WO2018068529A1 - 一种软粘土土体原位测试装置及测试方法 - Google Patents

一种软粘土土体原位测试装置及测试方法 Download PDF

Info

Publication number
WO2018068529A1
WO2018068529A1 PCT/CN2017/090032 CN2017090032W WO2018068529A1 WO 2018068529 A1 WO2018068529 A1 WO 2018068529A1 CN 2017090032 W CN2017090032 W CN 2017090032W WO 2018068529 A1 WO2018068529 A1 WO 2018068529A1
Authority
WO
WIPO (PCT)
Prior art keywords
loading plate
loading
soft clay
disposed
coil spring
Prior art date
Application number
PCT/CN2017/090032
Other languages
English (en)
French (fr)
Inventor
苏栋
黄俊杰
包小华
刘斌
吴京桐
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Publication of WO2018068529A1 publication Critical patent/WO2018068529A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0001Type of application of the stress
    • G01N2203/0003Steady
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive
    • G01N2203/0019Compressive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/003Generation of the force
    • G01N2203/0032Generation of the force using mechanical means
    • G01N2203/0035Spring
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/022Environment of the test
    • G01N2203/0244Tests performed "in situ" or after "in situ" use
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/025Geometry of the test
    • G01N2203/0252Monoaxial, i.e. the forces being applied along a single axis of the specimen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/04Chucks, fixtures, jaws, holders or anvils
    • G01N2203/0423Chucks, fixtures, jaws, holders or anvils using screws
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/067Parameter measured for estimating the property
    • G01N2203/0676Force, weight, load, energy, speed or acceleration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/067Parameter measured for estimating the property
    • G01N2203/0682Spatial dimension, e.g. length, area, angle

Definitions

  • the invention relates to the field of soil index testing, in particular to a soft clay soil in situ testing device and a testing method.
  • the traditional methods for testing the strength of clay and related indicators are mainly unconfined compression test, triaxial test method, cross-plate shear method, but for very soft clay, because of its high water content, low effective stress, poor strength, etc. Features, so the strength and deformation tests cannot be performed using traditional strength testing methods.
  • methods commonly used for measuring the undrained strength of extremely soft clay include a rotary viscometer method, a plate penetration method, a micro cross plate method, and the like.
  • the yield strength of the soil sample at different rates is obtained by using a rotational viscometer, and the yield strength is extended with the change of the shear rate.
  • the yield strength when the shear rate is zero is the undrained strength of the soil sample. .
  • the rotational viscometer method is a method for indirectly testing the undrained strength, and the accuracy of obtaining the undrained strength data is poor, when the undrained strength is measured by the epitaxial method, the error caused by the human factor is large, and The rotational viscometer tests the undrained strength of the soft soil when it is completely remolded. The undrained strength of the soft soil after deposition cannot be tested.
  • the plate penetration method was first proposed by Inoue et al., which is to insert a rigid plate with a corner angle into the test soil layer under the action of self-weight, according to the slope of the linear relationship between the penetration degree and the loading amount and the soil.
  • the bulk density can be calculated to obtain the undrained strength of the soil layer.
  • the undrained strength obtained by the plate penetration method is higher than that obtained by the rotary viscometer method.
  • the strength of the plate penetration test is the undrained strength between the plate and the soil sample, and the strength is generally lower than the actual strength of the soil layer;
  • the bulk density of the soil layer tested by the slab penetration method needs to be the same to ensure the penetration degree and the loading amount are linear, so the method cannot be used for the undrained strength test of the soft soil after deposition.
  • the test principle of the micro cross plate method is the same as that of the conventional cross plate method. Since the high-precision force sensor is used in the micro cross plate device, the test accuracy is higher than the conventional cross plate method.
  • the traditional indoor experimental methods (such as the unconfined compression test method and the triaxial test method) cannot perform strength and deformation. test.
  • the rotational viscometer method, the plate penetration method, the micro cross plate method, etc. can only test the strength of the extremely soft clay, and the strain cannot be tested, and thus the E 50 (strain modulus) index cannot be obtained by the test results.
  • the present invention provides a soft clay soil in situ testing device and a testing method.
  • the invention provides a soft clay soil in situ testing device, comprising a first loading plate, a second loading plate, a loading pad, a connecting rod and a loading nut, the first loading plate, the second loading plate and the
  • the loading pads are all disposed in parallel, and one end of the connecting rod is sequentially connected to the loading pad and the second loading plate is connected to the first loading plate, and the loading nut is screwed to the other end of the connecting rod, first a first coil spring is disposed between the loading plate and the second loading plate, and a second coil spring is disposed between the second loading plate and the loading pad, the first loading plate and the second loading plate
  • a first dial gauge is further disposed between the loading plates, and a second dial gauge is disposed between the second loading plate and the loading pad.
  • the first coil spring and the second coil spring are both sleeved on the connecting rod.
  • the second loading plate is provided with a first fixing seat, one end of the first dial indicator is fixed on the first fixing seat, and the other end of the first dial indicator is placed on the top Said on the first loading board.
  • the loading pad is provided with a second fixing seat, one end of the second dial indicator is fixed on the second fixing seat, and the other end of the second dial indicator is placed on the second fixing base The second loading plate.
  • the first dial gauge and the second dial gauge are both disposed in parallel with the connecting rod.
  • a first spring support is disposed between one end of the first coil spring and the first loading plate, and the other end of the first coil spring is disposed between the second loading plate and the second loading plate.
  • a first spring washer, a second spring washer is disposed between one end of the second coil spring and the second loading plate, and a second is disposed between the other end of the second coil spring and the loading washer Spring bearing.
  • the link is further provided with a handle provided at an end close to the loading nut.
  • the first dialect and the second dialect are both digital dialects.
  • the apparatus further includes a rectangular cut wire cutter, the cut wire cutter being provided with a folding handle.
  • the invention also provides a soft clay soil in situ testing method, comprising the soft clay in situ testing device and the following steps:
  • the invention has the beneficial effects that the invention uses the double spring system to simultaneously measure the stress and deformation of the in-situ soil, and solves the effects of the rotary viscometer method, the plate penetration method, the micro cross plate method, etc., which can only test the extremely soft clay, The problem of deformation cannot be tested, and thus the present invention can obtain an E 50 index of soft clay in situ.
  • FIG. 1 is a schematic structural view of a soft clay soil in situ testing device of the present invention
  • FIG. 2 is a schematic structural view of a cutting wire cutter of a soft clay soil in situ testing device according to the present invention
  • Figure 3 is a top view of a soil sample
  • Figure 4 is a view showing the state of use of a soft clay soil in situ testing device of the present invention.
  • Fig. 5 is a graph showing the stress-strain relationship of a soft clay in the in-situ test method of a soft clay soil according to the present invention.
  • the present invention discloses a soft clay soil in-situ testing device, which comprises a first loading plate 1, a second loading plate 2, a loading pad 3, a connecting rod 4 and a loading nut 5,
  • the first loading plate 1 , the second loading plate 2 , and the loading pad 3 are all disposed in parallel, and one end of the connecting rod 4 is sequentially passed through the loading pad 3 and the second loading plate 2 and the first
  • the loading plate 1 is connected, the loading nut 5 is screwed to the other end of the connecting rod 4, and a first coil spring 6 is disposed between the first loading plate 1 and the second loading plate 2, and the second loading plate is disposed.
  • 2 is disposed between the loading pad 3 and the second coil spring 7 , and between the first loading plate 1 and the second loading plate 2
  • a first dial gauge 8 is provided, and a second dial gauge 9 is disposed between the second loading plate 2 and the loading pad 3.
  • the first coil spring 6 and the second coil spring 7 are sleeved on the connecting rod 4.
  • the second loading plate 2 is provided with a first fixing base 14 , one end of the first dial gauge 8 is fixed on the first fixing base 14 , and the other end of the first dial gauge 8 is opposite to the first One is loaded on the board 1.
  • the loading pad 3 is provided with a second fixing seat 15 , one end of the second dial gauge 9 is fixed on the second fixing seat 15 , and the other end of the second dial gauge 9 is placed on the second Load on board 2.
  • the first dial gauge 8 and the second dial gauge 9 are both disposed in parallel with the connecting rod 4.
  • a first spring support 10 is disposed between one end of the first coil spring 6 and the first loading plate 1 , and the first end of the first coil spring 6 and the second loading plate 2 are firstly disposed.
  • a spring washer 11 is disposed between one end of the second coil spring 7 and the second loading plate 2 , and the other end of the second coil spring 7 and the loading pad 3 A second spring support is provided.
  • the connecting rod 4 is further provided with a handle 16 which is provided at an end close to the loading nut 5.
  • the first dial gauge 8 and the second dial gauge 9 are both digital dialects.
  • the apparatus also includes a rectangular earth cutting wire cutter 17, which is provided with a wire 18 and a folding handle 19.
  • the invention also provides a test method for the clay E 50 index by using the above test device, comprising the following steps: S1: cutting a width of 1 cm and a depth of 2 cm by using a cutter on a surface of a soft soil layer of 4 cm ⁇ 6 cm.
  • the stiffness coefficient of the second coil spring 7 is represented by k 1
  • the stiffness coefficient of the first coil spring 6 is represented by k 2
  • the reading of the second dial gauge 9 and the first dial gauge 8 is x 1 at a certain stage of loading.
  • x 2 according to Hooke's law and static equilibrium conditions:
  • A is the contact area of the soft clay soil sample 20 with the loading plate
  • is the soil sample 20 and loading
  • the contact stress of the plate that is, the axial stress of the soil sample 20
  • the axial stress can be calculated from the above formula.
  • the axial strain of the soil sample 20 is calculated from the reading x 2 of the first dial meter 8, ie
  • l 0 is the initial length of the sample.
  • the test device of the invention is small in size, light in weight and convenient for field use in the field; the test method of the invention is carried out in the field, and it is not necessary to take the original sample from the site to the indoor laboratory, and the problem that the extremely soft clay cannot be sampled is solved; the invention utilizes The double spring system simultaneously measures the stress and deformation of the in-situ soil, and solves the problems that the rotational viscometer method, the plate penetration method, the micro cross plate method and the like can only test the strength of the extremely soft clay and cannot test the deformation, and thus the present invention can The E 50 index of the in-situ soft clay is obtained; according to the softness and hardness of the soft clay, the precision of the measurement can be ensured by selecting a spring of suitable rigidity.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

一种软粘土原位测试装置,包括以下步骤:S1:用刀具(17)在软土层表面4cm×6cm的土样(20)四周各割出宽为1cm,深为2cm的凹槽(21);S2:将土样(20)与下部土体分离;S3:将测试装置的左加载板(1)和右加载板(2)分别置于沿土样(20)长边方向上的前后两个凹槽(21)内,调整加载螺母(5),使左加载板(1)、右加载板(2)与土样(20)接触,记下第二百分表(9)和第一百分表(8)的初始读数x 10和x 20;S4:旋转加载螺母(5)一周,记下第二百分表(9)和第一百分表(8)的读数x 1和x 2;S5:重复步骤S4直至土样(20)破坏为止;S6:整理数据,绘制软粘土的应力应变关系曲线,计算软粘土的E50。该装置和方法利用双弹簧体系同时测量原位土体的应力和变形,使其能够得到原位软粘土的E50指标。

Description

一种软粘土土体原位测试装置及测试方法 技术领域
本发明涉及土体指标测试领域,尤其涉及一种软粘土土体原位测试装置及测试方法。
背景技术
测试粘土的强度及相关指标的传统方法主要有无侧限压缩试验法,三轴实验法,十字板剪切法,但对于极软粘土,由于其具有含水率高,有效应力低,强度差等特点,所以无法运用传统的强度测试方法进行强度和变形测试。目前常用于测定极软粘土不排水强度的方法有旋转粘度计法、平板贯入法、微型十字板法等。
旋转粘度计法中运用旋转粘度计获得不同速率时土样的屈服强度,并将屈服强度随剪切速率的变化规律外延,获得剪切速率为零时的屈服强度即为土样的不排水强度。显然,由于旋转粘度计法是一种间接测试不排水强度的方法,且获得不排水强度数据精度较差,所以在运用外延法测定不排水强度时,由人为因素引起的误差较大,此外,旋转粘度计测试的是极软土完全重塑状态时的不排水强度无法测试沉积后软土的不排水强度。平板贯入法最早由Inoue等提出,该方法是将1块带有锲角的刚性平板在自重作用下分多次贯入测试土层,根据贯入度与加载量线性关系的斜率和土的容重可以计算获得该土层的不排水强度。平板贯入法获得的不排水强度高于旋转粘度计法获得的,平板贯入法测试的强度为平板与土样之间的不排水强度,该强度一般低于土层的实际强度;此外,平板贯入法测试的土层的容重沿深度需要相同,才能确保贯入度与加载量呈线性关系,所以该方法不能用于沉积后软土不排水强度测试。微型十字板法的测试原理与传统十字板法相同,由于微型十字板装置中采用了高精度的力传感器,所以测试精度比传统的十字板法高。
由于极软粘土具有含水率高,有效应力低,强度差等特点,无法从现场取得原状试样,因此传统室内实验方法(如无侧限压缩实验法,三轴实验法)无法进行强度和变形测试。
旋转粘度计法、平板贯入法、微型十字板法等只能测试极软粘土的强度,不能测试应变,因而通过测试结果不能得到E50(应变模量)指标。
发明内容
为了解决现有技术中的问题,本发明提供了一种软粘土土体原位测试装置及测试方法。
本发明提供了一种软粘土土体原位测试装置,包括第一加载板、第二加载板、加载垫片、连杆及加载螺母,所述第一加载板、第二加载板及所述加载垫片均平行设置,所述连杆一端依次穿于所述加载垫片及第二加载板与所述第一加载板连接,所述加载螺母与所述连杆另一端螺纹连接,第一加载板与所述第二加载板之间设有第一螺旋弹簧,所述第二加载板与所述加载垫片之间设有第二螺旋弹簧,所述第一加载板与所述第二加载板之间还设有第一百分表,所述第二加载板与所述加载垫片之间设有第二百分表。。
作为本发明的进一步改进,所述第一螺旋弹簧及所述第二螺旋弹簧均套于所述连杆上。
作为本发明的进一步改进,所述第二加载板设有第一固定座,所述第一百分表一端固定在所述第一固定座上,所述第一百分表另一端顶于所述第一加载板上。
作为本发明的进一步改进,所述加载垫片设有第二固定座,所述第二百分表一端固定在所述第二固定座上,所述第二百分表另一端顶于所述第二加载板上。
作为本发明的进一步改进,所述第一百分表与所述第二百分表均与所述连杆平行设置。
作为本发明的进一步改进,所述第一螺旋弹簧一端与所述第一加载板之间设有第一弹簧支座,所述第一螺旋弹簧另一端与所述第二加载板之间设有第一弹簧垫片,所述第二螺旋弹簧一端与所述第二加载板之间设有第二弹簧垫片,所述第二螺旋弹簧另一端与所述加载垫片之间设有第二弹簧支座。
作为本发明的进一步改进,所述连杆还设有手柄,所述手柄设于靠近所述加载螺母的一端。
作为本发明的进一步改进,所述第一百分表与所述第二百分表均为数显百分表。
作为本发明的进一步改进,该装置还包括矩形的割土钢丝刀,所述割土钢丝刀设有折形把手。
本发明还提供了一种软粘土土体原位测试方法,包括所述软粘土原位测试装置及以下步骤:
S1:用刀具在软土层表面4cm×6cm的土样四周各割出宽为1cm,深为2cm的凹槽;
S2:将土样与下部土体分离;
S3:将测试装置的左加载板和右加载板分别置于沿土样长边方向上的前后两个凹槽内,调整加载螺母,使左加载板、右加载板与土样接触,记下第二百分表和第一百分表的初始读数x10和x20
S4:旋转加载螺母一周,记下第二百分表和第一百分表的读数x1和x2
S5:重复步骤S4直至土样破坏为止;
S6:整理数据,绘制软粘土的应力应变关系曲线,计算软粘土的E50
本发明的有益效果是:本发明利用双弹簧体系同时测量原位土体的应力和变形,解决了旋转粘度计法、平板贯入法、微型十字板法等只能测试极软粘土的强度、不能测试变形的问题,因而本发明能得到原位软粘土的E50指标。
附图说明
图1是本发明一种软粘土土体原位测试装置的结构示意图;
图2是本发明一种软粘土土体原位测试装置的割土钢丝刀的结构示意图;
图3是土样俯视图;
图4是本发明一种软粘土土体原位测试装置的使用状态图;
图5是本发明一种软粘土土体原位测试方法的软粘土应力应变关系曲线图。
附图标记:1-第一加载板 2-第二加载板 3-加载垫片 4-连杆 5-加载螺母 6-第一螺旋弹簧 7-第二螺旋弹簧 8-第一百分表 9-第二百分表 10-第一弹簧支座 11-第一弹簧垫片 12-第二弹簧垫片 14-第一固定座 15-第二固定座 16-手柄 17-割土钢丝刀 18-钢丝 19-折形把手 20-土样 21-凹槽。
具体实施方式
如图1至图5所示,本发明公开了一种软粘土土体原位测试装置,包括第一加载板1、第二加载板2、加载垫片3、连杆4及加载螺母5,所述第一加载板1、第二加载板2及所述加载垫片3均平行设置,所述连杆4一端依次穿于所述加载垫片3及第二加载板2与所述第一加载板1连接,所述加载螺母5与所述连杆4另一端螺纹连接,第一加载板1与所述第二加载板2之间设有第一螺旋弹簧6,所述第二加载板2与所述加载垫片3之间设有第二螺旋弹簧7,所述第一加载板1与所述第二加载板2之间还 设有第一百分表8,所述第二加载板2与所述加载垫片3之间设有第二百分表9。
所述第一螺旋弹簧6及所述第二螺旋弹簧7均套于所述连杆4上。
所述第二加载板2设有第一固定座14,所述第一百分表8一端固定在所述第一固定座14上,所述第一百分表8另一端顶于所述第一加载板1上。
所述加载垫片3设有第二固定座15,所述第二百分表9一端固定在所述第二固定座15上,所述第二百分表9另一端顶于所述第二加载板2上。
所述第一百分表8与所述第二百分表9均与所述连杆4平行设置。
所述第一螺旋弹簧6一端与所述第一加载板1之间设有第一弹簧支座10,所述第一螺旋弹簧6另一端与所述第二加载板2之间设有第一弹簧垫片11,所述第二螺旋弹簧7一端与所述第二加载板2之间设有第二弹簧垫片12,所述第二螺旋弹簧7另一端与所述加载垫片3之间设有第二弹簧支座。
所述连杆4还设有手柄16,所述手柄16设于靠近所述加载螺母5的一端。
所述第一百分表8与所述第二百分表9均为数显百分表。
该装置还包括矩形的割土钢丝刀17,所述割土钢丝刀17设有钢丝18及折形把手19。
本发明还提供了运用上述测试装置对黏土E50指标的测试方法,包括以下步骤:S1:用刀具在软土层表面4cm×6cm的土样20四周各割出宽为1cm,深为2cm的凹槽21;S2:将土样20与下部土体分离;S3:将测试装置的左加载板和右加载板分别置于沿土样20长边方向上的前后两个凹槽21内,调整加载螺母5,使做加载板、右加载板与土样20接触,记下第二百分表9和第一百分表8的初始读数x10和x20;S4:旋转加载螺母5一周,记下第二百分表9和第一百分表8的读数x1和x2;S5:重复步骤S4直至土样20破坏为止;S6:整理数据,绘制软粘土的应力应变关系曲线图,如图3所示,计算软粘土的E50
第二螺旋弹簧7的刚度系数用k1表示,第一螺旋弹簧6的刚度系数用k2表示,在加载的某阶段第二百分表9和第一百分表8的读数为x1和x2,则根据胡克定律和静力平衡条件可得:
k1(x1-x10)=k2(x2-x20)+σA
式中,A为软粘土土样20与加载板的接触面积,σ为土样20与加载 板的接触应力(即为土样20所受轴向应力),由上式可得
Figure PCTCN2017090032-appb-000001
即由上式可算得轴向应力。根据轴向应变定义,再由第一百分表8的读数x2计算得到土样20的轴向应变,即
Figure PCTCN2017090032-appb-000002
式中,l0为试样的初始长度。
表1给出了一组数据,其中x10=x20=0.2cm。
Figure PCTCN2017090032-appb-000003
表1数据
由表1数据绘制得软粘土的应力应变关系曲线图,如图3所示,根据曲线确定软粘土的抗剪强度qf,然后确定出应力为qf/2对应的应变ε50,从而可计算该软粘土的E50,即
Figure PCTCN2017090032-appb-000004
本发明的测试装置体积小,质量轻便,便于野外现场使用;本发明的测试方法在现场进行,无需从现场取出原状试样至室内实验室,解决了极软粘土无法取样的问题;本发明利用双弹簧体系同时测量原位土体的应力和变形,解决了旋转粘度计法、平板贯入法、微型十字板法等只能测试极软粘土的强度、不能测试变形的问题,因而本发明能得到原位软粘土的E50指标;本发明可根据软粘土的软硬程度,通过选用合适刚度的弹簧,保证测量的精度。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (10)

  1. 一种软粘土原位测试装置,其特征在于:包括第一加载板、第二加载板、加载垫片、连杆及加载螺母,所述第一加载板、第二加载板及所述加载垫片均平行设置,所述连杆一端依次穿于所述加载垫片及第二加载板与所述第一加载板连接,所述加载螺母与所述连杆另一端螺纹连接,第一加载板与所述第二加载板之间设有第一螺旋弹簧,所述第二加载板与所述加载垫片之间设有第二螺旋弹簧,所述第一加载板与所述第二加载板之间还设有第一百分表,所述第二加载板与所述加载垫片之间设有第二百分表。
  2. 根据权利要求1所述的软粘土原位测试装置,其特征在于:所述第一螺旋弹簧及所述第二螺旋弹簧均套于所述连杆上。
  3. 根据权利要求1所述的软粘土原位测试装置,其特征在于:所述第二加载板设有第一固定座,所述第一百分表一端固定在所述第一固定座上,所述第一百分表另一端顶于所述第一加载板上。
  4. 根据权利要求3所述的软粘土原位测试装置,其特征在于:所述加载垫片设有第二固定座,所述第二百分表一端固定在所述第二固定座上,所述第二百分表另一端顶于所述第二加载板上。
  5. 根据权利要求1所述的软粘土原位测试装置,其特征在于:所述第一百分表与所述第二百分表均与所述连杆平行设置。
  6. 根据权利要求2所述的软粘土原位测试装置,其特征在于:所述第一螺旋弹簧一端与所述第一加载板之间设有第一弹簧支座,所述第一螺旋弹簧另一端与所述第二加载板之间设有第一弹簧垫片,所述第二螺旋弹簧一端与所述第二加载板之间设有第二弹簧垫片,所述第二螺旋弹簧另一端与所述加载垫片之间设有第二弹簧支座。
  7. 根据权利要求1所述的软粘土原位测试装置,其特征在于:所述连杆还设有手柄,所述手柄设于靠近所述加载螺母的一端。
  8. 根据权利要求1所述的软粘土原位测试装置,其特征在于:所述第一百分表与所述第二百分表均为数显百分表。
  9. 根据权利要求1所述的软粘土原位测试装置,其特征在于:该装置还包括矩形的割土钢丝刀,所述割土钢丝刀设有折形把手。
  10. 一种软粘土原位测试方法,其特征在于,包括权利要求1-9任一项所述的软粘土原位测试装置及以下步骤:
    S1:用刀具在软土层表面4cm×6cm的土样四周各割出宽为1cm,深为2cm的凹槽;
    S2:将土样与下部土体分离;
    S3:将测试装置的左加载板和右加载板分别置于沿土样长边方向上的前后两个凹槽内,调整加载螺母,使左加载板、右加载板与土样接触,记下第二百分表和第一百分表的初始读数x10和x20
    S4:旋转加载螺母一周,记下第二百分表和第一百分表的读数x1和x2
    S5:重复步骤S4直至土样破坏为止;
    S6:整理数据,绘制软粘土的应力应变关系曲线,计算软粘土的E50
PCT/CN2017/090032 2016-10-11 2017-06-26 一种软粘土土体原位测试装置及测试方法 WO2018068529A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610889829.0 2016-10-11
CN201610889829.0A CN106442135A (zh) 2016-10-11 2016-10-11 一种软粘土土体原位测试装置及测试方法

Publications (1)

Publication Number Publication Date
WO2018068529A1 true WO2018068529A1 (zh) 2018-04-19

Family

ID=58173469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/090032 WO2018068529A1 (zh) 2016-10-11 2017-06-26 一种软粘土土体原位测试装置及测试方法

Country Status (2)

Country Link
CN (1) CN106442135A (zh)
WO (1) WO2018068529A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106442135A (zh) * 2016-10-11 2017-02-22 深圳大学 一种软粘土土体原位测试装置及测试方法
CN108106949B (zh) * 2017-12-04 2023-09-08 深圳大学 用于桩土界面抗剪强度原位测试的方法与对称式直剪仪
CN114279862B (zh) * 2021-11-17 2023-12-26 莆田学院 一种应力应变三维试验平台以及试验方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101387634A (zh) * 2008-10-17 2009-03-18 东南大学 拉应力下混凝土碳化性能的单轴拉伸加载装置及测试方法
CN101782488A (zh) * 2010-03-26 2010-07-21 上海交通大学 实验数据自动测量采集的自动化三轴仪
CN103323340A (zh) * 2013-06-24 2013-09-25 重庆交通大学 一种钢-砼接触界面力学特性测试装置及其方法
CN103674723A (zh) * 2013-12-04 2014-03-26 西北农林科技大学 一种测定土体单轴抗拉强度的试验方法
CN203869950U (zh) * 2014-03-13 2014-10-08 宁波大学 用于测试填充式锚具内环氧树脂力学性能变化的装置
CN105115822A (zh) * 2015-09-08 2015-12-02 西安交通大学 一种高普适性单轴滑杆式应变仪
JP2016125962A (ja) * 2015-01-07 2016-07-11 清水建設株式会社 三軸凍上試験装置及び土の三次元凍結膨張特性の計測方法
CN106442135A (zh) * 2016-10-11 2017-02-22 深圳大学 一种软粘土土体原位测试装置及测试方法
CN206223547U (zh) * 2016-10-11 2017-06-06 深圳大学 一种软粘土土体原位测试装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104142275B (zh) * 2014-07-15 2016-08-24 长江勘测规划设计研究有限责任公司 利用现场大型直剪试验装置检测粘性土抗剪强度的方法
CN104792629B (zh) * 2015-04-29 2018-01-19 深圳大学 一种手持式常刚度环剪仪及其使用方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101387634A (zh) * 2008-10-17 2009-03-18 东南大学 拉应力下混凝土碳化性能的单轴拉伸加载装置及测试方法
CN101782488A (zh) * 2010-03-26 2010-07-21 上海交通大学 实验数据自动测量采集的自动化三轴仪
CN103323340A (zh) * 2013-06-24 2013-09-25 重庆交通大学 一种钢-砼接触界面力学特性测试装置及其方法
CN103674723A (zh) * 2013-12-04 2014-03-26 西北农林科技大学 一种测定土体单轴抗拉强度的试验方法
CN203869950U (zh) * 2014-03-13 2014-10-08 宁波大学 用于测试填充式锚具内环氧树脂力学性能变化的装置
JP2016125962A (ja) * 2015-01-07 2016-07-11 清水建設株式会社 三軸凍上試験装置及び土の三次元凍結膨張特性の計測方法
CN105115822A (zh) * 2015-09-08 2015-12-02 西安交通大学 一种高普适性单轴滑杆式应变仪
CN106442135A (zh) * 2016-10-11 2017-02-22 深圳大学 一种软粘土土体原位测试装置及测试方法
CN206223547U (zh) * 2016-10-11 2017-06-06 深圳大学 一种软粘土土体原位测试装置

Also Published As

Publication number Publication date
CN106442135A (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
Hakala et al. Estimating the transversely isotropic elastic intact rock properties for in situ stress measurement data reduction: a case study of the Olkiluoto mica gneiss, Finland
Dai et al. A semi-circular bend technique for determining dynamic fracture toughness
Zhao et al. Applicability of the time–temperature superposition principle in modeling dynamic response of a polyurea
WO2018068529A1 (zh) 一种软粘土土体原位测试装置及测试方法
WO2016173365A1 (zh) 一种手持式常刚度环剪仪及其使用方法
Chen et al. Fracture toughness analysis on cracked ring disks of anisotropic rock
Chudoba et al. Comparison of nanoindentation results obtained with Berkovich and cube-corner indenters
CN103115832A (zh) 一种土壤承压和剪切试验测试仪
Muñoz-Ibáñez et al. Pure Mode I Fracture Toughness Determination in Rocks Using a Pseudo-Compact Tension (p CT) Test Approach
Maeder et al. Quantitative stress/strain mapping during micropillar compression
CN104198313A (zh) 一种基于仪器化压入技术的残余应力检测方法
Talesnick et al. Completing the hollow cylinder methodology for testing of transversely isotropic rocks: torsion testing
CN103174122A (zh) 用于测试土体静止侧压力系数的侧向应力孔压探头
CN113626986A (zh) 一种沥青路面模量梯度确定方法、装置及电子设备
Zhao et al. Influence of notch geometry on the rock fracture toughness measurement using the ISRM suggested semi-circular bend (SCB) method
CN111964824B (zh) 一种基于压入能量差测试残余应力的方法
Barry et al. A new instrument for high-resolution in situ assessment of Young’s modulus in shallow cohesive sediments
Darlington et al. An apparatus for the measurement of tensile creep and contraction ratios in small non-rigid specimens
Fu et al. Dynamic properties of saturated sand based on the in situ liquefaction test
Liu et al. Optimization of advanced laboratory monotonic and cyclic triaxial testing on fine sands
Boutrid et al. Investigation into Brinell hardness test applied to rocks
CN109387439B (zh) 一种粗粒土多尺度原位强度测试装置及测试方法
Sawyer et al. A model for geometry-dependent errors in length artifacts
CN207163810U (zh) 一种基于千分表的弯曲法测杨氏模量实验装置
Kang et al. Evaluation of core disking rock stress and tensile strength via the compact conical-ended borehole overcoring technique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17859889

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26/07/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17859889

Country of ref document: EP

Kind code of ref document: A1