WO2018070469A1 - 分光器、及び、それを備えた顕微鏡 - Google Patents

分光器、及び、それを備えた顕微鏡 Download PDF

Info

Publication number
WO2018070469A1
WO2018070469A1 PCT/JP2017/036966 JP2017036966W WO2018070469A1 WO 2018070469 A1 WO2018070469 A1 WO 2018070469A1 JP 2017036966 W JP2017036966 W JP 2017036966W WO 2018070469 A1 WO2018070469 A1 WO 2018070469A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
refractive lens
lens
incident
spectroscope
Prior art date
Application number
PCT/JP2017/036966
Other languages
English (en)
French (fr)
Inventor
世智 佐藤
Original Assignee
株式会社堀場製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社堀場製作所 filed Critical 株式会社堀場製作所
Priority to JP2018545046A priority Critical patent/JP6847973B2/ja
Publication of WO2018070469A1 publication Critical patent/WO2018070469A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/18Generating the spectrum; Monochromators using diffraction elements, e.g. grating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/30Measuring the intensity of spectral lines directly on the spectrum itself
    • G01J3/36Investigating two or more bands of a spectrum by separate detectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes

Definitions

  • the present invention relates to a spectroscope used for spectroscopic analysis, for example.
  • a Dyson type spectrometer is known as one of the spectrometers with excellent imaging performance.
  • This Dyson type spectroscope includes an entrance slit, a refractive lens having a convex curved surface, a reflective diffraction grating having a concave curved surface, and a detector.
  • the convex curved surface of the refractive lens and the concave curved surface of the reflective diffraction grating are concentric. Are arranged in a shape.
  • the Dyson spectroscope 100A described in Patent Document 1 compensates for the influence of the aberration of the refractive lens 3A and improves the spectral resolution, as shown in FIG.
  • a compensating lens 5A is provided between the concave curved surface 4A.
  • the compensation lens 5A is provided between the refractive lens 3A and the reflective diffraction grating 4A, when light enters the reflective diffraction grating 4A from the refractive lens 4A, it is reflected by the reflective diffraction grating 4A.
  • the compensation lens 5A is passed twice. For this reason, when the compensation lens 5A is designed so that the position and angle of the light that passes through the refractive lens 3A and enters the reflective diffraction grating 4A is optimized, the light reflected by the reflective diffraction grating 4A is compensated for. The light is refracted by 5A and cannot enter the refraction lens 3A at an optimum position. This is a cause of hindering further improvement in spectral resolution.
  • the light path is an optical path that passes through the compensation lens 5A twice, the number of times of passage through the interface serving as a reflection surface is increased four times as compared with the conventional Dyson spectroscope. The amount of light that can be reached decreases and efficiency decreases, or stray light increases.
  • the present invention has been made in view of the above-described problems, and a spectroscope capable of improving spectral resolution in a wide wavelength range while suppressing a decrease in light receiving efficiency and generation of stray light, and the use thereof.
  • An object of the present invention is to provide a conventional microscope.
  • the spectroscope according to the present invention includes a refractive lens including a first surface on which light emitted from a light source is incident, and a convexly curved second surface on which light incident from the first surface is emitted.
  • a reflection-type diffraction grating having a concave curved surface that reflects and diffracts incident light that is emitted from the second surface of the refractive lens, and is reflected by the reflection-type diffraction grating and is reflected by the first of the refractive lens.
  • a compensation element for compensating for the aberration of the lens.
  • the compensation element is provided between the first surface of the refractive lens and the detector, light can pass through the compensation element only once. Therefore, it is possible to form an image of light on the detector after compensating and optimizing the influence of coma aberration, chromatic aberration and the like in the refractive lens.
  • the light passes only once through the compensation element, the number of interfaces through which the light passes can be minimized, and a decrease in efficiency and an increase in stray light can be suppressed.
  • the compensation element is a combination of a plurality of lenses formed of a light-transmitting material having different refractive indexes. Any configuration may be used. If this is the case, it is easy to design optimal compensation for each wavelength.
  • each surface of the combination lens constituting the compensation element is a spherical surface.
  • either the light incident surface or the light exit surface of the combination lens constituting the compensation element is flat. If it is.
  • the compensation element is composed of an aspheric lens.
  • the convex curved surface of the second surface of the refractive lens and the concave curved surface of the reflective diffraction grating may be arranged concentrically.
  • the detector and the entrance slit can be separated from each other, and in order to make it easy to attach even a large device, a reflection element provided between the light source and the first surface of the refractive lens is provided.
  • the light source is provided so that the optical axis direction of the light source intersects the optical axis direction of the refractive lens, and the light that has passed through the entrance slit is reflected by the reflective element and What is necessary is just to be comprised so that it may inject into 1 surface.
  • the reflective element is a reflective prism. Yes, it suffices if the light exit surface of the reflecting prism and the first surface of the refractive lens are separated from each other.
  • the light sources are arranged concentrically.
  • the center of the convex surface of the second surface and the concave surface of the reflective diffraction grating may be arranged so as to be shifted from the point to be surfaced with respect to the reflective surface of the reflective element.
  • a microscope equipped with a separation instrument according to the present invention can realize high-resolution spectroscopic analysis in a wide wavelength range.
  • the spectroscope according to the present invention compensates for the influence of the aberration of the refractive lens to improve the spectral resolution, while reducing the number of times the light passes through the compensation element only once, thereby reducing the light receiving efficiency and increasing the stray light. Can be suppressed.
  • a spectroscope 100 according to an embodiment of the present invention will be described with reference to FIG.
  • the spectroscope 100 is used for a spectroscopic microscope, for example, and is a so-called Dyson spectroscope further provided with a compensation element 5.
  • the spectroscope 100 is provided with an incident slit 1, a reflecting element 2, a refractive lens 3, a reflecting diffraction grating 4, a compensating element 5, and a detector 6 which are light sources in the order of the optical path.
  • incident slit 1 a reflecting element 2
  • refractive lens 3 a refractive lens 3
  • reflecting diffraction grating 4 a reflecting diffraction grating 4
  • compensating element 5 a detector 6 which are light sources in the order of the optical path.
  • the entrance slit 1 has a predetermined rectangular slit width.
  • the entrance slit 1 has a rectangular slit of 10 ⁇ m ⁇ 100 ⁇ m. Reflected light or transmitted light from a measurement object measured with a microscope is incident on the entrance slit 1, and the beam cross section is emitted in a substantially rectangular shape. As shown in FIG. 1, the opening direction of the entrance slit 1 is provided to be perpendicular to the optical axis direction of the refractive lens 3.
  • the reflection element 2 is a reflection prism made of glass, for example, and reflects the light that has passed through the entrance slit 1 to enter the refractive lens 3.
  • the reflecting surface of the reflecting element 2 is inclined at an angle of about 45 degrees with respect to the opening direction of the entrance slit 1. That is, the center of the convex curved surface of the refractive lens 3 is arranged at a position where the reflecting surface of the reflecting element 2 and the surface object are in relation to the point where the incident slit 1 is provided.
  • the refractive lens 3 is a lens having a substantially plano-convex shape, and a first surface 31 that is a plane on which light passing through the entrance slit 1 is incident, and light incident from the first surface 31 passes through the inside. And a convex curved second surface 32 that is ejected to the outside. As shown in FIG. 1, in this embodiment, light that has passed through the incident slit 1 is reflected by the reflecting element 2 so that its traveling direction is bent by 90 degrees and then enters the first surface 31. It is configured. The position of the incident point of the light incident on the first surface 31 is outside the center line of the first surface 31.
  • the reflection type diffraction grating 4 has a concave curved surface formed with a grating at an interval of 100 to 1000 lines / mm.
  • the concave curved surface and the second surface 32 of the refractive lens 3 are concentric, and the light is dispersed in the light width direction.
  • Most of the light diffracted and reflected by the reflective diffraction grating 4 is a part different from the part where the light is emitted on the second surface 32, and is incident on the upper half part on the paper surface. is there.
  • the compensation element 5 is opposite to a portion where the light reflected by the reflective diffraction grating 4 enters the second surface 32 of the refractive lens 3, passes through the inside, and exits from the first surface 31. The other is opposed to the detector 6.
  • the compensation element 5 is a combination lens made up of two lenses having different refractive indexes from the refractive lens 3, and the three boundary surfaces formed by the two lenses each form a spherical surface.
  • the compensation element 5 compensates for an error caused by the aberration of the refractive lens 3 and is configured to act more strongly on the light on the long wavelength side than on the light on the short wavelength side.
  • the detector 6 is provided at a position where each of the dispersed light beams that have passed through the compensation element 5 forms an image, and the light receiving surface thereof is provided so as to be substantially parallel to the first surface 31 of the refractive lens 3. .
  • Figure 2 shows the simulation results.
  • the slit shape is detected on the longer wavelength side as compared with the conventional spectroscope 100, and the minimum unit that can be distinguished from adjacent wavelengths is more You can see that it is small.
  • the compensation element 5 is provided between the first surface 31 of the refractive lens 3 and the detector 6 and passes only once. Even if the optimum design is performed in order to compensate for the influence of the third aberration, the action can hardly cause another influence on other optical systems. For this reason, compared with the conventional spectroscope 100, a more accurate spectral resolution can be obtained.
  • the incident slit 1 does not have to be opposed to the first surface 31 of the refractive lens 3 by the reflecting element 2, the incident slit 1 and the detector 6 can be provided apart from each other. Therefore, the detector 6 having a high resolution and a large size can be easily used, and the handling of the entrance slit 1 and the detector 6 can be improved.
  • the compensation element is not limited to a combination lens, and for example, a single lens may be used for compensation. Conversely, a compensation element may be constituted by a combination lens composed of three or more lenses so that the aberration of the refractive lens can be compensated with higher accuracy.
  • the combination lens constituting the compensation element 5 it is not necessary to make all surfaces of the combination lens constituting the compensation element curved, and the light incident surface facing the first surface 31 of the refractive lens 3 in the combination lens constituting the compensation element 5 as shown in FIG. May be formed as a plane.
  • the combination lens constituting the compensation element 5 in the combination lens constituting the compensation element 5, the light exit surface facing the detector 6 may be formed as a plane. If these are used, the compensation element 5 can be easily processed and the manufacturing cost can be easily reduced while the aberration of the refractive lens 3 can be compensated.
  • the compensation element 5 may be formed of an aspheric lens as shown in FIG.
  • a DO lens or a DO element using a diffraction phenomenon may be used.
  • an aberration correction plate may be used as the correction element 5, or a distributed refractive index lens (GRIN lens) may be used.
  • a gap may be formed between the first surface 31 of the refractive lens 3 and the light exit surface of the reflecting element 2 constituted by the reflecting prism so as to be separated by a predetermined distance.
  • the gap between the reflecting element 2 and the refractive lens 3 can be increased by making the gap larger than the wavelength of the light passing therethrough or by making the gap larger than the coherence length when the light source is a broadband light source such as a halogen lamp or SLD. Interference fringes can be suppressed when light passes between them.
  • the gap without being filled with an adhesive or the like, it is possible to prevent a part of the light passing therethrough from being attenuated by being absorbed or irregularly reflected by the adhesive. Therefore, a wide range of wavelengths can be guided to the detector 6.
  • the position of the entrance slit 1 that is a light source with respect to the reflection element 2 may be shifted from the first embodiment to the first surface 31 side of the refractive lens 3. That is, when the convex curved surface of the second surface 32 of the refractive lens 3 and the concave curved surface of the reflective diffraction grating 4 are arranged so as to be concentric, the position of the entrance slit 1 is relative to the reflective surface of the reflective element 2. However, they may not be aligned with the center of the concentric circles and may be arranged in a shifted state.
  • the light reflected by the second surface 32 of the refractive lens 3 or the reflective diffraction grating 4 is as shown in FIG. May return to the light source and become stray light.
  • the reflected light generated by the second surface 32 or the reflective diffraction grating 4 can be prevented from returning to the light source and stray light can be prevented from being generated. .
  • the reflection element may be omitted, and the opening direction of the entrance slit may be arranged to face the first surface of the refractive lens as in the conventional case.
  • the light source is not limited to the line light formed by the entrance slit, and for example, a light source in which optical fibers are arranged in one or a plurality of rows may be used as the light source for emitting the line light.
  • the spectroscope according to the present invention is not used only for a microscope, but may be used for a camera or other purposes.
  • a spectroscope capable of improving the spectral resolution by compensating for the influence of the aberration of the refractive lens and suppressing the decrease in the light receiving efficiency and the increase in stray light by reducing the number of times the light passes through the compensation element.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Lenses (AREA)

Abstract

受光効率の低下や迷光の発生を抑えつつ、広範囲の波長範囲においてスペクトル分解能を向上させることができる分光器を提供するために、光源から射出された光が入射する第1面31、及び、前記第1面31から入射した光が射出される凸曲面状の第2面32を具備する屈折レンズ3と、前記屈折レンズ3の前記第2面32から射出された光が入射する光を反射するとともに回折する凹曲面状の反射型回折格子4と、前記反射型回折格子4で反射されて、前記屈折レンズ3の前記第2面32から入射して前記第1面31から射出される光が結像する位置に設けられた検出器6と、前記屈折レンズ3の前記第1面31、及び、前記検出器6の間に設けられた補償要素5と、を備えた。

Description

分光器、及び、それを備えた顕微鏡
 本発明は、例えば分光分析のために用いられる分光器に関する。
 イメージング性能の優れた分光器の1つとして例えばDyson型分光器が知られている。このDyson型分光器は、入射スリット、凸曲面を有する屈折レンズ、凹曲面を有する反射型回折格子、検出器を備えたものであり、屈折レンズの凸曲面と反射型回折格子の凹曲面が同心円状に配置されたものである。
 特許文献1に記載のDyson型分光器100Aは、屈折レンズ3Aの収差による影響を補償し、スペクトル分解能を向上させるために図9に示すように屈折レンズ3Aの凸曲面側と、反射型回折格子4Aの凹曲面との間に補償レンズ5Aが設けられている。
米国特許公報6181418号公報
 しかしながら、特許文献1のように補償レンズ5Aが設けられると以下のような問題が生じることになる。
 まず、屈折レンズ3Aと反射型回折格子4Aの間に補償レンズ5Aが設けられているので、光が屈折レンズ4Aから反射型回折格子4Aへ入射する際と、反射型回折格子4Aで反射されて屈折レンズ3Aに戻る際に補償レンズ5Aを2回通過することになる。このため、屈折レンズ3Aを通過して反射型回折格子4Aに入射する光の位置や角度が最適化されるように補償レンズ5Aを設計すると、反射型回折格子4Aで反射された光は補償レンズ5Aで屈折されて屈折レンズ3Aには最適な位置に入射できないことになる。このことがスペクトル分解能のさらなる向上を妨げる原因となっている。
 また、光が補償レンズ5Aを2回通過する光路となっているので、従来のDyson型分光器と比較して反射面となる界面の通過回数が4回多くなっているため、検出器6Aに到達できる光の量が減少して効率が低下したり、迷光が増加したりする。
 本発明は上述したような問題を鑑みてなされたものであり、受光効率の低下や迷光の発生を抑えつつ、広範囲の波長範囲においてスペクトル分解能を向上させることができる分光器、及び、それを用いた顕微鏡を提供することを目的とする。
 すなわち、本発明に係る分光器は、光源から射出された光が入射する第1面、及び、前記第1面から入射した光が射出される凸曲面状の第2面を具備する屈折レンズと、前記屈折レンズの前記第2面から射出された光が入射する光を反射するとともに回折する凹曲面状の反射型回折格子と、前記反射型回折格子で反射されて、前記屈折レンズの前記第2面から入射して前記第1面から射出される光が結像する位置に設けられた検出器と、前記屈折レンズの前記第1面、及び、前記検出器の間に設けられ、前記屈折レンズの収差を補償する補償要素と、を備えたことを特徴とする。
 このようなものであれば、前記補償要素が前記屈折レンズの前記第1面、及び、前記検出器の間に設けられているので、光が当該補償要素を1回だけ通過するようにできる。したがって、前記屈折レンズにおけるコマ収差や色収差等の影響を前記検出器において補償して最適化した上で前記検出器に光を結像させることが可能となる。
 また、この補償要素を設けることで光路が変化して影響を受ける光学素子は存在しないので従来よりも最適化設計がしやすい。
 さらに、光は前記補償要素を1回しか通過しないので、光が通過する界面の増加数を最小限とし、効率の低下や迷光の増加も抑えることができる。
 広い波長域において前記屈折レンズの収差の影響を補償し、スペクトル分解能を向上させられるようにするには、前記補償要素が、異なる屈折率を有する透光材で形成された複数のレンズを組み合わせて構成されているものであればよい。このようなものであれば、波長ごとに最適な補償を設計しやすい。
 上述した組み合わせレンズの具体例としては前記補償要素を構成する組み合わせレンズの各面が球面であるものが挙げられる。
 前記補償要素を所望の性能を実現しながら製造性を良くして、安価に製造できるようにするには、前記補償要素を構成する組み合わせレンズの光入射面又は光射出面のいずれか一方が平面であればよい。
 前記屈折レンズの収差の影響を補償する能力をさらに高くするには、前記補償要素が非球面レンズで構成されていればよい。
 イメージング性能を高いものにするには、前記屈折レンズの前記第2面の凸曲面と、前記反射型回折格子の凹曲面が同心円状に配置されていればよい。
 前記検出器と、前記入射スリットの位置を離すことができ、大きな機器であっても取り付けやすくするには、前記光源、及び、前記屈折レンズの前記第1面の間に設けられた反射要素をさらに備え、前記光源の光軸方向が前記屈折レンズの光軸方向に対して交差するように設けられており、前記入射スリットを通過した光が前記反射要素で反射されて前記屈折レンズの前記第1面に入射するように構成されていればよい。
 前記反射要素から前記屈折レンズの前記第1面に光が入射する際の干渉縞の発生を抑えつつ、光の一部の波長成分が透過しなくなるのを防ぐには前記反射要素が反射プリズムであり、当該反射プリズムの光射出面と前記屈折レンズの前記第1面との間が離間していればよい。
 前記光源から射出された光が前記屈折レンズの前記第2面や前記反射型回折格子で反射されて再び光源に戻ることにより迷光が発生するのを防ぐには、前記光源が、同心円状に配置された前記第2面の凸曲面と前記反射型回折格子の凹曲面の中心が前記反射要素の反射面に対して面対象となる点からずらして配置されていればよい。
 本発明に係る分機器を備えた顕微鏡であれば、幅広い波長域において高分解能の分光分析を実現できる。
 本発明に係る分光器であれば、屈折レンズの収差の影響を補償してスペクトル分解能を向上させつつ、補償要素を光が通過する回数を1回だけにして受光効率の低下や迷光の増加を抑制することができる。
本発明の一実施形態に係る分光器の構造を示す模式図。 同実施形態における分光器と従来の分光器とのスペクトル分解能の違いを示すシミュレーション結果。 本発明の第1変形例における補償要素を示す模式図。 本発明の第2変形例における補償要素を示す模式図。 本発明の第3変形例における補償要素を示す模式図。 本発明の第4変形例における反射要素及び屈折レンズを示す模式図。 本発明の第5変形例における分光器を示す模式図。 第5変形例における第2面からの反射光の進路を示す模式図。 従来の分光器の構造を示す模式図。
100・・・分光器
1  ・・・入射スリット
2  ・・・反射要素
3  ・・・屈折レンズ
31 ・・・第1面
32 ・・・第2面
4  ・・・反射型回折格子
5  ・・・補償要素
6  ・・・検出器
 本発明の一実施形態に係る分光器100について図1を参照しながら説明する。前記分光器100は、例えば分光顕微鏡に用いられるものであり、いわゆるDyson型分光器にさらに補償要素5を備えたものである。
 より具体的には前記分光器100は、光路順に光源である入射スリット1、反射要素2、屈折レンズ3、反射型回折格子4、補償要素5、検出器6が設けてある。以下に各部について詳述する。
 前記入射スリット1は、所定の長方形状のスリット幅を有するものである。本実施形態では前記入射スリット1は10μm×100μmの長方形状のスリットを有する。この入射スリット1に対して顕微鏡で測定する測定対象からの反射光又は透過光が入射し、ビーム断面が概略長方形状にされて射出される。図1に示されるように前記入射スリット1の開口方向は、前記屈折レンズ3の光軸方向に対して垂直となるように設けてある。
 前記反射要素2は、例えばガラス製の反射プリズムであって前記入射スリット1を通過した光を反射して前記屈折レンズ3へと入射させるものである。この反射要素2の反射面は前記入射スリット1の開口方向に対してほぼ45度をなすように斜めに傾けて設けてある。すなわち、前記入射スリット1の設けてある点に対して前記反射要素2の反射面と面対象の関係にある位置に屈折レンズ3の凸曲面の中心とが一致するように配置してある。
 前記屈折レンズ3は、概略平凸形状をなすレンズであって、前記入射スリット1を通過した光が入射する平面である第1面31と、前記第1面31から入射した光が内部を通過して外部へと射出される凸曲面状の第2面32とを具備するものである。図1に示されるように、本実施形態では前記入射スリット1を通過した光が前記反射要素2で反射されてその進行方向が90度曲げられた後に前記第1面31へと入射するように構成してある。前記第1面31に入射する光の入射点の位置は前記第1面31の中心線よりも外側にしてある。
 前記反射型回折格子4は、凹曲面に100~1000本/mmの間隔で格子が形成してある。この凹曲面と前記屈折レンズ3の前記第2面32は同心円をなすようにしてあり、光の幅方向に対して分光する。この反射型回折格子4で回折、反射された光の大部分は前記第2面32において光が射出される箇所とは別の箇所であり、紙面において上側半分の部分へと入射するようにしてある。
 前記補償要素5は、反射型回折格子4で反射された光が前記屈折レンズ3の前記第2面32に入射し、内部を通過して前記第1面31から射出される箇所に一方が対向し、他方が前記検出器6に対向するようにしてある。前記補償要素5は、前記屈折レンズ3とは屈折率の異なる2つのレンズからなる組み合わせレンズであり、2つのレンズで形成される3つの境界面はそれぞれ球面をなすようにしてある。この補償要素5は前記屈折レンズ3の収差による誤差を補償するものであり、短波長側の光よりも長波長側の光に対して強く作用するよう構成してある。
 前記検出器6は補償要素5を通過したそれぞれ分光された光が結像する位置に設けてあり、その受光面は前記屈折レンズ3の前記第1面31とほぼ平行となるように設けてある。
 このように構成された分光器100による前記検出器6で検出される各波長のスリット像に関するシミュレーション結果について、図3のように構成された従来の分光器100で検出される各波長のスリット像の検出結果に関するシミュレーション結果と比較しながら説明する。
 図2にそれぞれのシミュレーション結果を示す。
 本実施形態の分光器100によれば、従来の分光器100と比較して長波長側においてもスリット形状が保たれた状態で検出されており、隣接する波長との区別可能な最小単位をより小さくできていることが分かる。
 しかして本実施形態の分光器100では、前記補償要素5が前記屈折レンズ3の前記第1面31と前記検出器6との間に設けられており、1回しか通過しないので、前記屈折レンズ3の収差による影響を補償するために最適設計を行っても、その作用が他の光学系に対して別の影響を発生しにくくできる。このため、従来の分光器100と比較してより高精度なスペクトル分解能を得ることができる。
 また、前記補償要素5に対して光は1回しか通過しないので、典型的なDyson型分光器100に対して光路上における境界面、反射面の増加数を最小限に抑えることができる。このため、光量の低下による受光効率の低下や、迷光の発生を抑えることができ、スペクトル分解能やイメージング能力を高くできる。
 さらに前記反射要素2により前記入射スリット1を前記屈折レンズ3の前記第1面31に対向させなくてもよいので、前記入射スリット1と前記検出器6を離して設けることができる。したがって、前記検出器6についても分解能が高く大型のものを使用しやすくなったり、前記入射スリット1と前記検出器6との取り回しを良くしたりできる。
 その他の実施形態について説明する。
 補償要素については、組み合わせレンズに限られるものではなく、例えば単一のレンズで補償するようにしてもよい。また、逆に3つ以上のレンズからなる組み合わせレンズにより補償要素を構成してより高精度に屈折レンズの収差を補償できるようにしてもよい。
 また、補償要素を構成する組み合わせレンズの全ての面を曲面にする必要はなく、図3に示すように補償要素5を構成する組み合わせレンズにおいて屈折レンズ3の第1面31と対向する光入射面を平面として形成してもよい。あるいは図4に示すように補償要素5を構成する組み合わせレンズにおいて検出器6と対向する光射出面を平面として形成してもよい。これらのようなものであれば、屈折レンズ3の収差を補償できるようにしつつ、補償要素5の加工を容易にでき製造コストを低減しやすい。加えて、屈折レンズ3の収差をさらに高精度に補償できるようにするには、図5に示すように補償要素5を非球面レンズで構成してもよい。
 また、補償要素5については回折現象を利用したDOレンズ、DO素子を用いてもよい。さらに補正要素5として収差補正板を用いてもよいし、分布屈折率レンズ(GRINレンズ)を用いてもよい。
 図6に示すように屈折レンズ3の第1面31と反射プリズムで構成された反射要素2の光射出面との間に隙間を形成して、所定距離離間するようにしてもよい。なお、隙間については通過する光の波長よりも大きくする、あるいは光源がハロゲンランプやSLDのような広帯域光源の場合にはその可干渉長よりも大きくすることにより、反射要素2と屈折レンズ3との間を光が通過する際に干渉縞が生じるのを抑制することができる。また、隙間を接着剤等で埋めずにそのままにしておくことで、通過する光の一部が接着剤で吸収されたり乱反射されたりすることにより減衰する事も防げる。したがって、広範囲の波長を検出器6にまで導くことが可能となる。
 さらに図7に示すように光源である入射スリット1の反射要素2に対する位置は前記実施形態よりも屈折レンズ3の第1面31側にずらして配置してもよい。すなわち、屈折レンズ3の第2面32の凸曲面と前記反射型回折格子4の凹曲面が同心円となるように配置されている場合において、入射スリット1の位置が反射要素2の反射面に対して同心円の中心と一致させず、ずれた状態で配置してもよい。例えば前記実施形態のように光源が同心円の中心に対応する位置に配置されていると屈折レンズ3の第2面32又は反射型回折格子4で反射された光が図9(a)に示すように光源に戻ってきて迷光となる可能性がある。これに対して図8のように光源を配置することにより、第2面32又は反射型回折格子4で生じた反射光が光源には戻らないようにして迷光が発生しないようにすることができる。
 前記反射要素については省略し、従来と同様に入射スリットの開口方向を屈折レンズの第1面に対して対向するように配置してもよい。光源については入射スリットによりライン光に形成したものに限られず、例えば光ファイバを1又は複数列で並べて設けたものをライン光を射出するための光源としてもよい。
 本発明に係る分光器は顕微鏡だけに用いられるものではなく、カメラやその他の用途に用いても構わない。
 その他、本発明の趣旨に反しない限りにおいて様々な実施形態の変形や組み合わせを行っても構わない。
 本発明であれば、屈折レンズの収差の影響を補償してスペクトル分解能を向上させつつ、補償要素を光が通過する回数を1回だけにして受光効率の低下や迷光の増加を抑制した分光器を提供できる。
 

Claims (10)

  1.  光源から射出された光が入射する第1面、及び、前記第1面から入射した光が射出される凸曲面状の第2面を具備する屈折レンズと、
     前記屈折レンズの前記第2面から射出された光が入射する光を反射するとともに回折する凹曲面状の反射型回折格子と、
     前記反射型回折格子で反射されて、前記屈折レンズの前記第2面から入射して前記第1面から射出される光が結像する位置に設けられた検出器と、
     前記屈折レンズの前記第1面、及び、前記検出器の間に設けられ、前記屈折レンズの収差を補償する補償要素と、を備えたことを特徴とする分光器。
  2.  前記補償要素が、異なる屈折率を有する透光材で形成された複数のレンズを組み合わせて構成されている請求項1記載の分光器。
  3.  前記補償要素を構成する複数のレンズにおいて光が通過する各面が球面である請求項2記載の分光器。
  4.  前記補償要素を構成する少なくとも1つのレンズの光入射面又は光射出面のいずれか一方が平面である請求項2記載の分光器。
  5.  前記補償要素が非球面レンズで構成されている請求項1記載の分光器。
  6.  前記屈折レンズの前記第2面の凸曲面と、前記反射型回折格子の凹曲面が同心円状に配置されている請求項1記載の分光器。
  7.  前記光源、及び、前記屈折レンズの前記第1面の間に設けられた反射要素をさらに備え、
     前記光源の光軸方向が前記屈折レンズの光軸方向に対して交差するように設けられており、前記入射スリットを通過した光が前記反射要素で反射されて前記屈折レンズの前記第1面に入射するように構成されている請求項1記載の分光器。
  8.  前記反射要素が反射プリズムであり、当該反射プリズムの光射出面と前記屈折レンズの前記第1面との間が離間している請求項7記載の分光器。
  9.  前記光源が、同心円状に配置された前記第2面の凸曲面と前記反射型回折格子の凹曲面の中心が前記反射要素の反射面に対して面対象となる点からずらして配置されている請求項6記載の分光器。
  10.  請求項1記載の分光器を備えた顕微鏡。
PCT/JP2017/036966 2016-10-14 2017-10-12 分光器、及び、それを備えた顕微鏡 WO2018070469A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018545046A JP6847973B2 (ja) 2016-10-14 2017-10-12 分光器、及び、それを備えた顕微鏡

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-203000 2016-10-14
JP2016203000 2016-10-14

Publications (1)

Publication Number Publication Date
WO2018070469A1 true WO2018070469A1 (ja) 2018-04-19

Family

ID=61906393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/036966 WO2018070469A1 (ja) 2016-10-14 2017-10-12 分光器、及び、それを備えた顕微鏡

Country Status (2)

Country Link
JP (1) JP6847973B2 (ja)
WO (1) WO2018070469A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023248572A1 (ja) * 2022-06-24 2023-12-28 英弘精機株式会社 ライダー用受光装置、ライダー、及び気象観測ライダー

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990002928A1 (en) * 1988-09-07 1990-03-22 Sira Limited Imaging spectrometer
JPH10293062A (ja) * 1997-02-28 1998-11-04 Instr Sa Inc 改良型コンセントリックスペクトログラフ、光を分散する方法および2本の光ビームを回折する方法
US20090237657A1 (en) * 2008-03-20 2009-09-24 David Wheeler Warren Compact, high-throughput spectrometer apparatus for hyperspectral remote sensing
JP2012506562A (ja) * 2008-10-20 2012-03-15 ニンボ ユアンル エレクトロ−オプティクス,コーポレーション リミテッド 収差補正凹面回折格子と透過型収差補正手段とを備える分光計
JP2012507698A (ja) * 2008-11-03 2012-03-29 オリバ ジョビン イボン エス. アー. エス. 改良された像質と小歪曲を有するダイソン型イメージング分光計
WO2012099987A2 (en) * 2011-01-20 2012-07-26 Ningbo Yuanlu Electro-Optics, Co., Ltd. Multichannel spectrometers

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990002928A1 (en) * 1988-09-07 1990-03-22 Sira Limited Imaging spectrometer
JPH10293062A (ja) * 1997-02-28 1998-11-04 Instr Sa Inc 改良型コンセントリックスペクトログラフ、光を分散する方法および2本の光ビームを回折する方法
US20090237657A1 (en) * 2008-03-20 2009-09-24 David Wheeler Warren Compact, high-throughput spectrometer apparatus for hyperspectral remote sensing
JP2012506562A (ja) * 2008-10-20 2012-03-15 ニンボ ユアンル エレクトロ−オプティクス,コーポレーション リミテッド 収差補正凹面回折格子と透過型収差補正手段とを備える分光計
JP2012507698A (ja) * 2008-11-03 2012-03-29 オリバ ジョビン イボン エス. アー. エス. 改良された像質と小歪曲を有するダイソン型イメージング分光計
WO2012099987A2 (en) * 2011-01-20 2012-07-26 Ningbo Yuanlu Electro-Optics, Co., Ltd. Multichannel spectrometers

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LOBB, D. R.: "Theory of concentric designs for grating spectrometers", APPLIED OPTICS, vol. 33, no. 13, 1 May 1994 (1994-05-01), pages 2648 - 2658, XP000442289, DOI: doi:10.1364/AO.33.002648 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023248572A1 (ja) * 2022-06-24 2023-12-28 英弘精機株式会社 ライダー用受光装置、ライダー、及び気象観測ライダー

Also Published As

Publication number Publication date
JPWO2018070469A1 (ja) 2019-07-25
JP6847973B2 (ja) 2021-03-24

Similar Documents

Publication Publication Date Title
US10234331B2 (en) Monolithic spectrometer
JP4883549B2 (ja) 分光器
US10481093B2 (en) Beam splitter and arrangement for examining a sample which can be excited by means of electromagnetic radiation
US20160025567A1 (en) Angle limiting reflector and optical dispersive device including the same
US20090296071A1 (en) Light-dividing element and distance-measuring apparatus
JP2018081083A (ja) クロマティック共焦点距離センサー
DK2929307T3 (en) SPECTROMETER FOR ANALYZING A SPECTRUM SPECTRUM
US20190017869A1 (en) High resolution broadband monolithic spectrometer and method
JP2009121986A (ja) 分光装置
WO2018070469A1 (ja) 分光器、及び、それを備えた顕微鏡
JP6097412B2 (ja) 光学装置
US9677932B2 (en) Field lens corrected three mirror anastigmat spectrograph
CN102066968A (zh) 使用折射和反射结构的具有角分辨率的谱检测器
TWI728177B (zh) 分光測定裝置
JP2007187550A (ja) 分光装置
US20170248795A1 (en) Backscatter reductant anamorphic beam sampler
JP2011257140A (ja) 分光器
KR20200053385A (ko) 분광 광학계 및 그 분광 광학계를 포함한 반도체 검사 장치
JP2010134027A (ja) 波長選択スイッチ
CN118129900A (zh) 光谱仪
JPS5854310A (ja) リトロ−型分光器用光学系
CN113865705A (zh) 一种共用光路双通道光路***及光谱仪
CN114207393A (zh) 用于电磁辐射强度的频率分辨测量的光电测量装置
CN117629405A (zh) 光谱仪
KR20210064073A (ko) 광원 모듈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17859493

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018545046

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17859493

Country of ref document: EP

Kind code of ref document: A1