WO2018074502A1 - Battery system - Google Patents

Battery system Download PDF

Info

Publication number
WO2018074502A1
WO2018074502A1 PCT/JP2017/037638 JP2017037638W WO2018074502A1 WO 2018074502 A1 WO2018074502 A1 WO 2018074502A1 JP 2017037638 W JP2017037638 W JP 2017037638W WO 2018074502 A1 WO2018074502 A1 WO 2018074502A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
type battery
output
current
temperature
Prior art date
Application number
PCT/JP2017/037638
Other languages
French (fr)
Japanese (ja)
Inventor
晋 山内
茂樹 牧野
大輝 小松
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2018546374A priority Critical patent/JP6752286B2/en
Publication of WO2018074502A1 publication Critical patent/WO2018074502A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery system.
  • a storage battery mounted on an electric vehicle equipped with an electric drive system such as a hybrid vehicle is an important component that affects the mileage and fuel consumption of the electric vehicle and the electric cost of the electric vehicle (hereinafter referred to as EV). .
  • the storage battery deteriorates due to the operating status of the electric vehicle and changes over time, and the performance decreases.
  • the storage battery keeps track of the deterioration state during operation of the electric vehicle and charges and discharges so that the deterioration state does not seriously affect the mileage and fuel consumption. Need to control.
  • Patent Document 1 discloses a system in which a capacity type battery and an output type battery are connected in parallel to each other.
  • the current distribution between the capacity type battery and the output type battery is determined according to the thermal margin of both batteries, and attempts are made to suppress degradation of either battery.
  • SOC state of charge
  • the capacity type battery has a problem that the thermal resistance is larger than that of the output type battery, and once the temperature becomes high, the temperature cannot be easily lowered. Therefore, when the degradation of the battery system is suppressed using the method of Patent Document 1, current is distributed to both the capacity type battery and the output type battery even when a short time output is required. There is a possibility of burdening the battery with a large current. Therefore, there is a possibility that the temperature of the capacity type battery instantaneously increases, and thereafter the temperature of the capacity type battery does not decrease and the deterioration is promoted.
  • the battery system according to the present invention is characterized in that the output type battery and the capacity type battery are connected in parallel, and the current of the capacity type battery is controlled based on the temperature of the output type battery.
  • a battery system when a high output is required, a battery system is provided in which current distribution to a capacity type battery that is less likely to drop in temperature is within a certain range and deterioration of the capacity type battery is suppressed. be able to.
  • the figure which shows an example of the system in connection with this invention The figure which shows an example of a structure of a battery control part.
  • FIG. 1 shows an example of the configuration of a battery system to which the present invention is applied. Since the output voltage of the battery system 100 is a DC voltage that varies depending on the remaining capacity of the battery, the output current, and the like, it may not be suitable for supplying power directly to the load 111. Therefore, in this example, the inverter 110 controlled by the host controller 112 converts the output voltage of the battery system 100 into a three-phase alternating current and supplies it to the load 111. The same configuration is used when a DC voltage, other multiphase AC, or single phase AC is supplied to the load.
  • the electric power output from the load 111 can be stored in the battery system 100 by using the inverter 110 as a bidirectional inverter. Further, by connecting the charging system to the battery system 100 in parallel with the inverter 110, the battery system 100 can be charged as necessary.
  • the battery system 100 provides information related to the battery state such as SOC and SOH useful for controlling the inverter 110 and the load 111, the maximum charge current / discharge current (allowable current) that can be passed, the battery temperature, and the presence / absence of battery abnormality. Send to.
  • the host controller 112 performs energy management, abnormality detection, and the like based on this information. When the host controller 112 determines that the battery system 100 should be disconnected from the inverter 110 or the load 111, the host controller 112 transmits a disconnection instruction to the battery system 100.
  • the battery system 100 flows to one or more battery modules 105 including a plurality of batteries, a battery controller 103 that monitors, estimates, and controls the state of the battery system 100, a relay 106 that intermittently outputs the battery system 100, and the battery. From a current sensor 108 that measures current, a voltage sensor 202 that measures battery voltage, a leakage sensor 203 that measures insulation resistance between the battery system 100 and, for example, ground, and a circuit breaker 107 that is provided according to the output voltage of the battery system Composed.
  • the battery module 105 includes a temperature sensor and a plurality of unit batteries, measures the temperature inside the module and the voltage of each battery, and performs charging / discharging in units of single cells as necessary. As a result, voltage monitoring and voltage adjustment can be performed in units of single cells, and temperature information necessary for estimating the state of the battery whose characteristics change according to temperature can be measured.
  • a current sensor 108 and a relay 106 are connected to the battery module 105 in series with the battery module 105.
  • the current value necessary for monitoring and estimating the state of the battery module 105 can be measured, and the output of the battery system 100 can be interrupted based on a command from the host controller.
  • a circuit breaker 107 may be added to shut off power input / output to the battery system 100 manually. By forcibly shutting off using the circuit breaker 107, it is possible to prevent an electric shock accident or a short-circuit accident when assembling or disassembling the battery system 100 or when dealing with an accident of a device equipped with the battery system 100. .
  • a relay 106, a circuit breaker 107, and a current sensor 108 may be provided in each row, or the relay 106 and the circuit breaker 107 are provided only at the output portion of the battery system 100.
  • a current sensor 108 may be provided.
  • the relay 106, the circuit breaker 107, and the current sensor 108 may be provided in both of each column and the output unit of the battery system 100.
  • the relay 106 may be configured by one relay, or may be configured by a set of a main relay, a precharge relay, and a resistor. In the latter configuration, a resistor is arranged in series with the precharge relay, and these are connected in parallel with the main relay.
  • a precharge relay When connecting the relay 106, first a precharge relay is connected. Since the current flowing through the precharge relay is limited by the resistance connected in series, the inrush current that can occur in the former configuration can be limited. Then, after the current flowing through the precharge relay becomes sufficiently small, the main relay is connected.
  • the timing of main relay connection may be based on the current flowing through the precharge relay, or may be based on the voltage applied to the resistor or the voltage across the terminals of the main relay, or the time elapsed since the precharge relay was connected. May be used as a reference.
  • the voltage sensor 202 is connected in parallel to one or a plurality of battery modules 105 or one series of the battery modules 105, and measures a voltage value necessary for monitoring and estimating the state of the battery module 105.
  • a leakage sensor 203 is connected to the battery module 105 to detect a state where a leakage can occur before the leakage occurs, that is, a state where the insulation resistance is reduced, thereby preventing an accident from occurring.
  • the values measured by the battery module 105, the current sensor 108, the voltage sensor 202, and the leakage sensor 203 are transmitted to the battery controller 103, and the battery controller 103 performs battery state monitoring, estimation, and control based on the values.
  • the control refers to charging / discharging for each unit battery for equalizing the voltage of each unit battery, power control of each sensor, addressing of the sensor, control of the relay 106 connected to the battery controller 103, and the like.
  • the CPU 201 performs calculations necessary for battery state monitoring, estimation, and control.
  • the battery system 100 may include a system cooling fan, and the battery controller 103 may control the fan. As described above, the battery system 100 performs the cooling until the amount of communication with the host controller can be reduced.
  • the battery controller 103 may incorporate a voltage sensor 202 or a leakage sensor 203. By doing in this way, the number of harnesses can be reduced as compared with the case where individual sensors are prepared, and the labor for sensor installation can also be reduced. However, since the scale (maximum output voltage, current, etc.) of the battery system 100 that can be handled by the battery controller 103 is limited by incorporating the sensor, the voltage sensor 202 and the leakage sensor 203 are intentionally separated from the battery controller 103. You may give a degree of freedom.
  • FIG. 2 shows a configuration diagram of the battery control unit 201 according to the present invention.
  • the battery control unit 201 indicates the CPU shown in FIG.
  • the battery control unit 201 has a current control unit 204.
  • the current control unit 204 calculates parameters related to the control, but in the present invention, since it does not touch that point, it is omitted from the configuration diagram of FIG.
  • the current control unit 204 acquires battery information (current information, voltage information, etc.) and temperature information of the output type battery 105a from the output type battery 105a.
  • the current control unit 204 calculates a current value to be output from the capacity type battery 105b based on the temperature information of the output type battery 105a. Specific control in the current control unit 204 will be described later.
  • FIG. 3 shows specific output waveforms of the output type battery 105a and the capacity type battery 105b.
  • the solid line represents the output from the output type battery 105a
  • the dotted line represents the output from the capacity type battery. This movement will be briefly described.
  • the start time of the vehicle is assumed to be time t0. Since the vehicle started at time t0 uses the output for acceleration, the output (discharge current) of both the output type battery 105a and the capacity type battery 105b rises. When the acceleration ends and time t1 is reached at which no large output is required, the discharge current from the output type battery 105a disappears, and only the output from the capacity type battery 105b. At this time, since the output type battery 105a is stopped, heat is not generated, and the cooling of the output type battery 105a proceeds.
  • a charging current flows through the capacity type battery 105b.
  • the charging current flows to the output type battery 105a, so that no extra addition is applied to the capacity type battery 105b.
  • the charging of the output type battery 105a stops and only the capacity type battery 105b is charged. Accordingly, from time t4 to time t5, the output type battery 105a does not generate heat, and the output type battery 105a is further cooled.
  • the output type battery 105a has a feature that its thermal capacity is small but its thermal resistance is small. Therefore, even if a high output is output in a short time, the temperature rise of the battery is small due to the small thermal resistance. Therefore, even if the output type battery 105a outputs a large current in a short time, the battery temperature does not increase so much, so it is quickly cooled and returned to the original temperature, and the temperature decreases even after a short rest as shown in FIG. .
  • the capacity-type battery 105b is characterized by a large heat capacity and a large thermal resistance. Therefore, there is a problem that once the temperature becomes high, it takes time to cool down.
  • the output type battery 105a corresponds to the required output from the viewpoint of suppressing deterioration of the battery. The reason is that, as described above, the output type battery 105a is easier to lower the temperature.
  • the battery control unit 201 determines current command values of the output type battery 105a and the capacity type battery 105b from the battery information and temperature information of the output type battery 105a and the battery information and temperature information of the capacity type battery 105b.
  • a one-dot chain line shown in FIG. 4 is a current command value of the output type battery 105 a output from the battery control unit 201.
  • FIG. 4 is an example in which the current command value is the same value as the upper limit current value.
  • the current control unit 204 outputs a current command value that limits the current of the output type battery 105a.
  • FIG. 5 is a diagram showing that the current generated by the battery system 100 is the sum of the output current of the output type battery 105a and the capacity type battery 105b.
  • the output current of the output type battery 105a is limited as shown in FIG. 4, if the output current of the capacity type battery 105b is not changed, the current value output from the battery system 100 becomes small after the temperature T1.
  • the battery control unit 201 outputs a current command value for increasing the output from the capacity type battery 105b so as to compensate for the shaded portion after the temperature T1 shown in FIG.
  • the capacity type battery 105b is controlled to increase the output current and satisfy the current value required for the output type battery 105a. That is, the current of the capacity type battery 105b is controlled based on the temperature information of the output type battery 105a. More specifically, the battery control unit 201 performs control to increase the current value of the capacity type battery 105b when the temperature of the output type battery 105a becomes equal to or higher than a predetermined value.
  • FIG. 6 is a diagram showing a control flow of the present invention.
  • step S600 the control of the present invention starts.
  • step S601 it is determined whether the currently requested power can be covered only by the capacity type battery 105b. When it can cover only with the capacity type battery 105b, it progresses to step S607, and also returns to step S601.
  • step S601 if the requested output cannot be covered only by the capacity type battery 105b in step S601, the process proceeds to step S602, and the output type battery 105a bears the shortage output.
  • step S603 it is determined whether or not the output type battery 105a is equal to or higher than a predetermined temperature T1. If it is determined that the temperature of the output type battery 105a is equal to or higher than T1, the process proceeds to step S604, where the output (charge / discharge current) of the output type battery 105a is limited, and the capacity type battery with respect to power that cannot be covered by the output type battery 105a Compensate with 105b. Then, in step S605, it is determined again whether the required power can be covered only by the capacity type battery 105b.
  • step S606 When the required power can be provided only by the capacity type battery 105b, the process proceeds to step S606, and charging / discharging of the output type battery 105a is stopped to reduce the temperature of the output type battery 105a as much as possible. Then, the process proceeds to step S607 and returns to step S601. On the other hand, if the requested output cannot be covered only by the capacity type battery 105b in step S605, the process returns to step S604.
  • step S603 If the temperature of the output type battery 105a is lower than T1 in step S603, the process proceeds to step S607 and returns to step S601.
  • FIG. 7 is a comparison of the battery deterioration state of the battery system 100 using the present invention and the conventional battery system.
  • the solid line shows the deterioration state of the battery system 100 when the present invention is used, and the dotted line shows the deterioration state of the conventional battery system.
  • the battery system 100 using the present invention is less deteriorated than the conventional battery system 100.
  • the power required for the output type battery 105a is reduced when the temperature of the output type battery 105a reaches T1.
  • the capacity of the output type battery 105b is increased, that is, according to the temperature of the output type battery 105a.
  • weighting the output of the battery 105b is also a method of weighting the output of the battery 105b.
  • the battery system 100 connects the output type battery 105a and the capacity type battery 105b in parallel, and the current of the capacity type battery 105b is controlled based on the temperature of the output type battery 105a.
  • the battery system 100 includes a current control unit 104 that controls input / output currents of the output type battery 105a and the capacity type battery 105b. With such a configuration, it is possible to prevent both the output type battery 105a and the capacity type battery 105b from reaching a predetermined temperature or higher.
  • the current control unit 104 controls the current so that the input / output current amount of the capacity type battery 105b increases when the temperature of the output type battery 105a becomes higher than a predetermined temperature.
  • the input / output current of the capacity type battery 105b increases as the temperature increases after the current control unit 104 exceeds the predetermined temperature set in advance. Control the current to By adopting such a configuration, it is possible to further reduce the load applied to the output type battery 105a. Therefore, it is possible to suppress the temperature rise of the output type battery 105a and further suppress deterioration.
  • the present invention is not limited to the above-described embodiments, and various designs can be made without departing from the spirit of the present invention described in the claims. It can be changed.
  • the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described.
  • a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment.
  • 105a output type battery
  • 105b capacity type battery
  • 110 inverter
  • 201 battery control unit (CPU)
  • 204 current control unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

A battery system 100 in which an output-type battery 105a and a capacity-type battery 105b are connected in parallel, and the current of the capacity-type battery 105b is controlled on the basis of the temperature of the output-type battery 105a. As a result, it is possible to provide a battery system which, when high output is required, suppresses the deterioration of the capacity-type battery thereof by keeping the current distribution to the capacity-type battery, the temperature of which is more difficult to lower, to within a set range.

Description

電池システムBattery system
 本発明は、電池システムに関する。 The present invention relates to a battery system.
 ハイブリッド自動車(以下、HEV)等の電動駆動システムを備えた電動車両に搭載される蓄電池は、電動車両の走行距離や燃費、電気自動車(以下、EV)の電費に影響を与える重要な部品である。蓄電池は電動車両の稼働状況や経年変化により劣化し、性能が低下する。電動車両の走行距離や燃費を維持するため、蓄電池は電動車両の稼働中にその劣化状態を逐次把握し、劣化状態が走行距離や燃費に深刻な影響を与えない程度を維持するよう充放電を制御する必要がある。 A storage battery mounted on an electric vehicle equipped with an electric drive system such as a hybrid vehicle (hereinafter referred to as HEV) is an important component that affects the mileage and fuel consumption of the electric vehicle and the electric cost of the electric vehicle (hereinafter referred to as EV). . The storage battery deteriorates due to the operating status of the electric vehicle and changes over time, and the performance decreases. In order to maintain the mileage and fuel consumption of electric vehicles, the storage battery keeps track of the deterioration state during operation of the electric vehicle and charges and discharges so that the deterioration state does not seriously affect the mileage and fuel consumption. Need to control.
 また近年電池システムに容量型電池と出力型電池の2つの異なる種類の電池を接続し、電力要求に応じて容量型電池、出力型電池のそれぞれで役割分担をしようという考えがある。このような電池システムにおいても劣化の進行を抑制する試みがなされている。 Also, in recent years, there is an idea that two different types of batteries, a capacity type battery and an output type battery, are connected to the battery system, and the role is divided between the capacity type battery and the output type battery according to the power demand. Even in such a battery system, attempts have been made to suppress the progress of deterioration.
 特許文献1には、容量型電池と出力型電池を互いに並列に接続したシステムが開示されている。 Patent Document 1 discloses a system in which a capacity type battery and an output type battery are connected in parallel to each other.
特開2004-364350号公報JP 2004-364350 A
 上記特許文献1のシステムでは、両電池の熱的な余裕度に応じて、容量型電池及び出力型電池の電流分配を決定し、いずれの電池の劣化も抑制しようとしている。このような方法を用いた場合、出力型電池も容量型電池も互いに充電状態(State Of Charge、以下SOC)が変動し、特に容量型電池のSOCが変動してしまう。 In the system of Patent Document 1, the current distribution between the capacity type battery and the output type battery is determined according to the thermal margin of both batteries, and attempts are made to suppress degradation of either battery. When such a method is used, the state of charge (hereinafter referred to as SOC) varies between the output type battery and the capacity type battery, and particularly the SOC of the capacity type battery changes.
 一方で容量型電池は、出力型電池よりも熱抵抗が大きく、一度高温になると簡単には温度が下がらないという問題がある。そのため、特許文献1の方法を使って電池システムの劣化を抑制した場合、短時間の出力が必要とされる場合にも容量型電池と出力型電池の両方に電流を分配してしまい、容量型電池に大きな電流を負担させる可能性がある。そのため、瞬間的に容量型電池の温度が上昇し、その後容量型電池の温度が低下せず劣化が促進されてしまうおそれがある。 On the other hand, the capacity type battery has a problem that the thermal resistance is larger than that of the output type battery, and once the temperature becomes high, the temperature cannot be easily lowered. Therefore, when the degradation of the battery system is suppressed using the method of Patent Document 1, current is distributed to both the capacity type battery and the output type battery even when a short time output is required. There is a possibility of burdening the battery with a large current. Therefore, there is a possibility that the temperature of the capacity type battery instantaneously increases, and thereafter the temperature of the capacity type battery does not decrease and the deterioration is promoted.
 本発明は、高出力が要求される場合に、より温度が下がりにくい容量型電池への電流分配を一定範囲内に収め、容量型電池の劣化を抑制した電池システムを提供することを課題とする。 It is an object of the present invention to provide a battery system in which current distribution to a capacity type battery that is more difficult to lower the temperature is kept within a certain range when high output is required, and the deterioration of the capacity type battery is suppressed. .
 上記課題を解決するため、本発明に記載の電池システムは、出力型電池と容量型電池を並列に接続した、容量型電池の電流は、出力型電池の温度に基づいて制御されることを特徴とする。 In order to solve the above problems, the battery system according to the present invention is characterized in that the output type battery and the capacity type battery are connected in parallel, and the current of the capacity type battery is controlled based on the temperature of the output type battery. And
 本発明の電池システムによれば、高出力が要求される場合に、より温度が下がりにくい容量型電池への電流分配を一定範囲内に収め、容量型電池の劣化を抑制した電池システムを提供することができる。 According to the battery system of the present invention, when a high output is required, a battery system is provided in which current distribution to a capacity type battery that is less likely to drop in temperature is within a certain range and deterioration of the capacity type battery is suppressed. be able to.
本発明に関わるシステムの一例を示す図The figure which shows an example of the system in connection with this invention 電池制御部の構成の一例を示す図The figure which shows an example of a structure of a battery control part. 本発明に関わる電池システム100の充放電電流と時間の関係を示す図The figure which shows the relationship between charging / discharging electric current of battery system 100 in connection with this invention, and time. 本発明に関わる出力型電池105aの充放電電流と時間の関係を示す図The figure which shows the relationship between charging / discharging electric current of the output type battery 105a in connection with this invention, and time. 本発明に関わる出力型電池105a及び容量型電池105bの充放電電流と時間の関係を示す図The figure which shows the relationship between charging / discharging electric current of output type battery 105a and capacity type battery 105b concerning this invention, and time. 本発明に関わる実施例のフローチャートを示す図The figure which shows the flowchart of the Example in connection with this invention. 本発明の電池システムと従来の電池システムとの劣化比較図Comparison of deterioration between the battery system of the present invention and the conventional battery system
 以下、図面を用いて実施例を説明する。 Hereinafter, examples will be described with reference to the drawings.
 以下本発明の実施形態について図面を参照して説明する。図1は本発明を適用する電池システムの構成の一例である。電池システム100の出力電圧は、電池の残容量や出力電流等により変動する直流電圧のため、負荷111に直接電力を供給するには適さない場合がある。そこでこの例では上位コントローラ112により制御されるインバータ110により電池システム100の出力電圧を三相交流に変換し負荷111に供給している。負荷に直流電圧や他の多相交流、単相交流を供給する場合も同様の構成となる。また、負荷111が電力を出力する場合はインバータ110を双方向インバータとすることにより、負荷111が出力した電力を電池システム100に蓄えることができる。また、インバータ110と並列に充電システムを電池システム100に接続することで、必要に応じ電池システム100を充電することも可能である。 Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an example of the configuration of a battery system to which the present invention is applied. Since the output voltage of the battery system 100 is a DC voltage that varies depending on the remaining capacity of the battery, the output current, and the like, it may not be suitable for supplying power directly to the load 111. Therefore, in this example, the inverter 110 controlled by the host controller 112 converts the output voltage of the battery system 100 into a three-phase alternating current and supplies it to the load 111. The same configuration is used when a DC voltage, other multiphase AC, or single phase AC is supplied to the load. Moreover, when the load 111 outputs electric power, the electric power output from the load 111 can be stored in the battery system 100 by using the inverter 110 as a bidirectional inverter. Further, by connecting the charging system to the battery system 100 in parallel with the inverter 110, the battery system 100 can be charged as necessary.
 電池システム100はインバータ110や負荷111の制御に有用なSOCやSOH、流すことのできる最大充電電流・放電電流(許容電流)、電池温度、電池異常の有無等の電池状態に関する情報を上位コントローラ112に送信する。上位コントローラ112はこれらの情報に基づき、エネルギーマネージメントや異常検知等を行う。また上位コントローラ112は電池システム100をインバータ110または負荷111から切り離すべきと判断した場合は切断指示を電池システム100に対し送信する。 The battery system 100 provides information related to the battery state such as SOC and SOH useful for controlling the inverter 110 and the load 111, the maximum charge current / discharge current (allowable current) that can be passed, the battery temperature, and the presence / absence of battery abnormality. Send to. The host controller 112 performs energy management, abnormality detection, and the like based on this information. When the host controller 112 determines that the battery system 100 should be disconnected from the inverter 110 or the load 111, the host controller 112 transmits a disconnection instruction to the battery system 100.
 電池システム100は複数個の電池からなる1台以上の電池モジュール105と、電池システム100の状態を監視・推定・制御するバッテリコントローラ103、電池システム100の出力を断続するリレー106、電池に流れた電流を計測する電流センサ108、電池電圧を計測する電圧センサ202、電池システム100と例えばアースとの間の絶縁抵抗を計測する漏電センサ203、そして電池システムの出力電圧に応じ設けられる遮断器107から構成される。 The battery system 100 flows to one or more battery modules 105 including a plurality of batteries, a battery controller 103 that monitors, estimates, and controls the state of the battery system 100, a relay 106 that intermittently outputs the battery system 100, and the battery. From a current sensor 108 that measures current, a voltage sensor 202 that measures battery voltage, a leakage sensor 203 that measures insulation resistance between the battery system 100 and, for example, ground, and a circuit breaker 107 that is provided according to the output voltage of the battery system Composed.
 電池モジュール105は温度センサ及び複数個の単位電池を有し、モジュール内部の温度や各電池の電圧を計測し、また必要に応じ単電池単位での充放電を行う。これにより単電池単位での電圧監視や電圧調整が可能となり、また温度に応じて特性が変化する電池の状態推定に必要な温度情報を計測可能となる。 The battery module 105 includes a temperature sensor and a plurality of unit batteries, measures the temperature inside the module and the voltage of each battery, and performs charging / discharging in units of single cells as necessary. As a result, voltage monitoring and voltage adjustment can be performed in units of single cells, and temperature information necessary for estimating the state of the battery whose characteristics change according to temperature can be measured.
 電池モジュール105には電流センサ108とリレー106を電池モジュール105に直列に接続する。これにより電池モジュール105の状態を監視・推定するために必要な電流値が計測可能となり、また電池システム100の出力を上位コントローラの指令に基づき断続可能となる。電池モジュールがたとえば100V以上の高電圧となる場合は人力で電池システム100への電力入出力を遮断するための遮断器107を追加することがある。遮断器107を用いて強制的に遮断を行うことで、電池システム100の組み立て時や解体時、電池システム100を搭載した装置の事故対応時に感電事故や短絡事故の発生を防ぐことが可能となる。なお、電池モジュール105が複数台並列に接続されている場合は各列にリレー106、遮断器107、電流センサ108を設けてもよいし、電池システム100の出力部分にのみリレー106、遮断器107、電流センサ108を設けてもよい。また、各列および電池システム100の出力部の両方にリレー106、遮断器107、電流センサ108を設けてもよい。 A current sensor 108 and a relay 106 are connected to the battery module 105 in series with the battery module 105. As a result, the current value necessary for monitoring and estimating the state of the battery module 105 can be measured, and the output of the battery system 100 can be interrupted based on a command from the host controller. When the battery module has a high voltage of, for example, 100 V or higher, a circuit breaker 107 may be added to shut off power input / output to the battery system 100 manually. By forcibly shutting off using the circuit breaker 107, it is possible to prevent an electric shock accident or a short-circuit accident when assembling or disassembling the battery system 100 or when dealing with an accident of a device equipped with the battery system 100. . Note that when a plurality of battery modules 105 are connected in parallel, a relay 106, a circuit breaker 107, and a current sensor 108 may be provided in each row, or the relay 106 and the circuit breaker 107 are provided only at the output portion of the battery system 100. A current sensor 108 may be provided. Moreover, the relay 106, the circuit breaker 107, and the current sensor 108 may be provided in both of each column and the output unit of the battery system 100.
 リレー106は1台のリレーで構成してもよいし、メインリレーとプリチャージリレー、抵抗の組で構成してもよい。後者の構成ではプリチャージリレーと直列に抵抗を配置し、これらをメインリレーと並列接続する。そしてリレー106を接続する場合、まずプリチャージリレーを接続する。プリチャージリレーを流れる電流は直列接続した抵抗により制限されるため、前者の構成で生じうる突入電流を制限することができる。そしてプリチャージリレーを流れる電流が十分小さくなったのちにメインリレーを接続する。メインリレー接続のタイミングはプリチャージリレーを流れる電流を基準にしてもよいし、抵抗にかかる電圧やメインリレーの端子間電圧を基準にしてもよく、またプリチャージリレーを接続してから経過した時間を基準にしてもよい。 The relay 106 may be configured by one relay, or may be configured by a set of a main relay, a precharge relay, and a resistor. In the latter configuration, a resistor is arranged in series with the precharge relay, and these are connected in parallel with the main relay. When connecting the relay 106, first a precharge relay is connected. Since the current flowing through the precharge relay is limited by the resistance connected in series, the inrush current that can occur in the former configuration can be limited. Then, after the current flowing through the precharge relay becomes sufficiently small, the main relay is connected. The timing of main relay connection may be based on the current flowing through the precharge relay, or may be based on the voltage applied to the resistor or the voltage across the terminals of the main relay, or the time elapsed since the precharge relay was connected. May be used as a reference.
 電圧センサ202は1台または複数台の電池モジュール105、または電池モジュール105の各1直列に対し並列に接続され、電池モジュール105の状態監視・推定に必要な電圧値を計測する。また、電池モジュール105には漏電センサ203が接続され、漏電が生じる前に漏電が生じうる状態、すなわち絶縁抵抗が低下した状態を検知し事故の発生を予防可能とする。 The voltage sensor 202 is connected in parallel to one or a plurality of battery modules 105 or one series of the battery modules 105, and measures a voltage value necessary for monitoring and estimating the state of the battery module 105. In addition, a leakage sensor 203 is connected to the battery module 105 to detect a state where a leakage can occur before the leakage occurs, that is, a state where the insulation resistance is reduced, thereby preventing an accident from occurring.
 電池モジュール105、電流センサ108、電圧センサ202、漏電センサ203が計測した値はバッテリコントローラ103に送信され、バッテリコントローラ103はこれを元に電池の状態監視や推定、制御を行う。ここで制御とは、例えば各単位電池の電圧を均等化するための単位電池毎の充放電や、各センサの電源制御、センサのアドレッシング、バッテリコントローラ103に接続されたリレー106の制御等を指す。電池の状態監視や推定、制御に必要な演算はCPU201が行う。また電池システム100にはシステム冷却用のファンが含まれてもよく、その制御をバッテリコントローラ103が行うこともある。このように冷却まで電池システム100が行うことで、上位コントローラとの通信量を削減することが可能となる。 The values measured by the battery module 105, the current sensor 108, the voltage sensor 202, and the leakage sensor 203 are transmitted to the battery controller 103, and the battery controller 103 performs battery state monitoring, estimation, and control based on the values. Here, the control refers to charging / discharging for each unit battery for equalizing the voltage of each unit battery, power control of each sensor, addressing of the sensor, control of the relay 106 connected to the battery controller 103, and the like. . The CPU 201 performs calculations necessary for battery state monitoring, estimation, and control. The battery system 100 may include a system cooling fan, and the battery controller 103 may control the fan. As described above, the battery system 100 performs the cooling until the amount of communication with the host controller can be reduced.
 バッテリコントローラ103は電圧センサ202や漏電センサ203を内蔵してもよい。このようにすることで個別のセンサを用意する場合にくらべハーネス本数を減らし、センサ取り付けの手間も削減できる。ただしセンサを内蔵することでバッテリコントローラ103が対応可能な電池システム100の規模(最大出力電圧、電流等)が限定されてしまうため、あえて電圧センサ202や漏電センサ203をバッテリコントローラ103とは別部品とすることで自由度を持たせてもよい。 The battery controller 103 may incorporate a voltage sensor 202 or a leakage sensor 203. By doing in this way, the number of harnesses can be reduced as compared with the case where individual sensors are prepared, and the labor for sensor installation can also be reduced. However, since the scale (maximum output voltage, current, etc.) of the battery system 100 that can be handled by the battery controller 103 is limited by incorporating the sensor, the voltage sensor 202 and the leakage sensor 203 are intentionally separated from the battery controller 103. You may give a degree of freedom.
 図2に、本発明に関わる電池制御部201の構成図を示す。電池制御部201は図1で示すCPUを指す。電池制御部201は電流制御部204を有する。この電流制御部204は、制御に拘わるパラメータを演算しているが、本発明では特段その点に触れないため、図2の構成図からは割愛する。 FIG. 2 shows a configuration diagram of the battery control unit 201 according to the present invention. The battery control unit 201 indicates the CPU shown in FIG. The battery control unit 201 has a current control unit 204. The current control unit 204 calculates parameters related to the control, but in the present invention, since it does not touch that point, it is omitted from the configuration diagram of FIG.
 続いて電流制御部204について説明する。電流制御部204は出力型電池105aより、電池情報(電流情報、電圧情報等)及び出力型電池105aの温度情報を取得する。電流制御部204は、出力型電池105aの温度情報に基づいて、容量型電池105bが出力すべき電流値を演算する。この電流制御部204での具体的な制御については後述する。 Next, the current control unit 204 will be described. The current control unit 204 acquires battery information (current information, voltage information, etc.) and temperature information of the output type battery 105a from the output type battery 105a. The current control unit 204 calculates a current value to be output from the capacity type battery 105b based on the temperature information of the output type battery 105a. Specific control in the current control unit 204 will be described later.
 図3に、出力型電池105aと容量型電池105bの具体的な出力波形を示す。実線は出力型電池105aによる出力を、点線は容量型電池による出力を示したものである。この動きについて簡単に説明する。車両の始動時を時刻t0とする。時刻t0で始動した車両は加速に出力を使うため、出力型電池105a及び容量型電池105bの両方の出力(放電電流)が立ち上がる。加速が終了し大きな出力が求められなくなる時刻t1に到達すると、出力型電池105aからの放電電流は無くなり、容量型電池105bからの出力のみとなる。このとき出力型電池105aは停止しているため、発熱が無くなり、出力型電池105aの冷却が進む。 FIG. 3 shows specific output waveforms of the output type battery 105a and the capacity type battery 105b. The solid line represents the output from the output type battery 105a, and the dotted line represents the output from the capacity type battery. This movement will be briefly described. The start time of the vehicle is assumed to be time t0. Since the vehicle started at time t0 uses the output for acceleration, the output (discharge current) of both the output type battery 105a and the capacity type battery 105b rises. When the acceleration ends and time t1 is reached at which no large output is required, the discharge current from the output type battery 105a disappears, and only the output from the capacity type battery 105b. At this time, since the output type battery 105a is stopped, heat is not generated, and the cooling of the output type battery 105a proceeds.
 一方で停止時時刻t2には、はじめに容量型電池105bに充電電流が流れる。しかし時刻t3で所定の電流値以上の充電電流が流れると出力型電池105aに充電電流が流れ、容量型電池105bに余計な付加がかからないようにする。そして充電電流値が所定値以下となる時刻t4から時刻t5では、出力型電池105aの充電は止まり、容量型電池105bのみに充電されることとなる。従って、時刻t4~時刻t5までは出力型電池105aの発熱が無くなり、出力型電池105aの冷却が進むこととなる。 On the other hand, at the time t2 at the stop time, first, a charging current flows through the capacity type battery 105b. However, when a charging current greater than or equal to a predetermined current value flows at time t3, the charging current flows to the output type battery 105a, so that no extra addition is applied to the capacity type battery 105b. Then, from time t4 to time t5 when the charging current value becomes equal to or less than the predetermined value, the charging of the output type battery 105a stops and only the capacity type battery 105b is charged. Accordingly, from time t4 to time t5, the output type battery 105a does not generate heat, and the output type battery 105a is further cooled.
 続いて出力型電池105aと容量型電池105bの特性の違いについて説明する。出力型電池105aは、熱容量は小さいが熱抵抗は小さい、という特徴を持つ。そのため、短時間に高出力を出したとしても、熱抵抗が小さいことによって、電池の温度上昇が小さい。従って、出力型電池105aは短時間に大きな電流を出したとしても電池温度の上昇が少ないため、すぐに冷却され元の温度に戻り、図3に示すような短時間の休息でも温度が低下する。 Subsequently, a difference in characteristics between the output type battery 105a and the capacity type battery 105b will be described. The output type battery 105a has a feature that its thermal capacity is small but its thermal resistance is small. Therefore, even if a high output is output in a short time, the temperature rise of the battery is small due to the small thermal resistance. Therefore, even if the output type battery 105a outputs a large current in a short time, the battery temperature does not increase so much, so it is quickly cooled and returned to the original temperature, and the temperature decreases even after a short rest as shown in FIG. .
 一方で、容量型電池105bは熱容量が大きく、熱抵抗も大きいという特徴をもつ。そのため、一度高温になると冷却まで時間がかかるという問題がある。 On the other hand, the capacity-type battery 105b is characterized by a large heat capacity and a large thermal resistance. Therefore, there is a problem that once the temperature becomes high, it takes time to cool down.
 以上のように、出力型電池105aと容量型電池105bの特徴を考慮すると、容量型電池105bは出力変動が少ない方が良く、例えば図3に示すように一定出力I1とし、一定出力I1を超える分については出力型電池105aで要求出力に対応する方が電池の劣化抑制という観点から望ましい。理由は上述した通り、出力型電池105aの方が簡易に温度を下げやすいからである。 As described above, in consideration of the characteristics of the output type battery 105a and the capacity type battery 105b, it is better that the capacity type battery 105b has less output fluctuation. For example, as shown in FIG. 3, the output is constant output I1 and exceeds the constant output I1. Regarding the minute, it is preferable that the output type battery 105a corresponds to the required output from the viewpoint of suppressing deterioration of the battery. The reason is that, as described above, the output type battery 105a is easier to lower the temperature.
 続いて図4を用いて本発明の原理を説明する。電池制御部201は、出力型電池105aの電池情報、温度情報、及び容量型電池105bの電池情報、温度情報から出力型電池105aと容量型電池105bの電流指令値を決定する。図4に示す一点鎖線は、電池制御部201から出力された出力型電池105aの電流指令値である。なお図4は、電流指令値が上限電流値と同一の値となっている例である。 Subsequently, the principle of the present invention will be described with reference to FIG. The battery control unit 201 determines current command values of the output type battery 105a and the capacity type battery 105b from the battery information and temperature information of the output type battery 105a and the battery information and temperature information of the capacity type battery 105b. A one-dot chain line shown in FIG. 4 is a current command value of the output type battery 105 a output from the battery control unit 201. FIG. 4 is an example in which the current command value is the same value as the upper limit current value.
 図4の縦軸は出力型電池105aの電流値であり、横軸は出力型電池105aの電池温度である。出力型電池105aの温度が温度T1に到達すると、電流制御部204が出力型電池105aの電流を制限する電流指令値を出力する。 4 is the current value of the output type battery 105a, and the horizontal axis is the battery temperature of the output type battery 105a. When the temperature of the output type battery 105a reaches the temperature T1, the current control unit 204 outputs a current command value that limits the current of the output type battery 105a.
 図5は電池システム100が出す電流が、出力型電池105aの出力電流と容量型電池105bの和であると言うことを示す図である。出力型電池105aの出力電流を図4に示す制限を行った場合に容量型電池105bの出力電流を変動させないと、温度T1以降では、電池システム100から出力される電流値は小さくなる。 FIG. 5 is a diagram showing that the current generated by the battery system 100 is the sum of the output current of the output type battery 105a and the capacity type battery 105b. When the output current of the output type battery 105a is limited as shown in FIG. 4, if the output current of the capacity type battery 105b is not changed, the current value output from the battery system 100 becomes small after the temperature T1.
 本発明では、電池制御部201が図4に示した温度T1以降の斜線部を補填するように容量型電池105bからの出力を上げる電流指令値を出力する。それを受け、容量型電池105bは出力電流を上げ、出力型電池105aに要求される電流値を満たすよう制御される。つまり、出力型電池105aの温度情報に基づいて容量型電池105bの電流が制御されることとなる。より具体的に言うと、電池制御部201は出力型電池105aの温度が所定値以上になった場合、容量型電池105bの電流値を上げる制御を行う。このような制御をすることによって、容易に冷却しにくい容量型電池105bの出力を上げるのを避けることが出来るため、容量型電池105bの劣化が抑制される。また、本発明の場合、より出力型電池105aに負荷をかけることになるが、上述したように出力型電池105aの方が簡易に温度を下げやすいため、出力型電池105aの劣化も大幅に大きくなることはない。 In the present invention, the battery control unit 201 outputs a current command value for increasing the output from the capacity type battery 105b so as to compensate for the shaded portion after the temperature T1 shown in FIG. In response, the capacity type battery 105b is controlled to increase the output current and satisfy the current value required for the output type battery 105a. That is, the current of the capacity type battery 105b is controlled based on the temperature information of the output type battery 105a. More specifically, the battery control unit 201 performs control to increase the current value of the capacity type battery 105b when the temperature of the output type battery 105a becomes equal to or higher than a predetermined value. By performing such control, it is possible to avoid increasing the output of the capacity type battery 105b which is difficult to be cooled easily, and thus the deterioration of the capacity type battery 105b is suppressed. In the case of the present invention, more load is applied to the output type battery 105a. However, since the output type battery 105a is easier to lower the temperature as described above, the deterioration of the output type battery 105a is significantly larger. Never become.
 図6は本発明の制御フローを示す図である。まずステップS600で本発明の制御がスタートする。続いてステップS601で現在要求されている電力が容量型電池105bのみで賄えるか判断する。容量型電池105bのみで賄える場合にはステップS607に進み、またステップS601に戻る。 FIG. 6 is a diagram showing a control flow of the present invention. First, in step S600, the control of the present invention starts. Subsequently, in step S601, it is determined whether the currently requested power can be covered only by the capacity type battery 105b. When it can cover only with the capacity type battery 105b, it progresses to step S607, and also returns to step S601.
 一方ステップS601で要求出力が容量型電池105bのみで賄えない場合、ステップS602に進み出力型電池105aで不足分出力を負担させる。そしてステップS603に進み、出力型電池105aが所定の温度T1以上か否かを判定する。ここで出力型電池105aの温度がT1以上と判断されると、ステップS604に進み、出力型電池105aの出力(充放電電流)を制限し、出力型電池105aで賄えない電力について容量型電池105bで補填する。そして、その後ステップS605で再度要求電力が容量型電池105bのみで賄えるかを判定する。要求電力を容量型電池105bのみで賄える場合にはステップS606に進み、出力型電池105aの充放電を停止して極力出力型電池105aの温度を下げるようにする。そして、ステップS607に進み、ステップS601に戻る。一方で、ステップS605で要求出力が容量型電池105bのみで賄えない場合には、ステップS604に戻る。 On the other hand, if the requested output cannot be covered only by the capacity type battery 105b in step S601, the process proceeds to step S602, and the output type battery 105a bears the shortage output. In step S603, it is determined whether or not the output type battery 105a is equal to or higher than a predetermined temperature T1. If it is determined that the temperature of the output type battery 105a is equal to or higher than T1, the process proceeds to step S604, where the output (charge / discharge current) of the output type battery 105a is limited, and the capacity type battery with respect to power that cannot be covered by the output type battery 105a Compensate with 105b. Then, in step S605, it is determined again whether the required power can be covered only by the capacity type battery 105b. When the required power can be provided only by the capacity type battery 105b, the process proceeds to step S606, and charging / discharging of the output type battery 105a is stopped to reduce the temperature of the output type battery 105a as much as possible. Then, the process proceeds to step S607 and returns to step S601. On the other hand, if the requested output cannot be covered only by the capacity type battery 105b in step S605, the process returns to step S604.
 また、ステップS603で出力型電池105aの温度がT1より小さい場合、ステップS607に進み、またステップS601に戻る。 If the temperature of the output type battery 105a is lower than T1 in step S603, the process proceeds to step S607 and returns to step S601.
 図7は本発明を用いた場合の電池システム100と、従来の電池システムの電池の劣化状態を比較したものである。実線が本発明を用いた場合の電池システム100の劣化状態、点線が従来の電池システムの劣化状態を示したものである。このように、本発明を用いた電池システム100は、従来の電池システム100よりも劣化が抑制される。 FIG. 7 is a comparison of the battery deterioration state of the battery system 100 using the present invention and the conventional battery system. The solid line shows the deterioration state of the battery system 100 when the present invention is used, and the dotted line shows the deterioration state of the conventional battery system. As described above, the battery system 100 using the present invention is less deteriorated than the conventional battery system 100.
 なお、上述した発明では出力型電池105aの温度がT1に達した段階で出力型電池105aに要求される電力を小さくする方法を取った。一方で別の方法として、出力型電池105aの温度がT1から大きくなる方向に乖離した場合に、容量型電池105bの出力をより上げる方法、つまり出力型電池105aの温度の大きさに応じて容量型電池105bの出力に重みを付ける方法もある。このような方法を取った場合、当然出力型電池105aにかかる負荷をより減らすことが出来るため、出力型電池105aの温度上昇を抑えて劣化を抑制することが可能となる。 In the above-described invention, the power required for the output type battery 105a is reduced when the temperature of the output type battery 105a reaches T1. On the other hand, as another method, when the temperature of the output type battery 105a deviates in the direction of increasing from T1, the capacity of the output type battery 105b is increased, that is, according to the temperature of the output type battery 105a. There is also a method of weighting the output of the battery 105b. When such a method is taken, naturally the load applied to the output type battery 105a can be further reduced. Therefore, the temperature rise of the output type battery 105a can be suppressed and deterioration can be suppressed.
 以上、本発明について簡単にまとめる。本発明に記載の電池システム100は、出力型電池105aと容量型電池105bを並列に接続し、容量型電池105bの電流は、出力型電池105aの温度に基づいて制御される。このような構成をとることによって、容易に冷却しにくい容量型電池105bの出力を上げるのを避けることが出来るため、容量型電池105bの劣化が抑制される。また、本発明の場合、より出力型電池105aに負荷をかけることになるが、上述したように出力型電池105aの方が簡易に温度を下げやすくため、出力型電池105aの劣化も大幅に大きくなることはない。 The above is a brief summary of the present invention. The battery system 100 according to the present invention connects the output type battery 105a and the capacity type battery 105b in parallel, and the current of the capacity type battery 105b is controlled based on the temperature of the output type battery 105a. By adopting such a configuration, it is possible to avoid increasing the output of the capacity type battery 105b which is difficult to cool easily, and thus the deterioration of the capacity type battery 105b is suppressed. In the case of the present invention, more load is applied to the output type battery 105a. However, since the output type battery 105a is easier to lower the temperature as described above, the deterioration of the output type battery 105a is significantly larger. Never become.
 また、本発明に記載の電池システム100は、出力型電池105aと容量型電池105bのそれぞれの入出力電流を制御する電流制御部104を有する。このような構成にすることによって、出力型電池105a及び容量型電池105bの両方が所定以上の温度になることを防ぐことが可能となる。 The battery system 100 according to the present invention includes a current control unit 104 that controls input / output currents of the output type battery 105a and the capacity type battery 105b. With such a configuration, it is possible to prevent both the output type battery 105a and the capacity type battery 105b from reaching a predetermined temperature or higher.
 また、電流制御部104は、出力型電池105aの温度が予め定める所定の温度よりも大きくなった場合は、容量型電池105bの入出力電流量が増加するよう電流を制御する。このような構成にすることによって、容量型電池105bから出力される電力増加のタイミングを限界まで抑えたうえで、より出力型電池に負荷をかけることが無くなるため、容量型電池105bの劣化を防ぎつつも出力型電池105aの劣化も抑制される。 The current control unit 104 controls the current so that the input / output current amount of the capacity type battery 105b increases when the temperature of the output type battery 105a becomes higher than a predetermined temperature. By adopting such a configuration, the timing of the increase in power output from the capacity type battery 105b is suppressed to the limit, and no load is applied to the output type battery, so that the deterioration of the capacity type battery 105b is prevented. However, the deterioration of the output type battery 105a is also suppressed.
 また、本発明に記載の電池システム100は、電流制御部104が、出力型電池105aの温度が予め定める所定の温度を越えて以降、温度が高くなるにつれて容量型電池105bの入出力電流が増加するよう電流を制御する。このような構成にすることによって、出力型電池105aにかかる負荷をより減らすことが出来るため、出力型電池105aの温度上昇を抑えてより劣化を抑制することが可能となる。 Further, in the battery system 100 according to the present invention, the input / output current of the capacity type battery 105b increases as the temperature increases after the current control unit 104 exceeds the predetermined temperature set in advance. Control the current to By adopting such a configuration, it is possible to further reduce the load applied to the output type battery 105a. Therefore, it is possible to suppress the temperature rise of the output type battery 105a and further suppress deterioration.
 以上、本発明の実施形態について詳述したが、本発明は、前記の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。例えば、前記した実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。さらに、各実施形態の構成の一部について、他の構成の追加、削除、置換をすることが可能である。 Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments, and various designs can be made without departing from the spirit of the present invention described in the claims. It can be changed. For example, the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described. Further, a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment. Furthermore, it is possible to add, delete, or replace other configurations for a part of the configuration of each embodiment.
 105a:出力型電池、105b:容量型電池、110:インバータ、201:電池制御部(CPU)、204:電流制御部。 105a: output type battery, 105b: capacity type battery, 110: inverter, 201: battery control unit (CPU), 204: current control unit.

Claims (4)

  1.  出力型電池と容量型電池を並列に接続した電池システムにおいて、
     前記容量型電池の電流は、前記出力型電池の温度に基づいて制御されることを特徴とする電池システム。
    In a battery system in which an output type battery and a capacity type battery are connected in parallel,
    The battery system, wherein the current of the capacity type battery is controlled based on the temperature of the output type battery.
  2.  請求項1に記載の電池システムにおいて、
     前記電池システムは、前記出力型電池と前記容量型電池のそれぞれの入出力電流を制御する電流制御部を有することを特徴とする電池システム。
    The battery system according to claim 1,
    The battery system includes a current control unit that controls input / output currents of the output type battery and the capacity type battery.
  3.  請求項2に記載の電池システムおいて、
     前記電流制御部は、前記出力型電池の温度が予め定める所定の温度よりも大きくなった場合に、前記容量型電池の入出力電流を増加させることを特徴とする電池システム。
    The battery system according to claim 2,
    The current control unit increases the input / output current of the capacity type battery when the temperature of the output type battery becomes higher than a predetermined temperature.
  4.  請求項2または3に記載の電池システムにおいて、
     前記電流制御部は、前記出力型電池の温度が予め定める所定の温度を越えた後、前記出力型電池の温度が高くなるにつれて前記容量型電池の入出力電流を増加させることを特徴とする電池システム。
    The battery system according to claim 2 or 3,
    The current control unit increases the input / output current of the capacity type battery as the temperature of the output type battery increases after the temperature of the output type battery exceeds a predetermined temperature. system.
PCT/JP2017/037638 2016-10-18 2017-10-18 Battery system WO2018074502A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018546374A JP6752286B2 (en) 2016-10-18 2017-10-18 Battery system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-204007 2016-10-18
JP2016204007 2016-10-18

Publications (1)

Publication Number Publication Date
WO2018074502A1 true WO2018074502A1 (en) 2018-04-26

Family

ID=62018749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037638 WO2018074502A1 (en) 2016-10-18 2017-10-18 Battery system

Country Status (2)

Country Link
JP (1) JP6752286B2 (en)
WO (1) WO2018074502A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021100893A1 (en) * 2019-11-19 2021-05-27 엘지전자 주식회사 Electronic device and method for controlling charging of electronic device
JP2021515510A (en) * 2018-11-20 2021-06-17 エルジー・ケム・リミテッド Battery management system, battery pack and electric vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003282154A (en) * 2002-03-26 2003-10-03 Nissan Motor Co Ltd Power supply device
JP2004364350A (en) * 2003-06-02 2004-12-24 Nissan Motor Co Ltd Battery controller of vehicle with twin battery
WO2014118903A1 (en) * 2013-01-30 2014-08-07 株式会社 日立製作所 Combined battery system
JP2016152718A (en) * 2015-02-18 2016-08-22 三菱重工業株式会社 Charge and discharge controller, mobile and power sharing amount determination method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6157880B2 (en) * 2013-03-04 2017-07-05 株式会社東芝 Secondary battery system having a plurality of batteries and charge / discharge power distribution method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003282154A (en) * 2002-03-26 2003-10-03 Nissan Motor Co Ltd Power supply device
JP2004364350A (en) * 2003-06-02 2004-12-24 Nissan Motor Co Ltd Battery controller of vehicle with twin battery
WO2014118903A1 (en) * 2013-01-30 2014-08-07 株式会社 日立製作所 Combined battery system
JP2016152718A (en) * 2015-02-18 2016-08-22 三菱重工業株式会社 Charge and discharge controller, mobile and power sharing amount determination method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021515510A (en) * 2018-11-20 2021-06-17 エルジー・ケム・リミテッド Battery management system, battery pack and electric vehicle
WO2021100893A1 (en) * 2019-11-19 2021-05-27 엘지전자 주식회사 Electronic device and method for controlling charging of electronic device

Also Published As

Publication number Publication date
JP6752286B2 (en) 2020-09-09
JPWO2018074502A1 (en) 2019-06-24

Similar Documents

Publication Publication Date Title
EP3518374B1 (en) Power supply system
US8330418B2 (en) Power supply device capable of equalizing electrical properties of batteries
US9297858B2 (en) Secondary battery management system and method for exchanging battery cell information
JP6445190B2 (en) Battery control device
JP5683710B2 (en) Battery system monitoring device
US8222862B2 (en) Electrically powered vehicle
US9227524B2 (en) Electric-powered vehicle
US9933491B2 (en) Electric storage system
US20140103859A1 (en) Electric storage system
US20160075254A1 (en) Large electric vehicle power structure and alternating-hibernation battery management and control method thereof
US20130300192A1 (en) Electric vehicle power storage system
JPWO2020084964A1 (en) Temperature control device control device
JP5725444B2 (en) Power storage system
WO2018179855A1 (en) Battery control device
JP2011061886A (en) Power unit and vehicle including the same
JP6648539B2 (en) Power storage system
WO2018074502A1 (en) Battery system
EP3616969A1 (en) Battery cooling control device
US20170113560A1 (en) Energy storage device, transport apparatus, and control method
JP5644691B2 (en) Cell balance control device and cell balance control method
JP2005269825A (en) Hybrid system
JP4645566B2 (en) Electric vehicle capacity adjustment device
JP5978144B2 (en) Battery system
WO2023008289A1 (en) Power storage system, electric equipment, and control device
JP6738871B2 (en) Main relay protection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17861236

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018546374

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17861236

Country of ref document: EP

Kind code of ref document: A1