WO2018076878A1 - 一种显示装置及其显示方法以及近眼式显示装置及其显示方法 - Google Patents

一种显示装置及其显示方法以及近眼式显示装置及其显示方法 Download PDF

Info

Publication number
WO2018076878A1
WO2018076878A1 PCT/CN2017/095831 CN2017095831W WO2018076878A1 WO 2018076878 A1 WO2018076878 A1 WO 2018076878A1 CN 2017095831 W CN2017095831 W CN 2017095831W WO 2018076878 A1 WO2018076878 A1 WO 2018076878A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical unit
angle
refractive index
optical
liquid crystal
Prior art date
Application number
PCT/CN2017/095831
Other languages
English (en)
French (fr)
Inventor
高健
陈小川
杨亚峰
王维
谭纪风
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/752,333 priority Critical patent/US10606111B2/en
Publication of WO2018076878A1 publication Critical patent/WO2018076878A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/50OLEDs integrated with light modulating elements, e.g. with electrochromic elements, photochromic elements or liquid crystal elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13356Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements
    • G02F1/133562Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements on the viewer side
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • G02F1/13471Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells in which all the liquid crystal cells or layers remain transparent, e.g. FLC, ECB, DAP, HAN, TN, STN, SBE-LC cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/16Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 series; tandem
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/07Polarisation dependent
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8793Arrangements for polarized light emission

Definitions

  • the present disclosure relates to the field of display technology, and in particular to a display device and a display method thereof, and a near-eye display device and a display method thereof.
  • the virtual display device is to put two positive lenses in front of the display screen, so that the focal length of the positive lens is larger than the distance from the display screen to the positive lens, so that the positive lens acts as a magnifying glass, and the image is enlarged and far away, so the eyes can be in the near eye. Seeing the erect virtual image zoomed in and out and merging in the brain to produce stereo vision.
  • a disadvantage of the virtual display device in the related art is that two positive lenses are thick and heavy, and a single lens introduces optical aberrations, so that the virtual display device makes an uncomfortable feeling both on the wear and on the screen display, and The spatial depth of the virtual image displayed by the virtual display device is fixed and cannot be changed.
  • the technical problem to be solved by the present disclosure is to provide a display device and a display method thereof, and a near-eye display device and a display method thereof, which are capable of realizing virtual image display at a free space depth.
  • a display device comprising: a display screen that emits light that is linearly polarized collimated light; and at least one optical device that is located on a light exiting side of the display screen.
  • the optical device includes a plurality of mutually independent optical units, the optical unit is in one-to-one correspondence with a pixel unit of the display screen, the optical unit is capable of refracting an outgoing light of the display screen, and the optical unit
  • the angle of refraction of the outgoing light of the display screen is adjustable, and the collimated light emitted by the adjacent optical unit
  • the exit angles are different such that the exiting rays of the display screen converge to two viewpoints to display a virtual image having a spatial depth.
  • the optical device includes: a first electrode and a second electrode disposed opposite to each other; and a liquid crystal cell between the first electrode and the second electrode.
  • the liquid crystal cell comprises a plurality of mutually independent liquid crystal cells; the first electrode and the second electrode are respectively located on different transparent substrates or on the same transparent substrate, between the first electrode and the second electrode An electric field capable of driving deflection of liquid crystal molecules in the liquid crystal cell; each liquid crystal cell and its corresponding first electrode and second electrode composing the optical unit, and liquid crystal molecules deflected in the optical unit driven by the electric field Thereafter, the optical unit is equivalent to a right angle prism.
  • the display device further includes a processing circuit and a driving circuit.
  • the processing circuit is configured to acquire a spatial depth of the virtual image to be displayed by the display device, and determine a tilt angle of an equivalent right-angle prism corresponding to each optical unit according to the spatial depth of the virtual image to be displayed, and each An optical unit is divided into m portions, and the difference between the refractive index of each portion in each optical unit and the refractive index of the smallest portion of the refractive index is determined according to the inclination angle of the equivalent right-angle prism corresponding to each optical unit, and m is greater than 1.
  • An integer; the driving circuit is configured to drive liquid crystal molecule deflection of each portion of the optical unit according to the difference.
  • the processing circuit includes a first calculation module; the first calculation module is configured to determine a spatial depth of a virtual image to be displayed, according to a formula
  • Ls is the spatial depth of the virtual image to be displayed
  • L is the distance from the virtual image to be displayed to the viewpoint
  • p is the spacing between adjacent optical units
  • s is the viewing distance from the viewpoint to the display screen.
  • the processing circuit includes a second computing module; the second computing module is for root The difference between the refractive index of each portion of each optical unit and the refractive index of the smallest portion of the refractive index is determined according to the following formula:
  • Each optical unit is divided into m portions of equal length from the center of the optical device to the edge of the optical device, which are in turn, the first part, the second part, the ..., the mth part, and ⁇ nj is the optical unit j
  • the difference between the refractive index of the portion and the smallest portion of the refractive index; the section of the equivalent right-angle prism corresponding to the optical unit is divided into m parts along a right-angled side adjacent to the inclination angle of the equivalent right-angle prism, from the equivalent right-angle prism
  • the direction from the right angle to the oblique angle is the first part, the second part, the ..., the mth part, and the height of each part is hj, where j is an integer not greater than m and not less than 1, and n is an optical unit
  • the refractive index of the corresponding equivalent rectangular prism, d is the cell thickness of the liquid crystal cell, and p is the lateral width of the equivalent rectangular prism, that is, the
  • the driving circuit is specifically configured to drive liquid crystal molecules of each portion of the optical unit to be deflected such that a difference between a refractive index of the j portion and a refractive index of a minimum portion of the refractive index is equal to ⁇ nj.
  • an angle between an initial alignment direction of the liquid crystal molecules in the optical device and a polarization direction of the collimated light is less than 90°.
  • the initial alignment direction of the liquid crystal molecules in the optical device is consistent with the polarization direction of the outgoing light of the display screen.
  • the light-emitting side of the display screen is provided with two stacked optical devices, and the initial alignment directions of the liquid crystal molecules in the two optical devices are perpendicular.
  • the display screen is an LCD display or an OLED display.
  • the embodiment of the present disclosure further provides a display method, which is applied to the above display device, the display method includes: adjusting an angle at which the optical unit refracts an outgoing light of the display screen, so that an adjacent optical unit emits The exit angles of the collimated rays are different, and the outgoing rays of the display are concentrated to two viewpoints to display a virtual image having a spatial depth.
  • the display method includes: acquiring a spatial depth of a virtual image to be displayed by the display device, and determining a tilt angle of an equivalent right-angle prism corresponding to each optical unit according to the spatial depth of the virtual image to be displayed;
  • Each optical unit is divided into m parts, and the difference between the refractive index of each part in each optical unit and the refractive index of the smallest part of the refractive index is determined according to the inclination angle of the equivalent right-angle prism corresponding to each optical unit, and m is greater than 1
  • determining the tilt angle of the equivalent right-angle prism corresponding to each optical unit according to the spatial depth of the virtual image to be displayed includes:
  • Ls is the spatial depth of the virtual image to be displayed
  • L is the distance from the virtual image to be displayed to the viewpoint
  • p is the spacing between adjacent optical units
  • s is the viewing distance from the viewpoint to the display screen.
  • x is the distance between two viewpoints that converge through the exiting rays of the optical device;
  • the optical unit is divided into m portions, and the difference between the refractive index of each portion of each optical unit and the refractive index of the smallest portion of the refractive index is determined according to the inclination angle of the equivalent right-angle prism corresponding to each optical unit. Values include:
  • Each optical unit is divided into m portions of equal length from the center of the optical device to the edge of the optical device, which are in turn, the first part, the second part, the ..., the mth part, and ⁇ nj is the optical unit j
  • the difference between the refractive index of the portion and the smallest portion of the refractive index; the section of the equivalent right-angle prism corresponding to the optical unit is divided into m parts along a right-angled side adjacent to the inclination angle of the equivalent right-angle prism, from the equivalent right-angle prism
  • the direction from the right angle to the oblique angle is the first part, the second part, the ..., the mth part, and the height of each part is hj, where j is an integer not greater than m and not less than 1, and n is an optical unit
  • the refractive index of the corresponding equivalent rectangular prism, d is the cell thickness of the liquid crystal cell, and p is the lateral width of the equivalent rectangular prism, that is, the
  • driving the liquid crystal molecules according to the difference driving each portion of the optical unit comprises: deflecting liquid crystal molecules of each portion of the driving optical unit such that a difference between a refractive index of the j portion and a refractive index of a minimum portion of the refractive index is equal to ⁇ nj.
  • the embodiment of the present disclosure further provides a near-eye display device, including:
  • the optical unit is in one-to-one correspondence with the pixel unit of the display screen, and each of the optical units is capable of refracting the angle of refraction of the emitted light of the corresponding pixel unit to make the collimation of the adjacent optical unit
  • the light has different exit angles and displays the virtual image in a spatially adjustable manner.
  • each of the optical units includes a first electrode, a second electrode, and a liquid crystal cell between the first electrode and the second electrode.
  • the near-eye display device further includes a processing circuit and a driving circuit; wherein the processing circuit is configured to acquire a spatial depth of the virtual image to be displayed, and determine each optical according to the spatial depth of the virtual image to be displayed.
  • the tilt angle of the equivalent right-angle prism corresponding to the unit divides each optical unit into m parts, and determines the refractive index and refractive index of each part of each optical unit according to the inclination angle of the equivalent right-angle prism corresponding to each optical unit.
  • the difference in refractive index of the portion, m is an integer greater than one; the drive circuit is adapted to drive liquid crystal molecular deflection of each portion of the optical unit in accordance with the difference.
  • the embodiment of the present disclosure further provides a display method, which is applied to the near-eye display device described above.
  • the display method includes: obtaining a spatial depth of the virtual image to be displayed, determining a tilt angle of the equivalent right-angle prism corresponding to each optical unit according to the spatial depth of the virtual image to be displayed; dividing each optical unit into m parts Determining, according to the tilt angle of the equivalent rectangular prism corresponding to each optical unit, the difference between the refractive index of each portion of each optical unit and the refractive index of the smallest portion of the refractive index, m being an integer greater than 1; The value drives the deflection of the liquid crystal molecules of each portion of each optical unit to adjust the angle of refraction at which each optical unit refracts the exiting light of the corresponding pixel unit.
  • FIG. 1 is a schematic structural diagram of a virtual display device in the related art
  • FIG. 2 is a schematic structural view of an optical device according to an embodiment of the present disclosure
  • FIG. 3 is a schematic view of an optical unit equivalent right angle prism according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of dividing an optical unit into m portions according to an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of an optical unit for refracting incident linearly polarized collimated light according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of forming a virtual image of an optical device according to an embodiment of the present disclosure.
  • Figure 7 is a schematic view of a right angle prism for refracting light
  • FIG. 8 is a schematic diagram of an optical device disposed on a light exiting side of a display screen according to an embodiment of the present disclosure
  • FIG. 9 is a schematic diagram of an optical device disposed on a light emitting side of a display screen according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic view showing two stacked optical devices disposed on a light exit side of a display screen according to an embodiment of the present disclosure
  • Figure 11 is a schematic illustration of two stacked optical devices disposed on the light exit side of a display screen in accordance with an embodiment of the present disclosure.
  • the virtual display device in the related art puts two positive lenses in front of the display screen, so that the focal length of the positive lens is greater than the distance from the display screen to the positive lens, so that the positive lens functions as a magnifying glass. If the image is enlarged and far-reached, the eyes can see the erect virtual image magnified in the near eye and merge in the brain to produce stereoscopic vision.
  • the two positive lenses are thicker, and the single lens introduces optical aberrations, so that the virtual display device can cause an uncomfortable feeling on both the wearing and the screen display, and the spatial depth of the virtual image displayed by the virtual display device It is fixed and cannot be changed.
  • embodiments of the present disclosure provide a display device and a display method thereof, which are capable of realizing virtual image display at a free space depth.
  • the embodiment provides a display device including a display screen and at least one optical device on the light exiting side of the display screen.
  • the emitted light of the display screen is linearly polarized collimated light
  • the optical device includes a plurality of independent lights.
  • the optical unit is in one-to-one correspondence with the pixel unit of the display screen, the optical unit is capable of refracting the outgoing light of the display screen, and the optical unit is opposite to the pixel unit of the display screen
  • the angle of refraction of the outgoing light is adjustable, and the exit angles of the collimated rays emitted by the adjacent optical units are different, so that the emitted light of the display screen is concentrated to two viewpoints to display a virtual image having a preset spatial depth.
  • the emitted light of the display screen is a linearly polarized collimated light
  • the optical device includes a plurality of optical units capable of refracting the outgoing light of the display screen, and the optical unit is emitted to the display screen.
  • the angle at which the light is refracted is adjustable, which is equivalent to a right-angle prism.
  • the depth of the space thus achieving a virtual image display of free space depth.
  • the optical device includes a first electrode and a second electrode disposed opposite to each other, and a liquid crystal cell positioned between the first electrode and the second electrode.
  • the liquid crystal cell includes a plurality of liquid crystal cells that are independent of each other.
  • the first electrode and the second electrode are respectively located on different transparent substrates or on the same transparent substrate, and an electric field for driving deflection of liquid crystal molecules in the liquid crystal cell can be generated between the first electrode and the second electrode.
  • Each liquid crystal cell and its corresponding first electrode and second electrode constitute the optical unit After the electric field drives the deflection of the liquid crystal molecules in the optical unit, the optical unit is equivalent to a right-angle prism.
  • the display screen can be an LCD display or an OLED display. Since the outgoing light requirement of the display is collimated light, when the display is an LCD display, the backlight of the LCD display is required to be a collimated light source. When the display is an OLED display, a light component is required. The emitted light of the OLED display is converted into collimated light and then incident on the optical device.
  • the display device drives the deflection of the liquid crystal molecules in the optical unit according to the spatial depth of the virtual image to be displayed. Further, the display device further includes a processing circuit and a driving circuit.
  • the processing circuit is configured to obtain a spatial depth of the virtual image to be displayed by the display device, determine a tilt angle of the equivalent right-angle prism corresponding to each optical unit according to the spatial depth of the virtual image to be displayed, and divide each optical unit into m
  • the difference between the refractive index of each portion in each optical unit and the refractive index of the smallest portion of the refractive index is determined according to the tilt angle of the equivalent right-angle prism corresponding to each optical unit.
  • m is an integer greater than 1
  • the larger the value of m the better the effect of the optical unit is to refract the direct ray, but at the same time, the difficulty of implementation is increased. Therefore, the value of m can be determined according to the actual situation.
  • a drive circuit is operative to drive liquid crystal molecular deflection of each portion of the optical unit based on the difference.
  • the processing circuit includes a first computing module.
  • the first calculation module is configured to determine a spatial depth of the virtual image to be displayed, according to a formula Determining the value of x, where Ls is the spatial depth of the virtual image to be displayed, L is the distance from the virtual image to be displayed to the viewpoint, p is the spacing between adjacent optical units, and s is the viewing distance from the viewpoint to the display screen.
  • the processing circuit includes a second computing module.
  • the second calculation module is configured to determine a difference between a refractive index of each portion of each optical unit and a refractive index of a minimum portion of the refractive index according to the following formula:
  • Each optical unit is divided into m portions of equal length from the center of the optical device to the edge of the optical device, which are in turn, the first part, the second part, the ..., the mth part, and ⁇ nj is the optical unit j
  • the difference between the refractive index of the part and the m part, that is, the smallest part of the refractive index; the section of the equivalent right-angle prism corresponding to the optical unit is divided into m parts along a right-angled side adjacent to the inclination angle of the equivalent right-angle prism,
  • the right angle to the oblique angle of the right angle prism is the first part, the second part, the ..., the mth part, and the height of each part is hj, wherein j is an integer not more than m and not less than 1,
  • n is The refractive index of the equivalent rectangular prism corresponding to the optical unit, d is the cell thickness of the liquid crystal cell, and p is the lateral width of the equivalent rectangular prism,
  • the driving circuit is specifically configured to drive liquid crystal molecules of each portion of the optical unit to be deflected such that a difference between a refractive index of the j portion and a refractive index of a minimum portion of the refractive index is equal to ⁇ nj.
  • an optical device is disposed on the light-emitting side of the display screen. If the initial alignment direction of the liquid crystal molecules in the optical device is perpendicular to the polarization direction of the collimated light, the optical device cannot be deflected by the direct light, and therefore, the optical device The initial alignment direction of the liquid crystal molecules is at a predetermined angle with the polarization direction of the collimated light, and the predetermined angle is less than 90°.
  • the initial alignment direction of the liquid crystal molecules in the optical device coincides with the polarization direction of the outgoing light of the display screen, so that the optical device can deflect all of the emitted light of the display screen.
  • the light-emitting side of the display screen is provided with two stacked optical devices, wherein the initial alignment directions of the liquid crystal molecules in the two optical devices are perpendicular, so that the polarization direction of the outgoing light of the display screen and the initial alignment of the liquid crystal molecules At what angle the direction is, the optics are able to deflect the outgoing light from the display.
  • the embodiment provides a display method, which is applied to the above display device, and the display method includes:
  • the display method specifically includes:
  • the liquid crystal molecules of each portion of the optical unit are deflected according to the difference.
  • the light-emitting side of the display screen is provided with an optical device, and the optical device includes a plurality of optical units, and the optical unit can refract the emitted light of the display screen, which is equivalent to a right-angle prism, and the collimated light after the deflection is used.
  • the exiting angles of the collimated rays emitted by the adjacent optical units are different, so that the outgoing rays of the adjacent optical units are directed to the single eye of the person at a certain opening angle, so that the plurality of optical units can virtually display the display screen of the display screen.
  • the displayed virtual image is moved back, and the single eye can be viewed in a close position.
  • the deflection angle of the collimated light the spatial depth of the virtual image can be changed, thereby realizing the virtual image display of the free space depth.
  • determining the tilt angle of the equivalent right-angle prism corresponding to each optical unit according to the spatial depth of the virtual image to be displayed includes:
  • L-s is the spatial depth of the virtual image to be displayed
  • L is the virtual to be displayed
  • p is the distance between two adjacent optical units
  • s is the viewing distance from the viewpoint to the display screen
  • x is the distance between the two viewpoints through which the emitted light of the optical device converges
  • the optical unit is divided into m portions, and the difference between the refractive index of each portion of each optical unit and the refractive index of the smallest portion of the refractive index is determined according to the inclination angle of the equivalent right-angle prism corresponding to each optical unit. Values include:
  • Each optical unit is divided into m portions of equal length from the center of the optical device to the edge of the optical device, which are in turn, the first part, the second part, the ..., the mth part, and ⁇ nj is the optical unit j
  • the difference between the refractive index of the part and the m part, that is, the smallest part of the refractive index; the section of the equivalent right-angle prism corresponding to the optical unit is divided into m parts along a right-angled side adjacent to the inclination angle of the equivalent right-angle prism,
  • the right angle to the oblique angle of the right angle prism is the first part, the second part, the ..., the mth part, and the height of each part is hj, wherein j is an integer not more than m and not less than 1,
  • n is The refractive index of the equivalent rectangular prism corresponding to the optical unit, d is the cell thickness of the liquid crystal cell, and p is the lateral width of the equivalent rectangular prism,
  • driving the liquid crystal molecules according to the difference driving each portion of the optical unit comprises:
  • the liquid crystal molecules of each portion of the driving optical unit are deflected such that the difference between the refractive index of the j portion and the refractive index of the smallest portion of the refractive index is equal to ⁇ nj.
  • the optical device is capable of refracting the linearly polarized collimated light emitted from the display screen 1 so that the light beam is accurately directed to the human eye.
  • the optical device includes, in order from bottom to top (when the optical device is in the position shown in FIG. 2), a base substrate 2, a first electrode 5, a liquid crystal cell 3, a second electrode 6, and a base substrate 4.
  • the display screen 1 may be an LCD display screen or an OLED display screen, but the light incident on the optical device needs to be a linearly polarized collimated light beam.
  • the upper surface of the base substrate 2 is provided with a first electrode 5, and the lower surface of the base substrate 4 is provided with a second electrode 6, and both the first electrode 5 and the second electrode 6 are transparent electrodes.
  • the first electrode 5 is a strip electrode
  • the second electrode 6 is a planar electrode; or the first electrode 5 is a planar electrode, and the second electrode 6 is a strip electrode.
  • the initial alignment direction of the liquid crystal molecules in the liquid crystal layer 3 is parallel to the polarization direction of the collimated light beam emitted from the display screen 1.
  • FIG. 2 only the initial alignment direction of the liquid crystal molecules and the outgoing light of the display screen 1 are shown.
  • the direction of polarization is parallel to the paper surface.
  • the linearly polarized collimated beam passes through the liquid crystal cell, its different liquid crystal deflection states correspond to different refractive indices.
  • the refractive index of the light beam in the liquid crystal cell is ne;
  • the axial direction is perpendicular to the polarization direction of the beam, and the refractive index of the beam in the liquid crystal cell is no, where ne>no.
  • the beam also has a plurality of refractive indices between ne and no in the cell propagation.
  • the optical path difference between the adjacent light beams is equal to the optical path difference of the light beam propagating in the right angle triangular prism, so that the modulation of the geometric direction of the light beam by the liquid crystal cell is equivalent to
  • the modulation of the geometrical direction of the beam by a right-angled triangular prism, by which the liquid crystal cell is equivalent in nature to the right-angled prism array, and the tilt angle of the right-angle prism can be changed by changing the electric field between the first electrode and the second electrode. Dynamic regulation.
  • linearly polarized light whose polarization direction is parallel to the paper surface
  • the relationship between the equivalent right-angle prism and the liquid crystal cell is given.
  • the linearly polarized light in other directions is also applicable, but the initial alignment direction of the liquid crystal molecules and the polarization of the light need to be ensured.
  • the directions are parallel.
  • the equivalent rectangular prism of the liquid crystal cell is divided into m parts, and the liquid crystal cell is Also divided into m parts, the principle of equal optical path difference, there are:
  • n is the refractive index of the equivalent rectangular prism
  • hm is the thickness of the corresponding position of the mth portion of the equivalent rectangular prism
  • d is the cell thickness of the liquid crystal cell
  • ⁇ n1 is the refraction of the corresponding position of the first part of the liquid crystal cell and the corresponding position of the mth portion The difference between the rates
  • ⁇ 1 is the tilt angle of the equivalent right-angle prism
  • p is the lateral width of the equivalent right-angle prism.
  • Figure 5 illustrates the direction of the outgoing beam after the linearly polarized collimated beam exiting the display screen 1 passes through an optical unit.
  • the corresponding relationship between the display screen 1 and the optical device is that one pixel of the display screen corresponds to one optical unit, different pixels correspond to different optical units, and different optical units are equivalent to right angle prisms with different inclination angles, and FIG. 6
  • the tilt angle of the equiangular prism equivalent to the optical unit is symmetrically distributed as a whole, and the outgoing light of the display screen converges to two viewpoints, and the two viewpoints fall within the single eye of the person, so that two or more adjacent ones are adjacent.
  • the outgoing light of the pixel points to a single eye of the person at a certain opening angle, so that two or more pixels can be combined to display a virtual image, and the virtual image is moved back, so that the single eye can be viewed nearby.
  • s is the viewing distance from the human eye to the display screen
  • L is the distance from the virtual image to the human eye
  • p is the pitch of two pixels (or the spacing of the two optical units)
  • x is the two-pixel light pointing to different positions of the human eye. The spacing between the two (generally equal to the pupil distance of the human eye).
  • the distance from the virtual pixel to the human eye is related to x, x is decreased, and L is increased. Therefore, the tilt angle of the equivalent rectangular prism of the optical unit can be adjusted, and different x values can be obtained, thereby obtaining a virtual display of the free space depth.
  • the L value increases, the distance between two adjacent virtual pixels increases, which may reduce the pixel density of the virtual image display. Therefore, it is necessary to comprehensively consider the space depth virtual display image suitable for the human eye.
  • the deflection angle of the light that needs to enter the human eye can be designed first, and then the inclination angle of the equivalent right-angle prism of the pixel corresponding optical unit is calculated by the law of refraction.
  • is the deflection angle of the collimated beam
  • ⁇ 1 is the angle of inclination of the equivalent right-angle prism
  • ⁇ 2 is the angle of refraction.
  • the inclination angle ⁇ 1 of the right-angle prism can be calculated.
  • the liquid crystal molecules in the corresponding optical unit are driven to be deflected according to the determined tilt angle ⁇ 1 of the equivalent right-angle prism such that the optical unit has a right-angle prism with an equivalent tilt angle of ⁇ 1.
  • the optical device When only one optical device is disposed on the light-emitting side of the display screen, as shown in FIG. 8 and FIG. 9, if the initial alignment direction of the liquid crystal molecules in the optical device is perpendicular to the polarization direction of the collimated light, the optical device does not It can be deflected by direct light. Therefore, there is a requirement for the initial alignment direction of liquid crystal molecules in the optical device.
  • the initial alignment direction of the liquid crystal molecules in the optical device needs to be at a preset angle with the polarization direction of the collimated light, the preset angle. Less than 90°.
  • the liquid crystal cell formed by the electrode driving only deflects the right-angle prism from the polarized light parallel to the paper surface, and is perpendicular to The polarized light on the paper does not have a beam folding effect.
  • the liquid crystal cell formed by the electrode driving only deflects the right-angle prism perpendicular to the polarized light of the paper surface, and is parallel.
  • the polarized light on the paper does not have a beam folding effect.
  • two optical devices A and B may be disposed on the light-emitting side of the display screen, and the initial alignment of the liquid crystal molecules in the two optical devices
  • the direction is perpendicular, so that the optical device can deflect the outgoing light of the display screen regardless of the polarization direction of the outgoing light of the display screen and the initial alignment direction of the liquid crystal molecules.
  • the optical devices A and B may share the same base substrate 15.
  • the optical devices A and B sequentially include: a base substrate 13, an electrode 18, a liquid crystal layer 14, an electrode 19, a base substrate 15, and an electrode. 20.
  • the initial alignment direction of the liquid crystal molecules in the liquid crystal layer 14 is perpendicular to the initial alignment direction of the liquid crystal molecules in the liquid crystal layer 16.
  • the collimated light emitted from the display screen 11 passes through the polarizing plate 12 and becomes a linearly polarized collimated light.
  • the polarization state of the outgoing linearly polarized collimated light can be orthogonally decomposed into: parallel to The initial alignment direction of the liquid crystal in the liquid crystal layer 14 is parallel to the initial alignment direction of the liquid crystal in the liquid crystal layer 16.
  • each layer of the liquid crystal cell in the two-layer liquid crystal cell can deflect the polarized light parallel to the initial alignment direction of the liquid crystal molecules from the right angle prism, and when the two liquid crystal cells are stacked, it can be made
  • the collimated beam of any polarization direction acts as a right-angle prism deflection.
  • one pixel of the display screen corresponds to a pair of stacked optical units
  • different pixels correspond to different pairs of optical units
  • different optical units are equivalent to different angles of right-angle prisms.
  • the inclination angle of the equivalent right-angle prism is symmetrically distributed as a whole.
  • the light-emitting side of the display screen is provided with an optical device, and the optical device includes a plurality of optical units, and the optical unit can refract the emitted light of the display screen, which is equivalent to a right-angle prism, and the collimated light after the deflection is used.
  • the exiting angles of the collimated rays emitted by the adjacent optical units are different, so that the outgoing rays of the adjacent optical units are directed to the single eye of the person at a certain opening angle, so that the plurality of optical units can virtually display the display screen of the display screen.
  • the displayed virtual image is moved back, and the single eye can be viewed in a close position.
  • the deflection angle of the collimated light the spatial depth of the virtual image can be changed, thereby realizing the virtual image display of the free space depth.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种显示装置及其显示方法。显示装置包括显示屏(1)和位于显示屏(1)的出光侧的至少一个光学器件,显示屏(1)的出射光线为线偏振的准直光线,光学器件包括多个相互独立的光学单元,光学单元与显示屏(1)的像素单元一一对应,光学单元能够对显示屏(1)的出射光线进行折射,且光学单元对显示屏(1)的出射光线进行折射的角度可调,相邻光学单元出射的准直光线的出射角度不同,使得显示屏(1)的出射光线汇聚到两个视点以显示具有空间深度的虚拟图像。

Description

一种显示装置及其显示方法以及近眼式显示装置及其显示方法
相关申请的交叉引用
本申请主张在2016年10月31日在中国提交的中国专利申请号No.201610931762.2的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及显示技术领域,特别是指一种显示装置及其显示方法以及近眼式显示装置及其显示方法。
背景技术
虚拟显示装置是在显示屏前放两个正透镜,使正透镜的焦距大于显示屏到正透镜的距离,从而使正透镜起到放大镜的效果,使图像放大且放远,因此双眼可在近眼处看到放大放远的正立虚像并在大脑中进行融合,产生立体视觉。
相关技术中的虚拟显示装置的缺点是:两个正透镜较厚重,并且单透镜会引进光学像差,使得虚拟显示装置无论在佩戴上还是在画面显示上都会使人产生不舒服的感觉,并且虚拟显示装置显示的虚拟图像的空间深度是固定的,不能变化。
发明内容
本公开要解决的技术问题是提供一种显示装置及其显示方法以及近眼式显示装置及其显示方法,能够实现自由空间深度的虚拟图像显示。
为解决上述技术问题,本公开的实施例提供技术方案如下:
一方面,提供一种显示装置,包括:出射光线为线偏振的准直光线的显示屏;及位于所述显示屏的出光侧的至少一个光学器件。所述光学器件包括多个相互独立的光学单元,所述光学单元与所述显示屏的像素单元一一对应,所述光学单元能够对所述显示屏的出射光线进行折射,且所述光学单元对所述显示屏的出射光线进行折射的角度可调,相邻光学单元出射的准直光线的 出射角度不同,使得所述显示屏的出射光线汇聚到两个视点以显示具有空间深度的虚拟图像。
进一步地,所述光学器件包括:相对设置的第一电极和第二电极;位于所述第一电极和所述第二电极之间的液晶盒。其中,所述液晶盒包括多个相互独立的液晶单元;所述第一电极和所述第二电极分别位于不同透明基板上或位于同一透明基板上,所述第一电极和第二电极之间能够产生驱动所述液晶单元中的液晶分子偏转的电场;每一液晶单元及其对应的第一电极和第二电极组成所述光学单元,在所述电场驱动所述光学单元中的液晶分子偏转后,所述光学单元等效于一直角棱镜。
进一步地,所述显示装置还包括处理电路和驱动电路。其中,所述处理电路用于获取所述显示装置待显示的虚拟图像的空间深度,根据所述待显示的虚拟图像的空间深度确定每一光学单元对应的等效直角棱镜的倾斜角,将每一光学单元划分为m部分,根据每一光学单元对应的等效直角棱镜的倾斜角确定每一光学单元中每一部分的折射率与折射率最小部分的折射率的差值,m为大于1的整数;所述驱动电路用于根据所述差值驱动光学单元中每一部分的液晶分子偏转。
进一步地,所述处理电路包括第一计算模块;所述第一计算模块用于确定待显示虚拟图像的空间深度,根据公式
Figure PCTCN2017095831-appb-000001
确定x的值,其中,L-s为待显示虚拟图像的空间深度,L为待显示虚拟图像到视点的距离,p为相邻两光学单元之间的间距,s为视点到显示屏的观看距离,x为经过光学器件的出射光线汇聚的两个视点之间的距离,根据公式tanα=(D-x)/2s确定经过每一光学单元的准直光线的偏折角α,其中,D为光学器件的宽度,根据公式α=θ21、n sinθ1=sinθ2确定每一光学单元对应的等效直角棱镜的倾斜角θ1;其中,θ1为等效直角棱镜的倾斜角且等于准直光线相对于等效直角棱镜倾斜面的入射角,θ2为准直光线经过等效直角棱镜的折射角。
进一步地,所述处理电路包括第二计算模块;所述第二计算模块用于根 据以下公式确定每一光学单元中每一部分的折射率与折射率最小部分的折射率的差值:
Figure PCTCN2017095831-appb-000002
从光学器件中心到光学器件边缘的第一方向上将每一光学单元划分为等长的m部分,依次为第1部分、第2部分、...、第m部分,Δnj为光学单元的j部分与折射率最小部分的折射率之差;沿与等效直角棱镜的倾斜角相邻的一条直角边将与光学单元对应的等效直角棱镜的截面划分为m个部分,从等效直角棱镜的直角到倾斜角的方向上依次为第1部分、第2部分、...、第m部分,每部分高度为hj,其中,j为不大于m不小于1的整数,n为与光学单元对应的等效直角棱镜的折射率,d为液晶盒盒厚,p为等效直角棱镜的横向宽度即光学单元的横向宽度。
进一步地,所述驱动电路具体用于驱动光学单元中每一部分的液晶分子偏转,使j部分的折射率与折射率最小部分的折射率之差等于Δnj。
进一步地,所述光学器件中液晶分子的初始配向方向与所述准直光线的偏振方向之间的夹角的角度小于90°。
进一步地,所述光学器件中液晶分子的初始配向方向与所述显示屏的出射光线的偏振方向一致。
进一步地,所述显示屏的出光侧设置有层叠的两个所述光学器件,所述两个光学器件中液晶分子的初始配向方向相垂直。
进一步地,所述显示屏为LCD显示屏或OLED显示屏。
本公开实施例还提供了一种显示方法,应用于上述的显示装置,所述显示方法包括:调整所述光学单元对所述显示屏的出射光线进行折射的角度,使得相邻光学单元出射的准直光线的出射角度不同,所述显示屏的出射光线汇聚到两个视点以显示具有空间深度的虚拟图像。
进一步地,所述显示方法包括:获取所述显示装置待显示的虚拟图像的空间深度,根据所述待显示的虚拟图像的空间深度确定每一光学单元对应的等效直角棱镜的倾斜角;将每一光学单元划分为m部分,根据每一光学单元对应的等效直角棱镜的倾斜角确定每一光学单元中每一部分的折射率与折射率最小部分的折射率的差值,m为大于1的整数;根据所述差值驱动光学单元中每一部分的液晶分子偏转。
进一步地,所述根据所述待显示的虚拟图像的空间深度确定每一光学单元对应的等效直角棱镜的倾斜角包括:
确定待显示虚拟图像的空间深度,根据公式
Figure PCTCN2017095831-appb-000003
确定x的值,其中,L-s为待显示虚拟图像的空间深度,L为待显示虚拟图像到视点的距离,p为相邻两光学单元之间的间距,s为视点到显示屏的观看距离,x为经过光学器件的出射光线汇聚的两个视点之间的距离;
根据公式tanα=(D-x)/2s确定经过每一光学单元的准直光线的偏折角α,其中,D为光学器件的宽度;
根据公式α=θ21、n sinθ1=sinθ2确定每一光学单元对应的等效直角棱镜的倾斜角θ1;其中,θ1为等效直角棱镜的倾斜角并等于准直光线相对于等效直角棱镜倾斜面的入射角,θ2为准直光线经过等效直角棱镜的折射角。
进一步地,所述将每一光学单元划分为m部分,根据每一光学单元对应的等效直角棱镜的倾斜角确定每一光学单元中每一部分的折射率与折射率最小部分的折射率的差值包括:
根据以下公式确定每一光学单元中每一部分的折射率与折射率最小部分的折射率的差值:
Figure PCTCN2017095831-appb-000004
Figure PCTCN2017095831-appb-000005
从光学器件中心到光学器件边缘的第一方向上将每一光学单元划分为等长的m部分,依次为第1部分、第2部分、...、第m部分,Δnj为光学单元的j部分与折射率最小部分的折射率之差;沿与等效直角棱镜的倾斜角相邻的一条直角边将与光学单元对应的等效直角棱镜的截面划分为m个部分,从等效直角棱镜的直角到倾斜角的方向上依次为第1部分、第2部分、...、第m部分,每部分高度为hj,其中,j为不大于m不小于1的整数,n为与光学单元对应的等效直角棱镜的折射率,d为液晶盒盒厚,p为等效直角棱镜的横向宽度即光学单元的横向宽度。
进一步地,根据所述差值驱动光学单元中每一部分的液晶分子偏转包括:驱动光学单元中每一部分的液晶分子偏转,使j部分的折射率与折射率最小部分的折射率之差等于Δnj。
本公开实施例还提供了一种近眼式显示装置,包括:
出射光线为线偏振的准直光线的显示屏;及
位于所述显示屏的出光侧的多个相互独立的光学单元;
其中,所述光学单元与所述显示屏的像素单元一一对应,每个所述光学单元能够对对应的像素单元的出射光线进行折射角度可调的折射,使得相邻光学单元出射的准直光线的出射角度不同并以空间深度可调的方式显示虚拟图像。
进一步地,每个所述光学单元包括:第一电极,第二电极,及位于所述第一电极和所述第二电极之间的液晶单元。
进一步地,所述近眼式显示装置还包括处理电路和驱动电路;其中,所述处理电路用于获取待显示的虚拟图像的空间深度,根据所述待显示的虚拟图像的空间深度确定每一光学单元对应的等效直角棱镜的倾斜角,将每一光学单元划分为m部分,根据每一光学单元对应的等效直角棱镜的倾斜角确定每一光学单元中每一部分的折射率与折射率最小部分的折射率的差值,m为大于1的整数;所述驱动电路用于根据所述差值驱动光学单元中每一部分的液晶分子偏转。
本公开实施例还提供了一种显示方法,应用于上述近眼式显示装置,所 述显示方法包括:获取待显示的虚拟图像的空间深度,根据所述待显示的虚拟图像的空间深度确定每一光学单元对应的等效直角棱镜的倾斜角;将每一光学单元划分为m部分,根据每一光学单元对应的等效直角棱镜的倾斜角确定每一光学单元中每一部分的折射率与折射率最小部分的折射率的差值,m为大于1的整数;通过根据所述差值驱动每一光学单元中每一部分的液晶分子偏转来调整每一光学单元对对应的像素单元的出射光线进行折射的折射角度。
附图说明
图1为相关技术中虚拟显示装置的结构示意图;
图2为本公开实施例光学器件的结构示意图;
图3为本公开实施例光学单元等效直角棱镜的示意图;
图4为本公开实施例将光学单元划分为m部分的示意图;
图5为本公开实施例光学单元对入射的线偏振的准直光线进行折射的示意图;
图6为本公开实施例光学器件形成虚拟图像的示意图;
图7为直角棱镜对光线进行折射的示意图;
图8为本公开实施例在显示屏的出光侧设置一个光学器件的示意图;
图9为本公开实施例在显示屏的出光侧设置一个光学器件的示意图;
图10为本公开实施例在显示屏的出光侧设置层叠的两个光学器件的示意图;
图11为本公开实施例在显示屏的出光侧设置层叠的两个光学器件的示意图。
具体实施方式
为使本公开的实施例要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
如图1所示,相关技术中的虚拟显示装置是在显示屏前放两个正透镜,使正透镜的焦距大于显示屏到正透镜的距离,从而使正透镜起到放大镜的效 果,使图像放大且放远,因此双眼可在近眼处看到放大放远的正立虚像并在大脑中进行融合,产生立体视觉。
但是两个正透镜较厚重,并且单透镜会引进光学像差,使得虚拟显示装置无论在佩戴上还是在画面显示上都会使人产生不舒服的感觉,并且虚拟显示装置显示的虚拟图像的空间深度是固定的,不能变化。
为了解决上述技术问题,本公开的实施例提供一种显示装置及其显示方法,能够实现自由空间深度的虚拟图像显示。
本实施例提供了一种显示装置,包括显示屏和位于显示屏的出光侧的至少一个光学器件,所述显示屏的出射光线为线偏振的准直光线,所述光学器件包括多个相互独立的光学单元,所述光学单元与所述显示屏的像素单元一一对应,所述光学单元能够对所述显示屏的出射光线进行折射,且所述光学单元对经过所述显示屏的像素单元的出射光线进行折射的角度可调,相邻光学单元出射的准直光线的出射角度不同,使得所述显示屏的出射光线汇聚到两个视点以显示具有预设空间深度的虚拟图像。
本实施例中,显示屏的出射光线为线偏振的准直光线,光学器件包括多个光学单元,能够对所述显示屏的出射光线进行折射,且所述光学单元对所述显示屏的出射光线进行折射的角度可调,等效于直角棱镜,偏折后的准直光线被人眼接收,相邻光学单元出射的准直光线的出射角度不同,这样相邻的光学单元的出射光线以一定的张角指向人的单眼,使得多个光学单元能够虚拟显示图像,并使显示的虚拟图像后移,可供单眼在近处观看,通过调整准直光线的偏折角度,能够改变虚拟图像的空间深度,从而实现自由空间深度的虚拟图像显示。
一具体实施例中,所述光学器件包括相对设置的第一电极和第二电极、以及位于所述第一电极和所述第二电极之间的液晶盒。所述液晶盒包括多个相互独立的液晶单元。
所述第一电极和所述第二电极分别位于不同透明基板上或位于同一透明基板上,所述第一电极和第二电极之间能够产生驱动所述液晶单元中的液晶分子偏转的电场。
每一液晶单元及其对应的第一电极和第二电极组成所述光学单元,在所 述电场驱动所述光学单元中的液晶分子偏转后,所述光学单元等效于一直角棱镜。
其中,显示屏可以为LCD显示屏或OLED显示屏。由于显示屏的出射光线要求是准直光线,因此,在显示屏为LCD显示屏时,要求LCD显示屏的背光源为准直光源,在显示屏为OLED显示屏时,还要求有光线构件能够将OLED显示屏的出射光线转换成准直光线后再入射光学器件。
具体实施例中,显示装置根据待显示的虚拟图像的空间深度来驱动光学单元中的液晶分子偏转。进一步地,所述显示装置还包括处理电路和驱动电路。
处理电路用于获取显示装置待显示的虚拟图像的空间深度,根据所述待显示的虚拟图像的空间深度确定每一光学单元对应的等效直角棱镜的倾斜角,将每一光学单元划分为m部分,根据每一光学单元对应的等效直角棱镜的倾斜角确定每一光学单元中每一部分的折射率与折射率最小部分的折射率的差值。其中,m为大于1的整数,m的取值越大,光学单元对准直光线进行折射的效果越好,但同时会增加实现的难度,因此,可以根据实际情况确定m的值。
驱动电路用于根据所述差值驱动光学单元中每一部分的液晶分子偏转。
进一步地,所述处理电路包括第一计算模块。第一计算模块用于确定待显示虚拟图像的空间深度,根据公式
Figure PCTCN2017095831-appb-000006
确定x的值,其中,L-s为待显示虚拟图像的空间深度,L为待显示虚拟图像到视点的距离,p为相邻两光学单元之间的间距,s为视点到显示屏的观看距离,x为经过光学器件的出射光线汇聚的两个视点之间的距离,根据公式tanα=(D-x)/2s确定经过每一光学单元的准直光线的偏折角α,其中,D为光学器件的宽度,根据公式α=θ21、n sinθ1=sinθ2确定每一光学单元对应的等效直角棱镜的倾斜角θ1;其中,θ1为等效直角棱镜的倾斜角即准直光线相对于等效直角棱镜倾斜面的入射角,θ2为准直光线经过等效直角棱镜的折射角。
进一步地,所述处理电路包括第二计算模块。第二计算模块用于根据以下公式确定每一光学单元中每一部分的折射率与折射率最小部分的折射率的差值:
Figure PCTCN2017095831-appb-000007
从光学器件中心到光学器件边缘的第一方向上将每一光学单元划分为等长的m部分,依次为第1部分、第2部分、...、第m部分,Δnj为光学单元的j部分与m部分即折射率最小部分的折射率之差;沿与等效直角棱镜的倾斜角相邻的一条直角边将与光学单元对应的等效直角棱镜的截面划分为m个部分,从等效直角棱镜的直角到倾斜角的方向上依次为第1部分、第2部分、...、第m部分,每部分高度为hj,其中,j为不大于m不小于1的整数,n为与光学单元对应的等效直角棱镜的折射率,d为液晶盒盒厚,p为等效直角棱镜的横向宽度即光学单元的横向宽度。
进一步地,所述驱动电路具体用于驱动光学单元中每一部分的液晶分子偏转,使j部分的折射率与折射率最小部分的折射率之差等于Δnj。
具体实施例中,在显示屏的出光侧设置有一光学器件,如果光学器件中液晶分子的初始配向方向与准直光线的偏振方向垂直,则光学器件不能对准直光线进行偏转,因此,光学器件中液晶分子的初始配向方向与准直光线的偏振方向呈预设角度,所述预设角度小于90°。
可选实施例中,光学器件中液晶分子的初始配向方向与显示屏的出射光线的偏振方向一致,这样光学器件能够对显示屏的所有出射光线均进行偏折。
可选实施例中,显示屏的出光侧设置有层叠的两个光学器件,两个光学器件中液晶分子的初始配向方向相垂直,这样不管显示屏的出射光线的偏振方向与液晶分子的初始配向方向呈何种角度,光学器件均能够对显示屏的出射光线均进行偏折。
本实施例提供了一种显示方法,应用于上述的显示装置,所述显示方法包括:
调整所述光学单元对所述显示屏的出射光线进行折射的角度,使得相邻光学单元出射的准直光线的出射角度不同,所述显示屏的出射光线汇聚到两个视点以显示具有预设空间深度的虚拟图像。
进一步地,所述显示方法具体包括:
获取显示装置待显示的虚拟图像的空间深度,根据所述待显示的虚拟图像的空间深度确定每一光学单元对应的等效直角棱镜的倾斜角;
将每一光学单元划分为m部分,根据每一光学单元对应的等效直角棱镜的倾斜角确定每一光学单元中每一部分的折射率与折射率最小部分的折射率的差值,m为大于1的整数;
根据所述差值驱动光学单元中每一部分的液晶分子偏转。
本实施例中,显示屏的出光侧设置有光学器件,光学器件包括多个光学单元,光学单元能够对显示屏的出射光线进行折射,等效于直角棱镜,偏折后的准直光线被人眼接收,相邻光学单元出射的准直光线的出射角度不同,这样相邻的光学单元的出射光线以一定的张角指向人的单眼,使得多个光学单元能够虚拟显示显示屏的显示画面,并使显示的虚拟图像后移,可供单眼在近处观看,通过调整准直光线的偏折角度,能够改变虚拟图像的空间深度,从而实现自由空间深度的虚拟图像显示。
进一步地,所述根据所述待显示的虚拟图像的空间深度确定每一光学单元对应的等效直角棱镜的倾斜角包括:
确定待显示虚拟图像的空间深度,根据公式
Figure PCTCN2017095831-appb-000008
确定x的值,其中,L-s为待显示虚拟图像的空间深度,L为待显示虚拟 图像到视点的距离,p为相邻两光学单元之间的间距,s为视点到显示屏的观看距离,x为经过光学器件的出射光线汇聚的两个视点之间的距离;
根据公式tanα=(D-x)/2s确定经过每一光学单元的准直光线的偏折角α,其中,D为光学器件的宽度;
根据公式α=θ21、n sinθ1=sinθ2确定每一光学单元对应的等效直角棱镜的倾斜角θ1;其中,θ1为等效直角棱镜的倾斜角即准直光线相对于等效直角棱镜倾斜面的入射角,θ2为准直光线经过等效直角棱镜的折射角。
进一步地,所述将每一光学单元划分为m部分,根据每一光学单元对应的等效直角棱镜的倾斜角确定每一光学单元中每一部分的折射率与折射率最小部分的折射率的差值包括:
根据以下公式确定每一光学单元中每一部分的折射率与折射率最小部分的折射率的差值:
Figure PCTCN2017095831-appb-000009
从光学器件中心到光学器件边缘的第一方向上将每一光学单元划分为等长的m部分,依次为第1部分、第2部分、...、第m部分,Δnj为光学单元的j部分与m部分即折射率最小部分的折射率之差;沿与等效直角棱镜的倾斜角相邻的一条直角边将与光学单元对应的等效直角棱镜的截面划分为m个部分,从等效直角棱镜的直角到倾斜角的方向上依次为第1部分、第2部分、...、第m部分,每部分高度为hj,其中,j为不大于m不小于1的整数,n为与光学单元对应的等效直角棱镜的折射率,d为液晶盒盒厚,p为等效直角棱镜的横向宽度即光学单元的横向宽度。
进一步地,根据所述差值驱动光学单元中每一部分的液晶分子偏转包括:
驱动光学单元中每一部分的液晶分子偏转,使j部分的折射率与折射率最小部分的折射率之差等于Δnj。
下面结合附图对本公开的显示装置进行进一步介绍:
图2为本公开实施例光学器件的结构示意图,光学器件能够对显示屏1出射的线偏振的准直光线进行折射,使光束精确指向人眼。其中,光学器件由下到上(当光学器件处于如图2所示位置时)依次包括:衬底基板2、第一电极5、液晶盒3、第二电极6和衬底基板4。其中,显示屏1可以是LCD显示屏或OLED显示屏,但入射到光学器件的光线需要为线偏振的准直光束。
衬底基板2的上表面设置有第一电极5,衬底基板4的下表面设置有第二电极6,第一电极5和第二电极6都是透明电极。其中,第一电极5为条形电极,第二电极6为面形电极;或第一电极5为面形电极,第二电极6为条形电极。只要第一电极5和第二电极6之间能够形成驱动液晶层中液晶分子偏转的电场即可。
本实施例中,液晶层3中液晶分子的初始配向方向与显示屏1出射的准直光束的偏振方向平行,图2中仅示出了液晶分子的初始配向方向及显示屏1的出射光的偏振方向为平行于纸面的情况。
线偏振的准直光束经过液晶盒时,其不同的液晶偏转状态对应不同的折射率,若液晶长轴方向与光束偏振方向平行,此时光束在液晶盒内的折射率为ne;若液晶长轴方向与光束偏振方向垂直,此时光束在液晶盒内的折射率为no,其中ne>no。光束在液晶盒传播中还有介于ne和no之间的多种折射率。利用这一特性,可使光束在液晶盒中传播时,相邻光束间的光程差与该光束在直角三棱镜中传播的光程差相等,从而使液晶盒对光束几何方向的调制等效于一个直角三棱镜对光束几何方向的调制,利用这一性质,可使得液晶盒在性质上等效于直角三棱镜阵列,并且直角棱镜的倾斜角可通过改变第一电极与第二电极之间的电场进行动态调控。
下面针对于偏振方向为平行于纸面的线偏振光,给出等效直角棱镜与液晶盒的关系,其它方向的线偏振光也同样适用,但需要保证液晶分子的初始配向方向与光的偏振方向平行。
如图3和图4所示,将液晶盒的等效直角棱镜分成m个部分,将液晶盒 也分为m个部分,则由等光程差原理,有:
Figure PCTCN2017095831-appb-000010
其中,n为等效直角棱镜的折射率;hm为等效直角棱镜第m部分相应位置的厚度;d为液晶盒盒厚;Δn1为液晶盒第1部分相应位置与第m部分相应位置的折射率之差;θ1为等效直角棱镜的倾斜角;p为等效直角棱镜的横向宽度。
由上述公式可知,不同的棱镜倾斜角θ1,对应不同的厚度h1,因此会对应不同的液晶盒光程差Δnd。具体地,需要根据出射光的偏折方向要求,来选取所要达到的棱镜倾斜角θ1值。
图5示意出了显示屏1出射的线偏振的准直光束经过一个光学单元后的出射光束方向。
本实施例中,显示屏1和光学器件的对应关系是,显示屏的一个像素对应一个光学单元,不同像素对应不同的光学单元,不同光学单元等效不同倾斜角的直角棱镜,并且如图6所示,光学单元等效的直角棱镜的倾斜角整体上成对称分布,显示屏的出射光线汇聚到两个视点,两个视点落在人的单眼内,使得相邻的两个或两个以上像素的出射光线以一定的张角指向人的单眼,这样可以使得两个或两个以上的像素配合显示一个虚拟图像,并使虚拟图像后移,可供单眼在近处观看。
图6中,由几何关系可得:
Figure PCTCN2017095831-appb-000011
整理,得:
Figure PCTCN2017095831-appb-000012
其中,s为人眼到显示屏的观看距离,L为虚拟图像到人眼的距离,p为两像素的间距(或两光学单元的间距),x为两像素的光线指向到人眼的不同位置间的间距(一般等于人眼的瞳距)。
由上式可知,虚拟像素到人眼的距离与x相关,x减小,L增大。因此调控光学单元等效直角棱镜的倾斜角,可得到不同的x值,进而可获取自由空间深度的虚拟显示。但随着L值的增大,两相邻的虚拟像素间距增加,可能会降低虚拟图像显示的像素密度,因此需综合考虑,来选取适合人眼的空间深度虚拟显示图像。
对于不同像素的等效直角棱镜倾斜角的计算,可先设计出光线需要进入人眼的偏折角,再利用折射定律计算出像素对应光学单元等效直角棱镜的倾斜角。如图7所示的直角棱镜的截面中,α为准直光束的偏折角,θ1为等效直角棱镜的倾斜角也是准直光束相对于倾斜面的入射角,θ2为折射角,它们之间的关系是:
α=θ21
n sinθ1=sinθ2
若已知偏折角α,则可计算出直角棱镜的倾斜角θ1。在显示装置进行显示时,首先确定待显示虚拟图像的空间深度,根据公式
Figure PCTCN2017095831-appb-000013
确定x的值,
再根据公式tanα=(D-x)/2s确定经过每一光学单元的准直光线的偏折角α,其中,D为光学器件的宽度,最后根据公式α=θ21、n sinθ1=sinθ2确定每一光学单元对应的等效直角棱镜的倾斜角θ1。根据确定的等效直角棱镜的倾斜角θ1驱动对应光学单元中的液晶分子偏转,使得光学单元等效倾斜角为θ1的直角棱镜。
在显示屏的出光侧仅设置一光学器件时,如图8和图9所示,如果光学器件中液晶分子的初始配向方向与准直光线的偏振方向垂直,则光学器件不 能对准直光线进行偏转,因此,对光学器件中液晶分子的初始配向方向存在要求,光学器件中液晶分子的初始配向方向需要与准直光线的偏振方向呈预设角度,所述预设角度小于90°。
如图8所示,由于液晶分子的初始配向方向为平行于纸面的方向,故其在电极驱动下所形成的液晶盒只对平行于纸面的偏振光起直角棱镜偏折作用,对垂直于纸面的偏振光不起光束折转作用。
如图9所示,由于液晶分子的初始配向方向为垂直于纸面的方向,故其在电极驱动下所形成的液晶盒只对垂直于纸面的偏振光起直角棱镜偏折作用,对平行于纸面的偏振光不起光束折转作用。
为了不对显示屏出射光线的偏振方向进行限制,如图10和图11所示,可以在显示屏的出光侧设置有层叠的两个光学器件A和B,两个光学器件中液晶分子的初始配向方向相垂直,这样不管显示屏的出射光线的偏振方向与液晶分子的初始配向方向呈何种角度,光学器件均能够对显示屏的出射光线均进行偏折。光学器件A和B可以共用同一个衬底基板15,在光线的行进方向上,光学器件A和B依次包括:衬底基板13、电极18、液晶层14、电极19、衬底基板15、电极20、液晶层16、电极21和衬底基板17。其中,液晶层14中液晶分子的初始配向方向与液晶层16中液晶分子的初始配向方向垂直。
如图10和图11所示,显示屏11出射的准直光线经偏振片12后变为线偏振的准直光线,出射的线偏振的准直光线的偏振态可正交分解为:平行于液晶层14中液晶的初始配向方向和平行于液晶层16中液晶的初始配向方向。当对电极加电时,两层液晶盒中的每层液晶盒都能够对平行于自身液晶分子初始配向方向的偏振光起直角棱镜偏折作用,当两层液晶盒层叠放置时,可使其对任何偏振方向的准直光束均起到直角棱镜偏折作用。
在显示屏的出光侧设置有层叠的两个光学器件时,显示屏的一个像素对应一对层叠放置的光学单元,不同像素对应不同对的光学单元,不同光学单元等效不同倾斜角的直角棱镜,并且等效直角棱镜的倾斜角整体上成对称分布。这样能够使得相邻的两个或两个以上像素的出射光线以一定的张角指向人的单眼,这样可以使得两个或两个以上的像素配合显示一个虚拟图像,并 使虚拟图像后移,可供单眼在近处观看。
本实施例中,显示屏的出光侧设置有光学器件,光学器件包括多个光学单元,光学单元能够对显示屏的出射光线进行折射,等效于直角棱镜,偏折后的准直光线被人眼接收,相邻光学单元出射的准直光线的出射角度不同,这样相邻的光学单元的出射光线以一定的张角指向人的单眼,使得多个光学单元能够虚拟显示显示屏的显示画面,并使显示的虚拟图像后移,可供单眼在近处观看,通过调整准直光线的偏折角度,能够改变虚拟图像的空间深度,从而实现自由空间深度的虚拟图像显示。
以上所述是本公开的可选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (19)

  1. 一种显示装置,包括:
    出射光线为线偏振的准直光线的显示屏;及
    位于所述显示屏的出光侧的至少一个光学器件;
    其中,所述光学器件包括多个相互独立的光学单元,所述光学单元与所述显示屏的像素单元一一对应,所述光学单元能够对所述显示屏的出射光线进行折射,且所述光学单元对所述显示屏的出射光线进行折射的角度可调,相邻光学单元出射的准直光线的出射角度不同,使得所述显示屏的出射光线汇聚到两个视点以显示具有空间深度的虚拟图像。
  2. 根据权利要求1所述的显示装置,其中,所述光学器件包括:
    相对设置的第一电极和第二电极;
    位于所述第一电极和所述第二电极之间的液晶盒;
    其中,所述液晶盒包括多个相互独立的液晶单元;所述第一电极和所述第二电极分别位于不同透明基板上或位于同一透明基板上,所述第一电极和第二电极之间能够产生驱动所述液晶单元中的液晶分子偏转的电场;
    每一液晶单元及其对应的第一电极和第二电极组成所述光学单元,在所述电场驱动所述光学单元中的液晶分子偏转后,所述光学单元等效于一直角棱镜。
  3. 根据权利要求2所述的显示装置,还包括处理电路和驱动电路;
    其中,所述处理电路用于获取所述显示装置待显示的虚拟图像的空间深度,根据所述待显示的虚拟图像的空间深度确定每一光学单元对应的等效直角棱镜的倾斜角,将每一光学单元划分为m部分,根据每一光学单元对应的等效直角棱镜的倾斜角确定每一光学单元中每一部分的折射率与折射率最小部分的折射率的差值,m为大于1的整数;
    所述驱动电路用于根据所述差值驱动光学单元中每一部分的液晶分子偏转。
  4. 根据权利要求3所述的显示装置,其中,所述处理电路包括第一计算模块;所述第一计算模块用于确定待显示虚拟图像的空间深度,根据公式
    Figure PCTCN2017095831-appb-100001
    确定x的值,其中,L-s为待显示虚拟图像的空间深度,L为待显示虚拟图像到视点的距离,p为相邻两光学单元之间的间距,s为视点到显示屏的观看距离,x为经过光学器件的出射光线汇聚的两个视点之间的距离,根据公式tanα=(D-x)/2s确定经过每一光学单元的准直光线的偏折角α,其中,D为光学器件的宽度,根据公式α=θ21、n sinθ1=sinθ2确定每一光学单元对应的等效直角棱镜的倾斜角θ1;其中,θ1为等效直角棱镜的倾斜角且等于准直光线相对于等效直角棱镜倾斜面的入射角,θ2为准直光线经过等效直角棱镜的折射角。
  5. 根据权利要求4所述的显示装置,其中,所述处理电路包括第二计算模块;
    所述第二计算模块用于根据以下公式确定每一光学单元中每一部分的折射率与折射率最小部分的折射率的差值:
    Figure PCTCN2017095831-appb-100002
    从光学器件中心到光学器件边缘的第一方向上将每一光学单元划分为等长的m部分,依次为第1部分、第2部分、...、第m部分,Δnj为光学单元的j部分与折射率最小部分的折射率之差;沿与等效直角棱镜的倾斜角相邻的一条直角边将与光学单元对应的等效直角棱镜的截面划分为m个部分,从等效直角棱镜的直角到倾斜角的方向上依次为第1部分、第2部分、...、第m部分,每部分高度为hj,其中,j为不大于m不小于1的整数,n为与光学单元对应的等效直角棱镜的折射率,d为液晶盒盒厚,p为等效直角棱镜的横 向宽度即光学单元的横向宽度。
  6. 根据权利要求5所述的显示装置,其中,所述驱动电路具体用于驱动光学单元中每一部分的液晶分子偏转,使j部分的折射率与折射率最小部分的折射率之差等于Δnj。
  7. 根据权利要求2-6中任一项所述的显示装置,其中,所述光学器件中液晶分子的初始配向方向与所述准直光线的偏振方向之间的夹角的角度小于90°。
  8. 根据权利要求7所述的显示装置,其中,
    所述光学器件中液晶分子的初始配向方向与所述显示屏的出射光线的偏振方向一致。
  9. 根据权利要求2-6中任一项所述的显示装置,其中,
    所述显示屏的出光侧设置有层叠的两个所述光学器件,所述两个光学器件中液晶分子的初始配向方向相垂直。
  10. 根据权利要求2所述的显示装置,其中,所述显示屏为LCD显示屏或OLED显示屏。
  11. 一种显示方法,应用于如权利要求1-10中任一项所述的显示装置,所述显示方法包括:
    调整所述光学单元对所述显示屏的出射光线进行折射的角度,使得相邻光学单元出射的准直光线的出射角度不同,所述显示屏的出射光线汇聚到两个视点以显示具有空间深度的虚拟图像。
  12. 根据权利要求11所述的显示方法,其中,所述显示装置包括如权利要求2所述的光学器件,所述显示方法包括:
    获取所述显示装置待显示的虚拟图像的空间深度,根据所述待显示的虚拟图像的空间深度确定每一光学单元对应的等效直角棱镜的倾斜角;
    将每一光学单元划分为m部分,根据每一光学单元对应的等效直角棱镜的倾斜角确定每一光学单元中每一部分的折射率与折射率最小部分的折射率的差值,m为大于1的整数;
    根据所述差值驱动光学单元中每一部分的液晶分子偏转。
  13. 根据权利要求12所述的显示方法,其中,所述根据所述待显示的虚 拟图像的空间深度确定每一光学单元对应的等效直角棱镜的倾斜角包括:
    确定待显示虚拟图像的空间深度,根据公式
    Figure PCTCN2017095831-appb-100003
    确定x的值,其中,L-s为待显示虚拟图像的空间深度,L为待显示虚拟图像到视点的距离,p为相邻两光学单元之间的间距,s为视点到显示屏的观看距离,x为经过光学器件的出射光线汇聚的两个视点之间的距离;
    根据公式tanα=(D-x)/2s确定经过每一光学单元的准直光线的偏折角α,其中,D为光学器件的宽度;
    根据公式α=θ21、n sinθ1=sinθ2确定每一光学单元对应的等效直角棱镜的倾斜角θ1;其中,θ1为等效直角棱镜的倾斜角并等于准直光线相对于等效直角棱镜倾斜面的入射角,θ2为准直光线经过等效直角棱镜的折射角。
  14. 根据权利要求13所述的显示方法,其中,所述将每一光学单元划分为m部分,根据每一光学单元对应的等效直角棱镜的倾斜角确定每一光学单元中每一部分的折射率与折射率最小部分的折射率的差值包括:
    根据以下公式确定每一光学单元中每一部分的折射率与折射率最小部分的折射率的差值:
    Figure PCTCN2017095831-appb-100004
    从光学器件中心到光学器件边缘的第一方向上将每一光学单元划分为等长的m部分,依次为第1部分、第2部分、...、第m部分,Δnj为光学单元的j部分与折射率最小部分的折射率之差;沿与等效直角棱镜的倾斜角相邻的一条直角边将与光学单元对应的等效直角棱镜的截面划分为m个部分,从 等效直角棱镜的直角到倾斜角的方向上依次为第1部分、第2部分、...、第m部分,每部分高度为hj,其中,j为不大于m不小于1的整数,n为与光学单元对应的等效直角棱镜的折射率,d为液晶盒盒厚,p为等效直角棱镜的横向宽度即光学单元的横向宽度。
  15. 根据权利要求14所述的显示方法,其中,根据所述差值驱动光学单元中每一部分的液晶分子偏转包括:
    驱动光学单元中每一部分的液晶分子偏转,使j部分的折射率与折射率最小部分的折射率之差等于Δnj。
  16. 一种近眼式显示装置,包括:
    出射光线为线偏振的准直光线的显示屏;及
    位于所述显示屏的出光侧的多个相互独立的光学单元;
    其中,所述光学单元与所述显示屏的像素单元一一对应,每个所述光学单元能够对对应的像素单元的出射光线进行折射角度可调的折射,使得相邻光学单元出射的准直光线的出射角度不同并以空间深度可调的方式显示虚拟图像。
  17. 根据权利要求16所述的近眼式显示装置,其中,每个所述光学单元包括:
    第一电极,
    第二电极,及
    位于所述第一电极和所述第二电极之间的液晶单元。
  18. 根据权利要求17所述的近眼式显示装置,还包括处理电路和驱动电路;
    其中,所述处理电路用于获取待显示的虚拟图像的空间深度,根据所述待显示的虚拟图像的空间深度确定每一光学单元对应的等效直角棱镜的倾斜角,将每一光学单元划分为m部分,根据每一光学单元对应的等效直角棱镜的倾斜角确定每一光学单元中每一部分的折射率与折射率最小部分的折射率的差值,m为大于1的整数;
    所述驱动电路用于根据所述差值驱动光学单元中每一部分的液晶分子偏转。
  19. 一种显示方法,应用于如权利要求16-18中任一项所述的近眼式显示装置,所述显示方法包括:
    获取待显示的虚拟图像的空间深度,根据所述待显示的虚拟图像的空间深度确定每一光学单元对应的等效直角棱镜的倾斜角;
    将每一光学单元划分为m部分,根据每一光学单元对应的等效直角棱镜的倾斜角确定每一光学单元中每一部分的折射率与折射率最小部分的折射率的差值,m为大于1的整数;
    通过根据所述差值驱动每一光学单元中每一部分的液晶分子偏转来调整每一光学单元对对应的像素单元的出射光线进行折射的折射角度。
PCT/CN2017/095831 2016-10-31 2017-08-03 一种显示装置及其显示方法以及近眼式显示装置及其显示方法 WO2018076878A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/752,333 US10606111B2 (en) 2016-10-31 2017-08-03 Display device, display method thereof, near-to-eye display device, and display method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610931762.2A CN106444060B (zh) 2016-10-31 2016-10-31 一种显示装置及其显示方法
CN201610931762.2 2016-10-31

Publications (1)

Publication Number Publication Date
WO2018076878A1 true WO2018076878A1 (zh) 2018-05-03

Family

ID=58177521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/095831 WO2018076878A1 (zh) 2016-10-31 2017-08-03 一种显示装置及其显示方法以及近眼式显示装置及其显示方法

Country Status (3)

Country Link
US (1) US10606111B2 (zh)
CN (1) CN106444060B (zh)
WO (1) WO2018076878A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106444060B (zh) * 2016-10-31 2019-01-22 京东方科技集团股份有限公司 一种显示装置及其显示方法
CN108628087B (zh) * 2017-03-20 2020-11-06 成都理想境界科技有限公司 一种投影装置及空间成像方法
US10690958B2 (en) * 2017-10-18 2020-06-23 Samsung Electronics Co., Ltd. Beam deflector and three-dimensional display device including the same
KR102526760B1 (ko) * 2018-02-19 2023-04-27 삼성전자주식회사 빔 편향기 및 이를 포함하는 3차원 디스플레이 장치
CN109390488A (zh) * 2018-09-30 2019-02-26 云谷(固安)科技有限公司 有机发光显示面板及其制作方法、有机发光显示装置
CN109298535A (zh) * 2018-11-13 2019-02-01 深圳创维新世界科技有限公司 空间立体显示装置
CN110109292B (zh) * 2019-05-23 2022-02-11 京东方科技集团股份有限公司 一种显示面板及显示装置
CN113050283B (zh) * 2021-03-18 2022-07-22 歌尔股份有限公司 光线偏转结构和头戴显示设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015162098A1 (en) * 2014-04-24 2015-10-29 Carl Zeiss Meditec, Inc. Functional vision testing using light field displays
WO2015174794A1 (ko) * 2014-05-15 2015-11-19 이준희 헤드 마운트 디스플레이용 광학 시스템
CN205281069U (zh) * 2016-01-08 2016-06-01 京东方科技集团股份有限公司 一种显示装置
CN106019605A (zh) * 2016-08-04 2016-10-12 京东方科技集团股份有限公司 近眼显示装置和方法
CN106444060A (zh) * 2016-10-31 2017-02-22 京东方科技集团股份有限公司 一种显示装置及其显示方法
CN206115088U (zh) * 2016-10-31 2017-04-19 京东方科技集团股份有限公司 一种显示装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7245430B2 (en) * 2003-04-21 2007-07-17 Ricoh Company, Ltd. Method and apparatus for displaying three-dimensional stereo image using light deflector

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015162098A1 (en) * 2014-04-24 2015-10-29 Carl Zeiss Meditec, Inc. Functional vision testing using light field displays
WO2015174794A1 (ko) * 2014-05-15 2015-11-19 이준희 헤드 마운트 디스플레이용 광학 시스템
CN205281069U (zh) * 2016-01-08 2016-06-01 京东方科技集团股份有限公司 一种显示装置
CN106019605A (zh) * 2016-08-04 2016-10-12 京东方科技集团股份有限公司 近眼显示装置和方法
CN106444060A (zh) * 2016-10-31 2017-02-22 京东方科技集团股份有限公司 一种显示装置及其显示方法
CN206115088U (zh) * 2016-10-31 2017-04-19 京东方科技集团股份有限公司 一种显示装置

Also Published As

Publication number Publication date
CN106444060A (zh) 2017-02-22
US10606111B2 (en) 2020-03-31
CN106444060B (zh) 2019-01-22
US20190339552A1 (en) 2019-11-07

Similar Documents

Publication Publication Date Title
WO2018076878A1 (zh) 一种显示装置及其显示方法以及近眼式显示装置及其显示方法
US7333158B2 (en) Three-dimensional display system and method thereof
JP5581307B2 (ja) 画像表示装置
US9190019B2 (en) Image display apparatus
US9500874B2 (en) Liquid crystal optical element and image display apparatus including the same
JP6176546B2 (ja) 画像表示装置
US9030643B2 (en) Liquid crystal optical element and image display apparatus including the same
US9389430B2 (en) Light deflection element and image display apparatus using the same
US9405125B2 (en) Image display apparatus
WO2018040667A1 (zh) 显示装置
JP2013137454A5 (zh)
JP2019049704A (ja) 光学素子及び表示装置
US9599828B2 (en) Image display apparatus
JP5942150B2 (ja) 画像表示装置
TW201344244A (zh) 裸眼三維背投影顯示裝置
JP5591783B2 (ja) 画像表示装置
KR20190079175A (ko) 공간 영상 투영 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17864507

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17864507

Country of ref document: EP

Kind code of ref document: A1