WO2018066570A1 - Radiography device, radiography system, radiography method, and program - Google Patents

Radiography device, radiography system, radiography method, and program Download PDF

Info

Publication number
WO2018066570A1
WO2018066570A1 PCT/JP2017/036019 JP2017036019W WO2018066570A1 WO 2018066570 A1 WO2018066570 A1 WO 2018066570A1 JP 2017036019 W JP2017036019 W JP 2017036019W WO 2018066570 A1 WO2018066570 A1 WO 2018066570A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy
radiation
feature amount
average
value
Prior art date
Application number
PCT/JP2017/036019
Other languages
French (fr)
Japanese (ja)
Inventor
野田 剛司
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Publication of WO2018066570A1 publication Critical patent/WO2018066570A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment

Definitions

  • the present invention relates to a radiation imaging apparatus, a radiation imaging system, a radiation imaging method, and a program.
  • FPD flat panel detectors
  • Such a radiographic apparatus is used, for example, as a digital imaging apparatus for moving image shooting such as still image shooting such as general shooting or fluoroscopic shooting in medical image diagnosis. Since FPD can process radiographic imaging information as a digital image, various applications have been put to practical use.
  • the attenuation coefficient representing the degree to which radiation is attenuated when passing through the substance varies depending on the substance.
  • the attenuation coefficient depends on the energy of radiation. Therefore, it is possible to generate an image in which two substances having different attenuation coefficients are separated by taking two images of radiation with two types of energy, obtaining two images, calculating an appropriate coefficient after logarithmic conversion, and performing a difference. it can.
  • the pixel value of FPD is proportional to the product of the energy of incident radiation and the number of photons.
  • the number of incident photons decreases for radiation with high energy, so photon noise (Poisson noise).
  • Poisson noise has the property of increasing.
  • Patent Document 1 describes a method of estimating average energy from the distribution of photon noise of radiation. However, when actually measuring the energy of incident radiation, it may not match the estimated value.
  • the radiation imaging apparatus of the present invention is a calculation means for calculating an energy feature amount of radiation from a dispersion value and an average value of pixel values of a radiographic image, and correcting fluctuations of the energy feature amount based on the average value. Correction means for calculating an average energy of the radiation.
  • FIG. 1 is a diagram illustrating a functional configuration example of the first embodiment.
  • the radiation imaging system 100 of the present invention includes a radiation tube 101, a radiation generation device 102, an FPD (radiation detection unit) 104, an FPD control unit 105, a monitor 106, an operation unit 107, an image storage unit 108, and an image processing unit 109. .
  • the radiation tube 101 irradiates the subject 103 with radiation.
  • the radiation generator 102 applies a high voltage pulse to the radiation tube 101 by pressing the exposure switch to generate radiation.
  • the FPD 104 detects radiation and outputs image data of a radiation image.
  • the FPD 104 is controlled by the FPD control unit 105 to convert the radiation that has passed through the subject 103 into visible light using a fluorescent material, and detects it with a photodiode.
  • the detected electrical signal is AD-converted and transmitted to the FPD control unit 105 as a digital image (radiation image).
  • the FPD control unit 105 includes an image storage unit 108 and an image processing unit 109 and is built in one or a plurality of computers.
  • the computer includes, for example, main control means such as a CPU and storage means such as ROM (Read Only Memory) and RAM (Random Access Memory). Further, the computer may be provided with graphic control means such as GPU (Graphics Processing Unit), communication means such as a network card, input / output means such as a keyboard, display or touch panel.
  • main control means such as a CPU and storage means such as ROM (Read Only Memory) and RAM (Random Access Memory).
  • graphic control means such as GPU (Graphics Processing Unit)
  • communication means such as a network card
  • input / output means such as a keyboard, display or touch panel.
  • these constituent units are connected by a bus or the like, and are controlled by the main control unit executing a program stored in the storage unit.
  • the monitor 106 displays the digital image received by the FPD control unit 105 and the digital image processed by the image processing unit 109, and provides the digital image for confirmation of radiography by the radiographer and diagnosis by the doctor.
  • the operation unit 107 can input an instruction to the FPD 104 or the image processing unit 109, and may include a user interface.
  • the image storage unit 108 stores the digital image output from the FPD control unit 105 and the digital image processed by the image processing unit 109.
  • the image processing unit 109 generates an average energy image from the radiation digital image captured by the FPD 104.
  • the image processing unit 109 includes a variance calculation unit (dispersion calculation unit) 110, an average value calculation unit (average value calculation unit) 111, an energy feature amount calculation unit (calculation unit) 112, a calibration table holding unit 113, and An average energy calculation unit (correction unit) 114 is provided.
  • a plurality of radiographic images captured by the FPD 104 are stored in the image storage unit 108 and transferred to the image processing unit 109 by the FPD control unit 105 (step S201).
  • step S201 the average value calculation unit 111 generates an average value image A (x, y) from the plurality of input radiation images M (x, y, t) according to the equation (1).
  • x and y are the coordinates of the pixels of the radiation image.
  • t is an integer and represents the frame number of the radiographic image taken in time series. Brackets ⁇ > t represent time averages. In this way, the average value calculation unit 111 calculates the average value of the pixel values of the radiation image.
  • step S ⁇ b> 202 the variance calculation unit 110 calculates the variance image V (x, y) from the plurality of input radiation images M (x, y, t) and the average value image A (x, y) according to Equation (2). Is generated. In this way, the variance calculation unit 110 calculates the variance of the pixel values of the radiation image.
  • step S203 the energy feature amount calculation unit 112 generates an energy feature amount image E s (x, y) according to Equation (3).
  • the energy feature amount calculation unit (calculation unit) 112 calculates the radiation energy feature amount from the variance value V (x, y) and the average value A (x, y) of the pixel values of the radiation image.
  • E s (x, y) is calculated.
  • the energy feature amount calculation unit 112 calculates the energy feature amount from the variance and the average value.
  • Equation (3) represents the average energy of radiation that has reached the FPD 104. That is, since the output is proportional to the product of the number of photons of radiation that has reached the FPD 104 and the energy of each photon, Equation (3) becomes Equation (4).
  • the fluctuation of the number of photons of radiation reaching the FPD 104 follows the Poisson distribution, and the Poisson distribution has the property that the variance is equal to the expected value. Therefore, the following relationship holds for the number N of photons of radiation that reaches the FPD 104.
  • Equation (3) is found to be an amount corresponding to the average energy E. Since the unit is different from the energy feature value E s and the energy E, by multiplying a predetermined coefficient to the energy characteristic quantity E s, the energy feature value E s may be matched with the average energy E.
  • the energy feature value E s was found to vary according to the average value of the pixel values of the radiographic image.
  • the energy feature value E s is should be constant regardless of the average value of the pixel values of the radiographic image, actual energy feature value E s It turned out that it changes according to the average value of the pixel value of a radiographic image.
  • Energy feature value E s in accordance with equation (7) is corrected by the average value A of the pixel values, the mean energy E is corrected.
  • the average energy calculation unit 114 uses the calibration table LUT2D to calculate the average energy E from the average value image based on the average value A (x, y) and the feature amount image based on the energy feature amount E s (x, y). An average energy image by (x, y) is generated.
  • the average energy calculation unit (correction unit) 114 corrects the energy feature value E s based on the calibration table LUT2D.
  • the mean energy calculation unit (correction unit) 114 by correcting on the basis of the variation of the energy feature value E s to the average value A, and calculates an average energy E of the radiation.
  • the average energy E from the energy feature value E s is not estimated uniquely, even if the energy feature value E s is changed according to the average value A of the pixel values of the radiographic image the energy feature value E s can be appropriately corrected.
  • the average energy E can be specified with high accuracy, and a high-precision average energy image can be provided.
  • average the energy E is calculated, as shown in FIG. 3, such as the approximate function relation between the average value A of the energy feature value E s and the pixel value
  • the average energy E may be calculated by using a function. (Create calibration table)
  • the calibration table LUT2D is generated based on radiographic images acquired by photographing phantoms having different thicknesses.
  • FIG. 4 is a radiation energy spectrum showing the relationship between the radiation energy and the normalized photon number when the acrylic plate as a phantom is radiographed for each thickness of the acrylic plate.
  • the peak of the radiation spectrum shifts to the higher energy side as the material through which the radiation passes becomes thicker (as the material penetration distance of the radiation becomes longer) .
  • the peak P2 is shifted to the higher energy side than the peak P1. This is called beam hardening.
  • the thicker the material through which radiation is transmitted the higher the average energy of radiation by shifting the peak of the radiation spectrum to the higher energy side by beam hardening.
  • the average energy is measured by beam hardening by changing the thickness of the acrylic plate.
  • the average energy is measured by simply changing the radiation tube voltage and changing the radiation energy. May be performed.
  • the calibration table LUT2D is generated based on the radiation image acquired by changing the tube voltage.
  • the average energy is changed by changing the acrylic thickness. ing. This is because measuring the change in the average energy by changing the thickness of the substance is closer to the change in the average energy of the radiation actually transmitted through the subject.
  • the energy feature value E s is changed according to the average value A, needs to be corrected in an amount corresponding to the energy feature value E s to the actual average energy E There is.
  • the average energy calculation unit (correction unit) 114 based on a first function representing the relationship between the energy feature value E s and the average value A, to correct for variations in energy feature value E s.
  • the first function is a higher-order function of the average value A.
  • Equation (8) a function of energy feature value E s is expressed by Equation (8).
  • Coefficients C 1 , C 2 , C 3 , and C 4 are calculated for each average energy E (43.7 keV, 48.7 keV, 51.7 keV, 53.9 keV).
  • the coefficients C 1 , C 2 , C 3 , and C 4 of the predetermined average energy E may be calculated, and the coefficients C 1 , C 2 , and C 3 may be commonly used for the other average energy E. In this case, it can be applied to various average energy E by changing C 4 according to the average energy E. Further, a coefficient commonly used for other average energy E may be calculated from coefficients C 1 , C 2 , and C 3 of a plurality of predetermined average energy E.
  • Equation (9) The relationship between the energy feature amount E s , the average value A, and the average energy E is expressed.
  • FIG. 5 shows the result of approximation with a cubic function using equation (9).
  • FIG. 6 is a graph showing the relationship between the average energy E and D (E). As shown in FIG. 6, it can be seen that D (E) changes linearly according to the average energy E. In this case, D (E) can be expressed by a linear function of average energy E as shown in Expression (10).
  • the coefficient C 4 of the zero-order term of the average value A in the cubic function (first function) of the equation (8) is a linear function (second Function).
  • Expression (11) is derived from Expression (9) and Expression (10).
  • the cubic function (first function) in equation (8) or the linear function (second function) in equation (10) is derived from the measured energy value of the radiation measured while changing the phantom or tube voltage. It is burned. As described above, the cubic function (first function) of the equation (8) or the linear function (second function) of the equation (10) is based on the energy measurement value of the radiation, and the energy feature amount E s. , The average value A, and the average energy E.
  • the average energy calculation unit (correction unit) 114 uses the coefficient C 1 of the cubic function (first function) of Expression (8) and the linear function (second function) of Expression (10). , C 2 , C 3 , L 1 , and L 2 , refer to the calibration table LUT2D. Thereby, the fluctuation
  • the average energy calculation unit (correction unit) 114 corrects the fluctuation of the energy feature amount E s by referring to a calibration table that holds the relationship between the energy feature amount E s , the average value A, and the average energy E.
  • the average energy calculation unit (correction unit) 114 has coefficients C 1 , C 2 , and C 3 of the cubic function (first function) in Expression (8) and the linear function (second function) in Expression (10). , by common L 1, L 2, on the basis of the coefficients, calculates the average energy E from the energy feature value E s and the average value a.
  • the average energy calculation unit (correction unit) 114 generates an average energy image based on the corrected energy feature value E s.
  • the average energy calculation unit 114 uses the calibration table LUT2D to calculate the average energy E (x, y) from the average value image based on the average value A (x, y) and the feature amount image based on the energy feature amount E s (x, y). ) To generate an average energy image.
  • the average energy E can be specified with high accuracy, and a high-precision average energy image can be provided.
  • an average energy image based on average energy E (x, y) is generated from an average value image based on average value A (x, y) and a feature amount image based on energy feature amount E s (x, y). Is done.
  • the average energy calculation unit (correction unit) 114 corrects the in-plane distribution of the energy feature value E s in the radiation image.
  • the in-plane distribution correction of the frame is performed on the energy feature amount E s (x, y), and the corrected energy feature amount E gs (x, y) is calculated.
  • the average energy calculation unit 114 calculates the average energy based on the average energy E (x, y) from the average value image based on the average value A (x, y) and the feature amount image based on the corrected energy feature amount E gs (x, y). Generate an image.
  • FIG. 7 is a diagram illustrating a functional configuration example of the second embodiment.
  • FIG. 8 is a flowchart showing the processing of the second embodiment. Note that a description of the same configuration, function, and operation as in the first embodiment will be omitted, and differences from the present embodiment will be mainly described.
  • the image processing unit 109 includes an in-plane distribution correction unit 115.
  • step S204 prior to applying the calibration table LUT2D in step S205, the in-plane distribution of the energy feature value E s is corrected.
  • the in-plane distribution correction unit 115 performs the in-plane distribution (spatial distribution) of the energy feature quantity E s according to the equation (12) based on the reference energy feature quantity E s0 calculated from the radiographic image taken without the subject. ) And a corrected energy feature amount E gs is calculated.
  • the energy feature amount calculation unit 112 generates an energy feature amount E s0 (x, y) from the radiographic image captured in the absence of the subject according to the equation (3).
  • the overline of E s0 is the in-plane average value (spatial average value) of the reference energy feature quantity E s0 (x, y).
  • the energy feature amount calculation unit (calculation unit) 112 calculates a reference energy feature amount E s0 (x, y) of radiation from a dispersion value and an average value of pixel values of a radiographic image captured in the absence of a subject.
  • the in-plane distribution correction unit (correction unit) 115 corrects the in-plane distribution of the energy feature amount E s based on the in-plane average value in the radiographic image of the reference energy feature amount E s0 (x, y). Accordingly, the average energy E can be calculated by applying the same calibration table LUT2D regardless of the pixel position (x, y).
  • step S205 the average energy calculation unit 114 uses the calibration table LUT2D to calculate the average energy from the average value image based on the average value A (x, y) and the feature amount image based on the corrected energy feature amount E gs (x, y). An average energy image with E (x, y) is generated.
  • the energy feature amount E gs is corrected by the average value A of the pixel values according to the equation (13) instead of the equation (7), and the average energy E is calculated.
  • the present invention can take an embodiment as a system, apparatus, method, program, storage medium, or the like. Specifically, the present invention may be applied to a system composed of a plurality of devices, or may be applied to an apparatus composed of one device.
  • the present invention supplies software (programs) for realizing the functions of the above-described embodiments to a system or apparatus via a network or various storage media, and a computer (CPU, MPU, etc.) of the system or apparatus reads the program. May be executed.
  • the present invention can also be realized by a process in which one or more processors in a computer of a system or apparatus read and execute a program, and can also be realized by a circuit (for example, an ASIC) that realizes one or more functions.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

Provided is a radiography device with which, by correcting an energy feature value which is computed from a variance value and a mean value of pixel values of a radiographic image, it is possible to acquire a high-precision mean energy image. This radiography device comprises: a computation means which computes an energy feature value of radiation from a variance value and a mean value of pixel values of a radiographic image; and a correction means which, by correcting variations of the energy feature value on the basis of the mean value, computes the mean energy of the radiation.

Description

放射線撮影装置、放射線撮影システム、放射線撮影方法、及びプログラムRadiation imaging apparatus, radiation imaging system, radiation imaging method, and program
 本発明は、放射線撮影装置、放射線撮影システム、放射線撮影方法、及びプログラムに関するものである。 The present invention relates to a radiation imaging apparatus, a radiation imaging system, a radiation imaging method, and a program.
 現在、医療画像診断や非破壊検査に用いる放射線撮影装置として、半導体材料によって形成された平面検出器(Flat Panel Detector:以下「FPD」と略す)が普及している。このような放射線撮影装置は、例えば医療画像診断においては、一般撮影のような静止画撮影や透視撮影のような動画撮影のデジタル撮影装置として用いられている。FPDは、放射線による撮影情報をデジタル画像として処理可能なため、様々なアプリケーションが実用化されている。 Currently, flat panel detectors (hereinafter referred to as “FPD”) made of semiconductor materials are widely used as radiation imaging apparatuses used for medical image diagnosis and nondestructive inspection. Such a radiographic apparatus is used, for example, as a digital imaging apparatus for moving image shooting such as still image shooting such as general shooting or fluoroscopic shooting in medical image diagnosis. Since FPD can process radiographic imaging information as a digital image, various applications have been put to practical use.
 そのうちの1つの技術として、エネルギーサブトラクションがある。一般的に、放射線が物質中を透過するときに減衰する程度を表す減弱係数は、物質によって異なる。そして、減弱係数は、放射線のエネルギーに依存する。したがって、2種類のエネルギーの放射線で撮影し2つの画像を取得し、対数変換した後に適切な係数を演算して差分することで、減弱係数の異なる2つの物質を分離した画像を生成することができる。 One of these technologies is energy subtraction. In general, the attenuation coefficient representing the degree to which radiation is attenuated when passing through the substance varies depending on the substance. The attenuation coefficient depends on the energy of radiation. Therefore, it is possible to generate an image in which two substances having different attenuation coefficients are separated by taking two images of radiation with two types of energy, obtaining two images, calculating an appropriate coefficient after logarithmic conversion, and performing a difference. it can.
 一方で、FPDの画素値は、入射放射線のエネルギーとフォトン数の積に比例するが、同じ画素値でも、エネルギーが高い放射線の場合は、入射フォトン数が少なくなるため、フォトンノイズ(ポアソンノイズ)が増大する性質がある。これを利用することで、放射線フォトン数や平均エネルギーを推定する方法が提案されている(特許文献1参照)。 On the other hand, the pixel value of FPD is proportional to the product of the energy of incident radiation and the number of photons. However, even with the same pixel value, the number of incident photons decreases for radiation with high energy, so photon noise (Poisson noise). Has the property of increasing. By utilizing this, a method for estimating the number of radiation photons and the average energy has been proposed (see Patent Document 1).
特開2013-236962号公報JP 2013-236862 A
 特許文献1には、放射線のフォトンノイズの分散から平均エネルギーを推定する方法が記載されている。しかしながら、実際に入射放射線のエネルギーの測定を行ってみると、推定値と一致しない場合がある。 Patent Document 1 describes a method of estimating average energy from the distribution of photon noise of radiation. However, when actually measuring the energy of incident radiation, it may not match the estimated value.
 この結果、特許文献1に記載された発明により特定の撮影条件で推定された平均エネルギーを用いて較正を行っても、正確な平均エネルギー画像を取得することができない。 As a result, an accurate average energy image cannot be acquired even if calibration is performed using the average energy estimated under specific imaging conditions according to the invention described in Patent Document 1.
 本発明の放射線撮影装置は、放射線画像の画素値の分散値と平均値から放射線のエネルギー特徴量を算出する算出手段と、前記エネルギー特徴量の変動を前記平均値に基づいて補正することにより、前記放射線の平均エネルギーを算出する補正手段と、を備える。 The radiation imaging apparatus of the present invention is a calculation means for calculating an energy feature amount of radiation from a dispersion value and an average value of pixel values of a radiographic image, and correcting fluctuations of the energy feature amount based on the average value. Correction means for calculating an average energy of the radiation.
第1の実施形態の機能構成例を示す図である。It is a figure which shows the function structural example of 1st Embodiment. 第1の実施形態の手順を示すフローチャートである。It is a flowchart which shows the procedure of 1st Embodiment. 平均値とエネルギー特徴量との関係を示す図である。It is a figure which shows the relationship between an average value and an energy feature-value. 放射線エネルギースペクトルの変化を示す図である。It is a figure which shows the change of a radiation energy spectrum. 平均値とエネルギー特徴量との関係を関数で近似した図である。It is the figure which approximated the relationship between an average value and energy feature-value with a function. 平均エネルギーと係数との関係を示す図である。It is a figure which shows the relationship between average energy and a coefficient. 第2の実施形態の機能構成例を示す図である。It is a figure which shows the function structural example of 2nd Embodiment. 第2の実施形態の手順を示すフローチャートである。It is a flowchart which shows the procedure of 2nd Embodiment.
 (第1の実施形態)
 以下、本発明の第1の実施形態について図面を参照して説明する。図1は、第1の実施形態の機能構成例を示す図である。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a diagram illustrating a functional configuration example of the first embodiment.
 本発明の放射線撮影システム100は、放射線管101、放射線発生装置102、FPD(放射線検出部)104、FPD制御部105、モニタ106、操作部107、画像保存部108、及び画像処理部109を備える。 The radiation imaging system 100 of the present invention includes a radiation tube 101, a radiation generation device 102, an FPD (radiation detection unit) 104, an FPD control unit 105, a monitor 106, an operation unit 107, an image storage unit 108, and an image processing unit 109. .
 放射線管101は、被写体103に放射線を照射する。放射線発生装置102は、曝射スイッチの押下により、放射線管101に高電圧パルスを与え、放射線を発生させる。FPD104は、放射線を検出し、放射線画像の画像データを出力する。FPD104は、FPD制御部105に制御されて、被写体103を通過した放射線を蛍光体により可視光に変換し、フォトダイオードで検出する。検出された電気信号は、AD変換されてデジタル画像(放射線画像)として、FPD制御部105に送信される。 The radiation tube 101 irradiates the subject 103 with radiation. The radiation generator 102 applies a high voltage pulse to the radiation tube 101 by pressing the exposure switch to generate radiation. The FPD 104 detects radiation and outputs image data of a radiation image. The FPD 104 is controlled by the FPD control unit 105 to convert the radiation that has passed through the subject 103 into visible light using a fluorescent material, and detects it with a photodiode. The detected electrical signal is AD-converted and transmitted to the FPD control unit 105 as a digital image (radiation image).
 FPD制御部105は、画像保存部108及び画像処理部109を備え、1つ又は複数のコンピュータに内蔵される。コンピュータには、例えば、CPUなどの主制御手段、ROM(Read Only Memory)、RAM(Random Access Memory)などの記憶手段が具備される。また、コンピュータには、GPU(Graphics Processing Unit)などのグラフィック制御手段、ネットワークカード等の通信手段、キーボード、ディスプレイ又はタッチパネルなどの入出力手段などが具備されていてもよい。 The FPD control unit 105 includes an image storage unit 108 and an image processing unit 109 and is built in one or a plurality of computers. The computer includes, for example, main control means such as a CPU and storage means such as ROM (Read Only Memory) and RAM (Random Access Memory). Further, the computer may be provided with graphic control means such as GPU (Graphics Processing Unit), communication means such as a network card, input / output means such as a keyboard, display or touch panel.
 なお、これら各構成手段は、バスなどにより接続され、記憶手段に記憶されたプログラムを主制御手段が実行することで制御される。 Note that these constituent units are connected by a bus or the like, and are controlled by the main control unit executing a program stored in the storage unit.
 モニタ106は、FPD制御部105で受信されたデジタル画像や画像処理部109で画像処理されたデジタル画像を表示し、放射線撮影技師の撮影確認や医師の診断用にデジタル画像を供する。 The monitor 106 displays the digital image received by the FPD control unit 105 and the digital image processed by the image processing unit 109, and provides the digital image for confirmation of radiography by the radiographer and diagnosis by the doctor.
 操作部107は、FPD104や画像処理部109に指示を入力することができ、ユーザーインターフェイスを具備してもよい。画像保存部108は、FPD制御部105から出力されたデジタル画像や画像処理部109で画像処理されたデジタル画像を保存する。 The operation unit 107 can input an instruction to the FPD 104 or the image processing unit 109, and may include a user interface. The image storage unit 108 stores the digital image output from the FPD control unit 105 and the digital image processed by the image processing unit 109.
 画像処理部109は、FPD104で撮影された放射線デジタル画像から平均エネルギー画像を生成する。その構成として、画像処理部109は、分散計算部(分散算出部)110、平均値計算部(平均値算出部)111、エネルギー特徴量計算部(算出部)112、較正テーブル保持部113、及び平均エネルギー計算部(補正部)114を具備する。 The image processing unit 109 generates an average energy image from the radiation digital image captured by the FPD 104. As its configuration, the image processing unit 109 includes a variance calculation unit (dispersion calculation unit) 110, an average value calculation unit (average value calculation unit) 111, an energy feature amount calculation unit (calculation unit) 112, a calibration table holding unit 113, and An average energy calculation unit (correction unit) 114 is provided.
 次に、本実施形態の処理について、図2に示すフローチャートを用いて詳細に説明する。 Next, the processing of this embodiment will be described in detail using the flowchart shown in FIG.
 <平均エネルギーEの推定>
 FPD制御部105によって、FPD104で撮影された複数の放射線画像は画像保存部108に保存されるとともに画像処理部109に転送される(ステップS201)。
<Estimation of average energy E>
A plurality of radiographic images captured by the FPD 104 are stored in the image storage unit 108 and transferred to the image processing unit 109 by the FPD control unit 105 (step S201).
 ステップS201では、平均値計算部111は、入力された複数の放射線画像M(x,y,t)から、式(1)に従い、平均値画像A(x,y)を生成する。ここで、xとyは放射線画像の画素の座標である。tは、整数であり、時系列に撮影された放射線画像のフレーム番号を表す。ブラケット<>tは、時間平均を表す。このように、平均値計算部111は、放射線画像の画素値の平均値を算出する。 In step S201, the average value calculation unit 111 generates an average value image A (x, y) from the plurality of input radiation images M (x, y, t) according to the equation (1). Here, x and y are the coordinates of the pixels of the radiation image. t is an integer and represents the frame number of the radiographic image taken in time series. Brackets <> t represent time averages. In this way, the average value calculation unit 111 calculates the average value of the pixel values of the radiation image.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ステップS202では、分散計算部110は、入力された複数の放射線画像M(x,y,t)と平均値画像A(x,y)から式(2)に従い、分散画像V(x,y)を生成する。このように、分散計算部110は、放射線画像の画素値の分散を算出する。 In step S <b> 202, the variance calculation unit 110 calculates the variance image V (x, y) from the plurality of input radiation images M (x, y, t) and the average value image A (x, y) according to Equation (2). Is generated. In this way, the variance calculation unit 110 calculates the variance of the pixel values of the radiation image.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ステップS203では、エネルギー特徴量計算部112は、式(3)に従い、エネルギー特徴量画像E(x,y)を生成する。式(3)に示すように、エネルギー特徴量計算部(算出部)112は、放射線画像の画素値の分散値V(x,y)と平均値A(x,y)から放射線のエネルギー特徴量E(x,y)を算出する。このように、エネルギー特徴量計算部112は、分散と平均値からエネルギー特徴量を算出する。 In step S203, the energy feature amount calculation unit 112 generates an energy feature amount image E s (x, y) according to Equation (3). As shown in Expression (3), the energy feature amount calculation unit (calculation unit) 112 calculates the radiation energy feature amount from the variance value V (x, y) and the average value A (x, y) of the pixel values of the radiation image. E s (x, y) is calculated. As described above, the energy feature amount calculation unit 112 calculates the energy feature amount from the variance and the average value.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 特許文献1にも開示されているように、式(3)は、FPD104に到達した放射線の平均エネルギーを表す。つまり、FPD104に到達した放射線のフォトン数と各フォトンが持っているエネルギーの積に比例した出力をするため、式(3)は式(4)となる。 As disclosed in Patent Document 1, Equation (3) represents the average energy of radiation that has reached the FPD 104. That is, since the output is proportional to the product of the number of photons of radiation that has reached the FPD 104 and the energy of each photon, Equation (3) becomes Equation (4).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 また、FPD104に到達する放射線のフォトン数のゆらぎは、ポアソン分布に従い、ポアソン分布は、期待値と分散が等しい性質がある。したがって、FPD104に到達した放射線のフォトン数Nには、以下の関係が成り立つ。 Further, the fluctuation of the number of photons of radiation reaching the FPD 104 follows the Poisson distribution, and the Poisson distribution has the property that the variance is equal to the expected value. Therefore, the following relationship holds for the number N of photons of radiation that reaches the FPD 104.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 ここで、式(4)の分母を式(5)で置き換えると、式(6)となり、式(3)のエネルギー特徴量Eは、平均エネルギーEに相当する量であることがわかる。なお、エネルギー特徴量EとエネルギーEとは単位が異なるため、エネルギー特徴量Eに所定の係数を乗算することにより、エネルギー特徴量Eを平均エネルギーEに一致させてもよい。 Here, by replacing the denominator of Equation (4) in equation (5), equation (6), and the energy feature value E s of Equation (3) is found to be an amount corresponding to the average energy E. Since the unit is different from the energy feature value E s and the energy E, by multiplying a predetermined coefficient to the energy characteristic quantity E s, the energy feature value E s may be matched with the average energy E.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 しかしながら、実際にFPD104がエネルギー特徴量Eを計算すると、図3に示すように、エネルギー特徴量Eは、放射線画像の画素値の平均値に応じて変化することがわかった。 However, when actually FPD104 calculates the energy feature value E s, as shown in FIG. 3, the energy feature value E s was found to vary according to the average value of the pixel values of the radiographic image.
 <エネルギー特徴量Eの補正>
 図3は、放射線画像の画素値の平均値LSBとエネルギー特徴量Eとの関係を、実際の放射線の平均エネルギーE(43.7keV,48.7keV,51.7keV,53.9keV)ごとにプロットしたグラフである。それぞれの平均エネルギーEは、エネルギースペクトロメーターを用いて測定した値である。
<Correction of energy feature value E s>
3, the relationship between the average value LSB and energy feature value E s of pixel values of the radiographic image, the actual radiation mean energy E (43.7keV, 48.7keV, 51.7keV, 53.9keV) per the This is a plotted graph. Each average energy E is a value measured using an energy spectrometer.
 式(6)によれば、平均エネルギーEが一定である場合、エネルギー特徴量Eは、放射線画像の画素値の平均値にかかわらず一定となるはずであるが、実際のエネルギー特徴量Eは、放射線画像の画素値の平均値に応じて変化することがわかった。 According to equation (6), if the average energy E is constant, the energy feature value E s is should be constant regardless of the average value of the pixel values of the radiographic image, actual energy feature value E s It turned out that it changes according to the average value of the pixel value of a radiographic image.
 すなわち、平均エネルギーEを特定するためには、エネルギー特徴量Eを補正する必要がある。一般に、FPD104の内部では、放射線フォトンを蛍光体により可視光に変換してから、フォトダイオードで受光し、電子へ変換する複雑な物理過程を経るため、式(6)では、正確な平均エネルギーEが算出されないと考えられる。 That is, in order to identify the average energy E, it is necessary to correct the energy feature value E s. In general, in the FPD 104, a complicated physical process of converting radiation photons into visible light by a phosphor, receiving light by a photodiode, and converting it into electrons is performed. Is not calculated.
 そこで、本発明では、この課題を解決して、平均エネルギーEを高い精度で推定するため、図3のような放射線画像の画素値の平均値とエネルギー特徴量Eとの関係を較正テーブル(2軸エネルギー較正テーブル)LUT2Dで表す。較正テーブルLUT2Dを参照して、エネルギー特徴量Eは画素値の平均値Aにより補正される。較正テーブルLUT2Dは、較正テーブル保持部113に保存される。較正テーブル保持部113は、算出されたエネルギー特徴量Eの変動を補正するための較正テーブルLUT2Dを保持する。 Therefore, in the present invention, to solve this problem, in order to estimate the average energy E with high accuracy, calibrate the relationship between the average value and the energy feature value E s of pixel values of the radiographic image, such as the table of FIG. 3 ( Biaxial energy calibration table) LUT2D. With reference to the calibration table LUT2D, energy feature value E s is corrected by the average value A of the pixel values. The calibration table LUT2D is stored in the calibration table holding unit 113. Calibration table holding unit 113 holds the calibration table LUT2D for correcting the variation of the calculated energy feature value E s.
 エネルギー特徴量Eは、式(7)に従い、画素値の平均値Aにより補正され、平均エネルギーEが補正される。 Energy feature value E s in accordance with equation (7), is corrected by the average value A of the pixel values, the mean energy E is corrected.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 ステップS205では、平均エネルギー計算部114は、較正テーブルLUT2Dを用いて、平均値A(x,y)による平均値画像とエネルギー特徴量E(x,y)による特徴量画像から、平均エネルギーE(x,y)による平均エネルギー画像を生成する。平均エネルギー計算部(補正部)114は、較正テーブルLUT2Dに基づいてエネルギー特徴量Eを補正する。このように、平均エネルギー計算部(補正部)114は、エネルギー特徴量Eの変動を平均値Aに基づいて補正することにより、放射線の平均エネルギーEを算出する。 In step S205, the average energy calculation unit 114 uses the calibration table LUT2D to calculate the average energy E from the average value image based on the average value A (x, y) and the feature amount image based on the energy feature amount E s (x, y). An average energy image by (x, y) is generated. The average energy calculation unit (correction unit) 114 corrects the energy feature value E s based on the calibration table LUT2D. Thus, the mean energy calculation unit (correction unit) 114, by correcting on the basis of the variation of the energy feature value E s to the average value A, and calculates an average energy E of the radiation.
 これにより、図3のように、エネルギー特徴量Eから平均エネルギーEが一意に推定されず、エネルギー特徴量Eが放射線画像の画素値の平均値Aに応じて変化する場合であっても、エネルギー特徴量Eを適切に補正することができる。この結果、高精度で平均エネルギーEを特定し、高精度の平均エネルギー画像を提供することができる。 Thus, as shown in FIG. 3, the average energy E from the energy feature value E s is not estimated uniquely, even if the energy feature value E s is changed according to the average value A of the pixel values of the radiographic image the energy feature value E s can be appropriately corrected. As a result, the average energy E can be specified with high accuracy, and a high-precision average energy image can be provided.
 なお、本実施形態では、較正テーブルLUT2Dを参照して、平均エネルギーEが算出されるが、図3のような、エネルギー特徴量Eと画素値の平均値Aとの関係を近似関数などの関数で表し、関数を用いることで、平均エネルギーEが算出されてもよい。
 (較正テーブルの作成)
In the present embodiment, with reference to the calibration table LUT2D, average the energy E is calculated, as shown in FIG. 3, such as the approximate function relation between the average value A of the energy feature value E s and the pixel value The average energy E may be calculated by using a function.
(Create calibration table)
 次に、ステップS205で用いられる較正テーブルLUT2Dの作成について詳細に説明する。較正テーブルLUT2Dは、厚さが異なるファントムを撮影して取得された放射線画像に基づいて生成される。図4は、ファントムであるアクリル板を放射線撮影した際の放射線エネルギーと正規化フォトン数の関係をアクリル板の厚さごとに表した放射線エネルギースペクトルである。 Next, the creation of the calibration table LUT2D used in step S205 will be described in detail. The calibration table LUT2D is generated based on radiographic images acquired by photographing phantoms having different thicknesses. FIG. 4 is a radiation energy spectrum showing the relationship between the radiation energy and the normalized photon number when the acrylic plate as a phantom is radiographed for each thickness of the acrylic plate.
 図4に示すように、放射線スペクトルは、アクリル板が厚くなるにつれて、放射線エネルギーが低いほど、正規化フォトン数が少なくなり、放射線を減弱する。放射線エネルギーが低い放射線ほど物質中を透過するときに減衰するため、放射線スペクトルのピークは、放射線が透過する物質が厚くなるにつれて(放射線の物質透過距離が長くなるにつれて)、高エネルギー側にシフトする。図4では、ピークP1よりもピークP2のほうが、高エネルギー側にシフトしている。これをビームハードニング(線質硬化)と呼ぶ。 As shown in FIG. 4, in the radiation spectrum, as the acrylic plate becomes thicker, the lower the radiation energy, the smaller the number of normalized photons and the less the radiation. Since the radiation with lower radiation energy attenuates when passing through the material, the peak of the radiation spectrum shifts to the higher energy side as the material through which the radiation passes becomes thicker (as the material penetration distance of the radiation becomes longer) . In FIG. 4, the peak P2 is shifted to the higher energy side than the peak P1. This is called beam hardening.
 したがって、放射線が透過する物質が厚くなるほど、ビームハードニングにより放射線スペクトルのピークが高エネルギー側にシフトすることで、放射線の平均エネルギーが高くなる。 Therefore, the thicker the material through which radiation is transmitted, the higher the average energy of radiation by shifting the peak of the radiation spectrum to the higher energy side by beam hardening.
 なお、本実施形態ではアクリル板の厚さを変化させて、ビームハードニングにより平均エネルギーの測定を行っているが、単純に放射線管電圧を変化させて放射線エネルギーを変化させることにより平均エネルギーの測定を行ってもよい。較正テーブルLUT2Dは、管電圧を変化させて取得された放射線画像に基づいて生成される。 In this embodiment, the average energy is measured by beam hardening by changing the thickness of the acrylic plate. However, the average energy is measured by simply changing the radiation tube voltage and changing the radiation energy. May be performed. The calibration table LUT2D is generated based on the radiation image acquired by changing the tube voltage.
 ただし、放射線管電圧の変化による平均エネルギーの変化とビームハードングによる平均エネルギーの変化では、放射線スペクトル形状の変化が異なるため、本実施形態では、アクリルの厚さを変化させて平均エネルギーを変化させている。物質の厚さを変化させて平均エネルギーの変化を測定するほうが、実際に被写体を透過した放射線の平均エネルギーの変化に近いからである。 However, since the change in the shape of the radiation spectrum differs between the change in average energy due to the change in radiation tube voltage and the change in average energy due to beam hardening, in this embodiment, the average energy is changed by changing the acrylic thickness. ing. This is because measuring the change in the average energy by changing the thickness of the substance is closer to the change in the average energy of the radiation actually transmitted through the subject.
 前述したように、平均エネルギーEが一定であっても、エネルギー特徴量Eが平均値Aに応じて変化するため、エネルギー特徴量Eを実際の平均エネルギーEに相当する量に補正する必要がある。 As described above, it is an average energy E is constant, the energy feature value E s is changed according to the average value A, needs to be corrected in an amount corresponding to the energy feature value E s to the actual average energy E There is.
 そこで、図5に示すように、平均値Aに対するエネルギー特徴量Eの挙動を関数で近似する。平均エネルギー計算部(補正部)114は、エネルギー特徴量Eと平均値Aとの関係を表す第1の関数に基づいて、エネルギー特徴量Eの変動を補正する。第1の関数は、平均値Aの高次関数である。 Therefore, as shown in FIG. 5, to approximate the behavior of the energy feature value E s to the average value A in the function. The average energy calculation unit (correction unit) 114, based on a first function representing the relationship between the energy feature value E s and the average value A, to correct for variations in energy feature value E s. The first function is a higher-order function of the average value A.
本実施形態では、図5に示すように、図3でプロットされた点を平均値Aの3次関数(第1の関数)でそれぞれ近似する。この場合、エネルギー特徴量Eの関数は式(8)で表される。 In this embodiment, as shown in FIG. 5, the points plotted in FIG. 3 are approximated by a cubic function (first function) of average value A, respectively. In this case, a function of energy feature value E s is expressed by Equation (8).
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 平均エネルギーE(43.7keV,48.7keV,51.7keV,53.9keV)ごとにそれぞれの係数C,C,C,Cを算出する。 Coefficients C 1 , C 2 , C 3 , and C 4 are calculated for each average energy E (43.7 keV, 48.7 keV, 51.7 keV, 53.9 keV).
 また、所定の平均エネルギーEの係数C,C,C,Cを算出し、係数C,C,Cを他の平均エネルギーEに共通に用いてもよい。この場合、平均エネルギーEに応じてCを変化させることで様々な平均エネルギーEに適用することができる。また、所定の複数の平均エネルギーEの係数C,C,Cから、他の平均エネルギーEに共通に用いられる係数を算出してもよい。 Further, the coefficients C 1 , C 2 , C 3 , and C 4 of the predetermined average energy E may be calculated, and the coefficients C 1 , C 2 , and C 3 may be commonly used for the other average energy E. In this case, it can be applied to various average energy E by changing C 4 according to the average energy E. Further, a coefficient commonly used for other average energy E may be calculated from coefficients C 1 , C 2 , and C 3 of a plurality of predetermined average energy E.
 本実施形態では、平均エネルギーEに共通に用いられる係数C,C,Cを算出し、平均エネルギーEに依存する係数CをDとして、式(9)によりエネルギー特徴量Eが表され、エネルギー特徴量E、平均値A、及び平均エネルギーEの関係が表される。 In the present embodiment, to calculate the average coefficients C 1 commonly used for energy E, C 2, C 3, the coefficient C 4 which depends on the average energy E as D, the energy feature value E s by Equation (9) The relationship between the energy feature amount E s , the average value A, and the average energy E is expressed.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 図5は、式(9)用いて3次関数で近似した結果である。図6は、平均エネルギーEとD(E)との関係を示すグラフである。図6に示すように、D(E)は、平均エネルギーEに応じて線形に変化することがわかる。この場合、式(10)に示すように、D(E)は、平均エネルギーEの1次関数で表すことができる。 FIG. 5 shows the result of approximation with a cubic function using equation (9). FIG. 6 is a graph showing the relationship between the average energy E and D (E). As shown in FIG. 6, it can be seen that D (E) changes linearly according to the average energy E. In this case, D (E) can be expressed by a linear function of average energy E as shown in Expression (10).
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 式(10)に示すように、式(8)の3次関数(第1の関数)における平均値Aの0次項の係数Cは、平均エネルギーEを変数とする1次関数(第2の関数)である。式(9)及び式(10)から式(11)が導かれる。 As shown in the equation (10), the coefficient C 4 of the zero-order term of the average value A in the cubic function (first function) of the equation (8) is a linear function (second Function). Expression (11) is derived from Expression (9) and Expression (10).
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 式(8)の3次関数(第1の関数)又は式(10)の1次関数(第2の関数)は、ファントムや管電圧などを変化させながら測定された放射線のエネルギー測定値から導かれる。前述のように、式(8)の3次関数(第1の関数)又は式(10)の1次関数(第2の関数)は、放射線のエネルギー測定値に基づいて、エネルギー特徴量E、平均値A、及び平均エネルギーEの関係を近似する関数である。 The cubic function (first function) in equation (8) or the linear function (second function) in equation (10) is derived from the measured energy value of the radiation measured while changing the phantom or tube voltage. It is burned. As described above, the cubic function (first function) of the equation (8) or the linear function (second function) of the equation (10) is based on the energy measurement value of the radiation, and the energy feature amount E s. , The average value A, and the average energy E.
 予め算出された係数、C,C,C,L,Lに基づいて、較正テーブルLUT2Dが作成される。較正テーブル保持部113に保存された較正テーブルLUT2Dを参照し、式(11)にエネルギー特徴量E及び平均値Aを入力すると、較正された平均エネルギーEが算出され、高精度のエネルギー較正が可能になる。 Previously calculated coefficients, based on C 1, C 2, C 3 , L 1, L 2, calibration table LUT2D is created. Referring to a calibration table LUT2D stored in a calibration table holding unit 113, entering the energy feature value E s and the average value A in the equation (11), calibrated average energy E is calculated, the energy calibration of high-precision It becomes possible.
 前述のステップS205で、平均エネルギー計算部(補正部)114は、式(8)の3次関数(第1の関数)及び式(10)の1次関数(第2の関数)の係数C,C,C,L,Lを保持する較正テーブルLUT2Dを参照する。これにより、エネルギー特徴量の変動が補正される。 In step S205 described above, the average energy calculation unit (correction unit) 114 uses the coefficient C 1 of the cubic function (first function) of Expression (8) and the linear function (second function) of Expression (10). , C 2 , C 3 , L 1 , and L 2 , refer to the calibration table LUT2D. Thereby, the fluctuation | variation of an energy feature-value is correct | amended.
 平均エネルギー計算部(補正部)114は、エネルギー特徴量E、平均値A、及び平均エネルギーEの関係を保持する較正テーブルを参照することにより、エネルギー特徴量Eの変動を補正する。 The average energy calculation unit (correction unit) 114 corrects the fluctuation of the energy feature amount E s by referring to a calibration table that holds the relationship between the energy feature amount E s , the average value A, and the average energy E.
 平均エネルギー計算部(補正部)114は、式(8)の3次関数(第1の関数)及び式(10)の1次関数(第2の関数)の係数C,C,C,L,Lを共通させて、係数に基づいて、エネルギー特徴量E及び平均値Aから平均エネルギーEを算出する。 The average energy calculation unit (correction unit) 114 has coefficients C 1 , C 2 , and C 3 of the cubic function (first function) in Expression (8) and the linear function (second function) in Expression (10). , by common L 1, L 2, on the basis of the coefficients, calculates the average energy E from the energy feature value E s and the average value a.
 平均エネルギー計算部(補正部)114は、補正されたエネルギー特徴量Eに基づいて平均エネルギー画像を生成する。平均エネルギー計算部114は、較正テーブルLUT2Dを用いて、平均値A(x,y)による平均値画像とエネルギー特徴量E(x,y)による特徴量画像から、平均エネルギーE(x,y)による平均エネルギー画像を生成する。この結果、高精度で平均エネルギーEを特定し、高精度の平均エネルギー画像を提供することができる。 The average energy calculation unit (correction unit) 114 generates an average energy image based on the corrected energy feature value E s. The average energy calculation unit 114 uses the calibration table LUT2D to calculate the average energy E (x, y) from the average value image based on the average value A (x, y) and the feature amount image based on the energy feature amount E s (x, y). ) To generate an average energy image. As a result, the average energy E can be specified with high accuracy, and a high-precision average energy image can be provided.
 (第2の実施形態)
 第1の実施形態では、平均値A(x,y)による平均値画像とエネルギー特徴量E(x,y)による特徴量画像から、平均エネルギーE(x,y)による平均エネルギー画像が生成される。
(Second Embodiment)
In the first embodiment, an average energy image based on average energy E (x, y) is generated from an average value image based on average value A (x, y) and a feature amount image based on energy feature amount E s (x, y). Is done.
 第2の実施形態では、平均エネルギー計算部(補正部)114は、放射線画像におけるエネルギー特徴量Eの面内分布を補正する。エネルギー特徴量E(x,y)にフレームの面内分布補正を施し、補正エネルギー特徴量Egs(x,y)が算出される。そして、平均エネルギー計算部114は、平均値A(x,y)による平均値画像と補正エネルギー特徴量Egs(x,y)による特徴量画像から、平均エネルギーE(x,y)による平均エネルギー画像を生成する。 In the second embodiment, the average energy calculation unit (correction unit) 114 corrects the in-plane distribution of the energy feature value E s in the radiation image. The in-plane distribution correction of the frame is performed on the energy feature amount E s (x, y), and the corrected energy feature amount E gs (x, y) is calculated. Then, the average energy calculation unit 114 calculates the average energy based on the average energy E (x, y) from the average value image based on the average value A (x, y) and the feature amount image based on the corrected energy feature amount E gs (x, y). Generate an image.
 <エネルギー特徴量Eの面内分布補正>
 図7は、第2の実施形態の機能構成例を示す図である。図8は、第2の実施形態の処理を示すフローチャートである。なお、第1の実施形態と同様の構成、機能、及び動作についての説明は省略し、主に本実施形態との差異について説明する。
<Plane distribution correcting the energy feature value E s>
FIG. 7 is a diagram illustrating a functional configuration example of the second embodiment. FIG. 8 is a flowchart showing the processing of the second embodiment. Note that a description of the same configuration, function, and operation as in the first embodiment will be omitted, and differences from the present embodiment will be mainly described.
 画像処理部109は、面内分布補正部115を具備する。ステップS204では、ステップS205で較正テーブルLUT2Dを適用する前に、エネルギー特徴量Eの面内分布が補正される。面内分布補正部115が、被写体がない状態で撮影された放射線画像から算出された基準エネルギー特徴量Es0に基づいて、式(12)に従い、エネルギー特徴量Eの面内分布(空間分布)を補正し、補正エネルギー特徴量Egsを算出する。 The image processing unit 109 includes an in-plane distribution correction unit 115. In step S204, prior to applying the calibration table LUT2D in step S205, the in-plane distribution of the energy feature value E s is corrected. The in-plane distribution correction unit 115 performs the in-plane distribution (spatial distribution) of the energy feature quantity E s according to the equation (12) based on the reference energy feature quantity E s0 calculated from the radiographic image taken without the subject. ) And a corrected energy feature amount E gs is calculated.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 エネルギー特徴量計算部112は、式(3)に従い、被写体がない状態で撮影された放射線画像からエネルギー特徴量Es0(x,y)を生成する。ここで、Es0のオーバーラインは、基準エネルギー特徴量Es0(x,y)の面内平均値(空間平均値)である。 The energy feature amount calculation unit 112 generates an energy feature amount E s0 (x, y) from the radiographic image captured in the absence of the subject according to the equation (3). Here, the overline of E s0 is the in-plane average value (spatial average value) of the reference energy feature quantity E s0 (x, y).
 エネルギー特徴量計算部(算出部)112は、被写体がない状態で撮影された放射線画像の画素値の分散値と平均値から放射線の基準エネルギー特徴量Es0(x,y)を算出する。面内分布補正部(補正部)115は、基準エネルギー特徴量Es0(x,y)の放射線画像における面内平均値に基づいて、エネルギー特徴量Eの面内分布を補正する。これにより、画素の位置(x,y)にかかわらず、同じ較正テーブルLUT2Dを適用することで、平均エネルギーEの算出が可能になる。 The energy feature amount calculation unit (calculation unit) 112 calculates a reference energy feature amount E s0 (x, y) of radiation from a dispersion value and an average value of pixel values of a radiographic image captured in the absence of a subject. The in-plane distribution correction unit (correction unit) 115 corrects the in-plane distribution of the energy feature amount E s based on the in-plane average value in the radiographic image of the reference energy feature amount E s0 (x, y). Accordingly, the average energy E can be calculated by applying the same calibration table LUT2D regardless of the pixel position (x, y).
 ステップS205では、平均エネルギー計算部114は、較正テーブルLUT2Dを用いて、平均値A(x,y)による平均値画像と補正エネルギー特徴量Egs(x,y)による特徴量画像から、平均エネルギーE(x,y)による平均エネルギー画像を生成する。 In step S205, the average energy calculation unit 114 uses the calibration table LUT2D to calculate the average energy from the average value image based on the average value A (x, y) and the feature amount image based on the corrected energy feature amount E gs (x, y). An average energy image with E (x, y) is generated.
 つまり、本実施形態では、エネルギー特徴量Egsが、式(7)の代わりに式(13)に従い、画素値の平均値Aにより補正され、平均エネルギーEが算出される。 That is, in the present embodiment, the energy feature amount E gs is corrected by the average value A of the pixel values according to the equation (13) instead of the equation (7), and the average energy E is calculated.
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 以上が本発明の代表的な実施形態の例であるが、本発明は、上記及び図面に示す実施形態に限定することなく、その要旨を変更しない範囲内で適宜変形して実施できるものである。 The above is an example of a typical embodiment of the present invention, but the present invention is not limited to the embodiment described above and shown in the drawings, and can be appropriately modified and implemented within the scope not changing the gist thereof. .
 また、本発明は、例えば、システム、装置、方法、プログラム、若しくは記憶媒体などとしての実施態様を採ることもできる。具体的には、複数の機器から構成されるシステムに適用してもよいし、また、1つの機器からなる装置に適用してもよい。 Also, the present invention can take an embodiment as a system, apparatus, method, program, storage medium, or the like. Specifically, the present invention may be applied to a system composed of a plurality of devices, or may be applied to an apparatus composed of one device.
 本発明は、上記の実施形態の機能を実現するソフトウェア(プログラム)をネットワーク又は各種記憶媒体を介してシステム又は装置に供給し、システム又は装置のコンピュータ(CPUやMPUなど)がプログラムを読み出すことにより実行されてもよい。また、本発明は、システム又は装置のコンピュータにおける1つ以上のプロセッサーがプログラムを読出し実行する処理でも実現可能であり、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。 The present invention supplies software (programs) for realizing the functions of the above-described embodiments to a system or apparatus via a network or various storage media, and a computer (CPU, MPU, etc.) of the system or apparatus reads the program. May be executed. The present invention can also be realized by a process in which one or more processors in a computer of a system or apparatus read and execute a program, and can also be realized by a circuit (for example, an ASIC) that realizes one or more functions.
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために以下の請求項を添付する。 The present invention is not limited to the above embodiment, and various changes and modifications can be made without departing from the spirit and scope of the present invention. Therefore, in order to make the scope of the present invention public, the following claims are attached.
 この出願は2016年10月6日に出願された日本国特許出願第2016-198468からの優先権を主張するものであり、その内容を引用してこの出願の一部とするものである。 This application claims priority from Japanese Patent Application No. 2016-198468 filed on Oct. 6, 2016, the contents of which are incorporated herein by reference.

Claims (18)

  1.  放射線画像の画素値の分散値と平均値から放射線のエネルギー特徴量を算出する算出手段と、
     前記エネルギー特徴量の変動を前記平均値に基づいて補正することにより、前記放射線の平均エネルギーを算出する補正手段と、
     を備えることを特徴とする放射線撮影装置。
    A calculation means for calculating an energy feature amount of radiation from a dispersion value and an average value of pixel values of the radiation image;
    Correction means for calculating the average energy of the radiation by correcting the fluctuation of the energy feature amount based on the average value;
    A radiation imaging apparatus comprising:
  2.  前記補正手段は、前記エネルギー特徴量と前記平均値との関係を表す第1の関数に基づいて、前記エネルギー特徴量の変動を補正する請求項1に記載の放射線撮影装置。 2. The radiation imaging apparatus according to claim 1, wherein the correction unit corrects a variation in the energy feature amount based on a first function representing a relationship between the energy feature amount and the average value.
  3.  前記第1の関数は、前記平均値の高次関数であることを特徴とする請求項2に記載の放射線撮影装置。 The radiation imaging apparatus according to claim 2, wherein the first function is a higher-order function of the average value.
  4.  前記第1の関数における前記平均値の0次項の係数は、前記平均エネルギーを変数とする第2の関数であることを特徴とする請求項2又は3に記載の放射線撮影装置。 The radiation imaging apparatus according to claim 2 or 3, wherein the coefficient of the zero-order term of the average value in the first function is a second function having the average energy as a variable.
  5.  前記第2の関数は、前記平均エネルギーの1次関数であることを特徴とする請求項4に記載の放射線撮影装置。 The radiation imaging apparatus according to claim 4, wherein the second function is a linear function of the average energy.
  6.  前記第1の関数又は前記第2の関数は、前記放射線のエネルギー測定値から導かれることを特徴とする請求項2乃至5の何れか1項に記載の放射線撮影装置。 6. The radiographic apparatus according to claim 2, wherein the first function or the second function is derived from an energy measurement value of the radiation.
  7.  前記第1の関数又は前記第2の関数は、前記放射線のエネルギー測定値に基づいて、前記エネルギー特徴量、前記平均値、及び前記平均エネルギーの関係を近似する関数であることを特徴とする請求項2乃至6の何れか1項に記載の放射線撮影装置 The first function or the second function is a function that approximates a relationship between the energy feature amount, the average value, and the average energy based on an energy measurement value of the radiation. Item 7. The radiation imaging apparatus according to any one of Items 2 to 6.
  8.  前記補正手段は、前記第1の関数及び前記第2の関数の係数を共通させて、前記係数に基づいて、前記エネルギー特徴量及び前記平均値から前記平均エネルギーを算出することを特徴とする請求項2乃至7の何れか1項に記載の放射線撮影装置。 The correction means uses the coefficients of the first function and the second function in common and calculates the average energy from the energy feature amount and the average value based on the coefficient. Item 8. The radiation imaging apparatus according to any one of Items 2 to 7.
  9.  前記補正手段は、前記第1の関数及び前記第2の関数の係数を保持する前記較正テーブルを参照することにより、前記エネルギー特徴量の変動を補正する請求項2乃至8の何れか1項に記載の放射線撮影装置。 9. The correction unit according to claim 2, wherein the correction unit corrects the fluctuation of the energy feature amount by referring to the calibration table that holds the coefficients of the first function and the second function. The radiation imaging apparatus described.
  10.  前記補正手段は、前記エネルギー特徴量、前記平均値、及び前記平均エネルギーの関係を保持する較正テーブルを参照することにより、前記エネルギー特徴量の変動を補正する請求項1乃至9の何れか1項に記載の放射線撮影装置。 The said correction | amendment means correct | amends the fluctuation | variation of the said energy feature-value by referring the calibration table holding the relationship of the said energy feature-value, the said average value, and the said average energy. The radiation imaging apparatus described in 1.
  11.  前記補正手段は、前記放射線画像における前記エネルギー特徴量の面内分布を補正することを特徴とする請求項1乃至10の何れか1項に記載の放射線撮影装置。 The radiographic apparatus according to claim 1, wherein the correction unit corrects an in-plane distribution of the energy feature amount in the radiographic image.
  12.  前記算出手段は、被写体がない状態で撮影された放射線画像の画素値の分散値と平均値から放射線の基準エネルギー特徴量を算出し、
     前記補正手段は、前記基準エネルギー特徴量の前記放射線画像における面内平均値に基づいて、前記エネルギー特徴量の面内分布を補正することを特徴とする請求項11に記載の放射線撮影装置。
    The calculation means calculates a reference energy feature amount of radiation from a variance value and an average value of pixel values of a radiographic image captured in a state where there is no subject,
    The radiographic apparatus according to claim 11, wherein the correction unit corrects an in-plane distribution of the energy feature amount based on an in-plane average value of the reference energy feature amount in the radiation image.
  13.  前記補正手段は、補正された前記エネルギー特徴量に基づいて平均エネルギー画像を生成することを特徴とする請求項1乃至12の何れか1項に記載の放射線撮影装置。 13. The radiation imaging apparatus according to claim 1, wherein the correction unit generates an average energy image based on the corrected energy feature amount.
  14.  放射線画像の画素値の分散を算出する分散算出手段と、
     放射線画像の画素値の平均値を算出する平均値算出手段と、
     前記分散と平均値からエネルギー特徴量を算出する算出手段と、
     該算出されたエネルギー特徴量の変動を補正するための較正テーブルを保持する保持手段と、
     前記較正テーブルに基づいてエネルギー特徴量を補正する補正手段とを備えることを特徴とする放射線撮影装置。
    Dispersion calculating means for calculating dispersion of pixel values of the radiation image;
    An average value calculating means for calculating an average value of the pixel values of the radiation image;
    Calculating means for calculating an energy feature amount from the variance and the average value;
    Holding means for holding a calibration table for correcting fluctuations in the calculated energy feature amount;
    A radiation imaging apparatus comprising: a correction unit that corrects an energy feature amount based on the calibration table.
  15.  放射線を発生させる放射線発生手段と、
     前記放射線を検出し、放射線画像の画像データを出力する放射線検出手段と、
     前記放射線画像の画素値の分散値と平均値から放射線のエネルギー特徴量を算出する算出手段と、
     前記エネルギー特徴量の変動を前記平均値に基づいて補正することにより、前記放射線の平均エネルギーを算出する補正手段と、
     を備えることを特徴とする放射線撮影システム。
    Radiation generating means for generating radiation;
    Radiation detecting means for detecting the radiation and outputting image data of a radiation image;
    Calculating means for calculating an energy feature amount of radiation from a variance value and an average value of pixel values of the radiation image;
    Correction means for calculating the average energy of the radiation by correcting the fluctuation of the energy feature amount based on the average value;
    A radiation imaging system comprising:
  16.  放射線画像の画素値の分散値と平均値から放射線のエネルギー特徴量を算出する工程と、
     前記エネルギー特徴量の変動を前記平均値に基づいて補正することにより、前記放射線の平均エネルギーを算出する工程と、
     を備えることを特徴とする放射線撮影方法。
    Calculating an energy feature amount of radiation from a dispersion value and an average value of pixel values of the radiation image;
    Calculating the average energy of the radiation by correcting the fluctuation of the energy feature amount based on the average value;
    A radiation imaging method comprising:
  17.  放射線画像の画素値の分散を算出する工程と、
     放射線画像の画素値の平均値を算出する工程と、
     前記分散と平均値からエネルギー特徴量を算出する工程と、
     該算出されたエネルギー特徴量の変動を補正するための較正テーブルを保持する工程と、
     前記較正テーブルに基づいてエネルギー特徴量を補正する工程と、
     を備えることを特徴とする放射線撮影方法。
    Calculating a variance of pixel values of the radiation image;
    Calculating an average pixel value of the radiation image;
    Calculating an energy feature amount from the variance and the average value;
    Holding a calibration table for correcting variations in the calculated energy feature amount;
    Correcting the energy feature based on the calibration table;
    A radiation imaging method comprising:
  18.  コンピュータを請求項1乃至14の何れか1項に記載の放射線撮影装置の各手段として機能させるためのプログラム。 A program for causing a computer to function as each unit of the radiation imaging apparatus according to any one of claims 1 to 14.
PCT/JP2017/036019 2016-10-06 2017-10-03 Radiography device, radiography system, radiography method, and program WO2018066570A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016198468A JP2018057669A (en) 2016-10-06 2016-10-06 Radiographic imaging device, radiographic imaging system, radiographic imaging method and program
JP2016-198468 2016-10-06

Publications (1)

Publication Number Publication Date
WO2018066570A1 true WO2018066570A1 (en) 2018-04-12

Family

ID=61831852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/036019 WO2018066570A1 (en) 2016-10-06 2017-10-03 Radiography device, radiography system, radiography method, and program

Country Status (2)

Country Link
JP (1) JP2018057669A (en)
WO (1) WO2018066570A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7246281B2 (en) * 2019-08-02 2023-03-27 キヤノン株式会社 IMAGE PROCESSING APPARATUS AND CONTROL METHOD THEREOF, RADIATION IMAGING APPARATUS, AND PROGRAM

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013236962A (en) * 2007-08-15 2013-11-28 Fujifilm Corp Image component separating device, method and program
JP2014128456A (en) * 2012-12-28 2014-07-10 Toshiba Corp X-ray ct apparatus and control program

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013236962A (en) * 2007-08-15 2013-11-28 Fujifilm Corp Image component separating device, method and program
JP2014128456A (en) * 2012-12-28 2014-07-10 Toshiba Corp X-ray ct apparatus and control program

Also Published As

Publication number Publication date
JP2018057669A (en) 2018-04-12

Similar Documents

Publication Publication Date Title
JP5405093B2 (en) Image processing apparatus and image processing method
US20190320993A1 (en) Information processing apparatus, radiation imaging apparatus, information processing method, and storage medium
EP3342342B1 (en) Radiation image processing method and radiographic system
JP6156847B2 (en) Radiation image processing apparatus and method, and program
JP2017060544A (en) Radiation-source-to-image-surface distance acquisition apparatus, method and program, and radiographic image processing apparatus, method and program
EP1903499A2 (en) Radiological image capturing system and radiological image capturing method
WO2019235087A1 (en) Radiography device, radiography method, and program
CN111163698A (en) Image processing apparatus, image processing method, and program
CN108348202A (en) Radiation imaging system, the information processing unit for radiation image, the image processing method for radiation image and program
WO2018066570A1 (en) Radiography device, radiography system, radiography method, and program
JPH01259842A (en) Radiation diagnostic apparatus
TW200408373A (en) Method for calibrating the intensity profile for a movable x-ray source
WO2020149253A1 (en) Radiation imaging device, radiation imaging system, and method for controlling radiation imaging device
JP2013255040A (en) Image pick-up device, image pick-up system, control method and program of image pick-up device
JP2005253629A (en) Radiograph diagnostic imaging apparatus and data processing method of radiograph diagnostic imaging apparatus
WO2018055992A1 (en) Radiography device, radiography system, radiography method, and program
JP2008272202A (en) Image processor, image processing program, and radiographic apparatus
KR101092207B1 (en) Method and Apparatus for Correcting Balance of Digital Radiation Detection Image having Nonlinear Response Characteristics
JP2009171990A (en) System and method for calibrating x-ray detector
JP2008237836A (en) Radiographic imaging device and method
JP6560990B2 (en) Radiation measurement method, radiation measurement apparatus, X-ray transmission image photographing apparatus, and X-ray CT apparatus
WO2018142780A1 (en) Radiography device, radiography method, and program
JP6576519B2 (en) Radiation image processing apparatus, method and program
CN108537727B (en) System amplification factor high-precision algorithm for X-ray digital imaging system
JP7115545B2 (en) Medical X-ray image processing device and X-ray imaging device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17858407

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17858407

Country of ref document: EP

Kind code of ref document: A1