小さくなり、ダンパゴム組成物の損失係数が大きくなる。また、DBP(可塑剤:フタル酸ジブチル(Dibutyl phthalate))吸油量が多いほど、カーボンブラックのストラクチャーが大きくなり、導電性が向上するため、ダンパゴム部材をトーショナルダンパに装着したときに、トーショナルダンパの帯電を防止し、耐久性を向上させることができる。 In other words, the larger the iodine adsorption amount of the carbon black, the smaller the particle size of the carbon black and the larger the loss factor of the damper rubber composition. In addition, the larger the DBP (plasticizer: Dibutyl phthalate) oil absorption, the larger the carbon black structure and the higher the conductivity, so when the damper rubber member is mounted on the torsional damper, Damper charging can be prevented and durability can be improved.
 そして、ヨウ素吸着量およびDBP吸油量については、後述するように、ヨウ素吸着量およびDBP吸油量が所定の範囲であるカーボンブラックを用いることが好ましい(図5参照)。 As for the iodine adsorption amount and the DBP oil absorption amount, as described later, it is preferable to use carbon black in which the iodine adsorption amount and the DBP oil absorption amount are in a predetermined range (see FIG. 5).
 また、後述するにように、トーショナルダンパの耐久性を向上させるため、300%伸長時のモジュラス(Mpa)と50%伸長時のモジュラス(Mpa)との比(300%伸長時モジュラス/50%伸長時モジュラス)を比較的大きく(例えば、7.2以上)とすることが望ましい。300%伸長時のモジュラス(Mpa)と50%伸長時のモジュラス(Mpa)との比(300%伸長時モジュラス/50%伸長時モジュラス)比が7.2より小さい場合には、外力を加えたときのダンパゴム部材の歪が大きくなり、耐久時にダンパゴム部材が破損したりする場合がある。 Further, as will be described later, in order to improve the durability of the torsional damper, the ratio of the modulus at 300% elongation (Mpa) to the modulus at 50% elongation (Mpa) (modulus at 300% elongation / 50% It is desirable that the elongation modulus is relatively large (for example, 7.2 or more). When the ratio of the modulus at 300% elongation (Mpa) to the modulus at 50% elongation (Mpa) (modulus at 300% elongation / modulus at 50% elongation) is less than 7.2, an external force was applied. In some cases, the distortion of the damper rubber member increases, and the damper rubber member may be damaged during durability.
 ダンパゴム組成物には、加硫剤として、過酸化物、共架橋剤などが含有される。 The damper rubber composition contains a peroxide, a co-crosslinking agent and the like as a vulcanizing agent.
 過酸化物としては、
  1,1-ビス(tert-ブチルペルオキシ)シクロヘキサン、
  2,5-ジメチル-2,5-ジ(tert-ブチルペルオキシ)ヘキサン、
  2,5-ジメチル-2,5-ジ(tert-ブチルペルオキシ)ヘキシン-3、
  2,5-ジメチル-2,5-ジ(ベンゾイルペルオキシ)ヘキサン、
  1,3-ジ(2-tert-ブチルペルオキシイソプロピル)ベンゼン、
  ジtert-ブチルペルオキシド、
  ジクミルペルオキシド、
  N-ブチル-4,4-ジ(tert-ブチルペルオキシ)バレレート、
  tert-ブチルクミルペルオキシド、
などを用いることができる。
As a peroxide,
1,1-bis (tert-butylperoxy) cyclohexane,
2,5-dimethyl-2,5-di (tert-butylperoxy) hexane,
2,5-dimethyl-2,5-di (tert-butylperoxy) hexyne-3,
2,5-dimethyl-2,5-di (benzoylperoxy) hexane,
1,3-di (2-tert-butylperoxyisopropyl) benzene,
Di-tert-butyl peroxide,
Dicumyl peroxide,
N-butyl-4,4-di (tert-butylperoxy) valerate,
tert-butyl cumyl peroxide,
Etc. can be used.
 共架橋剤としては、
  トリアリルイソシアネート、
  エチレングリコールジメタクリレート、
  トリメチロールプロパントリメタクリレート、
  トリアリルシアヌレート、
  キノンジオキシム、
 1,2-ポリブタジエン、
などを用いることができる。
As a co-crosslinking agent,
Triallyl isocyanate,
Ethylene glycol dimethacrylate,
Trimethylolpropane trimethacrylate,
Triallyl cyanurate,
Quinonedioxime,
1,2-polybutadiene,
Etc. can be used.
 また、ダンパゴム組成物には、上記した成分の他、周知のゴム添加剤(プロセスオイル(鉱物油)、可塑剤、亜鉛華、ステアリン酸亜鉛、老化防止剤など)が含有される。 In addition to the above components, the damper rubber composition contains known rubber additives (process oil (mineral oil), plasticizer, zinc white, zinc stearate, anti-aging agent, etc.).
 本実施の形態のトーショナルダンパ10は、上記のようなダンパゴム組成物を加硫成形して環状のダンパゴム部材13を作製した後、図3に示すように、ダンパハブ11のボス部11bが鉛直方向となるようにダンパハブ11と慣性リング12とを支持台(図示せず)上に配置した状態で、プレスなどの圧入治具を用いてダンパハブ11の外周面と慣性リング12の内周面との間隙部14にダンパゴム部材13を圧入することによって製造される。このようにして製造された部品を圧入タイプトーショナルダンパという。 In the torsional damper 10 of the present embodiment, after the damper rubber composition as described above is vulcanized to produce an annular damper rubber member 13, the boss portion 11b of the damper hub 11 has a vertical direction as shown in FIG. The damper hub 11 and the inertia ring 12 are arranged on a support base (not shown) so that the outer peripheral surface of the damper hub 11 and the inner peripheral surface of the inertia ring 12 are pressed using a press-fitting jig such as a press. It is manufactured by press-fitting the damper rubber member 13 into the gap portion 14. The part thus manufactured is called a press-fit type torsional damper.
 ダンパハブ11と慣性リング12との間隙部14にダンパゴム部材13を圧入する際の圧力は、ダンパゴム部材13の圧縮率が10%以上50%以下になるような圧力とすることが好ましい。ダンパゴム部材13の圧縮率が10%未満の場合は、トーショナルダンパ10のスリップトルクが所望の値とならず、ベルトに動力が伝わり難くなる。また、50%より大きな圧縮率では、ダンパゴム部材13に応力集中が発生し、耐久性が劣化してしまうため好ましくない。 The pressure when the damper rubber member 13 is press-fitted into the gap portion 14 between the damper hub 11 and the inertia ring 12 is preferably set so that the compression rate of the damper rubber member 13 is 10% or more and 50% or less. When the compression rate of the damper rubber member 13 is less than 10%, the slip torque of the torsional damper 10 does not become a desired value, and power is hardly transmitted to the belt. Also, a compression ratio greater than 50% is not preferable because stress concentration occurs in the damper rubber member 13 and durability is deteriorated.
 なお、ダンパゴム部材13の圧縮率は、10%以上30%未満がより好ましい。圧縮率がこの範囲内であれば、特に、耐久試験において、慣性リング12あるいはダンパハブ11との摩擦によるゴム摩耗粉の発生を抑えることができ、良好な耐久性が得られる。さらに圧入性が良好であり、安定した寸法精度を実現できる。 The compression rate of the damper rubber member 13 is more preferably 10% or more and less than 30%. If the compression rate is within this range, generation of rubber wear powder due to friction with the inertia ring 12 or the damper hub 11 can be suppressed particularly in the durability test, and good durability can be obtained. Further, the press-fitting property is good, and stable dimensional accuracy can be realized.
 トーショナルダンパ10の製造方法としては、上記した圧入法の他、ダンパゴム部材13を構成するダンパゴム組成物をダンパハブ11と慣性リング12との間隙部14に注入して加熱する加硫接着法がある。加硫接着法により製造された部品を加硫接着タイプトーショナルダンパという。 As a manufacturing method of the torsional damper 10, there is a vulcanization adhesion method in which a damper rubber composition constituting the damper rubber member 13 is injected into the gap portion 14 between the damper hub 11 and the inertia ring 12 and heated in addition to the above-described press-fitting method. . Parts manufactured by the vulcanization adhesion method are called vulcanization adhesion type torsional dampers.
 加硫接着法によれば、圧入法に比べてダンパゴム部材の本来の特性を発揮し易いが、接着不良を引き起こし易く、ダンパハブ11や慣性リング12との接着力を高めるための調整が必要となる。圧入法ではダンパゴム部材13が圧縮されるので、ダンパゴム組成物本来の特性が多少犠牲になるが、圧入という簡易な工程で接着不良を低減できる利点がある。 According to the vulcanization bonding method, the original characteristics of the damper rubber member are easily exhibited as compared with the press-fitting method, but an adhesion failure is likely to occur, and adjustment for increasing the adhesion force with the damper hub 11 and the inertia ring 12 is necessary. . In the press-fitting method, the damper rubber member 13 is compressed, so that the original characteristics of the damper rubber composition are sacrificed somewhat, but there is an advantage that adhesion failure can be reduced by a simple process of press-fitting.
 (実施例)
 次に、本発明の実施例について説明する。
(Example)
Next, examples of the present invention will be described.
 <ダンパゴム部材の製造>
 (ダンパゴム組成物の調整工程)
<Manufacture of damper rubber member>
(Damper rubber composition adjustment process)
 まず、3.5リットルのバンバリーミキサーにEPDM100重量部を投入し、回転数40rpmで1分間素練りした後、カーボンブラック100重量部、プロセスオイル50重量部、亜鉛華5重量部、ステアリン酸亜鉛1重量部、老化防止剤2重量部を投入して2分間混練し、さらに1分間混練した後、混練物をバンバリーミキサーから排出した。続いて、排出した混練物をロール間隔5mmとした12インチロールに巻き付けてシート状に成形し、成形した生地を室温にて12時間以上放置した。 First, 100 parts by weight of EPDM was put into a 3.5 liter Banbury mixer, masticated for 1 minute at a rotation speed of 40 rpm, 100 parts by weight of carbon black, 50 parts by weight of process oil, 5 parts by weight of zinc white, zinc stearate 1 Part by weight and 2 parts by weight of anti-aging agent were added and kneaded for 2 minutes. After further kneading for 1 minute, the kneaded product was discharged from a Banbury mixer. Subsequently, the discharged kneaded material was wound around a 12-inch roll having a roll interval of 5 mm and formed into a sheet shape, and the formed dough was left at room temperature for 12 hours or more.
 次に、上記の生地をロール間隔4mmとして6インチロールに巻き付けて過酸化物として、2,5-ジメチル-2,5-ジ(tert-ブチルペルオキシ)ヘキサン3.5重量部、および共架橋剤としてトリメチロールプロパントリメタクリレート2重量部を練り込み、切り返しを左右3回ずつ行い、続いて丸め通しを5回行った後、シート状に成形した。 Next, the dough was wound around a 6-inch roll with a roll interval of 4 mm, and as a peroxide, 3.5 parts by weight of 2,5-dimethyl-2,5-di (tert-butylperoxy) hexane, and a co-crosslinking agent As described above, 2 parts by weight of trimethylolpropane trimethacrylate was kneaded, turned back and forth three times each, then rounded five times, and then formed into a sheet.
 (ダンパゴム組成物の加硫工程)
 次に、上記のシートを金型にセットし、180℃にて10分間のプレス加硫を行って2mm厚のゴムシートを作製し、さらに150℃の恒温槽にて6時間の加熱処理を行った。
(Damper rubber composition vulcanization process)
Next, the above sheet is set in a mold, press vulcanized at 180 ° C. for 10 minutes to produce a rubber sheet having a thickness of 2 mm, and further heat-treated in a thermostatic bath at 150 ° C. for 6 hours. It was.
 また、ダンパゴム組成物の組成比を変えた以外は上記と同様の方法で表1、表2に示す実施例2~実施例11および比較例1のダンパゴム部材(試験片)を作製した。ただし、実施例1~実施例7、実施例11、比較例1では、ヨウ素吸着量およびDBP吸油量が図5に示す範囲にあるカーボンブラック1を使用したが、実施例8ではカーボンブラック2、実施例9ではカーボンブラック3、実施例10ではカーボンブラック4をそれぞれ使用した。なお、実施例1~実施例11、比較例1で用いた加硫前のダンパゴム組成物をそれぞれ組成物1~11、比較組成物1とする。また、組成物1~11、比較組成物1により形成されたダンパゴム部材を試験片1~11、比較試験片1とする。 Further, damper rubber members (test pieces) of Examples 2 to 11 and Comparative Example 1 shown in Tables 1 and 2 were prepared in the same manner as described above except that the composition ratio of the damper rubber composition was changed. However, in Examples 1 to 7, Example 11, and Comparative Example 1, carbon black 1 in which the iodine adsorption amount and the DBP oil absorption amount are in the ranges shown in FIG. 5 was used, but in Example 8, carbon black 2, In Example 9, carbon black 3 was used, and in Example 10, carbon black 4 was used. The damper rubber compositions before vulcanization used in Examples 1 to 11 and Comparative Example 1 are referred to as Compositions 1 to 11 and Comparative Composition 1, respectively. The damper rubber members formed from the compositions 1 to 11 and the comparative composition 1 are referred to as test pieces 1 to 11 and comparative test piece 1.
 <ダンパゴム部材の評価>
   ・ 下記条件によりJIS K6394に基づいて各ダンパゴム部材(試験片1~試験片11、比較試験片1)の60℃における損失係数(tanδi)、120℃における損失係数(tanδh)および損失係数比(tanδh/tanδi)、並びに-30℃における貯蔵弾性率(E’pl)と60℃における貯蔵弾性率(E’pi)との比(E’pl/E’pi)をそれぞれ測定した。結果を表1、表2に示す。
<Evaluation of damper rubber member>
The loss coefficient (tan δi) at 60 ° C., the loss coefficient (tan δh) at 120 ° C., and the loss coefficient ratio (tan δh) of each damper rubber member (test piece 1 to test piece 11, comparative test piece 1) according to JIS K6394 under the following conditions / Tan δi) and the ratio (E′pl / E′pi) of the storage elastic modulus (E′pl) at −30 ° C. and the storage elastic modulus (E′pi) at 60 ° C. were measured. The results are shown in Tables 1 and 2.
 測定器:上島製作所製 粘弾性アナライザYR-7130
 変形方法:引張
 周波数:100Hz
 振幅:±1%
 プレロード:480mN
 試験片形状:加硫成形後のシート状ゴム部材から採取した
20mm(つかみ間隔)×4mm(幅)×2mm(厚さ)の短冊形状片
Measuring instrument: Ueshima Seisakusho Viscoelastic Analyzer YR-7130
Deformation method: Tensile frequency: 100Hz
Amplitude: ± 1%
Preload: 480mN
Test piece shape: strip-shaped piece of 20 mm (grip interval) × 4 mm (width) × 2 mm (thickness) taken from a vulcanized sheet-like rubber member
 2.JIS K6253に基づいてデュロメータAを使用し、1秒以内に読み取る方式で各ダンパゴム部材(試験片1~試験片11、比較試験片1)の硬さを測定した。結果を表1、表2に示す。 2. Based on JIS K6253, the durometer A was used, and the hardness of each damper rubber member (test piece 1 to test piece 11, comparative test piece 1) was measured by a method of reading within 1 second. The results are shown in Tables 1 and 2.
 3.JIS K6251に基づいて各ダンパゴム部材試験片(実施例1~実施例11、比較例1)の引張強さ(Mpa)、伸び(%)およびモジュラス(300%伸長時のモジュラス、50%伸長時のモジュラスおよびそれらの比)を測定した。結果を表1、表2に示す。
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
<圧入タイプトーショナルダンパの評価>
3. Tensile strength (Mpa), elongation (%) and modulus (modulus at 300% elongation, modulus at 50% elongation) of each damper rubber member test piece (Example 1 to Example 11, Comparative Example 1) based on JIS K6251 Modulus and their ratio) were measured. The results are shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000001

Figure JPOXMLDOC01-appb-T000002

<Evaluation of press-fit type torsional damper>
 1.上記ダンパゴム部材(試験片1~試験片11、比較試験片1)と同一組成の環状のダンパゴム部材(図3のダンパゴム部材13参照)を作製し、ハブと慣性リングとの間隙部に圧縮率10~50%で圧入してトーショナルダンパを製造した。言い換えれば、上記組成物1~11、比較組成物1を用いて環状のダンパゴム部材13を作製し、圧入してトーショナルダンパを製造した。そして、表1、表2に示すように、実施例1a~11a、比較例1aとして、組成物1~11、比較組成物1を用いた圧入タイプトーショナルダンパの評価を行った。 1. An annular damper rubber member (see damper rubber member 13 in FIG. 3) having the same composition as that of the damper rubber member (test piece 1 to test piece 11, comparative test piece 1) is produced, and a compression ratio of 10 is formed in the gap between the hub and the inertia ring. A torsional damper was manufactured by press-fitting at ˜50%. In other words, an annular damper rubber member 13 was produced using the above compositions 1 to 11 and comparative composition 1, and press-fitted to produce a torsional damper. Then, as shown in Tables 1 and 2, as Examples 1a to 11a and Comparative Example 1a, press-fit type torsional dampers using Compositions 1 to 11 and Comparative Composition 1 were evaluated.
 トーショナルダンパ(実施例1a~実施例11a、比較例1a)に装着されたダンパゴム部材の表面温度60℃における損失係数(tanδpi)、ダンパゴム部材の表面温度120℃における損失係数(tanδph)および損失係数比(tanδph/tanδpi)並びに低温性(-30℃/60℃Fn比)を高周波振動試験機による共振スイープ法(固有振動数測定)で測定した。低温性(-30℃/60℃Fn比)とは、-30°における固有振動数と60℃における固有振動数との比であり、低温時の捩り振動特性に影響する。 Loss coefficient (tan δpi) at a surface temperature of 60 ° C. of the damper rubber member mounted on the torsional damper (Examples 1a to 11a, Comparative Example 1a), loss coefficient (tan δph) and loss factor of the damper rubber member at a surface temperature of 120 ° C. The ratio (tan δph / tan δpi) and low temperature property (-30 ° C / 60 ° C Fn ratio) were measured by a resonance sweep method (natural frequency measurement) using a high frequency vibration tester. The low temperature property (-30 ° C / 60 ° C Fn ratio) is the ratio of the natural frequency at -30 ° to the natural frequency at 60 ° C, which affects the torsional vibration characteristics at low temperatures.
 <測定条件>
・ゴム温度:60±5℃、120±5℃、-30±5℃
・加振振幅:±1.7×10-3rad(±0.1°)
・スイープ速度:100Hz/min
<Measurement conditions>
・ Rubber temperature: 60 ± 5 ℃, 120 ± 5 ℃, -30 ± 5 ℃
Excitation amplitude: ± 1.7 × 10 −3 rad (± 0.1 °)
・ Sweep speed: 100Hz / min
 2.市販の捩り振動試験機を用い、下記測定方法および測定条件によりトーショナルダンパ(実施例1a~実施例11a、比較例1a)のクランク捩じれ低減効果および耐久性の評価を行った。クランク捩じれ低減効果については、比較例1aと比べてより効果があったものを「○(丸)」と、比較例1aと比べて高い効果があったものを「◎(2重丸)」とした。耐久性については、規定回数前にゴムの破損のあったものを「×(バツ)」と、規定回数後にゴム部の表面に凹凸のあったものを「△(三角)」と、規定回数後に僅かなゴム摩耗粉の付着のあったものを「○(丸)」と、規定回数後にゴム部の外観に異常のなかったものを「◎(2重丸)」とした。結果を表1、表2に示す。 2. Using a commercially available torsional vibration testing machine, the torsional dampers (Example 1a to Example 11a, Comparative Example 1a) were evaluated for the crank torsion reduction effect and durability according to the following measurement method and measurement conditions. Regarding the crank twist reduction effect, “○ (circle)” is more effective than Comparative Example 1a, and “◎ (double circle)” is more effective than Comparative Example 1a. did. As for durability, “× (X)” indicates that the rubber was damaged before the specified number of times, and “△ (triangle)” indicates that the rubber surface was uneven after the specified number of times. The case where a slight amount of rubber abrasion powder adhered was designated as “◯ (circle)”, and the case where there was no abnormality in the appearance of the rubber part after a specified number of times was designated as “◎ (double circle)”. The results are shown in Tables 1 and 2.
 <測定方法> <Measurement method>
 ・雰囲気温度100℃の恒温槽中でダンパゴム部材の温度を安定させる。
・ハブを固定した状態でトーショナルダンパを一定荷重で左右に捩り振幅を加える。
<測定条件>
・雰囲気温度:±5℃
・加振振幅(負荷トルク):耐久初期のダンパゴム部材の剪断歪みが30%以上となる負荷
トルク
・加振周波数:10Hz
耐久回数:1×10
-Stabilize the temperature of the damper rubber member in a constant temperature bath at an ambient temperature of 100 ° C.
・ Torsional damper is twisted left and right with constant load while hub is fixed.
<Measurement conditions>
・ Ambient temperature: ± 5 ℃
Excitation amplitude (load torque): Load torque at which the shear strain of the damper rubber member in the initial stage of durability is 30% or more. Excitation frequency: 10 Hz
Durability: 1 × 10 7 times
 <加硫接着タイプトーショナルダンパの評価> <Evaluation of vulcanized adhesive type torsional damper>
 上記ダンパゴム部材試験片(実施例1~実施例11、比較例1)の加硫前のダンパゴム組成物を加硫剤と共にダンパハブと慣性リングとの間隙部に注入・加熱する加硫接着法によりトーショナルダンパを作製した。言い換えれば、上記組成物1~11、比較組成物1を、ダンパハブと慣性リングとの間隙部に注入・加熱することによりトーショナルダンパを製造した。そして、表1、表2に示すように、実施例1b~11b、比較例1bとして、組成物1~11、比較組成物1を用いた加硫接着タイプトーショナルダンパの評価を行った。 The damper rubber composition before the vulcanization of the above-mentioned damper rubber member test pieces (Examples 1 to 11 and Comparative Example 1) is injected into the gap between the damper hub and the inertia ring together with the vulcanizing agent and heated by a vulcanization adhesion method. A national damper was produced. In other words, the torsional damper was manufactured by injecting and heating the above compositions 1 to 11 and comparative composition 1 into the gap between the damper hub and the inertia ring. Then, as shown in Tables 1 and 2, as Examples 1b to 11b and Comparative Example 1b, vulcanized adhesive type torsional dampers using Compositions 1 to 11 and Comparative Composition 1 were evaluated.
 上記圧入タイプトーショナルダンパの評価に用いた方法と同様の方法により、ダンパハブと慣性リングとの間隙部に接着形成されたトーショナルダンパ(実施例1b~実施例11b、比較例1b)のダンパゴム部材の表面温度60℃における損失係数(tanδpi)、表面温度120℃における損失係数(tanδph)および損失係数比(tanδph/tanδpi)を、それぞれ測定すると共に、クランク捩じれ低減効果および耐久性の評価を行った。クランク捩じれ低減効果および耐久性の評価については、上記圧入タイプトーショナルダンパの場合と同様に行った。なお、クランク捩じれ低減効果については、比較例1bと比べて評価した。結果を表1、表2に示す。 The damper rubber member of the torsional damper (Example 1b to Example 11b, Comparative Example 1b) formed by bonding in the gap between the damper hub and the inertia ring by the same method as that used for the evaluation of the press-fitting type torsional damper. The loss coefficient (tan δpi) at a surface temperature of 60 ° C., the loss coefficient (tan δph) and the loss factor ratio (tan δph / tan δpi) at a surface temperature of 120 ° C. were measured, and the crank twist reduction effect and durability were evaluated. . The crank twist reduction effect and durability were evaluated in the same manner as in the case of the press-fit type torsional damper. The crank twist reduction effect was evaluated as compared with Comparative Example 1b. The results are shown in Tables 1 and 2.
 <tanδと振動低減特性の関係について> <Relationship between tan δ and vibration reduction characteristics>
 表1、表2に示すように、実施例1a~実施例11aの圧入タイプトーショナルダンパは、比較例1aの圧入タイプトーショナルダンパより、クランク捩じれ低減効果が大きかった。また、実施例1b~実施例11bの加硫接着タイプトーショナルダンパも、比較例1bより、クランク捩じれ低減効果が大きかった。すなわち、比較例1a、1bのトーショナルダンパでは、60℃での損失係数が0.33未満となっており、クランク捩じれ低減効果が実施例1a~実施例11aおよび実施例1b~実施例11bより劣っていた。 As shown in Tables 1 and 2, the press-fitting type torsional dampers of Examples 1a to 11a were more effective in reducing crank twist than the press-fitting type torsional damper of Comparative Example 1a. In addition, the vulcanized adhesive type torsional dampers of Examples 1b to 11b were also more effective in reducing crank twist than Comparative Example 1b. That is, in the torsional dampers of Comparative Examples 1a and 1b, the loss coefficient at 60 ° C. is less than 0.33, and the effect of reducing the crank twist is from Examples 1a to 11a and Examples 1b to 11b. It was inferior.
 そして、圧入タイプトーショナルダンパ(実施例1a~実施例11a)および加硫接着タイプトーショナルダンパ(実施例1b~実施例11b)では、損失係数が本来のダンパゴム部材単体(ダンパゴム部材試験片、実施例1~実施例11)よりもやや低下する。このように、ダンパゴム部材をトーショナルダンパに装着することで、装着前に比べて損失係数が若干低下するものの、圧入タイプおよび加硫接着タイプともに、ダンパゴム部材の表面温度60℃での損失係数が0.27以上となっており、優れた捩じり振動低減特性を示すことが判明した。 In the press-fitting type torsional dampers (Examples 1a to 11a) and the vulcanized adhesive type torsional dampers (Examples 1b to 11b), the loss coefficient of the original damper rubber member (damper rubber member test piece, Slightly lower than in Examples 1 to 11). Thus, although the loss factor is slightly reduced by attaching the damper rubber member to the torsional damper, the loss factor at the surface temperature of the damper rubber member at 60 ° C. is both in the press-fit type and the vulcanized adhesive type. It was found to be 0.27 or more and to exhibit excellent torsional vibration reduction characteristics.
 さらに、圧入タイプトーショナルダンパ(実施例1a~実施例11a)および加硫接着タイプトーショナルダンパ(実施例1b~実施例11b)では、ダンパゴム部材の表面温度60℃における損失係数(tanδpi)、表面温度120℃における損失係数(tanδph)および損失係数比(tanδph/tanδpi)が、0.62以上であり、高温領域においても優れた捩り振動低減特性を示すことが判明した。 Further, in the press-fitting type torsional dampers (Examples 1a to 11a) and the vulcanized adhesive type torsional dampers (Examples 1b to 11b), the loss coefficient (tan δpi) at the surface temperature of the damper rubber member at 60 ° C. The loss factor (tan δph) and loss factor ratio (tan δph / tan δpi) at a temperature of 120 ° C. were 0.62 or more, and it was found that excellent torsional vibration reduction characteristics were exhibited even in a high temperature region.
 <モジュラスと耐久性について> <About modulus and durability>
 表1、表2に示すように、圧入タイプトーショナルダンパ(実施例1a~実施例11a)および加硫接着タイプトーショナルダンパ(実施例1b~実施例11b)の双方において、それぞれ、比較例1a、1bより、耐久性が高かった。 As shown in Tables 1 and 2, in both the press-fitting type torsional dampers (Examples 1a to 11a) and the vulcanized adhesive type torsional dampers (Examples 1b to 11b), Comparative Example 1a The durability was higher than 1b.
 これに対し、比較試験片1の300%伸長時のモジュラスと、50%伸長時のモジュラスとの比が7.2未満となっており、実施例1~実施例11の試験片1~11より上記比が低かった。 On the other hand, the ratio of the modulus at the time of 300% elongation and the modulus at the time of 50% elongation of the comparative test piece 1 is less than 7.2, and from the test pieces 1 to 11 of Examples 1 to 11 The ratio was low.
 以上の考察により、300%伸長時のモジュラスと、50%伸長時のモジュラスとの比が7.2以上であるダンパゴム部材をトーショナルダンパに組み込むことで、優れた耐久性を示すことが判明した。 Based on the above considerations, it has been found that by incorporating a damper rubber member having a ratio of the modulus at 300% elongation and the modulus at 50% elongation of 7.2 or more into the torsional damper, excellent durability is exhibited. .
 また、表1、表2に示すように、耐久性は、300%伸長時のモジュラスと、50%伸長時のモジュラスとの比に加え、300%伸長時のモジュラスおよび50%伸長時のモジュラスが、ともに大きいほど良好な耐久性を示す。 In addition, as shown in Tables 1 and 2, in addition to the ratio between the modulus at 300% elongation and the modulus at 50% elongation, the durability is the modulus at 300% elongation and the modulus at 50% elongation. The larger both, the better the durability.
 以上の観点から、300%伸長時のモジュラスと、50%伸長時のモジュラスとの比が7.2以上、300%伸長時のモジュラスが9.0以上であるダンパゴム部材をトーショナルダンパに用いることが好ましい。また、耐久性の評価が高かった実施例2、3、4、8、9より、300%伸長時のモジュラスと50%伸長時のモジュラスとの比について、9.6以上とすることがさらに好ましい。また、300%伸長時のモジュラスおよび50%伸長時のモジュラスについて、300%伸長時のモジュラスを13.2以上、50%伸長時のモジュラスを1.32以上とすることがさらに好ましい。 From the above viewpoint, a damper rubber member having a ratio of a modulus at 300% elongation to a modulus at 50% elongation of 7.2 or more and a modulus at 300% elongation of 9.0 or more is used for the torsional damper. Is preferred. Further, from Examples 2, 3, 4, 8, and 9, which had a high durability evaluation, the ratio of the modulus at 300% elongation to the modulus at 50% elongation is more preferably 9.6 or more. . Further, regarding the modulus at 300% elongation and the modulus at 50% elongation, it is more preferable that the modulus at 300% elongation is 13.2 or more and the modulus at 50% elongation is 1.32 or more.
 <貯蔵弾性率と低温効果について> <About storage modulus and low temperature effect>
 実施例1~実施例11のダンパゴム部材は、ダンパゴム部材の低温使用温度における、貯蔵弾性率(E’pl)と、標準使用温度における貯蔵弾性率(E’pi)との比(E’pl/E’pi)が6.9以下となる。これに対し、比較例1のダンパゴム部材では、上記比(E’pl/E’pi)が6.9を超え、貯蔵弾性率が実施例1~実施例11より劣っていた。 The damper rubber members of Examples 1 to 11 have a ratio (E′pl / E) of the storage elastic modulus (E′pl) at the low temperature use temperature of the damper rubber member and the storage elastic modulus (E′pi) at the standard use temperature. E′pi) is 6.9 or less. On the other hand, in the damper rubber member of Comparative Example 1, the ratio (E′pl / E′pi) exceeded 6.9, and the storage elastic modulus was inferior to that of Examples 1 to 11.
 ここで、組成物1~組成物11のEPDMポリマー中のエチレン重量比率は58%であり、これに対して比較組成物1のEPDMポリマー中のエチレン重量比率は62%である。EPDMポリマー中のエチレンの重量比率が高くなると、貯蔵弾性率(E’pl)と、貯蔵弾性率(E’pi)との比(E’pl/E’pi)が大きくなり、低温特性が悪化する。 Here, the ethylene weight ratio in the EPDM polymer of Composition 1 to Composition 11 is 58%, whereas the ethylene weight ratio in the EPDM polymer of Comparative Composition 1 is 62%. As the weight ratio of ethylene in the EPDM polymer increases, the ratio (E'pl / E'pi) between the storage elastic modulus (E'pl) and the storage elastic modulus (E'pi) increases and the low temperature characteristics deteriorate. To do.
 以上の考察により、ダンパゴム部材の低温側使用温度における、貯蔵弾性率(E’pl)と、使用標準温度における貯蔵弾性率(E’pi)との比(E’pl/E’pi)が6.9以下である実施例1~実施例11のダンパゴム部材は、低温領域においても優れた貯蔵弾性率を示し、低温でも振動低減性能を維持できる。このようなダンパゴム部材をトーショナルダンパに組み込むことで、トーショナルダンパの低温性(-30℃/60℃Fn比)が向上することが判明した。 Based on the above considerations, the ratio (E'pl / E'pi) between the storage elastic modulus (E'pl) at the use temperature of the damper rubber member at the low temperature side and the storage elastic modulus (E'pi) at the use standard temperature is 6 The damper rubber members of Examples 1 to 11 that are .9 or less exhibit excellent storage elastic modulus even in a low temperature region, and can maintain vibration reduction performance even at a low temperature. It has been found that incorporating such a damper rubber member into the torsional damper improves the low temperature property (-30 ° C / 60 ° C Fn ratio) of the torsional damper.
 以上のとおり、実施例1~実施例11のダンパゴム部材によれば、60℃での損失係数が0.33以上で、120℃における損失係数と60℃における損失係数との損失係数比が0.86以上である優れた特性を示す。そして、これらのダンパゴム部材をトーショナルダンパに組み込んだ場合においても、低温領域から高温領域に亘って優れた捩り振動低減特性と耐久性を示した。 As described above, according to the damper rubber members of Examples 1 to 11, the loss coefficient at 60 ° C. is 0.33 or more, and the loss coefficient ratio between the loss coefficient at 120 ° C. and the loss coefficient at 60 ° C. is 0. It exhibits excellent characteristics of 86 or more. And even when these damper rubber members were incorporated in a torsional damper, excellent torsional vibration reduction characteristics and durability were exhibited from a low temperature region to a high temperature region.
 <ダンパゴム組成物について>
 以下に、ダンパゴム組成物について、好ましい範囲を説明する。
<Damper rubber composition>
Below, a preferable range is demonstrated about a damper rubber composition.
 (a)EPDMポリマーについて
 上記実施例においては、ポリマーとして、EPDMを用いた。そして、EPDMとして、エチレン重量比率が55%以下の第1グレードと、油展オイル量40重量部以上の油展グレードとを混合してエチレン重量比率58%とした。なお、ダンパゴム組成物のオイル添加量(プロセスオイル量)は、油展グレードのポリマーに含まれるオイルを差し引いた量とする。第1グレード(1G)、油展グレード(OG)およびプロセスオイル量(PO)の各重量部の関係は、以下のとおりである。油展グレードのポリマーを使用することで、プロセスオイル量を抑制でき、ポリマーやカーボンブラックの分散性を向上させることができる。
(A) About EPDM polymer In the said Example, EPDM was used as a polymer. And as EPDM, the 1st grade whose ethylene weight ratio is 55% or less, and the oil extended grade whose oil-extended oil amount is 40 parts by weight or more were mixed to obtain an ethylene weight ratio of 58%. The oil addition amount (process oil amount) of the damper rubber composition is an amount obtained by subtracting the oil contained in the oil-extended grade polymer. The relationship between the weight parts of the first grade (1G), the oil extended grade (OG), and the amount of process oil (PO) is as follows. By using an oil-extended grade polymer, the amount of process oil can be suppressed, and the dispersibility of the polymer and carbon black can be improved.
 油展EPDMグレードをブレンドして使用する場合は、第1グレードのEPDMポリマーと油展EPDMグレードの油展オイルを除いたEPDMポリマーとの合計が100重量部となるように換算する。 When blending and using an oil-extended EPDM grade, conversion is performed so that the total of the first grade EPDM polymer and the EPDM polymer excluding the oil-extended EPDM grade oil-extended oil is 100 parts by weight.
 第1グレード(1G)の添加量(重量部数)をAとしたとき、油展グレード(OG)の添加量(重量部数)Bは、(100-A)×D/100である。 When the addition amount (parts by weight) of the first grade (1G) is A, the addition amount (parts by weight) B of the oil-extended grade (OG) is (100−A) × D / 100.
 ここで、Dは、使用する油展グレードのEPDMポリマーを100重量部としたときのポリマーと油展オイルの合計重量部数である。 Here, D is the total number of parts by weight of the polymer and the oil-extended oil when the oil-extended grade EPDM polymer used is 100 parts by weight.
 また、油展グレード(OG)を使用した場合のプロセスオイルの添加量(重量部数)Cは、(油展EPDMを使用しない場合のプロセスオイル添加量)-(A+B-100)となる。 Further, the amount (parts by weight) of process oil added when oil-extended grade (OG) is used is (process oil addition amount when oil-extended EPDM is not used) − (A + B−100).
 また、実施例1~実施例11(組成物1~組成物11)と、比較例1(比較組成物1)との対比から、プロセスオイルは50重量部以上が好ましい。 Further, from the comparison of Example 1 to Example 11 (Composition 1 to Composition 11) and Comparative Example 1 (Comparative Composition 1), the process oil is preferably 50 parts by weight or more.
 さらに、EPDMポリマー重量比率(ポリマー分率ともいう)は20%以上40%以下であることが好ましい。EPDMポリマー重量比率20%未満では、ゴム組成物の粘着性が上がり、製造上の練り加工性が悪化する。一方、EPDMポリマー重量比率が40%より大きいと損失係数が低下してしまう。 Furthermore, the EPDM polymer weight ratio (also referred to as polymer fraction) is preferably 20% or more and 40% or less. If the weight ratio of the EPDM polymer is less than 20%, the rubber composition becomes more sticky and the kneading processability in production deteriorates. On the other hand, when the EPDM polymer weight ratio is larger than 40%, the loss factor decreases.
 なお、EPDMポリマー重量比率[%]=EPDMポリマー重量部数÷重量部数合計×100である。 Note that EPDM polymer weight ratio [%] = EPDM polymer parts by weight / total parts by weight × 100.
 (b)カーボンブラックについて (B) About carbon black
 前述したとおり、ダンパゴム組成物中のカーボンブラック量とダンパゴム部材の損失係数(tanδ)との間には相関関係があり、カーボンブラック量の増加に比例して損失係数(tanδ)も大きくなる。従って、ダンパゴム組成物にはEPDM100重量部に対してカーボンブラック100重量部以上を添加することが好ましい。 As described above, there is a correlation between the amount of carbon black in the damper rubber composition and the loss coefficient (tan δ) of the damper rubber member, and the loss coefficient (tan δ) increases in proportion to the increase in the amount of carbon black. Therefore, it is preferable to add 100 parts by weight or more of carbon black to 100 parts by weight of EPDM in the damper rubber composition.
 また、カーボンブラックの粒径とダンパゴム組成物の損失係数(tanδ)との間にも相関関係があり、カーボンブラックの粒径が小さいほど、損失係数が大きくなる。換言すると、カーボンブラックのヨウ素吸着量が多いほど、カーボンブラックの粒径が小さくなり、損失係数が大きくなる。 There is also a correlation between the carbon black particle size and the loss coefficient (tan δ) of the damper rubber composition. The smaller the carbon black particle size, the larger the loss coefficient. In other words, the larger the iodine adsorption amount of the carbon black, the smaller the particle size of the carbon black and the larger the loss factor.
 また、DBP吸油量が多いほど、カーボンブラックのストラクチャーが大きくなり、導電性が向上するため、ダンパゴム部材をトーショナルダンパに装着したときに、トーショナルダンパの帯電を防止し、耐久性を向上させることができる。 In addition, the larger the DBP oil absorption, the larger the carbon black structure and the higher the conductivity. Therefore, when the damper rubber member is attached to the torsional damper, the torsional damper is prevented from being charged and the durability is improved. be able to.
 例えば、図5に示すように、ヨウ素吸着量が70mg/g以上185mg/g以下であり、DBP吸油量が40ml/100g以上120ml/100g以下であるカーボンブラックを用いることが好ましい。 For example, as shown in FIG. 5, it is preferable to use carbon black having an iodine adsorption amount of 70 mg / g to 185 mg / g and a DBP oil absorption of 40 ml / 100 g to 120 ml / 100 g.
 また、耐久性の観点から、実施例2、実施例3、実施例4、実施例8、実施例9に示されるようにカーボン1、カーボン2、カーボン3を用いることがより好ましい。 Further, from the viewpoint of durability, it is more preferable to use carbon 1, carbon 2, and carbon 3 as shown in Example 2, Example 3, Example 4, Example 8, and Example 9.
 よって、ヨウ素吸着量が80mg/g以上185mg/g以下であり、DBP吸油量が75ml/100g以上112ml/100g以下であるカーボンブラックを用いることがより好ましい。 Therefore, it is more preferable to use carbon black having an iodine adsorption amount of 80 mg / g or more and 185 mg / g or less and a DBP oil absorption amount of 75 ml / 100 g or more and 112 ml / 100 g or less.
 なお、図5のヨウ素吸着量およびDBP吸油量の数値は、中心値を示し、各々±7mg/g(ml/100g)の許容範囲を有する。 In addition, the numerical value of iodine adsorption amount and DBP oil absorption amount of FIG. 5 shows a center value, and each has an allowable range of ± 7 mg / g (ml / 100 g).
 (c)加硫剤について (C) About vulcanizing agent
 加硫剤としては、過酸化物、共架橋剤などが添加される。加硫剤の添加および加熱による架橋反応によりダンパゴム部材が形成される。 As the vulcanizing agent, a peroxide, a co-crosslinking agent and the like are added. A damper rubber member is formed by addition of a vulcanizing agent and a crosslinking reaction by heating.
 以上、本発明のダンパゴム部材およびトーショナルダンパについて詳述したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。たとえば、本発明のトーショナルダンパは、クランクシャフトのみならず、エンジンのカムシャフトなどの種々の回転軸における捩り振動を低減するために適用することができ、外周面にプーリ溝が形成されていないタイプの慣性リングを有するトーショナルダンパや、ボス部を備えていないハブを有するトーショナルダンパなどにも適用することができる。 Although the damper rubber member and the torsional damper of the present invention have been described in detail above, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention. For example, the torsional damper of the present invention can be applied to reduce torsional vibrations not only in the crankshaft but also in various rotating shafts such as an engine camshaft, and no pulley groove is formed on the outer peripheral surface. The present invention can also be applied to a torsional damper having a type of inertia ring or a torsional damper having a hub not provided with a boss portion.
10  トーショナルダンパ
11  ダンパハブ
11a ディスク部
11b ボス部
12  慣性リング
12a プーリ溝
13  ダンパゴム部材
14  間隙部
DESCRIPTION OF SYMBOLS 10 Torsional damper 11 Damper hub 11a Disk part 11b Boss part 12 Inertial ring 12a Pulley groove 13 Damper rubber member 14 Gap part

Claims (7)

  1.  トーショナルダンパに用いられるダンパゴム部材であって、
     前記トーショナルダンパに装着前の前記ダンパゴム部材は、使用標準温度における損失係数(tanδi)が0.33以上で、高温側使用温度における損失係数(tanδh)と前記使用標準温度における損失係数(tanδi)との損失係数比(tanδh/tanδi)が0.86以上であり、
     低温側使用温度における貯蔵弾性率(E’pl)と、前記使用標準温度における貯蔵弾性率(E’pi)との比(E’pl/E’pi)が6.9以下である、ダンパゴム部材。
    A damper rubber member used for a torsional damper,
    The damper rubber member before being attached to the torsional damper has a loss coefficient (tan δi) at a standard operating temperature of 0.33 or more, a loss coefficient (tan δh) at a high temperature side operating temperature, and a loss coefficient (tan δi) at the standard operating temperature. Loss factor ratio (tan δh / tan δi) is 0.86 or more,
    A damper rubber member having a ratio (E'pl / E'pi) of a storage elastic modulus (E'pl) at a use temperature on the low temperature side to a storage elastic modulus (E'pi) at the use standard temperature is 6.9 or less .
  2.  請求項1記載のダンパゴム部材において、
     前記ダンパゴム部材は、ゴム組成物を加硫成形したものであって、
     前記ゴム組成物は、EPDM100重量部に対して、カーボンブラック100重量部以上、プロセスオイル40重量部以上がそれぞれ添加され、前記EPDMのポリマー分率が20%以上40%以下である、ダンパゴム部材。
    The damper rubber member according to claim 1,
    The damper rubber member is obtained by vulcanization molding of a rubber composition,
    The rubber composition is a damper rubber member in which 100 parts by weight or more of carbon black and 40 parts by weight or more of process oil are added to 100 parts by weight of EPDM, respectively, and the polymer fraction of the EPDM is 20% or more and 40% or less.
  3.  請求項2記載のダンパゴム部材において、
     前記ゴム組成物に添加された前記カーボンブラックは、ヨウ素吸着量が70mg/g以上185mg/g以下であり、DBP吸油量が40ml/100g以上120ml/100g以下である、ダンパゴム部材。
    The damper rubber member according to claim 2,
    The carbon black added to the rubber composition is a damper rubber member having an iodine adsorption amount of 70 mg / g or more and 185 mg / g or less and a DBP oil absorption amount of 40 ml / 100 g or more and 120 ml / 100 g or less.
  4.  請求項1または2記載のダンパゴム部材において、
     300%伸長時のモジュラスと50%伸長時のモジュラスとの比が7.2以上である、ダンパゴム部材。
    The damper rubber member according to claim 1 or 2,
    A damper rubber member having a ratio of a modulus at 300% elongation to a modulus at 50% elongation of 7.2 or more.
  5.  回転軸に取り付けられ、前記回転軸と一体的に回転するダンパハブと、
     前記ダンパハブにダンパゴム部材を介して装着された慣性リングと、
     を有したトーショナルダンパであって、
     前記ダンパゴム部材として、請求項1記載のダンパゴム部材を用いた、トーショナルダンパ。
    A damper hub attached to the rotating shaft and rotating integrally with the rotating shaft;
    An inertia ring attached to the damper hub via a damper rubber member;
    A torsional damper having
    A torsional damper using the damper rubber member according to claim 1 as the damper rubber member.
  6.  請求項5記載のトーショナルダンパにおいて、
     前記ダンパゴム部材は、前記ダンパハブと前記慣性リングとの間に10%以上の圧縮率で圧入される、トーショナルダンパ。
    The torsional damper according to claim 5,
    The torsional damper, wherein the damper rubber member is press-fitted at a compression rate of 10% or more between the damper hub and the inertia ring.
  7.  回転軸に取り付けられ、前記回転軸と一体的に回転するダンパハブと、
     前記ダンパハブにダンパゴム部材を介して装着された慣性リングと、
     を有するトーショナルダンパであって、
     前記ダンパハブと前記慣性リングとの間に介在された前記ダンパゴム部材は、使用標準表面温度での損失係数(tanδpi)が0.27以上で、高温側使用表面温度における損失係数(tanδpi)と前記使用標準表面温度における損失係数(tanδpi)との損失係数比(tanδph/tanδpi)が0.62以上である、トーショナルダンパ。
    A damper hub attached to the rotating shaft and rotating integrally with the rotating shaft;
    An inertia ring attached to the damper hub via a damper rubber member;
    A torsional damper having
    The damper rubber member interposed between the damper hub and the inertia ring has a loss coefficient (tan δpi) at a use standard surface temperature of 0.27 or more, a loss coefficient (tan δpi) at a high use side use surface temperature, and the use A torsional damper having a loss factor ratio (tan δph / tan δpi) to a loss factor (tan δpi) at a standard surface temperature of 0.62 or more.
PCT/JP2017/031723 2016-10-31 2017-09-04 Rubber damper member and torsional damper WO2018079076A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020197010927A KR20190075916A (en) 2016-10-31 2017-09-04 Damper rubber member and local damper

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-213559 2016-10-31
JP2016213559A JP2018071703A (en) 2016-10-31 2016-10-31 Damper rubber member and torsional damper

Publications (1)

Publication Number Publication Date
WO2018079076A1 true WO2018079076A1 (en) 2018-05-03

Family

ID=62023268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/031723 WO2018079076A1 (en) 2016-10-31 2017-09-04 Rubber damper member and torsional damper

Country Status (3)

Country Link
JP (1) JP2018071703A (en)
KR (1) KR20190075916A (en)
WO (1) WO2018079076A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021006018A1 (en) * 2019-07-08 2021-01-14
CN112728002A (en) * 2021-01-27 2021-04-30 宁波赛德森减振***有限公司 Rubber torsional vibration damper with anti-static function
US20220412433A1 (en) * 2019-12-20 2022-12-29 Nok Corporation Torsional damper
US20230003278A1 (en) * 2019-12-20 2023-01-05 Nok Corporation Torsional damper

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7021963B2 (en) * 2018-01-30 2022-02-17 株式会社フコク Rubber member and damper using it
KR20230139632A (en) 2022-03-28 2023-10-05 박한철 Ship with fire extingishing function

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06239909A (en) * 1992-12-24 1994-08-30 Bridgestone Corp Production of conjugated diene-based polymer and conjugated diene-based rubber composition
JPH11210832A (en) * 1998-01-27 1999-08-03 Mitsubishi Motors Corp Rubber damper device
JP2003056761A (en) * 2001-08-09 2003-02-26 Tokai Rubber Ind Ltd Vibration absorbent rubber hose
JP2007009073A (en) * 2005-06-30 2007-01-18 Nissin Kogyo Co Ltd Rubber member for use in damper
JP2013194875A (en) * 2012-03-22 2013-09-30 Tokai Rubber Ind Ltd Torsional damper

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4140415B2 (en) 2003-03-27 2008-08-27 Nok株式会社 EPDM composition for torsional damper

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06239909A (en) * 1992-12-24 1994-08-30 Bridgestone Corp Production of conjugated diene-based polymer and conjugated diene-based rubber composition
JPH11210832A (en) * 1998-01-27 1999-08-03 Mitsubishi Motors Corp Rubber damper device
JP2003056761A (en) * 2001-08-09 2003-02-26 Tokai Rubber Ind Ltd Vibration absorbent rubber hose
JP2007009073A (en) * 2005-06-30 2007-01-18 Nissin Kogyo Co Ltd Rubber member for use in damper
JP2013194875A (en) * 2012-03-22 2013-09-30 Tokai Rubber Ind Ltd Torsional damper

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021006018A1 (en) * 2019-07-08 2021-01-14
WO2021006018A1 (en) * 2019-07-08 2021-01-14 Nok株式会社 Rubber composition for torsional dampers
JP7100767B2 (en) 2019-07-08 2022-07-13 Nok株式会社 Rubber composition for torsional damper
US20220412433A1 (en) * 2019-12-20 2022-12-29 Nok Corporation Torsional damper
US20230003278A1 (en) * 2019-12-20 2023-01-05 Nok Corporation Torsional damper
CN112728002A (en) * 2021-01-27 2021-04-30 宁波赛德森减振***有限公司 Rubber torsional vibration damper with anti-static function

Also Published As

Publication number Publication date
JP2018071703A (en) 2018-05-10
KR20190075916A (en) 2019-07-01

Similar Documents

Publication Publication Date Title
WO2018079076A1 (en) Rubber damper member and torsional damper
WO2018109994A1 (en) Torsional damper
JP7057684B2 (en) Rubber member and damper using it
JP3829133B2 (en) Rubber composition for transmission belt and transmission belt
JP7021963B2 (en) Rubber member and damper using it
WO2018216567A1 (en) Torsional damper
US11174380B2 (en) Rubber composition for torsional damper and torsional damper
US20050043486A1 (en) Rubber composition for high-load transmission belt and high-load transmission belt from the rubber composition
JP7348143B2 (en) Rubber composition, method for producing the same, and power transmission belt
JP2003314700A (en) Seal
JP4668677B2 (en) Transmission belt
JP5150920B2 (en) Rubber composition and sealing material
EP2933528A1 (en) Transmission belt
JP7219369B1 (en) Crosslinked rubber composition and friction transmission belt using the same
KR101499214B1 (en) Rubber composition improving heat-resisting and vibration-proof
JP4820107B2 (en) Transmission belt
US20230003278A1 (en) Torsional damper
KR20140073003A (en) Reducing vibration rubber compound
JP4667956B2 (en) Transmission belt and manufacturing method thereof
JP2006029493A (en) V-ribbed belt
JP7451102B2 (en) Rubber composition and rubber member for vibration isolation
JP2006258201A (en) Transmission belt
JP2023171441A (en) Rubber composition and method for producing the same and transmission belt
JPH03209037A (en) Multiple ridge belt
JP2002357244A (en) Torsional damper

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17864136

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197010927

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17864136

Country of ref document: EP

Kind code of ref document: A1