WO2018070843A2 - Negative electrode for secondary battery - Google Patents

Negative electrode for secondary battery Download PDF

Info

Publication number
WO2018070843A2
WO2018070843A2 PCT/KR2017/011346 KR2017011346W WO2018070843A2 WO 2018070843 A2 WO2018070843 A2 WO 2018070843A2 KR 2017011346 W KR2017011346 W KR 2017011346W WO 2018070843 A2 WO2018070843 A2 WO 2018070843A2
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
desorption
current collecting
secondary battery
current collector
Prior art date
Application number
PCT/KR2017/011346
Other languages
French (fr)
Korean (ko)
Other versions
WO2018070843A3 (en
Inventor
조진현
윤현웅
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170129710A external-priority patent/KR102119705B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP17859641.7A priority Critical patent/EP3444874B1/en
Priority to ES17859641T priority patent/ES2955000T3/en
Priority to US16/099,549 priority patent/US11069899B2/en
Priority to PL17859641.7T priority patent/PL3444874T3/en
Priority to CN201780033688.5A priority patent/CN109196691B/en
Publication of WO2018070843A2 publication Critical patent/WO2018070843A2/en
Publication of WO2018070843A3 publication Critical patent/WO2018070843A3/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • FIG. 1 is an exploded perspective view illustrating a secondary battery to which an anode for secondary batteries according to an embodiment of the present invention is applied.
  • the electrode 30 may be composed of an anode 20 and a cathode 10.
  • the electrode assembly 120 may have a structure in which the anode 20, the separator 40, and the cathode 10 are alternately stacked.
  • the separator 40 may be located between the anode 20 and the cathode 10, outside the anode 20 and outside the cathode 10.
  • the separator 40 may be formed to completely surround the electrode assembly 110 in which the anode 20, the separator 40, and the cathode 10 are stacked.
  • the negative electrode active material 12 may be formed on the inner surface of the desorption current collecting groove 13 so that the space portion 13a in which the passivation film S is formed is formed in the desorption current collecting groove 13 during the charge / discharge process.
  • the passivation layer may be a solid electrolyte interphase (SEI).
  • the passivation film S positioned on the surface of the negative electrode active material 12 serves as a kinetic barrier to prevent further reduction reactions, thereby preventing or significantly reducing the life of the battery.
  • dead lithium and porous layer stacks which are caused by the breakdown and formation of the passivation layer S, increase cell resistance and decrease cycle life. Can be prevented.
  • a passivation film S may be provided on an outer surface of the negative electrode active material 12 formed in the desorption current collector groove 13. Accordingly, the passivation film S is located on the outer surface of the negative electrode active material 12 from the initial stage of charging and discharging, thereby more effectively preventing or significantly reducing the life of the battery.
  • the secondary battery negative electrode according to an embodiment of the present invention may more specifically, for example, satisfy the conditional expression of 20um ⁇ A ⁇ 60um, 20um ⁇ B ⁇ 60um, and 20um ⁇ C ⁇ 60um.
  • Example 1 5.25 88.57
  • Example 2 5.24 86.65
  • Example 3 5.26 84.15
  • Example 4 5.28 86.57
  • Example 5 5.28 70.57
  • Example 6 5.28 76.57
  • Example 7 5.28 56.57
  • Example 8 5.28 46.57
  • Example 9 5.29 35.78
  • Example 10 5.21 25.23 Comparative Example 1 5.24 20.46
  • the detachment preventing part 15 is formed to protrude from the upper end of the detachment preventing current collecting groove 13 of the negative electrode current collector 11 so that the passivation film S (see FIG. 3) may be prevented from being separated from the detaching preventing current collecting groove 13. Can be. That is, the separation preventing part 15 extends from the upper end of the inner wall 14 of the negative electrode current collector 11 toward the space part 13a of the release preventing current collecting groove 13, and thus the upper side surface part of the passivation film S. By intermittent, the passivation film S may be controlled so as not to be separated from the detachment preventing current collecting groove 13.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

The present invention relates to a negative electrode for a secondary battery. The negative electrode for a secondary battery according to the present invention comprises a negative electrode current collector and a negative electrode active material accumulated on at least a portion of the surface of the negative electrode current collector. Multiple deintercalation preventing current collection grooves in which the negative electrode active material is accumulated are formed in the negative electrode current collector. The negative electrode active material is formed on the inner side surfaces of the deintercalation preventing current collection grooves such that space parts having mass diffusion layers formed therein are formed in the deintercalation preventing current collection grooves during a charging/discharging process.

Description

이차전지용 음극Secondary Battery Negative
관련출원과의 상호인용Citation with Related Applications
본 출원은 2016년 10월 14일자 한국특허출원 제10-2016-0133470호 및 2017년 10월 11일자 한국특허출원 제10-2017-0129710호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on Korean Patent Application No. 10-2016-0133470 dated October 14, 2016 and Korean Patent Application No. 10-2017-0129710 dated October 11, 2017. All content disclosed in the literature is included as part of this specification.
기술분야Technical Field
본 발명은 이차전지용 음극에 관한 것이다. The present invention relates to a negative electrode for a secondary battery.
이차 전지는 일차 전지와는 달리 재충전이 가능하고, 또 소형 및 대용량화 가능성으로 인해 근래에 많이 연구 개발되고 있다. 모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차 전지의 수요가 급격하게 증가하고 있다. Secondary batteries, unlike primary batteries, can be recharged and have been researched and developed in recent years due to the possibility of miniaturization and large capacity. As technology development and demand for mobile devices increase, the demand for secondary batteries as an energy source is rapidly increasing.
이차 전지는 전지 케이스의 형상에 따라, 코인형 전지, 원통형 전지, 각형 전지, 및 파우치형 전지로 분류된다. 이차 전지에서 전지 케이스 내부에 장착되는 전극 조립체는 전극 및 분리막의 적층 구조로 이루어진 충방전이 가능한 발전소자이다. Secondary batteries are classified into coin-type batteries, cylindrical batteries, square batteries, and pouch-type batteries according to the shape of the battery case. In the secondary battery, the electrode assembly mounted inside the battery case is a power generator capable of charging and discharging having a stacked structure of electrodes and separators.
전극 조립체는 활물질이 도포된 시트형의 양극과 음극 사이에 분리막을 개재(介在)하여 권취한 젤리 롤(Jelly-roll)형, 다수의 양극과 음극을 분리막이 개재된 상태에서 순차적으로 적층한 스택형, 및 스택형의 단위 셀들을 긴 길이의 분리 필름으로 권취한 스택/폴딩형으로 대략 분류할 수 있다. The electrode assembly is a jelly-roll type wound by separating a separator between a sheet-shaped anode and a cathode coated with an active material, and a stack type in which a plurality of anodes and cathodes are sequentially stacked with a separator therebetween. , And stacked unit cells can be roughly classified into a stack / fold type wound with a long length of separation film.
리튬 금속을 이차전지의 음극으로 사용할 경우 다음과 같은 문제가 존재한다. 리튬 금속은 전해액 성분과의 반응성이 높아 전해액과 리튬 금속이 접촉하는 경우 전해질의 자발적 분해로 인하여 리튬 금속 표면에 부동태막(passivation layer)이 형성된다. 이러한 막은 리튬 금속 전지의 계속되는 충, 방전 사이클의 진행에 따라 부동태막의 탈리 및 붕괴를 일으키고, 상기 현상에 의해 생성된 틈새로 부동태막이 추가적으로 생성됨에 따라 이른바 '죽은 리튬(Dead Li)'을 형성하여 전지의 수명특성이 퇴화시키는 문제점을 가진다. 또한 상기 부동태막이 탈리 및 붕괴를 반복 시 국부적인 전류밀도 차이를 초래하여 충전시 전류의 분포를 불균일하게 하는 동시에 수지상의 리튬 덴드라이트(Dendrite)를 형성시킨다. 또한, 이렇게 형성된 덴드라이트가 지속적으로 성장하여 분리막을 뚫고 양극과 접촉하는 경우 내부단락이 발생되어 전지가 폭발하는 현상을 초래하게 되는 문제가 있어왔다.When lithium metal is used as a negative electrode of a secondary battery, the following problems exist. Since lithium metal has high reactivity with an electrolyte component, when a electrolyte contacts lithium metal, a passivation layer is formed on the surface of the lithium metal due to spontaneous decomposition of the electrolyte. This film causes desorption and collapse of the passivation film in accordance with the continuous charging and discharging cycles of the lithium metal battery, and forms a so-called 'dead lithium' as the passivation film is additionally formed into the gap created by the above phenomenon. Has a problem of deteriorating the life characteristics of the. In addition, when the passivation layer is repeatedly detached and collapsed, a local current density difference is caused, resulting in non-uniform distribution of current during charging, and at the same time, forming dendritic lithium dendrite. In addition, there is a problem that the dendrites formed as described above continuously grow to penetrate the separator and contact with the positive electrode, causing an internal short circuit to cause the battery to explode.
본 발명의 하나의 관점은 이차전지의 충방전 진행 시 전지의 수명 저하 현상을 최소화 할 수 있는 이차전지용 음극을 제공하기 위한 것이다. One aspect of the present invention is to provide a secondary battery negative electrode that can minimize the degradation of the life of the battery during the charge and discharge of the secondary battery.
본 발명의 실시예에 따른 이차전지용 음극은, 음극 집전체 및 상기 음극 집전체 표면의 적어도 일부에 집적된 음극 활물질을 포함하며, 상기 음극 집전체에는 상기 음극 활물질이 집적되는 다수의 탈리방지 집전홈이 형성되고, 충방전 과정에서 상기 탈리방지 집전홈에 질량 확산층이 형성되는 공간부가 형성되도록, 상기 탈리방지 집전홈의 내측면에 상기 음극 활물질이 형성될 수 있다.The negative electrode for a secondary battery according to the embodiment of the present invention includes a negative electrode active material and a negative electrode active material integrated on at least a portion of the surface of the negative electrode current collector, and the negative electrode current collector has a plurality of desorption current collectors in which the negative electrode active material is integrated. The negative electrode active material may be formed on an inner surface of the release preventing current collecting groove so that a space portion in which the mass diffusion layer is formed in the release preventing current collecting groove is formed in the charging and discharging process.
본 발명에 따르면, 음극에 형성된 탈리방지 집전홈에 부동태막이 형성될 수 있는 공간부가 형성되도록 음극 활물질을 집적시켜 부동태막의 탈리를 방지할 수 있다. 이로 인해, 전지의 수명 저하가 발생되는 것을 방지할 수 있다. According to the present invention, it is possible to prevent the detachment of the passivation film by integrating the negative electrode active material so as to form a space in which the passivation film may be formed in the detachment preventing current collecting groove formed in the cathode. For this reason, the fall of the lifetime of a battery can be prevented.
특히, 충방전을 통해 리튬 메탈로 이루어진 음극 활물질 표면에 형성되는 부동태막이 탈리방지 집전홈의 내측벽에 지지되어 탈리가 방지됨으로써, 충방전 반복시 부동태막의 붕괴 및 생성이 반복되는 것을 방지할 수 있다. 따라서, 부동태막이 붕괴 및 생성이 반복됨에따라 불균일하게 성장하는 죽은 리튬(dead lithium)이 발생되는 것을 방지할 수 있다. 결국, 이로인해 셀(Cell)의 저항이 증가되고 사이클(Cycle) 효율이 저하되는 것을 방지할 수 있다. 또한, 덴드라이트가 지속.적으로 성장하는 것을 방지함으로써 덴드라이트가 분리막을 뚫고 양극과 접촉하여 내부단락이 발생되는 것을 방지할 수 있고, 내부단락으로 전지가 폭발하는 현상이 방지될 수 있다.In particular, the passivation film formed on the surface of the negative electrode active material made of lithium metal through charge and discharge is supported on the inner wall of the anti-desorption current collector groove to prevent the detachment, thereby preventing repeated collapse and formation of the passivation film during repeated charge and discharge. . Therefore, it is possible to prevent the generation of dead lithium that grows unevenly as the passivation film is disintegrated and produced repeatedly. As a result, the resistance of the cell may be increased and the cycle efficiency may be prevented from being lowered. In addition, by preventing the growth of the dendrites continuously, it is possible to prevent the dendrites from penetrating the separator and contacting the positive electrode to generate an internal short circuit, and to prevent the battery from exploding due to the internal short circuit.
도 1은 본 발명의 일 실시예에 따른 이차전지용 음극이 적용되는 이차전지를 나타낸 분리 사시도이다. 1 is an exploded perspective view illustrating a secondary battery to which an anode for secondary batteries according to an embodiment of the present invention is applied.
도 2는 본 발명의 일 실시예에 따른 이차전지용 음극을 나타낸 부분 단면도이다. 2 is a partial cross-sectional view showing a negative electrode for a secondary battery according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 이차전지용 음극에 질량 확산층이 형성된 상태를 나타낸 부분 단면도이다. 3 is a partial cross-sectional view showing a state in which a mass diffusion layer is formed on a negative electrode for a secondary battery according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 이차전지용 음극의 일례를 나타낸 부분 평면도이다.4 is a partial plan view showing an example of a secondary battery negative electrode according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 이차전지용 음극의 다른 예를 나타낸 부분 평면도이다.5 is a partial plan view showing another example of a secondary battery negative electrode according to an embodiment of the present invention.
도 6은 본 발명의 다른 실시예에 따른 이차전지용 음극을 나타낸 부분 단면도이다.6 is a partial cross-sectional view illustrating a negative electrode for a secondary battery according to another embodiment of the present invention.
본 발명의 목적, 특정한 장점들 및 신규한 특징들은 첨부된 도면들과 연관되어지는 이하의 상세한 설명과 바람직한 실시예들로부터 더욱 명백해질 것이다. 본 명세서에서 각 도면의 구성요소들에 참조번호를 부가함에 있어서, 동일한 구성 요소들에 한해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 번호를 가지도록 하고 있음에 유의하여야 한다. 또한, 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고, 본 발명을 설명함에 있어서, 본 발명의 요지를 불필요하게 흐릴 수 있는 관련된 공지 기술에 대한 상세한 설명은 생략하도록 한다. The objects, specific advantages and novel features of the present invention will become more apparent from the following detailed description and the preferred embodiments associated with the accompanying drawings. In the present specification, in adding reference numerals to the components of each drawing, it should be noted that the same components as possible, even if displayed on different drawings have the same number as possible. In addition, the present invention may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. In describing the present invention, detailed descriptions of related well-known technologies that may unnecessarily obscure the subject matter of the present invention will be omitted.
도 1은 본 발명의 일 실시예에 따른 이차전지용 음극이 적용되는 이차전지를 나타낸 분리 사시도이고, 도 2는 본 발명의 일 실시예에 따른 이차전지용 음극을 나타낸 부분 단면도이다.1 is an exploded perspective view illustrating a secondary battery to which a negative electrode for a secondary battery according to an embodiment of the present invention is applied, and FIG. 2 is a partial cross-sectional view illustrating a negative electrode for a secondary battery according to an embodiment of the present invention.
도 1 및 도 2를 참고하면, 본 발명의 일 실시예에 따른 이차전지용 음극(10)은 음극 집전체(11) 및 음극 집전체(11)에 집적된 음극 활물질(12)을 포함한다.1 and 2, the secondary battery negative electrode 10 according to the exemplary embodiment of the present invention includes a negative electrode current collector 11 and a negative electrode active material 12 integrated in the negative electrode current collector 11.
이하에서, 도 1 내지 도 5를 참조하여, 본 발명의 일 실시예인 이차전지용 음극에 대해 보다 상세히 설명하기로 한다. Hereinafter, referring to FIGS. 1 to 5, a negative electrode for a secondary battery, which is an embodiment of the present invention, will be described in detail.
도 1을 참고하면, 본 발명의 일 실시예에 따른 이차전지용 음극이 적용되는 이차전지(100)는 전극 조립체(120) 및 전극 조립체(120)를 수용하는 수용부(111)가 형성된 전지 케이스(110)를 포함한다. Referring to FIG. 1, a secondary battery 100 to which a negative electrode for a secondary battery according to an embodiment of the present invention is applied includes a battery case in which an electrode assembly 120 and an accommodating portion 111 accommodating the electrode assembly 120 are formed. 110).
전극 조립체(120)는 충방전이 가능한 발전소자로서, 전극(30)과 분리막(40)이 결집되어 교대로 적층된 구조를 형성한다. The electrode assembly 120 is a power generator capable of charging and discharging, and forms the structure in which the electrode 30 and the separator 40 are alternately stacked.
전극(30)은 양극(20) 및 음극(10)으로 구성될 수 있다. 이때, 전극 조립체(120)는 양극(20)/분리막(40)/음극(10)이 교대로 적층된 구조로 이루어질 수 있다. 여기서, 분리막(40)은 양극(20)과 음극(10) 사이와, 양극(20)의 외측 및 음극(10)의 외측에 위치될 수 있다. 이때, 분리막(40)은 양극(20)/분리막(40)/음극(10)이 적층된 전극 조립체(110)를 전체적으로 감싸며 형성될 수 있다. The electrode 30 may be composed of an anode 20 and a cathode 10. In this case, the electrode assembly 120 may have a structure in which the anode 20, the separator 40, and the cathode 10 are alternately stacked. Here, the separator 40 may be located between the anode 20 and the cathode 10, outside the anode 20 and outside the cathode 10. In this case, the separator 40 may be formed to completely surround the electrode assembly 110 in which the anode 20, the separator 40, and the cathode 10 are stacked.
분리막(40)은 절연 재질로 이루어져 양극(20)과 음극(10) 사이를 전기적으로 절연한다. 여기서, 분리막(40)은 예를 들어 미다공성을 가지는 폴리에칠렌, 폴리프로필렌 등 폴리올레핀계 수지막으로 형성될 수 있다. The separator 40 is made of an insulating material to electrically insulate between the positive electrode 20 and the negative electrode 10. Here, the separator 40 may be formed of, for example, a polyolefin-based resin film such as polyethylene and polypropylene having microporosity.
한편, 전극 조립체(110)는 전극 리드(50)를 포함할 수 있다. 여기서, 전극 리드(50)는 전극(30)의 측면에 전기적으로 연결될 수 있다. Meanwhile, the electrode assembly 110 may include an electrode lead 50. Here, the electrode lead 50 may be electrically connected to the side of the electrode 30.
도 3은 본 발명의 일 실시예에 따른 이차전지용 음극에 부동태막이 형성된 상태를 나타낸 부분 단면도이다. 3 is a partial cross-sectional view showing a state in which a passivation film is formed in a secondary battery negative electrode according to an embodiment of the present invention.
보다 상세히, 도 2 및 도 3을 참고하면, 음극(10)은 음극 집전체(11) 및 음극 집전체(11)에 집적된 음극 활물질(12)을 포함할 수 있다. In more detail, referring to FIGS. 2 and 3, the negative electrode 10 may include the negative electrode current collector 11 and the negative electrode active material 12 integrated in the negative electrode current collector 11.
음극 집전체(11)는 예를 들어 구리(CU) 재질을 포함하는 포일(Foil)로 이루어질 수 있다.For example, the negative electrode current collector 11 may be formed of a foil including a copper (CU) material.
또한, 음극 집전체(11)는 음극 활물질(12)이 집적되는 다수의 탈리방지 집전홈(13)이 형성될 수 있다. In addition, the negative electrode current collector 11 may have a plurality of desorption current collector grooves 13 in which the negative electrode active material 12 is integrated.
음극 활물질(12)은 음극 집전체(11) 표면의 적어도 일부에 집적될 수 있다. The negative electrode active material 12 may be integrated on at least a portion of the surface of the negative electrode current collector 11.
아울러, 음극 활물질(12)은 예를 들어 리튬 메탈(Li Metal) 재질을 포함하여 이루어질 수 있다.In addition, the negative electrode active material 12 may include, for example, a lithium metal (Li Metal) material.
그리고, 음극 활물질(12)은 충방전 과정에서 탈리방지 집전홈(13)에 부동태막(S)이 형성되는 공간부(13a)가 형성되도록 탈리방지 집전홈(13)의 내측면에 형성될 수 있다. 여기서, 부동태막은 고체 전해질 계면(SEI; Solid Electrolyte Interphase)일 수 있다.In addition, the negative electrode active material 12 may be formed on the inner surface of the desorption current collecting groove 13 so that the space portion 13a in which the passivation film S is formed is formed in the desorption current collecting groove 13 during the charge / discharge process. have. The passivation layer may be a solid electrolyte interphase (SEI).
구체적으로, 탈리방지 집전홈(13)의 저부에 음극 활물질(12)이 위치되고, 탈리방지 집전홈(13)에서 음극 활물질(12)이 위치된 부분을 제외한 부분에 공간부(13a)가 형성될 수 있다. 이에 따라, 충방전 시 탈리방지 집전홈(13)의 공간부(13a)에 형성되는 부동태막(S)이 탈리방지 집전홈(13)의 내측면에 의하여 탈리방지 되도록 지지될 수 있다. 즉, 탈리방지 집전홈(13)의 내측 측면방향에 위치된 내측벽(14)에 의해 부동태막(S)의 양측이 지지되어 부동태막(S)의 탈리가 방지될 수 있다. 결국, 음극 활물질(12)의 표면에 위치된 부동태막(S)이 더 이상의 환원반응을 막는 동력학적 보호막(kinetic barrier)의 역할을 하여 전지의 수명 저하가 발생되는 것을 방지 또는 현저히 줄일 수 있다. 특히, 부동태막(S)의 붕괴 및 생성의 반복으로 인하여 발생되는 죽은 리튬(dead lithium) 및 다공성(Porous)의 레이어(Layer) 적층으로 셀(Cell) 저항 증가 및 사이클(Cycle) 수명 저하가 발생되는 것을 방지할 수 있다.Specifically, the negative electrode active material 12 is positioned at the bottom of the desorption current collecting groove 13, and the space 13a is formed at the portion of the desorption current collecting groove 13 except for the portion where the negative electrode active material 12 is positioned. Can be. Accordingly, the passivation film S formed in the space portion 13a of the detachment preventing current collecting groove 13 may be supported by the inner surface of the detachment preventing current collecting groove 13 during charge and discharge. That is, both sides of the passivation film S may be supported by the inner wall 14 positioned in the inner lateral direction of the detachment preventing current collecting groove 13 to prevent the passivation film S from being detached. As a result, the passivation film S positioned on the surface of the negative electrode active material 12 serves as a kinetic barrier to prevent further reduction reactions, thereby preventing or significantly reducing the life of the battery. In particular, dead lithium and porous layer stacks, which are caused by the breakdown and formation of the passivation layer S, increase cell resistance and decrease cycle life. Can be prevented.
본 발명의 일 실시예에 따른 이차전지용 음극에서, 탈리방지 집전홈(13)에 형성된 음극 활물질(12)의 외측 표면에 부동태막(S)이 구비될 수 있다. 이에 따라, 충방전 초기 단계부터 부동태막(S)이 음극 활물질(12)의 외측 표면에 위치되어, 전지의 수명 저하가 발생되는 것을 보다 효과적으로 방지 또는 현저히 줄일 수 있다.In the negative electrode for a secondary battery according to the exemplary embodiment of the present invention, a passivation film S may be provided on an outer surface of the negative electrode active material 12 formed in the desorption current collector groove 13. Accordingly, the passivation film S is located on the outer surface of the negative electrode active material 12 from the initial stage of charging and discharging, thereby more effectively preventing or significantly reducing the life of the battery.
본 발명의 일 실시예에 따른 이차전지용 음극에서, 탈리방지 집전홈(13)의 폭을 A, 다수의 탈리방지 집전홈(13) 간 간격을 B 라고 할 때, 다음의 조건식을 만족시킬 수 있다.In the negative electrode for a secondary battery according to the exemplary embodiment of the present invention, when the width of the detachment preventing current collecting groove 13 is A and the distance between the plurality of detaching preventing current collecting grooves 13 is B, the following conditional expression may be satisfied. .
0.5 < A/B < 10 (1)0.5 <A / B <10 (1)
상기의 조건식(1) 보다 작으면(즉, A/B가 0.5 이하이면), 음극 집전체(11)의 측면 유연성(Flexibility) 효과가 저하된다. 즉, 음극 집전체(11)에 형성된 탈리방지 집전홈(13)의 내측벽(14)의 유연성이 떨어지면 충방전 과정에서 부동태막(S)이 수축 및 팽창될 때 내측벽(14)이 수축 및 팽창하지 않아 부동태막(S)의 측면을 지지하는 효과가 떨어지게 된다. If smaller than the above Conditional Expression (1) (that is, A / B is 0.5 or less), the side flexibility effect of the negative electrode current collector 11 is lowered. That is, when the flexibility of the inner wall 14 of the desorption current collector groove 13 formed in the negative electrode current collector 11 decreases, the inner wall 14 contracts and contracts when the passivation film S contracts and expands during the charging and discharging process. Since it does not expand, the effect of supporting the side of the passivation film (S) is reduced.
또한, 상기의 조건식(1) 보다 크면(즉, A/B가 10 이상이면), 부동태막(S) 측면의 음극 집전체(11) 강도(Strength) 문제로 지지대(support)역할이 불가능 하게 된다. 즉, 음극 집전체(11)에 형성된 탈리방지 집전홈(13)의 내측벽(14)의 강도가 저하되어 음극 집전체(11) 내측벽(14)의 지지 효과가 떨어진다.In addition, if it is larger than the above Conditional Expression (1) (that is, if A / B is 10 or more), the support role becomes impossible due to the strength problem of the negative electrode current collector 11 on the side of the passivation film S. . That is, the strength of the inner wall 14 of the desorption current collector groove 13 formed in the negative electrode current collector 11 is lowered, and the supporting effect of the inner wall 14 of the negative electrode current collector 11 is lowered.
본 발명의 일 실시예에 따른 이차전지용 음극에서, 탈리방지 집전홈(13)의 깊이를 C, 음극 집전체(11) 전체 두께를 E 라고 할 때, 다음의 조건식을 만족시킬 수 있다.In the negative electrode for a secondary battery according to the exemplary embodiment of the present invention, when the depth of the detachment preventing current collecting groove 13 is C and the total thickness of the negative electrode current collector 11 is E, the following conditional expression may be satisfied.
0.2 < C/E < 0.8 (2)0.2 <C / E <0.8 (2)
상기의 조건식(2) 보다 작으면(즉, C/E가 0.2 이하이면), 음극 집전체(11)의 유연성(Flexibility) 저하로 부동태막(S)의 부피변화에 따른 부동태막(S)의 강성(Toughness)이 저하된다. 즉, 음극 집전체(11)에 형성된 탈리방지 집전홈(13)의 내측면의 유연성이 저하되면, 충방전 과정에서 수축 및 팽창하는 부동태막(S)의 부피변화에 따른 부동태막(S)의 강성(Toughness)이 저하된다. 이에 따라, 예를 들어 리튬 금속의 음극 집전체(11) 표면에서 부동태막(S)의 탈리 및 붕괴가 일어난다.If it is smaller than the above Conditional Expression (2) (that is, if C / E is 0.2 or less), the flexibility of the negative electrode current collector 11 decreases the flexibility of the passivation film S due to the volume change of the passivation film S. Toughness is reduced. That is, when the flexibility of the inner surface of the desorption current collector groove 13 formed in the negative electrode current collector 11 is lowered, the passivation film S may be changed due to the volume change of the passivation film S that contracts and expands during charging and discharging. Toughness is reduced. Thus, for example, detachment and collapse of the passivation film S occur at the surface of the negative electrode current collector 11 of lithium metal.
또한, 상기의 조건식(2) 보다 크면(즉, C/E가 0.8 이상이면), 음극 집전체(11)의 가공문제 및 저항문제가 발생한다.Further, when larger than the above Conditional Expression (2) (that is, when C / E is 0.8 or more), processing problems and resistance problems of the negative electrode current collector 11 occur.
본 발명의 일 실시예에 따른 이차전지용 음극에서, 탈리방지 집전홈(13)의 공간부(13a) 깊이를 D 라고 할 때, 다음의 조건식을 만족시킬 수 있다.In the negative electrode for a secondary battery according to the exemplary embodiment of the present invention, when the depth of the space portion 13a of the detachment preventing current collecting groove 13 is D, the following conditional expression may be satisfied.
0.05um < D (3)0.05um <D (3)
상기의 조건식(3) 보다 작으면(즉, D가 0.05um 이하이면), 부동태막(S)의 성장 시 음극 집전체(11)가 측면 지지대 역할을 충분히 할 수 없어 부동태막(S)이 탈리된다. 즉, 탈리방지 집전홈(13)의 내측벽(14)이 부동태막(S)의 측면 지지 역할을 충분히 할 수 없게 된다. If it is smaller than the above Conditional Expression (3) (i.e., if D is 0.05 μm or less), the passivation layer S is detached because the negative electrode current collector 11 cannot sufficiently serve as a side support during growth of the passivation layer S. do. In other words, the inner wall 14 of the detachment preventing current collecting groove 13 may not sufficiently serve as a side support of the passivation film S.
한편, 본 발명의 일 실시예에 따른 이차전지용 음극에서, 탈리방지 집전홈(13)의 폭을 A, 다수의 탈리방지 집전홈(13) 간 간격을 B, 상기 탈리방지 집전홈(13)의 깊이를 C, 라고 할 때, 예를들어, 10um < A < 1000um, 10um < B < 1000um 및, 10um < C < 1000um의 조건식을 만족할 수 있다.On the other hand, in the negative electrode for secondary batteries according to an embodiment of the present invention, the width of the desorption preventing current collecting groove 13, A, the interval between the plurality of desorption preventing current collecting groove 13, the desorption preventing current collecting groove 13 When the depth is C, for example, a conditional expression of 10um <A <1000um, 10um <B <1000um, and 10um <C <1000um can be satisfied.
여기서, 본 발명의 일 실시예에 따른 이차전지용 음극은 구체적으로 예를들어, 10um < A < 100um, 10um < B < 100um 및, 10um < C < 100um의 조건식을 만족할 수 있다.Here, the negative electrode for a secondary battery according to an embodiment of the present invention may specifically satisfy, for example, 10um <A <100um, 10um <B <100um, and 10um <C <100um.
이때, 본 발명의 일 실시예에 따른 이차전지용 음극은 보다 구체적으로 예를들어, 20um < A < 60um, 20um < B < 60um 및, 20um < C < 60um의 조건식을 만족할 수 있다.At this time, the secondary battery negative electrode according to an embodiment of the present invention may more specifically, for example, satisfy the conditional expression of 20um <A <60um, 20um <B <60um, and 20um <C <60um.
상기와 같이 구성된 본 발명의 일 실시예에 따른 이차전지용 음극(10)은 패턴(patterned)이 형성된 구리(Cu) 음극 집전체(11)를 사용하여 부동태막(S)의 크기를 작게 조절해 줌과 동시에 부동태막(S)의 지지체를 형성해줌에 따라서 부동태막(S)의 탈리 및 붕괴를 억제해 더 안정한 부동태막(S)을 형성하게 된다. 이러한 현상은 리튬 메탈(Li metal)을 포함하는 음극 활물질(12)과 전해액과의 부반응을 억제하며 전류의 분포를 균일하게 해주는 효과가 있어서 덴드라이트 불균일한 성장을 억제하게 해주며 죽은 리튬(Dead Li)의 생성을 최소화 할 수 있다.The secondary battery negative electrode 10 according to the embodiment of the present invention configured as described above uses a copper (Cu) negative electrode current collector 11 in which a pattern is formed to adjust the size of the passivation film S to be small. At the same time, as the support of the passivation film S is formed, desorption and collapse of the passivation film S are suppressed to form a more stable passivation film S. This phenomenon suppresses side reactions between the negative electrode active material 12 including lithium metal and the electrolyte, and uniformly distributes the current, thereby suppressing dendrite non-uniform growth and dead lithium. ) Can be minimized.
그리고, 안정한 부동태막(S)이 형성되면 Jianming Zheng가 발표한 논문[Highly Stable Operation of Lithium Metal Batteries Enabled by the Formation of a Transient High-Concentration Electrolyte Layer (2016)]에 개시된 바와같이 이차전지의 성능이 개선된다. 즉, 부동태막(S)이 탈리 및 붕괴되며 성장한 죽은 리튬(Dead Li)이 최소화된 안정한 부동태막(S)이 형성된 상태에서 사이클이 진행될수록 전지 용량의 퇴화 정도가 최소화되어 높은 전지 용량을 유지할 수 있다.When the stable passivation layer (S) is formed, the performance of the secondary battery, as disclosed in the paper published by Jianming Zheng [Highly Stable Operation of Lithium Metal Batteries Enabled by the Formation of a Transient High-Concentration Electrolyte Layer (2016)]. Is improved. In other words, as the passivation layer S is detached and collapsed and a stable passivation layer S with minimal dead lithium grown is formed, the deterioration of the battery capacity is minimized as the cycle progresses, thereby maintaining high battery capacity. have.
< 실시예 1~10, 비교예 1 ><Examples 1-10, Comparative Example 1>
탈리방지 집전홈(13)의 폭을 A, 다수의 탈리방지 집전홈(13) 간 간격을 B, 상기 탈리방지 집전홈(13)의 깊이를 C, 라고 할 때, 리튬 이차전지들을 하기 표 1 과 같은 조건으로 구성하였다. When the width of the desorption current collector groove 13, A, the distance between the plurality of desorption current collector groove 13, B, the depth of the desorption current collector groove 13 is C, Table 1 below. It was configured under the same conditions.
C (단위 um)C (unit um) A (단위 um)A (unit um) B (단위 um)B (unit um)
실시예 1Example 1 2020 2020 2020
실시예 2Example 2 4040 4040 4040
실시예 3Example 3 6060 6060 6060
실시예 4Example 4 4040 2020 6060
실시예 5Example 5 1010 1010 1010
실시예 6Example 6 100100 100100 100100
실시예 7Example 7 200200 200200 200200
실시예 8Example 8 500500 500500 500500
실시예 9Example 9 10001000 10001000 10001000
실시예 10Example 10 50005000 50005000 50005000
비교예 1(탈리방지 집전홈 미형성)Comparative Example 1 (non-tearing current collecting groove not formed) 00 00 00
< 실험예 >Experimental Example
상기 표 1의 패턴을 적용하는 경우에 발현 용량 및 용량 유지율을 하기 표 2에 나타내었다. 또한, 양극 활물질로 NCM(니켈코발트망간), 음극 활물질로 Li metal, 분리막으로 PE분리막, 전해질로 EC/EMC/DMC(ethylene carbonate/ethyl methyl carbonate/dimethyl carbonate) 1M LiPF6 VC 0.5wt%을 적용한 셀을 제조하여 평가를 진행하였다.When applying the pattern of Table 1, the expression dose and the dose retention rate are shown in Table 2 below. In addition, NCM (nickel cobalt manganese) as the positive electrode active material, Li metal as the negative electrode active material, PE separator as the separator, EC / EMC / DMC (ethylene carbonate / ethyl methyl carbonate / dimethyl carbonate) 1M LiPF6 VC 0.5wt% is applied to the cell It was prepared by the evaluation.
발현 용량 ( mAh )Expression capacity (mAh) 용량 유지율(%), 200th cycleCapacity retention rate (%), 200th cycle
실시예 1Example 1 5.255.25 88.5788.57
실시예 2Example 2 5.245.24 86.6586.65
실시예 3Example 3 5.265.26 84.1584.15
실시예 4Example 4 5.285.28 86.5786.57
실시예 5Example 5 5.285.28 70.5770.57
실시예 6Example 6 5.285.28 76.5776.57
실시예 7Example 7 5.285.28 56.5756.57
실시예 8Example 8 5.285.28 46.5746.57
실시예 9Example 9 5.295.29 35.7835.78
실시예 10Example 10 5.215.21 25.2325.23
비교예 1Comparative Example 1 5.245.24 20.4620.46
상기 표 2에서 볼 수 있듯이, 탈리방지 집전홈(13)이 형성된 실시예 1 내지 10의 용량유지율과, 탈리방지 집전홈이 형성되지 않은 미패턴의 비교예 1의 용량유지율을 비교하면, 탈리방지 집전홈(13)이 형성되었을때, 사이클 성능이 우수한 것을 알 수 있다.As can be seen in Table 2, when the capacity retention rate of Examples 1 to 10 in which the detachment prevention current collecting groove 13 is formed and the capacity retention rate of Comparative Example 1 of the non-pattern where the detachment prevention current collecting groove is not formed are compared, When the current collector groove 13 is formed, it can be seen that the cycle performance is excellent.
여기서, 탈리방지 집전홈(13)이 1000um 미만의 패턴으로 형성된 실시예 1 내지 8의 용량유지율이 탈리방지 집전홈이 형성되지 않은 미패턴의 비교예 1의 용량유지율 보다 높은 것을 알 수 있다.Here, it can be seen that the capacity retention ratios of Examples 1 to 8 in which the stripping prevention current collecting groove 13 is formed in a pattern of less than 1000 μm are higher than those of Comparative Example 1 of the non-pattern in which the stripping prevention current collecting grooves are not formed.
이때, 탈리방지 집전홈(13)이 10um ~ 100um 패턴으로 형성된 실시예 1 내지 6의 용량유지율이 탈리방지 집전홈이 형성되지 않은 미패턴의 비교예 1의 용량유지율 보다 현저히 높은 것을 알 수 있다.At this time, it can be seen that the capacity retention ratios of Examples 1 to 6 in which the detachment preventing current collecting grooves 13 are formed in a pattern of 10 μm to 100 μm are significantly higher than those of Comparative Example 1 of the non-pattern in which the removal preventing current collecting grooves are not formed.
특히, 탈리방지 집전홈(13)이 20~60um 패턴으로 형성된 실시예 1 내지 4의 경우, 200 사이클(cycle)의 경과 후에도 상당히 우수한 용량유지율을 나타내는 것을 알 수 있다. In particular, in the case of Examples 1 to 4 in which the desorption current collector groove 13 is formed in a 20 to 60 um pattern, it can be seen that the capacity retention ratio is excellent even after 200 cycles.
도 4는 본 발명의 일 실시예에 따른 이차전지용 음극의 일례를 나타낸 부분 평면도이고, 도 5는 본 발명의 일 실시예에 따른 이차전지용 음극의 다른 예를 나타낸 부분 평면도이다.4 is a partial plan view showing an example of a secondary battery negative electrode according to an embodiment of the present invention, Figure 5 is a partial plan view showing another example of a secondary battery negative electrode according to an embodiment of the present invention.
도 4를 참고하면, 본 발명의 일 실시예에 따른 이차전지용 음극(10)에서 탈리방지 집전홈(13)은 일례로 사각형 형태로 형성될 수 있다. Referring to FIG. 4, in the secondary battery negative electrode 10 according to the exemplary embodiment of the present invention, the detachment preventing current collecting groove 13 may be formed in a rectangular shape as an example.
또한, 도 5를 참고하면, 본 발명의 일 실시예에 따른 이차전지용 음극(10')에서 탈리방지 집전홈(13')은 다른 예로 원형 형태로 형성될 수 있다. In addition, referring to FIG. 5, the detachment preventing current collecting groove 13 ′ in the negative electrode 10 ′ of the secondary battery according to the exemplary embodiment of the present invention may be formed in a circular shape as another example.
도 6은 본 발명의 다른 실시예에 따른 이차전지용 음극을 나타낸 부분 단면도이다.6 is a partial cross-sectional view illustrating a negative electrode for a secondary battery according to another embodiment of the present invention.
도 6을 참고하면, 본 발명의 다른 실시예에 따른 이차전지용 음극(10")은, 음극 집전체(11)에 이탈방지부(15)가 더 형성될 수 있다.Referring to FIG. 6, in the secondary battery negative electrode 10 ″ according to another exemplary embodiment of the present disclosure, the separation preventing unit 15 may be further formed on the negative electrode current collector 11.
이탈방지부(15)는 음극 집전체(11)의 탈리방지 집전홈(13)의 상단부에 돌출형성되어 부동태막(S, 도 3 참조)이 탈리방지 집전홈(13)으로부터 이탈되지 않도록 단속할 수 있다. 즉, 이탈방지부(15)는 음극 집전체(11)의 내측벽(14) 상단부에서 탈리방지 집전홈(13)의 공간부(13a) 방향으로 연장형되어, 부동태막(S)의 상측 측면부를 단속하여 부동태막(S)이 탈리방지 집전홈(13)으로 부터 이탈되지 않도록 단속할 수 있다.The detachment preventing part 15 is formed to protrude from the upper end of the detachment preventing current collecting groove 13 of the negative electrode current collector 11 so that the passivation film S (see FIG. 3) may be prevented from being separated from the detaching preventing current collecting groove 13. Can be. That is, the separation preventing part 15 extends from the upper end of the inner wall 14 of the negative electrode current collector 11 toward the space part 13a of the release preventing current collecting groove 13, and thus the upper side surface part of the passivation film S. By intermittent, the passivation film S may be controlled so as not to be separated from the detachment preventing current collecting groove 13.
한편, 이탈방지부(15)는 예를 들어 탈리방지 집전홈(13)의 상단에 상호 마주 보는 방향으로 돌출된 돌기 또는 단 형태로 형성될 수 있다.On the other hand, the separation prevention unit 15 may be formed in the form of a protrusion or a step protruding in the direction facing each other, for example on the upper end of the detachment preventing current collecting groove (13).
이상 본 발명을 구체적인 실시예를 통하여 상세히 설명하였으나, 이는 본 발명을 구체적으로 설명하기 위한 것으로, 본 발명에 따른 이차전지용 음극은 이에 한정되지 않는다. 본 발명의 기술적 사상 내에서 당해 분야의 통상의 지식을 가진 자에 의해 다양한 실시가 가능하다고 할 것이다. Although the present invention has been described in detail through specific examples, this is for describing the present invention in detail, and the negative electrode for a secondary battery according to the present invention is not limited thereto. Various implementations may be made by those skilled in the art within the technical idea of the present invention.
또한, 발명의 구체적인 보호 범위는 첨부된 특허청구범위에 의하여 명확해질 것이다. Further specific scope of protection of the invention will be apparent from the appended claims.

Claims (13)

  1. 음극 집전체 및 상기 음극 집전체 표면의 적어도 일부에 집적된 음극 활물질을 포함하며, A negative electrode current collector and a negative electrode active material integrated on at least a portion of a surface of the negative electrode current collector,
    상기 음극 집전체에는 상기 음극 활물질이 집적되는 다수의 탈리방지 집전홈이 형성되고, The negative electrode current collector is provided with a plurality of desorption current collector grooves in which the negative electrode active material is integrated,
    충방전 과정에서 상기 탈리방지 집전홈에 부동태막(passivation layer)이 형성되는 공간부가 형성되도록, 상기 탈리방지 집전홈의 내측면에 상기 음극 활물질이 형성되는 이차전지용 음극.The negative electrode for a secondary battery, wherein the negative electrode active material is formed on an inner surface of the desorption current collector groove so that a space portion in which a passivation layer is formed is formed in the desorption prevention current collector groove during charge and discharge.
  2. 청구항 1에 있어서, The method according to claim 1,
    상기 탈리방지 집전홈의 저부에 상기 음극 활물질이 위치되고,The negative active material is located at the bottom of the desorption prevention current collecting groove,
    상기 탈리방지 집전홈에서 상기 음극 활물질이 위치하는 부분을 제외한 부분에 상기 공간부가 형성되어,The space part is formed in a portion of the desorption prevention current collecting groove except for a portion where the negative electrode active material is located,
    충방전 시 상기 탈리방지 집전홈의 상기 공간부에 형성되는 상기 부동태막이 상기 탈리방지 집전홈의 내측벽에 의하여 탈리방지 되도록 지지되는 이차전지용 음극. The secondary battery negative electrode is supported so that the passivation film formed in the space portion of the detachment preventing current collector groove is prevented from detaching by the inner wall of the detachment preventing current collector groove during charging and discharging.
  3. 청구항 2에 있어서, The method according to claim 2,
    상기 탈리방지 집전홈의 폭을 A, 다수의 상기 탈리방지 집전홈 간 간격을 B 라고 할 때, 0.5 < A/B < 10 의 조건식을 만족하는 이차전지용 음극.A secondary battery negative electrode that satisfies the conditional expression of 0.5 <A / B <10 when the width of the detachment preventing current collecting groove A, the interval between the plurality of the detachment preventing current collecting groove B.
  4. 청구항 2에 있어서, The method according to claim 2,
    상기 탈리방지 집전홈의 깊이를 C, 상기 음극 집전체 전체 두께를 E 라고 할 때, 0.2 < C/E < 0.8 의 조건식을 만족하는 이차전지용 음극.A secondary battery negative electrode that satisfies the conditional formula of 0.2 <C / E <0.8 when the depth of the desorption prevention current collector groove is C, and the total thickness of the negative electrode current collector is E.
  5. 청구항 2에 있어서, The method according to claim 2,
    상기 탈리방지 집전홈의 상기 공간부 깊이를 D 라고 할 때, 0.05um < D 의 조건식을 만족하는 이차전지용 음극.A secondary battery negative electrode that satisfies the conditional expression of 0.05um <D when the depth of the space portion of the desorption prevention current collector groove is D.
  6. 청구항 2에 있어서, The method according to claim 2,
    상기 탈리방지 집전홈의 폭을 A, 다수의 상기 탈리방지 집전홈 간 간격을 B, 상기 탈리방지 집전홈의 깊이를 C, 상기 탈리방지 집전홈의 상기 공간부 깊이를 D, 상기 음극 집전체 전체 두께를 E 라고 할 때, 0.05um < D , 0.2 < C/E < 0.8 및 0.5 < A/B < 10 의 조건식을 만족하는 이차전지용 음극.The width of the desorption current collecting groove A, the distance between the plurality of desorption current collecting grooves B, the depth of the desorption current collecting grooves C, the depth of the space portion of the desorption current collecting grooves D, the entire negative electrode current collector The negative electrode for secondary batteries which satisfy | fills the conditions of 0.05um <D, 0.2 <C / E <0.8, and 0.5 <A / B <10, when thickness is E.
  7. 청구항 2에 있어서, The method according to claim 2,
    상기 탈리방지 집전홈의 폭을 A, 다수의 상기 탈리방지 집전홈 간 간격을 B, 상기 탈리방지 집전홈의 깊이를 C, 라고 할 때,When the width of the desorption current collecting groove A, the distance between the plurality of desorption current collecting grooves B, the depth of the desorption current collecting grooves C,
    10um < A < 1000um, 10um < B < 1000um 및, 10um < C < 1000um의 조건식을 만족하는 이차전지용 음극.A negative electrode for a secondary battery that satisfies the conditional formula of 10um <A <1000um, 10um <B <1000um, and 10um <C <1000um.
  8. 청구항 2에 있어서, The method according to claim 2,
    상기 탈리방지 집전홈의 폭을 A, 다수의 상기 탈리방지 집전홈 간 간격을 B, 상기 탈리방지 집전홈의 깊이를 C, 라고 할 때,When the width of the desorption current collecting groove A, the distance between the plurality of desorption current collecting grooves B, the depth of the desorption current collecting grooves C,
    10um < A < 100um, 10um < B < 100um 및, 10um < C < 100um의 조건식을 만족하는 이차전지용 음극.A negative electrode for a secondary battery that satisfies the conditional expression of 10um <A <100um, 10um <B <100um, and 10um <C <100um.
  9. 청구항 2에 있어서, The method according to claim 2,
    상기 탈리방지 집전홈의 폭을 A, 다수의 상기 탈리방지 집전홈 간 간격을 B, 상기 탈리방지 집전홈의 깊이를 C, 라고 할 때,When the width of the desorption current collecting groove A, the distance between the plurality of desorption current collecting grooves B, the depth of the desorption current collecting grooves C,
    20um < A < 60um, 20um < B < 60um 및, 20um < C < 60um의 조건식을 만족하는 이차전지용 음극.A negative electrode for a secondary battery that satisfies the conditional expression of 20um <A <60um, 20um <B <60um, and 20um <C <60um.
  10. 청구항 1 내지 청구항 9중 어느 한 항에 있어서, The method according to any one of claims 1 to 9,
    상기 음극 활물질은 리튬 메탈(Li Metal)로 이루어지는 이차전지용 음극.The negative electrode active material is a secondary battery negative electrode made of lithium metal (Li Metal).
  11. 청구항 1 내지 청구항 9 중 어느 한 항에 있어서, The method according to any one of claims 1 to 9,
    상기 음극 집전체는 구리(CU)로 이루어지는 이차전지용 음극.The negative electrode current collector is a secondary battery negative electrode made of copper (CU).
  12. 청구항 1 내지 청구항 9 중 어느 한 항에 있어서, The method according to any one of claims 1 to 9,
    상기 음극 활물질의 외측 표면에 상기 부동태막이 형성된 이차전지용 음극.A negative electrode for a secondary battery, wherein the passivation film is formed on an outer surface of the negative electrode active material.
  13. 청구항 1 내지 청구항 9 중 어느 한 항에 있어서, The method according to any one of claims 1 to 9,
    상기 음극 집전체는 상기 탈리방지 집전홈의 상단부에 돌출형성되어 상기 부동태막이 상기 탈리방지 집전홈으로부터 이탈되지 않도록 단속하는 이탈방지부를 더 포함하는 이차전지용 음극.The negative electrode current collector further includes a separation prevention portion protruding from an upper end portion of the anti-detachment current collecting groove to prevent the passivation film from being separated from the anti-detachment current collecting groove.
PCT/KR2017/011346 2016-10-14 2017-10-13 Negative electrode for secondary battery WO2018070843A2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP17859641.7A EP3444874B1 (en) 2016-10-14 2017-10-13 Negative electrode for secondary battery
ES17859641T ES2955000T3 (en) 2016-10-14 2017-10-13 Negative electrode for secondary battery
US16/099,549 US11069899B2 (en) 2016-10-14 2017-10-13 Negative electrode for secondary battery
PL17859641.7T PL3444874T3 (en) 2016-10-14 2017-10-13 Negative electrode for secondary battery
CN201780033688.5A CN109196691B (en) 2016-10-14 2017-10-13 Negative electrode for secondary battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2016-0133470 2016-10-14
KR20160133470 2016-10-14
KR1020170129710A KR102119705B1 (en) 2016-10-14 2017-10-11 Cathode for rechargeable battery
KR10-2017-0129710 2017-10-11

Publications (2)

Publication Number Publication Date
WO2018070843A2 true WO2018070843A2 (en) 2018-04-19
WO2018070843A3 WO2018070843A3 (en) 2018-07-12

Family

ID=61905693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/011346 WO2018070843A2 (en) 2016-10-14 2017-10-13 Negative electrode for secondary battery

Country Status (5)

Country Link
CN (1) CN109196691B (en)
ES (1) ES2955000T3 (en)
HU (1) HUE062853T2 (en)
PL (1) PL3444874T3 (en)
WO (1) WO2018070843A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114709425A (en) * 2022-04-15 2022-07-05 东南大学 Preparation method and application of metal current collector with micro-pit array

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100366345B1 (en) * 2001-01-03 2002-12-31 삼성에스디아이 주식회사 Negative electrode for lithium-sulfur battery
KR100582558B1 (en) * 2004-11-25 2006-05-22 한국전자통신연구원 Lithium metal anode for lithium metal polymer secondary battery comprising spacer and method for forming the same
KR100582557B1 (en) * 2004-11-25 2006-05-22 한국전자통신연구원 Anode for lithium metal polymer secondary battery comprising patterned anodic current collector surface and method for forming the same
KR101147410B1 (en) * 2010-07-16 2012-05-23 넥스콘 테크놀러지 주식회사 Method for fabricating electrode
WO2014136946A1 (en) * 2013-03-08 2014-09-12 株式会社三五 Negative electrode material for lithium secondary batteries and method for producing same
KR101532136B1 (en) * 2013-06-26 2015-06-29 (주)오렌지파워 Anode, method of fabricating the same and rechargeable battery

Also Published As

Publication number Publication date
PL3444874T3 (en) 2023-10-23
CN109196691A (en) 2019-01-11
CN109196691B (en) 2022-01-04
WO2018070843A3 (en) 2018-07-12
ES2955000T3 (en) 2023-11-28
HUE062853T2 (en) 2023-12-28

Similar Documents

Publication Publication Date Title
WO2019172524A1 (en) Method for manufacturing secondary battery and pouch for secondary battery
WO2015037867A1 (en) Lithium electrode and lithium secondary battery comprising same
WO2011043587A2 (en) Electrode assembly for a battery and method for manufacturing same
WO2014081242A1 (en) Method for manufacturing electrode assembly and electrode assembly manufactured using same
WO2014142458A1 (en) Cathode including insulating layer on cathode tap and secondary battery including cathode
WO2013062334A1 (en) Cathode for secondary battery and secondary battery having same
WO2013055186A1 (en) Cable-type secondary battery
WO2020204407A1 (en) Secondary battery battery case and pouch-type secondary battery
WO2013100643A1 (en) Electrode assembly and secondary battery using same
WO2013055185A2 (en) Cable-type secondary battery
WO2013062335A1 (en) Cathode for secondary battery and secondary battery having same
WO2017061746A1 (en) Battery module
WO2014017864A1 (en) Secondary battery
WO2015057017A1 (en) Heat sink having two or more separated channels by including insulating material
WO2015065090A1 (en) Method for manufacturing electrode-separation film complex, electrode-separation film complex manufactured by manufacturing method therefor and lithium secondary battery comprising same
WO2018088722A1 (en) Electrode assembly and manufacturing method therefor
WO2021038545A1 (en) Pouch-type battery case and pouch-type secondary battery
WO2016056764A1 (en) Electrode assembly wound in both directions, and lithium secondary battery comprising same
WO2013058566A1 (en) Secondary battery
WO2015037813A2 (en) Pouch type case, battery cell, and method for manufacturing battery cell
WO2016111605A1 (en) Electrode, method for manufacturing same, electrode manufactured by same, and secondary battery comprising same
WO2020036318A1 (en) Electrode assembly and method for manufacturing same electrode assembly
WO2016204467A1 (en) Lithium ion secondary battery
WO2018070843A2 (en) Negative electrode for secondary battery
WO2021033959A1 (en) Cylindrical battery

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017859641

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017859641

Country of ref document: EP

Effective date: 20181115

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17859641

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE