WO2018074164A1 - Hot-rolled and annealed ferritic stainless steel sheet and method for producing same - Google Patents

Hot-rolled and annealed ferritic stainless steel sheet and method for producing same Download PDF

Info

Publication number
WO2018074164A1
WO2018074164A1 PCT/JP2017/034949 JP2017034949W WO2018074164A1 WO 2018074164 A1 WO2018074164 A1 WO 2018074164A1 JP 2017034949 W JP2017034949 W JP 2017034949W WO 2018074164 A1 WO2018074164 A1 WO 2018074164A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot
rolling
rolled
content
steel sheet
Prior art date
Application number
PCT/JP2017/034949
Other languages
French (fr)
Japanese (ja)
Inventor
正崇 吉野
光幸 藤澤
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to ES17862905T priority Critical patent/ES2831841T3/en
Priority to US16/327,988 priority patent/US20190226045A1/en
Priority to CN201780051736.3A priority patent/CN109642286B/en
Priority to EP17862905.1A priority patent/EP3486347B1/en
Priority to JP2017567271A priority patent/JP6304469B1/en
Priority to KR1020197005080A priority patent/KR102201004B1/en
Publication of WO2018074164A1 publication Critical patent/WO2018074164A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling

Definitions

  • the present invention relates to a ferritic stainless hot-rolled annealed steel sheet excellent in workability suitable for application to a flange or the like and a method for producing the same.
  • an exhaust gas recirculation (EGR) system in which exhaust gas generated from an automobile engine is used again as intake air for the engine is being applied. Exhaust gas generated from the engine is supplied to the engine again after passing through an EGR cooler for lowering the gas temperature.
  • EGR exhaust gas recirculation
  • each exhaust system component is fastened via a flange to prevent the exhaust gas from leaking.
  • the flange applied to such an exhaust system part needs to have sufficient rigidity. For this reason, a thick flange (for example, a plate thickness of 5 mm or more) is applied to such an exhaust system component.
  • Patent Document 1 in mass%, C: 0.015% or less, Si: 0.01 to 0.4%, Mn: 0.01 to 0.8%, P: 0.04% or less, S: 0.01% or less, Cr: 14.0 to less than 18.0%, Ni: 0.05 to 1%, Nb: 0.3 to 0.6%, Ti: 0.05% or less, N: 0.020% or less, Al: 0.10% or less, B: 0.0002 to 0.0020%, the balance being Fe and inevitable impurities, Nb, C and A ferritic stainless hot rolled steel sheet having a N content satisfying Nb / (C + N) ⁇ 16, a Charpy impact value at 0 ° C. of 10 J / cm 2 or more, and a plate thickness of 5.0 to 9.0 mm is disclosed. Has been.
  • the present invention provides a ferritic stainless steel hot-rolled annealed steel sheet that can solve such problems, has sufficient corrosion resistance, and can suppress cracking when punching into a thick flange, and a method for producing the same. Objective.
  • the inventors of the present invention have made a detailed study in order to solve the problem.
  • the workability is the Charpy impact value that has been used conventionally.
  • a Threshold Stress Intensity Factor K IC which is a toughness evaluation index in the field of thick plates. This is because with thin steel plates with a thickness of less than 5.0 mm, the plastic deformation region near the punched end surface during processing is larger than the plate thickness, so the fracture phenomenon associated with forming is uniquely handled by fracture mechanics.
  • the plastic deformation region near the punched end surface during processing sufficiently satisfies the small-scale yield state where the thickness is sufficiently small relative to the plate thickness. Therefore, it can be considered that the fracture phenomenon associated with the predetermined processing can be handled by the stress intensity factor, which is a quantitative index of fracture mechanics, and particularly the critical value, that is, the critical stress intensity factor K IC can be accurately evaluated. .
  • the present inventors have investigated in detail the relationship between the presence or absence of cracking and the limit stress intensity factor K IC when processing into a flange of a predetermined shape.
  • the critical stress intensity factor K IC 20 MPa ⁇ m 1/2 or more, it is possible to effectively suppress the occurrence of cracks in the burring part when processing into a thick flange having a burring part. It has been found that it can be sufficiently put into practical use for a thick flange having a burring portion.
  • the critical stress intensity factor K IC is improved. I found out.
  • component composition in mass%, Cu: 0.01 to 1.00%, Mo: 0.01 to 2.00%, W: 0.01 to 0.20%, Co: 0.01 The ferritic stainless steel hot-rolled annealed steel sheet according to the above [1], containing one or more selected from ⁇ 0.20%.
  • component composition in mass%, V: 0.01 to 0.20%, Nb: 0.01 to 0.10%, Zr: 0.01 to 0.20%, REM: 0.00.
  • a hot-rolled steel sheet is obtained by setting the pass to a temperature range of 800 to 1100 ° C. and the cumulative rolling reduction ratio of the final three passes to 25% or more, and the hot-rolled steel plate is further annealed at 800 to 1100 ° C.
  • the critical stress intensity factor K IC is taken from the center of the plate width from a CT (Compact Tension) test piece according to ASTM E399 so that the fatigue precrack is in the direction perpendicular to the rolling and the stress axis is in the direction parallel to the rolling. It refers to the stress intensity factor obtained by testing in accordance with ASTM E399.
  • a ferritic stainless steel hot-rolled annealed steel sheet having sufficient corrosion resistance and excellent workability capable of suppressing cracking when punching into a thick flange is obtained.
  • sufficient corrosion resistance in the present invention refers to a salt spray cycle test (salt spray (5 mass% NaCl) specified in JIS H8502 on a steel plate whose end face is sealed after polishing the surface to be evaluated with # 600 emery paper. , 35 ° C., spraying 2 hr) ⁇ drying (60 ° C., 4 hr, relative humidity 40%) ⁇ wet (50 ° C., 2 hr, relative humidity
  • the ferritic stainless steel hot-rolled annealed steel sheet of the present invention is, in mass%, C: 0.001 to 0.020%, Si: 0.05 to 1.00%, Mn: 0.05 to 1.00%, P : 0.04% or less, S: 0.01% or less, Al: 0.001 to 0.100%, Cr: 10.0 to 24.0%, Ni: 0.01 to 0.60%, Ti: 0.10 to 0.40%, N: 0.001 to 0.020%, the balance is composed of Fe and inevitable impurities, and the critical stress intensity factor K IC is 20 MPa ⁇ m 1 / 2 or more.
  • the critical stress intensity factor K IC was obtained by collecting CT specimens in accordance with ASTM E399 from the center of the plate width so that the fatigue precrack is in the direction perpendicular to the rolling and the stress axis is in the direction parallel to the rolling, and in accordance with ASTM E399. Refers to the stress intensity factor obtained by testing.
  • the present inventors examined in detail the relationship between the remarkable progress of the microcracks and the material properties. As a result, progress of microcracks have found that there is a tendency to occur as the critical stress intensity factor K IC of the steel sheet is small. Therefore, as a result of attempts to form the flange using various ferritic stainless steel hot-rolled annealed steel plates (thickness 5.0 mm), cracks due to the development of microcracks are limited stress intensity factors obtained by a predetermined measurement method. It has been found that K IC is particularly likely to occur in a steel sheet having a value of less than 20 MPa ⁇ m 1/2 .
  • the present inventors investigated in detail the crack part of said steel plate in order to clarify the cause of the small critical stress intensity factor K IC of the steel plate in which cracking occurred during forming on the flange. As a result, it was found that in the steel plate in which cracks occurred, the cracks generated in the vicinity of the center portion of the punched end face significantly progressed at the grain boundary in the vicinity of the center portion of the plate thickness.
  • the crystal grains of the portion where the cracks remarkably progressed are independent crystal grains, It was ascertained that so-called colonies (groups of crystal grains having similar crystal orientations) having substantially the same crystal orientation as adjacent crystal grains were formed.
  • a crystal grain has a crystal orientation different from that of an adjacent crystal grain, and when a crack propagates on the grain boundary, a grain boundary having a different orientation functions as an obstacle to crack propagation.
  • the present inventors have intensively studied a method for improving the critical stress intensity factor K IC in a ferritic stainless hot-rolled annealed steel sheet.
  • the final three passes in the hot rolling process in which finish rolling consisting of multiple passes is performed in the temperature range of 800 to 1100 ° C., and the cumulative reduction ratio of the final three passes.
  • the thickness of the ferritic stainless steel hot-rolled annealed steel sheet according to the present invention is not particularly limited. However, since it is desirable that the thickness be applicable to a thick flange, 5.0 mm or more is preferable, and 7.0 mm or more is preferable. More preferred. Moreover, the said plate
  • ferritic stainless steel hardly undergoes dynamic recrystallization (referred to as recrystallization during deformation) during hot rolling, and tends to cause recovery of processing strain due to rolling. Therefore, in the hot rolling according to the conventional technique, excessive recovery of the working strain introduced by rolling occurs, and the working strain cannot be effectively maintained until after hot rolling. As a result, the recrystallization sites become insufficient, the colonies are not effectively destroyed in the subsequent hot-rolled sheet annealing, and the predetermined critical stress intensity factor K IC cannot be obtained.
  • recrystallization during deformation dynamic recrystallization
  • the present inventors diligently studied a method for effectively and sufficiently introducing rolling distortions over the entire thickness of the steel sheet in the hot rolling process.
  • the final three passes of finish hot rolling are controlled within an appropriate temperature range, and rolling is performed at a large cumulative reduction rate, thereby suppressing the recovery of rolling distortion and reducing the rolling distortion to the center of the plate thickness.
  • Hot-rolled sheet annealing is a process of recrystallizing a processed structure formed by hot rolling. Therefore, it is necessary to perform annealing at a temperature at which sufficient recrystallization occurs.
  • hot-rolled sheet annealing is performed at an excessively high temperature, recrystallization occurs but recrystallized grains become extremely coarse. This remarkably coarse recrystallized grain is an independent single crystal grain, but the grain boundary length is remarkably long, so that the effect of suppressing crack growth by grain boundaries with different orientations is the same as when colonies existed. It was found that the predetermined critical stress intensity factor K IC could not be obtained.
  • the present inventors investigated in detail the relationship between the grain size of recrystallized grains and the annealing temperature. As a result, it has been found that by suppressing the hot-rolled sheet annealing temperature to 1100 ° C. or lower, it is possible to suppress the generation of coarse recrystallized grains so that the critical stress intensity factor K IC is significantly reduced.
  • component composition of the ferritic stainless steel hot-rolled annealed steel sheet of the present invention will be described.
  • % indicating the component composition means mass%.
  • the C content is in the range of 0.001 to 0.020%.
  • the C content is preferably 0.003% or more, and more preferably 0.004% or more. Further, the C content is preferably 0.015% or less, and more preferably 0.012% or less.
  • Si 0.05 to 1.00%
  • Si has an effect of concentrating on an oxide film formed at the time of welding to improve the corrosion resistance of the welded portion, and is also an element useful as a deoxidizing element in the steel making process. These effects are obtained by containing 0.05% or more of Si, and the effect increases as the content increases.
  • Si is contained in excess of 1.00%, the rolling load increases in the hot rolling process and a significant scale is generated.
  • the pickling property decreases due to the formation of the Si concentrated layer on the steel sheet surface layer.
  • the Si content is set to 0.05 to 1.00%.
  • the Si content is preferably 0.10% or more.
  • Si content becomes like this. Preferably it is 0.60% or less, More preferably, it is 0.40% or less.
  • Mn 0.05 to 1.00% Mn has the effect of increasing the strength of the steel and also acts as a deoxidizer. In order to obtain the effect, it is necessary to contain 0.05% or more of Mn. However, if the Mn content exceeds 1.00%, the generation of MnS that is the starting point of corrosion is promoted, and the corrosion resistance is lowered. Therefore, the Mn content is set to 0.05 to 1.00%.
  • the Mn content is preferably 0.10% or more. Further, the Mn content is preferably 0.60% or less, more preferably 0.30% or less.
  • P 0.04% or less
  • P is an element inevitably contained in steel. However, it is preferably reduced as much as possible because it is an element harmful to corrosion resistance and workability. In particular, when the P content exceeds 0.04%, workability is remarkably lowered due to solid solution strengthening. Therefore, the P content is 0.04% or less. Preferably, the P content is 0.03% or less.
  • S 0.01% or less S is an element inevitably contained in steel like P. However, it is preferably reduced as much as possible because it is an element harmful to corrosion resistance and workability. In particular, when the S content exceeds 0.01%, the corrosion resistance significantly decreases. Therefore, the S content is 0.01% or less. Preferably, the S content is 0.008% or less. More preferably, the S content is 0.003% or less.
  • Al 0.001 to 0.100%
  • Al is an effective deoxidizer. Furthermore, since Al has a stronger affinity for nitrogen than Cr, when nitrogen penetrates into the weld zone, it has the effect of precipitating nitrogen by precipitating nitrogen as Al nitride instead of Cr nitride. These effects can be obtained by containing 0.001% or more of Al. However, it is not preferable to contain Al exceeding 0.100% because the penetration property during welding is lowered and the welding workability is lowered. Therefore, the Al content is in the range of 0.001 to 0.100%. The Al content is preferably 0.005% or more, and more preferably 0.010% or more. Moreover, Al content becomes like this. Preferably it is 0.060% or less, More preferably, it is 0.040% or less.
  • Cr 10.0-24.0% Cr is the most important element for ensuring the corrosion resistance of stainless steel. If the content is less than 10.0%, sufficient corrosion resistance cannot be obtained in an automobile exhaust gas atmosphere. On the other hand, if the Cr content exceeds 24.0%, the toughness is remarkably reduced due to the formation of the ⁇ (sigma) phase, and in the present invention, the predetermined critical stress intensity factor K IC cannot be obtained. Therefore, the Cr content is in the range of 10.0 to 24.0%.
  • the Cr content is preferably 14.0% or more, more preferably 16.0% or more, and further preferably 17.0% or more. Moreover, Cr content becomes like this. Preferably it is 21.5% or less, More preferably, it is 19.5% or less, More preferably, it is 18.5% or less.
  • Ni 0.01 to 0.60%
  • Ni is an element that improves the corrosion resistance of stainless steel, and is an element that suppresses the progress of corrosion in a corrosive environment where a passive film is not formed and active dissolution occurs.
  • Ni is a strong austenite generating element, and has the effect of suppressing ferrite formation at the weld and suppressing sensitization due to precipitation of Cr carbonitride. This effect is obtained by containing 0.01% or more of Ni, and increases as the Ni content increases. However, when the Ni content exceeds 0.60%, workability is lowered and stress corrosion cracking is likely to occur. Furthermore, since Ni is an expensive element, an increase in the content of Ni causes an increase in manufacturing cost, which is not preferable. Therefore, the Ni content is set to 0.01 to 0.60%.
  • the Ni content is preferably 0.10% or more. Moreover, Ni content becomes like this. Preferably it is 0.50% or less, More preferably, it is 0.40% or less.
  • Ti 0.10 to 0.40%
  • Ti is an extremely important element. Ti preferentially binds to C and N, suppresses the precipitation of Cr carbonitride, lowers the recrystallization temperature, and suppresses the decrease in corrosion resistance due to sensitization due to the precipitation of Cr carbonitride There is. In order to obtain these effects, it is necessary to contain 0.10% or more of Ti. However, if the Ti content exceeds 0.40%, the solid solution Ti amount increases excessively, so the recrystallization temperature rises conversely, and the technique of the present invention cannot be applied. In addition, if Ti content exceeds 0.40%, coarse Ti carbonitrides are produced in the casting process and cause surface defects, which is not preferable in production.
  • the Ti content is set to 0.10 to 0.40%.
  • the Ti content is preferably 0.15% or more, and more preferably 0.20% or more. Moreover, Ti content becomes like this. Preferably it is 0.35% or less, More preferably, it is 0.30% or less. From the viewpoint of corrosion resistance of the weld zone, the Ti content satisfies the formula: Ti / (C + N) ⁇ 8 (in the formula, Ti, C, and N are the contents (mass%) of each element). It is preferable.
  • N 0.001 to 0.020%
  • the workability and the corrosion resistance of the welded portion are significantly reduced. From the viewpoint of corrosion resistance, the lower the N content, the better.
  • reducing the N content to less than 0.001% requires refining for a long time, which is not preferable because it causes an increase in manufacturing cost and a decrease in productivity. . Therefore, the N content is in the range of 0.001 to 0.020%.
  • the N content is preferably 0.005% or more, and more preferably 0.007% or more.
  • N content becomes like this. Preferably it is 0.015% or less, More preferably, it is 0.012% or less.
  • the present invention is a ferritic stainless steel characterized in that it contains the above-mentioned essential components and the balance consists of Fe and inevitable impurities. Furthermore, as required, one or more selected from Cu, Mo, W and Co, or / or one selected from V, Nb, Zr, REM, B, Mg and Ca. Or 2 or more types can be contained in the following range.
  • Cu 0.01 to 1.00%
  • Cu is an element particularly effective for improving the corrosion resistance of the base material and the welded part when an aqueous solution or weakly acidic water droplets adhere. This effect is obtained when the content is 0.01% or more, and the effect increases as the Cu content increases. However, when Cu is contained exceeding 1.00%, hot workability may be reduced and surface defects may be induced. In addition, descaling after annealing may be difficult. Therefore, when Cu is contained, the Cu content is preferably in the range of 0.01 to 1.00%.
  • the Cu content is more preferably 0.10% or more, and further preferably 0.30% or more. Further, the Cu content is more preferably 0.60% or less, and further preferably 0.45% or less.
  • Mo 0.01-2.00%
  • Mo is an element that remarkably improves the corrosion resistance of stainless steel. This effect is obtained when the content is 0.01% or more, and the effect improves as the content increases. However, if the Mo content exceeds 2.00%, the rolling load at the time of hot rolling increases, and the manufacturability may decrease, or the steel sheet strength may increase excessively. Moreover, since Mo is an expensive element, a large content increases the manufacturing cost. Therefore, when Mo is contained, the Mo content is preferably 0.01 to 2.00%.
  • the Mo content is more preferably 0.10% or more, and further preferably 0.30% or more. Moreover, Mo content becomes like this. More preferably, it is 1.40% or less, More preferably, it is 0.90% or less.
  • W 0.01-0.20% W, like Mo, has the effect of improving corrosion resistance. This effect is obtained by containing 0.01% or more of W. However, if it exceeds 0.20% and W is contained, the strength increases, and the productivity may decrease due to an increase in rolling load. Therefore, when W is contained, the W content is preferably in the range of 0.01 to 0.20%. The W content is more preferably 0.05% or more. Further, the W content is more preferably 0.15% or less.
  • Co 0.01-0.20%
  • Co is an element that improves toughness. This effect is obtained by containing 0.01% or more of Co.
  • the Co content exceeds 0.20%, workability may be reduced. Therefore, when Co is contained, the Co content is preferably in the range of 0.01 to 0.20%.
  • the Co content is more preferably 0.10% or less.
  • V 0.01-0.20%
  • V forms carbonitride with C and N, suppresses sensitization during welding and improves the corrosion resistance of the weld. This effect is obtained when the V content is 0.01% or more.
  • the V content is preferably 0.01 to 0.20%.
  • the V content is more preferably 0.03% or more. Further, the V content is more preferably 0.10% or less, and even more preferably 0.05% or less.
  • Nb 0.01 to 0.10%
  • Nb has the effect of improving the toughness of the steel sheet by refining crystal grains and dissolving in the matrix. These effects are obtained when the Nb content is 0.01% or more.
  • Nb also has an effect of increasing the recrystallization temperature. When the Nb content exceeds 0.10%, the annealing temperature necessary for causing sufficient recrystallization by hot-rolled sheet annealing becomes excessively high. As a result, recrystallized grains become extremely coarse as the crystal grain size reaches 300 ⁇ m or more during annealing, and a predetermined critical stress intensity factor K IC may not be obtained. Therefore, when Nb is contained, the Nb content is preferably in the range of 0.01 to 0.10%. The Nb content is more preferably 0.02% or more. Further, the Nb content is more preferably 0.05% or less.
  • Zr 0.01-0.20%
  • Zr has the effect of binding to C and N to suppress sensitization. This effect is obtained by containing 0.01% or more of Zr.
  • the Zr content exceeds 0.20%, the workability may be significantly reduced. Therefore, when Zr is contained, the Zr content is preferably in the range of 0.01 to 0.20%.
  • the Zr content is more preferably 0.02% or more. Further, the Zr content is more preferably 0.10% or less, and even more preferably 0.05% or less.
  • REM 0.001 to 0.100% REM (Rare Earth Metals) has an effect of improving the oxidation resistance, and suppresses formation of a Cr-deficient region immediately below the oxide film by suppressing formation of an oxide film (weld temper color) in the welded portion. This effect is acquired by containing REM 0.001% or more.
  • productivity such as pickling at the time of cold rolling annealing, may be reduced. Therefore, when REM is contained, the REM content is preferably in the range of 0.001 to 0.100%.
  • the REM content is more preferably 0.010% or more.
  • the REM content is more preferably 0.050% or less.
  • B 0.0002 to 0.0025%
  • B is an element effective for improving the secondary work brittleness resistance after molding. This effect is obtained by making the B content 0.0002% or more. On the other hand, if the B content exceeds 0.0025%, workability and toughness may be reduced. Therefore, when B is contained, the B content is preferably in the range of 0.0002 to 0.0025%. The B content is more preferably 0.0003% or more. Further, the B content is more preferably 0.0006% or less.
  • Mg 0.0005 to 0.0030%
  • Mg is an element that improves the equiaxed crystal ratio of the slab and is effective in improving workability and toughness. Further, in the steel containing Ti as in the present invention, when Ti carbonitride becomes coarser, the toughness decreases, but Mg also has an effect of suppressing the coarsening of Ti carbonitride. These effects can be obtained by containing 0.0005% or more of Mg. On the other hand, if the Mg content exceeds 0.0030%, the surface properties of the steel may be deteriorated. Therefore, when Mg is contained, the Mg content is preferably in the range of 0.0005 to 0.0030%. The Mg content is more preferably 0.0010% or more. The Mg content is more preferably 0.0020% or less.
  • Ca 0.0003 to 0.0030%
  • Ca is an effective component for preventing nozzle clogging due to crystallization of Ti-based inclusions that are likely to occur during continuous casting. The effect is acquired by containing 0.0003% or more of Ca. However, if the Ca content exceeds 0.0030%, the corrosion resistance may decrease due to the formation of CaS. Therefore, when Ca is contained, the Ca content is preferably in the range of 0.0003 to 0.0030%. The Ca content is more preferably 0.0005% or more. Moreover, Ca content becomes like this. More preferably, it is 0.0015% or less, More preferably, it is 0.0010% or less.
  • Limit stress intensity factor K IC 20 MPa ⁇ m 1/2 or more
  • the ferritic stainless steel hot rolled annealed steel sheet of the present invention has a limit stress intensity factor K IC of 20 MPa ⁇ m 1/2 or more, so that it becomes a thick flange. It is possible to suppress cracks during the punching process.
  • the critical stress intensity factor K IC is preferably 25 MPa ⁇ m 1/2 or more, more preferably 30 MPa ⁇ m 1/2 or more.
  • the thick flange is not particularly limited, and examples thereof include a flange having a thickness of 5.0 mm or more. As the flange, for example, a flange having a plate thickness of 5.0 to 15.0 mm is preferable, and a flange having a plate thickness of 5.0 to 10.0 mm is more preferable.
  • the temperature is the surface temperature measured with a surface thermometer such as a steel slab or hot-rolled steel sheet.
  • the ferritic stainless steel hot-rolled annealed steel sheet of the present invention uses a steel slab having the above composition, and in the hot rolling consisting of rough rolling and finishing rolling of 3 or more passes, the final 3 passes of finishing rolling are performed in a temperature range of 800. It is obtained by obtaining a hot-rolled steel sheet at a temperature of ⁇ 1100 ° C. and a cumulative reduction ratio of 25% or more in the final three passes, and subjecting the hot-rolled steel sheet to further hot-rolled sheet annealing at 800 to 1100 ° C.
  • the molten steel having the above component composition is melted by a known method such as a converter, electric furnace, vacuum melting furnace or the like, and is made into a steel material (slab) by a continuous casting method or an ingot-bundling method.
  • the slab is heated at 1100 to 1250 ° C. for 1 to 24 hours, or subjected to hot rolling at a stage where the temperature reaches 1100 to 1250 ° C. after casting without heating.
  • there is no particular limitation for rough rolling if the cast structure is effectively destroyed before finish hot rolling, it is superior to refinement of crystal grains in subsequent finish hot rolling.
  • Rolling temperature range for the final three passes of finish hot rolling 800-1100 ° C
  • Cumulative rolling reduction in the final three passes of finish hot rolling 25% or more
  • K IC critical stress intensity factor
  • the cumulative reduction ratio of the final three passes of finish hot rolling is set to 25% or more.
  • the cumulative rolling reduction is 30% or more. More preferably, the cumulative rolling reduction is 35% or more.
  • the upper limit of the cumulative rolling reduction is not particularly limited, but if the cumulative rolling reduction is excessively increased, the rolling load increases and the productivity decreases, and surface roughness may occur after rolling. It is preferable to do.
  • the rolling temperature in the final three passes of finish hot rolling is less than 800 ° C.
  • the rolling load increases remarkably as the steel plate temperature decreases, which is not preferable for production. Further, rolling at a low temperature may cause the surface roughness of the steel sheet to deteriorate the surface quality.
  • the rolling temperature of the final three passes exceeds 1100 ° C.
  • recovery of strain imparted by rolling occurs, and the recrystallization sites after the hot-rolled sheet annealing in the next step are insufficient.
  • the predetermined limit stress intensity factor K IC cannot be obtained. Therefore, the rolling temperature for the final three passes is in the range of 800 to 1100 ° C.
  • the rolling temperature in the final three passes is in the range of 800 to 1050 ° C. More preferably, the rolling temperature in the final three passes is in the range of 850 to 1000 ° C.
  • the rolling temperature range of the first pass among the final three passes is 950 to 1100 ° C., and this first pass
  • the rolling temperature range for the second pass to be performed next is preferably 925 to 1075 ° C.
  • the rolling temperature range for the third pass to be performed next to the second pass is preferably 875 to 1050 ° C.
  • the method for producing a ferritic stainless steel hot-rolled annealed steel sheet according to the present invention is characterized in that a large reduction is applied after controlling the temperature range in the final three passes of finishing hot rolling consisting of three or more passes. If rolling with a large reduction is performed over the final four passes or more, even if the cumulative reduction rate is the same, the reduction rate will be distributed to each pass, so the strain applied to the center of the plate thickness will be insufficient, and each pass Since the accumulated conveyance time increases, recovery during conveyance between each pass is promoted, and the effect of imparting strain is reduced.
  • the rolling temperature and the cumulative reduction ratio of the finish rolling are controlled to the final two passes or less, the rolling load is significantly increased and the productivity is lowered because the large reduction with the cumulative reduction ratio of 25% or more is performed in two passes. This is not preferable. Therefore, in the method for producing a ferritic stainless steel hot-rolled steel sheet according to the present invention, the rolling temperature and cumulative rolling reduction of the final three passes of finish rolling are controlled.
  • the manufacturing method of the ferritic stainless steel hot-rolled steel sheet of the present invention it is important to control the final three-pass rolling temperature and cumulative rolling reduction of the finish hot rolling, and if it is a finish rolling of three or more passes Any number of finishing rolls may be performed, but if the maximum number of passes is greater than 15 passes, the steel plate temperature is likely to decrease due to an increase in the number of contacts with the rolling roll, and the steel plate temperature is kept within a predetermined temperature range.
  • the maximum number of passes is preferably 15 passes or less because it may lead to a decrease in manufacturability or an increase in manufacturing costs, such as heating from the outside required for maintenance. More preferably, the maximum number of paths is 10 paths or less.
  • the steel sheet After finishing hot rolling, the steel sheet is cooled, and then the steel sheet is wound to form a hot-rolled steel strip.
  • the coiling temperature is not particularly limited, but when the coiling temperature is more than 450 ° C. to less than 500 ° C., embrittlement due to 475 ° C. embrittlement may occur. Therefore, the winding temperature is preferably 450 ° C. or lower or 500 ° C. or higher.
  • Hot-rolled sheet annealing temperature 800-1100 ° C
  • hot-rolled sheet annealing is performed after the hot rolling step.
  • the rolled structure formed in the hot rolling process is recrystallized.
  • the rolling strain is effectively applied in the hot rolling process, and the recrystallization sites are increased, thereby promoting the destruction of colonies in the hot-rolled sheet annealing.
  • the annealing temperature is less than 800 ° C., recrystallization is insufficient, and a predetermined critical stress intensity factor K IC cannot be obtained.
  • the hot-rolled sheet annealing temperature is in the range of 800 to 1100 ° C.
  • the hot-rolled steel sheet subjected to such hot-rolled sheet annealing has the above-described component composition, and has a critical stress intensity factor K IC of 20 MPa ⁇ m 1/2 or more.
  • the hot-rolled sheet annealing temperature is in the range of 800 to 1050 ° C.
  • the hot-rolled sheet annealing temperature is in the range of 850 to 1000 ° C.
  • maintenance time and method of hot-rolled sheet annealing You may implement by any of box annealing (batch annealing) and continuous annealing.
  • the obtained hot-rolled annealed steel sheet may be descaled by shot blasting or pickling as necessary. Furthermore, in order to improve the surface properties, grinding or polishing may be performed. In addition, the hot-rolled annealed steel sheet provided by the present invention may be subsequently subjected to cold rolling and cold-rolled sheet annealing.
  • a molten stainless steel having the chemical composition shown in Table 1 is melted by refining a converter with a capacity of 150 ton and strong stirring and vacuum oxygen decarburization (SS-VOD), and a steel slab having a width of 1000 mm and a thickness of 200 mm by continuous casting.
  • SS-VOD strong stirring and vacuum oxygen decarburization
  • the slab was heated at 1200 ° C. for 1 h, and then hot-rolled by reverse rough rolling using a three-stage stand to obtain a steel plate of about 40 mm, and then the final three passes of final rolling consisting of 7 passes ( The fifth pass, the sixth pass, and the seventh pass) were performed under the conditions shown in Table 2 to obtain hot-rolled steel sheets.
  • No. No. 31 was subjected to hot rolling after heating the slab at 1300 ° C. for 1 h.
  • the obtained hot-rolled steel sheet was subjected to hot-rolled sheet annealing by box annealing under the conditions shown in Table 2 to obtain a hot-rolled anne
  • the obtained hot-rolled annealed steel sheet was evaluated as follows.
  • Photograph the evaluation surface of the test piece after 5 cycles of the salt spray cycle test measure the rusting area of the evaluation surface of the test piece by image analysis, and determine the rusting rate ((test Rust area in the piece / total area of the test piece) ⁇ 100 [%]) was calculated.
  • a rusting rate of 10% or less was evaluated as being particularly excellent with respect to corrosion resistance ()), more than 10% being 25% or less, passing (O), and more than 25% being rejecting (X).
  • test results are shown in Table 2 together with hot rolling and hot rolled sheet annealing conditions.
  • No. No. 31 is an example in which the slab was heated at 1300 ° C. for 1 h and then subjected to hot rolling, and the rolling temperature range in the final three passes of finish hot rolling was all over 1100 ° C. No. In No. 31, the recovery of excessive working strain occurred during the rolling of the final three passes and the recrystallization sites became insufficient, so that colonies remained after hot-rolled sheet annealing, and the predetermined critical stress intensity factor K IC was It was not obtained.
  • No. of the rolling temperature range for the final 3 passes is less than the range of the present invention for all 3 passes.
  • the rolling load increased remarkably, and the rolling exceeded the allowable range during the rolling of the final third pass, so that the rolling could not be completed and the predetermined evaluation could not be performed.
  • the ferritic stainless steel hot-rolled annealed steel sheet obtained by the present invention is particularly suitable for applications that require high workability and corrosion resistance, such as a flange having a burring portion.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

Provided are: a hot-rolled and annealed ferritic stainless steel sheet that has sufficient corrosion resistance and that can be suppressed from cracking when punched into a thick-walled flange; and a method for producing the same. This hot-rolled and annealed ferritic stainless steel sheet is characterized by: having a component composition comprising, in mass%, 0.001 to 0.020% C, 0.05 to 1.00% Si, 0.05 to 1.00% Mn, at most 0.04% P, at most 0.01% S, 0.001 to 0.100% Al, 10.0 to 24.0% Cr, 0.01 to 0.60% Ni, 0.10 to 0.40% Ti, and 0.001 to 0.020% N, with the remainder comprising Fe and inevitable impurities; and having a threshold stress intensity factor KIC of at least 20 MPa·m1/2.

Description

フェライト系ステンレス熱延焼鈍鋼板およびその製造方法Ferritic stainless steel hot rolled annealed steel sheet and method for producing the same
 本発明は、フランジ等への適用に好適な加工性に優れたフェライト系ステンレス熱延焼鈍鋼板およびその製造方法に関するものである。 The present invention relates to a ferritic stainless hot-rolled annealed steel sheet excellent in workability suitable for application to a flange or the like and a method for producing the same.
 近年、自動車における排気ガスに関する法規制の強化が進んでおり、燃費の向上が急務となっている。そこで、自動車エンジンから生じた排気ガスを再度エンジンの吸気として用いる排気ガス再循環(Exhaust Gas Recirculation、EGR)システムの適用が進んでいる。エンジンから生じた排気ガスは、ガス温度を下げるためのEGRクーラーを通過した後に再度エンジンに供給される。排気ガスを循環させるにあたって、各排気系部品は排気ガスの漏洩を防ぐためにフランジを介して締結される。このような排気系部品に適用されるフランジは十分な剛性を有する必要がある。このことから、このような排気系部品には厚肉(例えば板厚で5mm以上)のフランジが適用されている。 In recent years, regulations on exhaust gas in automobiles have been strengthened, and improvement in fuel efficiency has become an urgent issue. Therefore, an exhaust gas recirculation (EGR) system in which exhaust gas generated from an automobile engine is used again as intake air for the engine is being applied. Exhaust gas generated from the engine is supplied to the engine again after passing through an EGR cooler for lowering the gas temperature. When the exhaust gas is circulated, each exhaust system component is fastened via a flange to prevent the exhaust gas from leaking. The flange applied to such an exhaust system part needs to have sufficient rigidity. For this reason, a thick flange (for example, a plate thickness of 5 mm or more) is applied to such an exhaust system component.
 従来、厚肉のフランジには普通鋼が用いられてきた。しかし、EGRシステムのような高温の排気ガスが通過する部品に適用するフランジには十分な耐食性が求められる。そのため、普通鋼に比べて耐食性に優れるステンレス鋼、特に熱膨張率が比較的小さく熱応力が発生しにくいフェライト系ステンレス鋼の適用が検討されており、厚肉のフランジに適用可能な板厚の大きい(例えば板厚で5mm以上)フェライト系ステンレス鋼板が強く求められている。 Conventionally, plain steel has been used for thick flanges. However, a flange applied to a part through which high-temperature exhaust gas passes, such as an EGR system, is required to have sufficient corrosion resistance. Therefore, the application of stainless steel, which has superior corrosion resistance compared to ordinary steel, especially ferritic stainless steel, which has a relatively low coefficient of thermal expansion and is unlikely to generate thermal stress, has been studied. There is a strong demand for a ferritic stainless steel sheet having a large thickness (for example, a thickness of 5 mm or more).
 このような市場要求に対し、例えば、特許文献1には、質量%で、C:0.015%以下、Si:0.01~0.4%、Mn:0.01~0.8%、P:0.04%以下、S:0.01%以下、Cr:14.0~18.0%未満、Ni:0.05~1%、Nb:0.3~0.6%、Ti:0.05%以下、N:0.020%以下、Al:0.10%以下、B:0.0002~0.0020%を含有し、残部がFe及び不可避的不純物であり、Nb、CおよびNの含有量がNb/(C+N)≧16を満たし、0℃におけるシャルピー衝撃値が10J/cm以上であり、板厚が5.0~9.0mmであるフェライト系ステンレス熱延鋼板が開示されている。 In response to such market demand, for example, in Patent Document 1, in mass%, C: 0.015% or less, Si: 0.01 to 0.4%, Mn: 0.01 to 0.8%, P: 0.04% or less, S: 0.01% or less, Cr: 14.0 to less than 18.0%, Ni: 0.05 to 1%, Nb: 0.3 to 0.6%, Ti: 0.05% or less, N: 0.020% or less, Al: 0.10% or less, B: 0.0002 to 0.0020%, the balance being Fe and inevitable impurities, Nb, C and A ferritic stainless hot rolled steel sheet having a N content satisfying Nb / (C + N) ≧ 16, a Charpy impact value at 0 ° C. of 10 J / cm 2 or more, and a plate thickness of 5.0 to 9.0 mm is disclosed. Has been.
国際公開第2014/157576号International Publication No. 2014/157576
 しかし、本発明者らが特許文献1に記載されるフェライト系ステンレス熱延鋼板を用いてバーリング加工部を有する厚肉のフランジ形状への加工を試みたところ、上記の鋼板が十分なシャルピー衝撃値を有していたにも関わらず、バーリング加工部の特に板厚中央部に割れが生じ、所定のフランジ形状を得ることができない場合があり、厚肉のフランジに適用するには十分ではないことが明らかとなった。 However, when the present inventors tried processing into a thick flange shape having a burring portion using the ferritic stainless hot-rolled steel sheet described in Patent Document 1, the above steel sheet has a sufficient Charpy impact value. In spite of the fact that the burring part has cracks, especially in the central part of the plate thickness, it may not be possible to obtain the prescribed flange shape, which is not sufficient for application to thick flanges. Became clear.
 本発明は、かかる課題を解決し、十分な耐食性を有するとともに、厚肉のフランジへの打ち抜き加工をする際の割れを抑制可能なフェライト系ステンレス熱延焼鈍鋼板およびその製造方法を提供することを目的とする。 The present invention provides a ferritic stainless steel hot-rolled annealed steel sheet that can solve such problems, has sufficient corrosion resistance, and can suppress cracking when punching into a thick flange, and a method for producing the same. Objective.
 本発明者らは、課題を解決するために詳細な検討を行った。その結果、板厚が5.0mmを超える厚肉の鋼板を、割れを発生させることなくバーリング加工部を有する厚肉のフランジへ成形する場合、その加工性は、従来用いられてきたシャルピー衝撃値では正確な評価ができないが、厚板分野の靭性評価指標である限界応力拡大係数(Threshold Stress Intensity Factor)KICで正確に評価できることを見出した。これは、板厚が5.0mm未満の薄鋼板では、加工時の打ち抜き端面部近傍の塑性変形領域が板厚に対して大きいために、成形に伴う破壊現象を破壊力学的な取り扱いで一義的に整理できないのに対し、板厚が5.0mm以上の厚肉の鋼板では、加工時の打ち抜き端面近傍部の塑性変形領域が板厚に対して十分に小さくなる小規模降伏状態を十分に満足するために、所定の加工に伴う破壊現象を破壊力学的な定量指標である応力拡大係数で扱うことができ、特にその限界値、すなわち限界応力拡大係数KICで正確に評価できるためと考えられる。 The inventors of the present invention have made a detailed study in order to solve the problem. As a result, when a thick steel plate with a thickness exceeding 5.0 mm is formed into a thick flange having a burring portion without causing cracks, the workability is the Charpy impact value that has been used conventionally. However, it has been found that although it cannot be accurately evaluated, it can be accurately evaluated by a Threshold Stress Intensity Factor K IC which is a toughness evaluation index in the field of thick plates. This is because with thin steel plates with a thickness of less than 5.0 mm, the plastic deformation region near the punched end surface during processing is larger than the plate thickness, so the fracture phenomenon associated with forming is uniquely handled by fracture mechanics. On the other hand, in the case of thick steel plates with a thickness of 5.0 mm or more, the plastic deformation region near the punched end surface during processing sufficiently satisfies the small-scale yield state where the thickness is sufficiently small relative to the plate thickness. Therefore, it can be considered that the fracture phenomenon associated with the predetermined processing can be handled by the stress intensity factor, which is a quantitative index of fracture mechanics, and particularly the critical value, that is, the critical stress intensity factor K IC can be accurately evaluated. .
 以上のことから、本発明者らは所定形状のフランジへ加工した場合の割れの発生有無と限界応力拡大係数KICとの関係を詳細に調査した。その結果、限界応力拡大係数KICを20MPa・m1/2以上にすることで、バーリング加工部を有する厚肉フランジへ加工する際のバーリング加工部での割れの発生を効果的に抑制することができ、バーリング加工部を有する厚肉のフランジへ十分に実用化できることを知見した。 From the above, the present inventors have investigated in detail the relationship between the presence or absence of cracking and the limit stress intensity factor K IC when processing into a flange of a predetermined shape. As a result, by making the critical stress intensity factor K IC 20 MPa · m 1/2 or more, it is possible to effectively suppress the occurrence of cracks in the burring part when processing into a thick flange having a burring part. It has been found that it can be sufficiently put into practical use for a thick flange having a burring portion.
 そして、適切な成分のフェライト系ステンレス鋼に対して、特に3パス以上の多パスからなる仕上熱間圧延工程における最終3パスの累積圧下率(=100-(最終板厚/最終3パスの圧延開始前の板厚)×100[%])を適切に制御して得られた熱延鋼板に対して、適切な温度で熱延板焼鈍を行うことにより、限界応力拡大係数KICが向上することを知見した。 For the ferritic stainless steel of an appropriate component, the cumulative reduction ratio of the final three passes (= 100− (final plate thickness / final three-pass rolling) in the finishing hot rolling process, particularly comprising three or more passes. By performing hot-rolled sheet annealing at an appropriate temperature on a hot-rolled steel sheet obtained by appropriately controlling the sheet thickness before start) × 100 [%]), the critical stress intensity factor K IC is improved. I found out.
 本発明は以上の知見に基づいてなされたものであり、以下を要旨とするものである。
[1]質量%で、C:0.001~0.020%、Si:0.05~1.00%、Mn:0.05~1.00%、P:0.04%以下、S:0.01%以下、Al:0.001~0.100%、Cr:10.0~24.0%、Ni:0.01~0.60%、Ti:0.10~0.40%、N:0.001~0.020%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、
 限界応力拡大係数KICが20MPa・m1/2以上であることを特徴とするフェライト系ステンレス熱延焼鈍鋼板。
[2]成分組成として、質量%で、さらにCu:0.01~1.00%、Mo:0.01~2.00%、W:0.01~0.20%、Co:0.01~0.20%のうちから選ばれる1種または2種以上を含有することを特徴とする前記[1]に記載のフェライト系ステンレス熱延焼鈍鋼板。
[3]成分組成として、質量%で、さらに、V:0.01~0.20%、Nb:0.01~0.10%、Zr:0.01~0.20%、REM:0.001~0.100%、B:0.0002~0.0025%、Mg:0.0005~0.0030%、Ca:0.0003~0.0030%のうちから選ばれる1種または2種以上を含有することを特徴とする前記[1]または[2]に記載のフェライト系ステンレス熱延焼鈍鋼板。
[4]前記[1]~[3]のいずれかに記載のフェライト系ステンレス熱延焼鈍鋼板の製造方法であって、3パス以上の仕上圧延を行う熱間圧延工程で、仕上圧延の最終3パスを温度範囲800~1100℃、且つ前記最終3パスの累積圧下率を25%以上として熱延鋼板を得て、該熱延鋼板に対してさらに800~1100℃で熱延板焼鈍を行うことを特徴とするフェライト系ステンレス熱延焼鈍鋼板の製造方法。
This invention is made | formed based on the above knowledge, and makes the following a summary.
[1] By mass%, C: 0.001 to 0.020%, Si: 0.05 to 1.00%, Mn: 0.05 to 1.00%, P: 0.04% or less, S: 0.01% or less, Al: 0.001 to 0.100%, Cr: 10.0 to 24.0%, Ni: 0.01 to 0.60%, Ti: 0.10 to 0.40%, N: 0.001 to 0.020% is contained, and the balance has a component composition consisting of Fe and inevitable impurities,
A ferritic stainless steel hot-rolled annealed steel sheet having a critical stress intensity factor K IC of 20 MPa · m 1/2 or more.
[2] As component composition, in mass%, Cu: 0.01 to 1.00%, Mo: 0.01 to 2.00%, W: 0.01 to 0.20%, Co: 0.01 The ferritic stainless steel hot-rolled annealed steel sheet according to the above [1], containing one or more selected from ˜0.20%.
[3] As component composition, in mass%, V: 0.01 to 0.20%, Nb: 0.01 to 0.10%, Zr: 0.01 to 0.20%, REM: 0.00. One or more selected from 001 to 0.100%, B: 0.0002 to 0.0025%, Mg: 0.0005 to 0.0030%, Ca: 0.0003 to 0.0030% The ferritic stainless steel hot-rolled annealed steel sheet according to [1] or [2], characterized in that
[4] The method for producing a ferritic stainless steel hot-rolled annealed steel sheet according to any one of [1] to [3], wherein in the hot rolling process in which finish rolling is performed for 3 passes or more, the final 3 of finish rolling is performed. A hot-rolled steel sheet is obtained by setting the pass to a temperature range of 800 to 1100 ° C. and the cumulative rolling reduction ratio of the final three passes to 25% or more, and the hot-rolled steel plate is further annealed at 800 to 1100 ° C. A method for producing a ferritic stainless hot-rolled annealed steel sheet.
 ここで、限界応力拡大係数KICは、板幅中央部からASTM E399に準拠したCT(Compact Tension)試験片を、疲労予き裂が圧延直角方向、応力軸が圧延平行方向となるように採取し、ASTM E399に準拠して試験することにより得られる応力拡大係数のことを指す。 Here, the critical stress intensity factor K IC is taken from the center of the plate width from a CT (Compact Tension) test piece according to ASTM E399 so that the fatigue precrack is in the direction perpendicular to the rolling and the stress axis is in the direction parallel to the rolling. It refers to the stress intensity factor obtained by testing in accordance with ASTM E399.
 本発明によれば、十分な耐食性を有するとともに、厚肉のフランジへの打ち抜き加工をする際の割れを抑制可能な加工性に優れるフェライト系ステンレス熱延焼鈍鋼板が得られる。 According to the present invention, a ferritic stainless steel hot-rolled annealed steel sheet having sufficient corrosion resistance and excellent workability capable of suppressing cracking when punching into a thick flange is obtained.
 なお、本発明における十分な耐食性とは、評価する表面を#600エメリーペーパーにより研磨仕上げした後に端面部をシールした鋼板にJIS H 8502に規定された塩水噴霧サイクル試験(塩水噴霧(5質量%NaCl、35℃、噴霧2hr)→乾燥(60℃、4hr、相対湿度40%)→湿潤(50℃、2hr、相対湿度≧95%))を1サイクルとする試験)を5サイクル行った場合の鋼板の評価面における発錆面積率(=発錆面積/鋼板全面積×100[%])が25%以下であることを意味する。 In addition, sufficient corrosion resistance in the present invention refers to a salt spray cycle test (salt spray (5 mass% NaCl) specified in JIS H8502 on a steel plate whose end face is sealed after polishing the surface to be evaluated with # 600 emery paper. , 35 ° C., spraying 2 hr) → drying (60 ° C., 4 hr, relative humidity 40%) → wet (50 ° C., 2 hr, relative humidity ≧ 95%)))) This means that the rust area ratio (= rust area / total area of steel plate × 100 [%]) on the evaluation surface is 25% or less.
 また、厚肉のフランジへの打ち抜き加工をする際の割れを抑制可能な加工性に優れるとは、板幅中央部から、ASTM E399に準拠したCT試験片を、疲労予き裂が圧延直角方向、応力軸が圧延平行方向となるように採取し、ASTM E399に準拠して試験することにより得られる限界応力拡大係数KICが20MPa・m1/2以上であることを指す。 In addition, it is said that it is excellent in workability capable of suppressing cracking when punching into a thick-walled flange. From the center of the plate width, a CT test piece in accordance with ASTM E399 is used, and the fatigue precrack is perpendicular to the rolling direction. The critical stress intensity factor K IC obtained by taking the stress axis in the rolling parallel direction and testing in accordance with ASTM E399 is 20 MPa · m 1/2 or more.
 本発明のフェライト系ステンレス熱延焼鈍鋼板は、質量%で、C:0.001~0.020%、Si:0.05~1.00%、Mn:0.05~1.00%、P:0.04%以下、S:0.01%以下、Al:0.001~0.100%、Cr:10.0~24.0%、Ni:0.01~0.60%、Ti:0.10~0.40%、N:0.001~0.020%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、限界応力拡大係数KICが20MPa・m1/2以上である。 The ferritic stainless steel hot-rolled annealed steel sheet of the present invention is, in mass%, C: 0.001 to 0.020%, Si: 0.05 to 1.00%, Mn: 0.05 to 1.00%, P : 0.04% or less, S: 0.01% or less, Al: 0.001 to 0.100%, Cr: 10.0 to 24.0%, Ni: 0.01 to 0.60%, Ti: 0.10 to 0.40%, N: 0.001 to 0.020%, the balance is composed of Fe and inevitable impurities, and the critical stress intensity factor K IC is 20 MPa · m 1 / 2 or more.
 限界応力拡大係数KICは、板幅中央部からASTM E399に準拠したCT試験片を、疲労予き裂が圧延直角方向、応力軸が圧延平行方向となるように採取し、ASTM E399に準拠して試験することにより得られる応力拡大係数のことを指す。 The critical stress intensity factor K IC was obtained by collecting CT specimens in accordance with ASTM E399 from the center of the plate width so that the fatigue precrack is in the direction perpendicular to the rolling and the stress axis is in the direction parallel to the rolling, and in accordance with ASTM E399. Refers to the stress intensity factor obtained by testing.
 以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
 本発明者らは、板厚5.0mmの各種フェライト系ステンレス鋼板を用いて、30mmφのフランジ孔部をブランクまま(打ち抜いたまま)の鋼板表面から10mm持ち上げるバーリング加工部を有するフランジへ成形した際に割れが発生した原因について詳細に検討した。その結果、割れが発生した上記の鋼板では、打ち抜き端面の板厚中央部近傍に生じた微小亀裂がバーリング加工において著しく進展したために割れが生じていることを突き止めた。 When the present inventors formed various ferritic stainless steel plates having a thickness of 5.0 mm into a flange having a burring portion that lifts a 30 mmφ flange hole from the steel plate surface as blank (punched) 10 mm. The cause of the occurrence of cracks was examined in detail. As a result, it was found that in the above-described steel plate in which cracking occurred, the micro crack generated in the vicinity of the central portion of the punched end face significantly progressed in the burring process, so that cracking occurred.
 本発明者らは、この微小亀裂の著しい進展と材料特性の関係を詳細に検討した。その結果、微小亀裂の進展は鋼板の限界応力拡大係数KICが小さいほど生じやすい傾向があることを突き止めた。そこで、種々のフェライト系ステンレス熱延焼鈍鋼板(板厚5.0mm)を用いて該フランジへの成形を試みた結果、微小亀裂の進展による割れは、所定の測定方法で得られる限界応力拡大係数KICが20MPa・m1/2を下回った鋼板で特に生じやすいことを知見した。 The present inventors examined in detail the relationship between the remarkable progress of the microcracks and the material properties. As a result, progress of microcracks have found that there is a tendency to occur as the critical stress intensity factor K IC of the steel sheet is small. Therefore, as a result of attempts to form the flange using various ferritic stainless steel hot-rolled annealed steel plates (thickness 5.0 mm), cracks due to the development of microcracks are limited stress intensity factors obtained by a predetermined measurement method. It has been found that K IC is particularly likely to occur in a steel sheet having a value of less than 20 MPa · m 1/2 .
 さらに、本発明者らは、該フランジへの成形時に割れが生じた鋼板の限界応力拡大係数KICが小さい原因を明らかにするため、上記の鋼板の割れ部を詳細に調査した。その結果、割れが生じた鋼板では、打ち抜き端面の板厚中央部近傍に発生した亀裂が板厚中央部近傍の結晶粒界において著しく進展していることを突き止めた。 Furthermore, the present inventors investigated in detail the crack part of said steel plate in order to clarify the cause of the small critical stress intensity factor K IC of the steel plate in which cracking occurred during forming on the flange. As a result, it was found that in the steel plate in which cracks occurred, the cracks generated in the vicinity of the center portion of the punched end face significantly progressed at the grain boundary in the vicinity of the center portion of the plate thickness.
 そして、上記の鋼板の組織をSEM(Scanning Electron Microscopy)/EBSD(Electron Backscatter Diffraction)法により調査および解析した結果、亀裂が著しく進展した部位の結晶粒は、それぞれが独立した結晶粒ではあるものの、隣接する結晶粒とほぼ同じ結晶方位を有する、いわゆるコロニー(類似結晶方位を有する結晶粒群)を形成していることを突き止めた。一般に、結晶粒は隣接する結晶粒と異なる結晶方位を有しており、亀裂が粒界上を進展するに際して方位の異なる粒界が亀裂進展の障害として機能する。しかし、コロニーでは隣接する結晶粒の結晶方位がほぼ等しいために、コロニー内の各結晶粒間の粒界による亀裂進展の抑制効果が小さくなることで、コロニーが形成されている鋼板では限界応力拡大係数KICが低下し、該フランジへの成形時に割れが生じたことを突き止めた。 And, as a result of investigating and analyzing the structure of the steel sheet by SEM (Scanning Electron Microscopy) / EBSD (Electron Backscatter Diffraction) method, the crystal grains of the portion where the cracks remarkably progressed are independent crystal grains, It was ascertained that so-called colonies (groups of crystal grains having similar crystal orientations) having substantially the same crystal orientation as adjacent crystal grains were formed. Generally, a crystal grain has a crystal orientation different from that of an adjacent crystal grain, and when a crack propagates on the grain boundary, a grain boundary having a different orientation functions as an obstacle to crack propagation. However, since the crystal orientation of adjacent crystal grains in a colony is almost equal, the effect of suppressing crack growth due to the grain boundary between each crystal grain in the colony is reduced, and the steel sheet with a colony has an increased critical stress. The coefficient K IC decreased, and it was ascertained that cracks occurred during molding on the flange.
 そこで、本発明者らは、フェライト系ステンレス熱延焼鈍鋼板において限界応力拡大係数KICを向上させる手法について鋭意検討した。その結果、適切な成分のフェライト系ステンレス鋼に対して、特に多パスからなる仕上圧延を行う熱間圧延工程の最終3パスを800~1100℃の温度範囲で、かつ最終3パスの累積圧下率(=100-(最終板厚/最終3パスの圧延開始前の板厚)×100[%])が25%以上となるように適切に制御して得られた熱延鋼板に対して、800~1100℃で熱延板焼鈍を行うことにより、コロニーが効果的に破壊され、20MPa・m1/2以上の限界応力拡大係数KICが得られることを知見した。 Therefore, the present inventors have intensively studied a method for improving the critical stress intensity factor K IC in a ferritic stainless hot-rolled annealed steel sheet. As a result, for the ferritic stainless steel having an appropriate component, the final three passes in the hot rolling process in which finish rolling consisting of multiple passes is performed in the temperature range of 800 to 1100 ° C., and the cumulative reduction ratio of the final three passes. (= 100− (final plate thickness / plate thickness before starting the final 3 pass rolling) × 100 [%]) is appropriately controlled to be 25% or more, with respect to a hot-rolled steel plate obtained by appropriately controlling 800 It was found that by performing hot-rolled sheet annealing at ˜1100 ° C., colonies were effectively destroyed and a critical stress intensity factor K IC of 20 MPa · m 1/2 or more was obtained.
 なお、本発明のフェライト系ステンレス熱延焼鈍鋼板の板厚は、特に限定されないが、厚肉のフランジに適用できる板厚であることが望ましいため、5.0mm以上が好ましく、7.0mm以上がより好ましい。また、前記板厚は、特に限定されないが、15.0mm以下が好ましく、10.0mm以下がより好ましい。 The thickness of the ferritic stainless steel hot-rolled annealed steel sheet according to the present invention is not particularly limited. However, since it is desirable that the thickness be applicable to a thick flange, 5.0 mm or more is preferable, and 7.0 mm or more is preferable. More preferred. Moreover, the said plate | board thickness is although it does not specifically limit, 15.0 mm or less is preferable and 10.0 mm or less is more preferable.
 上記手法によりコロニーの破壊が促進される理由について以下に説明する。 The reason why destruction of colonies is promoted by the above method will be described below.
 フェライト系ステンレス鋼の熱間圧延前のスラブの板厚中央部には、粗大かつ展伸したコロニー(類似結晶方位を有する結晶粒群)が鋳造方向に沿って連なって分布している。一方、鋼板を圧延した場合、鋼板は表層部から変形して伸長する。そのため、圧下率が小さい場合には板厚中央部の変形量が小さくなり、板厚中央部に圧延ひずみがほとんど導入されない。 In the central portion of the slab before hot rolling of ferritic stainless steel, coarse and expanded colonies (a group of crystal grains having similar crystal orientations) are continuously distributed along the casting direction. On the other hand, when a steel plate is rolled, the steel plate deforms from the surface layer portion and extends. For this reason, when the rolling reduction is small, the amount of deformation in the central portion of the plate thickness is small, and almost no rolling strain is introduced into the central portion of the plate thickness.
 そのため、従来技術による熱間圧延では、鋼板の板厚中央部の展伸粒に圧延ひずみが十分に導入されず、その後の熱延板焼鈍における再結晶サイトが不足し、熱延板焼鈍時に板厚中央付近では再結晶は生じるもののコロニーが分断されずに残存しやすく、本発明が必要とする20MPa・m1/2以上の限界応力拡大係数KICが得られない。 Therefore, in the hot rolling according to the prior art, rolling strain is not sufficiently introduced into the expanded grain at the center of the plate thickness of the steel sheet, and there are insufficient recrystallization sites in the subsequent hot-rolled sheet annealing. Although recrystallization occurs in the vicinity of the thickness center, colonies tend to remain without being divided, and the critical stress intensity factor K IC of 20 MPa · m 1/2 or more required by the present invention cannot be obtained.
 さらに、フェライト系ステンレス鋼は熱間圧延において動的再結晶(加工変形中における再結晶を言う)がほとんど生じず、圧延による加工ひずみの回復が生じやすい傾向がある。そのため、従来技術による熱間圧延では圧延によって導入された加工ひずみの過度な回復が生じて加工ひずみを熱間圧延後まで効果的に維持することができない。その結果、再結晶サイトが不十分となり次工程の熱延板焼鈍においてコロニーが効果的に破壊されず、所定の限界応力拡大係数KICが得られない。 Further, ferritic stainless steel hardly undergoes dynamic recrystallization (referred to as recrystallization during deformation) during hot rolling, and tends to cause recovery of processing strain due to rolling. Therefore, in the hot rolling according to the conventional technique, excessive recovery of the working strain introduced by rolling occurs, and the working strain cannot be effectively maintained until after hot rolling. As a result, the recrystallization sites become insufficient, the colonies are not effectively destroyed in the subsequent hot-rolled sheet annealing, and the predetermined critical stress intensity factor K IC cannot be obtained.
 そこで本発明者らは、熱間圧延工程において鋼板の全厚にわたって圧延加工ひずみを効果的にかつ十分に導入する手法について鋭意検討した。その結果、仕上熱間圧延の最終3パスを適切な温度範囲に管理したうえで大きな累積圧下率で圧延を行うことにより、圧延加工ひずみの回復を抑制しつつ、圧延加工ひずみが板厚の中央部まで十分にかつ効果的に導入され、次工程の熱延板焼鈍における再結晶サイトとなる圧延加工ひずみを十分に残した熱延板組織を得ることができ、次工程の熱延板焼鈍においてコロニーが効果的に破壊されることを知見した。 Therefore, the present inventors diligently studied a method for effectively and sufficiently introducing rolling distortions over the entire thickness of the steel sheet in the hot rolling process. As a result, the final three passes of finish hot rolling are controlled within an appropriate temperature range, and rolling is performed at a large cumulative reduction rate, thereby suppressing the recovery of rolling distortion and reducing the rolling distortion to the center of the plate thickness. Can be obtained effectively and effectively to the part, and a hot-rolled sheet structure can be obtained in which a sufficient amount of rolling processing strain remains as a recrystallization site in the next-stage hot-rolled sheet annealing. It was found that colonies were effectively destroyed.
 具体的には、3パス以上からなる仕上熱間圧延工程の最終3パスを800~1100℃の温度範囲で、かつ最終3パスの累積圧下率(=100-(最終板厚/最終3パスの圧延開始前の板厚)×100[%])が25%以上となるように適切に制御して熱間圧延を行うことを考案した。 Specifically, the final 3 passes of the finishing hot rolling process consisting of 3 passes or more are performed in a temperature range of 800 to 1100 ° C., and the cumulative reduction ratio of the final 3 passes (= 100− (final plate thickness / final 3 passes). It has been devised that hot rolling is performed with appropriate control so that the sheet thickness before rolling starts) × 100 [%]) is 25% or more.
 また、本発明者らは、次工程の熱延板焼鈍の好適な条件についても鋭意検討した。熱延板焼鈍は熱間圧延によって形成された加工組織を再結晶させる工程である。そのため、十分な再結晶が生じる温度で焼鈍を行う必要がある。しかし、過度な高温で熱延板焼鈍を行った場合、再結晶は生じるものの再結晶粒の著しい粗大化が生じる。この著しく粗大な再結晶粒は独立した単一の結晶粒であるが、粒界長さが著しく長くなるため、コロニーが存在していた場合と同様に方位の異なる粒界による亀裂進展の抑制効果が低下し、所定の限界応力拡大係数KICが得られなくなることを知見した。 In addition, the present inventors have also intensively studied suitable conditions for the hot-rolled sheet annealing in the next step. Hot-rolled sheet annealing is a process of recrystallizing a processed structure formed by hot rolling. Therefore, it is necessary to perform annealing at a temperature at which sufficient recrystallization occurs. However, when hot-rolled sheet annealing is performed at an excessively high temperature, recrystallization occurs but recrystallized grains become extremely coarse. This remarkably coarse recrystallized grain is an independent single crystal grain, but the grain boundary length is remarkably long, so that the effect of suppressing crack growth by grain boundaries with different orientations is the same as when colonies existed. It was found that the predetermined critical stress intensity factor K IC could not be obtained.
 そこで本発明者らは、再結晶粒の粒径と焼鈍温度の関係について詳細に調査した。その結果、熱延板焼鈍温度を1100℃以下に抑えることによって、限界応力拡大係数KICが顕著に低下するほどの粗大な再結晶粒の生成を抑制できることを見出した。 Therefore, the present inventors investigated in detail the relationship between the grain size of recrystallized grains and the annealing temperature. As a result, it has been found that by suppressing the hot-rolled sheet annealing temperature to 1100 ° C. or lower, it is possible to suppress the generation of coarse recrystallized grains so that the critical stress intensity factor K IC is significantly reduced.
 次に、本発明のフェライト系ステンレス熱延焼鈍鋼板の成分組成について説明する。
以下、特に断らない限り、成分組成を示す%は質量%を意味する。
Next, the component composition of the ferritic stainless steel hot-rolled annealed steel sheet of the present invention will be described.
Hereinafter, unless otherwise specified,% indicating the component composition means mass%.
 C:0.001~0.020%
 Cを0.020%超えて含有すると、加工性の低下および溶接部の耐食性低下が顕著になる。C含有量が少ないほど耐食性および加工性の観点では好ましいが、C含有量を0.001%未満にするためには精錬に時間がかかり製造上好ましくない。そのため、C含有量は0.001~0.020%の範囲とする。C含有量は、好ましくは0.003%以上であり、より好ましくは0.004%以上である。また、C含有量は、好ましくは0.015%以下であり、より好ましくは0.012%以下である。
C: 0.001 to 0.020%
When C is contained in excess of 0.020%, the workability and the corrosion resistance of the welded portion are significantly reduced. The smaller the C content, the better from the viewpoint of corrosion resistance and workability. However, in order to make the C content less than 0.001%, it takes time for refining, which is not preferable in production. Therefore, the C content is in the range of 0.001 to 0.020%. The C content is preferably 0.003% or more, and more preferably 0.004% or more. Further, the C content is preferably 0.015% or less, and more preferably 0.012% or less.
 Si:0.05~1.00%
 Siは溶接時に形成される酸化皮膜に濃縮して溶接部の耐食性を向上させる効果があるとともに、製鋼工程における脱酸元素としても有用な元素である。これらの効果は0.05%以上のSiの含有により得られ、含有量が多いほどその効果は大きくなる。しかし、1.00%を超えてSiを含有すると、熱間圧延工程における圧延荷重の増大と顕著なスケールの生成、焼鈍工程においては鋼板表層でのSi濃化層の形成による酸洗性の低下がそれぞれ生じ、表面欠陥の増加や製造コストの上昇を誘引するため好ましくない。そのため、Si含有量は0.05~1.00%とする。Si含有量は、好ましくは0.10%以上である。また、Si含有量は、好ましくは0.60%以下であり、より好ましくは0.40%以下である。
Si: 0.05 to 1.00%
Si has an effect of concentrating on an oxide film formed at the time of welding to improve the corrosion resistance of the welded portion, and is also an element useful as a deoxidizing element in the steel making process. These effects are obtained by containing 0.05% or more of Si, and the effect increases as the content increases. However, if Si is contained in excess of 1.00%, the rolling load increases in the hot rolling process and a significant scale is generated. In the annealing process, the pickling property decreases due to the formation of the Si concentrated layer on the steel sheet surface layer. Respectively, which causes an increase in surface defects and an increase in manufacturing cost. Therefore, the Si content is set to 0.05 to 1.00%. The Si content is preferably 0.10% or more. Moreover, Si content becomes like this. Preferably it is 0.60% or less, More preferably, it is 0.40% or less.
 Mn:0.05~1.00%
 Mnは鋼の強度を高める効果があり、また、脱酸剤としての作用もある。その効果を得るためには0.05%以上のMnの含有が必要である。しかし、Mn含有量が1.00%を超えると、腐食の起点となるMnSの生成が促進され、耐食性が低下する。そのため、Mn含有量は0.05~1.00%とする。Mn含有量は、好ましくは0.10%以上である。また、Mn含有量は、好ましくは0.60%以下であり、より好ましくは0.30%以下である。
Mn: 0.05 to 1.00%
Mn has the effect of increasing the strength of the steel and also acts as a deoxidizer. In order to obtain the effect, it is necessary to contain 0.05% or more of Mn. However, if the Mn content exceeds 1.00%, the generation of MnS that is the starting point of corrosion is promoted, and the corrosion resistance is lowered. Therefore, the Mn content is set to 0.05 to 1.00%. The Mn content is preferably 0.10% or more. Further, the Mn content is preferably 0.60% or less, more preferably 0.30% or less.
 P:0.04%以下
 Pは鋼に不可避的に含まれる元素であるが、耐食性および加工性に対して有害な元素であるので可能な限り低減することが好ましい。特に、P含有量が0.04%を超えると固溶強化により加工性が顕著に低下する。よって、P含有量は0.04%以下とする。好ましくは、P含有量は0.03%以下である。
P: 0.04% or less P is an element inevitably contained in steel. However, it is preferably reduced as much as possible because it is an element harmful to corrosion resistance and workability. In particular, when the P content exceeds 0.04%, workability is remarkably lowered due to solid solution strengthening. Therefore, the P content is 0.04% or less. Preferably, the P content is 0.03% or less.
 S:0.01%以下
 SもPと同様に鋼に不可避的に含まれる元素であるが、耐食性および加工性に対して有害な元素であるので可能な限り低減するのが好ましい。特に、S含有量が0.01%を超えると耐食性が顕著に低下する。よって、S含有量は0.01%以下とする。好ましくは、S含有量は0.008%以下である。より好ましくは、S含有量は0.003%以下である。
S: 0.01% or less S is an element inevitably contained in steel like P. However, it is preferably reduced as much as possible because it is an element harmful to corrosion resistance and workability. In particular, when the S content exceeds 0.01%, the corrosion resistance significantly decreases. Therefore, the S content is 0.01% or less. Preferably, the S content is 0.008% or less. More preferably, the S content is 0.003% or less.
 Al:0.001~0.100%
 Alは有効な脱酸剤である。さらに、Alは窒素との親和力がCrよりも強いため、溶接部に窒素が侵入した場合に、窒素をCr窒化物ではなくAl窒化物として析出させて、鋭敏化を抑制する効果がある。これらの効果は、Alを0.001%以上含有することで得られる。しかし、0.100%を超えるAlを含有すると、溶接時の溶け込み性が低下して溶接作業性が低下するので好ましくない。そのため、Al含有量は0.001~0.100%の範囲とする。Al含有量は、好ましくは0.005%以上であり、より好ましくは0.010%以上である。また、Al含有量は、好ましくは0.060%以下であり、より好ましくは0.040%以下である。
Al: 0.001 to 0.100%
Al is an effective deoxidizer. Furthermore, since Al has a stronger affinity for nitrogen than Cr, when nitrogen penetrates into the weld zone, it has the effect of precipitating nitrogen by precipitating nitrogen as Al nitride instead of Cr nitride. These effects can be obtained by containing 0.001% or more of Al. However, it is not preferable to contain Al exceeding 0.100% because the penetration property during welding is lowered and the welding workability is lowered. Therefore, the Al content is in the range of 0.001 to 0.100%. The Al content is preferably 0.005% or more, and more preferably 0.010% or more. Moreover, Al content becomes like this. Preferably it is 0.060% or less, More preferably, it is 0.040% or less.
 Cr:10.0~24.0%
 Crはステンレス鋼の耐食性を確保するために最も重要な元素である。その含有量が10.0%未満では、自動車排気ガス雰囲気において十分な耐食性が得られない。一方、24.0%を超えてCrを含有すると、σ(シグマ)相の生成により靭性が著しく低下し、本発明では、所定の限界応力拡大係数KICを得ることができない。そのため、Cr含有量は10.0~24.0%の範囲とする。Cr含有量は、好ましくは14.0%以上であり、より好ましくは16.0%以上であり、さらに好ましくは17.0%以上である。また、Cr含有量は、好ましくは21.5%以下であり、より好ましくは19.5%以下であり、さらに好ましくは18.5%以下である。
Cr: 10.0-24.0%
Cr is the most important element for ensuring the corrosion resistance of stainless steel. If the content is less than 10.0%, sufficient corrosion resistance cannot be obtained in an automobile exhaust gas atmosphere. On the other hand, if the Cr content exceeds 24.0%, the toughness is remarkably reduced due to the formation of the σ (sigma) phase, and in the present invention, the predetermined critical stress intensity factor K IC cannot be obtained. Therefore, the Cr content is in the range of 10.0 to 24.0%. The Cr content is preferably 14.0% or more, more preferably 16.0% or more, and further preferably 17.0% or more. Moreover, Cr content becomes like this. Preferably it is 21.5% or less, More preferably, it is 19.5% or less, More preferably, it is 18.5% or less.
 Ni:0.01~0.60%
 Niはステンレス鋼の耐食性を向上させる元素であり、不動態皮膜が形成されず活性溶解が生じる腐食環境において腐食の進行を抑制する元素である。また、Niは強いオーステナイト生成元素であり、溶接部でのフェライト生成を抑制し、Cr炭窒化物の析出による鋭敏化を抑制する効果がある。この効果は、Niを0.01%以上含有することで得られ、Niの含有量が多いほど高くなる。しかし、Ni含有量が0.60%を超えると、加工性が低下することに加えて、応力腐食割れが発生しやすくなる。さらには、Niは高価な元素であるため、Niの含有量の増大は製造コストの増大を招くため好ましくない。そのため、Ni含有量は0.01~0.60%とする。Ni含有量は、好ましくは0.10%以上である。また、Ni含有量は、好ましくは0.50%以下であり、より好ましくは0.40%以下である。
Ni: 0.01 to 0.60%
Ni is an element that improves the corrosion resistance of stainless steel, and is an element that suppresses the progress of corrosion in a corrosive environment where a passive film is not formed and active dissolution occurs. Ni is a strong austenite generating element, and has the effect of suppressing ferrite formation at the weld and suppressing sensitization due to precipitation of Cr carbonitride. This effect is obtained by containing 0.01% or more of Ni, and increases as the Ni content increases. However, when the Ni content exceeds 0.60%, workability is lowered and stress corrosion cracking is likely to occur. Furthermore, since Ni is an expensive element, an increase in the content of Ni causes an increase in manufacturing cost, which is not preferable. Therefore, the Ni content is set to 0.01 to 0.60%. The Ni content is preferably 0.10% or more. Moreover, Ni content becomes like this. Preferably it is 0.50% or less, More preferably, it is 0.40% or less.
 Ti:0.10~0.40%
 本発明においてTiは極めて重要な元素である。Tiは、CおよびNと優先的に結合して、Cr炭窒化物の析出を抑制し、再結晶温度を低下させるとともにCr炭窒化物の析出による鋭敏化に起因した耐食性の低下を抑制する効果がある。これらの効果を得るためには0.10%以上のTiの含有が必要である。しかし、Ti含有量が0.40%を超えると固溶Ti量が過度に増加するために再結晶温度が逆に上昇してしまい、本発明の技術を適用することができない。また、0.40%超のTiの含有は、鋳造工程において粗大なTi炭窒化物が生成し、表面欠陥を引き起こすため製造上も好ましくない。そのため、Ti含有量は0.10~0.40%とする。Ti含有量は、好ましくは0.15%以上であり、より好ましくは0.20%以上である。また、Ti含有量は、好ましくは0.35%以下であり、より好ましくは0.30%以下である。なお、溶接部耐食性の観点では式:Ti/(C+N)≧8(なお、該式中、Ti、C、Nは各元素の含有量(質量%)である。)を満たすTi含有量とすることが好ましい。
Ti: 0.10 to 0.40%
In the present invention, Ti is an extremely important element. Ti preferentially binds to C and N, suppresses the precipitation of Cr carbonitride, lowers the recrystallization temperature, and suppresses the decrease in corrosion resistance due to sensitization due to the precipitation of Cr carbonitride There is. In order to obtain these effects, it is necessary to contain 0.10% or more of Ti. However, if the Ti content exceeds 0.40%, the solid solution Ti amount increases excessively, so the recrystallization temperature rises conversely, and the technique of the present invention cannot be applied. In addition, if Ti content exceeds 0.40%, coarse Ti carbonitrides are produced in the casting process and cause surface defects, which is not preferable in production. Therefore, the Ti content is set to 0.10 to 0.40%. The Ti content is preferably 0.15% or more, and more preferably 0.20% or more. Moreover, Ti content becomes like this. Preferably it is 0.35% or less, More preferably, it is 0.30% or less. From the viewpoint of corrosion resistance of the weld zone, the Ti content satisfies the formula: Ti / (C + N) ≧ 8 (in the formula, Ti, C, and N are the contents (mass%) of each element). It is preferable.
 N:0.001~0.020%
 N含有量が0.020%を超えると、加工性の低下および溶接部の耐食性の低下が顕著になる。耐食性の観点からN含有量は低いほど好ましいが、N含有量を0.001%未満にまで低減するには長時間の精錬が必要となり、製造コストの上昇および生産性の低下を招くため好ましくない。よって、N含有量は0.001~0.020%の範囲とする。N含有量は、好ましくは0.005%以上であり、より好ましくは0.007%以上である。また、N含有量は、好ましくは0.015%以下であり、より好ましくは0.012%以下である。
N: 0.001 to 0.020%
When the N content exceeds 0.020%, the workability and the corrosion resistance of the welded portion are significantly reduced. From the viewpoint of corrosion resistance, the lower the N content, the better. However, reducing the N content to less than 0.001% requires refining for a long time, which is not preferable because it causes an increase in manufacturing cost and a decrease in productivity. . Therefore, the N content is in the range of 0.001 to 0.020%. The N content is preferably 0.005% or more, and more preferably 0.007% or more. Moreover, N content becomes like this. Preferably it is 0.015% or less, More preferably, it is 0.012% or less.
 本発明は、上記必須成分を含有し残部がFeおよび不可避的不純物からなることを特徴とするフェライト系ステンレス鋼である。さらに、必要に応じて、Cu、Mo、WおよびCoのうちから選ばれる1種または2種以上、あるいは/さらに、V、Nb、Zr、REM、B、MgおよびCaのうちから選ばれる1種または2種以上を、下記の範囲で含有することができる。 The present invention is a ferritic stainless steel characterized in that it contains the above-mentioned essential components and the balance consists of Fe and inevitable impurities. Furthermore, as required, one or more selected from Cu, Mo, W and Co, or / or one selected from V, Nb, Zr, REM, B, Mg and Ca. Or 2 or more types can be contained in the following range.
 Cu:0.01~1.00%
 Cuは水溶液中や弱酸性の水滴が付着した場合の母材および溶接部の耐食性を向上させるのに特に有効な元素である。この効果は0.01%以上の含有により得られ、その効果はCu含有量が多いほど高くなる。しかし、1.00%を超えてCuを含有すると、熱間加工性が低下して表面欠陥を誘引する場合がある。さらには焼鈍後の脱スケールが困難となる場合もある。そのため、Cuを含有する場合は、Cu含有量は0.01~1.00%の範囲とすることが好ましい。Cu含有量は、より好ましくは0.10%以上であり、さらに好ましくは0.30%以上である。また、Cu含有量は、より好ましくは0.60%以下であり、さらに好ましくは0.45%以下である。
Cu: 0.01 to 1.00%
Cu is an element particularly effective for improving the corrosion resistance of the base material and the welded part when an aqueous solution or weakly acidic water droplets adhere. This effect is obtained when the content is 0.01% or more, and the effect increases as the Cu content increases. However, when Cu is contained exceeding 1.00%, hot workability may be reduced and surface defects may be induced. In addition, descaling after annealing may be difficult. Therefore, when Cu is contained, the Cu content is preferably in the range of 0.01 to 1.00%. The Cu content is more preferably 0.10% or more, and further preferably 0.30% or more. Further, the Cu content is more preferably 0.60% or less, and further preferably 0.45% or less.
 Mo:0.01~2.00%
 Moはステンレス鋼の耐食性を顕著に向上させる元素である。この効果は0.01%以上の含有によって得られ、その効果は含有量が多いほど向上する。しかし、Mo含有量が2.00%を超えると、熱間圧延時の圧延負荷が大きくなり製造性が低下したり、鋼板強度の過度な上昇が生じたりする場合がある。また、Moは高価な元素であることから、多量の含有は製造コストを増大させる。そのため、Moを含有する場合は、Mo含有量は0.01~2.00%とすることが好ましい。Mo含有量は、より好ましくは0.10%以上であり、さらに好ましくは0.30%以上である。また、Mo含有量は、より好ましくは1.40%以下であり、さらに好ましくは0.90%以下である。
Mo: 0.01-2.00%
Mo is an element that remarkably improves the corrosion resistance of stainless steel. This effect is obtained when the content is 0.01% or more, and the effect improves as the content increases. However, if the Mo content exceeds 2.00%, the rolling load at the time of hot rolling increases, and the manufacturability may decrease, or the steel sheet strength may increase excessively. Moreover, since Mo is an expensive element, a large content increases the manufacturing cost. Therefore, when Mo is contained, the Mo content is preferably 0.01 to 2.00%. The Mo content is more preferably 0.10% or more, and further preferably 0.30% or more. Moreover, Mo content becomes like this. More preferably, it is 1.40% or less, More preferably, it is 0.90% or less.
 W:0.01~0.20%
 WはMoと同様に耐食性を向上させる効果がある。この効果は0.01%以上のWの含有により得られる。しかし、0.20%を超えてWを含有すると強度が上昇し、圧延荷重の増大等による製造性の低下を招く場合がある。そのため、Wを含有する場合は、W含有量は0.01~0.20%の範囲とすることが好ましい。W含有量は、より好ましくは0.05%以上である。また、W含有量は、より好ましくは0.15%以下である。
W: 0.01-0.20%
W, like Mo, has the effect of improving corrosion resistance. This effect is obtained by containing 0.01% or more of W. However, if it exceeds 0.20% and W is contained, the strength increases, and the productivity may decrease due to an increase in rolling load. Therefore, when W is contained, the W content is preferably in the range of 0.01 to 0.20%. The W content is more preferably 0.05% or more. Further, the W content is more preferably 0.15% or less.
 Co:0.01~0.20%
 Coは靭性を向上させる元素である。この効果は0.01%以上のCoの含有によって得られる。一方、Co含有量が0.20%を超えると加工性が低下する場合がある。そのため、Coを含有する場合は、Co含有量は0.01~0.20%の範囲とすることが好ましい。Co含有量は、より好ましくは0.10%以下である。 
Co: 0.01-0.20%
Co is an element that improves toughness. This effect is obtained by containing 0.01% or more of Co. On the other hand, if the Co content exceeds 0.20%, workability may be reduced. Therefore, when Co is contained, the Co content is preferably in the range of 0.01 to 0.20%. The Co content is more preferably 0.10% or less.
 V:0.01~0.20%
 VはC、Nと炭窒化物を形成し、溶接時の鋭敏化を抑制して溶接部の耐食性を向上させる。この効果はV含有量が0.01%以上で得られる。一方、V含有量が0.20%を超えると加工性および靭性が顕著に低下する場合がある。そのため、V含有量は0.01~0.20%とすることが好ましい。V含有量は、より好ましくは0.03%以上である。また、V含有量は、より好ましくは0.10%以下であり、さらにより好ましくは0.05%以下である。
V: 0.01-0.20%
V forms carbonitride with C and N, suppresses sensitization during welding and improves the corrosion resistance of the weld. This effect is obtained when the V content is 0.01% or more. On the other hand, if the V content exceeds 0.20%, workability and toughness may be significantly reduced. Therefore, the V content is preferably 0.01 to 0.20%. The V content is more preferably 0.03% or more. Further, the V content is more preferably 0.10% or less, and even more preferably 0.05% or less.
 Nb:0.01~0.10%
 Nbは結晶粒を微細化させるとともに、母相中に固溶することにより鋼板の靭性を向上させる効果がある。これらの効果は0.01%以上のNbの含有で得られる。一方、Nbは再結晶温度を上昇させる効果もあり、Nb含有量が0.10%を超えると熱延板焼鈍にて十分な再結晶を生じさせるために必要な焼鈍温度が過度に高温となって、焼鈍中に結晶粒径が最大で300μm以上となるほどの再結晶粒の著しい粗大化が生じ、所定の限界応力拡大係数KICを得ることができなくなる場合がある。そのため、Nbを含有させる場合には、Nb含有量は0.01~0.10%の範囲とすることが好ましい。Nb含有量は、より好ましくは0.02%以上である。また、Nb含有量は、より好ましくは0.05%以下である。
Nb: 0.01 to 0.10%
Nb has the effect of improving the toughness of the steel sheet by refining crystal grains and dissolving in the matrix. These effects are obtained when the Nb content is 0.01% or more. On the other hand, Nb also has an effect of increasing the recrystallization temperature. When the Nb content exceeds 0.10%, the annealing temperature necessary for causing sufficient recrystallization by hot-rolled sheet annealing becomes excessively high. As a result, recrystallized grains become extremely coarse as the crystal grain size reaches 300 μm or more during annealing, and a predetermined critical stress intensity factor K IC may not be obtained. Therefore, when Nb is contained, the Nb content is preferably in the range of 0.01 to 0.10%. The Nb content is more preferably 0.02% or more. Further, the Nb content is more preferably 0.05% or less.
 Zr:0.01~0.20%
 Zrは、CおよびNと結合して鋭敏化を抑制する効果がある。この効果は0.01%以上のZrの含有により得られる。一方、0.20%を超えてZrを含有すると加工性が顕著に低下する場合がある。そのため、Zrを含有する場合、Zr含有量は0.01~0.20%の範囲とすることが好ましい。Zr含有量は、より好ましくは0.02%以上である。また、Zr含有量は、より好ましくは0.10%以下であり、さらにより好ましくは0.05%以下である。
Zr: 0.01-0.20%
Zr has the effect of binding to C and N to suppress sensitization. This effect is obtained by containing 0.01% or more of Zr. On the other hand, if the Zr content exceeds 0.20%, the workability may be significantly reduced. Therefore, when Zr is contained, the Zr content is preferably in the range of 0.01 to 0.20%. The Zr content is more preferably 0.02% or more. Further, the Zr content is more preferably 0.10% or less, and even more preferably 0.05% or less.
 REM:0.001~0.100%
 REM(Rare Earth Metals:希土類金属)は耐酸化性を向上させる効果があり、溶接部の酸化皮膜(溶接テンパーカラー)形成を抑制して酸化皮膜直下におけるCr欠乏領域の形成を抑制する。この効果は、REMを0.001%以上含有することで得られる。一方、0.100%を超えてREMを含有すると冷延焼鈍時の酸洗性などの製造性を低下させる場合がある。そのため、REMを含有する場合、REM含有量は0.001~0.100%の範囲とすることが好ましい。REM含有量は、より好ましくは0.010%以上である。また、REM含有量は、より好ましくは0.050%以下である。
REM: 0.001 to 0.100%
REM (Rare Earth Metals) has an effect of improving the oxidation resistance, and suppresses formation of a Cr-deficient region immediately below the oxide film by suppressing formation of an oxide film (weld temper color) in the welded portion. This effect is acquired by containing REM 0.001% or more. On the other hand, when it contains REM exceeding 0.100%, productivity, such as pickling at the time of cold rolling annealing, may be reduced. Therefore, when REM is contained, the REM content is preferably in the range of 0.001 to 0.100%. The REM content is more preferably 0.010% or more. The REM content is more preferably 0.050% or less.
 B:0.0002~0.0025%
 Bは成形後の耐二次加工脆性を改善するために有効な元素である。この効果はBの含有量を0.0002%以上にすることで得られる。一方、0.0025%を超えてBを含有すると加工性と靭性が低下する場合がある。そのため、Bを含有する場合、B含有量は0.0002~0.0025%の範囲とすることが好ましい。B含有量は、より好ましくは0.0003%以上である。また、B含有量は、より好ましくは0.0006%以下である。
B: 0.0002 to 0.0025%
B is an element effective for improving the secondary work brittleness resistance after molding. This effect is obtained by making the B content 0.0002% or more. On the other hand, if the B content exceeds 0.0025%, workability and toughness may be reduced. Therefore, when B is contained, the B content is preferably in the range of 0.0002 to 0.0025%. The B content is more preferably 0.0003% or more. Further, the B content is more preferably 0.0006% or less.
 Mg:0.0005~0.0030%
 Mgはスラブの等軸晶率を向上させ、加工性や靭性の向上に有効な元素である。さらに、本発明のようにTiを含有する鋼においては、Ti炭窒化物が粗大化すると靭性が低下するが、MgはTi炭窒化物の粗大化を抑制する効果も有する。これらの効果は、0.0005%以上のMgを含有することで得られる。一方で、Mg含有量が0.0030%を超えると、鋼の表面性状を悪化させてしまう場合がある。したがって、Mgを含有する場合、Mg含有量は0.0005~0.0030%の範囲とすることが好ましい。Mg含有量は、より好ましくは0.0010%以上である。また、Mg含有量は、より好ましくは0.0020%以下である。
Mg: 0.0005 to 0.0030%
Mg is an element that improves the equiaxed crystal ratio of the slab and is effective in improving workability and toughness. Further, in the steel containing Ti as in the present invention, when Ti carbonitride becomes coarser, the toughness decreases, but Mg also has an effect of suppressing the coarsening of Ti carbonitride. These effects can be obtained by containing 0.0005% or more of Mg. On the other hand, if the Mg content exceeds 0.0030%, the surface properties of the steel may be deteriorated. Therefore, when Mg is contained, the Mg content is preferably in the range of 0.0005 to 0.0030%. The Mg content is more preferably 0.0010% or more. The Mg content is more preferably 0.0020% or less.
 Ca:0.0003~0.0030%
 Caは、連続鋳造の際に発生しやすいTi系介在物の晶出によるノズルの閉塞を防止するのに有効な成分である。その効果は0.0003%以上のCaを含有することで得られる。しかし、0.0030%を超えてCaを含有すると、CaSの生成により耐食性が低下する場合がある。従って、Caを含有する場合、Ca含有量は0.0003~0.0030%の範囲とすることが好ましい。Ca含有量は、より好ましくは0.0005%以上である。また、Ca含有量は、より好ましくは0.0015%以下であり、さらに好ましくは0.0010%以下である。
Ca: 0.0003 to 0.0030%
Ca is an effective component for preventing nozzle clogging due to crystallization of Ti-based inclusions that are likely to occur during continuous casting. The effect is acquired by containing 0.0003% or more of Ca. However, if the Ca content exceeds 0.0030%, the corrosion resistance may decrease due to the formation of CaS. Therefore, when Ca is contained, the Ca content is preferably in the range of 0.0003 to 0.0030%. The Ca content is more preferably 0.0005% or more. Moreover, Ca content becomes like this. More preferably, it is 0.0015% or less, More preferably, it is 0.0010% or less.
 限界応力拡大係数KIC:20MPa・m1/2以上
 本発明のフェライト系ステンレス熱延焼鈍鋼板は、限界応力拡大係数KICが20MPa・m1/2以上であることで、厚肉のフランジへの打ち抜き加工をする際の割れを抑制することができる。限界応力拡大係数KICは、好ましくは25MPa・m1/2以上、さらに好ましくは30MPa・m1/2以上である。なお、厚肉のフランジとは、特に限定されないが、例えば板厚5.0mm以上のフランジが挙げられる。前記フランジとしては、例えば板厚5.0~15.0mmのフランジが好ましく、板厚5.0~10.0mmのフランジがより好ましい。
Limit stress intensity factor K IC : 20 MPa · m 1/2 or more The ferritic stainless steel hot rolled annealed steel sheet of the present invention has a limit stress intensity factor K IC of 20 MPa · m 1/2 or more, so that it becomes a thick flange. It is possible to suppress cracks during the punching process. The critical stress intensity factor K IC is preferably 25 MPa · m 1/2 or more, more preferably 30 MPa · m 1/2 or more. The thick flange is not particularly limited, and examples thereof include a flange having a thickness of 5.0 mm or more. As the flange, for example, a flange having a plate thickness of 5.0 to 15.0 mm is preferable, and a flange having a plate thickness of 5.0 to 10.0 mm is more preferable.
 次に、本発明のフェライト系ステンレス熱延焼鈍鋼板の製造方法について説明する。なお、以下の説明において、特に断らない限り、温度は、鋼スラブ、熱延鋼板等の表面温度計等で測定した表面温度とする。 Next, a method for producing the ferritic stainless steel hot-rolled annealed steel sheet according to the present invention will be described. In the following description, unless otherwise specified, the temperature is the surface temperature measured with a surface thermometer such as a steel slab or hot-rolled steel sheet.
 本発明のフェライト系ステンレス熱延焼鈍鋼板は、上記成分組成を有する鋼スラブを用い、粗圧延および3パス以上の仕上げ圧延からなる熱間圧延において、仕上圧延の最終3パスの圧延を温度範囲800~1100℃、且つ最終3パスの累積圧下率25%以上として熱延鋼板を得て、該熱延鋼板に対してさらに800~1100℃で熱延板焼鈍を行うことによって得られる。 The ferritic stainless steel hot-rolled annealed steel sheet of the present invention uses a steel slab having the above composition, and in the hot rolling consisting of rough rolling and finishing rolling of 3 or more passes, the final 3 passes of finishing rolling are performed in a temperature range of 800. It is obtained by obtaining a hot-rolled steel sheet at a temperature of ˜1100 ° C. and a cumulative reduction ratio of 25% or more in the final three passes, and subjecting the hot-rolled steel sheet to further hot-rolled sheet annealing at 800 to 1100 ° C.
 まずは、上記した成分組成からなる溶鋼を、転炉、電気炉、真空溶解炉等の公知の方法で溶製し、連続鋳造法あるいは造塊-分塊法により鋼素材(スラブ)とする。 First, the molten steel having the above component composition is melted by a known method such as a converter, electric furnace, vacuum melting furnace or the like, and is made into a steel material (slab) by a continuous casting method or an ingot-bundling method.
 このスラブを、1100~1250℃で1~24時間加熱するか、あるいは加熱することなく鋳造後1100~1250℃の温度になった段階で、熱間圧延に供する。本発明では粗圧延については特に限定すべき点はないが、仕上熱間圧延前に鋳造組織を効果的に破壊しておいた場合、その後の仕上熱間圧延における結晶粒の微細化に優位に働くため、粗圧延における累積圧下率を65%以上とすることが好ましい。その後、仕上熱間圧延により所定板厚まで圧延するが、仕上圧延の最終3パスの圧延を800~1100℃の温度範囲とし、累積圧下率を25%以上として行う。 The slab is heated at 1100 to 1250 ° C. for 1 to 24 hours, or subjected to hot rolling at a stage where the temperature reaches 1100 to 1250 ° C. after casting without heating. In the present invention, there is no particular limitation for rough rolling. However, if the cast structure is effectively destroyed before finish hot rolling, it is superior to refinement of crystal grains in subsequent finish hot rolling. In order to work, it is preferable to set the cumulative rolling reduction in rough rolling to 65% or more. Thereafter, the sheet is rolled to a predetermined plate thickness by finish hot rolling, but the final three passes of finish rolling are performed in a temperature range of 800 to 1100 ° C., and the cumulative reduction ratio is 25% or more.
 仕上熱間圧延の最終3パスの圧延温度範囲:800~1100℃
 仕上熱間圧延の最終3パスの累積圧下率:25%以上
 仕上げ圧延前の粗圧延において粗大な鋳造組織は破壊されているが、当該組織における結晶粒は著しく粗大である。熱延板焼鈍後に所定の限界応力拡大係数KICを得るためには、仕上熱間圧延の最終3パスの圧延の温度および累積圧下率を適切に制御することによって、圧延中の過度の回復を抑制しつつ、特に板厚中央部へ圧延ひずみを効果的に付与する必要がある。
Rolling temperature range for the final three passes of finish hot rolling: 800-1100 ° C
Cumulative rolling reduction in the final three passes of finish hot rolling: 25% or more In the rough rolling before finish rolling, the coarse cast structure is destroyed, but the crystal grains in the structure are remarkably coarse. In order to obtain a predetermined critical stress intensity factor K IC after hot-rolled sheet annealing, excessive recovery during rolling can be achieved by appropriately controlling the temperature and cumulative rolling reduction of the final three passes of finish hot rolling. In particular, it is necessary to effectively apply a rolling strain to the central portion of the plate thickness while suppressing it.
 次工程である熱延板焼鈍において所定の金属組織を得るために十分な再結晶サイトを導入するためには、仕上熱間圧延の最終3パスの圧延温度を800~1100℃の範囲とし、かつ最終3パスの累積圧下率(=100-(最終板厚/最終3パスの圧延開始前の板厚)×100[%])を25%以上として、最終3パスによって付与される圧延ひずみが回復によって解消されることを防ぎつつ、圧延ひずみを板厚中央に効果的に付与することが必要である。 In order to introduce sufficient recrystallization sites to obtain a predetermined metal structure in the subsequent hot-rolled sheet annealing, the rolling temperature in the final three passes of finish hot rolling is set in the range of 800 to 1100 ° C., and Rolling strain applied by the final three passes is recovered by setting the cumulative reduction ratio of the final three passes (= 100- (final plate thickness / plate thickness before the start of rolling of the final three passes) × 100 [%]) to 25% or more. It is necessary to effectively apply the rolling strain to the center of the plate thickness while preventing it from being eliminated by.
 仕上熱間圧延の最終3パスの累積圧下率が25%未満では、板厚中央への圧延ひずみが効果的に付与されないため、次工程の熱延板焼鈍でコロニーが残存してしまい、所定の限界応力拡大係数KICを得ることができない。そのため、最終3パスの累積圧下率を25%以上とする。好ましくは、累積圧下率は30%以上である。さらに好ましくは、累積圧下率は35%以上である。なお、累積圧下率の上限は特に限定されないが、累積圧下率を過度に大きくすると圧延負荷が上昇して製造性が低下するとともに、圧延後に表面肌荒れが発生する場合があるため、60%以下とすることが好ましい。 If the cumulative reduction ratio of the final three passes of finish hot rolling is less than 25%, the rolling strain to the center of the sheet thickness is not effectively applied, so that colonies remain in the hot-rolled sheet annealing in the next process, and the predetermined reduction The critical stress intensity factor K IC cannot be obtained. Therefore, the cumulative reduction ratio of the final three passes is set to 25% or more. Preferably, the cumulative rolling reduction is 30% or more. More preferably, the cumulative rolling reduction is 35% or more. The upper limit of the cumulative rolling reduction is not particularly limited, but if the cumulative rolling reduction is excessively increased, the rolling load increases and the productivity decreases, and surface roughness may occur after rolling. It is preferable to do.
 仕上熱間圧延の最終3パスの圧延温度を800℃未満とした場合、鋼板温度の低下に伴って圧延荷重が著しく上昇するため製造上好ましくない。また、低温での圧延により鋼板表面の肌荒れが発生して表面品質が低下する場合がある。一方、最終3パスの圧延温度が1100℃を超えると、圧延によって付与したひずみの回復が生じて、次工程の熱延板焼鈍後における再結晶サイトが不足するため、熱延板焼鈍後にコロニーが残存してしまい、所定の限界応力拡大係数KICを得ることができない。そのため、最終3パスの圧延温度は800~1100℃の範囲とする。好ましくは、最終3パスの圧延温度は800~1050℃の範囲とする。より好ましくは、最終3パスの圧延温度は850~1000℃の範囲とする。 If the rolling temperature in the final three passes of finish hot rolling is less than 800 ° C., the rolling load increases remarkably as the steel plate temperature decreases, which is not preferable for production. Further, rolling at a low temperature may cause the surface roughness of the steel sheet to deteriorate the surface quality. On the other hand, when the rolling temperature of the final three passes exceeds 1100 ° C., recovery of strain imparted by rolling occurs, and the recrystallization sites after the hot-rolled sheet annealing in the next step are insufficient. The predetermined limit stress intensity factor K IC cannot be obtained. Therefore, the rolling temperature for the final three passes is in the range of 800 to 1100 ° C. Preferably, the rolling temperature in the final three passes is in the range of 800 to 1050 ° C. More preferably, the rolling temperature in the final three passes is in the range of 850 to 1000 ° C.
 なお、仕上熱間圧延の最終3パスにおける特定パスで過度の圧延負荷がかかることを防ぐため、最終3パスのうち、第1パス目の圧延温度範囲を950~1100℃、この第1パスの次に行われる第2パス目の圧延温度範囲を925~1075℃、この第2パス目の次に行われる第3パス目の圧延温度範囲を875~1050℃とすることが好ましい。 In order to prevent an excessive rolling load from being applied in a specific pass in the final three passes of finish hot rolling, the rolling temperature range of the first pass among the final three passes is 950 to 1100 ° C., and this first pass The rolling temperature range for the second pass to be performed next is preferably 925 to 1075 ° C., and the rolling temperature range for the third pass to be performed next to the second pass is preferably 875 to 1050 ° C.
 また、本発明のフェライト系ステンレス熱延焼鈍鋼板の製造方法では、3パス以上からなる仕上熱間圧延の最終3パスにおいて温度範囲を制御したうえで大きな圧下を加えることを特徴としている。大きな圧下を加える圧延を最終の4パス以上にわたって行うと、同じ累積圧下率であっても圧下率が各パスに分散されてしまうため板厚中央へのひずみ付与が不十分になるとともに、各パス間の累積搬送時間が増加するために、各パス間を搬送している間の回復が助長され、ひずみ付与の効果が低下する。また、仕上げ圧延の圧延温度および累積圧下率の制御を最終の2パス以下とすると、2パスで累積圧下率25%以上の大圧下を行うために圧延負荷が著しく上昇し製造性が低下する場合があるため好ましくない。よって、本発明のフェライト系ステンレス熱延鋼板の製造方法では、仕上げ圧延の最終の3パスの圧延温度および累積圧下率を制御する。 In addition, the method for producing a ferritic stainless steel hot-rolled annealed steel sheet according to the present invention is characterized in that a large reduction is applied after controlling the temperature range in the final three passes of finishing hot rolling consisting of three or more passes. If rolling with a large reduction is performed over the final four passes or more, even if the cumulative reduction rate is the same, the reduction rate will be distributed to each pass, so the strain applied to the center of the plate thickness will be insufficient, and each pass Since the accumulated conveyance time increases, recovery during conveyance between each pass is promoted, and the effect of imparting strain is reduced. In addition, when the rolling temperature and the cumulative reduction ratio of the finish rolling are controlled to the final two passes or less, the rolling load is significantly increased and the productivity is lowered because the large reduction with the cumulative reduction ratio of 25% or more is performed in two passes. This is not preferable. Therefore, in the method for producing a ferritic stainless steel hot-rolled steel sheet according to the present invention, the rolling temperature and cumulative rolling reduction of the final three passes of finish rolling are controlled.
 なお、本発明のフェライト系ステンレス熱延鋼板の製造方法では、仕上熱間圧延の最終の3パスの圧延温度および累積圧下率を制御することが肝要であり、3パス以上の仕上げ圧延であれば、何パスの仕上げ圧延を行ってもよいが、最大パス数が15パスよりも多くなると、圧延ロールとの接触回数の増加による鋼板温度の低下が生じやすくなり、鋼板温度を所定温度範囲内に維持するために外部からの加熱が必要になる等の製造性の低下または製造コストの増加を招く場合があるため、最大パス数は15パス以下とすることが好ましい。より好ましくは、最大パス数は10パス以下である。 In addition, in the manufacturing method of the ferritic stainless steel hot-rolled steel sheet of the present invention, it is important to control the final three-pass rolling temperature and cumulative rolling reduction of the finish hot rolling, and if it is a finish rolling of three or more passes Any number of finishing rolls may be performed, but if the maximum number of passes is greater than 15 passes, the steel plate temperature is likely to decrease due to an increase in the number of contacts with the rolling roll, and the steel plate temperature is kept within a predetermined temperature range. The maximum number of passes is preferably 15 passes or less because it may lead to a decrease in manufacturability or an increase in manufacturing costs, such as heating from the outside required for maintenance. More preferably, the maximum number of paths is 10 paths or less.
 仕上熱間圧延後は鋼板の冷却を行い、ついで鋼板の巻取処理を行い熱延鋼帯とする。本発明において巻取温度は特に限定されないが、巻取温度を450℃超~500℃未満とした場合、475℃脆化に起因した脆化が生じる場合がある。そのため、巻取温度は450℃以下もしくは500℃以上とすることが好ましい。 After finishing hot rolling, the steel sheet is cooled, and then the steel sheet is wound to form a hot-rolled steel strip. In the present invention, the coiling temperature is not particularly limited, but when the coiling temperature is more than 450 ° C. to less than 500 ° C., embrittlement due to 475 ° C. embrittlement may occur. Therefore, the winding temperature is preferably 450 ° C. or lower or 500 ° C. or higher.
 熱延板焼鈍温度:800~1100℃
 本発明では上記熱間圧延工程終了後に熱延板焼鈍を行う。熱延板焼鈍において、熱間圧延工程で形成させた圧延加工組織を再結晶させる。本発明では熱間圧延工程において効果的に圧延ひずみを付与し、再結晶サイトを増加させることによって熱延板焼鈍におけるコロニーの破壊を促進させる。この効果を得るためには熱延板焼鈍を800~1100℃の範囲で行う必要がある。焼鈍温度が800℃未満では再結晶が不十分となり、所定の限界応力拡大係数KICを得ることができない。一方、焼鈍温度が1100℃を超えると、再結晶粒は、その結晶粒径が最大で300μm以上となるほどの著しい粗大化が生じ、所定の限界応力拡大係数KICを得ることができない。そのため、熱延板焼鈍温度は800~1100℃の範囲とする。かかる熱延板焼鈍がされた熱延鋼板は、上述の成分組成を有し、20MPa・m1/2以上の限界応力拡大係数KICを有する。好ましくは、熱延板焼鈍温度は800~1050℃の範囲である。さらに好ましくは、熱延板焼鈍温度は850~1000℃の範囲である。なお、熱延板焼鈍の保持時間および手法に特に限定はなく、箱焼鈍(バッチ焼鈍)、連続焼鈍のいずれで実施してもかまわない。
Hot-rolled sheet annealing temperature: 800-1100 ° C
In the present invention, hot-rolled sheet annealing is performed after the hot rolling step. In hot-rolled sheet annealing, the rolled structure formed in the hot rolling process is recrystallized. In the present invention, the rolling strain is effectively applied in the hot rolling process, and the recrystallization sites are increased, thereby promoting the destruction of colonies in the hot-rolled sheet annealing. In order to obtain this effect, it is necessary to perform hot-rolled sheet annealing in the range of 800 to 1100 ° C. When the annealing temperature is less than 800 ° C., recrystallization is insufficient, and a predetermined critical stress intensity factor K IC cannot be obtained. On the other hand, when the annealing temperature exceeds 1100 ° C., the recrystallized grains are markedly coarsened so that the crystal grain size becomes 300 μm or more at the maximum, and a predetermined limit stress intensity factor K IC cannot be obtained. Therefore, the hot-rolled sheet annealing temperature is in the range of 800 to 1100 ° C. The hot-rolled steel sheet subjected to such hot-rolled sheet annealing has the above-described component composition, and has a critical stress intensity factor K IC of 20 MPa · m 1/2 or more. Preferably, the hot-rolled sheet annealing temperature is in the range of 800 to 1050 ° C. More preferably, the hot-rolled sheet annealing temperature is in the range of 850 to 1000 ° C. In addition, there is no limitation in particular in the holding | maintenance time and method of hot-rolled sheet annealing, You may implement by any of box annealing (batch annealing) and continuous annealing.
 得られた熱延焼鈍鋼板には、必要に応じてショットブラストや酸洗による脱スケール処理を行ってもよい。さらに、表面性状を向上させるために、研削や研磨等を施してもよい。また、本発明が提供する熱延焼鈍鋼板はその後、冷間圧延および冷延板焼鈍を行ってもよい。 The obtained hot-rolled annealed steel sheet may be descaled by shot blasting or pickling as necessary. Furthermore, in order to improve the surface properties, grinding or polishing may be performed. In addition, the hot-rolled annealed steel sheet provided by the present invention may be subsequently subjected to cold rolling and cold-rolled sheet annealing.
 以下、本発明を実施例により詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to examples.
 表1に示す化学組成を有するステンレス溶鋼を容量150tonの転炉と強攪拌・真空酸素脱炭処理(SS-VOD)の精錬で溶製し、連続鋳造により幅1000mm、厚さ200mmの鋼スラブとした。No.31以外は該スラブを1200℃で1h加熱後に、熱間圧延として3段のスタンドを用いたリバース式の粗圧延を行って約40mmの鋼板とし、ついで7パスからなる仕上げ圧延の最終3パス(5パス目、6パス目、7パス目)を表2に記載の条件で行い熱延鋼板とした。No.31は該スラブを1300℃で1h加熱した後に熱間圧延に供した。得られた熱延鋼板について同じく表2に記載の条件で箱焼鈍による熱延板焼鈍を行い、熱延焼鈍板を得た。 A molten stainless steel having the chemical composition shown in Table 1 is melted by refining a converter with a capacity of 150 ton and strong stirring and vacuum oxygen decarburization (SS-VOD), and a steel slab having a width of 1000 mm and a thickness of 200 mm by continuous casting. did. No. Except for 31, the slab was heated at 1200 ° C. for 1 h, and then hot-rolled by reverse rough rolling using a three-stage stand to obtain a steel plate of about 40 mm, and then the final three passes of final rolling consisting of 7 passes ( The fifth pass, the sixth pass, and the seventh pass) were performed under the conditions shown in Table 2 to obtain hot-rolled steel sheets. No. No. 31 was subjected to hot rolling after heating the slab at 1300 ° C. for 1 h. Similarly, the obtained hot-rolled steel sheet was subjected to hot-rolled sheet annealing by box annealing under the conditions shown in Table 2 to obtain a hot-rolled annealed sheet.
 得られた熱延焼鈍鋼板について、以下の評価を行った。 The obtained hot-rolled annealed steel sheet was evaluated as follows.
 (1)限界応力拡大係数KICの評価
 板幅中央部から、ASTM E399に準拠したCT試験片を、疲労予き裂が圧延直角方向、応力軸が圧延平行方向となるように採取した。該試験片について、ASTM E399に準拠して限界応力拡大係数KICを求めた。限界応力拡大係数KICが20MPa・m1/2以上を合格、20MPa・m1/2未満を不合格とした。
(1) Evaluation of critical stress intensity factor K IC From the central part of the plate width, a CT specimen according to ASTM E399 was sampled so that the fatigue precrack was in the direction perpendicular to the rolling and the stress axis was in the direction parallel to the rolling. The critical stress intensity factor K IC was determined for the test piece in accordance with ASTM E399. A critical stress intensity factor K IC of 20 MPa · m 1/2 or more was accepted and less than 20 MPa · m 1/2 was rejected.
 (2)耐食性の評価
 熱延焼鈍鋼板から、60×100mmの試験片を採取し、評価する表面を#600エメリーペーパーにより研磨仕上げした後に端面部をシールした試験片を作製し、JIS H 8502に規定された塩水噴霧サイクル試験に供した。塩水噴霧サイクル試験は、塩水噴霧(5質量%NaCl、35℃、噴霧2hr)→乾燥(60℃、4hr、相対湿度40%)→湿潤(50℃、2hr、相対湿度≧95%)を1サイクルとして、5サイクル行った。塩水噴霧サイクル試験を5サイクル実施後の試験片の評価面を写真撮影し、画像解析により試験片の評価面の発錆面積を測定し、試験片全面積との比率から発錆率((試験片中の発錆面積/試験片全面積)×100 [%])を算出した。発錆率10%以下を特に優れた耐食性で合格(◎)、10%超25%以下を合格(○)、25%超を不合格(×)とした。
(2) Evaluation of corrosion resistance A 60 × 100 mm test piece was sampled from a hot-rolled annealed steel sheet, and a test piece was prepared by polishing the surface to be evaluated with # 600 emery paper and sealing the end face. Subjected to the prescribed salt spray cycle test. In the salt spray cycle test, salt spray (5 mass% NaCl, 35 ° C., spray 2 hr) → dry (60 ° C., 4 hr, relative humidity 40%) → wet (50 ° C., 2 hr, relative humidity ≧ 95%) is one cycle. As a result, 5 cycles were performed. Photograph the evaluation surface of the test piece after 5 cycles of the salt spray cycle test, measure the rusting area of the evaluation surface of the test piece by image analysis, and determine the rusting rate ((test Rust area in the piece / total area of the test piece) × 100 [%]) was calculated. A rusting rate of 10% or less was evaluated as being particularly excellent with respect to corrosion resistance ()), more than 10% being 25% or less, passing (O), and more than 25% being rejecting (X).
 試験結果を熱間圧延および熱延板焼鈍条件と併せて表2に示す。 The test results are shown in Table 2 together with hot rolling and hot rolled sheet annealing conditions.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
 鋼成分、熱間圧延条件および熱延板焼鈍条件が本発明の範囲を満たすNo.1~26は、所定の熱間圧延および熱延板焼鈍によってコロニーが効果的に破壊された結果、所定の限界応力拡大係数KICが得られていた。さらに得られた熱延焼鈍板の耐食性を評価した結果、いずれも発錆率は25%であり十分な耐食性も有していることが確認された。 Steel components, hot rolling conditions and hot-rolled sheet annealing conditions satisfy the scope of the present invention. In Nos. 1 to 26, as a result of the colonies being effectively destroyed by predetermined hot rolling and hot-rolled sheet annealing, a predetermined critical stress intensity factor K IC was obtained. Furthermore, as a result of evaluating the corrosion resistance of the obtained hot-rolled annealed plates, it was confirmed that all had a rusting rate of 25% and sufficient corrosion resistance.
 特に、Moを含有させた鋼E、F、G、Jを用いたNo.5~7とNo.10、およびCuを含有させた鋼HとIを用いたNo.8および9では発錆率が10%以下(◎)と一層優れた耐食性が得られた。 Especially, No. using steel E, F, G, J containing Mo. 5-7 and no. No. 10 and No. 10 using steels H and I containing Cu. In 8 and 9, rusting rate was 10% or less (◎), and further excellent corrosion resistance was obtained.
 最終3パスの圧延温度が本発明の範囲を上回るNo.27では、所定の累積圧下率で圧延したものの、圧延温度が過度に高温であったために加工ひずみの回復が生じて再結晶サイトが不十分となったために熱延板焼鈍後にもコロニーが残存し、所定の限界応力拡大係数KICが得られなかった。 No. 3 in which the rolling temperature in the final three passes exceeds the range of the present invention. In No. 27, although rolled at a predetermined cumulative rolling reduction, since the rolling temperature was excessively high, recovery of processing strain occurred and the recrystallization sites became insufficient, and colonies remained after hot-rolled sheet annealing. The predetermined critical stress intensity factor K IC could not be obtained.
 最終3パスの累積圧下率が本発明の範囲を下回るNo.28では、板厚中央部への圧延加工ひずみの導入が不十分であったために、熱延板焼鈍後にも板厚中央部にコロニーが残存した結果、所定の限界応力拡大係数KICが得られなかった。 No. in which the cumulative rolling reduction of the final three passes is below the range of the present invention. In No. 28, since the introduction of rolling strain into the center portion of the plate thickness was insufficient, colonies remained in the center portion of the plate thickness even after hot-rolled sheet annealing, and as a result, a predetermined critical stress intensity factor K IC was obtained. There wasn't.
 熱延板焼鈍温度が本発明の範囲を上回るNo.29では、生成した再結晶粒の著しい粗大化が生じた結果、所定の限界応力拡大係数KICが得られなかった。 No. of hot-rolled sheet annealing temperature exceeding the range of the present invention. In No. 29, as a result of remarkable coarsening of the generated recrystallized grains, a predetermined critical stress intensity factor K IC could not be obtained.
 熱延板焼鈍温度が本発明の範囲を下回るNo.30では、再結晶が不十分であったためにコロニーが破壊されずに残存した結果、所定の限界応力拡大係数KICが得られなかった。 No. of hot-rolled sheet annealing temperature is below the range of the present invention In 30, the recrystallization was insufficient and the colony remained without being destroyed. As a result, the predetermined critical stress intensity factor K IC could not be obtained.
 No.31はスラブを1300℃で1h加熱した後に熱間圧延に供し、仕上げ熱間圧延の最終3パスの圧延温度範囲をいずれも1100℃超えとした例である。No.31では、最終3パスの圧延実施中に過度の加工ひずみの回復が生じて再結晶サイトが不十分となったために熱延板焼鈍後にもコロニーが残存し、所定の限界応力拡大係数KICが得られなかった。 No. No. 31 is an example in which the slab was heated at 1300 ° C. for 1 h and then subjected to hot rolling, and the rolling temperature range in the final three passes of finish hot rolling was all over 1100 ° C. No. In No. 31, the recovery of excessive working strain occurred during the rolling of the final three passes and the recrystallization sites became insufficient, so that colonies remained after hot-rolled sheet annealing, and the predetermined critical stress intensity factor K IC was It was not obtained.
 最終3パスの圧延温度範囲が3パスともに本発明の範囲を下回るNo.32では、圧延荷重が著しく上昇し、最終3パス目の圧延実施時に荷重が装置許容範囲を超過したために圧延を完了することができず、所定の評価を行うことができなかった。 No. of the rolling temperature range for the final 3 passes is less than the range of the present invention for all 3 passes. In No. 32, the rolling load increased remarkably, and the rolling exceeded the allowable range during the rolling of the final third pass, so that the rolling could not be completed and the predetermined evaluation could not be performed.
 Ti含有量が本発明の範囲を上回る鋼Vを用いたNo.33では、過剰なTi含有によって再結晶温度が上昇し、所定の熱延板焼鈍を行っても十分な再結晶が生じずにコロニーが残存した結果、所定の限界応力拡大係数KICが得られなかった。一方、Ti含有量が本発明の範囲を下回る鋼Wを用いたNo.34では、熱延板焼鈍時にCr炭窒化物が多量に析出したことによる鋭敏化が生じ、所定の耐食性を得ることができなかった。また、Ti含有量が本発明の範囲を下回り、かつNb含有量が本発明の範囲を上回る鋼Zを用いたNo.35では、Nb含有量が過剰であったために、熱延板焼鈍において十分な再結晶組織を得るために過度の高温焼鈍が必要となった結果、熱延板焼鈍によって生成した再結晶粒の著しい粗大化に起因した著しい靭性低下が生じたために所定の限界応力拡大係数KICが得られなかった。さらにTi含有量が不十分であったために、熱延板焼鈍時にCr炭窒化物が多量に析出したことによる鋭敏化が生じ、所定の耐食性を得ることもできなかった。 No. using steel V with Ti content exceeding the range of the present invention. In No. 33, the recrystallization temperature rises due to the excessive Ti content, and even when the predetermined hot-rolled sheet annealing is performed, sufficient recrystallization does not occur and colonies remain. As a result, a predetermined critical stress intensity factor K IC is obtained. There wasn't. On the other hand, No. using steel W whose Ti content is below the range of the present invention. In No. 34, sensitization due to the precipitation of a large amount of Cr carbonitride during hot-rolled sheet annealing occurred, and the predetermined corrosion resistance could not be obtained. Further, No. 1 using steel Z in which the Ti content falls below the range of the present invention and the Nb content exceeds the range of the present invention. In No. 35, since the Nb content was excessive, excessive high-temperature annealing was necessary to obtain a sufficient recrystallization structure in the hot-rolled sheet annealing, and as a result, the recrystallized grains generated by the hot-rolled sheet annealing were marked. The predetermined critical stress intensity factor K IC could not be obtained because of a significant decrease in toughness due to coarsening. Further, since the Ti content was insufficient, sensitization occurred due to the precipitation of a large amount of Cr carbonitride during the hot-rolled sheet annealing, and the predetermined corrosion resistance could not be obtained.
 本発明で得られるフェライト系ステンレス熱延焼鈍鋼板は、高い加工性と耐食性が要求される用途、例えばバーリング加工部を有するフランジ等への適用に特に好適である。 The ferritic stainless steel hot-rolled annealed steel sheet obtained by the present invention is particularly suitable for applications that require high workability and corrosion resistance, such as a flange having a burring portion.

Claims (4)

  1.  質量%で、
    C:0.001~0.020%、
    Si:0.05~1.00%、
    Mn:0.05~1.00%、
    P:0.04%以下、
    S:0.01%以下、
    Al:0.001~0.100%、
    Cr:10.0~24.0%、
    Ni:0.01~0.60%、
    Ti:0.10~0.40%、
    N:0.001~0.020%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、
    限界応力拡大係数KICが20MPa・m1/2以上であることを特徴とするフェライト系ステンレス熱延焼鈍鋼板。
    % By mass
    C: 0.001 to 0.020%,
    Si: 0.05 to 1.00%,
    Mn: 0.05 to 1.00%
    P: 0.04% or less,
    S: 0.01% or less,
    Al: 0.001 to 0.100%,
    Cr: 10.0 to 24.0%,
    Ni: 0.01 to 0.60%,
    Ti: 0.10 to 0.40%,
    N: 0.001 to 0.020% is contained, and the balance has a component composition consisting of Fe and inevitable impurities,
    A ferritic stainless steel hot-rolled annealed steel sheet having a critical stress intensity factor K IC of 20 MPa · m 1/2 or more.
  2.  成分組成として、質量%で、さらに
    Cu:0.01~1.00%、
    Mo:0.01~2.00%、
    W:0.01~0.20%、
    Co:0.01~0.20%のうちから選ばれる1種または2種以上を含有することを特徴とする請求項1に記載のフェライト系ステンレス熱延焼鈍鋼板。
    As a component composition, in mass%, Cu: 0.01 to 1.00%,
    Mo: 0.01 to 2.00%
    W: 0.01-0.20%,
    The ferritic stainless steel hot-rolled annealed steel sheet according to claim 1, comprising one or more selected from Co: 0.01 to 0.20%.
  3.  成分組成として、質量%で、さらに、
    V:0.01~0.20%、
    Nb:0.01~0.10%、
    Zr:0.01~0.20%、
    REM:0.001~0.100%、
    B:0.0002~0.0025%、
    Mg:0.0005~0.0030%、
    Ca:0.0003~0.0030%のうちから選ばれる1種または2種以上を含有することを特徴とする請求項1または2に記載のフェライト系ステンレス熱延焼鈍鋼板。
    As a component composition, in mass%,
    V: 0.01-0.20%,
    Nb: 0.01 to 0.10%,
    Zr: 0.01 to 0.20%,
    REM: 0.001 to 0.100%,
    B: 0.0002 to 0.0025%,
    Mg: 0.0005 to 0.0030%,
    3. The ferritic stainless steel hot-rolled annealed steel sheet according to claim 1 or 2, characterized by containing one or more selected from Ca: 0.0003 to 0.0030%.
  4.  請求項1~3のいずれかに記載のフェライト系ステンレス熱延焼鈍鋼板の製造方法であって、
    3パス以上の仕上圧延を行う熱間圧延工程で、仕上圧延の最終3パスを温度範囲800~1100℃、且つ前記最終3パスの累積圧下率を25%以上として熱延鋼板を得て、
    該熱延鋼板に対してさらに800~1100℃で熱延板焼鈍を行うことを特徴とするフェライト系ステンレス熱延焼鈍鋼板の製造方法。
    A method for producing a ferritic stainless steel hot-rolled annealed steel sheet according to any one of claims 1 to 3,
    In a hot rolling process in which finishing rolling of 3 passes or more is performed, a hot rolled steel sheet is obtained by setting the final 3 passes of finish rolling to a temperature range of 800 to 1100 ° C. and the cumulative rolling reduction of the final 3 passes to 25% or more,
    A method for producing a ferritic stainless steel hot-rolled annealed steel sheet, characterized by further performing hot-rolled sheet anneal on the hot-rolled steel sheet at 800 to 1100 ° C.
PCT/JP2017/034949 2016-10-17 2017-09-27 Hot-rolled and annealed ferritic stainless steel sheet and method for producing same WO2018074164A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
ES17862905T ES2831841T3 (en) 2016-10-17 2017-09-27 Annealed hot rolled ferritic stainless steel sheet and method of producing the same
US16/327,988 US20190226045A1 (en) 2016-10-17 2017-09-27 Hot-rolled and annealed ferritic stainless steel sheet and method for manufacturing the same
CN201780051736.3A CN109642286B (en) 2016-10-17 2017-09-27 Ferritic stainless steel hot-rolled annealed steel sheet and method for producing same
EP17862905.1A EP3486347B1 (en) 2016-10-17 2017-09-27 Hot-rolled and annealed ferritic stainless steel sheet and method for producing same
JP2017567271A JP6304469B1 (en) 2016-10-17 2017-09-27 Ferritic stainless steel hot rolled annealed steel sheet and method for producing the same
KR1020197005080A KR102201004B1 (en) 2016-10-17 2017-09-27 Ferritic stainless steel hot rolled annealed steel sheet and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-203348 2016-10-17
JP2016203348 2016-10-17

Publications (1)

Publication Number Publication Date
WO2018074164A1 true WO2018074164A1 (en) 2018-04-26

Family

ID=62019334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/034949 WO2018074164A1 (en) 2016-10-17 2017-09-27 Hot-rolled and annealed ferritic stainless steel sheet and method for producing same

Country Status (6)

Country Link
US (1) US20190226045A1 (en)
EP (1) EP3486347B1 (en)
KR (1) KR102201004B1 (en)
CN (1) CN109642286B (en)
ES (1) ES2831841T3 (en)
WO (1) WO2018074164A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6384640B1 (en) * 2017-01-26 2018-09-05 Jfeスチール株式会社 Ferritic stainless hot-rolled steel sheet and manufacturing method thereof
WO2018199062A1 (en) * 2017-04-27 2018-11-01 Jfeスチール株式会社 Hot-rolled and annealed ferritic stainless steel sheet, and method for manufacturing same
JP2020015945A (en) * 2018-07-25 2020-01-30 Jfeスチール株式会社 Ferritic stainless steel plate and method for producing the same
WO2020084987A1 (en) * 2018-10-25 2020-04-30 Jfeスチール株式会社 Ferrite stainless hot-rolled-and-annealed steel sheet and production method for same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112375980A (en) * 2020-11-02 2021-02-19 舞阳钢铁有限责任公司 Large-thickness large-unit-weight vanadium-chromium-molybdenum steel plate and production method thereof
CN114686751B (en) * 2022-04-11 2023-05-12 甘肃酒钢集团宏兴钢铁股份有限公司 Brittle failure prevention production method for high-chromium ferrite stainless steel
CN114752734B (en) * 2022-05-17 2023-08-22 山西太钢不锈钢股份有限公司 Hot rolling process method of X10CrAlSi18 heat-resistant stainless steel medium plate
CN115386807B (en) * 2022-09-19 2023-12-22 山西太钢不锈钢股份有限公司 Ferrite stainless steel hot-rolled middle plate and preparation method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000265215A (en) * 1999-03-16 2000-09-26 Kawasaki Steel Corp PRODUCTION OF FERRITIC Cr-CONTAINING STEEL SHEET EXCELLENT IN WORKABILITY
JP2001181798A (en) * 1999-12-20 2001-07-03 Kawasaki Steel Corp Hot rolled ferritic stainless steel sheet excellent in bendability, its manufacturing method, and method of manufacturing for cold rolled steel sheet
JP2001181742A (en) * 1999-12-27 2001-07-03 Kawasaki Steel Corp Method for producing ferritic stainless cold rolled steel sheet and stainless hot rolled steel sheet used for the method
JP2009035755A (en) * 2007-07-31 2009-02-19 Nisshin Steel Co Ltd Al-PLATED STEEL SHEET FOR EXHAUST GAS PASSAGEWAY MEMBER OF MOTORCYCLE AND MEMBER
JP2012167298A (en) * 2011-02-09 2012-09-06 Nakayama Steel Works Ltd Ferritic stainless steel sheet and method for manufacturing the same
WO2014142302A1 (en) * 2013-03-14 2014-09-18 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet exhibiting small increase in strength after thermal aging treatment, and method for producing same
WO2014157576A1 (en) 2013-03-27 2014-10-02 新日鐵住金ステンレス株式会社 Hot-rolled ferritic stainless-steel plate, process for producing same, and steel strip
JP2015137375A (en) * 2014-01-21 2015-07-30 Jfeスチール株式会社 Ferritic stainless cold rolled steel sheet and manufacturing method therefor
WO2017013850A1 (en) * 2015-07-17 2017-01-26 Jfeスチール株式会社 Ferrite-based hot-rolled stainless steel sheet, hot-rolled annealed sheet, and method for manufacturing said sheets

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3451830B2 (en) * 1996-03-29 2003-09-29 Jfeスチール株式会社 Ferritic stainless steel sheet excellent in ridging resistance and workability and method for producing the same
JP4239257B2 (en) * 1998-11-02 2009-03-18 Jfeスチール株式会社 Method for producing Ti-containing ferritic stainless steel sheet having excellent ridging resistance
JP3680272B2 (en) * 2001-01-18 2005-08-10 Jfeスチール株式会社 Ferritic stainless steel sheet and manufacturing method thereof
KR101569589B1 (en) * 2013-12-24 2015-11-16 주식회사 포스코 Ferritic stainless steel having excellentridging resistance and menufacturing method there of
JP5908936B2 (en) * 2014-03-26 2016-04-26 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet for flange, manufacturing method thereof and flange part

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000265215A (en) * 1999-03-16 2000-09-26 Kawasaki Steel Corp PRODUCTION OF FERRITIC Cr-CONTAINING STEEL SHEET EXCELLENT IN WORKABILITY
JP2001181798A (en) * 1999-12-20 2001-07-03 Kawasaki Steel Corp Hot rolled ferritic stainless steel sheet excellent in bendability, its manufacturing method, and method of manufacturing for cold rolled steel sheet
JP2001181742A (en) * 1999-12-27 2001-07-03 Kawasaki Steel Corp Method for producing ferritic stainless cold rolled steel sheet and stainless hot rolled steel sheet used for the method
JP2009035755A (en) * 2007-07-31 2009-02-19 Nisshin Steel Co Ltd Al-PLATED STEEL SHEET FOR EXHAUST GAS PASSAGEWAY MEMBER OF MOTORCYCLE AND MEMBER
JP2012167298A (en) * 2011-02-09 2012-09-06 Nakayama Steel Works Ltd Ferritic stainless steel sheet and method for manufacturing the same
WO2014142302A1 (en) * 2013-03-14 2014-09-18 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet exhibiting small increase in strength after thermal aging treatment, and method for producing same
WO2014157576A1 (en) 2013-03-27 2014-10-02 新日鐵住金ステンレス株式会社 Hot-rolled ferritic stainless-steel plate, process for producing same, and steel strip
JP2015137375A (en) * 2014-01-21 2015-07-30 Jfeスチール株式会社 Ferritic stainless cold rolled steel sheet and manufacturing method therefor
WO2017013850A1 (en) * 2015-07-17 2017-01-26 Jfeスチール株式会社 Ferrite-based hot-rolled stainless steel sheet, hot-rolled annealed sheet, and method for manufacturing said sheets

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6384640B1 (en) * 2017-01-26 2018-09-05 Jfeスチール株式会社 Ferritic stainless hot-rolled steel sheet and manufacturing method thereof
WO2018199062A1 (en) * 2017-04-27 2018-11-01 Jfeスチール株式会社 Hot-rolled and annealed ferritic stainless steel sheet, and method for manufacturing same
JP6432720B1 (en) * 2017-04-27 2018-12-05 Jfeスチール株式会社 Ferritic stainless steel hot rolled annealed steel sheet and method for producing the same
JP2020015945A (en) * 2018-07-25 2020-01-30 Jfeスチール株式会社 Ferritic stainless steel plate and method for producing the same
WO2020084987A1 (en) * 2018-10-25 2020-04-30 Jfeスチール株式会社 Ferrite stainless hot-rolled-and-annealed steel sheet and production method for same
JPWO2020084987A1 (en) * 2018-10-25 2021-02-15 Jfeスチール株式会社 Ferritic stainless steel hot-spread annealed steel sheet and its manufacturing method

Also Published As

Publication number Publication date
CN109642286A (en) 2019-04-16
EP3486347B1 (en) 2020-10-21
US20190226045A1 (en) 2019-07-25
ES2831841T3 (en) 2021-06-09
CN109642286B (en) 2021-02-12
EP3486347A4 (en) 2019-07-10
EP3486347A1 (en) 2019-05-22
KR20190032477A (en) 2019-03-27
KR102201004B1 (en) 2021-01-11

Similar Documents

Publication Publication Date Title
KR102201004B1 (en) Ferritic stainless steel hot rolled annealed steel sheet and manufacturing method thereof
JP6384640B1 (en) Ferritic stainless hot-rolled steel sheet and manufacturing method thereof
JP6432720B1 (en) Ferritic stainless steel hot rolled annealed steel sheet and method for producing the same
JP6112273B1 (en) Ferritic stainless hot-rolled steel sheet, hot-rolled annealed sheet, and methods for producing them
KR102603113B1 (en) Ferritic stainless-steel sheet and method for manufacturing same
JP6304469B1 (en) Ferritic stainless steel hot rolled annealed steel sheet and method for producing the same
CN113166831B (en) Ferritic stainless steel sheet and method for producing same
KR101980470B1 (en) Steel plate
JP7038799B2 (en) Ferritic stainless hot-rolled annealed steel sheet and its manufacturing method
CN113950536B (en) Steel sheet for can and method for producing same
JP7226595B2 (en) Electric resistance welded steel pipes for line pipes
JP2005008925A (en) Mo-CONTAINING AUSTENITIC STAINLESS STEEL AND ITS MANUFACTURING METHOD
JP2006249515A (en) HOT-ROLLED STEEL PLATE OF Cr-CONTAINING ALLOY HAVING HIGH STRENGTH AND SUPERIOR WORKABILITY, AND MANUFACTURING METHOD THEREFOR

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017567271

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17862905

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197005080

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017862905

Country of ref document: EP

Effective date: 20190213

NENP Non-entry into the national phase

Ref country code: DE