WO2018076387A1 - 一种定向录音方法及电子设备 - Google Patents

一种定向录音方法及电子设备 Download PDF

Info

Publication number
WO2018076387A1
WO2018076387A1 PCT/CN2016/104160 CN2016104160W WO2018076387A1 WO 2018076387 A1 WO2018076387 A1 WO 2018076387A1 CN 2016104160 W CN2016104160 W CN 2016104160W WO 2018076387 A1 WO2018076387 A1 WO 2018076387A1
Authority
WO
WIPO (PCT)
Prior art keywords
microphone
angle
sound source
electronic device
range
Prior art date
Application number
PCT/CN2016/104160
Other languages
English (en)
French (fr)
Inventor
仇存收
陶凯
韩博
李硕
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2016/104160 priority Critical patent/WO2018076387A1/zh
Priority to CN201680080704.1A priority patent/CN108604453B/zh
Publication of WO2018076387A1 publication Critical patent/WO2018076387A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0272Voice signal separating
    • G10L21/028Voice signal separating using properties of sound source
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones

Definitions

  • the present invention relates to the field of audio and video processing, and in particular, to a directional recording method and an electronic device.
  • the microphone pickup sound range does not coincide with the range of the terminal device screen recording.
  • the microphone recording audio is omnidirectional, that is, the sound of each range can be picked up, and the recording range of the terminal device camera is limited in the horizontal direction and the pitch direction.
  • the user pays more attention to the sound in the recorded video screen, and it is desirable to effectively suppress the sound outside the screen or the ambient noise.
  • a directional microphone is disposed on each of the two camera sides of the terminal device, and a microphone disposed on one side of the front camera is used to pick up the sound on the side of the front camera, and a microphone disposed on the side of the rear camera is used for picking up.
  • the actual pickup range ie, the front side of the terminal camera
  • the video recording range resulting in an unsatisfactory match between the audio and video recording range, which means that the actual recording range is much larger than the desired recording. Range, it is difficult to achieve accurate directional recording.
  • Embodiments of the present invention provide a directional recording method and an electronic device capable of accurately positioning a three-dimensional spatial orientation of a sound source when recording using an electronic device, so as to pick up a sound signal in a desired recording range, thereby greatly improving the sound signal. Recording with expectation The degree of matching of the range enables more accurate directional recording.
  • a directed recording method comprising:
  • the electronic device determines a preset recording range, which is a recording range desired by the user, including a horizontal angle range and a pitch angle range. Secondly, after the recording is started, the electronic device can acquire the sound signal to further determine the orientation information of the sound source of the sound signal.
  • the position information determined here includes the horizontal angle of the sound source and the pitch angle of the sound source. Therefore, the electronic device can determine whether the sound source is within the preset recording range according to the orientation information of the sound source, and if the sound source is not within the preset recording range, the sound signal is eliminated; if the sound source is within the preset recording range, the storage is performed. Sound signal.
  • the directional recording method provided by the embodiment of the invention first determines the horizontal angle range and the pitch angle range of the preset recording range, and further determines the spatial orientation of the sound source (the horizontal angle and the elevation angle of the sound source), thereby Determine whether the horizontal and elevation angles of the sound source are within the preset recording range.
  • the sound signal of the sound source that is not in the preset recording range can be eliminated, and the sound signal of the sound source that remains in the preset recording range is reversed.
  • the prior art can only suppress the sound on the side of the camera, and the actual preset recording range is far greater than the preset recording range desired by the user, and the effect of the directional recording is not ideal. It can be seen that the method provided by the embodiment of the present invention can accurately obtain the sound signal in the preset recording range, and achieve the effect of more accurate directional recording.
  • the determining, by the electronic device, whether the sound source is within the preset recording range according to the orientation information of the sound source comprises: determining, by the electronic device, whether the horizontal angle of the sound source is Whether the pitch angle of the sound source is within the pitch angle range within the horizontal angle range. If the horizontal angle is within the horizontal angle range and the pitch angle is within the pitch angle range, it is determined that the sound source is within the preset recording range. When one of the horizontal angle and the elevation angle of the sound source is not in the preset recording range, it is determined that the sound source is not within the preset recording range.
  • the electronic device includes a microphone array, where the microphone array includes a first microphone, a second microphone, and a third Microphone and fourth microphone and A microphone, a second microphone, a third microphone, and a fourth microphone are not in the same plane.
  • the first microphone is located on the first surface of the electronic device
  • the second microphone is located on the second surface of the electronic device
  • the third microphone and the fourth microphone are located on the third surface of the electronic device
  • the first surface is disposed in parallel with the second surface
  • the three surfaces are perpendicular to the first surface
  • the third surface is perpendicular to the second surface.
  • the collecting, by the electronic device, the sound signal specifically includes: acquiring, by the electronic device, the sound information collected by the microphone array.
  • the four microphones included in the microphone array respectively provide array apertures in three dimensions of space (ie, the direction of the first coordinate axis, the direction of the second coordinate axis, and the direction of the third coordinate axis).
  • the so-called array aperture is the connection between any pair of microphones.
  • the angle between the sound source and the pair of microphones can be determined. Since the microphone array provides the array aperture in three dimensions of space, the angle between the sound source and the three dimensions of the space can be determined, and the three angles can determine the spatial orientation of the sound source.
  • the line where the first microphone and the second microphone are located is perpendicular to a line where the third microphone and the fourth microphone are located .
  • the electronic device determines a first angle between the arrival direction of the sound source and the first coordinate axis of the three-dimensional coordinate system, a second angle between the arrival direction and the second coordinate axis of the three-dimensional coordinate system; the third coordinate of the arrival direction and the three-dimensional coordinate system The third angle of the shaft; the electronic device determines the orientation information of the sound source according to the first angle, the second angle, and the third angle.
  • the first coordinate axis is a straight line where the third microphone and the fourth microphone are located, the second coordinate axis intersects the first coordinate axis and is parallel to the line where the first microphone and the second microphone are located, and the third coordinate axis passes through the first coordinate axis. An intersection with the second coordinate axis and perpendicular to a plane formed by the first coordinate axis and the second coordinate axis.
  • a spatial three-dimensional coordinate system may be determined according to the layout of the microphone array, thereby determining a horizontal angle and a pitch angle of the sound source relative to the three-dimensional coordinate system of the space, and similarly, a horizontal angular range of the preset recording range, and pitching
  • the angular range is also the angular range relative to the three-dimensional coordinate system, so that the horizontal angle of the sound source can be preset.
  • the horizontal angle range of the recording range is compared, and the pitch angle of the sound source is compared with the pitch angle range of the preset recording range.
  • the electronic device determines a first angle of the incident trajectory with the first coordinate axis of the three-dimensional coordinate system, the incident trajectory a second angle of the second coordinate axis of the three-dimensional coordinate system; the third angle between the incident trajectory and the third coordinate axis of the three-dimensional coordinate system specifically includes: determining a first delay difference between the sound source reaching the first microphone and the second microphone And determining, according to the first delay difference, an angle between the straight line of the first microphone and the second microphone and the direction of arrival, determining an angle between the line of the first microphone and the second microphone and the direction of arrival as two angles; determining that the sound source arrives a second delay difference between the third microphone and the fourth microphone, determining an angle between the straight line of the third microphone and the fourth microphone and the direction of arrival according to the second delay difference, and the straight line and the direction of arrival of the third microphone and the fourth microphone The angle is determined as a first angle; determining a third delay difference between
  • the angle between the direction in which the sound source reaches the pair of microphone arrays and the line connecting the microphone array is unique. Therefore, according to the delay difference of the sound source reaching the microphone pair, the direction of arrival of the sound source can be determined to be connected with the microphone. The angle of the line.
  • the angle between the arrival direction of the sound source and the connection line of the microphone is determined, and then the direction of arrival of the sound source can be determined.
  • the angle between each coordinate axis of the three-dimensional coordinate system locates the horizontal angle of the sound source relative to the three-dimensional coordinate system, and the elevation angle.
  • determining the orientation of the sound source according to the first angle, the second angle, and the third angle The information specifically includes: when the electronic device is used for horizontal screen shooting, determining the first angle as the pitch angle of the sound source, determining the second angle, and the third angle is the horizontal angle of the sound source.
  • the electronic device is used to take a vertical screen, the third angle is determined as the pitch angle of the sound source, and the first angle and the second angle are determined as the horizontal angle of the sound source.
  • the electronic device further includes a camera.
  • the determining, by the electronic device, the preset recording range specifically includes: the electronic device receiving the video recording instruction; the video recording instruction carrying the information of the camera recording the video; and the camera operating the electronic device running information indication Shooting, the preset recording range is determined according to the shooting range of the camera.
  • the three-dimensional spatial orientation of the sound source is accurately located, and only the sound source in the recorded image is picked up, thereby greatly improving the matching degree between the audio recording range and the video recording range.
  • the camera is a first camera and/or a second camera
  • the first camera is located at the first surface
  • the second camera is The second microphone and the second microphone generate a first beam and a second beam.
  • the first beam is formed on a side of the first surface
  • the second beam is formed on a side of the second surface. If the camera indicated by the information is the first camera, the first beam is generated according to the second beam, and the first canceling beam is generated, and the sound signal is cancelled according to the first canceling beam; if the camera indicated by the information is the second camera, according to the first beam Learning the second beam to generate a second cancellation beam; and canceling the sound signal according to the second cancellation beam.
  • the electronic device implements an adaptive canceller by using an algorithm.
  • the beam on the side of the rear camera is used as the input of the main channel, and the learning step is adjusted to make the beam learning on the front camera side.
  • the beam on the side of the rear camera can be eliminated by canceling the two beams.
  • the beam on the side of the front camera is used as the input of the main channel, and the learning step is adjusted so that the beam on the side of the rear camera learns the beam on the side of the front camera, and then the two beams.
  • the cancellation can eliminate the sound signal.
  • an electronic device comprising:
  • the processor determines a preset recording range; the preset recording range includes a horizontal angle range and a pitch angle range; the processor is further configured to: acquire a sound signal, determine a position information of the sound source of the sound signal, and according to the position information of the sound source and the pre- Set the recording range to determine whether the sound source is within the preset recording range; the orientation information includes the horizontal angle of the sound source and the pitch angle of the sound source; the processor is also used to eliminate the sound signal if the sound source is not within the preset recording range No. If the sound source is within the preset recording range, the sound signal is stored.
  • the directional recording method provided by the embodiment of the invention first determines the horizontal angle range and the pitch angle range of the preset recording range, and further determines the spatial orientation of the sound source (the horizontal angle and the elevation angle of the sound source), thereby Determine whether the horizontal and elevation angles of the sound source are within the preset recording range.
  • the sound signal of the sound source that is not in the preset recording range can be eliminated, and the sound signal of the sound source that remains in the preset recording range is reversed.
  • the prior art can only suppress the sound on the side of the camera, and the actual preset recording range is far greater than the preset recording range desired by the user, and the effect of the directional recording is not ideal. It can be seen that the method provided by the embodiment of the present invention can accurately obtain the sound signal in the preset recording range, and achieve the effect of more accurate directional recording.
  • the processor is specifically configured to determine whether the horizontal angle is within a horizontal angle range, and whether the elevation angle is within a pitch angle range; if the horizontal angle is at a horizontal level Within the angle range and the pitch angle is within the pitch angle range, it is determined that the sound source is within the preset recording range; if the horizontal angle is not within the horizontal angle range and/or the pitch angle is not within the pitch angle range, it is determined that the sound source is not in the preset recording range.
  • the electronic device includes a microphone array, where the microphone array includes a first microphone, a second microphone, and a third The microphone and the fourth microphone and the first microphone, the second microphone, the third microphone, and the fourth microphone are not in the same plane.
  • the first microphone is located on the first surface of the electronic device
  • the second microphone is located on the second surface of the electronic device
  • the third microphone and the fourth microphone are located on the third surface of the electronic device
  • the first surface is disposed in parallel with the second surface,
  • the three surfaces are perpendicular to the first surface and perpendicular to the second surface.
  • the microphone array is specifically configured to collect sound signals; the processor is specifically configured to acquire signals collected by the microphone array.
  • the third microphone and the fourth microphone are located in a line perpendicular to a line where the first microphone and the second microphone are located.
  • the processor is specifically configured to determine a first angle between the arrival direction of the sound source and the first coordinate axis of the three-dimensional coordinate system, and a second coordinate of the arrival direction and the three-dimensional coordinate system a second angle of the axis; a third angle of the arrival direction and the third coordinate axis of the three-dimensional coordinate system; determining the orientation information of the sound source according to the first angle, the second angle, and the third angle.
  • the first coordinate axis is a straight line where the third microphone and the fourth microphone are located, the second coordinate axis intersects the first coordinate axis and is parallel to a line where the first microphone and the second microphone are located, and the third coordinate axis passes through the first coordinate axis.
  • the processor is specifically configured to determine a first delay difference between the sound source reaching the first microphone and the second microphone And determining, according to the first delay difference, an angle between the straight line of the first microphone and the second microphone and the direction of arrival, determining an angle between the line of the first microphone and the second microphone and the direction of arrival as two angles; determining that the sound source arrives a second delay difference between the third microphone and the fourth microphone, determining an angle between the straight line of the third microphone and the fourth microphone and the direction of arrival according to the second delay difference, and the straight line and the direction of arrival of the third microphone and the fourth microphone The angle is determined as a first angle; determining a third delay difference between the sound source reaching the third microphone and the second microphone, and determining an angle between the straight line of the third microphone and the second microphone and the direction of arrival according to the third delay difference The angle between the straight line of the third microphone and the second microphone and the direction of arrival is determined to be three angles.
  • the processor is specifically configured to determine a first angle as a pitch angle of the sound source, and determine a second angle
  • the third angle is the horizontal angle of the sound source; or, the third angle is determined as the pitch angle of the sound source, and the first angle and the second angle are determined as the horizontal angle of the sound source.
  • the method further includes: an input component, the input component is configured to receive a video recording instruction; and the video recording instruction carries The information of the camera that records the video; the processor is also used to shoot the camera indicated by the running information, and determine the preset recording range according to the shooting range of the camera.
  • the camera is a first camera and/or a second camera, the first camera is located on the first surface, and the second camera is Located on the second surface; the first microphone and the second microphone The wind generates a first beam and a second beam, the first beam is formed on one side of the first surface, and the second beam is formed on a side of the second surface.
  • the processor is specifically configured to: if the camera indicated by the information is the first camera, according to The second beam learning first beam generates a first cancellation beam, and the sound signal is cancelled according to the first cancellation beam; if the camera indicated by the information is the second camera, the second cancellation beam is generated according to the first beam learning second beam; Offset the beam cancellation sound signal.
  • FIG. 1 is a schematic diagram of a spherical coordinate system according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a microphone pickup range and a camera recording range according to an embodiment of the present invention
  • 3 is an angular range of a microphone pickup and an angular range of a camera recording range according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of an electronic device according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a three-dimensional coordinate system according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a far field model according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of an angle between an arrival direction of a sound source and a coordinate axis according to an embodiment of the present invention.
  • FIG. 8 is another schematic diagram of an angle between an arrival direction of a sound source and a coordinate axis according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a shooting position of an electronic device according to an embodiment of the present invention.
  • FIG. 10 is another schematic diagram of an electronic device according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram of forming a beam of an electronic device according to an embodiment of the present disclosure.
  • FIG. 12 is another schematic diagram of an electronic device according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic flowchart diagram of a method for directed recording according to an embodiment of the present invention.
  • FIG. 14 is a specific example diagram of a directional recording method according to an embodiment of the present invention.
  • FIG. 15 is a schematic diagram of noise cancellation according to an embodiment of the present invention.
  • the horizontal angle and the elevation angle are angle information for explaining the orientation in the spherical coordinate system.
  • the spherical coordinates are a kind of three-dimensional coordinate system for determining the position of points, lines, faces and bodies in three-dimensional space.
  • the reference point is the reference point of the coordinate origin, which is composed of a horizontal angle, a pitch angle and a distance.
  • the space point P, M is the projection of the point P on the xoy plane. Available for a point P in space (r, ⁇ , )to make sure. Where r is the distance between the origin O and the point P, and ⁇ is the angle between the directed line segment OP and the positive direction of the z-axis. For the positive direction from the x-axis, counterclockwise (counterclockwise from the positive z-axis) to the angle that the OM has turned. The range is from 0° to 360°, and the range of ⁇ is from 0° to 180°.
  • the spherical coordinates called point P obviously, here r, ⁇ , The range of variation is r ⁇ [0,+ ⁇ ), ⁇ [0,2 ⁇ ],
  • the range of sound recorded by the microphone does not match the range recorded on the camera screen.
  • the range in which the microphone picks up the sound is omnidirectional and can be approximated as a sphere.
  • the horizontal angle of the camera shooting range is limited, and the pitch angle is also limited. It can be seen that the pickup range of the microphone is much larger than the screen recording range.
  • a pair of directional microphones are disposed on the device, and a directional microphone disposed on one side of the front camera is used to pick up a sound signal on the side of the front camera, and a directional microphone disposed on one side of the rear camera is used for picking up Set the sound signal on the side of the camera.
  • this solution can only suppress the sound on the back side of the camera. For example, referring to FIG. 3, when the user uses the device's rear camera to shoot, the screen is recorded.
  • the circumference can be 60°, the horizontal angle is -30° to +30°, the pitch angle is 30° to 40°, and the pitch angle is ⁇ 15° to ⁇ 20°, such as: -15 ° ⁇ +20 °, the device suppresses the sound on the back side of the front camera, so the horizontal angle of the pickup range is approximately horizontal range 0 ° ⁇ 180 °, pitch angle range 0 ⁇ 180 °.
  • the pickup range is much larger than the range of the recorded picture, so the matching effect between the picture and the audio is not ideal.
  • the principle of the invention lies in: locating the spatial orientation information of the sound source, including the horizontal angle of the sound source and the pitch angle of the sound source. Furthermore, it can be determined whether the sound source is within the horizontal angle range of the preset recording range and the pitch angle range according to the horizontal angle and the elevation angle of the sound source. In turn, it can be determined whether the sound source is within the preset recording range.
  • the two microphones at the bottom end form one microphone pair
  • the two microphones on the front and rear surfaces constitute one microphone pair
  • one microphone distributed under the bottom end and one microphone on the front surface constitute a microphone
  • the delay difference of the) accurately locates the three-dimensional spatial orientation of the sound source.
  • the electronic device includes a microphone array including a first microphone 1, a second microphone 2, a third microphone 3, and a fourth microphone 4.
  • the first microphone 1 is disposed on the first surface 5 of the electronic device;
  • the second microphone 2 is disposed on the second surface 6 of the electronic device;
  • the third microphone 3 and the fourth microphone 4 are disposed on the third surface of the electronic device. 7.
  • the first surface 5 is a rear surface of the electronic device, and may be a side on which the rear camera is disposed;
  • the second surface 6 is a front surface of the electronic device, and may be a side on which the front camera is disposed.
  • first surface 5 is parallel to the second surface 6
  • third surface 7 is perpendicular to both the first surface 5 and the second surface 6
  • first microphone 1 and the second microphone The line where 2 is located is perpendicular to the line where the third microphone 3 and the fourth microphone 4 are located.
  • the straight line where the first microphone 1 and the second microphone 2 are located, the straight line where the third microphone 3 and the fourth microphone 4 are located can form a three-dimensional space coordinate system, as shown in FIG. 5, the first coordinate of the three-dimensional coordinate system.
  • a shaft (Z axis) is a line where the third microphone 3 and the fourth microphone 4 are located, a second coordinate axis (X axis) intersects the first coordinate axis and the first microphone and the second a microphone is parallel to a straight line, and a third coordinate axis (Y axis) passes through an intersection of the first coordinate axis and the second coordinate axis, and is perpendicular to a plane formed by the first coordinate axis and the second coordinate axis .
  • the distance from the sound source to the microphone array is far, and the sound wave can be considered as the plane wave model shown in FIG. 6.
  • the electronic device can estimate the general orientation of the sound source according to the GCC (Generalized Cross Correlation) algorithm, that is, determine the sound source arrival direction according to the delay difference between the sound source and the pair of microphone pairs (it can be considered as the trajectory of the sound signal to the microphone pair) ) to the angle of the microphone pair connection, as shown in Figure 6, the angle 1, the angle 2 and so on.
  • GCC Generalized Cross Correlation
  • the GCC algorithm can also be used to determine the angle between the direction of arrival of the sound source and the connection line of each microphone array, thereby determining the spatial orientation of the sound source.
  • the sound source arrival direction and the microphones 3 and 4 can be determined according to the delay difference between the sound source reaching the microphone 3 and the microphone 4.
  • the angle between the lines that is, the angle ⁇ 3 between the direction of arrival of the sound source and the Z axis, but this is only the pitch angle of the sound source, and the horizontal angle of the sound source needs to be further determined.
  • the electronic device can determine the angle between the direction of arrival of the sound source and the line connecting the microphones 1 and 2 according to the time difference between the sound source reaching the microphone 1 and the microphone 2, that is, the angle between the arrival direction of the sound source and the X axis, ⁇ 1 .
  • the angle ⁇ 2 between the direction of arrival of the sound source and the line connecting the microphones 1 and 3 can be determined, and the angle of the angle is converted into the direction of arrival of the sound source and the Y axis.
  • the angle ⁇ 4 using ⁇ 1 , ⁇ 4 as the horizontal angle of the sound source, combined with the pitch angle ⁇ 3 of the sound source, can determine the exact orientation of the sound source.
  • the angle between the line of each of the two microphones and each axis of the coordinate axis shown in FIG. 5 is determined.
  • the line Y ⁇ is parallel to the Y axis, assuming that the angle between the connection of the microphone 1 and the microphone 3 and Y ⁇ is ⁇ (ie, the angle between the microphone 1, the connection of the microphone 3 and the Y axis), according to the sound source to the microphone. 1.
  • the delay difference of the microphone 3 determines the angle ⁇ 2 between the direction of arrival of the sound source and the line connecting the microphone 1 and the microphone 3.
  • the angle between the sound source and the microphones 1 and 3 can be determined according to the delay difference between the sound source reaching the microphone 1 and the microphone 3, and then The angle is converted into the angle between the sound source and the Y-axis, and this angle is used as the pitch angle of the sound source.
  • the angle between the sound source and the Z-axis is determined, and the sound source and the X-axis are determined according to the delay difference between the sound source reaching the microphone 3 and the microphone 4.
  • Angle, according to these three angles can determine the orientation of the sound source.
  • the electronic device may further include a camera. Referring to FIG. 10, the first camera 8 is disposed on the first surface 5, and the second camera 9 is disposed on the second surface 6.
  • the first microphone 1 and the second microphone 2 together form a first beam and a second beam.
  • the first beam is formed on one side of the first surface 5, and the second beam is formed on the side of the second surface 6.
  • An embodiment of the present invention provides an electronic device, as shown in FIG. 12, including at least a processor, a memory, a camera group (including the first camera 8 and the second camera 9), a microphone array (including the microphones 1 to 4), and Enter the component.
  • the distribution of each camera and each microphone can be as shown in FIG. 7 and will not be described here.
  • the input components can be buttons, touch panels, and the like.
  • the processor first determines a preset recording range. Specifically, the electronic device receives a video recording instruction, where the instruction carries the information of the camera that records the video, and further the electronic device runs the camera indicated by the information to perform shooting, according to the The shooting range of the camera determines the preset recording range.
  • the preset recording range can be a horizontal angle range and a pitch angle range.
  • the processor of the electronic device collects the sound signal by using the microphone array (the above microphones 1 to 4), and the processor can determine the angle between the arrival direction of the sound source and the connection of the microphone array according to the delay difference of the sound source to the microphone array, and then The orientation information of the sound source of the sound signal is determined.
  • the orientation information includes a horizontal angle of the sound source arrival direction in the space coordinate system and a pitch angle.
  • the processor may determine, according to the orientation information of the sound source, whether the sound source is in the Within the preset recording range. Specifically, it is determined whether the horizontal angle of the sound source is within a horizontal angle range of the preset recording range, and whether the pitch angle of the sound source is within a pitch angle range of the preset recording range.
  • the horizontal angle of the sound source is within a horizontal angle range of the preset recording range and the pitch angle of the sound source is within a pitch angle range of the preset recording range, it is determined that the sound source is within the preset recording range; If the horizontal angle of the source is not within the horizontal angle range of the preset recording range and/or the pitch angle of the sound source is not within the pitch angle range of the preset recording range, it is determined that the sound source is not within the preset recording range.
  • An embodiment of the present invention provides a directional recording method. As shown in FIG. 13, the method includes the following steps:
  • the electronic device determines a preset recording range; the preset recording range includes a horizontal angle range and a pitch angle range.
  • the electronic device receives a video recording instruction, and the video recording instruction carries information of a camera that records the video.
  • the electronic device runs the camera indicated by the information to perform shooting, and determines the preset recording range according to the shooting range of the camera.
  • the horizontal angle range here is the horizontal angle range in the spatial three-dimensional coordinate system; the pitch angle range here is also the pitch angle range in the space three-dimensional coordinate system.
  • the spatial three-dimensional coordinate system is the three-dimensional space coordinate system shown in FIG.
  • the electronic device acquires a sound signal collected by the microphone array.
  • a microphone pair can generate a beam that captures a range of sound signals.
  • the microphone array here is the microphones 1 to 4 in FIG. 4, and the distribution in the electronic device can be as shown in FIG. 4, but is not limited only to the distribution position shown in FIG. 4, and the “four microphones are not in the same plane” is satisfied. Under this precondition, the four microphones can also be distributed in other forms, and no limitation is imposed here.
  • the electronic device determines orientation information of a sound source of the sound signal; the orientation information includes a horizontal angle of the sound source and a pitch angle of the sound source.
  • the horizontal angle and the elevation angle of the sound source are also the angles with respect to the spatial three-dimensional coordinate system, and the spatial three-dimensional coordinates of the horizontal angle range and the pitch angle range are measured in step 101.
  • the system is the same, and both can be the three-dimensional coordinate system shown in FIG.
  • the angle between the arrival direction of the sound source and the straight line of the pair of microphones may be determined according to the delay difference between the sound source and the pair of microphones in the microphone array. Referring to FIG. 4, since the microphones 1, 2 and the microphones 3, 4 are not in the same plane, the angle between the direction of arrival of the sound source and the line of the microphone pair can be determined, and then converted into the space coordinate system shown in FIG. Horizontal and pitch angles.
  • the electronic device determines, according to the orientation information of the sound source, whether the sound source is within the preset recording range.
  • the horizontal angle of the sound source is within the horizontal angle range and the pitch angle of the sound source is within the pitch angle range, it is determined that the sound source is within the preset recording range.
  • step 105 is performed; if the sound source is within the preset recording range, step 106 is performed;
  • the camera indicated by the information is the first camera, generating the first cancellation beam according to the second beam learning the first beam, and canceling the sound signal according to the first cancellation beam;
  • the instructed camera is the second camera, and the second beam is generated according to the first beam, and the second canceling beam is generated; and the sound signal is cancelled according to the second canceling beam.
  • the sound signal and the image signal can be combined into a video file, and the audio and video are matched to a higher degree.
  • the electronic device is used to take a horizontal screen and is photographed using a rear camera.
  • the screen recording range ie, the preset recording range
  • the electronic device determines a delay difference of the sound source to the microphones 3, 4. According to the delay difference, it is determined that the angle of arrival of the sound source P with the Z axis is 40, that is, the pitch angle of the sound source. Determining the delay difference of the sound source to the microphones 1, 2, according to the time The delay determines that the angle of arrival of the sound source P with the X-axis is 120°.
  • the angle between the arrival direction of the sound source P and the Y-axis is determined to be 60 according to the delay difference.
  • ° that is, the horizontal angle of the sound source is: the angle with the X axis is 120 °, and the angle with the Y axis is 60 °. Since the pitch angle 40° is not within the pitch angle range of -15° to +20°, the sound source is outside the preset recording range. Then, the electronic device learns the forward beam (ie, the first beam shown in FIG. 11) according to the backward beam (ie, the second beam shown in FIG. 11), and then cancels the forward and backward beams, thereby eliminating the backward beam. Sound signal.
  • the electronic device implements the adaptive canceller shown in FIG. 15 by an algorithm, where T s is a delay, different delays correspond to different ⁇ , and the weight of the learning step u to ⁇ 0 ⁇ N is adjusted. The value is adjusted. Further, taking the rear camera wave shooting as an example, the noise cancellation process provided by the embodiment of the present invention is explained: the output of the forward beam x f (t) is used as the main channel input of the adaptive canceler, and the backward beam is used. The output x b (t) is used as the noise reference input for the adaptive canceller.
  • the learning step size u is used to adjust the weight of the filter ⁇ , and the backward beam x b (t) can be controlled to learn the forward beam x f (t) when the residual of the output
  • the energy ie, the difference between x b (t) and x f (t)
  • the algorithm reaches the convergence state.
  • the filtering of the noise signal is realized in ⁇ (t).
  • the output of the backward beam is used as the main channel input of the adaptive canceler, and the output of the forward beam is used as the adaptive offset. Noise reference input.
  • the forward beam learns the backward beam and cancels the phase, eliminating the sound signal of the sound source.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Computational Linguistics (AREA)
  • Quality & Reliability (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Obtaining Desirable Characteristics In Audible-Bandwidth Transducers (AREA)

Abstract

一种定向录音方法及电子设备,涉及音视频处理领域,能够精确定位声源的三维空间方位,以便对期望的录音范围内的声音信号进行拾取,大大提高了声音信号与期望录音范围的匹配程度,实现更准确的定向录音。方法包括:电子设备确定预设录音范围;预设录音范围包括水平角度范围以及俯仰角度范围(101);电子设备获取麦克风阵列收集到的声音信号(102);电子设备确定声音信号的声源的方位信息;方位信息包括声源的水平角度与声源的俯仰角(103);电子设备根据声源的方位信息判断声源是否在预设录音范围内(104);若声源不在预设录音范围内,则消除声音信号(105);若声源在预设录音范围内,则存储声音信号(106)。

Description

一种定向录音方法及电子设备 技术领域
本发明涉及音视频处理领域,尤其涉及一种定向录音方法及电子设备。
背景技术
在使用便携式移动终端设备进行录像过程时,麦克风拾取声音范围和终端设备屏幕录制的范围不一致。其中,麦克风录制音频是全向的,即可以拾取各个范围的声音,而终端设备摄像头的录制范围在水平方向、俯仰方向均有限制。
但在许多情况下,用户更关注所录制视频画面内的声音,希望对画面外的声音或者环境噪声能够进行有效抑制。示例的:用户使用前置摄像头自拍时,希望能有效抑制画面以外的干扰音源,凸显自己的声音。
目前,终端设备的两个摄像头一侧各设置一个指向性麦克风,设置于前置摄像头一侧的麦克风用于拾取前置摄像头一侧的声音,设置于后置摄像头一侧的麦克风用于拾取后置摄像头一侧的声音。在使用前置摄像头(或后置摄像头)进行录音时,可以使得收集到摄像头一侧的声音尽可能多于摄像头背侧的声音。如此,可以对摄像头方向的背侧区域的声音进行抑制,使得终端的预设录音范围尽可能与视频录制范围匹配。但在实际使用过程中,实际的拾音范围(即终端摄像头前侧区域)依然远大于视频录制范围,导致音视频录制范围匹配程度不够理想,也就是说实际的录音范围远远大于期望的录音范围,难以实现精准的定向录音。
发明内容
本发明的实施例提供一种定向录音方法及电子设备,在使用电子设备录音时,能够精确定位声源的三维空间方位,以便对期望的录音范围内的声音信号进行拾取,大大提高了声音信号与期望录音 范围的匹配程度,实现更准确的定向录音。
为达到上述目的,本发明的实施例采用如下技术方案:
第一方面,公开了一种定向录音方法,方法包括:
电子设备确定预设录音范围,该预设录音范围是用户期望的录音范围,包括水平角度范围以及俯仰角度范围。其次,开始录音后,电子设备可以获取声音信号,进一步确定该声音信号的声源的方位信息,这里确定的方位信息包括声源的水平角与声源的俯仰角。从而电子设备就可以根据声源的方位信息判断声源是否在预设录音范围内,若是声源不在预设录音范围内,则消除该声音信号;若是声源在预设录音范围内,则存储声音信号。
本发明实施例提供的定向录音方法,首先确定预设录音范围的包括的水平角度范围以及俯仰角度范围,进一步还可以确定出声源的空间方位(声源的水平角,俯仰角),从而可以判断声源的水平角、俯仰角是否在预设录音范围内。可以将不在预设录音范围内的声源的声音信号消除,相反,保留在预设录音范围内的声源的声音信号。相比之下,现有技术仅仅可以对摄像头一侧的声音进行抑制,实际的预设录音范围远远大于用户期望的预设录音范围,定向录音的效果并不理想。可见,本发明实施例提供的方法可以准确获取预设录音范围内的声音信号,达到更准确的定向录音的效果。
结合第一方面,在第一方面的第一种可能的实现方式中,电子设备根据声源的方位信息判断声源是否在预设录音范围内具体包括:电子设备同时判断声源的水平角是否在水平角度范围内,声源的俯仰角是否在俯仰角度范围内。若水平角在水平角度范围内且俯仰角在俯仰角度范围内,则确定声源在预设录音范围内。当声源的水平角、俯仰角二者之一不在预设录音范围则确定声源不在预设录音范围内。
结合第一方面或第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,电子设备包括麦克风阵列,麦克风阵列包括第一麦克风、第二麦克风、第三麦克风和第四麦克风且第 一麦克风、第二麦克风、第三麦克风和第四麦克风不在同一平面内。其中,第一麦克风位于电子设备的第一表面,第二麦克风位于电子设备的第二表面,第三麦克风与第四麦克风位于电子设备的第三表面,第一表面与第二表面平行设置,第三表面与第一表面垂直,且第三表面与、第二表面均垂直。电子设备收集声音信号具体包括:电子设备获取麦克风阵列所收集到的声音信息。
这里,麦克风阵列包括的四个麦克风分别在空间三个维度(即第一坐标轴的方向、第二坐标轴的方向、第三坐标轴的方向)提供阵列孔径。所谓阵列孔径即任意一对麦克风之间的连线。通常,根据声源到达一对麦克风的时延差,可以确定出声源与这一对麦克风连线的夹角。由于,麦克风阵列在空间三个维度提供阵列孔径,因此可以确定出声源与空间三个维度的夹角,这三个夹角可以确定声源的空间方位。
结合第一方面的第二种可能的实现方式,在第一方面的第三种可能的实现方式中,进一步地,第一麦克风与第二麦克风所在直线垂直于第三麦克风与第四麦克风所在直线。则,电子设备确定声音信号的声源的方位信息具体包括:
电子设备确定声源的到达方向与三维坐标系的第一坐标轴的第一夹角,到达方向与三维坐标系的第二坐标轴的第二夹角;到达方向与三维坐标系的第三坐标轴的第三夹角;电子设备根据第一夹角、第二夹角、第三夹角确定声源的方位信息。这里的第一坐标轴为第三麦克风和第四麦克风所在直线,第二坐标轴与第一坐标轴相交且与第一麦克风与第二麦克风所在直线平行,第三坐标轴穿过第一坐标轴与第二坐标轴的交点,且与第一坐标轴与第二坐标轴构成的平面垂直。
具体实现中,可以根据麦克风阵列的布局确定出一个空间三维坐标系,进而确定出声源相对于该空间三维坐标系的水平角以及俯仰角,同样的,预设录音范围的水平角度范围、俯仰角度范围也是相对于该三维坐标系的角度范围,如此才能将声源的水平角与预设 录音范围的水平角度范围作比较,将声源的俯仰角与预设录音范围的俯仰角度范围作比较。
结合第一方面的第三种可能的实现方式,在第一方面的第四种可能的实现方式中,电子设备确定入射轨迹与三维坐标系的第一坐标轴的第一夹角,入射轨迹与三维坐标系的第二坐标轴的第二夹角;入射轨迹与三维坐标系的第三坐标轴的第三夹角具体包括:确定声源到达第一麦克风与第二麦克风的第一时延差,根据第一时延差确定第一麦克风、第二麦克风所在直线与到达方向的夹角,将第一麦克风、第二麦克风所在直线与到达方向的夹角确定为二夹角;确定声源到达第三麦克风与第四麦克风的第二时延差,根据第二时延差确定第三麦克风、第四麦克风所在直线与到达方向的夹角,将第三麦克风、第四麦克风所在直线与到达方向的夹角确定为第一夹角;确定声源到达第三麦克风与第二麦克风的第三时延差,根据第三时延差确定第三麦克风、第二麦克风所在直线与到达方向的夹角,确定第三麦克风、第二麦克风所在直线与到达方向的夹角为三夹角。
在远场模型中,认为声源到达一对麦克风阵列的方向与麦克风阵列连线的夹角是唯一的,因此根据声源到达麦克风对的时延差可以确定出声源到达方向与麦克风对连线的夹角。同时,由于麦克风对连线与上述三维坐标系的坐标轴的位置关系是已知的,因此,确定了声源到达方向与麦克风对连线的夹角,进而就可以确定出声源到达方向与三维坐标系的每一个坐标轴的夹角,定位出声源相对于该三维坐标系的水平角,以及俯仰角。
结合第一方面的第三或第四种可能的实现方式,在第一方面的第五种可能的实现方式中,根据第一夹角、第二夹角、第三夹角确定声源的方位信息具体包括:当使用电子设备横屏拍摄时,确定第一夹角为声源的俯仰角,确定第二夹角、第三夹角为声源的水平角。当使用电子设备竖屏拍摄时,确定第三夹角为声源的俯仰角,确定第一夹角、第二夹角为声源的水平角。
结合第一方面的第二种可能的实现方式,在第一方面的第六种 可能的实现方式中,电子设备还包括摄像头,则,电子设备确定预设录音范围具体包括:电子设备接收视频录制指令;视频录制指令携带录制视频的摄像头的信息;电子设备运行信息指示的摄像头进行拍摄,根据摄像头的拍摄范围确定预设录音范围。
如此,在使用电子设备录制视频时,精确定位声源的三维空间方位,仅对录制画面内的声源进行拾取,大大提高音频录制范围与视频录制范围的匹配程度。
结合第一方面的第六种可能的实现方式,在第一方面的第七种可能的实现方式中,摄像头为第一摄像头和/或第二摄像头,第一摄像头位于第一表面,第二摄像头位于第二表面;第一麦克风与第二麦克风生成第一波束和第二波束,第一波束形成于第一表面一侧,第二波束形成于第二表面一侧;电子设备消除声音信号具体包括:若信息指示的摄像头为第一摄像头,则根据第二波束学习第一波束生成第一抵消波束,根据第一抵消波束消除声音信号;若信息指示的摄像头为第二摄像头,则根据第一波束学习第二波束生成第二抵消波束;根据第二抵消波束消除声音信号。
具体实现中,电子设备通过算法实现一个自适应抵消器,采用后置摄像头拍摄时,则将后置摄像头一侧的波束作为主通道的输入,调整学习步长使得前置摄像头一侧的波束学习后置摄像头一侧的波束,之后两路波束相抵消就可以消除该声音信号。同样的,采用前置摄像头拍摄时,则将前置摄像头一侧的波束作为主通道的输入,调整学习步长使得后置摄像头一侧的波束学习前置摄像头一侧的波束,之后两路波束相抵消就可以消除该声音信号。
第二方面,公开了一种电子设备,包括:
处理器,确定预设录音范围;预设录音范围包括水平角度范围以及俯仰角度范围;处理器还用于,获取声音信号,确定声音信号的声源的方位信息,根据声源的方位信息以及预设录音范围判断声源是否在预设录音范围内;方位信息包括声源的水平角度与声源的俯仰角;处理器还用于,若声源不在预设录音范围内,则消除声音信 号;若声源在预设录音范围内,则存储声音信号。
本发明实施例提供的定向录音方法,首先确定预设录音范围的包括的水平角度范围以及俯仰角度范围,进一步还可以确定出声源的空间方位(声源的水平角,俯仰角),从而可以判断声源的水平角、俯仰角是否在预设录音范围内。可以将不在预设录音范围内的声源的声音信号消除,相反,保留在预设录音范围内的声源的声音信号。相比之下,现有技术仅仅可以对摄像头一侧的声音进行抑制,实际的预设录音范围远远大于用户期望的预设录音范围,定向录音的效果并不理想。可见,本发明实施例提供的方法可以准确获取预设录音范围内的声音信号,达到更准确的定向录音的效果。
结合第二方面,在第二方面的第一种可能的实现方式中,处理器具体用于,判断水平角是否在水平角度范围内,以及俯仰角是否在俯仰角度范围内;若水平角在水平角度范围内且俯仰角在俯仰角度范围内,则确定声源在预设录音范围内;若水平角不在水平角度范围内和/或俯仰角不在俯仰角度范围内,则确定声源不在预设录音范围内。
结合第二方面或第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,电子设备包括麦克风阵列,麦克风阵列包括第一麦克风、第二麦克风、第三麦克风和第四麦克风且第一麦克风、第二麦克风、第三麦克风和第四麦克风不在同一平面内。其中,第一麦克风位于电子设备的第一表面,第二麦克风位于电子设备的第二表面,第三麦克风与第四麦克风位于电子设备的第三表面,第一表面与第二表面平行设置,第三表面与第一表面垂直,且与第二表面垂直。麦克风阵列具体用于,收集声音信号;处理器具体用于,获取麦克风阵列收集到的信号。
结合第二方面的第二种可能的实现方式,在第二方面的第三种可能的实现方式中,第三麦克风和第四麦克风所在直线与第一麦克风和第二麦克风所在直线垂直。处理器具体用于,确定声源的到达方向与三维坐标系的第一坐标轴的第一夹角,到达方向与三维坐标系的第二坐标 轴的第二夹角;到达方向与三维坐标系的第三坐标轴的第三夹角;根据第一夹角、第二夹角、第三夹角确定声源的方位信息。其中,第一坐标轴为第三麦克风和第四麦克风所在直线,第二坐标轴与第一坐标轴相交且与第一麦克风与第二麦克风所在直线平行,第三坐标轴穿过第一坐标轴与第二坐标轴的交点,且与第一坐标轴与第二坐标轴构成的平面垂直。
结合第二方面的第三种可能的实现方式,在第二方面的第四种可能的实现方式中,处理器具体用于,确定声源到达第一麦克风与第二麦克风的第一时延差,根据第一时延差确定第一麦克风、第二麦克风所在直线与到达方向的夹角,将第一麦克风、第二麦克风所在直线与到达方向的夹角确定为二夹角;确定声源到达第三麦克风与第四麦克风的第二时延差,根据第二时延差确定第三麦克风、第四麦克风所在直线与到达方向的夹角,将第三麦克风、第四麦克风所在直线与到达方向的夹角确定为第一夹角;确定声源到达第三麦克风与第二麦克风的第三时延差,根据第三时延差确定第三麦克风、第二麦克风所在直线与到达方向的夹角,确定第三麦克风、第二麦克风所在直线与到达方向的夹角为三夹角。
结合第二方面的第四种可能的实现方式,在第二方面的第五种可能的实现方式中,处理器具体用于,确定第一夹角为声源的俯仰角,确定第二夹角、第三夹角为声源的水平角;或,确定第三夹角为声源的俯仰角,确定第一夹角、第二夹角为声源的水平角。
结合第二方面的第四或第五种可能的实现方式,在第二方面的第六种可能的实现方式中,还包括:输入组件,输入组件用于,接收视频录制指令;视频录制指令携带录制视频的摄像头的信息;处理器还用于,运行信息指示的摄像头进行拍摄,根据摄像头的拍摄范围确定预设录音范围。
结合第二方面的第六种可能的实现方式,在第二方面的第七种可能的实现方式中,摄像头为第一摄像头和/或第二摄像头,第一摄像头位于第一表面,第二摄像头位于第二表面;第一麦克风与第二麦克 风生成第一波束和第二波束,第一波束形成于第一表面一侧,第二波束形成于第二表面一侧;处理器具体用于,若信息指示的摄像头为第一摄像头,则根据第二波束学习第一波束生成第一抵消波束,根据第一抵消波束消除声音信号;若信息指示的摄像头为第二摄像头,则根据第一波束学习第二波束生成第二抵消波束;根据第二抵消波束消除声音信号。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的球面坐标系的示意图;
图2为本发明实施例提供的麦克风拾音范围及摄像头录制范围的示意图;
图3为本发明实施例提供的麦克风拾音的角度范围及摄像头录制范围的角度范围;
图4为本发明实施例提供的电子设备的示意图;
图5为本发明实施例提供的三维坐标系的示意图;
图6为本发明实施例提供的远场模型示意图;
图7为本发明实施例提供的声源到达方向与坐标轴夹角的示意图;
图8为本发明实施例提供的声源到达方向与坐标轴夹角的另一示意图;
图9为本发明实施例提供的电子设备的拍摄位置示意图;
图10为本发明实施例提供的电子设备的另一示意图;
图11为本发明实施例提供的电子设备的形成波束的示意图;
图12为本发明实施例提供的电子设备的另一示意图;
图13为本发明实施例提供的定向录音的方法的流程示意图;
图14为本发明实施例提供的定向录音方法的具体示例图;
图15为本发明实施例提供的噪音消除的示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为方便理解,以下对本发明涉及水平角和俯仰角做以说明。具体地,水平角、俯仰角是球坐标系中用于说明方位的角度信息。球坐标是三维坐标系的一种,用以确定三维空间中点、线、面以及体的位置,它以坐标原点为参考点,由水平角、俯仰角和距离构成。
参考图1所示的球坐标系,空间一点P,M为点P在xoy面上的投影。对于空间内一点P可用(r,θ,
Figure PCTCN2016104160-appb-000001
)来确定。其中,r为原点O与点P间的距离,θ为有向线段OP与z轴正向的夹角,
Figure PCTCN2016104160-appb-000002
为自x轴正向按逆时针方向(从正z轴来看的逆时针方向)转到OM所转过的角。
Figure PCTCN2016104160-appb-000003
的范围是0°~360°,θ的范围是0°~180°。这里的三个数r,θ,
Figure PCTCN2016104160-appb-000004
叫做点P的球面坐标,显然,这里r,θ,
Figure PCTCN2016104160-appb-000005
的变化范围为r∈[0,+∞),θ∈[0,2π],
Figure PCTCN2016104160-appb-000006
电子设备录制视频时,麦克风录制声音的范围与摄像头画面录制的范围不一致。如图2所示,麦克风拾取声音的范围是全向的,可以近似认为是一个球体。如图2所示,摄像头拍摄范围的水平角度有限、俯仰角度也有限,可见麦克风的拾音范围远远大于画面录制范围。
现有技术在设备设置一对指向性麦克风,设置于前置摄像头一侧的指向性麦克风用于拾取前置摄像头一侧的声音信号,设置于后置摄像头一侧的指向性麦克风用于拾取后置摄像头一侧的声音信号。但是,该方案只能对摄像头背侧的声音进行抑制。示例的,参考图3,当用户使用设备的后置摄像头进行拍摄时,录制画面的范 围可以是水平角开度是60°,示例的水平角-30°~+30°;俯仰角开度是30°~40°,俯仰角度范围为±15°~±20°,如:-15°~+20°,设备对前置摄像头背侧的声音进行抑制,因此拾音范围的水平角近似为水平角度范围0°~180°,俯仰角度范围0~180°。拾音范围远远大于录制画面的范围,因此,画面与音频的匹配效果不是很理想。
本发明原理在于:定位出声源的空间方位信息,包括声源的水平角以及声源的俯仰角。进而可以根据声源的水平角以及俯仰角,判断声源是否在预设录音范围的水平角度范围以及俯仰角度范围内。进而可以确定声源是否在预设录音范围内。
具体地,在电子设备设置四个不在同一平面内的麦克风,其中一个麦克风设置在电子设备的前表面,一个麦克风在电子设备的后表面,另外两个摄像头设置于电子设备的底端(电子设备竖屏放置时)。如此,能够根据声源到达三个麦克风对(底端的两个麦克风构成一个麦克风对,前后表面的两个麦克风构成一个麦克风对,底端靠下分布的一个麦克风和前表面的一个麦克风构成一个麦克风对)的时延差,精确定位声源的三维空间方位,当声源不在画面录制范围,则消除该声源的声音信号,仅对录制画面内的声源进行信号拾取。当使用电子设备录制视频时,可以大大提高音频录制范围与视频录制范围的匹配程度。
实施例1:
本发明实施例提供一种电子设备,如图4所示,该电子设备包括麦克风阵列,该麦克风阵列包括第一麦克风1、第二麦克风2、第三麦克风3以及第四麦克风4。其中,第一麦克风1设置于该电子设备的第一表面5;第二麦克风2设置于该电子设备的第二表面6;第三麦克风3以及第四麦克风4设置于该电子设备的第三表面7。需要说明的是,在图4中,第一表面5为电子设备的后表面,可以是设置后置摄像头的一面;第二表面6是电子设备的前表面,可以是设置前置摄像头的一面。
需要说明的是,第一表面5与第二表面6平行,且第三表面7与第一表面5、第二表面6均垂直。另外,第一麦克风1、第二麦克风 2所在的直线与第三麦克风3、第四麦克风4所在的直线垂直。
可以利用第一麦克风1和第二麦克风2所在的直线、第三麦克风3和第四麦克风4所在的直线构成一个构成的三维空间坐标系,如图5所示,该三维坐标系的第一坐标轴(Z轴)为所述第三麦克风3和所述第四麦克风4所在直线,第二坐标轴(X轴)与所述第一坐标轴相交且与所述第一麦克风与所述第二麦克风所在直线平行,第三坐标轴(Y轴)穿过所述第一坐标轴与所述第二坐标轴的交点,且与所述第一坐标轴与所述第二坐标轴构成的平面垂直。
通常,在远场模型中,声源到达麦克风阵列的距离较远,可以认为声波是图6所示的平面波模型。电子设备可以利用根据GCC(Generalized Cross Correlation)算法估计声源的大体方位,即根据声源到一对麦克风对的时延差,确定声源到达方向(可以认为是声音信号传播至麦克风对的轨迹)到麦克风对连线的夹角,如图6所示的夹角1、夹角2等。
在本发明实施例中,同样可以利用GCC算法确定声源到达方向与每个麦克风阵列连线的夹角,进而确定声源的空间方位。参考图7,当使用电子设备横屏拍摄,(即电子设备放置如图4所示),可以根据声源到达麦克风3、麦克风4的时延差,确定声源到达方向与麦克风3、4连线的夹角,即声源到达方向与Z轴的夹角θ3,但这仅仅是声源的俯仰角,还需要进一步确定声源的水平角。进而电子设备可以根据声源到达麦克风1、麦克风2的时延差,确定出声源到达方向与麦克风1、2连线的夹角,即声源到达方向与X轴的夹角θ1,同时,可以根据声源到达麦克风1、麦克风3的时延差,确定出声源到达方向与麦克风1、3连线的夹角θ2,再将该夹角转化成声源到达方向与Y轴的夹角θ4,将θ1、θ4作为声源的水平角,结合声源的俯仰角θ3可以确定出声源的准确方位。
进一步说明如何将θ2转化成θ4:通常当电子设备的麦克风阵列的分布确定后,每两个麦克风所在直线与图5所示坐标轴的每一个轴的夹角就确定了。参考图7,直线Y^与Y轴平行,假定麦克风1、麦克风3连线与Y^的夹角为α(即麦克风1、麦克风3连线与Y轴的夹角),根据声源到麦克风1、麦克风3的时延差确定出声源到达方向与麦克风1、麦克风 3连线的夹角θ2。声源到达方向所在直线、麦克风1和3所在直线以及直线Y^构成了一个三角形,由于三角形的一个内角的补角等于另外两个内角的和,因此可得声源与Y轴的夹角θ4=α+θ2
当使用电子设备竖屏拍摄(即电子设备放置如图9所示),可以根据声源到达麦克风1、麦克风3的时延差,确定出声源与麦克风1、3连线的夹角,再将该夹角转化成声源与Y轴的夹角,将这个角作为声源的俯仰角。同时,根据声源到达麦克风1、麦克风2的时延差,确定出声源与Z轴的夹角,根据声源到达麦克风3、麦克风4的时延差,确定出声源与X轴的夹角,根据这三个夹角可以确定出声源的方位。
具体实现中,电子设备还可以包括摄像头,参考图10,包括第一摄像头8,设置于第一表面5;还包括第二摄像头9,设置于第二表面6。
进一步地,参考图11,所述第一麦克风1与所述第二麦克风2共同形成第一波束和第二波束。其中,第一波束形成于第一表面5一侧,第二波束形成于第二表面6一侧。
本发明实施例提供一种电子设备,如图12所示,至少包括处理器、存储器、摄像头组(包括上述第一摄像头8、第二摄像头9)、麦克风阵列(包括上述麦克风1~4)以及输入组件。各个摄像头及各个麦克风的分布可以如图7所示,在此不做赘述。输入组件可以是按键、触控面板等。
本发明实施例中,处理器首先确定预设录音范围,具体地,电子设备接收视频录制指令,该指令携带录制视频的摄像头的信息,进一步电子设备运行该信息指示的摄像头进行拍摄,根据所述摄像头的拍摄范围确定预设录音范围。预设录音范围可以是水平角度范围以及俯仰角度范围。
其次,电子设备的处理器利用麦克风阵列(上述麦克风1~4)收集声音信号,处理器可以根据声源到麦克风阵列的时延差确定声源到达方向与麦克风阵列连线的夹角,进而可以确定出该声音信号的声源的方位信息。该方位信息包括声源到达方向在空间坐标系中的水平角以及俯仰角。
进而,处理器可以根据声源的方位信息判断该声源是否在所述 预设录音范围内。具体地,判断该声源的水平角是否在预设录音范围的水平角度范围内,以及该声源的俯仰角是否在预设录音范围的俯仰角度范围内。若该声源的水平角在预设录音范围的水平角度范围内且该声源的俯仰角在预设录音范围的俯仰角度范围内,则确定该声源在预设录音范围内;若该声源的水平角不在预设录音范围的水平角度范围内和/或该声源的俯仰角不在预设录音范围的俯仰角度范围内,则确定该声源不在预设录音范围内。
实施例2:
本发明实施例提供一种定向录音方法,如图13所示,所述方法包括以下步骤:
101、电子设备确定预设录音范围;所述预设录音范围包括水平角度范围以及俯仰角度范围。
具体实现中,电子设备接收视频录制指令,所述视频录制指令携带录制视频的摄像头的信息。进而电子设备运行所述信息指示的摄像头进行拍摄,根据所述摄像头的拍摄范围确定所述预设录音范围。
需要说明的是,这里的水平角度范围是空间三维坐标系中的水平角度范围;这里的俯仰角度范围也空间三维坐标系中俯仰角度范围。该空间三维坐标系即图5所示三维空间坐标系。
102、电子设备获取麦克风阵列收集到的声音信号。
通常,麦克风对可以生成一个波束,对一定范围对的声音信号进行采集。这里的麦克风阵列即图4中的麦克风1~4,其在电子设备的分布可以如图4所示,但不仅仅限制于图4所示的分布位置,在满足“4个麦克风不在同一平面”这一前提条件下,这4个麦克风也可以以其他形式分布,在此不做限制。
103、电子设备确定所述声音信号的声源的方位信息;所述方位信息包括所述声源的水平角度与所述声源的俯仰角。
这里,声源的水平角、俯仰角也是相对于空间三维坐标系的夹角,与步骤101衡量水平角度范围、俯仰角度范围的空间三维坐标 系是同一个,均可以是图5所示三维空间坐标系。
具体地,可以根据声源到麦克风阵列中的一对麦克风的时延差,确定该声源到达方向与这一对麦克风所在直线的夹角。参考图4,由于麦克风1、2与麦克风3、4不在同一个平面,那么可以确定出声源到达方向与麦克风对所在直线的夹角,进而转化为在图5所示的空间坐标系中的水平角和俯仰角。
104、电子设备根据所述声源的方位信息判断所述声源是否在所述预设录音范围内。
具体地,若所述声源的水平角在所述水平角度范围内且所述声源的俯仰角在所述俯仰角度范围内,则确定所述声源在所述预设录音范围内。
若所述声源的水平角不在所述水平角度范围内和/或所述声源的俯仰角
若所述声源不在所述预设录音范围内,则执行步骤105;若所述声源在所述预设录音范围内,则执行步骤106;
105、消除所述声音信号。
若所述信息指示的摄像头为所述第一摄像头,则根据所述第二波束学习所述第一波束生成第一抵消波束,根据所述第一抵消波束消除所述声音信号;若所述信息指示的摄像头为所述第二摄像头,则根据所述第一波束学习所述第二波束生成第二抵消波束;根据所述第二抵消波束消除所述声音信号。
106、存储声音信号。
在使用电子设备拍摄视频时,可以将声音信号与图像信号组成为视频文件,此时的音频与视频匹配的程度较高。
示例的,参考图14,使用电子设备横屏拍摄,且使用后置摄像头拍摄。确定画面录制范围(即预设录音范围)是:水平角度范围-30°~+30°、俯仰角度范围-15°~+20°。电子设备确定该声源到麦克风3、4的时延差,根据该时延差确定声源P到达方向与Z轴的夹角为40°,即该声源的俯仰角。确定该声源到麦克风1、2的时延差,根据该时 延差确定声源P到达方向与X轴的夹角为120°,根据声源到麦克风2、3的时延差,根据该时延差确定声源P到达方向与Y轴的夹角为60°,即该声源的水平角为:与X轴的夹角为120°、与Y轴的夹角为60°。由于俯仰角40°不在俯仰角范围-15°~+20°内,因此,该声源位于预设录音范围外。进而电子设备根据后向波束(即图11所示的第二波束)学习前向波束(即图11所示的第一波束),之后前后向波束相抵消,就可以消除后向波束中的该声音信号。
具体实现中,电子设备通过算法实现图15所示的自适应抵消器,其中,Ts为时延,不同的时延对应不同的ω,通过调整学习步长u对ω0~ωN的权值进行调整。进一步地,以采用后置摄像头波拍摄为例,解释本发明实施例提供的噪声抵消过程:将前向波束的输出xf(t)作为自适应抵消器的主通道输入,将后向波束的输出xb(t)作为自适应抵消器的噪声参考输入。当确定声源不在预设录音范围内,以学习步长u对滤波ω的权值进行调整,可以控制后向波束xb(t)学习前向波束xf(t),当输出的残差能量(即xb(t)、xf(t)的差值)达到最小值,算法达到收敛态,此时ε(t)中即实现了对噪声信号的滤除。
同理,当采用前置摄像头进行拍摄,若确定声源不在预设录音区域,则需要根据将后向波束的输出作为自适应抵消器的主通道输入,将前向波束的输出作为自适应抵消器的噪声参考输入。前向波束学习后向波束后进行相抵消,消除该声源的声音信号。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (16)

  1. 一种定向录音方法,其特征在于,所述方法包括:
    电子设备确定预设录音范围;所述预设录音范围包括水平角度范围以及俯仰角度范围;
    所述电子设备获取声音信号;
    所述电子设备确定所述声音信号的声源的方位信息;所述方位信息包括所述声源的水平角与所述声源的俯仰角;
    所述电子设备根据所述声源的方位信息判断所述声源是否在所述预设录音范围内;
    若所述声源不在所述预设录音范围内,则消除所述声音信号;若所述声源在所述预设录音范围内,则存储声音信号。
  2. 根据权利要求1所述的方法,其特征在于,所述电子设备根据所述声源的方位信息判断所述声源是否在所述预设录音范围内具体包括:
    所述电子设备判断所述水平角是否在所述水平角度范围内,以及所述俯仰角是否在所述俯仰角度范围内;
    若所述水平角在所述水平角度范围内且所述俯仰角在所述俯仰角度范围内,则确定所述声源在所述预设录音范围内;
    若所述水平角不在所述水平角度范围内和/或所述俯仰角不在所述俯仰角度范围内,则确定所述声源不在所述预设录音范围内。
  3. 根据权利要求1或2所述的方法,其特征在于,所述电子设备包括麦克风阵列,所述麦克风阵列包括第一麦克风、第二麦克风、第三麦克风和第四麦克风且所述第一麦克风、所述第二麦克风、所述第三麦克风和所述第四麦克风不在同一平面内;
    其中,所述第一麦克风位于所述电子设备的第一表面,所述第二麦克风位于所述电子设备的第二表面,所述第三麦克风与所述第四麦克风位于所述电子设备的第三表面,所述第一表面与所述第二表面平行设置,所述第三表面与所述第一表面垂直,且第三表面与、所述第二表面均垂直;
    所述电子设备收集声音信号具体包括:所述电子设备获取所述麦克风阵列所收集到的声音信息。
  4. 根据权利要求3所述的方法,其特征在于,所述第一麦克风与所述第二麦克风所在直线垂直于所述第三麦克风与所述第四麦克风所在直线;
    所述电子设备确定所述声音信号的声源的方位信息具体包括:
    所述电子设备确定所述声源的到达方向与三维坐标系的第一坐标轴的第一夹角,所述到达方向与所述三维坐标系的第二坐标轴的第二夹角;所述到达方向与所述三维坐标系的第三坐标轴的第三夹角;
    所述电子设备根据所述第一夹角、所述第二夹角、所述第三夹角确定所述声源的方位信息;
    其中,所述第一坐标轴为所述第三麦克风和所述第四麦克风所在直线,所述第二坐标轴与所述第一坐标轴相交且与所述第一麦克风与所述第二麦克风所在直线平行,所述第三坐标轴穿过所述第一坐标轴与所述第二坐标轴的交点,且与所述第一坐标轴与所述第二坐标轴构成的平面垂直。
  5. 根据权利要求4所述的方法,其特征在于,所述电子设备确定所述入射轨迹与三维坐标系的第一坐标轴的第一夹角,所述入射轨迹与所述三维坐标系的第二坐标轴的第二夹角;所述入射轨迹与所述三维坐标系的第三坐标轴的第三夹角具体包括:
    确定所述声源到达所述第一麦克风与所述第二麦克风的第一时延差,根据所述第一时延差确定所述第一麦克风、所述第二麦克风所在直线与所述到达方向的夹角,将所述所述第一麦克风、所述第二麦克风所在直线与所述到达方向的夹角确定为所述二夹角;
    确定所述声源到达所述第三麦克风与所述第四麦克风的第二时延差,根据所述第二时延差确定所述第三麦克风、所述第四麦克风所在直线与所述到达方向的夹角,将所述第三麦克风、所述第四麦克风所在直线与所述到达方向的夹角确定为所述第一夹角;
    确定所述声源到达所述第三麦克风与所述第二麦克风的第三时 延差,根据所述第三时延差确定所述第三麦克风、所述第二麦克风所在直线与所述到达方向的夹角,确定所述第三麦克风、所述第二麦克风所在直线与所述到达方向的夹角为所述三夹角。
  6. 根据权利要求4或5所述的方法,其特征在于,所述根据所述第一夹角、所述第二夹角、所述第三夹角确定所述声源的方位信息具体包括:
    所述电子设备确定所述第一夹角为所述声源的俯仰角,确定所述第二夹角、第三夹角为所述声源的水平角;
    或,所述电子设备确定所述第三夹角为所述声源的俯仰角,确定所述第一夹角、第二夹角为所述声源的水平角。
  7. 根据权利要求3所述的方法,其特征在于,所述电子设备还包括摄像头,
    则,所述电子设备确定预设录音范围具体包括:
    所述电子设备接收视频录制指令;所述视频录制指令携带录制视频的摄像头的信息;
    所述电子设备运行所述信息指示的摄像头进行拍摄,根据所述摄像头的拍摄范围确定所述预设录音范围。
  8. 根据权利要求7所述的方法,其特征在于,所述摄像头为第一摄像头和/或第二摄像头,所述第一摄像头位于所述第一表面,所述第二摄像头位于所述第二表面;所述第一麦克风与所述第二麦克风生成第一波束和第二波束,所述第一波束形成于所述第一表面一侧,所述第二波束形成于所述第二表面一侧;
    所述电子设备消除所述声音信号具体包括:
    若所述信息指示的摄像头为所述第一摄像头,则根据所述第二波束学习所述第一波束生成第一抵消波束,根据所述第一抵消波束消除所述声音信号;
    若所述信息指示的摄像头为所述第二摄像头,则根据所述第一波束学习所述第二波束生成第二抵消波束;根据所述第二抵消波束消除所述声音信号。
  9. 一种电子设备,其特征在于,包括:
    处理器,确定预设录音范围;所述预设录音范围包括水平角度范围以及俯仰角度范围;
    所述处理器还用于,获取声音信号,确定所述声音信号的声源的方位信息,根据所述声源的方位信息以及所述预设录音范围判断所述声源是否在所述预设录音范围内;所述方位信息包括所述声源的水平角度与所述声源的俯仰角;
    所述处理器还用于,若所述声源不在所述预设录音范围内,则消除所述声音信号;若所述声源在所述预设录音范围内,则存储声音信号。
  10. 根据权利要求9所述的电子设备,其特征在于,所述处理器具体用于,判断所述水平角是否在所述水平角度范围内,以及所述俯仰角是否在所述俯仰角度范围内;
    若所述水平角在所述水平角度范围内且所述俯仰角在所述俯仰角度范围内,则确定所述声源在所述预设录音范围内;
    若所述水平角不在所述水平角度范围内和/或所述俯仰角不在所述俯仰角度范围内,则确定所述声源不在所述预设录音范围内。
  11. 根据权利要求9或10所述的电子设备,其特征在于,所述电子设备包括麦克风阵列,所述麦克风阵列包括第一麦克风、第二麦克风、第三麦克风和第四麦克风且所述第一麦克风、所述第二麦克风、所述第三麦克风和所述第四麦克风不在同一平面内;
    其中,所述第一麦克风位于所述电子设备的第一表面,所述第二麦克风位于所述电子设备的第二表面,所述第三麦克风与所述第四麦克风位于所述电子设备的第三表面,所述第一表面与所述第二表面平行设置,所述第三表面与所述第一表面垂直,且与所述第二表面垂直;
    所述麦克风阵列具体用于,收集声音信号;
    所述处理器具体用于,获取所述麦克风阵列收集到的信号。
  12. 根据权利要求11所述的电子设备,其特征在于,所述第三麦克风和所述第四麦克风所在直线与所述第一麦克风和所述第二麦克风所在直线 垂直;
    所述处理器具体用于,确定所述声源的到达方向与三维坐标系的第一坐标轴的第一夹角,所述到达方向与所述三维坐标系的第二坐标轴的第二夹角;所述到达方向与所述三维坐标系的第三坐标轴的第三夹角;
    根据所述第一夹角、所述第二夹角、所述第三夹角确定所述声源的方位信息;
    其中,所述第一坐标轴为所述第三麦克风和所述第四麦克风所在直线,所述第二坐标轴与所述第一坐标轴相交且与所述第一麦克风与所述第二麦克风所在直线平行,所述第三坐标轴穿过所述第一坐标轴与所述第二坐标轴的交点,且与所述第一坐标轴与所述第二坐标轴构成的平面垂直。
  13. 根据权利要求12所述的电子设备,其特征在于,所述处理器具体用于,确定所述声源到达所述第一麦克风与所述第二麦克风的第一时延差,根据所述第一时延差确定所述第一麦克风、所述第二麦克风所在直线与所述到达方向的夹角,将所述所述第一麦克风、所述第二麦克风所在直线与所述到达方向的夹角确定为所述二夹角;
    确定所述声源到达所述第三麦克风与所述第四麦克风的第二时延差,根据所述第二时延差确定所述第三麦克风、所述第四麦克风所在直线与所述到达方向的夹角,将所述第三麦克风、所述第四麦克风所在直线与所述到达方向的夹角确定为所述第一夹角;
    确定所述声源到达所述第三麦克风与所述第二麦克风的第三时延差,根据所述第三时延差确定所述第三麦克风、所述第二麦克风所在直线与所述到达方向的夹角,确定所述第三麦克风、所述第二麦克风所在直线与所述到达方向的夹角为所述第三夹角。
  14. 根据权利要求13所述的电子设备,其特征在于,
    所述处理器具体用于,确定所述第一夹角为所述声源的俯仰角,确定所述第二夹角、所述第三夹角为所述声源的水平角;
    或,确定所述第三夹角为所述声源的俯仰角,确定所述第一夹角、 所述第二夹角为所述声源的水平角。
  15. 根据权利要求13或14所述的电子设备,其特征在于,还包括:输入组件,
    所述输入组件用于,接收视频录制指令;所述视频录制指令携带录制视频的摄像头的信息;
    所述处理器还用于,运行所述信息指示的摄像头进行拍摄,根据所述摄像头的拍摄范围确定所述预设录音范围。
  16. 根据权利要求15所述的电子设备,其特征在于,所述摄像头为第一摄像头和/或第二摄像头,所述第一摄像头位于所述第一表面,所述第二摄像头位于所述第二表面;所述第一麦克风与所述第二麦克风生成第一波束和第二波束,所述第一波束形成于所述第一表面一侧,所述第二波束形成于所述第二表面一侧;
    所述处理器具体用于,若所述信息指示的摄像头为所述第一摄像头,则根据所述第二波束学习所述第一波束生成第一抵消波束,根据所述第一抵消波束消除所述声音信号;
    若所述信息指示的摄像头为所述第二摄像头,则根据所述第一波束学习所述第二波束生成第二抵消波束;根据所述第二抵消波束消除所述声音信号。
PCT/CN2016/104160 2016-10-31 2016-10-31 一种定向录音方法及电子设备 WO2018076387A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/104160 WO2018076387A1 (zh) 2016-10-31 2016-10-31 一种定向录音方法及电子设备
CN201680080704.1A CN108604453B (zh) 2016-10-31 2016-10-31 一种定向录音方法及电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/104160 WO2018076387A1 (zh) 2016-10-31 2016-10-31 一种定向录音方法及电子设备

Publications (1)

Publication Number Publication Date
WO2018076387A1 true WO2018076387A1 (zh) 2018-05-03

Family

ID=62024284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/104160 WO2018076387A1 (zh) 2016-10-31 2016-10-31 一种定向录音方法及电子设备

Country Status (2)

Country Link
CN (1) CN108604453B (zh)
WO (1) WO2018076387A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112526452A (zh) * 2020-11-24 2021-03-19 杭州萤石软件有限公司 声源检测方法、云台摄像机、智能机器人及存储介质
CN113596240A (zh) * 2021-07-27 2021-11-02 Oppo广东移动通信有限公司 录音方法、装置、电子设备及计算机可读介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113345462B (zh) * 2021-05-17 2023-12-29 浪潮金融信息技术有限公司 一种拾音去噪方法、***及介质

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1901663A (zh) * 2006-07-25 2007-01-24 华为技术有限公司 一种具有声音位置信息的视频通讯***及其获取方法
JP2009200569A (ja) * 2008-02-19 2009-09-03 Chiba Inst Of Technology 音源方向推定方法および装置
CN103618986A (zh) * 2013-11-19 2014-03-05 深圳市新一代信息技术研究院有限公司 一种3d空间中音源声像体的提取方法及装置
JP2014072661A (ja) * 2012-09-28 2014-04-21 Jvc Kenwood Corp 映像音声記録再生装置
CN104378570A (zh) * 2014-09-28 2015-02-25 小米科技有限责任公司 录音方法及装置
US20150063069A1 (en) * 2013-08-30 2015-03-05 Honda Motor Co., Ltd. Sound processing device, sound processing method, and sound processing program
CN104599674A (zh) * 2014-12-30 2015-05-06 西安乾易企业管理咨询有限公司 一种摄像中定向录音的***及方法
CN105338292A (zh) * 2014-08-04 2016-02-17 杭州海康威视数字技术股份有限公司 用于视频监控的声源定向控制装置及方法
CN105355213A (zh) * 2015-11-11 2016-02-24 广东欧珀移动通信有限公司 一种定向录音的方法及装置
CN105611458A (zh) * 2015-11-11 2016-05-25 广东欧珀移动通信有限公司 一种移动终端的定向录音控制方法及装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI396862B (zh) * 2009-12-04 2013-05-21 Teco Elec & Machinery Co Ltd 聲源定位系統、方法及電腦可讀取儲存媒體
CN104360315A (zh) * 2014-10-16 2015-02-18 河北工业大学 基于LabVIEW的麦克风阵列声源定位方法及装置
CN104991573A (zh) * 2015-06-25 2015-10-21 北京品创汇通科技有限公司 一种基于声源阵列的定位跟踪方法及其装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1901663A (zh) * 2006-07-25 2007-01-24 华为技术有限公司 一种具有声音位置信息的视频通讯***及其获取方法
JP2009200569A (ja) * 2008-02-19 2009-09-03 Chiba Inst Of Technology 音源方向推定方法および装置
JP2014072661A (ja) * 2012-09-28 2014-04-21 Jvc Kenwood Corp 映像音声記録再生装置
US20150063069A1 (en) * 2013-08-30 2015-03-05 Honda Motor Co., Ltd. Sound processing device, sound processing method, and sound processing program
CN103618986A (zh) * 2013-11-19 2014-03-05 深圳市新一代信息技术研究院有限公司 一种3d空间中音源声像体的提取方法及装置
CN105338292A (zh) * 2014-08-04 2016-02-17 杭州海康威视数字技术股份有限公司 用于视频监控的声源定向控制装置及方法
CN104378570A (zh) * 2014-09-28 2015-02-25 小米科技有限责任公司 录音方法及装置
CN104599674A (zh) * 2014-12-30 2015-05-06 西安乾易企业管理咨询有限公司 一种摄像中定向录音的***及方法
CN105355213A (zh) * 2015-11-11 2016-02-24 广东欧珀移动通信有限公司 一种定向录音的方法及装置
CN105611458A (zh) * 2015-11-11 2016-05-25 广东欧珀移动通信有限公司 一种移动终端的定向录音控制方法及装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112526452A (zh) * 2020-11-24 2021-03-19 杭州萤石软件有限公司 声源检测方法、云台摄像机、智能机器人及存储介质
WO2022111190A1 (zh) * 2020-11-24 2022-06-02 杭州萤石软件有限公司 声源检测方法、云台摄像机、智能机器人及存储介质
CN113596240A (zh) * 2021-07-27 2021-11-02 Oppo广东移动通信有限公司 录音方法、装置、电子设备及计算机可读介质
CN113596240B (zh) * 2021-07-27 2022-08-12 Oppo广东移动通信有限公司 录音方法、装置、电子设备及计算机可读介质

Also Published As

Publication number Publication date
CN108604453A (zh) 2018-09-28
CN108604453B (zh) 2022-11-04

Similar Documents

Publication Publication Date Title
WO2021103347A1 (zh) 投影仪的梯形校正方法、装置、***及可读存储介质
US9549255B2 (en) Sound pickup apparatus and method for picking up sound
CN107333120B (zh) 一种基于麦克风阵列和立体视觉的集成传感器
US20150022636A1 (en) Method and system for voice capture using face detection in noisy environments
CN103491397B (zh) 一种实现自适应环绕声的方法和***
US20190236805A1 (en) Method and device for calibrating dual fisheye lens panoramic camera, and storage medium and terminal thereof
TWI396862B (zh) 聲源定位系統、方法及電腦可讀取儲存媒體
WO2018076387A1 (zh) 一种定向录音方法及电子设备
CN107534725A (zh) 一种语音信号处理方法及装置
O'Donovan et al. Microphone arrays as generalized cameras for integrated audio visual processing
JP4862645B2 (ja) ビデオ会議装置
JPWO2008053649A1 (ja) 広角画像取得方法及び広角ステレオカメラ装置
CN112351248B (zh) 一种关联图像数据和声音数据的处理方法
CN112154436A (zh) 在电子装置中识别对象的设备和方法
CN109325980A (zh) 一种用于机械手定位目标的方法、装置及机械手
CN106205630A (zh) 视频摄录***中降低马达振动噪声的***
JP2010130628A (ja) 撮像装置、映像合成装置および映像合成方法
CN113312985B (zh) 一种视听双模态的360度全方位说话人定位方法
JP2005244861A (ja) 撮像装置及び撮像系パラメータ校正方法
KR102597470B1 (ko) 뎁스 맵 결정 방법 및 그 방법을 적용한 전자 장치
WO2016197444A1 (zh) 一种实现拍摄的方法及终端
TWM594322U (zh) 全向立體視覺的相機配置系統
JP6878974B2 (ja) 撮像装置、撮像システム
CN115690212A (zh) 一种对视定位方法、装置及存储介质
TWI549469B (zh) 降低手持式電子裝置錄音噪音的系統及其方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16920079

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16920079

Country of ref document: EP

Kind code of ref document: A1