WO2018074603A1 - 遮熱構造及び遮熱構造を付加する方法 - Google Patents

遮熱構造及び遮熱構造を付加する方法 Download PDF

Info

Publication number
WO2018074603A1
WO2018074603A1 PCT/JP2017/038075 JP2017038075W WO2018074603A1 WO 2018074603 A1 WO2018074603 A1 WO 2018074603A1 JP 2017038075 W JP2017038075 W JP 2017038075W WO 2018074603 A1 WO2018074603 A1 WO 2018074603A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat shield
heat
crosspiece
shield member
wall surface
Prior art date
Application number
PCT/JP2017/038075
Other languages
English (en)
French (fr)
Inventor
元秀 荒山
俊樹 山本
喜男 成毛
Original Assignee
ちきゅうにやさしい株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ちきゅうにやさしい株式会社 filed Critical ちきゅうにやさしい株式会社
Priority to JP2018545778A priority Critical patent/JPWO2018074603A1/ja
Publication of WO2018074603A1 publication Critical patent/WO2018074603A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D90/00Component parts, details or accessories for large containers
    • B65D90/02Wall construction
    • B65D90/06Coverings, e.g. for insulating purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • F16L59/07Arrangements using an air layer or vacuum the air layer being enclosed by one or more layers of insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/08Means for preventing radiation, e.g. with metal foil

Definitions

  • the present invention relates to a heat shield structure and a method for adding a heat shield structure, and more particularly, to a heat shield structure and a method for adding a heat shield structure to a facility having an internal space surrounded by a wall.
  • Refrigerated containers and prefabricated freezers are facilities that have an internal space surrounded by walls.
  • equipment having an internal space surrounded by a wall is mounted on a cargo bed.
  • a facility having an inner space surrounded by a wall can improve heat shielding performance and reduce energy consumption by blocking or suppressing the transfer of thermal energy between the external environment and the inner space.
  • the heat shielding performance can be improved by eliminating the part where the heat shielding sheet is not attached.
  • the outer surface of the facility is generally a complex shape. For this reason, it is not easy to apply a heat shielding sheet to all the outer surfaces of the equipment without any gaps and to eliminate the portions that are not shielded from heat to improve the heat shielding performance.
  • the present invention intends to provide a heat shield structure that can easily improve the heat shield performance by eliminating a portion that is not shielded from heat, and a method for adding the heat shield structure.
  • the present invention provides a heat shield structure configured as follows in order to solve the above-described problems.
  • the heat shield structure is added to equipment that has an internal space surrounded by walls.
  • the heat shield structure includes (a) a plurality of crosspiece members fixed to the inner wall surface of the wall body, and (b) covers the inner wall surface without a gap and forms an air layer between the inner wall surface. And a sheet-like heat shield member fixed to the crosspiece member.
  • the heat shielding member includes (i) a base material layer having a pair of main surfaces, and (ii) a first infrared reflecting layer formed on one of the main surfaces facing the inner wall surface.
  • the thermal energy of the wall body moves to the internal space of the heat shield structure surrounded by the heat shield member in three modes of radiation, convection, and conduction.
  • the heat shield structure can suppress the movement of heat energy in three modes of radiation, convection, and conduction, and can improve the heat shield performance.
  • the movement of thermal energy due to radiation is suppressed by the first infrared reflecting layer of the heat shield member reflecting most of the radiation from the wall.
  • the movement of thermal energy due to convection and conduction can be suppressed by the air layer. It is easy to cover the inner wall surface with a heat shield member without gaps in the internal space of the facility.
  • the heat shield member is fixed to the crosspiece member by adhesion.
  • the crosspiece member is made of resin.
  • the heat shield member further includes (iii) a second infrared reflective layer formed on the other main surface of the base material layer.
  • the heat shielding performance is improved by forming the infrared reflective layer on both main surfaces of the base material layer, compared to the case where the infrared reflective layer is formed only on one main surface of the base material. Moreover, it can construct without distinguishing the front and back of a heat-shielding member. Furthermore, the heat shielding performance when heat energy moves from the internal space of the heat shielding structure to the wall body is improved.
  • the present invention provides a method for adding a heat shield structure configured as follows in order to solve the above-mentioned problems.
  • the method of adding a heat shield structure is a method of adding a heat shield structure to equipment having an internal space surrounded by walls.
  • a method for adding a heat shield structure includes (i) a first step of preparing a plurality of crosspiece members and a sheet-like heat shield member, and (ii) using the crosspiece member and the heat shield member, And a second step of producing the heat shield structure in the internal space.
  • the crosspiece member is fixed to the inner wall surface of the wall body, the heat shield member covers the inner wall surface without a gap, and forms an air layer between the inner wall surface and the heat shield member.
  • the heat shield member includes (a) a base material layer having a pair of main surfaces, and (b) a first infrared reflecting layer formed on one of the main surfaces facing the inner wall surface.
  • the heat shield member is fixed to the crosspiece member by adhesion.
  • the crosspiece member is made of resin.
  • the heat shield member further includes (c) a second infrared reflective layer formed on the other main surface of the base material layer.
  • the heat shielding performance is improved by forming the infrared reflective layer on both main surfaces of the base material layer, compared to the case where the infrared reflective layer is formed only on one main surface of the base material. Moreover, it can construct without distinguishing the front and back of a heat-shielding member. Furthermore, the heat shielding performance when heat energy moves from the internal space of the heat shielding structure to the wall body is improved.
  • a composite heat shield member in which the crosspiece member is fixed to the heat shield member is prepared.
  • a third step of measuring a temperature distribution of the inner wall surface is further provided before the second step.
  • the heat shielding performance can be further improved by examining the measurement results and adding appropriate measures as necessary.
  • the method further includes a fourth step of measuring a temperature distribution on the surface of the heat shield member opposite to the inner wall surface.
  • the heat shielding performance of the heat shielding structure can be guaranteed based on the measurement result.
  • the present invention it is easy to improve the heat shielding performance by eliminating the portion that is not heat shielded.
  • FIG. 1 is a cross-sectional view of a prefabricated facility to which a heat shield structure is added.
  • Example 1 FIG. 2 is a cross section of the heat shield member.
  • Example 1 FIG. 3 is an enlarged cross-sectional view of a main part of the heat shield structure.
  • Example 1 FIG. 4 is an enlarged cross-sectional view of a main part of the heat shield structure.
  • FIG. 5A is a plan view of the composite heat shield member
  • FIG. 5B is a side view of the composite heat shield member
  • FIG. 5C is an enlarged view of the main part of the composite heat shield member (Modification 2).
  • FIG. 6 is an explanatory diagram of a thermostatic facility in which a heat shield structure is added to the container.
  • Example 2 is an explanatory diagram of the thermostatic equipment.
  • FIG. 8 is an explanatory diagram of affixing the heat shield sheet.
  • Example 1 The heat shield structure 20 of Example 1 will be described with reference to FIGS.
  • FIG. 1 is a cross-sectional view of a prefabricated facility 10 to which a heat shield structure 20 is added.
  • a prefabricated facility 10 such as a prefabricated refrigerator or a prefabricated freezer is a facility in which a plurality of plate-like wall bodies 12a to 12d are assembled in a box shape, and is hermetically sealed with wall bodies 12a to 12d. It has a possible internal space 18.
  • the heat shield structure 20 is added to the internal space 18 of the prefabricated facility 10. That is, the heat shield structure 20 includes: (a) a plurality of crosspiece members 22 fixed to the inner wall surfaces 14a to 14d of the wall bodies 12a to 12d; and (b) the inner wall surfaces 14a to 14d without gaps. 14a to 14d are formed in the air layers 16a to 16d, and the sheet-like heat shield member fixed to the crosspiece member 22 so that the convection velocity in the air layers 16a to 16d is equal to or lower than a predetermined value. 30.
  • the inner wall surfaces 14a to 14d of the wall bodies 12a to 12d are inner peripheral surfaces that form the internal space 18 of the prefabricated facility 10. Interiors such as a floor 27, a wall, and a ceiling may be provided in the internal space 28 surrounded by the heat shield member 30.
  • the thickness of the air layers 16a to 16d is determined by the heat of the wall bodies 12a to 12d being the heat shield member 30.
  • the length directly transmitted to the infrared reflection layer is preferred. For example, when the length that the heat of the walls 12a to 12d is directly transmitted to the heat shield member 30 (specifically, a first infrared reflecting layer described later) is less than 15 mm, the thickness of the air layers 16a to 16d is 15 mm. The above is preferable.
  • the convection velocity in the air layers 16a to 16d is smaller, the movement of heat energy due to convection is suppressed, and the heat shielding performance is improved. Therefore, the convection velocity in the air layers 16a to 16d is preferably equal to or lower than the maximum velocity of the convection velocity, and more preferably 0.
  • the convection velocity in the air layers 16a to 16d varies depending on the temperature distribution of the inner wall surfaces 14a to 14d, the thickness of the air layers 16a to 16d, and the like.
  • the thickness of the air layers 16a to 16d is up to 24 mm, the air in the air layers 16a to 16d is stationary and the convection velocity in the air layers 16a to 16d is zero.
  • the convection speed of the air in the air layers 16a to 16d increases as the thickness of the air layers 16a to 16d increases until the thickness of the air layers 16a to 16d reaches 30 mm.
  • the thickness of the air layers 16a to 16d is 30 mm or more, the convection speed of the air in the air layers 16a to 16d becomes the maximum speed.
  • the thickness of the air layers 16a to 16d is preferably 30 mm or less, and more preferably 24 mm or less.
  • the heat energy transmitted directly from the walls 12a to 12d to the heat shielding member 30 and the convection in the air layers 16a to 16d are transmitted from the walls 12a to 12d to the heat shielding member 30. It is effective to suppress the total amount of heat energy. If the total amount of heat energy transferred to the heat shield member 30 can be suppressed, priority is given to suppression of heat transfer by convection, and the thickness of the air layers 16a to 16d is such that the heat of the wall bodies 12a to 12d is transferred to the heat shield member 30.
  • the length may be directly transmitted (for example, less than 15 mm).
  • the dimensions and arrangement of the crosspiece 22 can be determined in consideration of the heat shielding performance.
  • the thickness of the crosspiece member 22 is determined so that the thickness of the air layers 16a to 16d becomes a predetermined value.
  • the cross member 22 having an appropriate size is fixed to the inner wall surfaces 14a to 14d at appropriate positions at appropriate positions so that the convection velocity of the air in the air layers 16a to 16d is not more than a predetermined value.
  • FIG. 2 is a cross section of the heat shield member 30.
  • the heat shield member 30 includes (a) a base material layer 32 having a pair of main surfaces 32 a and 32 b, and (b) a wall of the pair of main surfaces 32 a and 32 b of the base material layer 32.
  • a first infrared reflecting layer 34 formed on one main surface 32a facing the inner wall surfaces 14a to 14d (see FIG. 1) of the bodies 12a to 12d, and (c) the other main surface 32b of the base material layer 32.
  • the formed second infrared reflective layer 36 is formed on one main surface 32a facing the inner wall surfaces 14a to 14d (see FIG. 1) of the bodies 12a to 12d, and (c) the other main surface 32b of the base material layer 32.
  • the heat shield member 30 improves the heat shield performance as compared with the case where only the first infrared reflection layer 34 is included (that is, the case where the second infrared reflection layer 36 is not included). Moreover, the heat shield member 30 can be used without distinguishing the front and back. Further, the heat shielding performance is improved when heat energy is transferred from the internal space 28 of the heat shielding structure 20 to the walls 12a to 12d. Therefore, it is preferable that the heat shield member 30 includes the first and second infrared reflecting layers 34 and 36.
  • the heat shield member 30 including only the first infrared reflective layer 34 and not including the second infrared reflective layer 36 may be used for the heat shield structure 20.
  • the base material layer 32 of the heat shielding member 30 may include only one layer or a plurality of layers, and may be configured by using a foamed heat insulating material containing bubbles inside.
  • the infrared reflecting layers 34 and 36 can be formed on the main surfaces 32a and 32b of the base material layer 32 by a method such as attaching a metal foil, vapor deposition of a metal material, or applying a thermal barrier paint. Since the infrared reflection layers 34 and 36 have a higher thermal barrier performance as the infrared reflectance is higher, for example, the infrared reflectance of the infrared reflection layers 34 and 36 is preferably 80% or more, more preferably 90% or more. 95% or more is even more preferable. For example, when an aluminum foil is used, the infrared reflecting layers 34 and 36 having an infrared reflectance of 95% or more can be formed at a low cost.
  • FIG. 3 is an enlarged cross-sectional view of the main part of the heat shield structure 20. As shown in FIG. 3, the crosspiece member 22 and the inner wall surfaces 14a to 14d are bonded to each other through the first adhesive layer 24. Further, the crosspiece member 22 and the heat shield member 30 are bonded to each other through the second adhesive layer 26.
  • FIG. 4 is an enlarged cross-sectional view of a main part of the heat shield structure 20a of the first modification.
  • the crosspiece member 22 is fixed to a metal fitting 40 fixed to the inner wall surfaces 14a to 14d by welding or the like using screws 42.
  • the heat shield member 30 is fixed to the crosspiece member 22 using a fixing member 39 such as a screw or a nail. In this case, heat is transmitted from the fixing member 39, and the heat shielding performance is reduced. In order to prevent this, it is preferable to attach a tape 38 having heat insulation performance to the heat insulation member 30 so that the fixing member 39 is hidden.
  • the crosspiece member 22 is preferably, for example, a member obtained by molding urethane into a columnar shape.
  • the crosspiece member 22 may be made of wood in the same manner as a general crosspiece. However, when wood is used, there is a risk of warping or cracking or mold growth due to the influence of condensation or the like. Resin is less susceptible to dew condensation than wood, and it is easy to prevent mold. In addition, a material having excellent adhesion to the heat shield member 30 can be selected. Therefore, the crosspiece member 22 is preferably made of resin.
  • a plurality of crosspiece members 22 and a sheet-like heat shield member 30 are prepared.
  • the heat shield structure 20 is produced in the internal space 18 using the crosspiece member 22 and the heat shield member 30 prepared in the first step.
  • a composite heat shield member 50 in which the crosspiece member 22 is fixed to the heat shield member 30 may be prepared.
  • FIG. 5A is a plan view of the composite heat shield member 50.
  • FIG. 5B is a side view of the composite heat shield member 50.
  • a columnar bar member 22 having a rectangular cross section is fixed to a belt-like heat shield member 30.
  • the crosspiece member 22 is arranged so that a predetermined interval is provided in the longitudinal direction of the heat shield member 30 and the longitudinal direction of the crosspiece member 22 is orthogonal to the longitudinal direction of the heat shield member 30.
  • the composite heat shield member 50 can be easily stored and transported in a state of being rolled.
  • FIG. 5C is an enlarged view of a main part of the composite heat shield member 50.
  • the crosspiece member 22 is bonded to the heat shield member 30 using an adhesive or a double-sided tape, and a second adhesive layer 26 is formed between the heat shield member 30 and the crosspiece member 22.
  • a first adhesive layer 24 covered with a release material 25 is formed on the surface opposite to the heat shield member 30. By peeling off the release material 25, the crosspiece member 22 can be easily bonded to the inner wall surfaces 14a to 14d.
  • the first adhesive layer 24 may be formed of one type of adhesive or a plurality of types of adhesive having different characteristics may be distributed.
  • the crosspiece member 22 may be fixed to the heat shield member 30 by a method other than adhesion.
  • the composite heat shield member 50 without the first adhesive layer 24 and the release material 25 may be used.
  • the crosspiece member 22 of the composite heat shield member 50 is fixed to the inner wall surfaces 14a to 14d by bonding or other appropriate methods.
  • the work of fixing the heat shield member 30 to the crosspiece member 22 in the internal space 18 becomes unnecessary, and therefore the work can be efficiently performed in the internal space 18.
  • the temperature distribution of the inner wall surfaces 14a to 14d may be measured as a third step.
  • the heat shielding performance can be further improved by examining the measurement results and adding appropriate measures as necessary.
  • heat shield and heat insulation measures are added to the heat source side of the high temperature portion of the inner wall surface.
  • a measure for releasing the heat of the hot part to the other part is added.
  • positioning of the crosspiece member 22 are selected suitably, and it is made for the convection speed of the air in an air layer to become below a predetermined value.
  • a surface opposite to the inner wall surfaces 14a to 14d of the heat shield member 30 (for example, the second infrared reflecting layer 36 shown in FIG. 2). ) Temperature distribution.
  • the heat shielding performance of the heat shielding structure 20 can be guaranteed based on the measurement result.
  • the temperature distribution is measured using, for example, infrared thermography technology.
  • the temperature distribution diagram is pasted on the three-dimensional model of the internal space 18 of the prefabricated equipment 10 surrounded by the walls 12a to 12d and the three-dimensional model of the internal space 28 of the heat shield structure 20 surrounded by the heat shield member 30. If the three-dimensional display is used, the overall temperature distribution becomes easy to understand.
  • the thermal energy of the walls 12a to 12d is transferred to the internal space 28 of the heat shield structure 20 surrounded by the heat shield member 30 in three modes of radiation, convection, and conduction. Moving.
  • the heat shield structure 20 can comprehensively suppress the movement of heat energy in the three modes of radiation, convection, and conduction, and enhance the heat shield performance.
  • the movement of thermal energy due to radiation is suppressed by the first infrared reflecting layer 34 of the heat shield member 30 reflecting most of the radiation from the wall bodies 12a to 12d.
  • the movement of thermal energy due to convection is suppressed when the convection velocity in the air layers 16a to 16d becomes a predetermined value or less.
  • the transfer of thermal energy due to conduction is suppressed by the thickness of the air layers 16a to 16d being equal to or longer than the length by which the heat of the wall bodies 12a to 12d is directly transmitted to the first infrared reflecting layer 34.
  • Example 2 The thermostat 80 of Example 2 in which a heat shield structure is added to the container 60 will be described with reference to FIG. Below, it demonstrates centering on difference with Example 1.
  • FIG. 1 The thermostat 80 of Example 2 in which a heat shield structure is added to the container 60 will be described with reference to FIG. Below, it demonstrates centering on difference with Example 1.
  • FIG. 6 is an explanatory diagram of a constant temperature facility 80 in which a heat shielding structure is added to the container 60.
  • the same heat shielding structure (not shown) as that of the first embodiment is added to the inner wall surface of the container 60 having the inner space surrounded by the wall body in a box shape. Yes.
  • An indoor unit 62 of an air conditioner is installed in the internal space of the heat shield structure surrounded by the heat shield member.
  • a solar panel 70 is installed on the top of the container 60.
  • An outdoor unit 64 of an air conditioner, a power controller 72, and a storage battery 74 are incorporated in the end of the container 60 or installed adjacent to the container 60.
  • the electric power generated by the solar panel 70 is stored in the storage battery 74 or supplied to the outdoor unit 64 via the power controller 72.
  • the power controller 72 supplies power from the storage battery 74 to the outdoor unit 64.
  • the constant temperature facility 80 can keep the temperature in the internal space of the heat shield structure constant even if the external temperature rises from the experimental results described below.
  • Example 1 As Experimental Example 1, a thermostatic equipment 82 shown in FIG. 7 was prepared. As shown in FIG. 7, a heat shield structure 20 similar to that of the first embodiment is added to the inside of the container 60, and an indoor unit 62 of an air conditioner is installed in the internal space of the heat shield structure 20 surrounded by the heat shield member. The outdoor unit 64 was installed outside.
  • the heat shield structure 20 was not added to the container 60, an air conditioner indoor unit 62 was installed in the container 60, and an outdoor unit 64 was installed outside.
  • the containers 60 of both Experimental Example 1 and Comparative Example 1 were installed side by side so that the surrounding environment was in the same state.
  • the air conditioner was operated all day under the condition of the cooling set temperature of 18 ° C., and the temperature of the internal space of the heat shield structure of Experimental Example 1, the temperature in the container of Comparative Example 1, the power consumption of the air conditioner, and the like were measured.
  • Comparative Example 1 in which no heat shield structure was added, when the outside air temperature increased, the inside of the container could not be maintained at the set temperature, and the temperature inside the container exceeded the set temperature. For example, when the outside air temperature is 34 ° C., the temperature in the container has increased to 27 ° C.
  • the temperature of the internal space of the heat shield structure could be kept at the set temperature even when the outside air temperature increased.
  • the temperature of the internal space of the heat shield structure could be kept at 18 ° C.
  • Example 2 As experimental example 2, a refrigerator was used instead of the air conditioner of experimental example 1, and the power consumption was measured at a temperature setting of -5 ° C. As Comparative Example 2, the power consumption of the refrigerated container was measured under the same conditions.
  • the heat shield structure of the present invention is added to the luggage compartment or the transport container of the transport vehicle, and the water tank or bag is stored in the internal space of the heat shield structure. Fresh fish and the like are stored in the aquarium and bag together with liquid snow and sea ice.
  • a low temperature state can be maintained for a long time, and long-distance low-temperature transport is possible without a refrigeration apparatus.
  • a heat shield structure of the present invention is added to a container, windows and doors are provided, and it is used as a disaster victim's house, rapid reconstruction can be realized. It may be prepared in advance as an emergency house.
  • interior materials containing functional materials such as applying plaster containing photocatalyst to the inner surface of the internal space of the heat-shielding structure, cleaning indoor air by decomposing harmful substances, etc., maintaining humidity, etc. The effect is obtained.
  • the heat shield structure of the present invention may be added to a container and used as it is for a disaster prevention storage.
  • the present invention includes: (a) a container having an internal space surrounded by walls, such as a cargo container, a refrigerated container, a refrigerated container, a heat insulating container, a container house, etc., (b) a prefabricated refrigerator, a prefabricated freezer, a prefabricated heat insulating material. Prefabricated equipment with internal space surrounded by walls, such as storage, prefabricated constant temperature and high humidity storage, prefabricated storage, etc., (c) Internal space surrounded by walls provided in refrigerated vehicles, cold storage vehicles, refrigerators, etc.
  • the heat shield structure of the present invention can be added later to existing / existing containers, prefabricated facilities, cargo bed equipment, etc., or the container equipment, prefabricated equipment, cargo bed equipment to which the heat shield structure of the present invention has been added in advance. Can also be manufactured and sold as products.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Building Environments (AREA)

Abstract

遮熱されない部分を無くして遮熱性能を高めることが容易である遮熱構造、及び遮熱構造を付加する方法を提供する。 内部空間(18)を形成する壁体(12a)~(12d)の内壁面(14a)~(14d)に固定された複数の桟部材(22)と、内壁面(14a)~(14d)を隙間なく覆い、かつ内壁面(14a)~(14d)との間に空気層(16a)~(16d)が形成されるように、桟部材(22)に固定されたシート状の遮熱部材(30)と、を備える。遮熱部材(30)は、基材層の一対の主面のうち、内壁面(14a)~(14d)に対向する一方の主面に、赤外線反射層が形成されている。

Description

遮熱構造及び遮熱構造を付加する方法
 本発明は、遮熱構造及び遮熱構造を付加する方法に関し、詳しくは、壁体で囲まれた内部空間を有する設備に付加する遮熱構造及び遮熱構造を付加する方法に関する。
 冷蔵コンテナやプレハブ冷凍庫などは、壁体で囲まれた内部空間を有する設備である。冷蔵車などは、荷台に、壁体で囲まれた内部空間を有する設備が搭載されている。
 壁体で囲まれた内部空間を有する設備は、外部環境と内部空間との間における熱エネルギーの移動を遮断ないし抑制することによって、遮熱性能を高め、エネルギー消費を減らすことができる。
 例えば図8に示すように、壁体で囲まれた内部空間を有する設備の外面(トラック2の荷室の屋根3)に遮熱シート1を貼ることが提案されている(例えば、特許文献1参照)。
特開2007-8496号公報
 遮熱シートが貼られていない部分を無くすと、遮熱性能を高めることができる。しかしながら、設備の外面は、一般に複雑な形状である。そのため、設備のすべての外面に隙間なく遮熱シートを貼り、遮熱されない部分を無くして遮熱性能を高めることは、容易でない。
 本発明は、かかる事情に鑑みて、遮熱されない部分を無くして遮熱性能を高めることが容易である遮熱構造、及び遮熱構造を付加する方法を提供しようとするものである。
 本発明は、上記課題を解決するために、以下のように構成した遮熱構造を提供する。
 遮熱構造は、壁体で囲まれた内部空間を有する設備に付加する。遮熱構造は、(a)前記壁体の内壁面に固定された複数の桟部材と、(b)前記内壁面を隙間なく覆い、かつ、前記内壁面との間に空気層を形成するように、前記桟部材に固定されたシート状の遮熱部材と、を備える。前記遮熱部材は、(i)一対の主面を有する基材層と、(ii)前記内壁面に対向する一方の前記主面に形成された第1の赤外線反射層と、を含む。
 上記構成において、壁体の熱エネルギーは、輻射、対流、伝導の3つの態様で、遮熱部材で囲まれた遮熱構造の内部空間に移動する。遮熱構造は、輻射、対流、伝導の3つの態様の熱エネルギーの移動を抑制し、遮熱性能を高めることができる。輻射による熱エネルギーの移動は、遮熱部材の第1の赤外線反射層が、壁体からの輻射の大部分を反射することによって、抑制される。対流、伝導による熱エネルギーの移動は、空気層によって抑制することができる。設備の内部空間内において遮熱部材で内壁面を隙間なく覆うことは、容易である。
 したがって、遮熱されない部分を無くして遮熱性能を高めることが容易である。
 好ましくは、前記遮熱部材は、接着により前記桟部材に固定される。
 遮熱部材を、螺子等の固定用部材を用いて桟部材に固定すると、固定用部材に熱が伝わり、遮熱性能が低下する。遮熱部材を桟部材に接着すると、このような遮熱性能の低下が生じない。
 好ましくは、前記桟部材は、樹脂からなる。
 遮熱構造の桟部材に、一般の桟と同様に木材を用いると、結露等の影響で、反りや割れが生じたり、カビが生えたりする恐れがある。樹脂は、木材に比べ、結露等の影響を受けにくく、カビ防止も容易である。また、遮熱部材との接着性が優れた材質を選択することができる。
 好ましくは、前記遮熱部材は、(iii)前記基材層の他方の前記主面に形成された第2の赤外線反射層を、さらに含む。
 遮熱部材は、基材層の両主面に赤外線反射層が形成されることによって、基材の一方主面のみに赤外線反射層が形成された場合よりも、遮熱性能が向上する。また、遮熱部材の表裏を区別せずに施工することができる。さらに、遮熱構造の内部空間から壁体に熱エネルギーが移動する場合の遮熱性能が向上する。
 また、本発明は、上記課題を解決するために、以下のように構成した遮熱構造を付加する方法を提供する。
 遮熱構造を付加する方法は、壁体で囲まれた内部空間を有する設備に、遮熱構造を付加する方法である。遮熱構造を付加する方法は、(i)複数の桟部材と、シート状の遮熱部材とを準備する第1の工程と、(ii)前記桟部材と前記遮熱部材とを用いて、前記内部空間に前記遮熱構造を作製する第2の工程と、を備える。前記第2の工程において、前記桟部材は、前記壁体の内壁面に固定され、前記遮熱部材は、前記内壁面を隙間なく覆い、かつ、前記内壁面との間に空気層を形成するように、前記桟部材に固定される。前記遮熱部材は、(a)一対の主面を有する基材層と、(b)前記内壁面に対向する一方の前記主面に形成された第1の赤外線反射層と、を含む。
 上記方法で設備に遮熱構造を付加すると、遮熱されない部分を無くして遮熱性能を高めることが容易である。
 好ましくは、前記遮熱部材は、接着により前記桟部材に固定される。
 遮熱部材を、螺子等の固定用部材を用いて桟部材に固定すると、固定用部材に熱が伝わり、遮熱性能が低下する。遮熱部材を桟部材に接着すると、このような遮熱性能の低下が生じない。
 好ましくは、前記桟部材は、樹脂からなる。
 遮熱構造の桟部材に、一般の桟と同様に木材を用いると、結露等の影響で、反りや割れが生じたり、カビが生えたりする恐れがある。樹脂は、木材に比べ、結露等の影響を受けにくく、カビ防止も容易である。また、遮熱部材との接着性が優れた材質を選択することができる。
 好ましくは、前記遮熱部材は、(c)前記基材層の他方の前記主面に形成された第2の赤外線反射層を、さらに含む。
 遮熱部材は、基材層の両主面に赤外線反射層が形成されることによって、基材の一方主面のみに赤外線反射層が形成された場合よりも、遮熱性能が向上する。また、遮熱部材の表裏を区別せずに施工することができる。さらに、遮熱構造の内部空間から壁体に熱エネルギーが移動する場合の遮熱性能が向上する。
 好ましくは、前記第1の工程において、前記桟部材が前記遮熱部材に固定されてなる複合遮熱部材を準備する。
 この場合、内部空間内において桟部材に遮熱部材を固定する作業が不要になるため、内部空間内において効率よく作業することができる。
 好ましくは、(iii)前記第2の工程の前に、前記内壁面の温度分布を測定する第3の工程を、さらに備える。
 この場合、測定結果を検討し、必要に応じて適宜な対策を追加することによって、遮熱性能をより高めることができる。
 好ましくは、(iv)前記第2の工程の後に、前記遮熱部材の前記内壁面とは反対側の面の温度分布を測定する第4の工程を、さらに備える。
 この場合、測定結果に基づいて、遮熱構造の遮熱性能を保証することできる。また、測定結果から施工不良を発見し、手直し作業を行うことができる。
 本発明によれば、遮熱されない部分を無くして遮熱性能を高めることが容易である。
図1は遮熱構造が付加されたプレハブ設備の断面図である。(実施例1) 図2は遮熱部材の断面である。(実施例1) 図3は遮熱構造の要部拡大断面図である。(実施例1) 図4は遮熱構造の要部拡大断面図である。(変形例1) 図5(a)は複合遮熱部材の平面図、図5(b)は複合遮熱部材の側面図、図5(c)は複合遮熱部材の要部拡大図である(変形例2)。 図6はコンテナに遮熱構造を付加した恒温設備の説明図である。(実施例2) 図7は恒温設備の説明図である。(実験例1) 図8は遮熱シートの貼り付けの説明図である。(従来例)
 以下、本発明の実施の形態について、図面を参照しながら説明する。
 <実施例1> 実施例1の遮熱構造20について、図1~図5を参照しながら説明する。
 図1は、遮熱構造20が付加されたプレハブ設備10の断面図である。図1に示すように、プレハブ冷蔵庫、プレハブ冷凍庫等のプレハブ設備10は、板状の複数の壁体12a~12dが箱状に組み立てられた設備であり、壁体12a~12dで囲まれた密閉可能な内部空間18を有する。
 遮熱構造20は、プレハブ設備10の内部空間18に付加される。すなわち、遮熱構造20は、(a)壁体12a~12dの内壁面14a~14dに固定された複数の桟部材22と、(b)内壁面14a~14dを隙間なく覆い、かつ、内壁面14a~14dとの間に空気層16a~16dを形成し、かつ、前記空気層16a~16d内の対流速度が所定値以下となるように、桟部材22に固定されたシート状の遮熱部材30と、を備える。壁体12a~12dの内壁面14a~14dは、プレハブ設備10の内部空間18を形成する内周面である。遮熱部材30で囲まれた内部空間28に、床27、壁、天井等の内装を設けても構わない。
 空気層16a~16dの厚さ、すなわち、内壁面14a~14dと遮熱部材30との間の隙間の寸法は、壁体12a~12dの熱が遮熱部材30(詳しくは、後述する第1の赤外線反射層)に直接伝わる長さ以上が好ましい。例えば、壁体12a~12dの熱が遮熱部材30(詳しくは、後述する第1の赤外線反射層)に直接伝わる長さが15mm未満である場合、空気層16a~16dの厚さは、15mm以上が好ましい。
 空気層16a~16d内の対流速度が小さいほど、対流による熱エネルギーの移動が抑制され、遮熱性能が向上する。そのため、空気層16a~16d内の対流速度は、対流速度の最大速度以下が好ましく、対流速度が0であることが、より好ましい。
 空気層16a~16d内の対流速度は、内壁面14a~14dの温度分布や、空気層16a~16dの厚み等によって変わる。
 例えば、ある条件下では、空気層16a~16dの厚みが24mmまでは、空気層16a~16d内の空気は静止し、空気層16a~16d内の対流速度は0である。空気層16a~16dの厚みが24mmを超えると、空気層16a~16dの厚みが30mmに達するまで、空気層16a~16dの厚みが増すほど、空気層16a~16d内の空気の対流速度が大きくなる。空気層16a~16dの厚みが30mm以上では、空気層16a~16d内の空気の対流速度は最大速度となる。この場合、空気層16a~16dの厚みは30mm以下が好ましく、24mm以下がより好ましい。
 遮熱性能の向上のためは、壁体12a~12dから遮熱部材30に直接伝わる熱エネルギー量と、空気層16a~16d内の対流によって壁体12a~12dから遮熱部材30に伝達される熱エネルギー量との合計を抑制するのが効果的である。遮熱部材30に移動する熱エネルギーの総量が抑制できるのであれば、対流による熱移動の抑制を優先し、空気層16a~16dの厚みは、壁体12a~12dの熱が遮熱部材30に直接伝わる長さ(例えば、15mm未満)にしてもよい。
 桟部材22の寸法や配置は、遮熱性能を考慮して決めることができる。例えば、桟部材22の厚みは、空気層16a~16dの厚みが所定値となるように決める。また、空気層16a~16d内における空気の対流速度が所定値以下となるように、適宜寸法の桟部材22を、適宜箇所に、適宜な間隔を設けて、内壁面14a~14dに固定する。
 図2は、遮熱部材30の断面である。図2に示すように、遮熱部材30は、(a)一対の主面32a,32bを有する基材層32と、(b)基材層32の一対の主面32a,32bのうち、壁体12a~12dの内壁面14a~14d(図1参照)に対向する一方の主面32aに形成された第1の赤外線反射層34と、(c)基材層32の他方の主面32bに形成された第2の赤外線反射層36と、を含む。
 遮熱部材30は、壁体12a~12dからの輻射のうち、第1の赤外線反射層34で反射されずに透過した成分の大部分が、第2の赤外線反射層36で反射される。そのため、遮熱部材30は、第1の赤外線反射層34のみを含む場合(すなわち、第2の赤外線反射層36を含まない場合)に比べ、遮熱性能が向上する。また、遮熱部材30は、表裏を区別せずに用いることができる。さらに、遮熱構造20の内部空間28から壁体12a~12dに熱エネルギーが移動する場合の遮熱性能が向上する。そのため、遮熱部材30が第1及び第2の赤外線反射層34,36を含んでいることが好ましい。
 もっとも、第1の赤外線反射層34のみを含み、第2の赤外線反射層36を含まない遮熱部材30を、遮熱構造20に用いても構わない。
 遮熱部材30の基材層32は、1層のみでも、複数層を含んでも構わなし、内部に気泡を含む発泡系断熱材を用いて構成しても構わない。
 赤外線反射層34,36は、金属箔の貼り付け、金属材料の蒸着、遮熱塗料の塗布などの方法で、基材層32の主面32a,32bに形成することができる。赤外線反射層34,36は、赤外線反射率が高い程、遮熱性能が向上するので、例えば、赤外線反射層34,36の赤外線反射率は、80%以上が好ましく、90%以上がより好ましく、95%以上がさらに一層好ましい。例えば、アルミ箔を用いると、赤外線反射率が95%以上の赤外線反射層34,36を、低コストで形成することができる。
 図3は、遮熱構造20の要部拡大断面図である。図3に示すように、第1の接着層24を介して桟部材22と内壁面14a~14dとが互いに接着されている。また、第2の接着層26を介して桟部材22と遮熱部材30とが互いに接着されている。
 図4は、変形例1の遮熱構造20aの要部拡大断面図である。図4に示すように、桟部材22は、内壁面14a~14dに溶接等で固定された金具40に螺子42を用いて固定されている。遮熱部材30は、螺子や釘などの固定用部材39を用いて桟部材22に固定されている。この場合、固定用部材39から熱が伝わり、遮熱性能が低下する。これを防ぐため、遮熱部材30に遮熱性能を有するテープ38を貼り、固定用部材39が隠れるようにすることが好ましい。
 図3のように、桟部材22と遮熱部材30とが互いに接着されていると、図4のような固定用部材39に起因する遮熱性能の低下は起こらない。
 図3のように、内壁面14a~14dと桟部材22とが互いに接着されていると、図4のような金具40や螺子42が不要となる。そのため、桟部材22の厚みを小さくし、空気層16a~16dの厚みを小さくすることによって、遮熱性能を向上させることが容易である。
 桟部材22は、例えば、ウレタンを柱状に成型した部材が好ましい。桟部材22は、一般の桟と同様に木材を用いることも可能である。しかしながら、木材を用いると、結露等の影響によって、反りや割れが生じたり、カビが生えたりする恐れがある。樹脂は、木材に比べ、結露等の影響を受けにくく、カビ防止も容易である。また、遮熱部材30との接着性が優れた材質を選択することができる。したがって、桟部材22は、樹脂からなることが好ましい。
 次に、遮熱構造を付加する方法について、説明する。
 まず、第1の工程として、複数の桟部材22と、シート状の遮熱部材30とを準備する。次いで、第2の工程として、第1の工程で準備した桟部材22と遮熱部材30とを用いて、内部空間18に遮熱構造20を作製する。
 第1の工程において、桟部材22と遮熱部材30とを別々に準備する代わりに、桟部材22が遮熱部材30に固定されてなる複合遮熱部材50を準備してもよい。
 図5(a)は、複合遮熱部材50の平面図である。図5(b)は、複合遮熱部材50の側面図である。図5(a)及び図5(b)に示すように、複合遮熱部材50は、帯状の遮熱部材30に、断面矩形で柱状の桟部材22が固定されている。桟部材22は、遮熱部材30の長手方向に所定の間隔を設けて、かつ、桟部材22の長手方向が遮熱部材30の長手方向と直交するように、配置されている。複合遮熱部材50はロール状態に巻いた状態で、簡単に保管し搬送することができる。
 図5(c)は、複合遮熱部材50の要部拡大図である。図5(c)に示すように、接着剤や両面テープを用いて遮熱部材30に桟部材22が接着され、遮熱部材30と桟部材22との間に第2の接着層26が形成されている。桟部材22は、遮熱部材30とは反対側の面に、剥離材25で覆われた第1の接着層24が形成されている。剥離材25を剥がすことにより、桟部材22を内壁面14a~14dに簡単に接着することができる。第1の接着層24は、1種類の接着剤で形成されても、特性の異なる複数種類の接着剤が分布するように形成されてもよい。
 なお、複合遮熱部材50は、接着以外の方法で、遮熱部材30に桟部材22が固定されても構わない。
 第1の接着層24及び剥離材25がない複合遮熱部材50を用いても構わない。この場合、複合遮熱部材50の桟部材22は、接着その他の適宜な方法で、内壁面14a~14dに固定する。
 複合遮熱部材50を用いると、内部空間18内において桟部材22に遮熱部材30を固定する作業が不要になるため、内部空間18内において効率よく作業することができる。
 遮熱構造20を作製する第2工程の前に、第3の工程として、内壁面14a~14dの温度分布を測定してもよい。この場合、測定結果を検討し、必要に応じて適宜な対策を追加することによって、遮熱性能をより高めることができる。例えば、内壁面の高温部分の熱源側に遮熱・断熱対策を追加する。あるいは、高温部分の熱を他の部分に逃がす対策を追加する。あるいは、温度分布に応じて、桟部材22の厚みや配置を適宜に選択し、空気層内の空気の対流速度が所定値以下となるようにする。
 遮熱構造20を作製する第2の工程の後に、第4の工程として、遮熱部材30の内壁面14a~14dとは反対側の面(例えば、図2に示す第2の赤外線反射層36)の温度分布を測定する。この場、測定結果に基づいて、遮熱構造20の遮熱性能を保証することできる。また、測定結果から施工不良を発見し、手直し作業を行うことができる。
 温度分布は、例えば赤外線サーモグラフィ技術を用いて測定する。温度分布図は、壁体12a~12dで囲まれたプレハブ設備10の内部空間18の三次元モデルや、遮熱部材30で囲まれた遮熱構造20の内部空間28の三次元モデルに貼り付けて三次元表示すると、全体の温度分布が分かりやすくなる。
 プレハブ設備10に遮熱構造20を付加すると、壁体12a~12dの熱エネルギーは、輻射、対流、伝導の3つの態様で、遮熱部材30で囲まれた遮熱構造20の内部空間28に移動する。遮熱構造20は、輻射、対流、伝導の3つの態様の熱エネルギーの移動を総合的に抑制し、遮熱性能を高めることができる。
 すなわち、輻射による熱エネルギーの移動は、遮熱部材30の第1の赤外線反射層34が、壁体12a~12dからの輻射の大部分を反射することによって、抑制される。対流による熱エネルギーの移動は、空気層16a~16d内の対流速度が所定値以下となることによって、抑制される。伝導による熱エネルギーの移動は、空気層16a~16dの厚さが、壁体12a~12dの熱が第1の赤外線反射層34に直接伝わる長さ以上であることによって、抑制される。
 さらに、プレハブ設備10の内部空間18内において、遮熱部材30で内壁面14a~14dを隙間なく覆うことは、容易である。
 したがって、遮熱されない部分を無くして遮熱性能を高めることが容易である。
 <実施例2> コンテナ60に遮熱構造を付加した実施例2の恒温設備80について、図6を参照しながら説明する。以下では、実施例1との相違点を中心に説明する。
 図6は、コンテナ60に遮熱構造を付加した恒温設備80の説明図である。図6に示すように、壁体が箱状に結合され、壁体で囲まれた内部空間を有するコンテナ60の内壁面に、実施例1と同じ遮熱構造(図示せず)が付加されている。遮熱部材で囲まれた遮熱構造の内部空間には、エアコンの室内機62が設置されている。コンテナ60の上部には、太陽光パネル70が設置されている。
 エアコンの室外機64と、パワーコントローラ72と、蓄電池74とが、コンテナ60の端部に組み込まれ、又は、コンテナ60に隣接して設置されている。
 太陽光パネル70で発電された電力は、パワーコントローラ72を介して、蓄電池74に蓄えられ、あるいは室外機64に供給される。太陽光パネル70の発電量が不足するとき、パワーコントローラ72は、蓄電池74から室外機64に電力を供給する。
 恒温設備80は、次に説明する実験結果から、外部の温度が上昇しても、遮熱構造の内部空間内の温度を一定に保つことができる。
 <実験例1> 実験例1として、図7に示す恒温設備82を準備した。図7に示すように、コンテナ60の内部に、実施例1と同様の遮熱構造20を付加し、遮熱部材で囲まれた遮熱構造20の内部空間に、エアコンの室内機62を設置し、外部に室外機64を設置した。
 遮熱構造20の遮熱部材には、2枚の気泡シートを、気泡を含む部分が***してなる凹凸面同士が互いに噛み合うように貼り合わせた基材層の両面(気泡シートの平坦面)に、赤外線反射層として、赤外線反射率が97%のアルミ箔が貼り付けられたものを用いた。
 比較例1として、コンテナ60に遮熱構造20を付加せず、コンテナ60内に、エアコンの室内機62を設置し、外部に室外機64を設置した。
 実験例1と比較例1の両方のコンテナ60を、周囲の環境が同じ状態になるように、屋外に並べて設置した。夏季に、冷房設定温度が18℃の条件でエアコンを終日運転し、実験例1の遮熱構造の内部空間の温度、比較例1のコンテナ内の温度、エアコンの消費電力等を計測した。
 実験結果から、コンテナに遮熱部材を付加することによって、外部の温度が上昇しても、遮熱構造の内部空間の温度を一定に保つことができ、エアコンの消費電力が減り、エネルギー効率が向上することが分かった。
 具体的には、遮熱構造が付加されていない比較例1では、外部の気温が上昇すると、コンテナ内を設定温度に保つことができず、コンテナ内の温度が設定温度を超えた。例えば、外部の気温が34℃のとき、コンテナ内の温度が27℃まで上昇した。
 一方、遮熱構造が付加された実験例1では、外部の気温が上昇しても、遮熱構造の内部空間の温度を設定温度に保つことができた。例えば、外部の気温が34℃のとき、遮熱構造の内部空間の温度を18℃に保つことができた。
 実験例1の消費電力は、比較例1と比較すると、70%減少した。
 <実験例2> 実験例2として、実験例1のエアコンの代わりに冷凍機を用い、-5℃の温度設定で、消費電力を計測した。比較例2として、同じ条件で、冷凍コンテナの消費電力を計測した。
 実験例2の消費電力は、比較例2の冷凍コンテナと比較すると、約1/10に減少した。
 <応用例> 本発明は、種々の用途に適用することができる。
 運搬車の荷室や運搬用コンテナに、本発明の遮熱構造を付加し、遮熱構造の内部空間に水槽や袋を収納する。水槽や袋には、リキッドスノーや海水氷とともに鮮魚等を収容する。リキッドスノーや海水氷と本発明の遮熱構造と組み合わせることで、長時間に渡って低温状態を保つことができ、冷凍装置なしで長距離の低温輸送が可能となる。
 コンテナに本発明の遮熱構造を付加し、窓や扉等を設け、被災者住宅として使うと、迅速な復興を実現できる。非常用住宅として、予め準備しておいてもよい。遮熱構造の内部空間の内面に、例えば光触媒を含む漆喰を塗布するなど、機能性材料を含む内装材を使用することによって、有害物質の分解等による室内の空気の清浄化、湿度の維持等の効果が得られる。
 コンテナに本発明の遮熱構造を付加し、そのまま、防災備蓄庫等に使用してもよい。遮熱構造の内部空間の温度と湿度を一定に保つ設備を設けると、少ないエネルギーで、コメや野菜の品質を保ちながら貯蔵したり、熟成肉を保管したりすることができる。
 <まとめ> 以上に説明したように、遮熱されない部分を無くして遮熱性能を高めることが容易である。また、CO排出量を削減する効果が得られる。
 なお、本発明は、上記実施の形態に限定されるものではなく、種々変更を加えて実施することが可能である。
 例えば、本発明は、(a)貨物用コンテナ、冷蔵コンテナ、冷凍コンテナ、保温コンテナ、コンテナハウス等の、壁体で囲まれた内部空間を有するコンテナ、(b)プレハブ冷蔵庫、プレハブ冷凍庫、プレハブ保温庫、プレハブ恒温高湿庫、プレハブ収納庫等の、壁体で囲まれた内部空間を有するプレハブ設備、(c)冷蔵車、保冷車、冷凍車などが備える、壁体で囲まれた内部空間を有する荷台設備、などに適用することができる。また、本発明の遮熱構造は、既存・既設のコンテナ、プレハブ設備、荷台設備などに後から付加することもできるし、予め本発明の遮熱構造を付加したコンテナ設備、プレハブ設備、荷台設備などを、製品として製造・販売することもできる。
 10 プレハブ設備
 12a~12d 壁体
 14a~14d 内壁面
 16a~16d 空気層
 18 内部空間
 20,20a 遮熱構造
 18 内部空間
 20 遮熱構造
 22 桟部材
 28 内部空間
 30 遮熱部材
 32 基材層
 32a 一方の主面
 32b 他方の主面
 34 第1の赤外線反射層
 36 第2の赤外線反射層
 50 複合遮熱部材

Claims (11)

  1.  壁体で囲まれた内部空間を有する設備に付加する遮熱構造であって、
     前記壁体の内壁面に固定された複数の桟部材と、
     前記内壁面を隙間なく覆い、かつ、前記内壁面との間に空気層を形成するように、前記桟部材に固定されたシート状の遮熱部材と、
    を備え、
     前記遮熱部材は、
     一対の主面を有する基材層と、
     前記内壁面に対向する一方の前記主面に形成された第1の赤外線反射層と、
    を含むことを特徴とする、遮熱構造。
  2.  前記遮熱部材は、接着により前記桟部材に固定されることを特徴とする、請求項1に記載の遮熱構造。
  3.  前記桟部材は、樹脂からなることを特徴とする、請求項1又は2に記載の遮熱構造。
  4.  前記遮熱部材は、前記基材層の他方の前記主面に形成された第2の赤外線反射層を、さらに含むことを特徴とする、請求項1乃至3のいずれか一つに記載の遮熱構造。
  5.  壁体で囲まれた内部空間を有する設備に、遮熱構造を付加する方法であって、
     複数の桟部材と、シート状の遮熱部材とを準備する第1の工程と、
     前記桟部材と前記遮熱部材とを用いて、前記内部空間に前記遮熱構造を作製する第2の工程と、
    を備え、
     前記第2の工程において、前記桟部材は、前記壁体の内壁面に固定され、前記遮熱部材は、前記内壁面を隙間なく覆い、かつ、前記内壁面との間に空気層を形成するように、前記桟部材に固定され、
     前記遮熱部材は、
     一対の主面を有する基材層と、
     前記内壁面に対向する一方の前記主面に形成された第1の赤外線反射層と、
    を含むことを特徴とする、遮熱構造を付加する方法。
  6.  前記遮熱部材は、接着により前記桟部材に固定されることを特徴とする、請求項5に記載の遮熱構造を付加する方法。
  7.  前記桟部材は、樹脂からなることを特徴とする、請求項5又は6に記載の遮熱構造を付加する方法。
  8.  前記遮熱部材は、前記基材層の他方の前記主面に形成された第2の赤外線反射層を、さらに含むことを特徴とする、請求項5乃至7のいずれか一つに記載の遮熱構造を付加する方法。
  9.  前記第1の工程において、前記桟部材が前記遮熱部材に固定されてなる複合遮熱部材を準備することを特徴とする、請求項5乃至8のいずれか一つに記載の遮熱構造を付加する方法。
  10.  前記第2の工程の前に、前記内壁面の温度分布を測定する第3の工程を、
    さらに備えたことを特徴とする、請求項5乃至9のいずれか一つに記載の遮熱構造を付加する方法。
  11.  前記第2の工程の後に、前記遮熱部材の前記内壁面とは反対側の面の温度分布を測定する第4の工程を、
    さらに備えたことを特徴とする、請求項5乃至10のいずれか一つに記載の遮熱構造を付加する方法。
PCT/JP2017/038075 2016-10-20 2017-10-20 遮熱構造及び遮熱構造を付加する方法 WO2018074603A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018545778A JPWO2018074603A1 (ja) 2016-10-20 2017-10-20 遮熱構造及び遮熱構造を付加する方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-206165 2016-10-20
JP2016206165 2016-10-20

Publications (1)

Publication Number Publication Date
WO2018074603A1 true WO2018074603A1 (ja) 2018-04-26

Family

ID=62018783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/038075 WO2018074603A1 (ja) 2016-10-20 2017-10-20 遮熱構造及び遮熱構造を付加する方法

Country Status (2)

Country Link
JP (1) JPWO2018074603A1 (ja)
WO (1) WO2018074603A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020186040A (ja) * 2019-05-16 2020-11-19 株式会社仲井 コンテナ
WO2021201184A1 (ja) * 2020-03-31 2021-10-07 ダイキン工業株式会社 情報処理装置、収容容器、および、プログラム
JP7313743B1 (ja) * 2022-11-30 2023-07-25 日本遮熱株式会社 移動設備の遮熱構造

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4616975Y1 (ja) * 1967-06-08 1971-06-14
JPS49104903U (ja) * 1972-12-27 1974-09-09
JPS55129910U (ja) * 1979-03-12 1980-09-13
JPS5747423B2 (ja) * 1976-12-09 1982-10-08
JPS6150049A (ja) * 1984-08-06 1986-03-12 Osaka Shosen Mitsui Senpaku Kk 赤外線映像装置の熱画像による冷凍コンテナの断熱性能試験方法
JPH1071659A (ja) * 1997-07-25 1998-03-17 Achilles Corp 板状複合断熱材
JP2003525772A (ja) * 2000-02-10 2003-09-02 ラファエル ヘイフェツ 可撓性反射型断熱構造体
JP2009030344A (ja) * 2007-07-27 2009-02-12 Dow Kakoh Kk 複合断熱材及びそれを用いた外張り断熱構造
JP2010101002A (ja) * 2008-10-21 2010-05-06 Tesuku:Kk 木造建物の通気性外断熱の外壁構造
JP2014020775A (ja) * 2012-07-17 2014-02-03 Nippon Syanetsu Co Ltd 保冷設備

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4616975Y1 (ja) * 1967-06-08 1971-06-14
JPS49104903U (ja) * 1972-12-27 1974-09-09
JPS5747423B2 (ja) * 1976-12-09 1982-10-08
JPS55129910U (ja) * 1979-03-12 1980-09-13
JPS6150049A (ja) * 1984-08-06 1986-03-12 Osaka Shosen Mitsui Senpaku Kk 赤外線映像装置の熱画像による冷凍コンテナの断熱性能試験方法
JPH1071659A (ja) * 1997-07-25 1998-03-17 Achilles Corp 板状複合断熱材
JP2003525772A (ja) * 2000-02-10 2003-09-02 ラファエル ヘイフェツ 可撓性反射型断熱構造体
JP2009030344A (ja) * 2007-07-27 2009-02-12 Dow Kakoh Kk 複合断熱材及びそれを用いた外張り断熱構造
JP2010101002A (ja) * 2008-10-21 2010-05-06 Tesuku:Kk 木造建物の通気性外断熱の外壁構造
JP2014020775A (ja) * 2012-07-17 2014-02-03 Nippon Syanetsu Co Ltd 保冷設備

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020186040A (ja) * 2019-05-16 2020-11-19 株式会社仲井 コンテナ
WO2021201184A1 (ja) * 2020-03-31 2021-10-07 ダイキン工業株式会社 情報処理装置、収容容器、および、プログラム
JP2021162301A (ja) * 2020-03-31 2021-10-11 ダイキン工業株式会社 情報処理装置、収容容器、および、プログラム
JP7121320B2 (ja) 2020-03-31 2022-08-18 ダイキン工業株式会社 情報処理装置、収容容器、および、プログラム
US11927531B2 (en) 2020-03-31 2024-03-12 Daikin Industries, Ltd. Information processing device, storage container, and non-transitory computer readable medium
JP7313743B1 (ja) * 2022-11-30 2023-07-25 日本遮熱株式会社 移動設備の遮熱構造

Also Published As

Publication number Publication date
JPWO2018074603A1 (ja) 2019-08-29

Similar Documents

Publication Publication Date Title
WO2018074603A1 (ja) 遮熱構造及び遮熱構造を付加する方法
US10603865B2 (en) Insulating member and its attaching method
JP5424059B2 (ja) 複層ガラス構造体及び保冷ショーケース
US20190112866A1 (en) Insulating glazing unit, in particular for a climate chamber
JP2005114028A (ja) 真空パネル・断熱材積層断熱プレート
SE9100650D0 (sv) Transportbehaallare foer temperaturkaensliga varor
JP3206373U (ja) 静電場形成装置を設けた鉄道貨物輸送用冷蔵コンテナ
CN206827341U (zh) 一种小型冷藏箱
JP2016037791A (ja) 遮熱及び断熱壁構造物の製造方法並びに遮熱及び断熱壁構造物
PL218475B1 (pl) Kontener transportowo-magazynowy
JP2013241166A (ja) 貨物輸送車
CN104150110A (zh) 一种多贮室冷藏的超长时存贮箱
JP2014020775A (ja) 保冷設備
JP6027931B2 (ja) 空輸用保冷コンテナ
RU120934U1 (ru) Теплоизоляция кузова транспортного средства, преимущественно железнодорожного вагона или контейнера
JPH08313150A (ja) 冷蔵、冷凍車の断熱箱体
CN215765963U (zh) 用于冰吧的隔热装置、冷藏设备
WO2009067007A1 (en) Thermally insulated container provided with at least two stacked layers of vacuum insulation panels
JP2020186040A (ja) コンテナ
DE202005015269U1 (de) Klimafolie zum Kunsttransport
Kumar et al. Development of a cold storage facility for agricultural produce using air conditioner
RU2535502C1 (ru) Контейнер для перевозки и хранения продуктов с поддержанием температурного режима
JP7313743B1 (ja) 移動設備の遮熱構造
RU114073U1 (ru) Теплоизолирующая панель
JP2019098941A (ja) 貨物輸送車及び保冷設備

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17861872

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018545778

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17861872

Country of ref document: EP

Kind code of ref document: A1