WO2018066896A2 - Method for preparing lithium difluorophosphate - Google Patents

Method for preparing lithium difluorophosphate Download PDF

Info

Publication number
WO2018066896A2
WO2018066896A2 PCT/KR2017/010853 KR2017010853W WO2018066896A2 WO 2018066896 A2 WO2018066896 A2 WO 2018066896A2 KR 2017010853 W KR2017010853 W KR 2017010853W WO 2018066896 A2 WO2018066896 A2 WO 2018066896A2
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
lithium difluorophosphate
formula
mixture
difluorophosphate
Prior art date
Application number
PCT/KR2017/010853
Other languages
French (fr)
Korean (ko)
Other versions
WO2018066896A3 (en
Inventor
임광민
Original Assignee
임광민
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160129043A external-priority patent/KR101739936B1/en
Priority claimed from KR1020170021009A external-priority patent/KR101898803B1/en
Application filed by 임광민 filed Critical 임광민
Publication of WO2018066896A2 publication Critical patent/WO2018066896A2/en
Publication of WO2018066896A3 publication Critical patent/WO2018066896A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/30Alkali metal phosphates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/455Phosphates containing halogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/12Organo silicon halides

Definitions

  • the present invention relates to a method for producing lithium difluorophosphate, and more particularly, to produce lithium difluorophosphate, a lithium salt used in an electrolyte for a lithium secondary battery, in a high purity and high yield without a simple and economically dangerous process. And a method for producing lithium difluorophosphate.
  • Table 1 shows a specification for sufficiently exhibiting the performance required in the battery as a material used as an electrolyte additive of a lithium secondary battery.
  • MnXm in the scheme 1 is lithium chloride, lithium bromide, silicon tetrachloride, phosphorus trichloride, acetyl chloride, acetyl bromide, propionyl chloride, oxalyl chloride and the like.
  • lithium difluorophosphate (LiPO 2 F 2 ) is prepared by reacting lithium hexafluorophosphate (LiPF 6 ) with water and a halogen compound as a starting material.
  • lithium difluorophosphate should be free of impurities such as inorganic salts because lithium difluoride is used in the electrolyte.
  • the method according to Scheme 2 is a method for producing lithium difluorophosphate by heating a variety of siloxane and lithium hexafluorophosphate in the absence of water.
  • Lithium difluorophosphate manufacturing method has the advantage that does not generate acid gas and inorganic salts, but the price of siloxane is expensive and the reactivity is low, the reaction does not proceed at room temperature, and also to about 60 °C In the case of the heating reaction, insoluble impurities are generated in a large amount, which is not suitable for use as an electrolyte of a lithium secondary battery.
  • An object of the present invention is to solve the problems of the prior art as described above, and to produce lithium difluorophosphate, which is a lithium salt used in an electrolyte for a lithium secondary battery, in a high purity and high yield without a simple and economically dangerous process, It is to provide a method for producing lithium difluorophosphate.
  • the present invention comprises the steps of preparing a first mixture by mixing a lithium hexafluorophosphate and a solvent; Preparing a second mixture by adding water to the first mixture; Adding an organic silyl halide mixture to the second mixture, followed by stirring to react; It provides a method for producing lithium difluorophosphate comprising the step of heating the reaction product, depressurizing and then filtration to prepare a lithium difluorophosphate (lithium difluorophosphate) represented by the following formula (1).
  • the present invention comprises the steps of reacting by adding water (H 2 O) and the organosylsilyl halide at the same time to the lithium hexafluorophosphate solution; Or it provides a method for producing lithium difluorophosphate represented by the following formula (1) comprising the step of adding water to the lithium hexafluoro phosphate solution and then organosyl halide to react sequentially.
  • the method for producing lithium difluorophosphate according to the present invention is economical by using a mixture of organosilyl halides in place of the expensive siloxanes used in the conventional production of lithium difluorophosphate, and is a high-purity difluoro having a low content of various impurities. Lithium phosphate can be obtained, and there is an advantage of ensuring safety due to less corrosiveness during the process.
  • the conventional manufacturing method has to remove impurities by an additional process due to the occurrence of unavoidable by-products, such as chloride or insoluble content, the present invention can produce a high yield and high purity lithium difluorophosphate without a special purification by a simple process There is an advantage.
  • the inventors of the present invention can reduce the content of chloride impurities generated as a reaction by-product by sequentially adding water and organosilyl halide to the lithium hexafluorophosphate solution, thereby producing high yield and high purity lithium difluorophosphate. Revealed to complete the present invention.
  • the present invention comprises the steps of preparing a first mixture by mixing a lithium hexafluorophosphate and a solvent; Preparing a second mixture by adding water to the first mixture; Adding an organic silyl halide mixture to the second mixture, followed by stirring to react; It provides a method for producing lithium difluorophosphate comprising the step of heating the reaction product, depressurizing and then filtration to prepare a lithium difluorophosphate (lithium difluorophosphate) represented by the following formula (1).
  • lithium difluorophosphate of the present invention may be prepared as in Scheme 3 below.
  • the method for preparing lithium difluorophosphate according to the present invention is made by using lithium hexafluorophosphate (LiPF 6 ) as a starting material and reacting with water and organosilyl halides in an appropriate ratio and order. Lithium phosphate can be prepared.
  • LiPF 6 lithium hexafluorophosphate
  • the organosilyl halide mixture may be a mixture of organosilyl halides represented by Formulas 2 and 3 below, but is not limited thereto.
  • R 1 to R 5 are the same as or different from each other, C 1 to C 10 straight or branched alkyl, C 2 to C 10 straight or branched alkenyl or aryl,
  • X 1 to X 3 are the same as or different from each other, and are chlorine (Cl), bromine (Br), or iodine (I).
  • R 1 to R 5 may be any one selected from the group consisting of methyl, ethyl, propyl, and vinyl, but is not limited thereto.
  • the organosilyl halide represented by Formula 2 is preferably trimethylsilyl chloride
  • the organosilyl halide represented by Formula 3 is preferably dimethylsilyl dichloride.
  • Dimethylsilyl dichloride is cheaper than trimethylsilyl chloride and can use only 1/2 equivalent of trimethylsilyl chloride equivalent, which is economical when used in combination with trimethylsilyl chloride and dimethylsilyl dichloride. Excellent in terms of corrosiveness and degradability.
  • the organosilyl halide mixture is an organic silyl halide represented by Formula 2 relative to lithium hexafluorophosphate in a ratio of 0.02 to 2.0 equivalents, and an organosilyl halide represented by Formula 3 relative to lithium hexafluorophosphate is 0.99 to 2.08. It may be an equivalent ratio, but is not limited thereto.
  • the organosilyl halide is preferably added in an amount of 3.98 to 4.20 equivalents in a halide equivalent ratio of total organosilyl halide to lithium hexafluorophosphate.
  • the organosilyl halide represented by Formula 2 is 1 mol per mol of lithium hexafluorophosphate
  • the organosilyl halide represented by Formula 3 reacts with 2 mol per mol of lithium hexafluorophosphate.
  • Low Phosphate It is desirable to adjust between 3.98 and 4.20 equivalent ratios in total.
  • the organosilyl halide represented by lithium hexafluoro phosphate reacts directly and there is a problem that impurities contaminated with lithium monofluoromonophosphate are generated.
  • the amount of Cl impurity including the same should be 100 ppm or less, preferably 20 ppm or less, but depending on the conditions, there are problems ranging from several thousand ppm to several hundred ppm in lithium difluorophosphate.
  • organosilyl halide represented by Formula 3 can be suppressed to some extent by using the organosilyl halide represented by Formula 3 to solve the above problem.
  • organosilyl halide represented by Formula 3 since C 1 to C 10 linear or branched alkyl, C 2 to C 10 linear or branched alkenyl or aryl groups in the intramolecular silicon, This is because the number of the organosilyl halides represented by the general formula (3) is smaller than that of the organosilyl halide.
  • there are two halogen atoms it is more difficult for the halogen elements to be released as anions in the molecule.
  • halogen anions may be released and react with lithium hexafluorophosphate to significantly reduce the probability of producing halogen-bound impurities.
  • organosilyl halide represented by the formula (3) when using the organosilyl halide represented by the formula (3) alone, in the presence of a small amount of water to form a siloxane oligomer to a lower polymer may also be a factor of lowering the purity because insoluble impurities are generated.
  • dimethylsilyldichloride is used alone in the organosilyl halide represented by Formula 3, the yield of lithium difluorophosphate drops to 85.0% or less, and the purity falls to 99.0% or less, requiring an additional purification process. have.
  • Such a phenomenon is because two halogens are attached to the organosilyl halide molecule represented by Chemical Formula 3 so that the oligomer or the polymer can be formed.
  • the organosilyl halide represented by the formula (2) has only one halogen in the molecule, so that the reaction can proceed to the oligomer or the polymer, thus preventing the generation of impurities that lower the purity.
  • the use of the organosilyl halide represented by the formula (2) and the organosilyl halide represented by the formula (3) is higher than that of using each alone, and the purity, Cl content, HF content, yield, and economic efficiency of lithium difluorophosphate are high. You can see the excellent.
  • the equivalent ratio of the organosyl silyl halide represented by the formula (3) and the organosyl silyl halide represented by the formula (2) is 1: 2 to 1: 0.01, and considering the economic efficiency and purity, the optimum equivalent ratio is 1: It is preferable that it is 0.5-1: 0.02.
  • the reacting may be performed by adding an organic silyl halide mixture to the second mixture, followed by stirring at 40 to 80 rpm and reaction at ⁇ 10 to 60 ° C., but is not limited thereto.
  • reaction conditions such as said reaction temperature
  • the upper limit of reaction temperature becomes like this.
  • it is 60 degreeC, More preferably, it is 40 degrees C or less, and a minimum is preferable.
  • it is -10 degreeC, More preferably, it is 0 degreeC or more. If it exceeds 60 ° C, decomposition of LiPF 6 occurs and PF 5 is generated to decompose the solvent, which is not preferable, and at a temperature lower than -10 ° C, the progress of the reaction is not economical.
  • the present invention comprises the steps of reacting by adding water (H 2 O) and the organosylsilyl halide at the same time to the lithium hexafluorophosphate solution; Or it provides a method for producing lithium difluorophosphate represented by the following formula (1) comprising the step of adding water to the lithium hexafluoro phosphate solution and then organosyl halide to react sequentially.
  • lithium difluorophosphate of the present invention may be prepared as in Scheme 4 below.
  • the lithium difluorophosphate represented by Chemical Formula 1 may be prepared by reacting water with an organosilyl halide using lithium hexafluorophosphate (LiPF 6 ) as a starting material. .
  • the organosilyl halide may be an organosilyl halide represented by Formula 4 below, but is not limited thereto.
  • n is an integer of 1 to 3
  • m is an integer of 1 to 3
  • R is C 1 ⁇ C 10 linear or branched alkyl, C 2 to C 10 linear or branched alkenyl or Aryl
  • X may be chlorine (Cl), bromine (Br), or iodine (I), and in particular, the use of trimethylsilyl chloride as the organosilylide halide is preferred in terms of stability, corrosiveness and degradability.
  • the organosilyl halide may be added in an amount of 1.33 to 4.0 equivalents to lithium hexafluorophosphate, in particular, R 1 SiX 3 is preferably 1.33 equivalents, R 2 SiX 2 is 2.0 equivalents, and R 1 SiX 3 is preferably 4.0 equivalents. Do.
  • the order of addition of water (H 2 O) and organosilyl halides is particularly important in the reaction. It is preferable to add (i) water (H 2 O) to the lithium hexafluorophosphate solution, and then add organosilyl halide or (ii) simultaneously add water (H 2 O) and organosilyl halide. .
  • reaction conditions such as said reaction temperature
  • the upper limit of reaction temperature becomes like this.
  • it is 80 degreeC, More preferably, it is 60 degrees C or less, and a minimum is preferable.
  • it is -10 degreeC, More preferably, it is 0 degreeC or more. It is not preferable to decompose LiPF 6 when it exceeds 80 deg. C to generate PF 5 to decompose the solvent, and it is not economical because the progress of the reaction is slow at a temperature lower than -10 deg.
  • the temperature of the reactant was raised to 25 ° C., and the generated acid gas was removed under reduced pressure, and then, the produced lithium difluorophosphate was filtered and dried to obtain the lithium difluorophosphate of the present invention (Formula 1). It can manufacture.
  • the solvent may be in an amount of 0.5 to 100 equivalents based on lithium hexafluorophosphate, but is not limited thereto.
  • the solvent may be any one selected from the group consisting of diethyl ether, diisopropyl ether, and methyl t-butyl ether; Dimethoxyethane and alkoxyethanes of diethoxyethane; Ester, which is any one selected from the group consisting of methyl acetate, ethyl acetate, propyl acetate, and butyl acetate; Nitriles which are any one selected from the group consisting of acetonitrile, propionitrile, and butyronitrile; Hydrocarbons which are any one selected from the group consisting of pentane, hexane, and heptane; Alcohols which are any one selected from the group consisting of methanol, ethanol, propanol, and butanol; Ketones which are any one selected from the group consisting of acetone, methyl ethyl ketone, and methyl isopropyl ketone; And carbonates which are any one selected from
  • the water may be in a ratio of 1.00 to 2.05 equivalents relative to lithium hexafluorophosphate, but is not limited thereto.
  • the water may be added in reverse amount from the required amount of lithium difluorophosphate to determine the amount of water, but from 1.90 to Lithium fluorophosphate. It is preferable to use water in a 2.05 equivalent ratio, or to use it in 1.0 to 3.0 equivalent ratio, especially 2.0 equivalent ratio.
  • the first mixture was cooled to 5 ° C. using an ice bath, and 21.3 g of water (H 2 O) was added to prepare a second mixture.
  • reaction mixture was gradually heated up to 20 ° C, and the generated hydrochloric acid gas, dimethylsilyldifluoride, and trimethylsilylfluoride were removed under reduced pressure to 30 mmHg.
  • the prepared salt was filtered off with a filter paper and then washed with 21 g of dimethylcarbonate.
  • the washed salt was recovered and dried to 50 ° C. or less to obtain a lithium powder, difluorophosphate compound (yield: 91.0%, purity: 99.7%, Cl content: 8 ppm).
  • a lithium powder of difluorophosphate a white powder, was obtained under the same conditions as in Example 1 except that 159.81 g of dimethylsilyldichloride and 0.64 g of trimethylsilyl chloride were added to the second mixture (yield: 83.0%, purity). : 98.3%, Cl content: 8 ppm).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)

Abstract

The present invention relates to a method for preparing lithium difluorophosphate, and more specifically, a method for preparing lithium difluorophsphate, which enables simple and economical preparation of lithium difluorophosphate, which is a lithium salt used in an electrolyte for a lithium secondary battery, at high purity and high yield without a dangerous process. By using an organic silyl halide mixture rather than expensive siloxane which has been used for preparing lithium difluorophosphate, the method for preparing lithium difluorophosphate, according to the present invention, is economical, enables obtaining of high-purity lithium difluorophosphate having low amounts of various impurities, and ensures safety due to low corrosiveness during a process. In addition, the present invention enables preparation of high-yield and high-purity lithium difluorophosphate by means of a simple process without particular refinement, whereas in existing preparation methods, inevitable byproducts such as chloride or insoluble matters are generated and thus impurities should be removed by means of an extra process. Further, by reacting a bis(chlorosulfonyl)amine compound, which is a starting material, with water (H2O) and organic silyl halide, the present invention can solve the problems in the prior art and enables simple and economical preparation of high-purity and high-yield lithium difluorophosphate without a dangerous process.

Description

디플루오로인산리튬의 제조방법Method for producing lithium difluorophosphate
본 발명은 디플루오로인산리튬의 제조방법에 관한 것으로, 보다 상세하게는 리튬 2차 전지용 전해액에 사용되는 리튬염인 디플루오로인산리튬을 간단하면서도 경제적으로 위험한 공정 없이 고순도 및 고수율로 제조할 수 있는, 디플루오로인산리튬의 제조방법에 관한 것이다.The present invention relates to a method for producing lithium difluorophosphate, and more particularly, to produce lithium difluorophosphate, a lithium salt used in an electrolyte for a lithium secondary battery, in a high purity and high yield without a simple and economically dangerous process. And a method for producing lithium difluorophosphate.
최근, 각종 모바일 기기의 상품화에 따라 고성능 2차 전지의 필요성이 증대되고 있으며, 전기자동차, 하이브리드 전기자동차의 상용화, 및 전기저장 장치의 개발에 따라 고출력, 고에너지 밀도, 고방전 전압 등의 성능을 갖춘 2차 전지가 필요하게 되었다.Recently, with the commercialization of various mobile devices, the necessity of high performance secondary batteries is increasing. With the commercialization of electric vehicles, hybrid electric vehicles, and the development of electric storage devices, the performance of high power, high energy density, high discharge voltage, etc. A secondary battery was needed.
이에 적합한 전해액의 조성물 중 리튬염의 중요성이 대두되었으며, 특히 디플루오로인산리튬 화합물이 탁월한 요구성능을 가짐이 밝혀졌다. 이에 따라 경제적으로 고순도의 디플루오로인산리튬을 제조할 필요성이 절실하게 되었다.The importance of lithium salts in the composition of a suitable electrolyte solution has emerged, in particular, it was found that the lithium difluorophosphate compound has excellent performance. Accordingly, there is an urgent need to manufacture high-purity lithium difluorophosphate economically.
항 목Item 규격standard
순도water 99.0% 이상99.0% or more
HFHF 1000 ppm이하1000 ppm or less
ClCl 100 ppm이하100 ppm or less
수분moisture 200 ppm이하200 ppm or less
메탈류(Na, K, Ca, Fe)Metals (Na, K, Ca, Fe) 10 ppm이하10 ppm or less
상기 표 1은 리튬 2차 전지의 전해액 첨가제로 사용되는 물질로서 전지내에서 요구되는 성능을 충분히 발휘하기 위한 규격을 나타낸 것이다.Table 1 shows a specification for sufficiently exhibiting the performance required in the battery as a material used as an electrolyte additive of a lithium secondary battery.
특히 상기 표 1에서, HF와 Cl은 리튬 2차 전지의 지속적인 사용과정에서 부식문제를 일으켜 전지수명을 단축시킬 수 있는 문제를 초래하므로, 규격 이하로 관리하는 것이 매우 중요하기 때문에 디플루오로인산리튬의 제조방법에 대한 연구가 활발히 진행되고 있다.In particular, in Table 1, HF and Cl cause corrosion problems in the continuous use of the lithium secondary battery, causing a problem that can shorten the life of the battery, because it is very important to manage below the standard lithium difluorophosphate Research into the manufacturing method of the is actively progressing.
종래 디플루오로인산리튬의 제조방법을 도식화하면 하기 반응식 1과 같다.Scheme of the conventional method for producing lithium difluorophosphate is shown in Scheme 1 below.
[반응식 1]Scheme 1
LiPF6 + 2H2O + MnXm ----> LiPO2F2 + 4HX + MnXm-4F4 LiPF 6 + 2H 2 O + MnXm ----> LiPO 2 F 2 + 4HX + MnXm -4 F4
상기 반응식 1에서 MnXm은 염화리튬, 브롬화리튬, 사염화규소, 삼염화인, 염화아세틸, 브롬화아세틸, 염화프로피오닐, 및 염화옥살릴 등이다. MnXm in the scheme 1 is lithium chloride, lithium bromide, silicon tetrachloride, phosphorus trichloride, acetyl chloride, acetyl bromide, propionyl chloride, oxalyl chloride and the like.
상기 반응식 1에 나타낸 바와 같이, 종래 제조방법에 따르면 리튬헥사플루오로포스페이트(LiPF6)을 출발물질로 하여 물과 할로겐 화합물과 반응시켜 디플루오로인산리튬(LiPO2F2)을 제조한다. As shown in Scheme 1, according to the conventional production method, lithium difluorophosphate (LiPO 2 F 2 ) is prepared by reacting lithium hexafluorophosphate (LiPF 6 ) with water and a halogen compound as a starting material.
그러나, 이때 발생하는 산 가스와 염 등을 증발 및 석출시켜 제거하여야 하며, 디플루오로인산리튬은 전해액에 사용되는 리튬염이기 때문에 무기염 등의 불순물이 없어야 한다. However, acid gases and salts generated at this time must be removed by evaporation and precipitation, and lithium difluorophosphate should be free of impurities such as inorganic salts because lithium difluoride is used in the electrolyte.
그러나, 상기 반응식 1에 따른 디플루오로인산리튬 제조방법은 부산물로 불가피하게 리튬플루오라이드염이 발생하여(MnXm이 염화리튬, 브롬화리튬인 경우) 디플루오로인산리튬의 순도와 품질을 떨어뜨리며, 추가공정으로 디플루오로인산리튬으로부터 이를 선택적으로 제거해야 하는 문제가 있다.However, the method of preparing lithium difluorophosphate according to Scheme 1 inevitably generates a lithium fluoride salt as a by-product (when MnXm is lithium chloride or lithium bromide), reducing the purity and quality of lithium difluorophosphate. There is a problem that it is necessary to selectively remove it from lithium difluorophosphate as a further process.
또한, 부식성이 심하고 공기 중에서 쉽게 분해하여 취급하기 어려운 출발물질(MnXm이 사염화규소, 삼염화인인 경우), 또는 반응성이 떨어져 과량으로 사용(MnXm이 염화아세틸, 브롬화아세틸, 염화프로피오닐, 염화옥살릴인 경우)해야 하는 등 상업 생산에는 번거롭고 위험한 공정을 필연적으로 수반하는 문제가 있다.In addition, starting materials that are highly corrosive and difficult to decompose and handle in the air (when MnXm is silicon tetrachloride or phosphorus trichloride), or are used excessively due to low reactivity (MnXm is acetyl chloride, acetyl bromide, propionyl chloride, oxalyl chloride) Commercial production inevitably involves cumbersome and dangerous processes.
또한, 실제 반응이 상당부분 진행되면 디플루오로인산리튬과 함께 모노플루오로인산리튬의 불순물이 생성될 수 있어 디플루오로인산리튬의 품질을 떨어뜨리고 분리제거하기 용이하지 않은 문제가 있다.In addition, when the actual reaction proceeds to a large extent, impurities of lithium monofluorophosphate may be generated together with lithium difluorophosphate, thereby degrading the quality of lithium difluorophosphate and not easily separating and removing the lithium.
따라서, 상기 반응식 1에 의한 디플루오로인산리튬의 제조방법의 문제점을 해결하기 위해 또다른 디플루오로인산리튬을 제조하는 방법이 제안되었고, 하기 반응식 2와 같다.Therefore, in order to solve the problem of the method for producing lithium difluorophosphate according to Scheme 1, another method for producing lithium difluorophosphate has been proposed, as shown in Scheme 2 below.
[반응식 2]Scheme 2
LiPF6 + 2R3Si-O-SiR3 ----> LiPO2F2 + 4R3SiFLiPF 6 + 2R 3 Si-O-SiR 3 ----> LiPO 2 F 2 + 4R 3 SiF
상기 반응식 2에 의한 방법은 다양한 실록산과 리튬헥사플루오로포스페이트를 물이 없는 상태에서 가열반응하여 디플루오로인산리튬을 제조하는 방법이다. The method according to Scheme 2 is a method for producing lithium difluorophosphate by heating a variety of siloxane and lithium hexafluorophosphate in the absence of water.
상기 반응식 2에 의한 디플루오로인산리튬 제조방법은 산 가스가 발생하지 않고 무기염도 발생하지 않는 장점이 있으나, 실록산의 가격이 고가이고 반응성이 떨어져 상온에서는 반응이 진행되지 않으며, 또한 약 60℃로 가열반응할 경우 불용성 불순물이 대량 생겨 리튬 2차 전지의 전해액으로 사용하기에 적합하지 않은 문제가 있다.Lithium difluorophosphate manufacturing method according to the reaction scheme 2 has the advantage that does not generate acid gas and inorganic salts, but the price of siloxane is expensive and the reactivity is low, the reaction does not proceed at room temperature, and also to about 60 ℃ In the case of the heating reaction, insoluble impurities are generated in a large amount, which is not suitable for use as an electrolyte of a lithium secondary battery.
상기 문제점을 해결하기 위해서 유기실릴할라이드 등을 물과 함께 사용하는 방법이 제안되었으나, 이 경우도 사용하는 유기실릴할라이드의 종류에 따라 불용성 불순물이 생기거나, 또는 만들어진 디플루오로인산리튬과 유기실릴할라이드가 반응하여 모노플루오로모노할라이드인산리튬 등의 부산물을 발생시켜 수율과 순도 등 품질을 떨어 뜨릴 수있는 문제가 있다.In order to solve the above problems, a method of using an organosilyl halide or the like with water has been proposed, but in this case, an insoluble impurity is generated depending on the type of organosilyl halide to be used, or lithium difluorophosphate and organosilyl halide made By reacting to generate by-products such as monofluoro monohalide lithium phosphate, there is a problem that can lower the quality, such as yield and purity.
따라서, 간단하면서도 경제적으로 고순도 및 고수율의 디플루오로인산리튬을 제조할 수 있는 방법에 대한 연구 개발이 시급한 실정이다.Therefore, there is an urgent need for research and development on a method for preparing lithium difluorophosphate having high purity and high yield simply and economically.
본 발명의 목적은 상기와 같은 종래기술의 문제점을 해결하고, 리튬 2차 전지용 전해액에 사용되는 리튬염인 디플루오로인산리튬을 간단하고 경제적으로 위험한 공정 없이 고순도 및 고수율로 제조할 수 있는, 디플루오로인산리튬의 제조방법을 제공하는 데에 있다.SUMMARY OF THE INVENTION An object of the present invention is to solve the problems of the prior art as described above, and to produce lithium difluorophosphate, which is a lithium salt used in an electrolyte for a lithium secondary battery, in a high purity and high yield without a simple and economically dangerous process, It is to provide a method for producing lithium difluorophosphate.
상기 목적을 달성하기 위하여, 본 발명은 리튬헥사플루오로포스페이트와 용매를 혼합하여 제1혼합물을 준비하는 단계; 상기 제1혼합물에 물을 첨가하여 제2혼합물을 준비하는 단계; 상기 제2혼합물에 유기실릴할라이드(organic silyl halide) 혼합물을 첨가한 후 교반하여 반응시키는 단계; 및 반응 생성물을 승온시키고, 감압한 후 여과 분리하여 하기 화학식 1로 표시되는 디플루오로인산리튬(lithium difluorophosphate)을 제조하는 단계;를 포함하는, 디플루오로인산리튬의 제조방법을 제공한다.In order to achieve the above object, the present invention comprises the steps of preparing a first mixture by mixing a lithium hexafluorophosphate and a solvent; Preparing a second mixture by adding water to the first mixture; Adding an organic silyl halide mixture to the second mixture, followed by stirring to react; It provides a method for producing lithium difluorophosphate comprising the step of heating the reaction product, depressurizing and then filtration to prepare a lithium difluorophosphate (lithium difluorophosphate) represented by the following formula (1).
[화학식 1][Formula 1]
Figure PCTKR2017010853-appb-I000001
Figure PCTKR2017010853-appb-I000001
또한 본 발명은 리튬헥사플루오로포스페이트 용액에 물(H2O) 및 유기실릴할라이드를 동시에 첨가하여 반응시키는 단계; 또는 리튬헥사플루오로포스페이트 용액에 물을 첨가한 후 유기실릴할라이드를 순차적으로 첨가하여 반응시키는 단계;를 포함하는, 하기 화학식 1로 표시되는 디플루오로인산리튬의 제조방법을 제공한다.In addition, the present invention comprises the steps of reacting by adding water (H 2 O) and the organosylsilyl halide at the same time to the lithium hexafluorophosphate solution; Or it provides a method for producing lithium difluorophosphate represented by the following formula (1) comprising the step of adding water to the lithium hexafluoro phosphate solution and then organosyl halide to react sequentially.
[화학식 1][Formula 1]
Figure PCTKR2017010853-appb-I000002
Figure PCTKR2017010853-appb-I000002
본 발명에 따른 디플루오로인산리튬의 제조방법은 기존 디플루오로인산리튬 제조에 사용되던 고가의 실록산을 대신하여 유기실릴할라이드의 혼합물을 사용함으로써, 경제적이고 각종 불순물 함량이 적은 고순도의 디플루오로인산리튬을 얻을 수 있고, 공정 진행 상 부식성이 적어 안전성이 보장되는 장점이 있다.The method for producing lithium difluorophosphate according to the present invention is economical by using a mixture of organosilyl halides in place of the expensive siloxanes used in the conventional production of lithium difluorophosphate, and is a high-purity difluoro having a low content of various impurities. Lithium phosphate can be obtained, and there is an advantage of ensuring safety due to less corrosiveness during the process.
또한, 기존 제조방법은 불가피한 부산물, 즉 클로라이드 또는 불용분 등이 발생하여 추가 공정으로 불순물을 제거하여야 했으나, 본 발명은 간단한 공정으로 특별한 정제없이 고수율 및 고순도의 디플루오로인산리튬을 제조할 수 있는 장점이 있다.In addition, the conventional manufacturing method has to remove impurities by an additional process due to the occurrence of unavoidable by-products, such as chloride or insoluble content, the present invention can produce a high yield and high purity lithium difluorophosphate without a special purification by a simple process There is an advantage.
또한, 출발물질인 비스(클로로술포닐)이미드화합물을 물(H2O) 및 유기실릴할라이드와 반응시킴으로써, 상기 종래 기술의 문제점을 해결할 수 있으며, 간단하고 경제적으로 위험한 공정없이 고순도 및 고수율의 디플루오로인산리튬을 제조할 수 있는 장점이 있다.In addition, by reacting the bis (chlorosulfonyl) imide compound as a starting material with water (H 2 O) and organosylsilyl halide, it is possible to solve the problems of the prior art, high purity and high yield without a simple and economically dangerous process There is an advantage that can be produced lithium difluorophosphate.
이하, 본 발명인 디플루오로인산리튬의 제조방법을 보다 상세하게 설명한다.Hereinafter, the manufacturing method of the lithium difluorophosphate which is this invention is demonstrated in detail.
본 발명의 발명자들은 리튬헥사플루오로포스페이트 용액에 물과 유기실릴할라이드를 순차적으로 첨가함으로써 반응 부산물로 생기는 클롤라이드 불순물의 함량을 줄일 수 있어 고수율 및 고순도의 디플루오로인산리튬을 제조할 수 있음을 밝혀내어 본 발명을 완성하였다.The inventors of the present invention can reduce the content of chloride impurities generated as a reaction by-product by sequentially adding water and organosilyl halide to the lithium hexafluorophosphate solution, thereby producing high yield and high purity lithium difluorophosphate. Revealed to complete the present invention.
본 발명은 리튬헥사플루오로포스페이트와 용매를 혼합하여 제1혼합물을 준비하는 단계; 상기 제1혼합물에 물을 첨가하여 제2혼합물을 준비하는 단계; 상기 제2혼합물에 유기실릴할라이드(organic silyl halide) 혼합물을 첨가한 후 교반하여 반응시키는 단계; 및 반응 생성물을 승온시키고, 감압한 후 여과 분리하여 하기 화학식 1로 표시되는 디플루오로인산리튬(lithium difluorophosphate)을 제조하는 단계;를 포함하는, 디플루오로인산리튬의 제조방법을 제공한다.The present invention comprises the steps of preparing a first mixture by mixing a lithium hexafluorophosphate and a solvent; Preparing a second mixture by adding water to the first mixture; Adding an organic silyl halide mixture to the second mixture, followed by stirring to react; It provides a method for producing lithium difluorophosphate comprising the step of heating the reaction product, depressurizing and then filtration to prepare a lithium difluorophosphate (lithium difluorophosphate) represented by the following formula (1).
[화학식 1][Formula 1]
Figure PCTKR2017010853-appb-I000003
Figure PCTKR2017010853-appb-I000003
구체적으로, 본 발명인 디플루오로인산리튬의 제조방법은 하기 반응식 3과 같이 제조될 수 있다.Specifically, the method for preparing lithium difluorophosphate of the present invention may be prepared as in Scheme 3 below.
[반응식 3]Scheme 3
LiPF6 + 2H2O + nR2SiX2(화학식 2) + mR3SiX1(화학식 4) (n + m = 2.0 ~ 2.99)----> LiPO2F2 + nR2SiF2 + mR3SiF1 LiPF 6 + 2H 2 O + nR 2 SiX 2 (Formula 2) + mR 3 SiX 1 (Formula 4) (n + m = 2.0 to 2.99) ----> LiPO 2 F 2 + nR 2 SiF 2 + mR 3 SiF 1
상기 반응식 3에 따르면, 본 발명인 디플루오로인산리튬의 제조방법은 리튬헥사플루오로포스페이트(LiPF6)를 출발물질로 하여 물과 유기실릴할라이드들과 적절한 비율 및 순서로 첨가하여 반응시킴으로써 디플루오로인산리튬을 제조할 수 있다.According to Scheme 3, the method for preparing lithium difluorophosphate according to the present invention is made by using lithium hexafluorophosphate (LiPF 6 ) as a starting material and reacting with water and organosilyl halides in an appropriate ratio and order. Lithium phosphate can be prepared.
상기 유기실릴할라이드 혼합물은 하기 화학식 2와 화학식 3으로 표시되는 유기실릴할라이드의 혼합물일 수 있으며, 이에 제한되는 것은 아니다.The organosilyl halide mixture may be a mixture of organosilyl halides represented by Formulas 2 and 3 below, but is not limited thereto.
[화학식 2][Formula 2]
R1R2R3-Si-X1 R 1 R 2 R 3 -Si-X 1
[화학식 3][Formula 3]
R4R5-Si-X2X3 R 4 R 5 -Si-X 2 X 3
상기 화학식 2 및 화학식 3에서, In Chemical Formulas 2 and 3,
R1 내지 R5는 서로 동일하거나 상이하고, C1 내지 C10의 직쇄 또는 측쇄의 알킬, C2 내지 C10의 직쇄 또는 측쇄의 알케닐 또는 아릴이고,R 1 to R 5 are the same as or different from each other, C 1 to C 10 straight or branched alkyl, C 2 to C 10 straight or branched alkenyl or aryl,
X1 내지 X3은 서로 동일하거나 상이하고, 염소(Cl), 브롬(Br), 또는 요오드(I)임.X 1 to X 3 are the same as or different from each other, and are chlorine (Cl), bromine (Br), or iodine (I).
상기 R1 내지 R5는 메틸, 에틸, 프로필, 및 비닐로 이루어진 군에서 선택된 어느 하나일 수 있으며, 이에 제한되는 것은 아니다.R 1 to R 5 may be any one selected from the group consisting of methyl, ethyl, propyl, and vinyl, but is not limited thereto.
상기 화학식 2로 표시되는 유기실릴할라이드는 트리메틸실릴클로라이드(Trimethylsilyl chloride)인 것이 바람직하며, 또한 상기 화학식 3으로 표시되는 유기실릴할라이드는 디메틸실릴디클로라이드(Dimethylsilyl dichloride)인 것이 바람직하다. 디메틸실릴디클로라이드는 트리메틸실릴클로라이드에 비해 가격이 저렴하고 트리메틸실릴클로라이드의 당량에 비해 1/2 당량만을 사용할 수 있어, 트리메틸실릴클로라이드와 디메틸실릴디클로라이드를 혼합하여 사용할 경우 경제성이 뛰어나며, 또한 안정성, 부식성 및 분해성 측면에서 우수하다.The organosilyl halide represented by Formula 2 is preferably trimethylsilyl chloride, and the organosilyl halide represented by Formula 3 is preferably dimethylsilyl dichloride. Dimethylsilyl dichloride is cheaper than trimethylsilyl chloride and can use only 1/2 equivalent of trimethylsilyl chloride equivalent, which is economical when used in combination with trimethylsilyl chloride and dimethylsilyl dichloride. Excellent in terms of corrosiveness and degradability.
상기 유기실릴할라이드(organic silyl halide) 혼합물은 리튬헥사플루오로포스페이트 대비 화학식 2로 표시되는 유기실릴할라이드가 0.02 내지 2.0 당량비이고, 리튬헥사플루오로포스페이트 대비 화학식 3으로 표시되는 유기실릴할라이드가 0.99 내지 2.08 당량비일 수 있으며, 이에 제한되는 것은 아니다.The organosilyl halide mixture is an organic silyl halide represented by Formula 2 relative to lithium hexafluorophosphate in a ratio of 0.02 to 2.0 equivalents, and an organosilyl halide represented by Formula 3 relative to lithium hexafluorophosphate is 0.99 to 2.08. It may be an equivalent ratio, but is not limited thereto.
상기 유기실릴할라이드는 리튬헥사플루오로포스페이트 대비 총 유기실릴할라이드의 할라이드 당량비로 3.98 내지 4.20 당량으로 첨가되는 것이 바람직하다.The organosilyl halide is preferably added in an amount of 3.98 to 4.20 equivalents in a halide equivalent ratio of total organosilyl halide to lithium hexafluorophosphate.
구체적으로, 상기 화학식 2로 표시되는 유기실릴할라이드는 리튬헥사플루오로포스페이트 1몰당 1몰, 화학식 3으로 표시되는 유기실릴할라이드는 리튬헥사플루오로포스페이트 1몰당 2몰이 반응하므로 할라이드 기준으로 볼때 리튬헥사플루오로포스페이트 대비 총 3.98 내지 4.20 당량비 사이로 조절하는 것이 바람직하다.Specifically, the organosilyl halide represented by Formula 2 is 1 mol per mol of lithium hexafluorophosphate, and the organosilyl halide represented by Formula 3 reacts with 2 mol per mol of lithium hexafluorophosphate. Low Phosphate It is desirable to adjust between 3.98 and 4.20 equivalent ratios in total.
구체적으로, 상기 제2혼합물에 화학식 2로 표시되는 유기실릴할라이드를 단독으로 첨가할 경우, Si-F 결합에너지가 Si-X(X= Cl, Br 및 I)에 비해 상대적으로 크고, 화학식 2로 표시되는 유기실릴할라이드와 리튬헥사플루오로포스페이트가 직접 반응하여 모노플루오로모노클로로인산리튬으로 오염된 불순물이 발생하는 문제가 있다. 또한 이를 포함한 Cl 불순물 양은 100 ppm 이하, 바람직하게는 20 ppm 이하이여야 하나, 조건에 따라 디플루오로인산리튬 내 수천 ppm ~ 수백 ppm 정도에 이르는 문제가 있다.Specifically, when the organosilyl halide represented by Formula 2 alone is added to the second mixture, Si-F bond energy is relatively large compared to Si-X (X = Cl, Br and I), and is represented by Formula 2 The organosilyl halide represented by lithium hexafluoro phosphate reacts directly and there is a problem that impurities contaminated with lithium monofluoromonophosphate are generated. In addition, the amount of Cl impurity including the same should be 100 ppm or less, preferably 20 ppm or less, but depending on the conditions, there are problems ranging from several thousand ppm to several hundred ppm in lithium difluorophosphate.
따라서, 상기 문제점을 해결하기 위해 화학식 3으로 표시되는 유기실릴할라이드를 사용함으로써 어느 정도 억제될 수 있다. 구체적으로, 상기 화학식 3으로 표시되는 유기실릴할라이드의 경우, 분자내 실리콘에 C1 내지 C10의 직쇄 또는 측쇄의 알킬, C2 내지 C10의 직쇄 또는 측쇄의 알케닐 또는 아릴기가 2개이므로, 화학식 3으로 표시되는 유기실릴할라이드에 비해 그 수가 적고, 반대로 할로겐 원자는 2개이므로 분자 내에서 할로겐 원소가 음이온으로 방출되기가 더 어렵기 때문이다. Therefore, it can be suppressed to some extent by using the organosilyl halide represented by Formula 3 to solve the above problem. Specifically, in the organosilyl halide represented by Formula 3, since C 1 to C 10 linear or branched alkyl, C 2 to C 10 linear or branched alkenyl or aryl groups in the intramolecular silicon, This is because the number of the organosilyl halides represented by the general formula (3) is smaller than that of the organosilyl halide. On the contrary, since there are two halogen atoms, it is more difficult for the halogen elements to be released as anions in the molecule.
따라서, 할로겐 음이온이 방출되어 리튬헥사플루오로포스페이트와 반응하여 할로겐이 결합된 불순물을 만들 확률을 현저히 떨어뜨릴 수 있다.Thus, halogen anions may be released and react with lithium hexafluorophosphate to significantly reduce the probability of producing halogen-bound impurities.
실제로 상기 화학식 3으로 표시되는 유기실릴할라이드를 사용하여 반응시켰을 때, 화학식 2로 표시되는 유기실릴할라이드로 반응시켰을 때 보다 디플루오로인산리튬 내 할로겐 불순물의 함량이 수백 ppm 수준에서 수 ppm 수준으로 떨어짐을 확인할 수 있었다. In fact, when reacted with the organosylsilyl halide represented by Formula 3, the content of halogen impurity in lithium difluorophosphate drops from several hundred ppm to several ppm level than when reacted with the organosilyl halide represented by Formula 2 Could confirm.
반면 상기 화학식 3으로 표시되는 유기실릴할라이드를 단독으로 사용할 경우, 소량의 물 존재하에서 실록산 형태의 올리고머 내지 저급의 폴리머를 만들어 이 경우에도 불용분의 불순물이 생성되기 때문에 순도 저하의 요인이 될 수 있으며, 상기 화학식 3으로 표시되는 유기실릴할라이드 중에서 디메틸실릴디클로라이드를 단독으로 사용할 경우, 디플루오로인산리튬의 수율이 85.0% 이하로 떨어지고 순도가 99.0% 이하로 떨어져 추가의 정제 공정이 필요한 등 단점이 있다.On the other hand, when using the organosilyl halide represented by the formula (3) alone, in the presence of a small amount of water to form a siloxane oligomer to a lower polymer may also be a factor of lowering the purity because insoluble impurities are generated. When dimethylsilyldichloride is used alone in the organosilyl halide represented by Formula 3, the yield of lithium difluorophosphate drops to 85.0% or less, and the purity falls to 99.0% or less, requiring an additional purification process. have.
이와 같은 현상은 상기 화학식 3으로 표시되는 유기실릴할라이드 분자 내에 할로겐이 2개가 붙어 있어 올리고머내지 폴리머가 가능한 구조이기 때문이다. 반대로 화학식 2로 표시되는 유기실릴할라이드는 분자내에 할로겐이 1개 밖에 없어 올리고머 내지 폴리머로 반응이 진행될 수 없고 따라서 순도를 떨어뜨리는 불순물의 생성을 막을 수 있다. Such a phenomenon is because two halogens are attached to the organosilyl halide molecule represented by Chemical Formula 3 so that the oligomer or the polymer can be formed. On the contrary, the organosilyl halide represented by the formula (2) has only one halogen in the molecule, so that the reaction can proceed to the oligomer or the polymer, thus preventing the generation of impurities that lower the purity.
따라서 화학식 2로 표시되는 유기실릴할라이드와 화학식 3으로 표시되는 유기실릴할라이드를 혼합하여 사용하는 것이 각각을 단독으로 사용하는 것에 비해 디플루오로인산리튬의 순도, Cl 함량, HF 함량, 수율, 경제성이 뛰어남을 알 수 있다.Therefore, the use of the organosilyl halide represented by the formula (2) and the organosilyl halide represented by the formula (3) is higher than that of using each alone, and the purity, Cl content, HF content, yield, and economic efficiency of lithium difluorophosphate are high. You can see the excellent.
특히, 경제성을 고려하였을 때, 화학식 3으로 표시되는 유기실릴할라이드와 화학식 2로 표시되는 유기실릴할라이드의 당량비는 1: 2 ~ 1: 0.01이며, 경제성과 순도를 모두 고려할 때 최적의 당량비는 1: 0.5 ~ 1: 0.02인 것이 바람직하다.In particular, in consideration of economics, the equivalent ratio of the organosyl silyl halide represented by the formula (3) and the organosyl silyl halide represented by the formula (2) is 1: 2 to 1: 0.01, and considering the economic efficiency and purity, the optimum equivalent ratio is 1: It is preferable that it is 0.5-1: 0.02.
따라서, 우수한 품질의 디플루오로인산리튬을 제조하기 위해서는 상기 반응식 3에 따른 반응에서, 물(H2O) 및 유기실릴할라이드의 첨가순서와 화학식 2와 화학식 3으로 표시되는 유기실릴할라이드의 당량비가 HF와 Cl함량 변화에 매우 중요함을 알 수 있다.Therefore, in order to produce lithium difluorophosphate of high quality, in the reaction according to Scheme 3, the addition order of water (H 2 O) and organosylsilyl halide and the equivalent ratio of organosilyl halide represented by Formulas 2 and 3 It can be seen that it is very important for the change of HF and Cl content.
상기 반응시키는 단계는 제2혼합물에 유기실릴할라이드(organic silyl halide) 혼합물을 첨가한 후 40 내지 80 rpm으로 교반하고 -10 내지 60℃로 반응시킬 수 있으며, 이에 제한되는 것은 아니다.The reacting may be performed by adding an organic silyl halide mixture to the second mixture, followed by stirring at 40 to 80 rpm and reaction at −10 to 60 ° C., but is not limited thereto.
상기 반응온도 등의 반응조건은 특별히 한정되는 것은 아니고, 상황에 맞춘 임의의 조건에서 실시하면 되나, 반응온도의 상한은 바람직하게는 60℃, 보다 바람직하게는 40℃ 이하이며, 또한, 하한은 바람직하게는 -10℃, 보다 바람직하게는 0℃ 이상이다. 60℃를 초과하면 LiPF6의 분해가 일어나, PF5를 발생시켜 용매를 분해하기 때문에 바람직하지 않고, -10℃보다 낮은 온도에서는 반응의 진행이 느리기 때문에 경제적이지 못하다.Although reaction conditions, such as said reaction temperature, are not specifically limited, What is necessary is just to implement on arbitrary conditions according to the situation, The upper limit of reaction temperature becomes like this. Preferably it is 60 degreeC, More preferably, it is 40 degrees C or less, and a minimum is preferable. Preferably it is -10 degreeC, More preferably, it is 0 degreeC or more. If it exceeds 60 ° C, decomposition of LiPF 6 occurs and PF 5 is generated to decompose the solvent, which is not preferable, and at a temperature lower than -10 ° C, the progress of the reaction is not economical.
또한 본 발명은 리튬헥사플루오로포스페이트 용액에 물(H2O) 및 유기실릴할라이드를 동시에 첨가하여 반응시키는 단계; 또는 리튬헥사플루오로포스페이트 용액에 물을 첨가한 후 유기실릴할라이드를 순차적으로 첨가하여 반응시키는 단계;를 포함하는, 하기 화학식 1로 표시되는 디플루오로인산리튬의 제조방법을 제공한다.In addition, the present invention comprises the steps of reacting by adding water (H 2 O) and the organosylsilyl halide at the same time to the lithium hexafluorophosphate solution; Or it provides a method for producing lithium difluorophosphate represented by the following formula (1) comprising the step of adding water to the lithium hexafluoro phosphate solution and then organosyl halide to react sequentially.
[화학식 1][Formula 1]
Figure PCTKR2017010853-appb-I000004
Figure PCTKR2017010853-appb-I000004
구체적으로, 본 발명인 디플루오로인산리튬의 제조방법은 하기 반응식 4와 같이 제조될 수 있다.Specifically, the method for preparing lithium difluorophosphate of the present invention may be prepared as in Scheme 4 below.
[반응식 4]Scheme 4
LiPF6 + 2H2O + RnSiXm (n= 1~3, m= 1~3) ----> LiPO2F2 + RnSiFm (n= 1~3, m= 1~3)LiPF 6 + 2H 2 O + R n SiX m (n = 1 ~ 3, m = 1 ~ 3) ----> LiPO 2 F 2 + R n SiF m (n = 1 ~ 3, m = 1 ~ 3 )
상기 반응식 4에 따르면, 본 발명의 화학식 1로 표시되는 디플루오로인산리튬(화학식 1)은 리튬헥사플루오로포스페이트(LiPF6)를 출발물질로 하여 물과 유기실릴할라이드와 반응시켜 제조할 수 있다.According to Scheme 4, the lithium difluorophosphate represented by Chemical Formula 1 (Formula 1) may be prepared by reacting water with an organosilyl halide using lithium hexafluorophosphate (LiPF 6 ) as a starting material. .
상기 유기실릴할라이드는 하기 화학식 4로 표시되는 유기실릴할라이드일 수 있으며, 이에 제한되는 것은 아니다.The organosilyl halide may be an organosilyl halide represented by Formula 4 below, but is not limited thereto.
[화학식 4][Formula 4]
RnSiXm R n SiX m
상기 화학식 4에서, n은 1 내지 3의 정수이고, m은 1 내지 3의 정수이고, R은 C1 ~ C10의 직쇄 또는 측쇄의 알킬, C2 내지 C10의 직쇄 또는 측쇄의 알케닐 또는 아릴이고, X는 염소(Cl), 브롬(Br), 또는 요오드(I)일 수 있고, 특히, 유기실릴할라이드로 트리메틸실릴클로라이드를 사용하는 것이 안정성, 부식성 및 분해성 면에서 바람직하다.In Formula 4, n is an integer of 1 to 3, m is an integer of 1 to 3, R is C 1 ~ C 10 linear or branched alkyl, C 2 to C 10 linear or branched alkenyl or Aryl, X may be chlorine (Cl), bromine (Br), or iodine (I), and in particular, the use of trimethylsilyl chloride as the organosilylide halide is preferred in terms of stability, corrosiveness and degradability.
상기 유기실릴할라이드는 리튬헥사플루오로포스페이트 대비 1.33 내지 4.0 당량으로 첨가될 수 있으며, 특히 R1SiX3는 1.33 당량, R2SiX2는 2.0 당량, R1SiX3는 4.0 당량을 첨가되는 것이 바람직하다.The organosilyl halide may be added in an amount of 1.33 to 4.0 equivalents to lithium hexafluorophosphate, in particular, R 1 SiX 3 is preferably 1.33 equivalents, R 2 SiX 2 is 2.0 equivalents, and R 1 SiX 3 is preferably 4.0 equivalents. Do.
상기 반응에서 물(H2O) 및 유기실릴할라이드의 첨가 순서가 특히 중요하다. 상기 리튬헥사플루오로포스페이트 용액에 (i) 물(H2O)을 첨가한 후, 유기실릴할라이드를 첨가하거나, 또는 (ii) 물(H2O) 및 유기실릴할라이드를 동시 첨가하는 것이 바람직하다. The order of addition of water (H 2 O) and organosilyl halides is particularly important in the reaction. It is preferable to add (i) water (H 2 O) to the lithium hexafluorophosphate solution, and then add organosilyl halide or (ii) simultaneously add water (H 2 O) and organosilyl halide. .
상기 순서에 따를 경우, 불순물이 없는 고순도의 디플루오로인산리튬을 제조할 수 있다. 만약 유기실릴할라이드를 먼저 첨가할 경우, Si-F 결합에너지가 Si-X(X=Cl, Br, I)에 비해 상대적으로 커서 일부 X로 오염된 불순물이 발생하는 문제가 있다.According to the above procedure, it is possible to produce a high-purity lithium difluorophosphate free from impurities. If organosilyl halide is added first, Si-F bond energy is relatively large compared to Si-X (X = Cl, Br, I), which causes some X-contaminated impurities.
상기 반응온도 등의 반응조건은 특별히 한정되는 것은 아니고, 상황에 맞춘 임의의 조건에서 실시하면 되나, 반응온도의 상한은 바람직하게는 80℃, 보다 바람직하게는 60℃ 이하이며, 또한, 하한은 바람직하게는 -10℃, 보다 바람직하게는 0℃ 이상이다. 80℃를 초과하면 LiPF6의 분해가 일어나, PF5를 발생시켜 용매를 분해하기 때문에 바람직하지 않고, -10℃보다 낮은 온도에서는 반응의 진행이 느리기 때문에 경제적이지 못하다.Although reaction conditions, such as said reaction temperature, are not specifically limited, What is necessary is just to implement on arbitrary conditions according to the situation, The upper limit of reaction temperature becomes like this. Preferably it is 80 degreeC, More preferably, it is 60 degrees C or less, and a minimum is preferable. Preferably it is -10 degreeC, More preferably, it is 0 degreeC or more. It is not preferable to decompose LiPF 6 when it exceeds 80 deg. C to generate PF 5 to decompose the solvent, and it is not economical because the progress of the reaction is slow at a temperature lower than -10 deg.
상기 반응 후, 상기 반응물의 온도를 25 ℃까지 승온시키고, 발생된 산 가스를 감압하에 제거한 후, 생성된 디플루오로인산리튬을 걸러내고 건조시켜 본 발명의 디플루오로인산리튬(화학식 1)을 제조할 수 있다.After the reaction, the temperature of the reactant was raised to 25 ° C., and the generated acid gas was removed under reduced pressure, and then, the produced lithium difluorophosphate was filtered and dried to obtain the lithium difluorophosphate of the present invention (Formula 1). It can manufacture.
상기 용매는 리튬헥사플루오로포스페이트 대비 0.5 내지 100 당량비일 수 있으며, 이에 제한되는 것은 아니다.The solvent may be in an amount of 0.5 to 100 equivalents based on lithium hexafluorophosphate, but is not limited thereto.
상기 용매는 디에틸에테르, 디이소프로필 에테르, 및 메틸-t-부틸에테르로 이루어진 군에서 선택된 어느 하나인 에테르류; 디메톡시에탄, 및 디에톡시에탄의 알콕시에탄류; 초산메틸, 초산에틸, 초산프로필, 및 초산부틸로 이루어진 군에서 선택된 어느 하나인 에스테르류; 아세토니트릴, 프로피오니트릴, 및 부티로니트릴로 이루어진 군에서 선택된 어느 하나인 니트릴류; 펜탄, 헥산, 및 헵탄으로 이루어진 군에서 선택된 어느 하나인 탄화수소류; 메탄올, 에탄올, 프로판올, 및 부탄올로 이루어진 군에서 선택된 어느 하나인 알코올류; 아세톤, 메틸에틸케톤, 및 메틸이소프로필 케톤으로 이루어진 군에서 선택된 어느 하나인 케톤류; 및 디메틸카보네이트, 디에틸카보네이트, 및 메틸에틸카보네이트로 이루어진 군에서 선택된 어느 하나인 카보네이트류;로 이루어진 군에서 선택된 어느 하나일 수 있으며, 이에 제한되는 것은 아니다.The solvent may be any one selected from the group consisting of diethyl ether, diisopropyl ether, and methyl t-butyl ether; Dimethoxyethane and alkoxyethanes of diethoxyethane; Ester, which is any one selected from the group consisting of methyl acetate, ethyl acetate, propyl acetate, and butyl acetate; Nitriles which are any one selected from the group consisting of acetonitrile, propionitrile, and butyronitrile; Hydrocarbons which are any one selected from the group consisting of pentane, hexane, and heptane; Alcohols which are any one selected from the group consisting of methanol, ethanol, propanol, and butanol; Ketones which are any one selected from the group consisting of acetone, methyl ethyl ketone, and methyl isopropyl ketone; And carbonates which are any one selected from the group consisting of dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate; may be any one selected from the group consisting of, but is not limited thereto.
상기 물은 리튬헥사플루오로포스페이트 대비 1.00 내지 2.05 당량비일 수 있으며, 이에 제한되는 것은 아니다.The water may be in a ratio of 1.00 to 2.05 equivalents relative to lithium hexafluorophosphate, but is not limited thereto.
상기 물은 리튬헥사플루오로포스페이트와 물의 반응이 정량적으로 진행되기 때문에, 필요량의 디플루오로인산리튬의 양으로부터 역산(逆算)하여 물의 양을 결정해서 첨가하면 되나, 리튬헥사플루오로포스페이트 대비 1.90 내지 2.05 당량비으로 물을 사용하거나, 또는 1.0 내지 3.0 당량비, 특히 2.0 당량비 만큼 사용하는 것이 바람직하다.Since the reaction of water with lithium hexafluorophosphate proceeds quantitatively, the water may be added in reverse amount from the required amount of lithium difluorophosphate to determine the amount of water, but from 1.90 to Lithium fluorophosphate. It is preferable to use water in a 2.05 equivalent ratio, or to use it in 1.0 to 3.0 equivalent ratio, especially 2.0 equivalent ratio.
이하, 하기 실시예에 의해 본 발명인 디플루오로인산리튬의 제조방법을 보다 상세하게 설명한다. 다만, 이러한 실시예에 의해 본 발명이 한정되는 것은 아니다.Hereinafter, the manufacturing method of the lithium difluorophosphate which is this invention is demonstrated in detail by the following example. However, the present invention is not limited by these examples.
<실시예 1> 트리메틸실릴클로라이드와 디메틸실릴디클로라이드 혼합물을 이용한 디플루오로인산리튬의 제조<Example 1> Preparation of lithium difluorophosphate using a mixture of trimethylsilyl chloride and dimethylsilyl dichloride
교반 장치, 콘덴서 및 온도계가 부착된 1000 ㎖ 테플론 플라스크에 질소분위기하에 리튬헥사플루오로포스페이트 90.0 g 및 디메틸카보네이트 210.0 g을 상온에서 투입하여 제1혼합물을 준비하였다.In a 1000 ml Teflon flask equipped with a stirring device, a condenser, and a thermometer, 90.0 g of lithium hexafluorophosphate and 210.0 g of dimethyl carbonate were added at room temperature under a nitrogen atmosphere to prepare a first mixture.
상기 제1혼합물을 얼음욕조를 이용하여 5℃로 냉각시키고, 물(H2O) 21.3 g을 첨가하여 제2혼합물을 준비하였다. The first mixture was cooled to 5 ° C. using an ice bath, and 21.3 g of water (H 2 O) was added to prepare a second mixture.
이어서 디메틸실릴디클로라이드 145.3 g과 트리메티틸실릴클로라이드 12.9 g의 혼합액을 제2혼합물에 첨가하고 60 rpm으로 교반하면서 40℃ 이하에서 반응을 진행하여 디플루오로인산리튬을 제조하였다.Subsequently, a mixture of 145.3 g of dimethylsilyldichloride and 12.9 g of trimethylsilyl chloride was added to the second mixture, and the reaction was performed at 40 ° C. or less while stirring at 60 rpm to prepare lithium difluorophosphate.
반응 완료 후, 서서히 20℃로 승온시킨 후 발생된 염산가스, 디메틸실릴디플루오라이드, 및 트리메틸실릴플루오라이드를 30 mmHg로 감압하여 제거하였다. 제조된 염을 거름종이로 걸러낸 후, 21 g의 디메틸카보네이트로 세척하였다. After completion of the reaction, the reaction mixture was gradually heated up to 20 ° C, and the generated hydrochloric acid gas, dimethylsilyldifluoride, and trimethylsilylfluoride were removed under reduced pressure to 30 mmHg. The prepared salt was filtered off with a filter paper and then washed with 21 g of dimethylcarbonate.
세척된 염을 회수하여 50℃ 이하로 건조함으로써, 백색분말인 디플루오로인산리튬 화합물을 수득하였다(수율: 91.0%, 순도: 99.7%, Cl함량: 8 ppm).The washed salt was recovered and dried to 50 ° C. or less to obtain a lithium powder, difluorophosphate compound (yield: 91.0%, purity: 99.7%, Cl content: 8 ppm).
<비교예 1> Comparative Example 1
트리메틸실릴클로라이드 257.5 g을 제2혼합물에 첨가한 것을 제외하고는 상기 실시예 1과 동일한 조건으로 백색분말인 디플루오로인산리튬 화합물을 수득하였다(수율: 79.0%, 순도: 99.6%, Cl함량: 210 ppm).A lithium powder, difluorophosphate, as a white powder, was obtained under the same conditions as in Example 1 except that 257.5 g of trimethylsilyl chloride was added to the second mixture (yield: 79.0%, purity: 99.6%, Cl content: 210 ppm).
<비교예 2> Comparative Example 2
디메틸실릴디클로라이드 152.9 g을 제2혼합물에 첨가한 것을 제외하고는 상기 실시예 1과 동일한 조건으로 백색분말인 디플루오로인산리튬 화합물을 수득하였다(수율: 84.0%, 순도: 97.4%, Cl함량: 7 ppm).A lithium powder, difluorophosphate, as a white powder, was obtained under the same conditions as in Example 1 except that 152.9 g of dimethylsilyldichloride was added to the second mixture (yield: 84.0%, purity: 97.4%, Cl content). : 7 ppm).
<비교예 3>Comparative Example 3
디메틸실릴디클로라이드 159.81 g과 트리메틸실릴클로라이드 0.64 g을 제2혼합물에 첨가한 것을 제외하고는 상기 실시예 1과 동일한 조건으로 백색분말인 디플루오로인산리튬 화합물을 수득하였다(수율: 83.0%, 순도: 98.3%, Cl함량: 8 ppm).A lithium powder of difluorophosphate, a white powder, was obtained under the same conditions as in Example 1 except that 159.81 g of dimethylsilyldichloride and 0.64 g of trimethylsilyl chloride were added to the second mixture (yield: 83.0%, purity). : 98.3%, Cl content: 8 ppm).
<비교예 4><Comparative Example 4>
디메틸실릴디클로라이드 76.46 g과 트리메틸실릴클로라이드 129.37 g을 제2혼합물에 첨가한 것을 제외하고는 상기 실시예 1과 동일한 조건으로 백색분말인 디플루오로인산리튬 화합물을 수득하였다(수율: 82.0%, 순도: 99.7%, Cl함량: 181 ppm).A lithium powder, difluorophosphate, which was a white powder, was obtained under the same conditions as in Example 1 except that 76.46 g of dimethylsilyldichloride and 129.37 g of trimethylsilyl chloride were added to the second mixture (yield: 82.0%, purity). : 99.7%, Cl content: 181 ppm).
<실시예 2> 트리메틸클로로실란을 이용한 디플루오로인산리튬의 제조(물 첨가 후, 트리메틸클로로실란을 첨가하는 경우)<Example 2> Preparation of lithium difluorophosphate using trimethylchlorosilane (when trimethylchlorosilane is added after adding water)
교반 장치, 콘덴서 및 온도계가 부착된 1000 ㎖ 둥근 플라스크에 질소분위기하에 리튬헥사플루오로포스페이트 90.0 g 및 디메틸카보네이트 210.0 g을 상온에서 투입하였다. 상기 혼합물을 얼음욕조를 이용하여 5℃로 냉각시키고, 물(H2O) 21.3 g을 첨가한 후, 이어서 트리메틸클로로실란 257.5 g을 천천히 첨가하였다. 상기 혼합물을 교반하면서 서서히 20℃로 승온시켜 반응을 진행하여 디플루오로인산리튬을 제조하였다.In a 1000 ml round flask equipped with a stirring device, a condenser and a thermometer, 90.0 g of lithium hexafluorophosphate and 210.0 g of dimethyl carbonate were added at room temperature under a nitrogen atmosphere. The mixture was cooled to 5 ° C. using an ice bath, 21.3 g of water (H 2 O) were added, followed by the slow addition of 257.5 g of trimethylchlorosilane. Lithium difluorophosphate was prepared by gradually raising the mixture to 20 ° C. while stirring.
반응 완료 후, 온도를 25℃로 올리고, 발생된 염산가스와 트리메틸플루오로실란을 감압하여 제거하였다. 발생된 염을 거름종이로 걸러내 후, 소량의 디메틸카보네이트로 세척하였다. 걸러낸 염을 회수하여 건조함으로써, 백색분말인 디플루오로인산리튬 화합물을 수득하였다(수율: 85%, 순도: 99.9%, Cl함량: 10 ppm).After the reaction was completed, the temperature was raised to 25 ° C., and the generated hydrochloric acid gas and trimethylfluorosilane were removed under reduced pressure. The resulting salt was filtered off with a filter paper and washed with a small amount of dimethyl carbonate. The filtered salt was collected and dried to obtain a lithium powder, difluorophosphate compound (yield: 85%, purity: 99.9%, Cl content: 10 ppm).
<실시예 3> 트리메틸클로로실란을 이용한 디플루오로인산리튬의 제조(물 및 트리메틸클로로실란을 동시 첨가하는 경우)Example 3 Preparation of Lithium Difluorophosphate Using Trimethylchlorosilane (When Water and Trimethylchlorosilane Are Simultaneously Added)
교반장치, 콘덴서 및 온도계가 부착된 1000 ㎖ 둥근 플라스크에 질소분위기하에 리튬헥사플루오로포스페이트 90.0 g 및 디메틸카보네이트 210.0 g을 상온에서 투입하였다. 상기 혼합물을 얼음욕조를 이용하여 5℃로 냉각시키고, 물(H2O) 21.3 g과 트리메틸클로로실란 257.5 g을 천천히 동시 첨가하였다. 상기 혼합물을 교반하면서 서서히 20℃로 승온시켜 반응을 진행하여 디플루오로인산리튬을 제조하였다.In a 1000 ml round flask equipped with a stirrer, a condenser and a thermometer, 90.0 g of lithium hexafluorophosphate and 210.0 g of dimethyl carbonate were added at room temperature under a nitrogen atmosphere. The mixture was cooled to 5 ° C. using an ice bath and 21.3 g of water (H 2 O) and 257.5 g of trimethylchlorosilane were slowly added simultaneously. Lithium difluorophosphate was prepared by gradually raising the mixture to 20 ° C. while stirring.
반응 완료 후, 온도를 25℃로 올리고, 발생된 염산가스와 트리메틸플루오로실란을 감압하여 제거하였다. 발생된 염을 거름종이로 걸러낸 후, 소량의 디메틸카보네이트로 세척하였다. 걸러낸 염을 회수하여 건조함으로써, 백색분말인 디플루오로인산리튬 화합물을 수득하였다(수율: 84%, 순도: 99.8%, Cl함량: 15 ppm).After the reaction was completed, the temperature was raised to 25 ° C., and the generated hydrochloric acid gas and trimethylfluorosilane were removed under reduced pressure. The resulting salt was filtered off with a filter paper and washed with a small amount of dimethyl carbonate. The filtered salt was collected and dried to obtain a lithium powder, difluorophosphate compound (yield: 84%, purity: 99.8%, Cl content: 15 ppm).
<비교예 5> 디플루오로인산리튬의 제조(트리메틸클로로실란 첨가 후, 물을 첨가하는 경우)Comparative Example 5 Preparation of Lithium Difluorophosphate (In the case of adding water after addition of trimethylchlorosilane)
교반 장치, 콘덴서 및 온도계가 부착된 1000 ㎖ 둥근 플라스크에 질소분위기하에 리튬헥사플루오로포스페이트 90.0 g 및 디메틸카보네이트 210.0 g을 상온에서 투입하였다. 상기 혼합물을 얼음욕조를 이용하여 5℃로 냉각시키고, 트리메틸클로로실란 257.5 g을 첨가한 후, 이어서 물(H2O) 21.3 g을 천천히 첨가하였다. 상기 혼합물을 교반하면서 서서히 20℃로 승온시켜 반응을 진행하여 디플루오로인산리튬을 제조하였다.In a 1000 ml round flask equipped with a stirring device, a condenser and a thermometer, 90.0 g of lithium hexafluorophosphate and 210.0 g of dimethyl carbonate were added at room temperature under a nitrogen atmosphere. The mixture was cooled to 5 ° C. using an ice bath, 257.5 g of trimethylchlorosilane were added followed by 21.3 g of water (H 2 O) slowly. Lithium difluorophosphate was prepared by gradually raising the mixture to 20 ° C. while stirring.
반응 완료 후, 온도를 25℃로 올리고, 발생된 염산가스와 트리메틸실릴플루오라이드를 감압하여 제거하였다. 발생된 염을 거름종이로 걸러내 후, 소량의 디메틸카보네이트로 세척하였다. 걸러낸 염을 회수하여 건조함으로써, 백색분말인 디플루오로인산리튬 화합물을 수득하였다(수율: 85%, 순도: 98.8%, Cl함량: 350 ppm).After the reaction was completed, the temperature was raised to 25 ° C, and the generated hydrochloric acid gas and trimethylsilyl fluoride were removed under reduced pressure. The resulting salt was filtered off with a filter paper and washed with a small amount of dimethyl carbonate. The filtered salt was collected and dried to obtain a lithium powder, difluorophosphate compound (yield: 85%, purity: 98.8%, Cl content: 350 ppm).
이와 같이, 트리메틸클로로실란 첨가 후, 물을 첨가하는 경우, 상기 실시예 2의 물 첨가 후, 트리메틸클로로실란을 첨가하는 경우 및 상기 실시예 3의 물 및 트리메틸클로로실란을 동시 첨가하는 경우에 비해, 순도가 감소하고, Cl 함량이 현저하게 증가하여 Cl로 오염된 불순물이 생성되는 문제점이 있음을 확인하였다. Thus, when adding water after the addition of trimethylchlorosilane, compared with the case of adding trimethylchlorosilane after the addition of water of Example 2, and the simultaneous addition of water and trimethylchlorosilane of Example 3, It was confirmed that there is a problem that the purity decreases and the Cl content increases markedly to produce impurities contaminated with Cl.
<실시예 4> 디클로로디메틸실란을 이용한 디플루오로인산리튬의 제조(물 첨가 후, 디클로로디메틸실란을 첨가하는 경우)Example 4 Preparation of Lithium Difluorophosphate Using Dichlorodimethylsilane (When Dichlorodimethylsilane is Added After Water is Added)
교반 장치, 콘덴서 및 온도계가 부착된 1000 ㎖ 둥근 플라스크에 질소분위기하에 리튬헥사플루오로포스페이트 90.0 g 및 디메틸카보네이트 210.0 g을 상온에서 투입하였다. 상기 혼합물을 얼음욕조를 이용하여 5℃로 냉각시키고, 물(H2O) 21.3 g을 첨가한 후, 이어서 디클로로디메틸실란 152.9 g을 천천히 첨가하였다. 상기 혼합물을 교반하면서 서서히 20℃로 승온시켜 반응을 진행하여 디플루오로인산리튬을 제조하였다.In a 1000 ml round flask equipped with a stirring device, a condenser and a thermometer, 90.0 g of lithium hexafluorophosphate and 210.0 g of dimethyl carbonate were added at room temperature under a nitrogen atmosphere. The mixture was cooled to 5 ° C. using an ice bath, 21.3 g of water (H 2 O) were added, followed by the slow addition of 152.9 g of dichlorodimethylsilane. Lithium difluorophosphate was prepared by gradually raising the mixture to 20 ° C. while stirring.
반응 완료 후, 온도를 25℃로 올리고, 발생된 염산가스와 디플루오로디메틸실란을 감압하여 제거하였다. 발생된 염을 거름종이로 걸러내 후, 소량의 디메틸카보네이트로 세척하였다. 걸러낸 염을 회수하여 건조함으로써, 백색분말인 디플루오로인산리튬 화합물을 수득하였다(수율: 84%, 순도: 99.9%, Cl함량: 11 ppm).After the reaction was completed, the temperature was raised to 25 ° C., and the generated hydrochloric acid gas and difluorodimethylsilane were removed under reduced pressure. The resulting salt was filtered off with a filter paper and washed with a small amount of dimethyl carbonate. The filtered salt was collected and dried to obtain a lithium powder, difluorophosphate compound (yield: 84%, purity: 99.9%, Cl content: 11 ppm).
<실시예 5> 메틸트리클로로실란을 이용한 디플루오로인산리튬의 제조Example 5 Preparation of Lithium Difluorophosphate Using Methyltrichlorosilane
교반 장치, 콘덴서 및 온도계가 부착된 1000 ㎖ 둥근 플라스크에 질소분위기하에 리튬헥사플루오로포스페이트 90.0 g 및 디메틸카보네이트 210.0 g을 상온에서 투입하였다. 상기 혼합물을 얼음욕조를 이용하여 5℃로 냉각시키고, 물(H2O) 21.3 g을 첨가한 후, 이어서 트리메틸클로로실란 117.8 g을 천천히 첨가하였다. 상기 혼합물을 교반하면서 서서히 20℃로 승온시켜 반응을 진행하여 디플루오로인산리튬을 제조하였다.In a 1000 ml round flask equipped with a stirring device, a condenser and a thermometer, 90.0 g of lithium hexafluorophosphate and 210.0 g of dimethyl carbonate were added at room temperature under a nitrogen atmosphere. The mixture was cooled to 5 ° C. using an ice bath, 21.3 g of water (H 2 O) were added followed by the slow addition of 117.8 g of trimethylchlorosilane. Lithium difluorophosphate was prepared by gradually raising the mixture to 20 ° C. while stirring.
반응 완료 후, 온도를 25℃로 올리고, 발생된 염산가스와 트리메틸플루오로실란을 감압하여 제거하였다. 발생된 염을 거름종이로 걸러내 후, 소량의 디메틸카보네이트로 세척하였다. 걸러낸 염을 회수하여 건조함으로써, 백색분말인 디플루오로인산리튬 화합물을 수득하였다 (수율: 84%, 순도: 99.9%, Cl함량: 13 ppm).After the reaction was completed, the temperature was raised to 25 ° C., and the generated hydrochloric acid gas and trimethylfluorosilane were removed under reduced pressure. The resulting salt was filtered off with a filter paper and washed with a small amount of dimethyl carbonate. The filtered salt was collected and dried to obtain a lithium powder, difluorophosphate compound (yield: 84%, purity: 99.9%, Cl content: 13 ppm).
이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술 사상과 아래에 기재될 청구범위의 균등 범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.As mentioned above, although this invention was demonstrated by the limited embodiment and drawing, this invention is not limited by this, The person of ordinary skill in the art to which this invention belongs, Of course, various modifications and variations are possible within the scope of equivalents of the claims to be described.

Claims (12)

  1. 리튬헥사플루오로포스페이트와 용매를 혼합하여 제1혼합물을 준비하는 단계;Preparing a first mixture by mixing lithium hexafluorophosphate and a solvent;
    상기 제1혼합물에 물을 첨가하여 제2혼합물을 준비하는 단계;Preparing a second mixture by adding water to the first mixture;
    상기 제2혼합물에 유기실릴할라이드(organic silyl halide) 혼합물을 첨가한 후 교반하여 반응시키는 단계; 및Adding an organic silyl halide mixture to the second mixture, followed by stirring to react; And
    반응 생성물을 승온시키고, 감압한 후 여과 분리하여 하기 화학식 1로 표시되는 디플루오로인산리튬(lithium difluorophosphate)을 제조하는 단계;Preparing a lithium difluorophosphate represented by the following Chemical Formula 1 by heating the reaction product, depressurizingly, and separating the filtration product;
    를 포함하는, 디플루오로인산리튬의 제조방법:Method for producing lithium difluorophosphate comprising:
    [화학식 1][Formula 1]
    Figure PCTKR2017010853-appb-I000005
    Figure PCTKR2017010853-appb-I000005
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 유기실릴할라이드 혼합물은,The organosilyl halide mixture,
    하기 화학식 2와 화학식 3으로 표시되는 유기실릴할라이드의 혼합물인 것을 특징으로 하는, 디플루오로인산리튬의 제조방법:Method for producing lithium difluorophosphate, characterized in that the mixture of the organosilyl halide represented by the formula (2) and formula (3):
    [화학식 2][Formula 2]
    R1R2R3-Si-X1 R 1 R 2 R 3 -Si-X 1
    [화학식 3][Formula 3]
    R4R5-Si-X2X3 R 4 R 5 -Si-X 2 X 3
    상기 화학식 2 및 화학식 3에서, In Chemical Formulas 2 and 3,
    R1 내지 R5는 서로 동일하거나 상이하고, C1 내지 C10의 직쇄 또는 측쇄의 알킬, C2 내지 C10의 직쇄 또는 측쇄의 알케닐 또는 아릴이고,R 1 to R 5 are the same as or different from each other, C 1 to C 10 straight or branched alkyl, C 2 to C 10 straight or branched alkenyl or aryl,
    X1 내지 X3은 서로 동일하거나 상이하고, 염소(Cl), 브롬(Br), 또는 요오드(I)임.X 1 to X 3 are the same as or different from each other, and are chlorine (Cl), bromine (Br), or iodine (I).
  3. 청구항 2에 있어서,The method according to claim 2,
    상기 R1 내지 R5는,R 1 to R 5 ,
    메틸, 에틸, 프로필, 및 비닐로 이루어진 군에서 선택된 어느 하나인 것을 특징으로 하는, 디플루오로인산리튬의 제조방법.Method for producing lithium difluorophosphate, characterized in that any one selected from the group consisting of methyl, ethyl, propyl, and vinyl.
  4. 청구항 2에 있어서,The method according to claim 2,
    상기 유기실릴할라이드(organic silyl halide) 혼합물은,The organic silyl halide mixture,
    리튬헥사플루오로포스페이트 대비 화학식 2로 표시되는 유기실릴할라이드가 0.02 내지 2.0 당량비이고, 리튬헥사플루오로포스페이트 대비 화학식 3으로 표시되는 유기실릴할라이드가 0.99 내지 2.08 당량비인 것을 특징으로 하는, 디플루오로인산리튬의 제조방법.Difluorophosphoric acid, characterized in that the organic silyl halide represented by the formula (2) relative to the lithium hexafluoro phosphate is 0.02 to 2.0 equivalent ratio, and 0.99 to 2.08 equivalent ratio of the organosyl silyl halide represented by the formula (3) relative to the lithium hexafluorophosphate Method for producing lithium
  5. 청구항 1에 있어서,The method according to claim 1,
    상기 반응시키는 단계는,The step of reacting,
    제2혼합물에 유기실릴할라이드 혼합물을 첨가한 후 40 내지 80 rpm으로 교반하고 -10 내지 60℃로 반응시키는 것을 특징으로 하는, 디플루오로인산리튬의 제조방법.After the organosilyl halide mixture is added to the second mixture, the mixture is stirred at 40 to 80 rpm and reacted at -10 to 60 ° C.
  6. 리튬헥사플루오로포스페이트 용액에 물(H2O) 및 유기실릴할라이드를 동시에 첨가하여 반응시키는 단계; 또는 리튬헥사플루오로포스페이트 용액에 물을 첨가한 후 유기실릴할라이드를 순차적으로 첨가하여 반응시키는 단계;를 포함하는, 하기 화학식 1로 표시되는 디플루오로인산리튬의 제조방법:Reacting by adding water (H 2 O) and organosilyl halide simultaneously to the lithium hexafluorophosphate solution; Or adding water to the lithium hexafluorophosphate solution and then sequentially adding and reacting the organosilyl halide to prepare a lithium difluorophosphate represented by the following Chemical Formula 1.
    [화학식 1][Formula 1]
    Figure PCTKR2017010853-appb-I000006
    Figure PCTKR2017010853-appb-I000006
  7. 청구항 6에 있어서,The method according to claim 6,
    상기 유기실릴할라이드는,The organosilyl halide is,
    하기 화학식 4로 표시되는 유기실릴할라이드인 것을 특징으로 하는, 디플루오로인산리튬의 제조방법:Method for producing lithium difluorophosphate, characterized in that the organosilyl halide represented by the formula (4):
    [화학식 4][Formula 4]
    RnSiXm R n SiX m
    상기 화학식 4에서,In Chemical Formula 4,
    n은 1 내지 3의 정수이고, n is an integer from 1 to 3,
    m은 1 내지 3의 정수이고,m is an integer of 1 to 3,
    R은 C1 ~ C10의 직쇄 또는 측쇄의 알킬, C2 내지 C10의 직쇄 또는 측쇄의 알케닐 또는 아릴이고, R is C 1 to C 10 straight or branched alkyl, C 2 to C 10 straight or branched alkenyl or aryl,
    X는 염소(Cl), 브롬(Br), 또는 요오드(I)임.X is chlorine (Cl), bromine (Br), or iodine (I).
  8. 청구항 6에 있어서,The method according to claim 6,
    상기 유기실릴할라이드는,The organosilyl halide is,
    리튬헥사플루오로포스페이트 대비 1.33 내지 4.0 당량으로 첨가되는 것을 특징으로 하는, 디플루오로인산리튬의 제조방법.Method for producing lithium difluorophosphate, characterized in that added to 1.33 to 4.0 equivalents compared to lithium hexafluorophosphate.
  9. 청구항 6에 있어서,The method according to claim 6,
    반응온도는 -10 내지 80℃인 것을 특징으로 하는, 디플루오로인산리튬의 제조방법.The reaction temperature is -10 to 80 ℃, method for producing lithium difluorophosphate.
  10. 청구항 1 또는 청구항 6에 있어서,The method according to claim 1 or 6,
    상기 용매는,The solvent,
    리튬헥사플루오로포스페이트 대비 0.5 내지 100 당량비인 것을 특징으로 하는, 디플루오로인산리튬의 제조방법.Method for producing lithium difluorophosphate, characterized in that the ratio of 0.5 to 100 equivalents relative to lithium hexafluorophosphate.
  11. 청구항 1 또는 청구항 6에 있어서,The method according to claim 1 or 6,
    상기 용매는,The solvent,
    디에틸에테르, 디이소프로필 에테르, 및 메틸-t-부틸에테르로 이루어진 군에서 선택된 어느 하나인 에테르류; 디메톡시에탄, 및 디에톡시에탄의 알콕시에탄류; 초산메틸, 초산에틸, 초산프로필, 및 초산부틸로 이루어진 군에서 선택된 어느 하나인 에스테르류; 아세토니트릴, 프로피오니트릴, 및 부티로니트릴로 이루어진 군에서 선택된 어느 하나인 니트릴류; 펜탄, 헥산, 및 헵탄으로 이루어진 군에서 선택된 어느 하나인 탄화수소류; 메탄올, 에탄올, 프로판올, 및 부탄올로 이루어진 군에서 선택된 어느 하나인 알코올류; 아세톤, 메틸에틸케톤, 및 메틸이소프로필 케톤으로 이루어진 군에서 선택된 어느 하나인 케톤류; 및 디메틸카보네이트, 디에틸카보네이트, 및 메틸에틸카보네이트로 이루어진 군에서 선택된 어느 하나인 카보네이트류;로 이루어진 군에서 선택된 어느 하나인 것을 특징으로 하는, 디플루오로인산리튬의 제조방법.Ethers which are any one selected from the group consisting of diethyl ether, diisopropyl ether, and methyl-t-butyl ether; Dimethoxyethane and alkoxyethanes of diethoxyethane; Ester, which is any one selected from the group consisting of methyl acetate, ethyl acetate, propyl acetate, and butyl acetate; Nitriles which are any one selected from the group consisting of acetonitrile, propionitrile, and butyronitrile; Hydrocarbons which are any one selected from the group consisting of pentane, hexane, and heptane; Alcohols which are any one selected from the group consisting of methanol, ethanol, propanol, and butanol; Ketones which are any one selected from the group consisting of acetone, methyl ethyl ketone, and methyl isopropyl ketone; And carbonates which are any one selected from the group consisting of dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate. The method of manufacturing lithium difluorophosphate.
  12. 청구항 1 또는 청구항 6에 있어서,The method according to claim 1 or 6,
    상기 물은,The water is,
    리튬헥사플루오로포스페이트 대비 1.00 내지 3.00 당량비인 것을 특징으로 하는, 디플루오로인산리튬의 제조방법.Method for producing lithium difluorophosphate, characterized in that 1.00 to 3.00 equivalent ratio relative to lithium hexafluorophosphate.
PCT/KR2017/010853 2016-10-06 2017-09-28 Method for preparing lithium difluorophosphate WO2018066896A2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2016-0129043 2016-10-06
KR1020160129043A KR101739936B1 (en) 2016-10-06 2016-10-06 Novel method for preparing lithium difluorophosphate
KR10-2017-0021009 2017-02-16
KR1020170021009A KR101898803B1 (en) 2017-02-16 2017-02-16 Preparing method of lithium difluorophosphate

Publications (2)

Publication Number Publication Date
WO2018066896A2 true WO2018066896A2 (en) 2018-04-12
WO2018066896A3 WO2018066896A3 (en) 2018-08-09

Family

ID=61831072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/010853 WO2018066896A2 (en) 2016-10-06 2017-09-28 Method for preparing lithium difluorophosphate

Country Status (1)

Country Link
WO (1) WO2018066896A2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108793118A (en) * 2018-08-13 2018-11-13 合肥天徽新材料有限公司 A kind of process units and production method of difluorophosphate
CN111224164A (en) * 2019-12-13 2020-06-02 九江天赐高新材料有限公司 Preparation method of lithium difluorophosphate
CN114634170A (en) * 2020-12-15 2022-06-17 江苏国泰超威新材料有限公司 Preparation method of lithium difluorophosphate
CN115215316A (en) * 2021-04-15 2022-10-21 浙江省化工研究院有限公司 Preparation method of lithium difluorophosphate
CN115321510A (en) * 2022-08-30 2022-11-11 珠海正杏新材料科技有限公司 Preparation method of lithium difluorophosphate
CN116443843A (en) * 2023-05-06 2023-07-18 珠海市赛纬电子材料股份有限公司 Waste electrolyte recovery method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4650627B2 (en) * 2005-09-14 2011-03-16 信越化学工業株式会社 Cyclic carbonate-modified siloxane, method for producing the same, non-aqueous electrolyte, secondary battery, and capacitor
KR101539780B1 (en) * 2006-08-22 2015-07-27 미쓰비시 가가꾸 가부시키가이샤 2 2 2 2 lithium difluorophosphate electrolytic solution containing lithium difluorophosphate process for producing lithium difluorophosphate process for producing nonaqueous electrolytic solution nonaqueous electrolytic solution and nonaqueous-electrolytic-solution secondary cell employing the same
JP5277550B2 (en) * 2007-03-12 2013-08-28 セントラル硝子株式会社 Method for producing lithium difluorophosphate and non-aqueous electrolyte battery using the same
KR20130099019A (en) * 2010-08-04 2013-09-05 솔베이(소시에떼아노님) Manufacture of lipo2f2 from pof3 or pf5
JP5687792B2 (en) * 2013-06-07 2015-03-18 ステラケミファ株式会社 Method for producing difluorophosphate

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108793118A (en) * 2018-08-13 2018-11-13 合肥天徽新材料有限公司 A kind of process units and production method of difluorophosphate
CN111224164A (en) * 2019-12-13 2020-06-02 九江天赐高新材料有限公司 Preparation method of lithium difluorophosphate
CN111224164B (en) * 2019-12-13 2022-07-15 九江天赐高新材料有限公司 Preparation method of lithium difluorophosphate
CN114634170A (en) * 2020-12-15 2022-06-17 江苏国泰超威新材料有限公司 Preparation method of lithium difluorophosphate
CN115215316A (en) * 2021-04-15 2022-10-21 浙江省化工研究院有限公司 Preparation method of lithium difluorophosphate
CN115215316B (en) * 2021-04-15 2023-09-15 浙江省化工研究院有限公司 Preparation method of lithium difluorophosphate
CN115321510A (en) * 2022-08-30 2022-11-11 珠海正杏新材料科技有限公司 Preparation method of lithium difluorophosphate
CN116443843A (en) * 2023-05-06 2023-07-18 珠海市赛纬电子材料股份有限公司 Waste electrolyte recovery method

Also Published As

Publication number Publication date
WO2018066896A3 (en) 2018-08-09

Similar Documents

Publication Publication Date Title
WO2018066896A2 (en) Method for preparing lithium difluorophosphate
KR101739936B1 (en) Novel method for preparing lithium difluorophosphate
WO2017090877A1 (en) Novel method for preparing lithium bis(fluorosulfonyl)imide
KR101898803B1 (en) Preparing method of lithium difluorophosphate
WO2020027415A1 (en) Method for producing lithium difluorophosphate crystal in high purity and non-aqueous electrolyte for secondary battery using same
KR101395663B1 (en) Process for preparing lithium difluorobis(oxalato)phosphate, lithium tetrafluoro(oxalato)phosphate, or their mixture
CN111217850B (en) Preparation method of silicon-based ester compound, electrolyte containing silicon-based ester compound and secondary battery
WO2019245091A1 (en) Method for preparing lithium difluorophosphate crystal with high purity, and non-aqueous electrolyte solution for secondary battery using same
KR102285464B1 (en) Method for producing bis (fluorosulfonyl) imide lithium salt (LiFSI) with reduced fluorine anion content
WO2014200232A1 (en) Dispersion stabilizer for graphene exfoliation, graphene-alkali metal salt composite comprising same, and method for preparing graphene using same
JP2018090439A (en) Process for producing lithium difluorophosphate
CN115340573B (en) Preparation method of lithium difluorobis (oxalate) phosphate
WO2019245092A1 (en) Furfuryl alcohol-derived bifunctional furan epoxy and method for producing same
WO2020055030A1 (en) Method for producing bis(fluorosulfonyl)imide lithium salt (lifsi) with reduced fluorine anion content (1)
WO2016080683A1 (en) Method for preparing tris(trialkylsilyl)phosphine
CN111690010A (en) Preparation method of lithium tetrafluoro oxalate phosphate and lithium difluorobis oxalate phosphate
KR20220110030A (en) Manufacturing method for high-purity crystallization of lithium difluorophosphate with excellet solubility and Non-aqueous electrolyte for secondary battery
KR20110021130A (en) Preparation of alkylaminosilane
CN109180730A (en) A kind of double oxalic acid method for production of phosphate salt of difluoro
CN111574566A (en) Preparation method of lithium tetrafluoro oxalate phosphate and lithium difluorobis oxalate phosphate
CN112537763B (en) Method for synthesizing lithium difluorophosphate by gas-solid-liquid three-phase
CN113929711A (en) Preparation method of lithium difluoroborate
US4131624A (en) Reduction of phosphine oxides
KR102267470B1 (en) Economical and efficient manufacturing process of lithium difluorophosphate having high-purity
WO2019199013A1 (en) Method for preparing lithium bis(fluorosulfonyl)imide salt

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17858690

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17858690

Country of ref document: EP

Kind code of ref document: A2