WO2018077075A1 - 反射装置和光源模组 - Google Patents

反射装置和光源模组 Download PDF

Info

Publication number
WO2018077075A1
WO2018077075A1 PCT/CN2017/106582 CN2017106582W WO2018077075A1 WO 2018077075 A1 WO2018077075 A1 WO 2018077075A1 CN 2017106582 W CN2017106582 W CN 2017106582W WO 2018077075 A1 WO2018077075 A1 WO 2018077075A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
reflecting
refractive
wall
light source
Prior art date
Application number
PCT/CN2017/106582
Other languages
English (en)
French (fr)
Inventor
刘超博
Original Assignee
欧普照明股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201621172757.XU external-priority patent/CN206093923U/zh
Priority claimed from CN201610948477.1A external-priority patent/CN106439733A/zh
Application filed by 欧普照明股份有限公司 filed Critical 欧普照明股份有限公司
Priority to EP17865777.1A priority Critical patent/EP3511615B1/en
Publication of WO2018077075A1 publication Critical patent/WO2018077075A1/zh
Priority to US16/396,329 priority patent/US11927340B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/02Refractors for light sources of prismatic shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/04Optical design
    • F21V7/048Optical design with facets structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/005Reflectors for light sources with an elongated shape to cooperate with linear light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/0091Reflectors for light sources using total internal reflection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/04Optical design
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/04Optical design
    • F21V7/041Optical design with conical or pyramidal surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • F21V7/24Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by the material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2103/00Elongate light sources, e.g. fluorescent tubes
    • F21Y2103/10Elongate light sources, e.g. fluorescent tubes comprising a linear array of point-like light-generating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2105/00Planar light sources
    • F21Y2105/10Planar light sources comprising a two-dimensional array of point-like light-generating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the invention belongs to the technical field of illumination, and in particular relates to a reflection device and a light source module.
  • the plated reflector mainly plays the role of secondary light distribution to the light emitted by the light source.
  • the plated reflector generally includes a reflective surface coated with a metal film, but the coating material itself has a high absorption rate of light, for example, the loss rate of the silver plating film is 5%, the loss rate of the gold plating film is 9%, and the aluminum plating is performed.
  • the loss rate of the film is as high as about 12%, which makes the light-emitting efficiency of the lamp using the plated reflector low.
  • An object of the present invention is to solve the above problems and to provide a reflecting device and a light source module having high light extraction efficiency.
  • the present invention provides a reflecting device, wherein the reflecting device is transparent, and has a light entrance port, a light exit port, and a reflective wall between the light entrance port and the light exit port, the light entrance port. Less than the light exit opening, the reflective wall includes an inner surface and an outer surface.
  • the inner surface includes a plurality of consecutively arranged sawtooth structures, each of the sawtooth structures including intersecting first and second refractive surfaces, and two ends of each of the sawtooth structures respectively respectively toward the light entrance And the light exit opening.
  • the reflecting device has an annular shape, and the reflective wall has a uniform thickness.
  • first refractive surface and the second refractive surface are perpendicular to each other.
  • first refractive surface and the second refractive surface of the sawtooth structure intersect to form a ridge line, and the ridge line is a straight line or an arc.
  • an angle between a tangent line at any point on the ridge line and a plane where the light entrance port is located is smaller than A, and the A is 40°.
  • A is equal to 38° when the reflective wall material is PC, and A is equal to 30° when the reflective wall material is acrylic.
  • each of the reflective walls has a flat shape.
  • the reflecting device further includes a connecting plate disposed between the reflective walls.
  • the outer surface of the reflective wall is a smooth wall surface, and the outer surface of the reflective wall is a total reflection surface.
  • both ends of the sawtooth structure extend to the light entrance and/or the light exit.
  • the present invention further provides a reflecting device, wherein the reflecting device is transparent, and has a light entrance port, a light exit port, and a reflective wall between the light entrance port and the light exit port, the reflection
  • the wall includes an inner surface and an outer surface
  • the inner surface includes a plurality of consecutively arranged sawtooth structures, each of the sawtooth structures including intersecting first and second refractive surfaces, and two ends of each of the sawtooth structures respectively respectively toward the light entrance And the light exit opening, an optical space is formed between the light entrance, the light exit and the inner surface of the reflective wall,
  • the reflecting device is configured such that an incident light entering from the light entrance is partially incident on the reflective wall and reflected by the reflective wall into the optical space, and is emitted from the light exit port, and partially from the light entrance port The incoming light passes directly through the optical space and exits the light exit.
  • the incident light is refracted into the reflective wall through the inner surface, refracted to the outer surface via the first refractive surface or the second refractive surface of the sawtooth structure, and reflected back to the inner surface via the outer surface, and then After being refracted by the inner surface, it enters the optical space, and finally exits from the light exit port.
  • the incident ray is refracted twice on the inner surface, and the incident ray is reflected once on the outer surface.
  • the reflecting device has an annular shape, and the reflective wall has a uniform thickness.
  • first refractive surface and the second refractive surface are perpendicular to each other.
  • first refractive surface and the second refractive surface of the sawtooth structure intersect to form a ridge line, and the ridge line is a straight line or an arc.
  • each of the reflective walls has a flat shape.
  • the reflecting device further includes a connecting plate disposed between the reflective walls, and an inner surface of the connecting plate is a total reflecting surface.
  • the outer surface of the reflective wall is a smooth wall surface, and the outer surface of the reflective wall is a total reflection surface.
  • both ends of the sawtooth structure extend to the light entrance and/or the light exit.
  • the present invention further provides a light source module comprising the above-mentioned reflecting device and a light emitting component, wherein the light emitting component is disposed at a light entrance of the reflecting device.
  • the light emitting component comprises a light source panel and a plurality of light emitting units located on the light source panel.
  • the light source panel closes the light entrance.
  • the reflective device provided by the embodiment of the present invention is transparent, and the inner surface of the reflective wall includes a plurality of sawtooth structures arranged in a continuous manner, and the inner surface serves as both the light incident surface and the light exit surface.
  • the outer surface acts as a reflecting surface, so that the light incident from the inner surface can be emitted with the optical effect of total reflection, and the light extraction efficiency is improved without performing the plating treatment.
  • FIG. 1 is a schematic structural diagram of a light source module according to Embodiment 1 of the present invention.
  • FIG. 2 is a partial enlarged view of the lens in the light source module of FIG. 1.
  • FIG. 3 is a schematic diagram of an optical path of a light source module according to Embodiment 1 of the present invention.
  • Fig. 4 is a schematic view showing the ridgeline of the lens in the first embodiment of the present invention in an arc shape.
  • FIG. 5 is a schematic diagram of a light path in a vertical direction taking a single sawtooth structure as an example of Embodiment 1 of the present invention.
  • FIG. 6 is a schematic diagram of a light path in a horizontal direction taking a single sawtooth structure as an example of Embodiment 1 of the present invention.
  • FIG. 7 is a schematic structural diagram of a light source module according to Embodiment 2 of the present invention.
  • FIG. 8 is a schematic diagram of an optical path of a light source module according to Embodiment 2 of the present invention.
  • FIG. 9 is a schematic diagram of a light path in a vertical direction taking a single sawtooth structure as an example of Embodiment 2 of the present invention.
  • FIG. 10 is a schematic diagram of a light path in a horizontal direction taking a single sawtooth structure as an example of Embodiment 2 of the present invention.
  • a first embodiment of the present invention provides a light source module 100 including a reflection device 10 and a light-emitting assembly 2 .
  • the reflection device 10 has two oppositely disposed lenses 1 as reflective walls.
  • a connecting plate 15 is provided between the two lenses 1 to form a complete reflecting means.
  • the connecting plate 15 may be enclosed in a closed space together with the lens 1 as shown in FIG. 1, and the connecting plate may also be disposed on the bottom surface, that is, the position of the light-emitting assembly 2 in the figure, and the lens 1 forms a structure in which the bottom portion is open at the top.
  • some structures of the module itself can also be used as a connecting board, such as a light source board, an outer wall of the module, and the like.
  • a connecting board such as a light source board, an outer wall of the module, and the like.
  • part of the light emitted by the light-emitting component 2 is refracted, reflected, and refracted by the lens 1, and then directly emitted from the inner surface 11 of the lens 1 and then emitted from the light-emitting port, and a part of the light is reflected by the connecting plate 15 and then connected.
  • the inner surface (not labeled) of the plate 15 exits directly through the light exit opening.
  • the light source module 100 can be applied to lighting fixtures such as ceiling lights, fresh lights, and outdoor lights.
  • the light-emitting assembly 2 includes a light source panel 21 and a plurality of light-emitting units 22 on the light source panel 21. Specifically, a plurality of light emitting units 22 are arranged along the length direction d2 of the light source panel 21, and are disposed in the middle of the light source panel 21. In Embodiment 1 of the present invention, a plurality of light emitting units 22 may be arranged in one or more rows along the length direction d2 of the light source panel 21.
  • the light emitting unit 22 may be an LED light emitting unit.
  • the lens 1 serves as a reflecting wall of the reflecting means, and has a flat plate shape and uniform thickness, and is provided on both sides of the light source plate 21 in the width direction d1.
  • the lens 1 may also be a plate-like structure having a certain curvature.
  • the lens 1 has an inner surface 11 , an outer surface 12 , a first end surface 13 , a second end surface 14 , a light entrance 16 of the reflecting device at the first end surface 13 , and a light exit opening 17 at the second end surface 14 of the lens 1 .
  • An optical space is formed between the mouth 16, the light exit port 17, and the inner surface of the lens 1.
  • the diameter of the light entrance opening 16 is smaller than the diameter of the light exit opening 17, and the light source plate 21 is enclosed in the optical opening 16. As shown in FIG.
  • the inner surface 11 includes a plurality of sawtooth structures 110 arranged in parallel in a row, each of the sawtooth structures 110 including intersecting first and second refractive surfaces 111 and 112, and first and second refractive surfaces 111 and The refracting surfaces 112 intersect with ridge lines (not shown), and the ends of each of the sawtooth structures 110 extend to the first end face 13 and the second end face 14, respectively.
  • the first refractive surface 111 and the second refractive surface 112 are perpendicular to each other.
  • the angle between the first refractive surface 111 and the second refractive surface 112 may also be less than or greater than 90°. The light efficiency is best at an angle of 90°.
  • the inner surface 11 of the lens 1 is a light incident surface and is also a light exit surface.
  • the outer surface 12 is a smooth wall surface as a reflecting surface.
  • the lens 1 is a transparent structure and is integrally made of plastic or glass material, wherein the plastic material may be PMMA, PC or the like.
  • the incident angle in the vertical direction must be greater than a certain angle to achieve total reflection.
  • the incident angle in the vertical direction is greater than a certain angle, that is, the angle formed by the intersection of the ridge line formed by the intersection of the first refractive surface 111 and the second refractive surface 112 with the plane of the light source plate 21 needs to be smaller than a specific angle A.
  • a certain angle that is, the angle formed by the intersection of the ridge line formed by the intersection of the first refractive surface 111 and the second refractive surface 112 with the plane of the light source plate 21 needs to be smaller than a specific angle A.
  • We explain the angle of the ridge line mainly because the angle of the light incident through the ridge line is different. If the light is incident from the first refractive surface 111 or the second refractive surface 112, the light will be refracted, so that the light is on the outer surface.
  • the angle of incidence will increase, and if the light has almost no angle from the ridgeline position in the horizontal direction, it is most difficult to achieve total reflection, so we test
  • the design of the total reflection surface is calculated by the optical path at the ridge position.
  • the value of this A is related to the refractive index of the lens 1.
  • the PC material is selected, and A is 38°. If the material A having a higher refractive index is increased, it can be 40 in the current common materials. °, when PMMA is selected, A is 30°.
  • the angle ⁇ between the ridge line and the plane of the light source plate is a constant value, please refer to FIG. 3 .
  • the lens forms are different, as shown in FIG. 4, when the ridge line is an arc, the angle ⁇ between the tangent of each point on the ridge line and the plane of the light source plate should meet the above limitation condition, that is, the value is smaller than A. Therefore, when the angle ⁇ is satisfied to be smaller than A (A is an angle corresponding to the above different materials), the lens 1 satisfies the total reflection condition. In other embodiments that do not require total reflection of the lens, the condition that the angle ⁇ is less than A may not be satisfied, that is, an arbitrary angle between 0 and 90 may be employed, which may form a transflective surface on the outer surface 12. effect.
  • the thickness of the lens 1 can be made 2 mm (mm) or thinner. Therefore, when the structural size of the lens 1 is large, material cost and molding difficulty can be saved.
  • rounded corners are formed at the intersection of the first refractive surface 111 and the second refractive surface 112 of the lens 1 and are incident on the rounded corners. The light will refract to form stray light, but the rounded corners have little effect on the total light efficiency of the lens and the beam angle.
  • the light emitted from the light-emitting unit 2 enters from the light-incident port 16 and is partially emitted directly from the light-emitting port 17, and is partially reflected by the lens 1 to enter the optical space, and then exits from the light-emitting port 17.
  • the light is incident on the inner surface 11 of the lens 1 and is refracted to the outer surface 12 via the first refractive surface 111 of the sawtooth structure 110 on the inner surface 11.
  • the outer surface 12 is totally reflected to the inner surface 11, is refracted by the inner surface 11, enters the optical space, and is finally emitted by the light exit port 17.
  • the light-emitting component 2 emits a portion of light (not shown) that is reflected by the outer surface 12 to the first refractive surface 111 of the inner surface 11 or is reflected by the outer surface 12 to the first refractive surface 111 and the second refractive surface. 112 intersects the ridgeline and then exits. As shown in FIG. 3, as long as the angle ⁇ between the ridge line and the plane of the light source plate 21 satisfies the angular range corresponding to the different materials described above, the light incident on the lens 1 can be totally reflected and emitted from the inner surface 11.
  • the connecting plate 15 is also in the form of a flat plate, and both sides of the connecting plate 15 are flush with the sides of the lens 1 , the lower end surface thereof is flush with the first end surface 13 , and the upper end surface is flush with the second end surface 14 , thereby enclosing the light emitting component 2 around the lens.
  • the connecting plate 15 faces the one side of the light exit opening, that is, the inner surface is a total reflecting surface.
  • the connecting plate 15 can be made of a material having a total reflection function, such as plastic or metal, and can also be surface-treated. Such as surface polishing, coating treatment.
  • the light source module of the embodiment has a lens as a reflecting device, and the inner surface thereof includes a plurality of sawtooth structures arranged in a continuous manner, the outer surface is a smooth wall surface, and the inner surface serves as a light incident surface at the same time.
  • the light-emitting surface, the outer surface serves as a reflecting surface, and when the angle ⁇ between the ridge line and the plane of the light source plate 21 satisfies the specific angle A, the light incident from the inner surface can be emitted by the optical effect of total reflection, without plating treatment In the case of the light, the light extraction efficiency is improved.
  • Embodiment 2 of the present invention provides a light source module 100' including a reflecting device 10' having a lens 1' as a reflective wall, and a light-emitting assembly 2' disposed at one end of the lens 1'.
  • the portion of the light emitted by the component 2' is directly refracted by the inner surface 11' of the lens 1' after being refracted, reflected, and refracted by the lens 1'.
  • the light source module 100' can be applied to a lighting fixture such as a downlight, a spotlight, or a ceiling light.
  • the light-emitting assembly 2' includes a light source panel 21' and a light-emitting unit 22' on the light source panel 21', and the light-emitting unit 22' is disposed in the middle of the light source panel 21'.
  • One light emitting unit 22' may be arranged, or a plurality of light emitting units 22' may be arranged.
  • the lens 1' is a reflecting device 10' which has a flared shape and a uniform thickness.
  • This structure is similar to the existing reflectors, but the material is made of transparent material, the appearance is transparent, and it is easy to replace with the existing reflector.
  • the lens 1' has an inner surface 11', an outer surface 12', a first end surface 13', a second end surface 14', a light entrance 16' at the first end surface 13', and a second end surface 14'.
  • the light exit port 17' has a diameter smaller than the diameter of the light exit port 17'.
  • the inner surface 11' is formed by a continuous spiral of sawtooth structures 110', each of the sawtooth structures 110' including intersecting first and second refractive surfaces 111', 112', and first and second refractive surfaces 111' and The ridges (not shown) formed by the intersection of 112', the two ends of each of the sawtooth structures 110' extend to the first end face 13' and the second end face 14', respectively.
  • the lens 1' is a rotationally symmetric structure, and the ridge line formed by the intersection of the first refractive surface 111' and the second refractive surface 112' is a straight line, and the first refractive surface 111' and the second refractive surface 112'
  • the ridge lines formed by the intersection between the first refracting surface 111 ′ and the second refracting surface 112 ′ may also be arcs, and the first refracting surface 111 ′ and the second refracting surface 112 ′ are perpendicular to each other.
  • the angle of the angle can also be less than or greater than 90°, and the light effect is optimal at an angle of 90°.
  • the inner surface 11' of the lens 1' is a light incident surface and is also a light exit surface.
  • the outer surface 12' is a smooth wall.
  • the lens 1' is a transparent structure integrally made of plastic or glass material, and the plastic material may be PMMA, PC or the like.
  • the incident angle in the vertical direction is greater than a certain angle, that is, the angle formed by the intersection of the ridge line formed by the intersection of the first refractive surface 111' and the second refractive surface 112' with the plane of the light source panel 21' needs to be smaller than a specific angle.
  • Angle A if light is incident from the first refractive surface 111' or the second refractive surface 112', the angle of incidence of the light on the outer surface will increase, and if the light enters the horizontal direction from the ridge position, there is almost no angle, most It is difficult to achieve total reflection, so we consider that the design of the 1' total reflection surface of the entire lens is to calculate the value of A by the optical path at the ridge position.
  • This angle ⁇ ' is related to the refractive index of the lens 1'.
  • the PC material is selected, A is 38°, and if the material A having a higher refractive index is 40°, when PMMA is selected, A is 30°.
  • the angle ⁇ ' between the ridge line and the plane of the light source plate is a fixed value, and when the ridge line is an arc When the line is used, the angle ⁇ ' of the tangent of each point on the ridge line and the plane of the light source board should meet the above restrictions, that is, the value is less than A.
  • the lens 1' satisfies the total reflection condition when the angle ⁇ ' is smaller than the angle A corresponding to the different materials (A is the angle corresponding to the different materials).
  • the condition that the angle ⁇ is less than A may not be satisfied, that is, any angle between 0-90° may be used, which may form a transflective on the outer surface 12'. Effect.
  • the thickness of the lens 1' can be made to be 2 mm (mm), and therefore, when the lens 1' has a large structural size, material cost and molding difficulty can be saved.
  • rounded corners are formed at the intersection of the first refractive surface 111' and the second refractive surface 112' of the lens 1', and are incident on the circle. The light on the corner will refract to form stray light, but the rounded corner has little effect on the overall light efficiency and beam angle of the lens, so we can still think of it as a total reflection reflector.
  • the light emitted from the light-emitting unit 2' enters from the light-incident port 16', partially exits directly from the light-emitting port 17', and is partially reflected by the lens 1' and then exits from the light-emitting port 17'.
  • the optical path on the sawtooth structure 110' is specifically that light is incident on the inner surface 11' of the lens 1', and is refracted to the outer surface 12' via the first refractive surface 111' of the sawtooth structure 110' on the inner surface 11'.
  • the outer surface 12' is totally reflected to the inner surface 11', and is refracted by the inner surface 11' to be emitted by the light exit opening 17'.
  • Figure 9 shows a particular direction of light entering the sawtooth structure 110'. Specifically, the light is totally reflected by the outer surface 12' to the second refractive surface 112' of the inner surface 11'.
  • the light-emitting component 2' emits a portion of light (not shown) that is reflected by the outer surface 12' to the first refractive surface 111' of the inner surface 11' or is reflected by the outer surface 12' to the first refractive surface 111.
  • the ridge line intersecting the second refractive surface 112' is then emitted. As shown in Fig.
  • the light source module uses a lens as a reflection device, and the inner surface thereof includes a plurality of sawtooth structures arranged in a continuous manner, and the inner surface serves as both a light incident surface and a light exit surface, and the outer surface serves as an outer surface.
  • the reflecting surface is designed such that the light incident from the inner surface can be emitted by the optical effect of total reflection, and the light extraction efficiency is improved without performing the plating treatment.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Planar Illumination Modules (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

一种反射装置(10,10')和光源模组(100,100'),该反射装置(10,10')为透明,其具有入光口(16,16')、出光口(17,17')及位于入光口(16,16')和出光口(17,17')之间的反射壁,入光口(16,16')小于出光口(17,17'),反射壁包括内表面(11,11')和外表面(12,12'),内表面(11,11')上包括多个连续排布的锯齿结构(110,110'),每个锯齿结构(110,110')包括相交的第一折射面(111,111')和第二折射面(112,112'),每个锯齿结构(110,110')的两端分别向入光口(16,16')及出光口(17,17')延伸。光源模组(100,100'),应用该反射装置(10,10'),该反射装置(10,10')为透明,其内的反射壁的内表面(11,11')具有多个连续排布的锯齿结构(110,110'),内表面(11,11')同时作为入光面及出光面,外表面(12,12')作为反射面,使得由内表面(11,11'')入射的光线都能以全反射的光学效果出射,在不需要进行电镀处理的情况下,提高出光效率。

Description

反射装置和光源模组 技术领域
本发明属于照明技术领域,特别涉及一种反射装置和光源模组。
背景技术
现有的电镀反射器在商用灯具里应用非常广,例如在筒灯、射灯、天棚灯、户外灯具等照明灯具中的应用。电镀反射器主要起到对光源发出的光线进行二次配光的作用。电镀反射器一般包括镀有一层金属膜的反射面,但由于镀膜材料本身对光线的吸收率较高,比如,镀银膜的损失率为5%,镀金膜的损失率为9%,镀铝膜的损失率更是高达12%左右,使得应用电镀反射器的灯具出光效率低。
发明内容
本发明的目的是为了解决上述问题,提供一种出光效率高的反射装置和光源模组。
为实现上述目的,本发明提供了一种反射装置,所述反射装置为透明,其具有入光口、出光口及位于所述入光口和出光口之间的反射壁,所述入光口小于所述出光口,所述反射壁包括内表面和外表面,
所述内表面上包括多个连续排布的锯齿结构,每个所述锯齿结构包括相交的第一折射面和第二折射面,每个所述锯齿结构的两端分别向所述入光口及所述出光口延伸。
进一步的,所述反射装置呈环状,所述反射壁的厚度均匀。
进一步的,所述第一折射面和所述第二折射面之间相互垂直。
进一步的,所述锯齿结构的第一折射面和第二折射面相交形成棱线,所述棱线为直线或弧线。
进一步的,所述棱线上任意一点的切线与入光口所在平面之间的夹角小于A,所述A为40°。
进一步的,当所述反射壁材料为PC时A等于38°,当所述反射壁材料为亚克力时A等于30°。
进一步的,所述反射壁为两个且相对设置,每个所述反射壁呈平板状。
进一步的,所述反射装置还包括设置于反射壁之间的连接板。
进一步的,所述反射壁的外表面为光滑壁面,所述反射壁的外表面为全反射面。
进一步的,所述锯齿结构的两端延伸至所述入光口和/或所述出光口。
为实现上述目的,本发明还提供了一种反射装置,所述反射装置为透明的,其具有入光口、出光口及位于所述入光口和出光口之间的反射壁,所述反射壁包括内表面和外表面,
所述内表面上包括多个连续排布的锯齿结构,每个所述锯齿结构包括相交的第一折射面和第二折射面,每个所述锯齿结构的两端分别向所述入光口及所述出光口延伸,所述入光口、出光口和反射壁的内表面之间形成光学空间,
所述反射装置配置为从所述入光口进入的入射光线部分入射至反射壁并由所述反射壁反射进入所述光学空间,并通过从所述出光***出,部分由所述入光口进入的光线直接通过所述光学空间并从所述出光***出。
进一步的,所述入射光线经内表面折射进入所述反射壁,经所述锯齿结构的第一折射面或第二折射面折射至外表面,经所述外表面反射回所述内表面,再经所述内表面折射后进入所述光学空间,最后由所述出光口出射。
进一步的,所述入射光线在所述内表面上发生两次折射,所述入射光线在所述外表面上发生一次反射。
进一步的,所述反射装置呈环状,所述反射壁的厚度均匀。
进一步的,所述第一折射面和所述第二折射面之间相互垂直。
进一步的,所述锯齿结构的第一折射面和第二折射面相交形成棱线,所述棱线为直线或弧线。
进一步的,所述反射壁为两个且相对设置,每个所述反射壁呈平板状。
进一步的,所述反射装置还包括设置于所述反射壁之间的连接板,所述连接板的内表面为全反射面。
进一步的,所述反射壁的外表面为光滑壁面,所述反射壁的外表面为全反射面。
进一步的,所述锯齿结构的两端延伸至所述入光口和/或所述出光口。
为实现上述目的,本发明还提供了一种光源模组,其包括上述反射装置及发光组件,所述发光组件设置于所述反射装置的入光口。
进一步的,所述发光组件包括光源板及位于光源板上的若干发光单元。
进一步的,所述光源板封闭所述入光口。
有益效果:与现有技术相比,本发明实施例提供的反射装置为透明,其内的反射壁的内表面包括多个连续排布的锯齿结构,内表面同时作为入光面及出光面,外表面作为反射面,如此设计使得由内表面入射的光线都能以全反射的光学效果出射,在不需要进行电镀处理的情况下,提高出光效率。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本发明的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本发明实施例1提供的一种光源模组的结构示意图。
图2为图1的光源模组内透镜的部分放大图。
图3为本发明实施例1提供的光源模组的光路示意图。
图4为本发明实施例1内透镜的棱线为弧形的示意图。
图5为本发明实施例1的以单个锯齿结构为例的竖直方向的光路示意图。
图6为本发明实施例1的以单个锯齿结构为例的水平方向的光路示意图。
图7为本发明实施例2提供的一种光源模组的结构示意图。
图8为本发明实施例2提供的光源模组的光路示意图。
图9为本发明实施例2的以单个锯齿结构为例的竖直方向的光路示意图。
图10为本发明实施例2的以单个锯齿结构为例的水平方向的光路示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明具体实施例及相应的附图对本发明技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
如图1所示,本发明实施例1提供了一种光源模组100,其包括反射装置10及发光组件2,在本实施例中反射装置10以两个相对设置的透镜1作为反射壁,并在两个透镜1之间设置连接板15,以构成一个完整的反射装置。连接板15可以如图1中所示和透镜1一起围成一个封闭空间,连接板也可以设置在底面,即图中发光组件2的位置,和透镜1形成一个底部连接顶部敞开的结构,在其他实施例中还可以借助模组本身的一些结构来充当连接板,如光源板、模组的外壁等。在另外一些实施例中也可以不采用连接板,以四块或更多的透镜形成一个方形或多边形的反射装置。需要说明的是,发光组件2发出的部分光线经过透镜1的折射、反射、再次折射后由透镜1的内表面11直接出射后从出光口出射,还有一部分经连接板15的反射后由连接板15的内表面(未标示)经出光口直接出射。该光源模组100可应用于天棚灯、生鲜灯、户外灯等照明灯具内。
以下针对本发明实施例1提供的光源模组100内的各个元件及元件之间的连接关系作具体说明。
如图1所示,发光组件2包括光源板21及位于光源板21上的若干发光单元22。具体的,若干发光单元22沿光源板21的长度方向d2排布,且设置在光源板21的中部。在本发明实施例1中,若干发光单元22可以沿光源板21的长度方向d2设置成一排或多排。发光单元22可以为LED发光单元。
如图1及图3所示,透镜1作为反射装置的反射壁,其呈平板状,且厚度均匀,设置在光源板21的宽度方向d1的两侧。在其它实施方式中,透镜1还可以为具有一定弧度的板状结构。
透镜1具有内表面11、外表面12、第一端面13、第二端面14、位于第一端面13的反射装置的入光口16,位于透镜1的第二端面14的出光口17,入光口16、出光口17和透镜1的内表面之间形成光学空间。入光口16的直径小于出光口17的直径,光源板21封闭入光口16。结合图2所示,内表面11包括平行连续排布的多个锯齿结构110,每个锯齿结构110包括相交的第一折射面111和第二折射面112,及第一折射面111和第二折射面112相交形成的棱线(未标示),每个锯齿结构110的两端分别延伸至第一端面13和第二端面14。在本实施例中,第一折射面111和第二折射面112之间相互垂直,在其它实施方式中,第一折射面111和第二折射面112的夹角也可以小于或大于90°,在夹角为90°的情况下光效最佳。具体的,透镜1的内表面11为入光面,同时也是出光面。外表面12为光滑壁面,作为反射面。该透镜1为透明结构,由塑料或玻璃材料一体制成,其中塑料材料可选用PMMA、PC等。
我们知道要在透镜内部实现全反射,光线和反射面之间的入射角必须足够大,否则光线将会透射出去,这个角度会根据透镜的材质而有所不同。为使射入透镜1的光线都能在外表面12发生全反射,有必要对光线和外表面12的角度进行规划,图6为锯齿结构水平方向的光路图我们可以看到光线在外表面12的入射角度明显是不够形成全反射的,这里之所以可以反射,是因为还存在一个垂直分量上的角度,如图3所示,参考图5的三维图,当水平分量和垂直分量叠加入射角就足够大了,因此竖直方向的入射角必须大于一定的角度才能实现全反射。竖直方向的入射角大于一定的角度,也就是第一折射面111和第二折射面112相交形成的棱线与光源板21所在平面之间形成夹角α需要小于一个特定的角度A。我们以棱线的角度进行说明,主要是因为光线是否经过棱线入射对角度的要求是不同的,如果光线从第一折射面111或第二折射面112入射会发生折射,这样光线在外表面的入射角会增大,而如果光线从棱线位置入射水平方向几乎没有角度,最难实现全反射,因此我们考 虑全反射面的设计都是以棱线位置的光路来进行计算的。这个A的值与透镜1的折射率相关,在本实施例中,选用PC材料,A为38°,如果采用折射率更高的材料A会增大,以目前的常用材料来看可以达到40°,当选用PMMA时,A为30°。对于本实施例的光源模组100,由于透镜1为平板状,棱线和光源板所在平面的夹角α是一个定值,请参考图3。而当透镜形式有所不同时,如图4所示,当棱线为弧线时,棱线上每一点的切线和光源板所在平面的夹角α应符合上面的限制条件,即其值小于A。所以在满足夹角α小于A(A为上述不同材质对应的角度),该透镜1满足全反射条件。在其它不需要透镜全反射的实施方式中,可以不用满足夹角α小于A的条件,即可以采用0-90°之间任意的夹角,这样会在外表面12形成一种半透半反的效果。
本实施例中,透镜1的厚度可制成2毫米(mm)或者更薄,因此,透镜1结构尺寸很大时,可以节约材料成本和成型难度。另外,需要说明的是,在模具设计或成型时,由于加工精度的问题,会在透镜1的第一折射面111和第二折射面112的交线处形成圆角,入射到圆角上的光线将折射而出形成杂散光,但圆角对透镜的总光效、光束角影响不大。
以下针对发光组件2发出光线进入锯齿结构110后的光线走向进行具体说明。
发光组件2发出的光线从入光口16进入,部分直接从出光口17出射,部分经透镜1反射后进入光学空间,再从出光口17出射。对于锯齿结构110上的光路具体参见图5和图6所示,光线入射在透镜1的内表面11上,经内表面11上的锯齿结构110的第一折射面111折射到外表面12,经外表面12全反射到内表面11,经内表面11折射后进入光学空间,最后由出光口17出射。图5显示了一种光线进入锯齿结构110内的具体走向。具体的,光线经外表面12全反射到内表面11的第二折射面112后出射。发光组件2发出的还有部分光线(未图示),经外表面12反射到内表面11的第一折射面111后出射,或者经外表面12反射到第一折射面111和第二折射面112相交的棱线,然后出射。结合图3所示,只要棱线与光源板21所在平面的夹角α满足上述不同材料对应的角度范围,入射在透镜1上的光线都可以发生全反射,由内表面11出射。
连接板15也为平板状,其两侧与透镜1的侧面贴合,其下端面与第一端面13齐平,上端面与第二端面14齐平,以此将发光组件2围设在透镜1和连接板15构成的收容空间(未标示)内,由发光组件2发出的光线由透镜1或连接板15进行二次配光。该连接板15面向出光口的一面,即内表面为全反射面,为了形成全反射面,连接板15可以由具有全反射功能的材料制成,如塑料、金属,也可以通过表面处理来实现,如表面抛光、镀膜处理。
综上所述,本实施例的光源模组,其内的透镜作为一种反射装置,其内表面包括多个连续排布的锯齿结构,外表面为光滑壁面,内表面同时作为入光面及出光面,外表面作为反射面,在棱线与光源板21所在平面的夹角α满足特定角度A时,由内表面入射的光线都能以全反射的光学效果出射,在不需要进行电镀处理的情况下,提高出光效率。
实施例2
如图7所示,本发明实施例2提供了一种光源模组100’,其包括以透镜1’作为反射壁的反射装置10’、及设置在透镜1’一端的发光组件2’,发光组件2’发出的光线部分经过透镜1’的折射、反射、再次折射后由透镜1’的内表面11’直接出射。该光源模组100’可应用于筒灯、射灯、天花灯等照明灯具内。
以下针对本发明实施例2提供的光源模组100’内的各个元件及元件之间的连接关系作具体说明。
如图7所示,发光组件2’包括光源板21’及位于光源板21’上的发光单元22’,发光单元22’设置在光源板21’的中部。可以排布一个发光单元22’,也可以排布多个发光单元22’。
如图7及图8所示,透镜1’为一种反射装置10’,其呈喇叭状,且厚度均匀。这样的结构类似现有的反光杯,只是材质采用了透明材料,外观通透,且易于和现有的反光杯进行替换。具体地,该透镜1’具有内表面11’、外表面12’、第一端面13’、第二端面14’、位于第一端面13’的入光口16’和位于第二端面14’的出光口17’,入光口16’的直径小于出光口17’的直径。内表面11’由一圈连续的锯齿结构110’构成,每个锯齿结构110’包括相交的第一折射面111’和第二折射面112’,及第一折射面111’和第二折射面112’相交形成的棱线(未标示),每个锯齿结构110’的两端分别延伸至第一端面13’和第二端面14’。在本实施例中,透镜1’为旋转对称结构,第一折射面111’和第二折射面112’相交形成的棱线为直线,且第一折射面111’和第二折射面112’之间相互垂直,在其它实施方式中,第一折射面111’和第二折射面112’之间相交形成的棱线也可为弧线,且第一折射面111’和第二折射面112’的夹角也可以小于或大于90°,在夹角为90°的情况下光效最佳。具体的,透镜1’的内表面11’为入光面,同时也是出光面。外表面12’为光滑壁面。该透镜1’为透明结构,由塑料或玻璃材料一体制成,其中塑料材料可选用PMMA、PC等。
我们知道要在透镜内部实现全反射,光线和反射面之间的入射角必须足够大,否则光线将会透射出去,这个角度会根据透镜的材质而有所不同。为使射入透镜1’ 的光线都能在外表面12’发生全反射,有必要对光线和外表面12’的角度进行规划,图10为锯齿结构水平方向的光路图我们可以看到光线在外表面12’的入射角度明显是不够形成全反射的,这里之所以可以反射,是因为还存在一个垂直分量上的角度,如图8、9所示,这样水平分量和垂直分量叠加入射角就足够大了,因此竖直方向的入射角必须大于一定的角度才能实现全反射。竖直方向的入射角大于一定的角度,也就是第一折射面111’和第二折射面112’相交形成的棱线与光源板21’所在平面之间形成夹角α’需要小于一个特定的角度A,如果光线从第一折射面111’或第二折射面112’入射会发生折射,这样光线在外表面的入射角会增大,而如果光线从棱线位置入射水平方向几乎没有角度,最难实现全反射,因此我们考虑整个透镜1’全反射面的设计都是以棱线位置的光路来计算A的值的。这个夹角α’与透镜1’的折射率相关,在本实施例中,选用PC材料,A为38°,如果采用折射率更高的材料A可以为40°,当选用PMMA时,A为30°。对于本实施例的光源模组100’,由于透镜1’的每个锯齿结构110’为直条状,所以棱线和光源板所在平面的夹角α’是一个定值,当棱线为弧线时,棱线上每一点的切线和光源板所在平面的夹角α’应符合上面的限制条件,即其值小于A。所以在满足夹角α’小于上述不同材质对应的角度A(A为上述不同材质对应的角度),该透镜1’满足全反射条件。在其它不需要透镜全反射的实施方式中,可以不用满足夹角α小于A的条件,即可以采用0-90°之间任意的夹角,这样会在外表面12’形成一种半透半反的效果。
本实施例中,透镜1’的厚度最薄可制成2毫米(mm),因此,透镜1’结构尺寸很大时,可以节约材料成本和成型难度。另外,需要说明的是,在模具设计或成型时,由于加工精度的问题,会在透镜1’的第一折射面111’和第二折射面112’的交线处形成圆角,入射到圆角上的光线将折射而出形成杂散光,但圆角对透镜的整体光效、光束角影响不大,因此我们还是可以认为这是一个全反射的反射装置。
以下针对发光组件2’发出光线进入锯齿结构110’后的光线走向进行具体说明。
结合图8至图10所示,发光组件2’发出的光线从入光口16’进入,部分直接从出光口17’出射,部分经透镜1’反射后再从出光口17’出射。对于锯齿结构110’上的光路具体为:光线入射在透镜1’的内表面11’上,经内表面11’上的锯齿结构110’的第一折射面111’折射到外表面12’,经外表面12’全反射到内表面11’,经内表面11’折射后由出光口17’出射。图9显示了一种光线进入锯齿结构110’内的具体走向。具体的,光线经外表面12’全反射到内表面11’的第二折射面112’后出射。发光组件2’发出的还有部分光线(未图示),经外表面12’反射到内表面11’的第一折射面111’后出射,或者经外表面12’反射到第一折射面111’和第二折射面112’相交的棱线,然后出射。结合图8所示,只要棱线与光源板21’ 所在平面的夹角α’满足上述不同材料对应的角度范围,入射在透镜1’上的光线都可以发生全反射,由内表面11’出射。
综上所述,本发明实施例提供的光源模组,以透镜作为一种反射装置,其内表面包括多个连续排布的锯齿结构,内表面同时作为入光面及出光面,外表面作为反射面,如此设计使得由内表面入射的光线都能以全反射的光学效果出射,在不需要进行电镀处理的情况下,提高出光效率。
以上所述的具体实例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (23)

  1. 一种反射装置,所述反射装置为透明,其具有入光口、出光口及位于所述入光口和出光口之间的反射壁,所述入光口小于所述出光口,所述反射壁包括内表面和外表面,
    所述内表面上包括多个连续排布的锯齿结构,每个所述锯齿结构包括相交的第一折射面和第二折射面,每个所述锯齿结构的两端分别向所述入光口及所述出光口延伸。
  2. 根据权利要求1所述的反射装置,其中,所述反射装置呈环状,所述反射壁的厚度均匀。
  3. 根据权利要求1所述的反射装置,其中,所述第一折射面和所述第二折射面之间相互垂直。
  4. 根据权利要求1所述的反射装置,其中,所述锯齿结构的第一折射面和第二折射面相交形成棱线,所述棱线为直线或弧线。
  5. 根据权利要求4所述的反射装置,其中,所述棱线上任意一点的切线与入光口所在平面之间的夹角小于A,所述A为40°。
  6. 根据权利要求5所述的光源模组,其中,当所述反射壁材料为PC时A等于38°,当所述反射壁材料为亚克力时A等于30°。
  7. 根据权利要求1所述的反射装置,其中,所述反射壁为两个且相对设置,每个所述反射壁呈平板状。
  8. 根据权利要求7所述的反射装置,其中,所述反射装置还包括设置于所述反射壁之间的连接板。
  9. 根据权利要求1所述的反射装置,其中,所述反射壁的外表面为光滑壁面,所述反射壁的外表面为全反射面。
  10. 根据权利要求1所述的反射装置,其中,所述锯齿结构的两端延伸至所述入光口和/或所述出光口。
  11. 一种反射装置,所述反射装置为透明的,其具有入光口、出光口及位于所述入光口和出光口之间的反射壁,所述反射壁包括内表面和外表面,
    所述内表面上包括多个连续排布的锯齿结构,每个所述锯齿结构包括相交的第一折射面和第二折射面,每个所述锯齿结构的两端向所述入光口及所述出光口延伸,所述入光口、出光口和反射壁的内表面之间形成光学空间,
    所述反射装置配置为从所述入光口进入的入射光线部分入射至反射壁并由所述 反射壁反射进入所述光学空间,并通过所述出光***出,部分由所述入光口进入的光线直接通过所述光学空间并从所述出光***出。
  12. 根据权利要求11所述的反射装置,其中,所述入射光线经内表面折射进入所述反射壁,经所述锯齿结构的第一折射面或第二折射面折射至外表面,经所述外表面反射回所述内表面,再经所述内表面折射后进入所述光学空间,最后由所述出光口出射。
  13. 根据权利要求11所述的反射装置,其中,所述入射光线在所述内表面上发生两次折射,所述入射光线在所述外表面上发生一次反射。
  14. 根据权利要求11所述的反射装置,其中,所述反射装置呈环状,所述反射壁的厚度均匀。
  15. 根据权利要求12所述的反射装置,其中,所述第一折射面和所述第二折射面之间相互垂直。
  16. 根据权利要求12所述的反射装置,其中,所述锯齿结构的第一折射面和第二折射面相交形成棱线,所述棱线为直线或弧线。
  17. 根据权利要求12所述的反射装置,其中,所述反射壁为两个且相对设置,每个所述反射壁呈平板状。
  18. 根据权利要求17所述的反射装置,其中,所述反射装置还包括设置于所述反射壁之间的连接板,所述连接板的内表面为全反射面。
  19. 根据权利要求12所述的反射装置,其中,所述反射壁的外表面为光滑壁面,所述反射壁的外表面为全反射面。
  20. 根据权利要求11所述的反射装置,其中,所述锯齿结构的两端延伸至所述入光口和/或所述出光口。
  21. 一种光源模组,其包括:反射装置及发光组件,所述反射装置为权利要求1-20中任一项所述的反射装置,
    所述发光组件设置于所述反射装置的入光口。
  22. 根据权利要求21所述的光源模组,其中,所述发光组件包括光源板及位于光源板上的若干发光单元。
  23. 根据权利要求22所述的光源模组,其中,所述光源板封闭所述入光口。
PCT/CN2017/106582 2016-10-26 2017-10-17 反射装置和光源模组 WO2018077075A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17865777.1A EP3511615B1 (en) 2016-10-26 2017-10-17 Reflection device and light source module
US16/396,329 US11927340B2 (en) 2016-10-26 2019-04-26 Reflective device and light source module

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201621172757.XU CN206093923U (zh) 2016-10-26 2016-10-26 反射装置和光源模组
CN201621172757.X 2016-10-26
CN201610948477.1 2016-10-26
CN201610948477.1A CN106439733A (zh) 2016-10-26 2016-10-26 反射装置和光源模组

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/396,329 Continuation US11927340B2 (en) 2016-10-26 2019-04-26 Reflective device and light source module

Publications (1)

Publication Number Publication Date
WO2018077075A1 true WO2018077075A1 (zh) 2018-05-03

Family

ID=62023097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/106582 WO2018077075A1 (zh) 2016-10-26 2017-10-17 反射装置和光源模组

Country Status (3)

Country Link
US (1) US11927340B2 (zh)
EP (1) EP3511615B1 (zh)
WO (1) WO2018077075A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110553227A (zh) * 2019-09-29 2019-12-10 苏州欧普照明有限公司 灯具及其光源模组

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101109491A (zh) * 2006-07-21 2008-01-23 肖特股份公司 具有棱镜结构的反射器
CN101576230A (zh) * 2008-05-09 2009-11-11 富准精密工业(深圳)有限公司 发光二极管照明装置
CN102748706A (zh) * 2011-04-21 2012-10-24 岚雅光学股份有限公司 透镜灯杯组合结构及其灯具
US20140313758A1 (en) * 2013-04-17 2014-10-23 Stanley Electric Co., Ltd. Lighting unit for vehicle lamp
US20160258593A1 (en) * 2015-03-03 2016-09-08 Ecosense Lighting Inc. Lighting systems including asymmetric lens modules for selectable light distribution
CN106439733A (zh) * 2016-10-26 2017-02-22 欧普照明股份有限公司 反射装置和光源模组
CN206093923U (zh) * 2016-10-26 2017-04-12 欧普照明股份有限公司 反射装置和光源模组

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2015235A (en) * 1933-11-03 1935-09-24 Holophane Co Inc Prismatic light controlling device and method of making the same
USRE40227E1 (en) * 1985-11-21 2008-04-08 3M Innovative Properties Company Totally internally reflecting thin, flexible film
WO1989007280A1 (en) * 1988-02-05 1989-08-10 Nauchno-Proizvodstvennoe Obiedinenie Po Avtoelektr Integrally-pressed collimator
US6616305B1 (en) * 1999-03-01 2003-09-09 Jerome H. Simon Illumination derived from luminaires comprised of radial collimators and refractive structures
US6698908B2 (en) * 2002-03-29 2004-03-02 Lexalite International Corporation Lighting fixture optical assembly including relector/refractor and collar for enhanced directional illumination control
US6910785B2 (en) * 2003-01-22 2005-06-28 Cooper Technologies Company Industrial luminaire with prismatic refractor
US7600894B1 (en) * 2005-12-07 2009-10-13 Simon Jerome H Luminaires and optics for control and distribution of multiple quasi point source light sources such as LEDs
US20080019138A1 (en) 2006-07-21 2008-01-24 Schott Ag Reflector having a prismatic structure
CA2623967C (en) * 2007-03-06 2015-11-24 Canlyte Inc. Lighting device with composite reflector
US7710663B2 (en) * 2008-03-10 2010-05-04 A.L.P. Lighting & Ceiling Products, Inc. Prismatic lens and reflector/refractor device for lighting fixtures having enhanced performance characteristics
KR101535926B1 (ko) * 2008-08-12 2015-07-13 삼성디스플레이 주식회사 엘이디 백라이트 어셈블리 및 이를 이용하는 액정표시장치
KR101308752B1 (ko) * 2008-12-31 2013-09-12 엘지디스플레이 주식회사 액정표시장치
KR20120030388A (ko) * 2009-04-24 2012-03-28 코닌클리즈케 필립스 일렉트로닉스 엔.브이. 기능 강화 구조체를 갖는 조명 기구
US8033693B2 (en) * 2009-04-30 2011-10-11 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Lighting structure with multiple reflective surfaces
US20130077320A1 (en) * 2011-09-23 2013-03-28 Cooler Master Co., Ltd. Optical lens and illuminant device using the same
US9255690B2 (en) * 2011-09-29 2016-02-09 Thomas C. Dimitriadis Luminaire for indoor horticulture
EP2745044B1 (en) 2011-10-25 2014-12-17 Koninklijke Philips N.V. Device comprising light source and light blocker
US9995439B1 (en) 2012-05-14 2018-06-12 Soraa, Inc. Glare reduced compact lens for high intensity light source
US8794795B2 (en) * 2012-08-31 2014-08-05 Axis Lighting Inc. Adjustable LED assembly, optical system using same and method of assembly therefor
US9052075B2 (en) * 2013-03-15 2015-06-09 Cree, Inc. Standardized troffer fixture
CN104747932A (zh) 2013-12-30 2015-07-01 欧普照明股份有限公司 一种照明装置
SE538363C2 (sv) 2014-01-24 2016-05-31 Stora Enso Oyj Förfarande för förbättring av värmeförseglingsbarhet hos polyester, samt för framställning av en värmeförseglad behållare eller förpackning
DE202014101954U1 (de) * 2014-04-25 2015-07-28 Zumtobel Lighting Gmbh Optisches Element für eine LED, LED-Anordnung mit einem solchen optischen Element, sowie Leuchte mit einer solchen LED-Anordnung
CN105570731A (zh) 2014-11-06 2016-05-11 欧普照明股份有限公司 一种led灯
US20160312977A1 (en) * 2015-04-21 2016-10-27 Ledengin, Inc. Total internal reflection lens with step-shaped front surface and central convex region
CN204665032U (zh) 2015-06-05 2015-09-23 深圳市圳佳光电科技有限公司 一种带超薄锯齿透镜的准直照射led灯
DE102015216111B4 (de) 2015-08-24 2023-02-16 Osram Gmbh Beleuchtungsvorrichtung
CN205402432U (zh) 2016-02-05 2016-07-27 欧普照明股份有限公司 照明装置
US10119682B2 (en) * 2016-07-05 2018-11-06 Philips Lighting Holding B.V. Luminaire having improved uniformity of output
CN205956947U (zh) 2016-07-25 2017-02-15 西蒙电气(中国)有限公司 全卡扣连接角度可调的led天花射灯
CN207350249U (zh) 2017-05-26 2018-05-11 欧普照明股份有限公司 照明装置
CN107036051A (zh) 2017-05-26 2017-08-11 欧普照明股份有限公司 照明装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101109491A (zh) * 2006-07-21 2008-01-23 肖特股份公司 具有棱镜结构的反射器
CN101576230A (zh) * 2008-05-09 2009-11-11 富准精密工业(深圳)有限公司 发光二极管照明装置
CN102748706A (zh) * 2011-04-21 2012-10-24 岚雅光学股份有限公司 透镜灯杯组合结构及其灯具
US20140313758A1 (en) * 2013-04-17 2014-10-23 Stanley Electric Co., Ltd. Lighting unit for vehicle lamp
US20160258593A1 (en) * 2015-03-03 2016-09-08 Ecosense Lighting Inc. Lighting systems including asymmetric lens modules for selectable light distribution
CN106439733A (zh) * 2016-10-26 2017-02-22 欧普照明股份有限公司 反射装置和光源模组
CN206093923U (zh) * 2016-10-26 2017-04-12 欧普照明股份有限公司 反射装置和光源模组

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3511615A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110553227A (zh) * 2019-09-29 2019-12-10 苏州欧普照明有限公司 灯具及其光源模组
CN110553227B (zh) * 2019-09-29 2024-04-30 苏州欧普照明有限公司 灯具及其光源模组

Also Published As

Publication number Publication date
EP3511615A1 (en) 2019-07-17
EP3511615B1 (en) 2021-06-16
EP3511615A4 (en) 2020-04-29
US11927340B2 (en) 2024-03-12
US20190249845A1 (en) 2019-08-15

Similar Documents

Publication Publication Date Title
US9442241B2 (en) Optics for illumination devices
US11131440B2 (en) Reflecting device, light source module and lighting device
WO2014008762A1 (zh) 一种光学透镜及一种矿帽灯
JP6345488B2 (ja) 光束制御部材、発光装置および照明装置
US11668445B2 (en) Multi-beam vehicle light
CN105276522A (zh) 一种用于led灯具的偏光透镜及具有该偏光透镜的led灯具
TWI574049B (zh) 透鏡及使用該透鏡的背光模組
TW201621220A (zh) 聚光透鏡以及使用該聚光透鏡之燈具
TWM461760U (zh) 光學透鏡與光源裝置
WO2018077033A1 (zh) 反射装置和光源模组
WO2018077075A1 (zh) 反射装置和光源模组
CN209801374U (zh) 大偏角的偏光透镜以及灯具
US10125951B2 (en) Light flux control member, light-emitting device and lighting device
CN108775553B (zh) 一种透镜及光源模组
CN208535649U (zh) 一种照明灯具及照明模组及透镜
US9945535B2 (en) Luminaire including a geometric solid having two geometric solid portions
US20180073690A1 (en) Luminaire including light emitting diodes and an anti-glare material
CN111076147A (zh) 一种光束整形透镜和照明灯
CN111664420A (zh) 灯具及其透镜
US11982438B2 (en) Uniform illumination lens and lamp thereof
CN220102942U (zh) 一种控光结构及灯具
CN214790664U (zh) 照明装置
CN215908996U (zh) 透镜及灯具
TWI564626B (zh) 光源模組
WO2018214391A1 (zh) 照明装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17865777

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017865777

Country of ref document: EP

Effective date: 20190410

NENP Non-entry into the national phase

Ref country code: DE