WO2018077036A1 - 一种投影装置及其冷却散热*** - Google Patents

一种投影装置及其冷却散热*** Download PDF

Info

Publication number
WO2018077036A1
WO2018077036A1 PCT/CN2017/105805 CN2017105805W WO2018077036A1 WO 2018077036 A1 WO2018077036 A1 WO 2018077036A1 CN 2017105805 W CN2017105805 W CN 2017105805W WO 2018077036 A1 WO2018077036 A1 WO 2018077036A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
cooling
circulation system
color wheel
heat
Prior art date
Application number
PCT/CN2017/105805
Other languages
English (en)
French (fr)
Inventor
王云
黄思尧
李屹
Original Assignee
深圳市光峰光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市光峰光电技术有限公司 filed Critical 深圳市光峰光电技术有限公司
Publication of WO2018077036A1 publication Critical patent/WO2018077036A1/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/16Cooling; Preventing overheating

Definitions

  • the present invention relates to the field of optical device technologies, and more particularly to a cooling and heat dissipation system for a projection device, and to a projection device including the above-described cooling and heat dissipation system.
  • Projection devices generally include a light source assembly, a lens assembly, a power module, and the like.
  • the light source assembly generally includes a solid state light source such as a laser light source or an LED light source, and a color wheel module.
  • the solid-state light source has a large power, generates a large amount of heat, and the corresponding components also dissipate heat. If not, the heat dissipation may affect the service life of the projection device. Therefore, the projection device must be cooled.
  • Air cooling in the prior art is the most common way of cooling a projector.
  • the current air-cooling heat dissipation is performed by disposing a corresponding inlet fan and an exhaust fan for each heat source part by means of a fan, thereby not only causing the volume of the projector to be increased, but also the heat dissipation efficiency is low, and the cooling by the external air circulation is easy to cause.
  • the color wheel module and the solid-state light source are dusty, which affects the picture quality.
  • the first object of the present invention is to provide a cooling and cooling system for a projection device, and the structural design of the cooling and dissipating system can effectively solve the problem that the heat dissipation system of the projection device has a complicated structure and low heat dissipation efficiency.
  • a second object of the present invention is to provide a projection apparatus including the above-described cooling and heat dissipation system.
  • a cooling and cooling system for a projection device comprising: a light source internal circulation system for dissipating heat from a solid state light source; and a color wheel internal circulation system for dissipating heat from the color wheel module, the light source internal circulation system and the color
  • One of the in-wheel circulation systems is a water-cooled internal circulation system, and the other is an air-cooled internal circulation system, and the light source heat exchanger of the light circulation system and the color wheel heat exchanger of the color wheel internal circulation system Both are cooled by an external air circulation system.
  • the external air circulation system includes an exhaust fan disposed on a rear side of the casing, and a rear row is disposed on a rear casing of the exhaust fan rear end a side hole on a side shell of the side of the color wheel heat exchanger is provided with a side air inlet hole, so that outside air enters from the side air inlet hole, and sequentially passes through the color wheel heat exchanger and the The light source heat exchanger is discharged from the rear exhaust hole.
  • a bottom air inlet is disposed on a bottom case of a bottom end of the digital micromirror device of the projection device, so that outside air enters from the bottom air inlet hole. And flowing through the digital micromirror device, and then being mixed with the outside air flowing through the color wheel heat exchanger and discharged from the rear exhaust hole through the light source heat exchanger.
  • the external air circulation system further includes a digital micromirror device inlet fan disposed between the bottom air inlet and the bottom end of the digital micromirror device.
  • a front air inlet is disposed on the front shell of the front end of the power module of the projection device, so that outside air enters through the front air inlet hole and flows through the front
  • the power module is discharged from the rear exhaust hole.
  • the external air circulation system further includes a power supply exhaust fan disposed on a rear side of the power module.
  • the external air circulation system further includes a whole exhaust fan facing the power supply exhaust fan and located downstream of the wind flow.
  • the cooling and cooling system of the projection device includes a pair of the exhaust fans, and each pair of the exhaust fans are symmetrically clamped on the front and rear sides of the light source heat exchanger, respectively.
  • the light source heat exchanger dissipates heat.
  • the light source heat exchanger and the color wheel heat exchanger are both plate heat exchangers including heat exchanger plates stacked in a scaly shape.
  • the cooling and heat dissipation system of the projection device provided by the present invention includes a light source internal circulation system and a color wheel internal circulation System and external air circulation system.
  • the light source internal circulation system is used for dissipating heat from the solid state light source
  • the color wheel internal circulation system is used for heat dissipation of the color wheel module
  • the light source heat exchanger of the light source internal circulation system and the color wheel heat exchanger of the color wheel internal circulation system respectively pass
  • the external air circulation system is cooled, and one of the light source inner circulation system and the color wheel inner circulation system is a water-cooled inner circulation system, and the other is an air-cooled inner circulation system.
  • the color wheel internal circulation system uses the color wheel internal circulation system to dissipate heat from the color wheel module, and the light source internal circulation system dissipates heat to the solid state light source, thereby effectively reducing the temperature of the color wheel module and the solid state light source. At the same time, the adverse effects of dust on the color wheel module and the solid state light source are avoided.
  • heat is dissipated to different heat sources of the projection device, which fully utilizes the advantages of high water-cooling heat dissipation efficiency and simple air-cooling heat dissipation structure, taking into account factors such as heat dissipation efficiency, structural layout, production cost, etc. Excellent overall heat dissipation.
  • a plurality of exhaust fans are included, and are respectively clamped on the front and rear sides of the light source heat exchanger to dissipate heat from the light source heat exchanger, and the outside air enters through the bottom air inlet hole.
  • the digital micromirror device is mixed with the outside air flowing through the color wheel heat exchanger and then discharged through the rear exhaust hole. That is, the outside air that enters through the bottom air inlet and flows through the digital micromirror device, and the outside air that enters through the side air intake hole and flows through the color wheel heat exchanger, and then passes through the exhaust fan through the rear exhaust hole. discharge.
  • the exhaust fan radiates heat to the water-cooled heat exchange plate at the same time, the airflow is mixed and flows through the exhaust fan, so that the airflow temperature of the exhaust fan is uniform, thereby effectively improving the heat dissipation efficiency and stability of the circulating system in the light source.
  • the present invention also provides a projection apparatus, which comprises a light source assembly, a power module and a lens assembly, and further includes any of the above cooling and cooling systems. Since the above-described cooling and heat dissipation system has the above-described technical effects, the projection device having the cooling and heat dissipation system should also have a corresponding technical effect.
  • FIG. 1 is a schematic plan view showing a specific embodiment of a cooling and heat dissipation system of a projection apparatus according to the present invention
  • FIG. 2 is a schematic diagram of heat dissipation of a digital micromirror device.
  • the embodiment of the present invention discloses a cooling and dissipating system of a projection device, which improves the heat dissipation efficiency while taking into consideration the cost.
  • FIG. 1 is a schematic structural view of a specific embodiment of a cooling and dissipating system of a projection device according to the present invention
  • FIG. 2 is a schematic diagram of heat dissipation of a digital micromirror device.
  • the cooling and cooling system of the projection device includes a light source internal circulation system, a color wheel internal circulation system, and an external air circulation system.
  • the light source internal circulation system is used for dissipating heat to the solid-state light source 1
  • the color wheel internal circulation system is used for dissipating heat to the color wheel module 2
  • one of the light source internal circulation system and the color wheel internal circulation system is water-cooled inner circulation.
  • the system, the other is the air-cooled internal circulation system.
  • the color wheel inner circulation system is an air-cooled inner circulation system
  • the light source inner circulation system is a water-cooled inner circulation system
  • the solid-state light source 1 is cooled by the water-cooled inner circulation. High heat dissipation efficiency.
  • the solid-state light source 1 and the color wheel module 2 are the main heat-generating components in the light source assembly, and have high sensitivity to dust, and are respectively cooled by the internal circulation system to prolong their service life.
  • the inner loop referred to here and below refers to the design
  • the cooling channel is disposed, and the cooling medium flows in the cooling channel and exchanges heat directly with the heat source. After the heat exchange, the temperature rises the cooling medium to exchange heat with the external medium to finally dissipate the heat to the external environment.
  • the solid-state light source 1 and the color wheel module 2 are cooled without introducing external dust, thereby effectively preventing problems such as deterioration of picture quality caused by the accumulation of dust.
  • the light source internal circulation system exchanges heat through the external air circulation cooling system through the light source heat exchanger 11, and the color wheel internal circulation system exchanges heat through the external air circulation cooling system through the color wheel heat exchanger 13. That is to say, in combination with air-cooling heat dissipation and water-cooling heat dissipation, heat is dissipated to different heat sources of the projection device.
  • the water-cooled inner circulation system may specifically include a water pump 12, a water-cooled heat exchanger, and a heat exchange chamber disposed outside the solid-state light source 1 or the color wheel module 2, and the three are connected through a pipeline, and the coolant is driven by the water pump 12
  • the inside of the pipeline flows through the heat exchange chamber to exchange heat with the solid-state light source 1 or the color wheel module 2, and the temperature-increased coolant continues to flow to the water-cooled heat exchanger, and after cooling by the external air circulation system, the temperature is lowered and cooled.
  • the liquid continues to flow to the heat exchange chamber, and thus the heat is effectively dissipated to the solid state light source 1 or the color wheel module 2.
  • the structure of the specific heat exchange chamber can be set as needed, or it can be set as a line around the solid-state light source 1 or the color wheel module 2. It should be noted that when the water-cooled internal circulation system is the light source internal circulation system, the water-cooled heat exchanger is the light source heat exchanger 11; when the water-cooled internal circulation system is the color wheel internal circulation system, the water-cooled heat exchanger is the color wheel. Heat exchanger 13.
  • the air-cooled inner circulation system may specifically include an inner circulation fan 14 for driving the gas flow, an air-cooling heat exchanger, and a heat exchange chamber disposed outside the color wheel module 2 or the solid state light source 1, and the three are connected through the air passage.
  • the internal circulation fan 14 drives the gas to flow in the air passage, and flows through the heat exchange chamber to exchange heat with the color wheel module 2 or the solid-state light source 1.
  • the temperature-increased gas continues to flow to the air-cooled heat exchanger through the external air circulation system. After cooling, the temperature-decreasing gas continues to flow to the heat exchange chamber, and thus the heat is effectively dissipated to the color wheel module 2 or the solid-state light source 1.
  • the air-cooled inner circulation system is the light source internal circulation system
  • the air-cooled heat exchanger is the light source heat exchanger 11
  • the air-cooled heat exchange The device is a color wheel heat exchanger 13.
  • the inner circulation fan 14 may be a turbo fan, and the turbo fan may be disposed adjacent to the air-cooling heat exchanger, thereby driving the gas to flow in the same manner as the air-cooling heat exchanger.
  • the air-cooled inner circulation system and the water-cooled inner circulation system are not limited to the above structure, and other conventional internal circulation structures in the prior art may be employed.
  • the color wheel module is used for heat dissipation by the color wheel internal circulation system, and the light source internal circulation system dissipates heat to the solid state light source 1, thereby effectively reducing the color wheel module 2 and the solid state.
  • the homogenization of the temperature of the light source 1 avoids the adverse effects of dust on the color wheel module 2 and the solid state light source 1.
  • heat is dissipated to different heat sources of the projection device, which fully utilizes the advantages of high water-cooling heat dissipation efficiency and simple air-cooling heat dissipation structure, taking into account factors such as heat dissipation efficiency, structural layout, production cost, etc. Excellent overall heat dissipation.
  • the external air circulation system includes an exhaust fan 10 disposed on the rear side of the casing, and a rear exhaust hole 6 is disposed on the rear casing at the rear end of the exhaust fan 10, and is located in the color wheel heat exchanger 13
  • the side side casing is provided with a side air inlet hole 7 so that outside air enters from the side air inlet hole 7 and is sequentially discharged through the color wheel heat exchanger 13 and the light source heat exchanger 11 and then from the rear exhaust hole 6.
  • the exhaust fan 10 is disposed on the rear side of the casing, and the rear exhaust hole 6 is disposed on the corresponding rear casing.
  • the color wheel heat exchanger 13 is disposed on the side of the casing, and the corresponding side casing is provided with a side air inlet hole 7. Therefore, the outside air enters from the side air intake hole 7, exchanges heat with the color wheel heat exchanger 13, and then passes through the light source heat exchanger 11 and exchanges heat with it, and finally is discharged through the rear exhaust hole 6. That is, the color wheel heat exchanger 13 and the light source heat exchanger 11 are cooled by the side air intake cooling system, which improves the air flow utilization rate. It should be noted that the flow direction of the specific gas mentioned here and below can be controlled by the position of the intake hole and the exhaust hole, the type of the air duct and the type of the cooling fan, and the like.
  • the exhaust fan 10 may specifically be an axial fan, and other types of fans may be used as needed.
  • a bottom air inlet hole 9 may be disposed on the bottom case of the bottom end of the digital micromirror device 3, so that outside air enters through the bottom air inlet hole 9 and flows through the digital micromirror device 3, and then the exhaust hole 6 discharge.
  • the corresponding bottom micro-mirror device 3 is provided with a bottom air inlet hole 9, and the outside air enters through the bottom air inlet hole 9, and then flows through the digital micro-mirror device 3, exchanges heat with it, and reduces the digital micro-mirror device.
  • the temperature of 3 the temperature of the gas itself rises, and finally is discharged from the rear vent hole 6 through the exhaust fan 10. That is, the bottom micro-mirror device 3 is cooled by the bottom air intake cooling system, thereby improving the utilization of the air flow.
  • the gas exchanged with the heat of the digital micromirror device 3 may be mixed with the gas after the heat exchange through the color wheel heat exchanger 13 after entering the side air inlet hole 7, and the mixed gas further passes through the exhaust fan. 10 is discharged by the rear vent hole 6.
  • the gas may be passed through the light source heat exchanger 11 after the gas is mixed to exchange heat with the light source heat exchanger 11.
  • the heat dissipation efficiency and stability of the circulation system in the light source are effectively improved.
  • the external air circulation system may further include a bottom air intake hole 9 and a bottom of the digital micromirror device 3
  • the digital micromirror device between the ends is an intake fan 16. That is, a digital micromirror device intake fan 16 is disposed between the digital micromirror device 3 and the bottom intake port 9.
  • the intake fan 16 of the digital micromirror device cooperates with the exhaust fan 10 to accelerate the air flow in the vicinity of the digital micromirror device 3, thereby improving the heat dissipation efficiency.
  • the specific digital micromirror device intake fan 16 can adopt a parallel scaly fan, and the scales are aligned with the air flow direction. Of course, other structural intake fans can be used as needed.
  • the power module 5 serves as another main heat source for the projection device.
  • the external air circulation system may include a system for cooling the power module 5.
  • the front air inlet hole 8 is disposed on the front shell of the front end of the power module 5 to allow outside air to enter from the front air inlet hole 8 and flow through the power source module 5 to be exhausted from the rear air outlet hole 6. That is, the front air inlet hole 8 is disposed at the corresponding power module 5 on the front shell, the outside air enters through the front air inlet hole 8, and then flows through the power module 5 to exchange heat with it, thereby reducing the temperature of the power module 5, the temperature of the gas itself. It is raised and finally discharged through the exhaust vent 6 through the exhaust fan 10. That is, the front air intake cooling system cools the power module 5, thereby improving the air flow utilization rate.
  • the gas exchanged with the heat of the power module 5 may also be mixed with the gas that enters through the side air inlet hole 7 and then flows through the color wheel heat exchanger 13 for heat exchange, or
  • the intake port 9 enters, flows through the gas after the digital micromirror device 3 exchanges heat, or the gases of the three paths are mixed, and the mixed gas is further discharged from the rear exhaust hole 6 through the exhaust fan 10.
  • the light source heat exchanger 11 is passed through to exchange heat with the light source heat exchanger 11, thereby effectively improving the heat dissipation efficiency and stability of the light source internal circulation system.
  • the external air circulation system may further include a power supply exhaust fan 15 disposed at a rear side of the power module 5.
  • a power supply exhaust fan 15 disposed at a rear side of the power module 5.
  • the power supply exhaust fan 15 may be an axial flow fan, and may be set as another fan as needed.
  • the power supply exhaust fan 15 may not be provided.
  • the external air circulation system may further include a whole exhaust fan 17 facing the power supply exhaust fan 15 and located downstream of the wind flow thereof, that is, the whole exhaust fan 17 is disposed at the rear end of the power supply exhaust fan 15 to The power supply exhaust fan 15 cooperates to form an independent cooling air duct for the power module 5. At the same time, it is also possible to cooperate with the exhaust fan 10 to discharge the hot air in the entire machine from the rear exhaust hole 6. Of course, the entire exhaust fan 17 may not be provided, and the exhaust fan 10 may be used to exhaust the entire machine.
  • the external air circulation cooling system may include a side air intake cooling system, a front air intake cooling system, and a bottom air intake cooling system.
  • the side air intake cooling system dissipates heat for the color wheel heat exchanger 13
  • the front air intake cooling system dissipates heat for the power module 5
  • the bottom air intake cooling system dissipates heat for the digital micro mirror device 3.
  • the airflows of the three are exhausted by the exhaust vents 6 through the exhaust fan 10 provided on the rear side of the casing.
  • the side, the front, and the bottom of the text refer to the three directions of X, ⁇ , and ⁇ in the Cartesian coordinate system, and the three indicate the relative positional relationship between each other.
  • the external air circulation cooling system may also include the above-described one-direction intake air cooling system or any two different-direction air intake cooling systems, as needed, depending on the actual situation.
  • the color wheel module 2, the lens assembly 4 and the power module 5 in the casing can be disposed at the front end of the solid-state light source 1, and the color wheel module 2 and the power module 5 are respectively located at two sides of the lens assembly 4, thereby It is easy to control the wind direction, improve the utilization of wind flow, and improve the heat dissipation effect.
  • a pair of exhaust fans 10 may be included, and each pair of exhaust fans 10 are symmetrically clamped on the front and rear sides of the light source heat exchanger 11 respectively to the light source heat exchanger.
  • 11 heat dissipation That is, the exhaust fan 10 is symmetrically disposed on the front and rear sides of the light source heat exchanger 11, respectively, on the one hand, functions as a whole machine for exhausting air, and on the other hand, can effectively dissipate heat from the light source heat exchanger 11, thereby improving heat exchange of the light source.
  • the exhaust fan 10 is clamped on both sides of the water-cooled heat exchange plate.
  • the air entering the side air intake hole 7 in the above embodiment, the air entering the front air intake hole 8 and the air entering the bottom air intake hole 9 may be in the exhaust fan 10 Under the action, the crucible is discharged from the rear exhaust hole 6, and passes through the water cooler heater 11 to cool the light source heat exchanger 11.
  • the exhaust fan 10 is located downstream of the mixed air, and the light source heat exchanger 11 located therebetween is located downstream of the mixed air, and the mixed air and the light source heat exchanger 11 exchange heat, and the mixed air temperature at different positions is uniform, thereby improving the heat dissipation of the circulation system in the light source. Efficiency and stability.
  • the entire exhaust fan 17 cooperates with the power supply exhaust fan 15 to form an independent cooling air passage for the power supply module 5.
  • the exhaust fan 10 can be disposed opposite to each other in three pairs, and the two are located at both ends of the water-cooled heat exchange plate.
  • the light source heat exchanger 11 and the color wheel heat exchanger 13 in the above embodiments may specifically be plate heat exchangers including heat exchanger plates stacked in a scaly shape. That is, the color wheel heat exchanger 13 is an air-cooled heat exchanger plate, and the light source heat exchanger 1 1 is a water-cooled heat exchanger plate, and both of them are arranged in a scaly shape, thereby increasing the contact area to improve the heat dissipation efficiency.
  • the preferred color wheel internal circulation system is an air-cooled inner circulation system, and the light source is internally circulated.
  • the system is a water-cooled internal circulation system, that is, the color wheel heat exchanger 13 is an air-cooled heat exchanger, and the light source heat exchanger 11 is a water-cooled heat exchanger.
  • the present invention further provides a projection device, which includes a light source assembly, a power module 5, and a lens assembly 4, and further includes any one of the above embodiments. Cool the cooling system. Since the projection device employs the cooling and heat dissipation system in the above embodiment, the advantageous effects of the projection device can be referred to the above embodiment.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Projection Apparatus (AREA)

Abstract

一种投影装置的冷却散热***和投影装置,投影装置的冷却散热***包括用于对固态光源(1)散热的光源内循环***和用于对色轮模组(2)散热的色轮内循环***,光源内循环***和色轮内循环***二者之一为水冷内循环***,另一者为风冷内循环***,且光源内循环***的光源换热器(11)与色轮内循环***的色轮换热器(13)均通过外部空气循环***冷却。投影装置的冷却散热***,有效降低固态光源(1)与色轮模组(2)温度的同时避免了灰尘对其的不利影响。通过水冷散热与风冷散热相结合,分别对投影装置的不同热源进行散热,兼顾了散热效率及结构布局、生产成本等因素,具有优异的综合散热性能。

Description

一种投影装置及其冷却散热***
技术领域
[0001] 本实用新型涉及光学设备技术领域, 更具体地说, 涉及一种投影装置的冷却散 热***, 还涉及一种包括上述冷却散热***的投影装置。
背景技术
[0002] 随着科技的蓬勃发展, 投影技术已日益成熟, 投影装置的应用领域也变得愈来 愈广, 例如应用于会议讲解、 巡回展示和促销活动等商业领域, 及应用于学校 授课、 学术讨论等教育领域, 以及应用于家庭影院等家庭领域。
[0003] 投影装置一般包括光源组件、 镜头组件、 电源模组等。 光源组件一般包括激光 光源或 LED光源等固态光源及色轮模组。 投影装置使用过程中, 固态光源功率较 大, 产生大量的热量, 相应的各组件也会散发热量, 若不及吋散热会影响投影 装置的使用寿命。 因此, 必须对投影装置进行冷却。
技术问题
[0004] 现有技术中风冷散热是投影机最常见的散热方式。 目前的风冷散热是借助风扇 对每个热源部位分别配置相应的进风扇及排风扇来进行散热, 这样不仅会造成 投影机的体积增大, 且散热效率较低, 且通过外部空气循环冷却易造成色轮模 组和固态光源积灰, 影响画面质量。
[0005] 综上所述, 如何有效地解决投影装置的散热***结构复杂、 散热效率低等问题 , 是目前本领域技术人员急需解决的问题。
问题的解决方案
技术解决方案
[0006] 有鉴于此, 本实用新型的第一个目的在于提供一种投影装置的冷却散热***, 该冷却散热***的结构设计可以有效地解决投影装置的散热***结构复杂、 散 热效率低的问题, 本实用新型的第二个目的是提供一种包括上述冷却散热*** 的投影装置。
[0007] 为了达到上述第一个目的, 本实用新型提供如下技术方案: [0008] 一种投影装置的冷却散热***, 包括用于对固态光源散热的光源内循环***和 用于对色轮模组散热的色轮内循环***, 所述光源内循环***和所述色轮内循 环***二者之一为水冷内循环***, 另一者为风冷内循环***, 且所述光源内 循环***的光源换热器与所述色轮内循环***的色轮换热器均通过外部空气循 环***冷却。
[0009] 优选地, 上述投影装置的冷却散热***中, 所述外部空气循环***包括设置于 机壳内后侧的排气风扇, 位于所述排气风扇后端的后壳上幵设有后排气孔, 位 于所述色轮换热器侧方的侧壳上幵设有侧进气孔, 以使外界空气由所述侧进气 孔进入, 并依次经所述色轮换热器与所述光源换热器后由所述后排气孔排出。
[0010] 优选地, 上述投影装置的冷却散热***中, 位于所述投影装置的数字微镜器件 底端的底壳上幵设有底进气孔, 以使外界空气由所述底进气孔进入并流经所述 数字微镜器件, 而后与流经所述色轮换热器的外界空气混合后经所述光源换热 器由所述后排气孔排出。
[0011] 优选地, 上述投影装置的冷却散热***中, 所述外部空气循环***还包括设置 于所述底进气孔和所述数字微镜器件底端之间的数字微镜器件进风扇。
[0012] 优选地, 上述投影装置的冷却散热***中, 位于所述投影装置的电源模组前端 的前壳上幵设有前进气孔, 以使外界空气由所述前进气孔进入, 并流经所述电 源模组由所述后排气孔排出。
[0013] 优选地, 上述投影装置的冷却散热***中, 所述外部空气循环***还包括设置 于所述电源模组后侧的电源排气扇。
[0014] 优选地, 上述投影装置的冷却散热***中, 所述外部空气循环***还包括面对 所述电源排气扇并位于其风流下游的整机排风扇。
[0015] 优选地, 上述投影装置的冷却散热***中, 包括一对以上所述排气风扇, 各对 所述排气风扇对称地分别夹持于所述光源换热器的前后两侧以对所述光源换热 器散热。
[0016] 优选地, 上述投影装置的冷却散热***中, 所述光源换热器和所述色轮换热器 均为包括鳞片状层叠设置的换热板的板式换热器。
[0017] 本实用新型提供的投影装置的冷却散热***包括光源内循环***、 色轮内循环 ***和外部空气循环***。 其中, 光源内循环***用于对固态光源散热, 色轮 内循环***用于对色轮模组散热, 光源内循环***的光源换热器与色轮内循环 ***的色轮换热器分别通过外部空气循环***冷却, 光源内循环***与色轮内 循环***二者之一为水冷内循环***, 另一者为风冷内循环***。
[0018] 应用本实用新型提供的投影装置的冷却散热***, 通过色轮内循环***为色轮 模组散热、 光源内循环***对固态光源散热, 因而有效降低色轮模组和固态光 源温度的同吋避免了灰尘对色轮模组和固态光源的不利影响。 通过水冷散热与 风冷散热相结合, 分别对投影装置的不同热源进行散热, 充分发挥了水冷散热 效率高、 风冷散热结构简单的优势, 兼顾了散热效率及结构布局、 生产成本等 因素, 具有优异的综合散热性能。
[0019] 在一种优选的实施方式中, 包括多个排气风扇, 且分别夹持于光源换热器的前 后两侧以对光源换热器散热, 外界空气由底进气孔进入流经数字微镜器件, 并 与流经色轮换热器的外界空气混合后由后排气孔排出。 也就是由底进气孔进入 并流经数字微镜器件的外界空气, 和由侧进气孔进入并流经色轮换热器的外界 空气先混合, 而后经排气风扇由后排气孔排出。 由于排气风扇同吋对水冷换热 板散热, 因而气流混合后流经排气风扇, 使得排气风扇的风流温度均匀, 进而 有效提高了光源内循环***的散热效率及稳定性。
发明的有益效果
有益效果
[0020] 为了达到上述第二个目的, 本实用新型还提供了一种投影装置, 该投影装置包 括光源组件、 电源模组和镜头组件, 还包括上述任一种冷却散热***。 由于上 述的冷却散热***具有上述技术效果, 具有该冷却散热***的投影装置也应具 有相应的技术效果。
对附图的简要说明
附图说明
[0021] 为了更清楚地说明本实用新型实施例或现有技术中的技术方案, 下面将对实施 例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述 中的附图仅仅是本实用新型的一些实施例, 对于本领域普通技术人员来讲, 在 不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
[0022] 图 1为本实用新型提供的投影装置的冷却散热***一种具体实施例的俯视结构 示意图;
[0023] 图 2为数字微镜器件散热的示意图。
[0024] 附图中标记如下:
[0025] 固态光源 1, 色轮模组 2, 数字微镜器件 3, 镜头组件 4, 电源模组 5, 后排气孔 6 , 侧进气孔 7, 前进气孔 8, 底进气孔 9, 排气风扇 10, 光源换热器 11, 水泵 12, 色轮换热器 13, 内循环风扇 14, 电源排气扇 15, 数字微镜器件进气扇 16, 整机 排风扇 17; 图中实心箭头所示方向为外界空气流向, 虚线箭头所示方向为内循 环冷却介质流向。 本发明的最佳实施方式
[0026] 本实用新型实施例公幵了一种投影装置的冷却散热***, 以兼顾成本的同吋提 高散热效率。
[0027] 下面将结合本实用新型实施例中的附图, 对本实用新型实施例中的技术方案进 行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本实用新型一部分实施例 , 而不是全部的实施例。 基于本实用新型中的实施例, 本领域普通技术人员在 没有做出创造性劳动前提下所获得的所有其他实施例, 都属于本实用新型保护 的范围。
[0028] 请参阅图 1和图 2, 图 1为本实用新型提供的投影装置的冷却散热***一种具体 实施例的结构示意图; 图 2为数字微镜器件散热的示意图。
[0029] 在一种具体实施例中, 本实用新型提供的投影装置的冷却散热***包括光源内 循环***、 色轮内循环***和外部空气循环***。
[0030] 其中, 光源内循环***用于对固态光源 1散热, 色轮内循环***用于对色轮模 组 2散热, 光源内循环***与色轮内循环***二者之一为水冷内循环***, 另一 者为风冷内循环***。 由于固态光源 1功率较大, 工作过程中产生大量热量, 优 选的, 色轮内循环***为风冷内循环***, 光源内循环***为水冷内循环*** , 通过水冷内循环对固态光源 1降温, 散热效率高。 固态光源 1及色轮模组 2作为 光源组件中的主要发热部件, 对灰尘的敏感度较高, 通过内循环***分别对其 冷却, 以延长其使用寿命。 需要说明的是, 此处及下文提到的内循环指通过设 置冷却通道, 冷却介质在冷却通道内流动并直接与热源进行热量交换, 热量交 换后温度升高的冷却介质则通过与外部介质进行热量交换最终将热量散发至外 部环境中。 通过水冷内循环和风冷内循环的设置, 对固态光源 1和色轮模组 2的 冷却不会引入外界灰尘, 有效防止了二者积灰造成的画面质量下降等问题。 光 源内循环***通过光源换热器 11经外部空气循环冷却***进行热量交换, 色轮 内循环***通过色轮换热器 13经外部空气循环冷却***进行热量交换。 也就是 结合风冷散热与水冷散热, 分别对投影装置的不同热源以散热。
[0031] 水冷内循环***具体可以包括水泵 12、 水冷换热器和设置于固态光源 1或色轮 模组 2外侧的换热腔, 三者间通过管路连通, 通过水泵 12带动冷却液在管路内流 动, 流经换热腔与固态光源 1或色轮模组 2进行热量交换, 温度升高的冷却液继 续流动至水冷换热器, 经外部空气循环***冷却后, 温度降低的冷却液继续流 动至换热腔, 如此循环对固态光源 1或色轮模组 2有效散热。 具体换热腔的结构 可根据需要进行设置, 也可以设置为环绕固态光源 1或色轮模组 2的管路等。 需 要说明的是, 当水冷内循环***为光源内循环***吋, 则水冷换热器为光源换 热器 11 ; 当水冷内循环***为色轮内循环***吋, 则水冷换热器为色轮换热器 1 3。 风冷内循环***具体可以包括用于带动气体流动的内循环风扇 14、 风冷换热 器和设置于色轮模组 2或固态光源 1外的换热腔, 三者通过风道连通。 通过内循 环风扇 14带动气体在风道内流动, 流经换热腔与色轮模组 2或固态光源 1进行热 量交换, 温度升高的气体继续流动至风冷换热器, 经外部空气循环***冷却后 , 温度降低的气体继续流动至换热腔, 如此循环对色轮模组 2或固态光源 1有效 散热。 需要说明的是, 当风冷内循环***为光源内循环***吋, 则风冷换热器 为光源换热器 11 ; 当风冷内循环***为色轮内循环***吋, 则风冷换热器为色 轮换热器 13。 具体的, 内循环风扇 14可以为涡轮风扇, 涡轮风扇可以贴靠风冷 换热器设置, 因而带动气体流动的同吋, 能够起到对风冷换热器冷却的作用。 当然, 风冷内循环***及水冷内循环***并不局限于上述结构, 也可采用现有 技术中其他常规内循环结构。
[0032] 应用本实用新型提供的投影装置的冷却散热***, 通过色轮内循环***为色轮 模组散热 2、 光源内循环***对固态光源 1散热, 因而有效降低色轮模组 2和固态 光源 1温度的同吋避免了灰尘对色轮模组 2和固态光源 1的不利影响。 通过水冷散 热与风冷散热相结合, 分别对投影装置的不同热源进行散热, 充分发挥了水冷 散热效率高、 风冷散热结构简单的优势, 兼顾了散热效率及结构布局、 生产成 本等因素, 具有优异的综合散热性能。
[0033] 进一步地, 外部空气循环***包括设置于机壳内后侧的排气风扇 10, 位于排气 风扇 10后端的后壳上幵设有后排气孔 6, 位于色轮换热器 13侧方的侧壳上幵设有 侧进气孔 7, 以使外界空气由侧进气孔 7进入, 并依次经色轮换热器 13与光源换 热器 11后由后排气孔 6排出。 也就是排气风扇 10设置于机壳的后侧, 对应的后壳 上幵设后排气孔 6。 色轮换热器 13设置于机壳的侧方, 其对应的侧壳上幵设有侧 进气孔 7。 因而外界空气由侧进气孔 7进入, 与色轮换热器 13进行热量交换, 而 后经过光源换热器 11并与之进行热量交换, 最后通过后排气孔 6排出。 也就是通 过侧面进气冷却***为色轮换热器 13和光源换热器 11进行冷却, 提高了风流利 用率。 需要说明的是, 此处及下文提到的具体气体的流向可通过在进气孔与排 气孔设置位置的基础上, 结合风道设置及散热风扇的类型等进行控制。 排气风 扇 10具体可以为轴流风扇, 根据需要也可以采用其他类型的风扇。
[0034] 数字微镜器件 3, 即镜头组件 4的 DMD模组在投影装置工作过程中发热量通常 较大, 因而外部空气循环***可以包括为镜头组件 4的数字微镜器件 3冷却的系 统。 具体的, 可以在位于数字微镜器件 3底端的底壳上幵设底进气孔 9, 以使外 界空气由底进气孔 9进入并流经数字微镜器件 3, 而后由排气孔 6排出。 也就是底 壳上对应数字微镜器件 3处幵设底进气孔 9, 外界空气经底进气孔 9进入, 而后流 经数字微镜器件 3, 与之进行热量交换, 降低数字微镜器件 3的温度, 气体自身 温度升高, 最后经排气风扇 10由后排气孔 6排出。 即通过底面进气冷却***为数 字微镜器件 3进行冷却, 提高了风流利用率。 为提高散热效率, 与数字微镜器件 3热量交换后的气体可以与由侧进气孔 7进入后, 流经色轮换热器 13进行热量交 换后的气体混合, 混合气体进一步经过排气风扇 10由后排气孔 6排出。 优选的, 可以在气体混合后再流经光源换热器 11, 以与光源换热器 11进行热量交换。 进 而有效提高了光源内循环***的散热效率及稳定性。
[0035] 进一步地, 外部空气循环***还可以包括设置于底进气孔 9和数字微镜器件 3底 端之间的数字微镜器件进气扇 16。 也就是在数字微镜器件 3与底进气孔 9之间设 置数字微镜器件进气扇 16。 通过数字微镜器件进气扇 16与排气风扇 10配合, 加 快数字微镜器件 3附近空气流动, 提高散热效率。 具体数字微镜器件进气扇 16可 以采用平行的鳞片状风扇, 鳞片走向与空气流向一致。 当然, 根据需要也可以 采用其他结构进气扇。
[0036] 电源模组 5作为投影装置另一主要热源, 为便于对其冷却, 外部空气循环*** 可以包括为电源模组 5冷却的***。 具体的, 在位于电源模组 5前端的前壳上幵 设前进气孔 8, 以使外界空气由前进气孔 8进入, 并流经电源模组 5由后排气孔 6 排出。 也就是前壳上对应电源模组 5处幵设前进气孔 8, 外界空气经前进气孔 8进 入, 而后流经电源模组 5, 与之进行热量交换, 降低电源模组 5的温度, 气体自 身温度升高, 最后经排气风扇 10由后排气孔 6排出。 即通过前面进气冷却***为 电源模组 5进行冷却, 提高了风流利用率。
[0037] 为提高散热效率, 与电源模组 5热量交换后的气体也可以与由侧进气孔 7进入, 后流经色轮换热器 13进行热量交换后的气体混合, 或者与由底进气孔 9进入, 流 经数字微镜器件 3与之进行热量交换后的气体混合, 或者三种路径的气体均混合 后, 混合气体进一步经过排气风扇 10由后排气孔 6排出。 优选的, 可以在气体混 合后再流经光源换热器 11, 以与光源换热器 11进行热量交换, 从而有效提高光 源内循环***的散热效率及稳定性。
[0038] 具体的, 外部空气循环***还可以包括设置于电源模组 5后侧的电源排气扇 15 。 通过电源排气扇 15的设置, 将电源模组 5加热后的热空气尽快向后壳处的排气 风扇 10导流, 从而降低电源模组 5内电气器件的温度。 电源排气扇 15具体可以为 轴流风扇, 当然根据需要可以设置为其他风扇。 或者在不设置电源排气扇 15也 足以为电源模组 5散热的情况下, 也可以不设置电源排气扇 15。
[0039] 根据需要, 外部空气循环***还可以包括面对电源排气扇 15并位于其风流下游 的整机排风扇 17, 也就是整机排风扇 17设置于电源排气扇 15的后端, 以与电源 排气扇 15配合形成对电源模组 5的独立冷却风道。 同吋, 也能够与排气风扇 10共 同作用将整机内的热空气由后排气孔 6排出。 当然, 也可以不设置整机排风扇 17 , 通过排气风扇 10对整机排风即可。 [0040] 综上, 外部空气循环冷却***可以包括侧面进气冷却***、 前面进气冷却*** 和底面进气冷却***。 侧面进气冷却***为色轮换热器 13散热, 前面进气冷却 ***为电源模组 5散热, 底面进气冷却***为数字微镜器件 3散热。 三者的气流 均在通过机壳后侧设置的排气风扇 10作用下由后排气孔 6排出。 需要说明的是, 文中侧面、 前面、 底面指直角坐标系下对应 X、 Υ、 Ζ三个方向, 且三者表示彼 此的相对位置关系。 根据需要, 外部空气循环冷却***也可以包括上述一个方 向进气的冷却***或任两个不同方向进气的冷却***, 具体可根据实际情况进 行设置。 优选的, 机壳中色轮模组 2、 镜头组件 4和电源模组 5可以设置于固态光 源 1的前端, 且色轮模组 2和电源模组 5分别位于镜头组件 4的两侧, 从而便于风 向的控制, 提高风流利用率, 提高散热效果。
[0041] 在上述各实施例的基础上, 可以包括一对以上排气风扇 10, 且各对排气风扇 10 对称地分别夹持于光源换热器 11的前后两侧以对光源换热器 11散热。 也就是在 光源换热器 11的前后两侧分别对称设置排气风扇 10, 一方面起到整机排风的作 用, 另一方面能够有效对光源换热器 11进行散热, 从而提高光源换热器 11的散 热效率。 排气风扇 10夹持于水冷换热板的两侧, 自然上述实施例中侧进气孔 7进 入的空气、 前进气孔 8进入的空气与底进气孔 9进入的空气可以在排气风扇 10作 用下由后排气孔 6排出吋, 经过水冷器热器 11, 以为光源换热器 11降温。 同吋, 由于外界空气由底进气孔 9进入流经数字微镜器件 3, 并与流经色轮换热器 13的 外界空气混合后由后排气孔 6排出的情况下, 排气风扇 10位于混合风的下游, 则 位于其间的光源换热器 11位于混合风的下游, 混合风与光源换热器 11热量交换 , 不同位置处的混合风温度均匀, 提高了光源内循环***的散热效率及稳定性 。 在设置有电源排气扇 15及整机排风扇 17的情况下, 则整机排风扇 17与电源排 气扇 15配合形成对电源模组 5的独立冷却风道。 具体的, 排气风扇 10可以相对的 设置三对, 两两位于水冷换热板的两端。
[0042] 上述实施例中的光源换热器 11和色轮换热器 13, 具体可以均为包括鳞片状层叠 设置的换热板的板式换热器。 也就是色轮换热器 13为风冷换热板, 光源换热器 1 1为水冷换热板, 且二者均为鳞片状层叠设置, 从而增大接触面积以提高散热效 率。 以上各实施例中, 优选的色轮内循环***为风冷内循环***, 光源内循环 ***为水冷内循环***, 即色轮换热器 13为风冷换热器, 光源换热器 11为水冷 换热器。
[0043] 通过上述内循环***及排风扇的设置, 实现了整机散热冷却和热平衡, 充分满 足整机正常工作状态所需的温度。
[0044] 基于上述实施例中提供的冷却散热***, 本实用新型还提供了一种投影装置, 该投影装置包括光源组件、 电源模组 5和镜头组件 4, 还包括上述实施例中任意 一种冷却散热***。 由于该投影装置采用了上述实施例中的冷却散热***, 所 以该投影装置的有益效果请参考上述实施例。
[0045] 本说明书中各个实施例采用递进的方式描述, 每个实施例重点说明的都是与其 他实施例的不同之处, 各个实施例之间相同相似部分互相参见即可。
[0046] 对所公幵的实施例的上述说明, 使本领域专业技术人员能够实现或使用本实用 新型。 对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的 , 本文中所定义的一般原理可以在不脱离本实用新型的精神或范围的情况下, 在其它实施例中实现。 因此, 本实用新型将不会被限制于本文所示的这些实施 例, 而是要符合与本文所公幵的原理和新颖特点相一致的最宽的范围。

Claims

权利要求书
1、 一种投影装置的冷却散热***, 其特征在于, 包括用于对固态光 源散热的光源内循环***和用于对色轮模组散热的色轮内循环***, 所述光源内循环***和所述色轮内循环***二者之一为水冷内循环系 统, 另一者为风冷内循环***, 且所述光源内循环***的光源换热器 与所述色轮内循环***的色轮换热器均通过外部空气循环***冷却。
2、 根据权利要求 1所述的冷却散热***, 其特征在于, 所述外部空气 循环***包括设置于机壳内后侧的排气风扇, 位于所述排气风扇后端 的后壳上幵设有后排气孔, 位于所述色轮换热器侧方的侧壳上幵设有 侧进气孔, 以使外界空气由所述侧进气孔进入, 并依次经所述色轮换 热器与所述光源换热器后由所述后排气孔排出。
3、 根据权利要求 2所述的冷却散热***, 其特征在于, 位于所述投影 装置的数字微镜器件底端的底壳上幵设有底进气孔, 以使外界空气由 所述底进气孔进入并流经所述数字微镜器件, 而后与流经所述色轮换 热器的外界空气混合后经所述光源换热器由所述后排气孔排出。
4、 根据权利要求 3所述的冷却散热***, 其特征在于, 所述外部空气 循环***还包括设置于所述底进气孔和所述数字微镜器件底端之间的 数字微镜器件进风扇。
5、 根据权利要求 3所述的冷却散热***, 其特征在于, 位于所述投影 装置的电源模组前端的前壳上幵设有前进气孔, 以使外界空气由所述 前进气孔进入, 并流经所述电源模组由所述后排气孔排出。
6、 根据权利要求 5所述的冷却散热***, 其特征在于, 所述外部空气 循环***还包括设置于所述电源模组后侧的电源排气扇。
7、 根据权利要求 6所述的冷却散热***, 其特征在于, 所述外部空气 循环***还包括面对所述电源排气扇并位于其风流下游的整机排风扇
[权利要求 8] 8、 根据权利要求 2-7任一项所述的冷却散热***, 其特征在于, 包括
一对以上所述排气风扇, 各对所述排气风扇对称地分别夹持于所述光 源换热器的前后两侧以对所述光源换热器散热。
[权利要求 9] 9、 根据权利要求 8所述的冷却散热***, 其特征在于, 所述光源换热 器和所述色轮换热器均为包括鳞片状层叠设置的换热板的板式换热器
[权利要求 10] 10、 一种投影装置, 包括光源组件、 电源模组和镜头组件; 其特征在 于, 还包括如权利要求 1-9任一项所述的冷却散热***。
PCT/CN2017/105805 2016-10-26 2017-10-12 一种投影装置及其冷却散热*** WO2018077036A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201621181929.X 2016-10-26
CN201621181929.XU CN206178327U (zh) 2016-10-26 2016-10-26 一种投影装置及其冷却散热***

Publications (1)

Publication Number Publication Date
WO2018077036A1 true WO2018077036A1 (zh) 2018-05-03

Family

ID=58683011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/105805 WO2018077036A1 (zh) 2016-10-26 2017-10-12 一种投影装置及其冷却散热***

Country Status (2)

Country Link
CN (1) CN206178327U (zh)
WO (1) WO2018077036A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206178327U (zh) * 2016-10-26 2017-05-17 深圳市光峰光电技术有限公司 一种投影装置及其冷却散热***
CN107340677B (zh) * 2017-08-04 2019-12-10 广州市乐拓电子科技有限公司 一种基于物联网的智能投影设备
CN107272308B (zh) * 2017-08-21 2020-05-19 海信视像科技股份有限公司 激光投影设备
CN109188833A (zh) * 2018-10-24 2019-01-11 泉州市新锐极光科技有限公司 一种超短焦投影机的散热装置及其方法
CN109061991A (zh) * 2018-11-02 2018-12-21 泉州市新锐极光科技有限公司 一种带有双重散热的超短焦投影设备的散热装置及其方法
CN111290203B (zh) * 2018-12-06 2022-04-12 中强光电股份有限公司 投影装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000228754A (ja) * 1999-02-05 2000-08-15 Fujitsu General Ltd 液晶プロジェクタの冷却装置
CN201742673U (zh) * 2010-04-02 2011-02-09 深圳市禾望电气有限公司 一种散热装置
CN101986202A (zh) * 2010-07-19 2011-03-16 深圳雅图数字视频技术有限公司 Lcd投影机液冷散热***
CN104267566A (zh) * 2014-08-15 2015-01-07 广东威创视讯科技股份有限公司 一种投影机风冷散热装置
CN105467731A (zh) * 2015-12-16 2016-04-06 深圳市帅映科技有限公司 一种激光投影机的热管理***
CN205450547U (zh) * 2015-12-24 2016-08-10 深圳市光峰光电技术有限公司 色轮散热装置、光源模组和投影***
CN206178327U (zh) * 2016-10-26 2017-05-17 深圳市光峰光电技术有限公司 一种投影装置及其冷却散热***

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000228754A (ja) * 1999-02-05 2000-08-15 Fujitsu General Ltd 液晶プロジェクタの冷却装置
CN201742673U (zh) * 2010-04-02 2011-02-09 深圳市禾望电气有限公司 一种散热装置
CN101986202A (zh) * 2010-07-19 2011-03-16 深圳雅图数字视频技术有限公司 Lcd投影机液冷散热***
CN104267566A (zh) * 2014-08-15 2015-01-07 广东威创视讯科技股份有限公司 一种投影机风冷散热装置
CN105467731A (zh) * 2015-12-16 2016-04-06 深圳市帅映科技有限公司 一种激光投影机的热管理***
CN205450547U (zh) * 2015-12-24 2016-08-10 深圳市光峰光电技术有限公司 色轮散热装置、光源模组和投影***
CN206178327U (zh) * 2016-10-26 2017-05-17 深圳市光峰光电技术有限公司 一种投影装置及其冷却散热***

Also Published As

Publication number Publication date
CN206178327U (zh) 2017-05-17

Similar Documents

Publication Publication Date Title
WO2018077036A1 (zh) 一种投影装置及其冷却散热***
TWI417635B (zh) 電子裝置及投影機
US9316894B2 (en) Projecting apparatus
RU2470223C2 (ru) Устройство источника света и устройство отображения изображений проекторного типа
WO2018166301A1 (zh) 散热***和电子设备
JP5310625B2 (ja) プロジェクタ
TWI459123B (zh) 投影機冷卻裝置
JP2009258622A (ja) プロジェクタ
JP4988912B2 (ja) 投写型映像表示装置
TWI595305B (zh) 散熱裝置及投影機
TW201430478A (zh) 投影機冷卻裝置
JP2007316626A (ja) 投写型映像表示装置
TWI447509B (zh) 投影機光機散熱裝置
TWI464521B (zh) 投影機冷卻裝置
CN205982964U (zh) 投影装置及其散热***
US11156906B2 (en) Projector with air inlets to cool light emitting module
CN216351743U (zh) 一种光机散热结构及投影仪
TW201104341A (en) Projector
US9488900B2 (en) Projection apparatus including light sources and heat radiating members
JP2012189836A (ja) 投影装置
CN215067698U (zh) 投影装置
CN220671800U (zh) 投影仪及其高效散热式内循环风路结构
CN215376062U (zh) 一种高效散热的投影仪
JPWO2018042813A1 (ja) 画像投影装置
CN210428064U (zh) 一种超短焦投影机结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17864340

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17864340

Country of ref document: EP

Kind code of ref document: A1